File size: 65,106 Bytes
f998fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
{
  "language": "Solidity",
  "sources": {
    "contracts/GovernanceNFT.sol": {
      "content": "// SPDX-License-Identifier: MIT\npragma solidity 0.8.9;\n\nimport \"@openzeppelin/contracts-upgradeable/token/ERC721/ERC721Upgradeable.sol\";\nimport \"@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol\";\nimport \"@openzeppelin/contracts/utils/Strings.sol\";\n\n/**\n * @title GovernanceNFT: ERC721 NFT with URI storage for metadata used for governance in Discord\n * @dev ERC721 contains logic for NFT storage and metadata.\n */\ncontract GovernanceNFT is ERC721Upgradeable, AccessControlUpgradeable {\n    // roles for access control\n    bytes32 public constant ISSUER_ROLE = keccak256(\"ISSUER_ROLE\");\n\n    // base URI for NFTs \n    string private baseURI;\n\n    // Because this contract is used through a proxy, new variables can only be appended below the others to keep the thier storage location!\n\n    /**\n     * @dev The real initialization is called when deploying the proxy.\n     */\n    constructor() {}\n\n    /**\n     * @dev The constructor for the Governance NFT sets up NFT name and roles\n     * @param issuer The address allowed to mint and burn NFTs\n     * @param uri base URI to the metadata (id will be concatinated to this)\n     * @param owner Owner of the contract (can modify roles)\n     * @param nftName Name of the ERC721 NFT\n     * @param nftSymbol Symbol of the ERC721 NFT\n     */\n    function initialize(\n        address issuer,\n        string memory uri,\n        address owner,\n        string memory nftName,\n        string memory nftSymbol\n    ) \n        external\n        reinitializer(1)\n        // onlyRole(DEFAULT_ADMIN_ROLE) enable this when upgrading\n    {\n        // set admin, the role that can initialize, assign and revoke other roles \n        _setupRole(DEFAULT_ADMIN_ROLE, owner);\n        // only addresses assigned to this role will be able to mint and burn NFTs\n        _setupRole(ISSUER_ROLE, issuer);\n\n        __ERC721_init(nftName, nftSymbol);\n        \n        baseURI = uri;\n    }\n\n    /**\n     * @dev Mint a NFT for a user\n     * @param user Address that should receive the NFT\n     */\n    function mint(address user)\n        public\n        onlyRole(ISSUER_ROLE)\n    {\n        // the id of each NFT will be uniquely defined by the user holding it\n        // 1 to 1 relation\n        uint256 newNFTId = getIDForAddress(user);\n        // using _mint instead of _safeMint to prevent the contract from reverting\n        //  if a smart contract is staking and has not implemented the onERC721Received function\n        _mint(user, newNFTId);\n    }\n\n    /**\n     * @dev Mint a NFT for a batch of user\n     * @param users Array of address that should receive the NFT\n     */\n    function batchMint(address[] calldata users)\n        public\n        onlyRole(ISSUER_ROLE)\n    {\n        for (uint i = 0; i < users.length; i++) {\n            uint256 newNFTId = getIDForAddress(users[i]);\n            // if (_exists(newNFTId)) {\n            //     // prevent large batch tx from failing if one NFT was already minted:\n            //     continue;\n            // }\n            _mint(users[i], newNFTId);\n        }\n    }\n\n    /**\n     * @dev Burn a NFT of a user\n     * @param user Address that should have the NFT burned. Information about the holder is enough because there is as most one NFT per user.\n     */\n    function burn(address user)\n        public\n        onlyRole(ISSUER_ROLE)\n    {\n        // the id of each NFT will be uniquely defined by the user holding it\n        // 1 to 1 relation\n        uint256 id = getIDForAddress(user);\n        _burn(id);\n    }\n\n    /**\n     * @dev Get NFT id of user or 0 for none.\n     * \n     * @param user The address of the NFT owner.\n     * @return Returns the id of the NFT for the given address and 0 if the address has no NFTs.\n     */\n    function getNFTHoldBy(address user)\n        public view\n        returns (uint256)\n    {\n        uint256 id = getIDForAddress(user);\n        if (balanceOf(user) == 1) {\n            assert (ownerOf(id) == user);\n            return id;\n        }\n        return 0;\n    }\n\n    /**\n     * Implementing ERC165 as needed by AccessControl and ERC721\n     */\n    function supportsInterface(bytes4 interfaceId) public view override(ERC721Upgradeable, AccessControlUpgradeable) returns (bool) {\n        return ERC721Upgradeable.supportsInterface(interfaceId) || AccessControlUpgradeable.supportsInterface(interfaceId);\n    }\n\n    /**\n     * @dev Each address can at most have one NFT. This function assigns as id to a user by convertng the address to uint256\n     * @param user address of the user\n     */\n    function getIDForAddress(address user)\n        public pure\n        returns (uint256)\n    {\n        return uint256(uint160(user));\n    }\n\n    /**\n     * @dev Each address can at most have one NFT. This function get the address belonging to an id\n     * @param id NFT id\n     */\n    function getAddressForID(uint256 id)\n        public pure\n        returns (address)\n    {\n        return address(uint160(id));\n    }\n\n    /**\n     * @dev See {IERC721Metadata-tokenURI}.\n     */\n    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {\n        _requireMinted(tokenId);\n        // concatinate base URI with holder address\n        // address will be lower case and not have checksum encoding\n        return string(abi.encodePacked(_baseURI(), Strings.toHexString(getAddressForID(tokenId)), \".json\"));\n    }\n\n    /**\n     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each\n     * token will be the concatenation of the `baseURI` and the `tokenId`.\n     */\n    function _baseURI() internal view override returns (string memory) {\n        return baseURI;\n    }\n\n    /**\n     * @dev Transfers are rejected because the GovernanceNFT is soulbound.\n     */\n    function _transfer(address, address, uint256) internal pure override {\n        revert(\"GovernanceNFT: transfer is not allowed\");\n    }\n\n\n    /**\n     * @dev Approve are rejected because the GovernanceNFT is soulbound.\n     */\n    function _approve(address to, uint256 id) internal override {\n        if (to == address(0)){\n            // ok to approve zero address as done by the ERC721 implementation on burning\n            super._approve(to, id);\n        }\n        else{\n            revert(\"GovernanceNFT: transfer approval is not allowed\");\n        }\n    }\n}"
    },
