// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023. | |
// SPDX-License-Identifier: MIT | |
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Standard math utilities missing in the Solidity language. | |
*/ | |
library Math { | |
enum Rounding { | |
Down, // Toward negative infinity | |
Up, // Toward infinity | |
Zero // Toward zero | |
} | |
/** | |
* @dev Returns the largest of two numbers. | |
*/ | |
function max(uint256 a, uint256 b) internal pure returns (uint256) { | |
return a > b ? a : b; | |
} | |
/** | |
* @dev Returns the smallest of two numbers. | |
*/ | |
function min(uint256 a, uint256 b) internal pure returns (uint256) { | |
return a < b ? a : b; | |
} | |
/** | |
* @dev Returns the average of two numbers. The result is rounded towards | |
* zero. | |
*/ | |
function average(uint256 a, uint256 b) internal pure returns (uint256) { | |
// (a + b) / 2 can overflow. | |
return (a & b) + (a ^ b) / 2; | |
} | |
/** | |
* @dev Returns the ceiling of the division of two numbers. | |
* | |
* This differs from standard division with `/` in that it rounds up instead | |
* of rounding down. | |
*/ | |
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { | |
// (a + b - 1) / b can overflow on addition, so we distribute. | |
return a == 0 ? 0 : (a - 1) / b + 1; | |
} | |
/** | |
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 | |
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) | |
* with further edits by Uniswap Labs also under MIT license. | |
*/ | |
function mulDiv( | |
uint256 x, | |
uint256 y, | |
uint256 denominator | |
) internal pure returns (uint256 result) { | |
unchecked { | |
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use | |
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 | |
// variables such that product = prod1 * 2^256 + prod0. | |
uint256 prod0; // Least significant 256 bits of the product | |
uint256 prod1; // Most significant 256 bits of the product | |
assembly { | |
let mm := mulmod(x, y, not(0)) | |
prod0 := mul(x, y) | |
prod1 := sub(sub(mm, prod0), lt(mm, prod0)) | |
} | |
// Handle non-overflow cases, 256 by 256 division. | |
if (prod1 == 0) { | |
return prod0 / denominator; | |
} | |
// Make sure the result is less than 2^256. Also prevents denominator == 0. | |
require(denominator > prod1); | |
/////////////////////////////////////////////// | |
// 512 by 256 division. | |
/////////////////////////////////////////////// | |
// Make division exact by subtracting the remainder from [prod1 prod0]. | |
uint256 remainder; | |
assembly { | |
// Compute remainder using mulmod. | |
remainder := mulmod(x, y, denominator) | |
// Subtract 256 bit number from 512 bit number. | |
prod1 := sub(prod1, gt(remainder, prod0)) | |
prod0 := sub(prod0, remainder) | |
} | |
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. | |
// See https://cs.stackexchange.com/q/138556/92363. | |
// Does not overflow because the denominator cannot be zero at this stage in the function. | |
uint256 twos = denominator & (~denominator + 1); | |
assembly { | |
// Divide denominator by twos. | |
denominator := div(denominator, twos) | |
// Divide [prod1 prod0] by twos. | |
prod0 := div(prod0, twos) | |
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. | |
twos := add(div(sub(0, twos), twos), 1) | |
} | |
// Shift in bits from prod1 into prod0. | |
prod0 |= prod1 * twos; | |
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such | |
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for | |
// four bits. That is, denominator * inv = 1 mod 2^4. | |
uint256 inverse = (3 * denominator) ^ 2; | |
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works | |
// in modular arithmetic, doubling the correct bits in each step. | |
inverse *= 2 - denominator * inverse; // inverse mod 2^8 | |
inverse *= 2 - denominator * inverse; // inverse mod 2^16 | |
inverse *= 2 - denominator * inverse; // inverse mod 2^32 | |
inverse *= 2 - denominator * inverse; // inverse mod 2^64 | |
inverse *= 2 - denominator * inverse; // inverse mod 2^128 | |
inverse *= 2 - denominator * inverse; // inverse mod 2^256 | |
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator. | |
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is | |
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 | |
// is no longer required. | |
result = prod0 * inverse; | |
return result; | |
} | |
} | |
/** | |
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction. | |
*/ | |
function mulDiv( | |
uint256 x, | |
uint256 y, | |
uint256 denominator, | |
Rounding rounding | |
) internal pure returns (uint256) { | |
uint256 result = mulDiv(x, y, denominator); | |
