ZJUFanLab commited on
Commit
6dd7aa2
·
verified ·
1 Parent(s): c7eb3a7

Upload README_ZH.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README_ZH.md +101 -98
README_ZH.md CHANGED
@@ -1,7 +1,7 @@
1
  [**中文**](./README_ZH.md) | [**English**](./README.md)
2
 
3
  <p align="center" width="100%">
4
- <a href="https://github.com/daiyizheng/TCMChat" target="_blank"><img src="assets/logo.png" alt="TCMChat" style="width: 25%; min-width: 300px; display: block; margin: auto;"></a>
5
  </p>
6
 
7
  # TCMChat: Traditional Chinese Medicine Recommendation System based on Large Language Model
@@ -9,33 +9,35 @@
9
  [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese/blob/main/LICENSE) [![Python 3.10.12](https://img.shields.io/badge/python-3.10.12-blue.svg)](https://www.python.org/downloads/release/python-390/)
10
 
11
  ## 新闻
12
-
13
  [2024-5-17] huggingface 开源模型权重
14
 
 
15
  ## 应用
16
 
17
  ### 安装
18
-
19
- ```
20
  git clone https://github.com/daiyizheng/TCMChat
21
  cd TCMChat
22
  ```
23
 
24
- 首先安装依赖包,python环境建议3.10+
25
-
 
26
  ```
 
 
 
27
  pip install -r requirements.txt
28
  ```
29
 
30
  ### 权重下载
31
-
32
  - [TCMChat](https://huggingface.co/daiyizheng/TCMChat): 基于baichuan2-7B-Chat的中药、方剂知识问答与推荐。
33
 