    "@openzeppelin/contracts-upgradeable/token/ERC721/ERC721Upgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/ERC721.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IERC721Upgradeable.sol\";\nimport \"./IERC721ReceiverUpgradeable.sol\";\nimport \"./extensions/IERC721MetadataUpgradeable.sol\";\nimport \"../../utils/AddressUpgradeable.sol\";\nimport \"../../utils/ContextUpgradeable.sol\";\nimport \"../../utils/StringsUpgradeable.sol\";\nimport \"../../utils/introspection/ERC165Upgradeable.sol\";\nimport \"../../proxy/utils/Initializable.sol\";\n\n/**\n * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including\n * the Metadata extension, but not including the Enumerable extension, which is available separately as\n * {ERC721Enumerable}.\n */\ncontract ERC721Upgradeable is Initializable, ContextUpgradeable, ERC165Upgradeable, IERC721Upgradeable, IERC721MetadataUpgradeable {\n    using AddressUpgradeable for address;\n    using StringsUpgradeable for uint256;\n\n    // Token name\n    string private _name;\n\n    // Token symbol\n    string private _symbol;\n\n    // Mapping from token ID to owner address\n    mapping(uint256 => address) private _owners;\n\n    // Mapping owner address to token count\n    mapping(address => uint256) private _balances;\n\n    // Mapping from token ID to approved address\n    mapping(uint256 => address) private _tokenApprovals;\n\n    // Mapping from owner to operator approvals\n    mapping(address => mapping(address => bool)) private _operatorApprovals;\n\n    /**\n     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.\n     */\n    function __ERC721_init(string memory name_, string memory symbol_) internal onlyInitializing {\n        __ERC721_init_unchained(name_, symbol_);\n    }\n\n    function __ERC721_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {\n        _name = name_;\n        _symbol = symbol_;\n    }\n\n    /**\n     * @dev See {IERC165-supportsInterface}.\n     */\n    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165Upgradeable) returns (bool) {\n        return\n            interfaceId == type(IERC721Upgradeable).interfaceId ||\n            interfaceId == type(IERC721MetadataUpgradeable).interfaceId ||\n            super.supportsInterface(interfaceId);\n    }\n\n    /**\n     * @dev See {IERC721-balanceOf}.\n     */\n    function balanceOf(address owner) public view virtual override returns (uint256) {\n        require(owner != address(0), \"ERC721: address zero is not a valid owner\");\n        return _balances[owner];\n    }\n\n    /**\n     * @dev See {IERC721-ownerOf}.\n     */\n    function ownerOf(uint256 tokenId) public view virtual override returns (address) {\n        address owner = _owners[tokenId];\n        require(owner != address(0), \"ERC721: invalid token ID\");\n        return owner;\n    }\n\n    /**\n     * @dev See {IERC721Metadata-name}.\n     */\n    function name() public view virtual override returns (string memory) {\n        return _name;\n    }\n\n    /**\n     * @dev See {IERC721Metadata-symbol}.\n     */\n    function symbol() public view virtual override returns (string memory) {\n        return _symbol;\n    }\n\n    /**\n     * @dev See {IERC721Metadata-tokenURI}.\n     */\n    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {\n        _requireMinted(tokenId);\n\n        string memory baseURI = _baseURI();\n        return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : \"\";\n    }\n\n    /**\n     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each\n     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty\n     * by default, can be overridden in child contracts.\n     */\n    function _baseURI() internal view virtual returns (string memory) {\n        return \"\";\n    }\n\n    /**\n     * @dev See {IERC721-approve}.\n     */\n    function approve(address to, uint256 tokenId) public virtual override {\n        address owner = ERC721Upgradeable.ownerOf(tokenId);\n        require(to != owner, \"ERC721: approval to current owner\");\n\n        require(\n            _msgSender() == owner || isApprovedForAll(owner, _msgSender()),\n            \"ERC721: approve caller is not token owner nor approved for all\"\n        );\n\n        _approve(to, tokenId);\n    }\n\n    /**\n     * @dev See {IERC721-getApproved}.\n     */\n    function getApproved(uint256 tokenId) public view virtual override returns (address) {\n        _requireMinted(tokenId);\n\n        return _tokenApprovals[tokenId];\n    }\n\n    /**\n     * @dev See {IERC721-setApprovalForAll}.\n     */\n    function setApprovalForAll(address operator, bool approved) public virtual override {\n        _setApprovalForAll(_msgSender(), operator, approved);\n    }\n\n    /**\n     * @dev See {IERC721-isApprovedForAll}.\n     */\n    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {\n        return _operatorApprovals[owner][operator];\n    }\n\n    /**\n     * @dev See {IERC721-transferFrom}.\n     */\n    function transferFrom(\n        address from,\n        address to,\n        uint256 tokenId\n    ) public virtual override {\n        //solhint-disable-next-line max-line-length\n        require(_isApprovedOrOwner(_msgSender(), tokenId), \"ERC721: caller is not token owner nor approved\");\n\n        _transfer(from, to, tokenId);\n    }\n\n    /**\n     * @dev See {IERC721-safeTransferFrom}.\n     */\n    function safeTransferFrom(\n        address from,\n        address to,\n        uint256 tokenId\n    ) public virtual override {\n        safeTransferFrom(from, to, tokenId, \"\");\n    }\n\n    /**\n     * @dev See {IERC721-safeTransferFrom}.\n     */\n    function safeTransferFrom(\n        address from,\n        address to,\n        uint256 tokenId,\n        bytes memory data\n    ) public virtual override {\n        require(_isApprovedOrOwner(_msgSender(), tokenId), \"ERC721: caller is not token owner nor approved\");\n        _safeTransfer(from, to, tokenId, data);\n    }\n\n    /**\n     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients\n     * are aware of the ERC721 protocol to prevent tokens from being forever locked.\n     *\n     * `data` is additional data, it has no specified format and it is sent in call to `to`.\n     *\n     * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.\n     * implement alternative mechanisms to perform token transfer, such as signature-based.\n     *\n     * Requirements:\n     *\n     * - `from` cannot be the zero address.\n     * - `to` cannot be the zero address.\n     * - `tokenId` token must exist and be owned by `from`.\n     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.\n     *\n     * Emits a {Transfer} event.\n     */\n    function _safeTransfer(\n        address from,\n        address to,\n        uint256 tokenId,\n        bytes memory data\n    ) internal virtual {\n        _transfer(from, to, tokenId);\n        require(_checkOnERC721Received(from, to, tokenId, data), \"ERC721: transfer to non ERC721Receiver implementer\");\n    }\n\n    /**\n     * @dev Returns whether `tokenId` exists.\n     *\n     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.\n     *\n     * Tokens start existing when they are minted (`_mint`),\n     * and stop existing when they are burned (`_burn`).\n     */\n    function _exists(uint256 tokenId) internal view virtual returns (bool) {\n        return _owners[tokenId] != address(0);\n    }\n\n    /**\n     * @dev Returns whether `spender` is allowed to manage `tokenId`.\n     *\n     * Requirements:\n     *\n     * - `tokenId` must exist.\n     */\n    function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {\n        address owner = ERC721Upgradeable.ownerOf(tokenId);\n        return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);\n    }\n\n    /**\n     * @dev Safely mints `tokenId` and transfers it to `to`.