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { | |
result += 1; | |
} | |
return result; | |
} | |
/** | |
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. | |
* | |
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). | |
*/ | |
function sqrt(uint256 a) internal pure returns (uint256) { | |
if (a == 0) { | |
return 0; | |
} | |
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. | |
// | |
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have | |
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. | |
// | |
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` | |
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` | |
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` | |
// | |
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. | |
uint256 result = 1 << (log2(a) >> 1); | |
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, | |
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at | |
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision | |
// into the expected uint128 result. | |
unchecked { | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
result = (result + a / result) >> 1; | |
return min(result, a / result); | |
} | |
} | |
/** | |
* @notice Calculates sqrt(a), following the selected rounding direction. | |
*/ | |
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { | |
unchecked { | |
uint256 result = sqrt(a); | |
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); | |
} | |
} | |
/** | |
* @dev Return the log in base 2, rounded down, of a positive value. | |
* Returns 0 if given 0. | |
*/ | |
function log2(uint256 value) internal pure returns (uint256) { | |
uint256 result = 0; | |
unchecked { | |
if (value >> 128 > 0) { | |
value >>= 128; | |
result += 128; | |
} | |
if (value >> 64 > 0) { | |
value >>= 64; | |
result += 64; | |
} | |
if (value >> 32 > 0) { | |
value >>= 32; | |
result += 32; | |
} | |
if (value >> 16 > 0) { | |
value >>= 16; | |
result += 16; | |
} | |
if (value >> 8 > 0) { | |
value >>= 8; | |
result += 8; | |
} | |
if (value >> 4 > 0) { | |
value >>= 4; | |
result += 4; | |
} | |
if (value >> 2 > 0) { | |
value >>= 2; | |
result += 2; | |
} | |
if (value >> 1 > 0) { | |
result += 1; | |
} | |
} | |
return result; | |
} | |
/** | |
* @dev Return the log in base 2, following the selected rounding direction, of a positive value. | |
* Returns 0 if given 0. | |
*/ | |
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { | |
unchecked { | |
uint256 result = log2(value); | |
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); | |
} | |
} | |
/** | |
* @dev Return the log in base 10, rounded down, of a positive value. | |
* Returns 0 if given 0. | |
*/ | |
function log10(uint256 value) internal pure returns (uint256) { | |
uint256 result = 0; | |
unchecked { | |
if (value >= 10**64) { | |
value /= 10**64; | |
result += 64; | |
} | |
if (value >= 10**32) { | |
value /= 10**32; | |
result += 32; | |
} | |
if (value >= 10**16) { | |
value /= 10**16; | |
result += 16; | |
} | |
if (value >= 10**8) { | |
value /= 10**8; | |
result += 8; | |
} | |
if (value >= 10**4) { | |
value /= 10**4; | |
result += 4; | |
} | |
if (value >= 10**2) { | |
value /= 10**2; | |
result += 2; | |
} | |
if (value >= 10**1) { | |
result += 1; | |
} | |
} | |
return result; | |
} | |
/** | |
* @dev Return the log in base 10, following the selected rounding direction, of a positive value. | |
* Returns 0 if given 0. | |
*/ | |
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { | |
unchecked { | |
uint256 result = log10(value); | |
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); | |
} | |
} | |
/** | |
* @dev Return the log in base 256, rounded down, of a positive value. | |
* Returns 0 if given 0. | |
* | |
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. | |
*/ | |
function log256(uint256 value) internal pure returns (uint256) { | |
uint256 result = 0; | |
unchecked { | |
if (value >> 128 > 0) { | |
value >>= 128; | |
result += 16; | |
} | |
if (value >> 64 > 0) { | |
value >>= 64; | |
result += 8; | |
} | |
if (value >> 32 > 0) { | |
value >>= 32; | |
result += 4; | |
} | |
if (value >> 16 > 0) { | |
value >>= 16; | |
result += 2; | |
} | |
if (value >> 8 > 0) { | |
result += 1; | |
} | |
} | |
return result; | |
} | |
/** | |
* @dev Return the log in base 10, following the selected rounding direction, of a positive value. | |
* Returns 0 if given 0. | |
*/ | |
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { | |
unchecked { | |
uint256 result = log256(value); | |
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); | |
} | |
} | |
} | |