### Example loading of the dataset import torch from torch.utils.data import Dataset from torchvision import datasets from torchvision.transforms import ToTensor import matplotlib.pyplot as plt import zipfile import os import pandas as pd from torchvision.io import read_image class CustomImageDataset(Dataset): def __init__(self, annotations_file, img_dir, transform=None, target_transform=None): self.img_labels = pd.read_csv(annotations_file) self.img_dir = img_dir self.transform = transform self.target_transform = target_transform def __len__(self): return len(self.img_labels) def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, -1]) image = read_image(img_path) label = self.img_labels.iloc[idx, 2] if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label with zipfile.ZipFile("150_Dataset(1).zip", 'r') as zip_ref: zip_ref.extractall(".") train_dataset = CustomImageDataset(annotations_file="./images/train/train.csv", img_dir="./images/train") train_dataloader = DataLoader(train_dataset, batch_size=12, shuffle=True) train_features, train_labels = next(iter(train_dataloader)) print(f"Feature batch shape: {train_features.size()}") print(f"Labels batch shape: {len(train_labels)}") img = train_features[0].squeeze() label = train_labels[0] plt.imshow(img, cmap="gray") plt.show() print(f"Label: {label}")