\n     *\n     * Requirements:\n     *\n     * - `tokenId` must not exist.\n     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.\n     *\n     * Emits a {Transfer} event.\n     */\n    function _safeMint(address to, uint256 tokenId) internal virtual {\n        _safeMint(to, tokenId, \"\");\n    }\n\n    /**\n     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is\n     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.\n     */\n    function _safeMint(\n        address to,\n        uint256 tokenId,\n        bytes memory data\n    ) internal virtual {\n        _mint(to, tokenId);\n        require(\n            _checkOnERC721Received(address(0), to, tokenId, data),\n            \"ERC721: transfer to non ERC721Receiver implementer\"\n        );\n    }\n\n    /**\n     * @dev Mints `tokenId` and transfers it to `to`.\n     *\n     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible\n     *\n     * Requirements:\n     *\n     * - `tokenId` must not exist.\n     * - `to` cannot be the zero address.\n     *\n     * Emits a {Transfer} event.\n     */\n    function _mint(address to, uint256 tokenId) internal virtual {\n        require(to != address(0), \"ERC721: mint to the zero address\");\n        require(!_exists(tokenId), \"ERC721: token already minted\");\n\n        _beforeTokenTransfer(address(0), to, tokenId);\n\n        _balances[to] += 1;\n        _owners[tokenId] = to;\n\n        emit Transfer(address(0), to, tokenId);\n\n        _afterTokenTransfer(address(0), to, tokenId);\n    }\n\n    /**\n     * @dev Destroys `tokenId`.\n     * The approval is cleared when the token is burned.\n     *\n     * Requirements:\n     *\n     * - `tokenId` must exist.\n     *\n     * Emits a {Transfer} event.\n     */\n    function _burn(uint256 tokenId) internal virtual {\n        address owner = ERC721Upgradeable.ownerOf(tokenId);\n\n        _beforeTokenTransfer(owner, address(0), tokenId);\n\n        // Clear approvals\n        _approve(address(0), tokenId);\n\n        _balances[owner] -= 1;\n        delete _owners[tokenId];\n\n        emit Transfer(owner, address(0), tokenId);\n\n        _afterTokenTransfer(owner, address(0), tokenId);\n    }\n\n    /**\n     * @dev Transfers `tokenId` from `from` to `to`.\n     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.\n     *\n     * Requirements:\n     *\n     * - `to` cannot be the zero address.\n     * - `tokenId` token must be owned by `from`.\n     *\n     * Emits a {Transfer} event.\n     */\n    function _transfer(\n        address from,\n        address to,\n        uint256 tokenId\n    ) internal virtual {\n        require(ERC721Upgradeable.ownerOf(tokenId) == from, \"ERC721: transfer from incorrect owner\");\n        require(to != address(0), \"ERC721: transfer to the zero address\");\n\n        _beforeTokenTransfer(from, to, tokenId);\n\n        // Clear approvals from the previous owner\n        _approve(address(0), tokenId);\n\n        _balances[from] -= 1;\n        _balances[to] += 1;\n        _owners[tokenId] = to;\n\n        emit Transfer(from, to, tokenId);\n\n        _afterTokenTransfer(from, to, tokenId);\n    }\n\n    /**\n     * @dev Approve `to` to operate on `tokenId`\n     *\n     * Emits an {Approval} event.\n     */\n    function _approve(address to, uint256 tokenId) internal virtual {\n        _tokenApprovals[tokenId] = to;\n        emit Approval(ERC721Upgradeable.ownerOf(tokenId), to, tokenId);\n    }\n\n    /**\n     * @dev Approve `operator` to operate on all of `owner` tokens\n     *\n     * Emits an {ApprovalForAll} event.\n     */\n    function _setApprovalForAll(\n        address owner,\n        address operator,\n        bool approved\n    ) internal virtual {\n        require(owner != operator, \"ERC721: approve to caller\");\n        _operatorApprovals[owner][operator] = approved;\n        emit ApprovalForAll(owner, operator, approved);\n    }\n\n    /**\n     * @dev Reverts if the `tokenId` has not been minted yet.\n     */\n    function _requireMinted(uint256 tokenId) internal view virtual {\n        require(_exists(tokenId), \"ERC721: invalid token ID\");\n    }\n\n    /**\n     * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.\n     * The call is not executed if the target address is not a contract.\n     *\n     * @param from address representing the previous owner of the given token ID\n     * @param to target address that will receive the tokens\n     * @param tokenId uint256 ID of the token to be transferred\n     * @param data bytes optional data to send along with the call\n     * @return bool whether the call correctly returned the expected magic value\n     */\n    function _checkOnERC721Received(\n        address from,\n        address to,\n        uint256 tokenId,\n        bytes memory data\n    ) private returns (bool) {\n        if (to.isContract()) {\n            try IERC721ReceiverUpgradeable(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {\n                return retval == IERC721ReceiverUpgradeable.onERC721Received.selector;\n            } catch (bytes memory reason) {\n                if (reason.length == 0) {\n                    revert(\"ERC721: transfer to non ERC721Receiver implementer\");\n                } else {\n                    /// @solidity memory-safe-assembly\n                    assembly {\n                        revert(add(32, reason), mload(reason))\n                    }\n                }\n            }\n        } else {\n            return true;\n        }\n    }\n\n    /**\n     * @dev Hook that is called before any token transfer. This includes minting\n     * and burning.\n     *\n     * Calling conditions:\n     *\n     * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be\n     * transferred to `to`.\n     * - When `from` is zero, `tokenId` will be minted for `to`.\n     * - When `to` is zero, ``from``'s `tokenId` will be burned.\n     * - `from` and `to` are never both zero.\n     *\n     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n     */\n    function _beforeTokenTransfer(\n        address from,\n        address to,\n        uint256 tokenId\n    ) internal virtual {}\n\n    /**\n     * @dev Hook that is called after any transfer of tokens. This includes\n     * minting and burning.\n     *\n     * Calling conditions:\n     *\n     * - when `from` and `to` are both non-zero.\n     * - `from` and `to` are never both zero.\n     *\n     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n     */\n    function _afterTokenTransfer(\n        address from,\n        address to,\n        uint256 tokenId\n    ) internal virtual {}\n\n    /**\n     * @dev This empty reserved space is put in place to allow future versions to add new\n     * variables without shifting down storage in the inheritance chain.\n     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps\n     */\n    uint256[44] private __gap;\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (access/AccessControl.