Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Thai
Size:
10K - 100K
License:
File size: 2,705 Bytes
71de2fd 680d728 71de2fd 680d728 71de2fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import csv
import os
import datasets
from datasets.tasks import TextClassification
# no BibTeX citation
_CITATION = ""
_DESCRIPTION = """\
Wongnai's review dataset contains restaurant reviews and ratings, mainly in Thai language.
The reviews are in 5 classes ranging from 1 to 5 stars.
"""
_LICENSE = "LGPL-3.0"
_URLs = {"default": "https://archive.org/download/wongnai_reviews/wongnai_reviews_withtest.zip"}
class WongnaiReviews(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.1")
def _info(self):
features = datasets.Features(
{
"review_body": datasets.Value("string"),
"star_rating": datasets.features.ClassLabel(names=["1", "2", "3", "4", "5"]),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage="https://github.com/wongnai/wongnai-corpus",
license=_LICENSE,
citation=_CITATION,
task_templates=[TextClassification(text_column="review_body", label_column="star_rating")],
)
def _split_generators(self, dl_manager):
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(data_dir, "w_review_train.csv"), "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "w_review_test.csv"), "split": "test"},
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
spamreader = csv.reader(f, delimiter=";", quotechar='"')
for id_, row in enumerate(spamreader):
yield id_, {"review_body": row[0], "star_rating": row[1]}
|