Datasets:

Languages:
English
ArXiv:
Tags:
code
License:
omniact / eval.py
melisa's picture
Upload eval.py (#3)
5e4bcb2 verified
raw
history blame
6.12 kB
import json
from math import sqrt
import re
from nltk.translate.bleu_score import sentence_bleu
# gold label file
gold_fn = 'test.json'
pred_fn = 'llava-v1.5-13b.json'
gold = json.load(open(gold_fn))
pred = json.load(open(pred_fn))
sequence_match = 0
action_score = 0
total_click_penalty = 0
total_press_penalty = 0
total_write_penalty = 0
ideal_score = 0
max_click_penalty = 0
max_press_penalty = 0
max_write_penalty = 0
def get_bounds(box: dict(), cx, cy):
for i in box:
tl = box[i]["top_left"]
br = box[i]["bottom_right"]
if (tl[0]+br[0])/2 == cx and (tl[1]+br[1])/2 == cy:
return (tl,br)
assert False
def dynamic_dirichlet_l2_penalty(tl, br, px, py):
len_x = br[0] - tl[0]
len_y = br[1] - tl[1]
cx = ( br[0] - tl[0] ) / 2
cy = ( br[1] - tl[1] ) / 2
dx = abs(cx - px) - (len_x * 0.5)
dy = abs(cy - py) - (len_y * 0.5)
dist = sqrt((dx * (dx > 0)) ** 2 + (dy * (dy > 0)) ** 2)
mu = sqrt( len_x ** 2 + len_y ** 2)
score = mu / (dist+mu)
penalty = 1 - score
return penalty
for idx in gold:
gold_script = open(gold[idx]['task']).read().strip().split('\n')[2:]
llm_script = pred[idx].strip().split()
llm_script = [x for x in llm_script if x.strip().startswith('pyautogui')]
#find extreme case values
sample_weight = (len(gold_script)-0.9)
ideal_score += sample_weight
for gold_line in gold_script:
action_type = gold_line.split("pyautogui.")[1].split("(")[0]
if action_type == 'click' or action_type == 'rightClick' or action_type == 'moveTo' or action_type == 'dragTo':
max_click_penalty += sample_weight/len(gold_script)
if action_type == 'press' or action_type == 'hotkey':
max_press_penalty += sample_weight/len(gold_script)
if action_type == 'write':
max_write_penalty += sample_weight/len(gold_script)
seq_match_flag = 1
click_penalty = 0
press_penalty = 0
write_penalty = 0
# if length doesn't seq match is 0
# llm_script = llm_script[:len(gold_script)]
if len(llm_script) != len(gold_script):
seq_match_flag = 0
if seq_match_flag == 1:
for i in range(len(gold_script)):
gold_line = gold_script[i].strip()
gold_action = gold_line.split('pyautogui.')[1].split('(')[0]
pred_line = llm_script[i]
if pred_line.startswith('pyautogui.') == False:
seq_match_flag = 0
break
pred_action = pred_line.split('pyautogui.')[1].split('(')[0]
if pred_action != gold_action:
seq_match_flag = 0
break
# find penalties for correct and wrong sequences
box_path = gold[idx]['box']
box_num = box_path.split("_")[-1].split(".json")[0]
box_path = "_".join(box_path.split("_")[:-1])+box_num+"_boxes.json"
box = json.load(open(box_path))
for i in range(len(gold_script)):
gold_line = gold_script[i].strip()
gold_action = gold_line.split('pyautogui.')[1].split('(')[0]
# just add the penalties
if seq_match_flag == 0:
if gold_action == 'click' or gold_action == 'rightClick' or gold_action == 'moveTo' or gold_action == 'dragTo':
click_penalty += 1/len(gold_script)
if gold_action == 'press' or gold_action == 'hotkey':
press_penalty += 1/len(gold_script)
if gold_action == 'write':
write_penalty += 1/len(gold_script)
continue
pred_line = llm_script[i]
pred_action = pred_line.split('pyautogui.')[1].split('(')[0]
# l2 penalty for click
if gold_action == 'click' or gold == 'rightClick':
# get original box bounds
gold_cx = gold_line.split("pyautogui.")[1].split('(')[1].split(',')[0]
gold_cy = gold_line.split("pyautogui.")[1].split('(')[1].split(',')[1].split(')')[0]
tl, br = get_bounds(box, float(gold_cx), float(gold_cy))
# get predicted point
pred_cx = gold_line.split("pyautogui.")[1].split('(')[1].split(',')[0]
pred_cy = gold_line.split("pyautogui.")[1].split('(')[1].split(',')[1].split(')')[0]
click_penalty += (1.0/len(gold_script)) * dynamic_dirichlet_l2_penalty(tl, br, float(pred_cx), float(pred_cy))
# penalty for press
if gold_action == 'press':
gold_key = gold_line.split("\"")[1]
pred_key = (re.split("\"|'", pred_line))[1]
if gold_key.strip() != pred_key.strip():
press_penalty += 1/len(gold_script)
# penalty for hotkey
if gold_action == 'hotkey':
gold_keys = gold_line.split("(")[1].split(")")[0].split(",")
pred_keys = pred_line.split("(")[1].split(")")[0].split(",")
gold_key_set = set([x[1:-1] for x in gold_keys if len(x)>2])
pred_key_set = set([x[1:-1] for x in pred_keys if len(x)>2])
if gold_key_set != pred_key_set:
press_penalty += 1/len(gold_script)
if gold_action == 'write':
reference = [gold_line.split("\"")[1]]
candidate = re.split("\"|'", pred_line)[1]
write_penalty += (1-sentence_bleu(reference, candidate, weights=(0.5, 0.5))) / len(gold_script)
sequence_match += (seq_match_flag) * sample_weight
action_score += (max(seq_match_flag - click_penalty - press_penalty - write_penalty, 0)) * sample_weight
if seq_match_flag:
total_click_penalty += click_penalty * sample_weight
total_press_penalty += press_penalty * sample_weight
total_write_penalty += write_penalty * sample_weight
print(ideal_score)
print(f"Sequence match: {sequence_match/ideal_score}")
print(f"Action match: {action_score/ideal_score}")
print(total_click_penalty/ideal_score)
print(total_press_penalty/ideal_score)
print(total_write_penalty/ideal_score)