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IAccessControlUpgradeable.sol\";\nimport \"../utils/ContextUpgradeable.sol\";\nimport \"../utils/StringsUpgradeable.sol\";\nimport \"../utils/introspection/ERC165Upgradeable.sol\";\nimport \"../proxy/utils/Initializable.sol\";\n\n/**\n * @dev Contract module that allows children to implement role-based access\n * control mechanisms. This is a lightweight version that doesn't allow enumerating role\n * members except through off-chain means by accessing the contract event logs. Some\n * applications may benefit from on-chain enumerability, for those cases see\n * {AccessControlEnumerable}.\n *\n * Roles are referred to by their `bytes32` identifier. These should be exposed\n * in the external API and be unique. The best way to achieve this is by\n * using `public constant` hash digests:\n *\n * ```\n * bytes32 public constant MY_ROLE = keccak256(\"MY_ROLE\");\n * ```\n *\n * Roles can be used to represent a set of permissions. To restrict access to a\n * function call, use {hasRole}:\n *\n * ```\n * function foo() public {\n *     require(hasRole(MY_ROLE, msg.sender));\n *     ...\n * }\n * ```\n *\n * Roles can be granted and revoked dynamically via the {grantRole} and\n * {revokeRole} functions. Each role has an associated admin role, and only\n * accounts that have a role's admin role can call {grantRole} and {revokeRole}.\n *\n * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means\n * that only accounts with this role will be able to grant or revoke other\n * roles. More complex role relationships can be created by using\n * {_setRoleAdmin}.\n *\n * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to\n * grant and revoke this role. Extra precautions should be taken to secure\n * accounts that have been granted it.\n */\nabstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {\n    function __AccessControl_init() internal onlyInitializing {\n    }\n\n    function __AccessControl_init_unchained() internal onlyInitializing {\n    }\n    struct RoleData {\n        mapping(address => bool) members;\n        bytes32 adminRole;\n    }\n\n    mapping(bytes32 => RoleData) private _roles;\n\n    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;\n\n    /**\n     * @dev Modifier that checks that an account has a specific role. Reverts\n     * with a standardized message including the required role.\n     *\n     * The format of the revert reason is given by the following regular expression:\n     *\n     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/\n     *\n     * _Available since v4.1._\n     */\n    modifier onlyRole(bytes32 role) {\n        _checkRole(role);\n        _;\n    }\n\n    /**\n     * @dev See {IERC165-supportsInterface}.\n     */\n    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n        return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);\n    }\n\n    /**\n     * @dev Returns `true` if `account` has been granted `role`.\n     */\n    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {\n        return _roles[role].members[account];\n    }\n\n    /**\n     * @dev Revert with a standard message if `_msgSender()` is missing `role`.\n     * Overriding this function changes the behavior of the {onlyRole} modifier.\n     *\n     * Format of the revert message is described in {_checkRole}.\n     *\n     * _Available since v4.6._\n     */\n    function _checkRole(bytes32 role) internal view virtual {\n        _checkRole(role, _msgSender());\n    }\n\n    /**\n     * @dev Revert with a standard message if `account` is missing `role`.\n     *\n     * The format of the revert reason is given by the following regular expression:\n     *\n     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/\n     */\n    function _checkRole(bytes32 role, address account) internal view virtual {\n        if (!hasRole(role, account)) {\n            revert(\n                string(\n                    abi.encodePacked(\n                        \"AccessControl: account \",\n                        StringsUpgradeable.toHexString(uint160(account), 20),\n                        \" is missing role \",\n                        StringsUpgradeable.toHexString(uint256(role), 32)\n                    )\n                )\n            );\n        }\n    }\n\n    /**\n     * @dev Returns the admin role that controls `role`. See {grantRole} and\n     * {revokeRole}.\n     *\n     * To change a role's admin, use {_setRoleAdmin}.\n     */\n    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {\n        return _roles[role].adminRole;\n    }\n\n    /**\n     * @dev Grants `role` to `account`.\n     *\n     * If `account` had not been already granted `role`, emits a {RoleGranted}\n     * event.\n     *\n     * Requirements:\n     *\n     * - the caller must have ``role``'s admin role.\n     *\n     * May emit a {RoleGranted} event.\n     */\n    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {\n        _grantRole(role, account);\n    }\n\n    /**\n     * @dev Revokes `role` from `account`.\n     *\n     * If `account` had been granted `role`, emits a {RoleRevoked} event.\n     *\n     * Requirements:\n     *\n     * - the caller must have ``role``'s admin role.\n     *\n     * May emit a {RoleRevoked} event.\n     */\n    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {\n        _revokeRole(role, account);\n    }\n\n    /**\n     * @dev Revokes `role` from the calling account.\n     *\n     * Roles are often managed via {grantRole} and {revokeRole}: this function's\n     * purpose is to provide a mechanism for accounts to lose their privileges\n     * if they are compromised (such as when a trusted device is misplaced).\n     *\n     * If the calling account had been revoked `role`, emits a {RoleRevoked}\n     * event.\n     *\n     * Requirements:\n     *\n     * - the caller must be `account`.\n     *\n     * May emit a {RoleRevoked} event.\n     */\n    function renounceRole(bytes32 role, address account) public virtual override {\n        require(account == _msgSender(), \"AccessControl: can only renounce roles for self\");\n\n        _revokeRole(role, account);\n    }\n\n    /**\n     * @dev Grants `role` to `account`.\n     *\n     * If `account` had not been already granted `role`, emits a {RoleGranted}\n     * event. Note that unlike {grantRole}, this function doesn't perform any\n     * checks on the calling account.\n     *\n     * May emit a {RoleGranted} event.\n     *\n     * [WARNING]\n     * ====\n     * This function should only be called from the constructor when setting\n     * up the initial roles for the system.\n     *\n     * Using this function in any other way is effectively circumventing the admin\n     * system imposed by {AccessControl}.\n     * ====\n     *\n     * NOTE: This function is deprecated in favor of {_grantRole}.\n     */\n    function _setupRole(bytes32 role, address account) internal virtual {\n        _grantRole(role, account);\n    }\n\n    /**\n     * @dev Sets `adminRole` as ``role``'s admin role.\n     *\n     * Emits a {RoleAdminChanged} event.\n     */\n    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {\n        bytes32 previousAdminRole = getRoleAdmin(role);\n        _roles[role].adminRole = adminRole;\n        emit RoleAdminChanged(role, previousAdminRole, adminRole);\n    }\n\n    /**\n     * @dev Grants `role` to `account`.