File size: 4,609 Bytes
5b114d7
 
 
 
 
 
 
 
 
 
 
 
 
c7eb3a7
 
 
d8cde4a
c7eb3a7
 
 
 
 
 
 
5b114d7
c7eb3a7
 
 
 
 
5b114d7
d8cde4a
c7eb3a7
 
5b114d7
 
 
 
c7eb3a7
 
5b114d7
c7eb3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b114d7
 
 
c7eb3a7
 
5b114d7
c7eb3a7
 
 
5b114d7
 
 
 
c7eb3a7
 
 
 
5b114d7
 
 
 
c7eb3a7
 
 
 
 
 
5b114d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7eb3a7
5b114d7
c7eb3a7
5b114d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
language: en
tags:
- TCM
- chinese-medicine
- conversational
license: apache-2.0
datasets:
- ZJUFanLab/TCMChat-dataset-600k
model-index:
- name: TCMChat-dataset-600k
  results: []
---
[**中文**](./README_ZH.md) | [**English**](./README.md)

<p align="center" width="100%">
<a href="https://github.com/ZJUFanLab/TCMChat" target="_blank"><img src="./logo.png" alt="TCMChat" style="width: 25%; min-width: 300px; display: block; margin: auto;"></a>
</p>

# TCMChat: A Generative Large Language Model for Traditional Chinese Medicine

[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese/blob/main/LICENSE) [![Python 3.10.12](https://img.shields.io/badge/python-3.10.12-blue.svg)](https://www.python.org/downloads/release/python-390/)

## News
[2024-11-1] We have fully open-sourced the model weights and training dataset on Huggingface.                   
[2024-5-17] Open source model weight on HuggingFace.                 

## Application

### Install
```shell
git clone https://github.com/ZJUFanLab/TCMChat
cd TCMChat
```
Create a conda environment
```shell
conda create -n baichuan2 python=3.10 -y
```
First install the dependency package. python environment 3.10+ is recommended.

```shell
pip install -r requirements.txt
```

### Weights download
- [TCMChat](https://huggingface.co/daiyizheng/TCMChat): QA and recommendation of TCM knowledge based on baichuan2-7B-Chat.

### Inference
#### Command line

```
python cli_infer.py \
--model_name_or_path /your/model/path \
--model_type  chat
```

#### Web demo

```
python gradio_demo.py
```

We provide an online tool:[https://xomics.com.cn/tcmchat](https://xomics.com.cn/tcmchat)


### Retrain
#### Dataset Download

- [Pretrain dataset](https://huggingface.co/datasets/ZJUFanLab/TCMChat-dataset-600k) 
- [SFT dataset](https://huggingface.co/datasets/ZJUFanLab/TCMChat-dataset-600k)
- [Benchmark dataset](https://github.com/ZJUFanLab/TCMChat/tree/master/evaluation/resources)


> Note: Before performing pre-training, fine-tuning, and inference, please modify the relevant paths for your model, data, and other related files.
#### Pre-training

```shell
## Slurm cluster
sbatch scripts/pretrain/baichuan2_7b_chat.slurm
## or
bash scripts/pretrain/baichuan2_7b_chat.sh
```

#### Fine-tuning
```shell
## Slurm cluster
sbatch scripts/sft/baichuan2_7b_chat.slurm
## or
bash scripts/sft/baichuan2_7b_chat.sh
```
### Training details

Please refer to the experimental section of the paper for instructions.


### Benchmark evaluation

#### Choice Question
```shell
python evaluation/choices_evaluate/eval.py   --model_path_or_name /your/model/path --model_name  baichuan2-7b-chat --few_shot -sz herb --dev_file_path evaluation/resources/choice/single/tcm-herb_dev.csv --val_file_path evaluation/resources/choice/single/choice_herb_500.csv --log_dir logs/choices
```

#### Reading Comprehension
```shell
python infers/baichuan_infer.py \
--model_name_or_path /your/model/path / \
--model_type chat \
--save_path /your/save/data/path \
--data_path /your/data/path
##BertScore
python evaluation/question_rouge_bleu.py/question_bert_score.py
## BLEU METEOR
python evaluation/question_rouge_bleu.py/open_question_bleu.py
## ROUGE-x
python evaluation/question_rouge_bleu.py/open_question_rouge.py

```

#### Entity Extraction
```shell
python infers/baichuan_infer.py \
--model_name_or_path /your/model/path / \
--model_type chat \
--save_path /your/save/data/path \
--data_path /your/data/path

python evaluation/ner_evaluate/tcm_entity_recognition.py

```

#### Medical Case Diagnosis
```shell
python infers/baichuan_infer.py \
--model_name_or_path /your/model/path / \
--model_type chat \
--save_path /your/save/data/path \
--data_path /your/data/path

python evaluation/acc_evaluate/extract_syndrome.py

```

#### Herb or Formula Recommendation
```shell
python infers/baichuan_infer.py \
--model_name_or_path /your/model/path / \
--model_type chat \
--save_path /your/save/data/path \
--data_path /your/data/path

python evaluation/recommend_evaluate/mrr_ndcg_p_r.py

```
### ADMET Prediction
#### Regression
```shell
python infers/baichuan_infer.py \
--model_name_or_path /your/model/path / \
--model_type chat \
--save_path /your/save/data/path \
--data_path /your/data/path

python evaluation/admet_evaluate/rmse_mae_mse.py

```
#### Classification
```shell
python infers/baichuan_infer.py \
--model_name_or_path /your/model/path / \
--model_type chat \
--save_path /your/save/data/path \
--data_path /your/data/path

python evaluation/admet_evaluate/acc_recall_f1.py

```