34
  ### 推理
35
-
36
  #### 命令行测试
37
 
38
- ```
39
  python cli_infer.py \
40
  --model_name_or_path /your/model/path \
41
  --model_type chat
@@ -43,114 +45,115 @@ python cli_infer.py \
43
 
44
  #### Web页面测试
45
 
46
- ```
47
  python gradio_demo.py
48
  ```
49
-
50
  我们提供了一个在线的体验工具:[https://xomics.com.cn/tcmchat](https://xomics.com.cn/tcmchat)
51
 
52
 
53
  ### 重新训练
54
  #### 数据集下载
55
 
56
- - [预训练数据](https://github.com/ZJUFanLab/TCMChat/tree/master/data/pretrain)
57
- - [微调数据](https://github.com/ZJUFanLab/TCMChat/tree/master/data/sft)
58
- - [基准评测数据](https://github.com/ZJUFanLab/TCMChat/tree/master/data/evaluate)
59
-
60
- > 注意:目前只提供样例数据,不久将来,我们将完全开源原始数据
61
 
62
 
 
63
  #### 预训练
64
 
65
  ```shell
66
- train_type="pretrain"
67
- train_file="data/pretrain/train"
68
- validation_file="data/pretrain/test"
69
- block_size="1024"
70
- deepspeed_dir="data/resources/deepspeed_zero_stage2_config.yml"
71
- num_train_epochs="2"
72
- export WANDB_PROJECT="TCM-${train_type}"
73
- date_time=$(date +"%Y%m%d%H%M%S")
74
- run_name="${date_time}_${block_size}"
75
- model_name_or_path="your/path/Baichuan2-7B-Chat"
76
- output_dir="output/${train_type}/${date_time}_${block_size}"
77
-
78
-
79
- accelerate launch --config_file ${deepspeed_dir} src/pretraining.py \
80
- --model_name_or_path ${model_name_or_path} \
81
- --train_file ${train_file} \
82
- --validation_file ${validation_file} \
83
- --preprocessing_num_workers 20 \
84
- --cache_dir ./cache \
85
- --block_size ${block_size} \
86
- --seed 42 \
87
- --do_train \
88
- --do_eval \
89
- --per_device_train_batch_size 32 \
90
- --per_device_eval_batch_size 32 \
91
- --num_train_epochs ${num_train_epochs} \
92
- --low_cpu_mem_usage True \
93
- --torch_dtype bfloat16 \
94
- --bf16 \
95
- --ddp_find_unused_parameters False \
96
- --gradient_checkpointing True \
97
- --learning_rate 2e-4 \
98
- --warmup_ratio 0.05 \
99
- --weight_decay 0.01 \
100
- --report_to wandb \
101
- --run_name ${run_name} \
102
- --logging_dir logs \
103
- --logging_strategy steps \
104
- --logging_steps 10 \
105
- --eval_steps 50 \
106
- --evaluation_strategy steps \
107
- --save_steps 100 \
108
- --save_strategy steps \
109
- --save_total_limit 13 \
110
- --output_dir ${output_dir} \
111
- --overwrite_output_dir
112
  ```
113
 
114
  #### 微调
115
  ```shell
116
- train_type="SFT"
117
- model_max_length="1024"
118
- date_time=$(date +"%Y%m%d%H%M%S")
119
- data_path="data/sft/sample_train_baichuan_data.json"
120
- model_name_or_path="your/path/pretrain"
121
- deepspeed_dir="data/resources/deepspeed_zero_stage2_confi_baichuan2.json"
122
- export WANDB_PROJECT="TCM-${train_type}"
123
- run_name="${train_type}_${date_time}"
124
- output_dir="output/${train_type}/${date_time}_${model_max_length}"
125
-
126
-
127
- deepspeed --hostfile="" src/fine-tune.py \
128
- --report_to "wandb" \
129
- --run_name ${run_name} \
130
- --data_path ${data_path} \
131
- --model_name_or_path ${model_name_or_path} \
132
- --output_dir ${output_dir} \
133
- --model_max_length ${model_max_length} \
134
- --num_train_epochs 4 \
135
- --per_device_train_batch_size 16 \
136
- --gradient_accumulation_steps 1 \
137
- --save_strategy epoch \
138
- --learning_rate 2e-5 \
139
- --lr_scheduler_type constant \
140
- --adam_beta1 0.9 \
141
- --adam_beta2 0.98 \
142
- --adam_epsilon 1e-8 \
143
- --max_grad_norm 1.0 \
144
- --weight_decay 1e-4 \
145
- --warmup_ratio 0.0 \
146
- --logging_steps 1 \
147
- --gradient_checkpointing True \
148
- --deepspeed ${deepspeed_dir} \
149
- --bf16 True \
150
- --tf32 True
151
  ```
152
-
153
  ### 训练细节
154
 
155
  请参考论文实验部分说明。
156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  [**中文**](./README_ZH.md) | [**English**](./README.md)
2
 
3
  <p align="center" width="100%">
4
+ <a href="https://github.com/daiyizheng/TCMChat" target="_blank"><img src="logo.png" alt="TCMChat" style="width: 25%; min-width: 300px; display: block; margin: auto;"></a>
5
  </p>
6
 
7
  # TCMChat: Traditional Chinese Medicine Recommendation System based on Large Language Model
 
9
  [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese/blob/main/LICENSE) [![Python 3.10.12](https://img.shields.io/badge/python-3.10.12-blue.svg)](https://www.python.org/downloads/release/python-390/)
10
 
11
  ## 新闻
12
+ [2024-11-1] 我们在Huggingface上完全开源了模型权重和训练数据集
13
  [2024-5-17] huggingface 开源模型权重
14
 
15
+
16
  ## 应用
17
 
18
  ### 安装
19
+ ```shell
 
20
  git clone https://github.com/daiyizheng/TCMChat
21
  cd TCMChat
22
  ```
23
 
24
+ 创建conda 环境
25
+ ```shell
26
+ conda create -n baichuan2 python=3.10 -y
27
  ```
28
+
29
+ 首先安装依赖包,python环境建议3.10+
30
+ ``` shell
31
  pip install -r requirements.txt
32
  ```
33
 
34
  ### 权重下载
 
35
  - [TCMChat](https://huggingface.co/daiyizheng/TCMChat): 基于baichuan2-7B-Chat的中药、方剂知识问答与推荐。
36
 
37
  ### 推理
 
38
  #### 命令行测试
39
 
40
+ ```shell
41
  python cli_infer.py \
42
  --model_name_or_path /your/model/path \
43
  --model_type chat
 
45
 
46
  #### Web页面测试
47
 
48
+ ```shell
49
  python gradio_demo.py
50
  ```
 
51
  我们提供了一个在线的体验工具:[https://xomics.com.cn/tcmchat](https://xomics.com.cn/tcmchat)
52
 