\n     *\n     * Internal function without access restriction.\n     *\n     * May emit a {RoleGranted} event.\n     */\n    function _grantRole(bytes32 role, address account) internal virtual {\n        if (!hasRole(role, account)) {\n            _roles[role].members[account] = true;\n            emit RoleGranted(role, account, _msgSender());\n        }\n    }\n\n    /**\n     * @dev Revokes `role` from `account`.\n     *\n     * Internal function without access restriction.\n     *\n     * May emit a {RoleRevoked} event.\n     */\n    function _revokeRole(bytes32 role, address account) internal virtual {\n        if (hasRole(role, account)) {\n            _roles[role].members[account] = false;\n            emit RoleRevoked(role, account, _msgSender());\n        }\n    }\n\n    /**\n     * @dev This empty reserved space is put in place to allow future versions to add new\n     * variables without shifting down storage in the inheritance chain.\n     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps\n     */\n    uint256[49] private __gap;\n}\n"
    },
    "@openzeppelin/contracts/utils/Strings.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev String operations.\n */\nlibrary Strings {\n    bytes16 private constant _HEX_SYMBOLS = \"0123456789abcdef\";\n    uint8 private constant _ADDRESS_LENGTH = 20;\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` decimal representation.\n     */\n    function toString(uint256 value) internal pure returns (string memory) {\n        // Inspired by OraclizeAPI's implementation - MIT licence\n        // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol\n\n        if (value == 0) {\n            return \"0\";\n        }\n        uint256 temp = value;\n        uint256 digits;\n        while (temp != 0) {\n            digits++;\n            temp /= 10;\n        }\n        bytes memory buffer = new bytes(digits);\n        while (value != 0) {\n            digits -= 1;\n            buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));\n            value /= 10;\n        }\n        return string(buffer);\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.\n     */\n    function toHexString(uint256 value) internal pure returns (string memory) {\n        if (value == 0) {\n            return \"0x00\";\n        }\n        uint256 temp = value;\n        uint256 length = 0;\n        while (temp != 0) {\n            length++;\n            temp >>= 8;\n        }\n        return toHexString(value, length);\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.\n     */\n    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {\n        bytes memory buffer = new bytes(2 * length + 2);\n        buffer[0] = \"0\";\n        buffer[1] = \"x\";\n        for (uint256 i = 2 * length + 1; i > 1; --i) {\n            buffer[i] = _HEX_SYMBOLS[value & 0xf];\n            value >>= 4;\n        }\n        require(value == 0, \"Strings: hex length insufficient\");\n        return string(buffer);\n    }\n\n    /**\n     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.\n     */\n    function toHexString(address addr) internal pure returns (string memory) {\n        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);\n    }\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/token/ERC721/IERC721Upgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC721/IERC721.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../../utils/introspection/IERC165Upgradeable.sol\";\n\n/**\n * @dev Required interface of an ERC721 compliant contract.\n */\ninterface IERC721Upgradeable is IERC165Upgradeable {\n    /**\n     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.\n     */\n    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);\n\n    /**\n     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.\n     */\n    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);\n\n    /**\n     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.\n     */\n    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);\n\n    /**\n     * @dev Returns the number of tokens in ``owner``'s account.\n     */\n    function balanceOf(address owner) external view returns (uint256 balance);\n\n    /**\n     * @dev Returns the owner of the `tokenId` token.\n     *\n     * Requirements:\n     *\n     * - `tokenId` must exist.\n     */\n    function ownerOf(uint256 tokenId) external view returns (address owner);\n\n    /**\n     * @dev Safely transfers `tokenId` token from `from` to `to`.\n     *\n     * Requirements:\n     *\n     * - `from` cannot be the zero address.\n     * - `to` cannot be the zero address.\n     * - `tokenId` token must exist and be owned by `from`.\n     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.\n     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.\n     *\n     * Emits a {Transfer} event.\n     */\n    function safeTransferFrom(\n        address from,\n        address to,\n        uint256 tokenId,\n        bytes calldata data\n    ) external;\n\n    /**\n     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients\n     * are aware of the ERC721 protocol to prevent tokens from being forever locked.\n     *\n     * Requirements:\n     *\n     * - `from` cannot be the zero address.\n     * - `to` cannot be the zero address.\n     * - `tokenId` token must exist and be owned by `from`.\n     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.\n     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.\n     *\n     * Emits a {Transfer} event.\n     */\n    function safeTransferFrom(\n        address from,\n        address to,\n        uint256 tokenId\n    ) external;\n\n    /**\n     * @dev Transfers `tokenId` token from `from` to `to`.\n     *\n     * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.\n     *\n     * Requirements:\n     *\n     * - `from` cannot be the zero address.\n     * - `to` cannot be the zero address.\n     * - `tokenId` token must be owned by `from`.\n     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.\n     *\n     * Emits a {Transfer} event.\n     */\n    function transferFrom(\n        address from,\n        address to,\n        uint256 tokenId\n    ) external;\n\n    /**\n     * @dev Gives permission to `to` to transfer `tokenId` token to another account.\n     * The approval is cleared when the token is transferred.\n     *\n     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.\n     *\n     * Requirements:\n     *\n     * - The caller must own the token or be an approved operator.\n     * - `tokenId` must exist.\n     *\n     * Emits an {Approval} event.\n     */\n    function approve(address to, uint256 tokenId) external;\n\n    /**\n     * @dev Approve or remove `operator` as an operator for the caller.\n     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.\n     *\n     * Requirements:\n     *\n     * - The `operator` cannot be the caller.\n     *\n     * Emits an {ApprovalForAll} event.\n     */\n    function setApprovalForAll(address operator, bool _approved) external;\n\n    /**\n     * @dev Returns the account approved for `tokenId` token.