from datasets import load_dataset import matplotlib.pyplot as plt import numpy as np from scipy import stats # Additional Information for Depth and Camera Parameters # # Creating intrinsics for the camera # fov = 95.452621 # degrees # fx = (2448 / np.tan((fov*np.pi/180.0)/2.0)) / 2 # intrinsics = o3d.camera.PinholeCameraIntrinsic(2448,2048,fx,fx,2448/2,2048/2) # baseline = 3.88112 # cm # Note: Depth is also in centimeters # def maj_vote(img,x,y,semantic_map,n=3): half = n // 2 x_min, x_max = max(0, x - half), min(img.shape[1], x + half + 1) y_min, y_max = max(0, y - half), min(img.shape[0], y + half + 1) window = img[y_min:y_max, x_min:x_max].flatten() window = window[window != 255] if len(window) > 0: # Perform majority voting most_common_label = stats.mode(window, keepdims=True)[0][0] return most_common_label else: return semantic_map["background"][0] def color_to_id(img_semantic, semantic_map, top_k_disease = 10): semantic_id_img = np.ones(img_semantic.shape) * 255 disease_counts = [] # remap rendered color to semantic id for _, id_value_map in semantic_map.items(): # track disease pixel counts for top_k_disease filtering if id_value_map[1] < 60 and id_value_map[1] > 1: disease_counts.append(np.sum(np.where(img_semantic == id_value_map[1], 1, 0))) semantic_id_img[img_semantic == id_value_map[1]] = id_value_map[0] # filter for most common disease labels for i, item_i in enumerate(np.argsort(disease_counts)[::-1]): if i >= top_k_disease: id_value_map = list(semantic_map.items())[item_i][1] semantic_id_img[img_semantic == id_value_map[1]] = 255 # Apply majority voting for unlabeled pixels (needed as the rendering process can blend pixels) unknown_mask = (semantic_id_img == 255) for y,x in np.argwhere(unknown_mask): semantic_id_img[y, x] = maj_vote(semantic_id_img, x, y, semantic_map, 3) return semantic_id_img if __name__ == "__main__": # similar to cityscapes for mmsegmentation # class name, (new_id, img_id) semantic_map = { "bacterial_spot": (0, 5), "early_blight": (1, 10), "late_blight": (2, 20), "leaf_mold": (3, 25), "septoria_leaf_spot": (4,30), "spider_mites": (5,35), "target_spot": (6,40), "mosaic_virus": (7,45), "yellow_leaf_curl_virus":(8,50), "healthy_leaf_pv": (9, 15), # plant village healthy leaf "healthy_leaf_t": (9, 255), # texture leaf (healthy) "background": (10, 0), "tomato": (11, 121), "stem": (12, 111), "wood_rod": (13, 101), "red_band": (14, 140), "yellow_flower": (15, 131) } dataset = load_dataset("xingjianli/tomatotest", 'sample',trust_remote_code=True, num_proc=4) print(dataset["train"][0]) left_rgb_img = dataset["train"][0]['left_rgb'] right_rgb_img = dataset["train"][0]['right_rgb'] left_semantic_img = np.asarray(dataset["train"][0]['left_semantic']) left_instance_img = np.asarray(dataset["train"][0]['left_instance']) left_depth_img = np.asarray(dataset["train"][0]['left_depth']) right_depth_img = np.asarray(dataset["train"][0]['right_depth']) plt.subplot(231) plt.imshow(left_rgb_img) plt.subplot(232) plt.imshow(right_rgb_img) plt.subplot(233) plt.imshow(color_to_id(left_semantic_img, semantic_map)) plt.subplot(234) plt.imshow(np.where(left_depth_img>500,0,left_depth_img)) plt.subplot(235) plt.imshow(np.where(right_depth_img>500,0,right_depth_img)) plt.subplot(236) plt.imshow(left_instance_img) plt.show()