Datasets:
Size:
10K<n<100K
License:
import io | |
from PIL import Image | |
from datasets import GeneratorBasedBuilder, DatasetInfo, Features, SplitGenerator, Value, Array2D, Split | |
import datasets | |
import numpy as np | |
import h5py | |
from huggingface_hub import HfFileSystem | |
class CustomConfig(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super(CustomConfig, self).__init__(**kwargs) | |
self.dataset_type = kwargs.pop("name", "all") | |
_metadata_urls = { | |
"train":"https://huggingface.co/datasets/XingjianLi/tomatotest/resolve/main/train.txt", | |
"val":"https://huggingface.co/datasets/XingjianLi/tomatotest/resolve/main/val.txt" | |
} | |
class RGBSemanticDepthDataset(GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
CustomConfig(name="full", version="1.0.0", description="load both segmentation and depth (for all tar files, 160GB)"), | |
CustomConfig(name="sample", version="1.0.0", description="load both segmentation and depth (for 1 tar file, 870MB)"), | |
CustomConfig(name="depth", version="1.0.0", description="only load depth (sample)"), | |
CustomConfig(name="seg", version="1.0.0", description="only load segmentation (sample)"), | |
] # Configs initialization | |
BUILDER_CONFIG_CLASS = CustomConfig | |
def _info(self): | |
return DatasetInfo( | |
features=Features({ | |
"left_rgb": datasets.Image(), | |
"right_rgb": datasets.Image(), | |
"left_seg": datasets.Image(), | |
"left_depth": datasets.Image(), | |
"right_depth": datasets.Image(), | |
}) | |
) | |
def _h5_loader(self, bytes_stream, type_dataset): | |
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13 | |
f = io.BytesIO(bytes_stream) | |
h5f = h5py.File(f, "r") | |
left_rgb = self._read_jpg(h5f['rgb_left'][:]) | |
if type_dataset == 'depth': | |
right_rgb = self._read_jpg(h5f['rgb_right'][:]) | |
left_depth = h5f['depth_left'][:].astype(np.float32) | |
right_depth = h5f['depth_right'][:].astype(np.float32) | |
return left_rgb, right_rgb, np.zeros((1,1)), left_depth, right_depth | |
elif type_dataset == 'seg': | |
left_seg = h5f['seg_left'][:] | |
return left_rgb, np.zeros((1,1)), left_seg, np.zeros((1,1)), np.zeros((1,1)) | |
else: | |
right_rgb = self._read_jpg(h5f['rgb_right'][:]) | |
left_seg = h5f['seg_left'][:] | |
left_depth = h5f['depth_left'][:].astype(np.float32) | |
right_depth = h5f['depth_right'][:].astype(np.float32) | |
return left_rgb, right_rgb, left_seg, left_depth, right_depth | |
def _read_jpg(self, bytes_stream): | |
return Image.open(io.BytesIO(bytes_stream)) | |
def _split_generators(self, dl_manager): | |
if 'full' == self.config.dataset_type: | |
archives = dl_manager.download({"train":self._get_dataset_filenames(), | |
"val":self._get_dataset_filenames()}) | |
else: | |
archives = dl_manager.download({"train":[self._get_dataset_filenames()[0]], | |
"val":[self._get_dataset_filenames()[0]]}) | |
split_metadata = dl_manager.download(_metadata_urls) | |
return [ | |
SplitGenerator( | |
name=Split.TRAIN, | |
gen_kwargs={ | |
"archives": [dl_manager.iter_archive(archive) for archive in archives["train"]], | |
"split_txt": split_metadata["train"] | |
}, | |
), | |
SplitGenerator( | |
name=Split.VALIDATION, | |
gen_kwargs={ | |
"archives": [dl_manager.iter_archive(archive) for archive in archives["val"]], | |
"split_txt": split_metadata["val"] | |
}, | |
), | |
] | |
def _generate_examples(self, archives, split_txt): | |
#print(split_txt, archives) | |
with open(split_txt, encoding="utf-8") as split_f: | |
all_splits = split_f.read().split('\n') | |
#print(len(all_splits)) | |
for archive in archives: | |
#print(archive) | |
for path, file in archive: | |
if path.split('/')[-1][:-3] not in all_splits: | |
#print(path.split('/')[-1][:-3], all_splits[0]) | |
continue | |
#print("added") | |
left_rgb, right_rgb, left_seg, left_depth, right_depth = self._h5_loader(file.read(), self.config.dataset_type) | |
yield path, { | |
"left_rgb": left_rgb, | |
"right_rgb": right_rgb, | |
"left_seg": left_seg, | |
"left_depth": left_depth, | |
"right_depth": right_depth, | |
} | |
def _get_dataset_filenames(self): | |
fs = HfFileSystem() | |
all_files = fs.ls("datasets/xingjianli/tomatotest/data") | |
filenames = sorted(['/'.join(f['name'].split('/')[-2:]) for f in all_files]) | |
return filenames |