\n     *\n     * Requirements:\n     *\n     * - `tokenId` must exist.\n     */\n    function getApproved(uint256 tokenId) external view returns (address operator);\n\n    /**\n     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.\n     *\n     * See {setApprovalForAll}\n     */\n    function isApprovedForAll(address owner, address operator) external view returns (bool);\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/token/ERC721/IERC721ReceiverUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @title ERC721 token receiver interface\n * @dev Interface for any contract that wants to support safeTransfers\n * from ERC721 asset contracts.\n */\ninterface IERC721ReceiverUpgradeable {\n    /**\n     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}\n     * by `operator` from `from`, this function is called.\n     *\n     * It must return its Solidity selector to confirm the token transfer.\n     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.\n     *\n     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.\n     */\n    function onERC721Received(\n        address operator,\n        address from,\n        uint256 tokenId,\n        bytes calldata data\n    ) external returns (bytes4);\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/token/ERC721/extensions/IERC721MetadataUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../IERC721Upgradeable.sol\";\n\n/**\n * @title ERC-721 Non-Fungible Token Standard, optional metadata extension\n * @dev See https://eips.ethereum.org/EIPS/eip-721\n */\ninterface IERC721MetadataUpgradeable is IERC721Upgradeable {\n    /**\n     * @dev Returns the token collection name.\n     */\n    function name() external view returns (string memory);\n\n    /**\n     * @dev Returns the token collection symbol.\n     */\n    function symbol() external view returns (string memory);\n\n    /**\n     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.\n     */\n    function tokenURI(uint256 tokenId) external view returns (string memory);\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)\n\npragma solidity ^0.8.1;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary AddressUpgradeable {\n    /**\n     * @dev Returns true if `account` is a contract.\n     *\n     * [IMPORTANT]\n     * ====\n     * It is unsafe to assume that an address for which this function returns\n     * false is an externally-owned account (EOA) and not a contract.\n     *\n     * Among others, `isContract` will return false for the following\n     * types of addresses:\n     *\n     *  - an externally-owned account\n     *  - a contract in construction\n     *  - an address where a contract will be created\n     *  - an address where a contract lived, but was destroyed\n     * ====\n     *\n     * [IMPORTANT]\n     * ====\n     * You shouldn't rely on `isContract` to protect against flash loan attacks!\n     *\n     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets\n     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract\n     * constructor.\n     * ====\n     */\n    function isContract(address account) internal view returns (bool) {\n        // This method relies on extcodesize/address.code.length, which returns 0\n        // for contracts in construction, since the code is only stored at the end\n        // of the constructor execution.\n\n        return account.code.length > 0;\n    }\n\n    /**\n     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to\n     * `recipient`, forwarding all available gas and reverting on errors.\n     *\n     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n     * of certain opcodes, possibly making contracts go over the 2300 gas limit\n     * imposed by `transfer`, making them unable to receive funds via\n     * `transfer`. {sendValue} removes this limitation.\n     *\n     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n     *\n     * IMPORTANT: because control is transferred to `recipient`, care must be\n     * taken to not create reentrancy vulnerabilities. Consider using\n     * {ReentrancyGuard} or the\n     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n     */\n    function sendValue(address payable recipient, uint256 amount) internal {\n        require(address(this).balance >= amount, \"Address: insufficient balance\");\n\n        (bool success, ) = recipient.call{value: amount}(\"\");\n        require(success, \"Address: unable to send value, recipient may have reverted\");\n    }\n\n    /**\n     * @dev Performs a Solidity function call using a low level `call`. A\n     * plain `call` is an unsafe replacement for a function call: use this\n     * function instead.\n     *\n     * If `target` reverts with a revert reason, it is bubbled up by this\n     * function (like regular Solidity function calls).\n     *\n     * Returns the raw returned data. To convert to the expected return value,\n     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n     *\n     * Requirements:\n     *\n     * - `target` must be a contract.\n     * - calling `target` with `data` must not revert.\n     *\n     * _Available since v3.1._\n     */\n    function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n        return functionCall(target, data, \"Address: low-level call failed\");\n    }\n\n    /**\n     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n     * `errorMessage` as a fallback revert reason when `target` reverts.\n     *\n     * _Available since v3.1._\n     */\n    function functionCall(\n        address target,\n        bytes memory data,\n        string memory errorMessage\n    ) internal returns (bytes memory) {\n        return functionCallWithValue(target, data, 0, errorMessage);\n    }\n\n    /**\n     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n     * but also transferring `value` wei to `target`.\n     *\n     * Requirements:\n     *\n     * - the calling contract must have an ETH balance of at least `value`.\n     * - the called Solidity function must be `payable`.\n     *\n     * _Available since v3.1._\n     */\n    function functionCallWithValue(\n        address target,\n        bytes memory data,\n        uint256 value\n    ) internal returns (bytes memory) {\n        return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n    }\n\n    /**\n     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n     * with `errorMessage` as a fallback revert reason when `target` reverts.\n     *\n     * _Available since v3.1._\n     */\n    function functionCallWithValue(\n        address target,\n        bytes memory data,\n        uint256 value,\n        string memory errorMessage\n    ) internal returns (bytes memory) {\n        require(address(this).balance >= value, \"Address: insufficient balance for call\");\n        require(isContract(target), \"Address: call to non-contract\");\n\n        (bool success, bytes memory returndata) = target.call{value: value}(data);\n        return verifyCallResult(success, returndata, errorMessage);\n    }\n\n    /**\n     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n     * but performing a static call.