Datasets:

Languages:
English
ArXiv:
Tags:
code
License:
File size: 3,790 Bytes
92aeef5
849eb72
4f6a96c
 
 
 
 
 
c75188f
92aeef5
1774203
 
4f6a96c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c75188f
1774203
c75188f
4f6a96c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f5e606
 
 
 
 
 
 
 
 
 
 
 
4f6a96c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
license: mit
task_categories:
- text-generation
language:
- en
tags:
- code
pretty_name: OmniACT
---
<img src="intro.png" width="700" title="OmniACT">

Dataset for [OmniACT: A Dataset and Benchmark for Enabling Multimodal Generalist Autonomous Agents for Desktop and Web](https://arxiv.org/abs/2402.17553)

Splits:

| split_name | count |
|------------|-------|
| train      | 6788  |
| test       | 2020  |
| val        | 991   |

Example datapoint:
```json
  "2849": {
      "task": "data/tasks/desktop/ibooks/task_1.30.txt",
      "image": "data/data/desktop/ibooks/screen_1.png",
      "ocr": "ocr/desktop/ibooks/screen_1.json",
      "color": "detact_color/desktop/ibooks/screen_1.json",
      "icon": "detact_icon/desktop/ibooks/screen_1.json",
      "box": "data/metadata/desktop/boxes/ibooks/screen_1.json"
  },
```

where:

- `task` - contains natural language description ("Task") along with the corresponding PyAutoGUI code ("Output Script"):
```text
Task: Navigate to see the upcoming titles
Output Script:
pyautogui.moveTo(1881.5,1116.0)
```
- `image` - screen image where the action is performed

<img src="screen_1.png" width="700" title="example screen image">

- `ocr` - OCR of screen image (all text elements extracted from the screen image)
```json
{
    ocr:
{
    "Book": [
        1838.0,
        52.5
    ],
    "Store": [
        253.0,
        394.5
    ],
    "Browse": [
        2845.5,
        1323.0
    ],
    "Sections": [
        3227.0,
        52.5
    ],
    "v": [
        3298.5,
        53.0
    ],
    "Q": [
        47.5,
        138.5
    ],
    "Apple": [
        73.5,
        230.5
    ],
    "Books": [
        165.5,
        987.5
    ],
    "Top": [
        516.5,
        227.0
    ],
    "Charts": [
        622.0,
        224.5
    ],
...
}
```
- `color` and `icon` - list of UI elements along with their positions
```json
{
  "ctrl": [[2319.5, 2037.5], [2278.5, 1886.5], [2125.5, 1887.0], ...]
  "filter4": [[2319.5, 2037.5], [2278.5, 1886.5], ...]
  "calendar-empty": [[2319.5, 2037.5], [2278.5, 1886.5], [2125.5, 1887.0], ...]
  "volume-mute3": [[2319.5, 2037.5], [2278.5, 1886.5], [2125.5, 1887.0], ...]
  "command": [[2319.5, 2037.5], [2278.5, 1886.5], [2125.5, 1887.0], ...]
  "film3": [[2319.5, 2037.5], [2278.5, 1886.5], [2125.5, 1887.0],  
  "insert-template": [[2125.5, 1887.0], [2258.5, 1887.0], ...]
  "grid7": [[2296.5, 1894.5], [2125.5, 1884.5], [2099.5, 1868.5], [622.5, 1953.5]], 
  "map5": [[622.5, 1953.5]]
}
```
- `box` - bounding boxes of key UI elements
```json
{
    {
    "example_0": {
        "top_left": [
            482,
            1232
        ],
        "bottom_right": [
            1001,
            1516
        ],
        "label": "browse_mystery"
    },
    "example_1": {
        "top_left": [
            1053,
            1235
        ],
        "bottom_right": [
            1572,
            1519
        ],
        "label": "browse_kids"
    },
    "example_2": {
        "top_left": [
            1622,
            1237
        ],
        "bottom_right": [
            2141,
            1521
        ],
        "label": "browse_non_fiction"
    },
    "example_3": {
        "top_left": [
            2191,
            1238
        ],
        "bottom_right": [
            2710,
            1522
        ],
        "label": "browse_romance"
    },
...
}

```
To cite OmniACT, please use:
```
@misc{kapoor2024omniact,
      title={OmniACT: A Dataset and Benchmark for Enabling Multimodal Generalist Autonomous Agents for Desktop and Web}, 
      author={Raghav Kapoor and Yash Parag Butala and Melisa Russak and Jing Yu Koh and Kiran Kamble and Waseem Alshikh and Ruslan Salakhutdinov},
      year={2024},
      eprint={2402.17553},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```