53
 
54
  ### 重新训练
55
  #### 数据集下载
56
 
57
+ - [预训练数据](https://huggingface.co/datasets/ZJUFanLab/TCMChat-dataset-600k)
58
+ - [微调数据](https://huggingface.co/datasets/ZJUFanLab/TCMChat-dataset-600k)
59
+ - [基准评测数据](https://github.com/ZJUFanLab/TCMChat/tree/master/evaluation/resources)
 
 
60
 
61
 
62
+ > 注意: 在执行预训练、微调和推理之前,请修改自己模型、数据等相关数据路径
63
  #### 预训练
64
 
65
  ```shell
66
+ ## slurm 集群
67
+ sbatch scripts/pretrain/baichuan2_7b_chat.slurm
68
+ ##或者
69
+ bash scripts/pretrain/baichuan2_7b_chat.sh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  ```
71
 
72
  #### 微调
73
  ```shell
74
+ ## slurm 集群
75
+ sbatch scripts/sft/baichuan2_7b_chat.slurm
76
+ ##或者
77
+ bash scripts/sft/baichuan2_7b_chat.sh
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  ```
 
79
  ### 训练细节
80
 
81
  请参考论文实验部分说明。
82
 
83
+ ### 基准评估
84
+ #### 选择题
85
+ ```shell
86
+ python evaluation/choices_evaluate/eval.py --model_path_or_name /your/model/path --model_name baichuan2-7b-chat --few_shot -sz herb --dev_file_path evaluation/resources/choice/single/tcm-herb_dev.csv --val_file_path evaluation/resources/choice/single/choice_herb_500.csv --log_dir logs/choices
87
+ ```
88
+
89
+ #### 阅读理解
90
+ ```shell
91
+ python infers/baichuan_infer.py \
92
+ --model_name_or_path /your/model/path / \
93
+ --model_type chat \
94
+ --save_path /your/save/data/path \
95
+ --data_path /your/data/path
96
+ ##BertScore
97
+ python evaluation/question_rouge_bleu.py/question_bert_score.py
98
+ ## BLEU METEOR
99
+ python evaluation/question_rouge_bleu.py/open_question_bleu.py
100
+ ## ROUGE-x
101
+ python evaluation/question_rouge_bleu.py/open_question_rouge.py
102
+
103
+ ```
104
+ #### 实体抽取
105
+ ```shell
106
+ python infers/baichuan_infer.py \
107
+ --model_name_or_path /your/model/path / \
108
+ --model_type chat \
109
+ --save_path /your/save/data/path \
110
+ --data_path /your/data/path
111
+
112
+ python evaluation/ner_evaluate/tcm_entity_recognition.py
113
+
114
+ ```
115
+ #### 医案诊断
116
+ ```shell
117
+ python infers/baichuan_infer.py \
118
+ --model_name_or_path /your/model/path / \
119
+ --model_type chat \
120
+ --save_path /your/save/data/path \
121
+ --data_path /your/data/path
122
+
123
+ python evaluation/acc_evaluate/extract_syndrome.py
124
+
125
+ ```
126
+ #### 中药或方剂推荐
127
+ ```shell
128
+ python infers/baichuan_infer.py \
129
+ --model_name_or_path /your/model/path / \
130
+ --model_type chat \
131
+ --save_path /your/save/data/path \
132
+ --data_path /your/data/path
133
+
134
+ python evaluation/recommend_evaluate/mrr_ndcg_p_r.py
135
+
136
+ ```
137
+ #### ADMET预测
138
+ ##### 回归任务
139
+ ```shell
140
+ python infers/baichuan_infer.py \
141
+ --model_name_or_path /your/model/path / \
142
+ --model_type chat \
143
+ --save_path /your/save/data/path \
144
+ --data_path /your/data/path
145
+
146
+ python evaluation/admet_evaluate/rmse_mae_mse.py
147
+
148
+ ```
149
+ ##### 分类任务
150
+ ```shell
151
+ python infers/baichuan_infer.py \
152
+ --model_name_or_path /your/model/path / \
153
+ --model_type chat \
154
+ --save_path /your/save/data/path \
155
+ --data_path /your/data/path
156
+
157
+ python evaluation/admet_evaluate/acc_recall_f1.py
158
+
159
+ ```