\n     *\n     * _Available since v3.3._\n     */\n    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {\n        return functionStaticCall(target, data, \"Address: low-level static call failed\");\n    }\n\n    /**\n     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n     * but performing a static call.\n     *\n     * _Available since v3.3._\n     */\n    function functionStaticCall(\n        address target,\n        bytes memory data,\n        string memory errorMessage\n    ) internal view returns (bytes memory) {\n        require(isContract(target), \"Address: static call to non-contract\");\n\n        (bool success, bytes memory returndata) = target.staticcall(data);\n        return verifyCallResult(success, returndata, errorMessage);\n    }\n\n    /**\n     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the\n     * revert reason using the provided one.\n     *\n     * _Available since v4.3._\n     */\n    function verifyCallResult(\n        bool success,\n        bytes memory returndata,\n        string memory errorMessage\n    ) internal pure returns (bytes memory) {\n        if (success) {\n            return returndata;\n        } else {\n            // Look for revert reason and bubble it up if present\n            if (returndata.length > 0) {\n                // The easiest way to bubble the revert reason is using memory via assembly\n                /// @solidity memory-safe-assembly\n                assembly {\n                    let returndata_size := mload(returndata)\n                    revert(add(32, returndata), returndata_size)\n                }\n            } else {\n                revert(errorMessage);\n            }\n        }\n    }\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\nimport \"../proxy/utils/Initializable.sol\";\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract ContextUpgradeable is Initializable {\n    function __Context_init() internal onlyInitializing {\n    }\n\n    function __Context_init_unchained() internal onlyInitializing {\n    }\n    function _msgSender() internal view virtual returns (address) {\n        return msg.sender;\n    }\n\n    function _msgData() internal view virtual returns (bytes calldata) {\n        return msg.data;\n    }\n\n    /**\n     * @dev This empty reserved space is put in place to allow future versions to add new\n     * variables without shifting down storage in the inheritance chain.\n     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps\n     */\n    uint256[50] private __gap;\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/utils/StringsUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev String operations.\n */\nlibrary StringsUpgradeable {\n    bytes16 private constant _HEX_SYMBOLS = \"0123456789abcdef\";\n    uint8 private constant _ADDRESS_LENGTH = 20;\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` decimal representation.\n     */\n    function toString(uint256 value) internal pure returns (string memory) {\n        // Inspired by OraclizeAPI's implementation - MIT licence\n        // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol\n\n        if (value == 0) {\n            return \"0\";\n        }\n        uint256 temp = value;\n        uint256 digits;\n        while (temp != 0) {\n            digits++;\n            temp /= 10;\n        }\n        bytes memory buffer = new bytes(digits);\n        while (value != 0) {\n            digits -= 1;\n            buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));\n            value /= 10;\n        }\n        return string(buffer);\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.\n     */\n    function toHexString(uint256 value) internal pure returns (string memory) {\n        if (value == 0) {\n            return \"0x00\";\n        }\n        uint256 temp = value;\n        uint256 length = 0;\n        while (temp != 0) {\n            length++;\n            temp >>= 8;\n        }\n        return toHexString(value, length);\n    }\n\n    /**\n     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.\n     */\n    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {\n        bytes memory buffer = new bytes(2 * length + 2);\n        buffer[0] = \"0\";\n        buffer[1] = \"x\";\n        for (uint256 i = 2 * length + 1; i > 1; --i) {\n            buffer[i] = _HEX_SYMBOLS[value & 0xf];\n            value >>= 4;\n        }\n        require(value == 0, \"Strings: hex length insufficient\");\n        return string(buffer);\n    }\n\n    /**\n     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.\n     */\n    function toHexString(address addr) internal pure returns (string memory) {\n        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);\n    }\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/utils/introspection/ERC165Upgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IERC165Upgradeable.sol\";\nimport \"../../proxy/utils/Initializable.sol\";\n\n/**\n * @dev Implementation of the {IERC165} interface.\n *\n * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check\n * for the additional interface id that will be supported. For example:\n *\n * ```solidity\n * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);\n * }\n * ```\n *\n * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.\n */\nabstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {\n    function __ERC165_init() internal onlyInitializing {\n    }\n\n    function __ERC165_init_unchained() internal onlyInitializing {\n    }\n    /**\n     * @dev See {IERC165-supportsInterface}.\n     */\n    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n        return interfaceId == type(IERC165Upgradeable).interfaceId;\n    }\n\n    /**\n     * @dev This empty reserved space is put in place to allow future versions to add new\n     * variables without shifting down storage in the inheritance chain.\n     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps\n     */\n    uint256[50] private __gap;\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)\n\npragma solidity ^0.8.2;\n\nimport \"../../utils/AddressUpgradeable.sol\";\n\n/**\n * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed\n * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an\n * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer\n * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.\n *\n * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be\n * reused. This mechanism prevents re-execution of each \"step\" but allows the creation of new initialization steps in\n * case an upgrade adds a module that needs to be initialized.\n *\n * For example:\n *\n * [.hljs-theme-light.nopadding]\n * ```\n * contract MyToken is ERC20Upgradeable {\n *     function initialize() initializer public {\n *         __ERC20_init(\"MyToken\", \"MTK\");\n *     }\n * }\n * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {\n *     function initializeV2() reinitializer(2) public {\n *         __ERC20Permit_init(\"MyToken\");\n *     }\n * }\n * ```\n *\n * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as\n * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.\n *\n * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure\n * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.