## Dataset: **OAIZIB-CM** | Source | link | | ------------ | ------------------------------------------------------------ | | Google Drive | [here](https://drive.google.com/drive/folders/13_afAKSH7ZMOI_Nk2gfoihbJKwafw1l9?usp=share_link) | | Huggingface | [here](https://huggingface.co/datasets/YongchengYAO/OAIZIB-CM/tree/main) | If you use our preprocessed data, please note that the manual segmentation annotations come from this work: - Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative (https://doi.org/10.1016/j.media.2018.11.009)

## Download from Huggingface ```bash #!/bin/bash pip install huggingface-hub[cli] huggingface-cli login --token $HF_TOKEN ``` ```python # python from huggingface_hub import snapshot_download snapshot_download(repo_id="YongchengYAO/OAIZIB-CM", repo_type='dataset', local_dir="/your/local/folder") ```

## Files ### Images & Labels - imagesTr: training images (#404) - labelsTr: training segmentation masks (#404) - imagesTs: testing images (#103) - labelsTs: testing segmentation masks (#103) ### Data Split & Info - `subInfo_train.xlsx`: list of training data - `subInfo_test.xlsx`: list of testing data - `kneeSideInfo.csv`: a file containing knee side information, used in CartiMorph Toolbox

## Paper ``` @article{YAO2024103035, title = {CartiMorph: A framework for automated knee articular cartilage morphometrics}, journal = {Medical Image Analysis}, author = {Yongcheng Yao and Junru Zhong and Liping Zhang and Sheheryar Khan and Weitian Chen}, volume = {91}, pages = {103035}, year = {2024}, issn = {1361-8415}, doi = {https://doi.org/10.1016/j.media.2023.103035} } ``` ``` @misc{yao2024quantifyingkneecartilageshape, title={Quantifying Knee Cartilage Shape and Lesion: From Image to Metrics}, author={Yongcheng Yao and Weitian Chen}, year={2024}, eprint={2409.07361}, archivePrefix={arXiv}, primaryClass={eess.IV}, url={https://arxiv.org/abs/2409.07361}, } ```