\n *\n * [CAUTION]\n * ====\n * Avoid leaving a contract uninitialized.\n *\n * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation\n * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke\n * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:\n *\n * [.hljs-theme-light.nopadding]\n * ```\n * /// @custom:oz-upgrades-unsafe-allow constructor\n * constructor() {\n *     _disableInitializers();\n * }\n * ```\n * ====\n */\nabstract contract Initializable {\n    /**\n     * @dev Indicates that the contract has been initialized.\n     * @custom:oz-retyped-from bool\n     */\n    uint8 private _initialized;\n\n    /**\n     * @dev Indicates that the contract is in the process of being initialized.\n     */\n    bool private _initializing;\n\n    /**\n     * @dev Triggered when the contract has been initialized or reinitialized.\n     */\n    event Initialized(uint8 version);\n\n    /**\n     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,\n     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.\n     */\n    modifier initializer() {\n        bool isTopLevelCall = !_initializing;\n        require(\n            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),\n            \"Initializable: contract is already initialized\"\n        );\n        _initialized = 1;\n        if (isTopLevelCall) {\n            _initializing = true;\n        }\n        _;\n        if (isTopLevelCall) {\n            _initializing = false;\n            emit Initialized(1);\n        }\n    }\n\n    /**\n     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the\n     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be\n     * used to initialize parent contracts.\n     *\n     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original\n     * initialization step. This is essential to configure modules that are added through upgrades and that require\n     * initialization.\n     *\n     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in\n     * a contract, executing them in the right order is up to the developer or operator.\n     */\n    modifier reinitializer(uint8 version) {\n        require(!_initializing && _initialized < version, \"Initializable: contract is already initialized\");\n        _initialized = version;\n        _initializing = true;\n        _;\n        _initializing = false;\n        emit Initialized(version);\n    }\n\n    /**\n     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the\n     * {initializer} and {reinitializer} modifiers, directly or indirectly.\n     */\n    modifier onlyInitializing() {\n        require(_initializing, \"Initializable: contract is not initializing\");\n        _;\n    }\n\n    /**\n     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.\n     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized\n     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called\n     * through proxies.\n     */\n    function _disableInitializers() internal virtual {\n        require(!_initializing, \"Initializable: contract is initializing\");\n        if (_initialized < type(uint8).max) {\n            _initialized = type(uint8).max;\n            emit Initialized(type(uint8).max);\n        }\n    }\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/utils/introspection/IERC165Upgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC165 standard, as defined in the\n * https://eips.ethereum.org/EIPS/eip-165[EIP].\n *\n * Implementers can declare support of contract interfaces, which can then be\n * queried by others ({ERC165Checker}).\n *\n * For an implementation, see {ERC165}.\n */\ninterface IERC165Upgradeable {\n    /**\n     * @dev Returns true if this contract implements the interface defined by\n     * `interfaceId`. See the corresponding\n     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]\n     * to learn more about how these ids are created.\n     *\n     * This function call must use less than 30 000 gas.\n     */\n    function supportsInterface(bytes4 interfaceId) external view returns (bool);\n}\n"
    },
    "@openzeppelin/contracts-upgradeable/access/IAccessControlUpgradeable.sol": {
      "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev External interface of AccessControl declared to support ERC165 detection.\n */\ninterface IAccessControlUpgradeable {\n    /**\n     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`\n     *\n     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite\n     * {RoleAdminChanged} not being emitted signaling this.\n     *\n     * _Available since v3.1._\n     */\n    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);\n\n    /**\n     * @dev Emitted when `account` is granted `role`.\n     *\n     * `sender` is the account that originated the contract call, an admin role\n     * bearer except when using {AccessControl-_setupRole}.\n     */\n    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);\n\n    /**\n     * @dev Emitted when `account` is revoked `role`.\n     *\n     * `sender` is the account that originated the contract call:\n     *   - if using `revokeRole`, it is the admin role bearer\n     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)\n     */\n    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);\n\n    /**\n     * @dev Returns `true` if `account` has been granted `role`.\n     */\n    function hasRole(bytes32 role, address account) external view returns (bool);\n\n    /**\n     * @dev Returns the admin role that controls `role`. See {grantRole} and\n     * {revokeRole}.\n     *\n     * To change a role's admin, use {AccessControl-_setRoleAdmin}.\n     */\n    function getRoleAdmin(bytes32 role) external view returns (bytes32);\n\n    /**\n     * @dev Grants `role` to `account`.\n     *\n     * If `account` had not been already granted `role`, emits a {RoleGranted}\n     * event.\n     *\n     * Requirements:\n     *\n     * - the caller must have ``role``'s admin role.\n     */\n    function grantRole(bytes32 role, address account) external;\n\n    /**\n     * @dev Revokes `role` from `account`.\n     *\n     * If `account` had been granted `role`, emits a {RoleRevoked} event.\n     *\n     * Requirements:\n     *\n     * - the caller must have ``role``'s admin role.\n     */\n    function revokeRole(bytes32 role, address account) external;\n\n    /**\n     * @dev Revokes `role` from the calling account.\n     *\n     * Roles are often managed via {grantRole} and {revokeRole}: this function's\n     * purpose is to provide a mechanism for accounts to lose their privileges\n     * if they are compromised (such as when a trusted device is misplaced).\n     *\n     * If the calling account had been granted `role`, emits a {RoleRevoked}\n     * event.\n     *\n     * Requirements:\n     *\n     * - the caller must be `account`.\n     */\n    function renounceRole(bytes32 role, address account) external;\n}\n"
    }
  },
  "settings": {
    "optimizer": {
      "enabled": true,
      "runs": 200
    },
    "outputSelection": {
      "*": {
        "*": [
          "evm.bytecode",
          "evm.deployedBytecode",
          "devdoc",
          "userdoc",
          "metadata",
          "abi"
        ]
      }
    },
    "libraries": {}
  }
}