// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023. | |
// SPDX-License-Identifier: MIT | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Provides information about the current execution context, including the | |
* sender of the transaction and its data. While these are generally available | |
* via msg.sender and msg.data, they should not be accessed in such a direct | |
* manner, since when dealing with meta-transactions the account sending and | |
* paying for execution may not be the actual sender (as far as an application | |
* is concerned). | |
* | |
* This contract is only required for intermediate, library-like contracts. | |
*/ | |
abstract contract Context { | |
function _msgSender() internal view virtual returns (address) { | |
return msg.sender; | |
} | |
function _msgData() internal view virtual returns (bytes calldata) { | |
return msg.data; | |
} | |
} | |
// File @openzeppelin/contracts/access/Ownable.sol@v4.5.0 | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Contract module which provides a basic access control mechanism, where | |
* there is an account (an owner) that can be granted exclusive access to | |
* specific functions. | |
* | |
* By default, the owner account will be the one that deploys the contract. This | |
* can later be changed with {transferOwnership}. | |
* | |
* This module is used through inheritance. It will make available the modifier | |
* `onlyOwner`, which can be applied to your functions to restrict their use to | |
* the owner. | |
*/ | |
abstract contract Ownable is Context { | |
address private _owner; | |
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); | |
/** | |
* @dev Initializes the contract setting the deployer as the initial owner. | |
*/ | |
constructor() { | |
_transferOwnership(_msgSender()); | |
} | |
/** | |
* @dev Returns the address of the current owner. | |
*/ | |
function owner() public view virtual returns (address) { | |
return _owner; | |
} | |
/** | |
* @dev Throws if called by any account other than the owner. | |
*/ | |
modifier onlyOwner() { | |
require(owner() == _msgSender(), "Ownable: caller is not the owner"); | |
_; | |
} | |
/** | |
* @dev Leaves the contract without owner. It will not be possible to call | |
* `onlyOwner` functions anymore. Can only be called by the current owner. | |
* | |
* NOTE: Renouncing ownership will leave the contract without an owner, | |
* thereby removing any functionality that is only available to the owner. | |
*/ | |
function renounceOwnership() public virtual onlyOwner { | |
_transferOwnership(address(0)); | |
} | |
/** | |
* @dev Transfers ownership of the contract to a new account (`newOwner`). | |
* Can only be called by the current owner. | |
*/ | |
function transferOwnership(address newOwner) public virtual onlyOwner { | |
require(newOwner != address(0), "Ownable: new owner is the zero address"); | |
_transferOwnership(newOwner); | |
} | |
/** | |
* @dev Transfers ownership of the contract to a new account (`newOwner`). | |
* Internal function without access restriction. | |
*/ | |
function _transferOwnership(address newOwner) internal virtual { | |
address oldOwner = _owner; | |
_owner = newOwner; | |
emit OwnershipTransferred(oldOwner, newOwner); | |
} | |
} | |
// File @openzeppelin/contracts/security/ReentrancyGuard.sol@v4.5.0 | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Contract module that helps prevent reentrant calls to a function. | |
* | |
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier | |
* available, which can be applied to functions to make sure there are no nested | |
* (reentrant) calls to them. | |
* | |
* Note that because there is a single `nonReentrant` guard, functions marked as | |
* `nonReentrant` may not call one another. This can be worked around by making | |
* those functions `private`, and then adding `external` `nonReentrant` entry | |
* points to them. | |
* | |
* TIP: If you would like to learn more about reentrancy and alternative ways | |
* to protect against it, check out our blog post | |
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. | |
*/ | |
abstract contract ReentrancyGuard { | |
// Booleans are more expensive than uint256 or any type that takes up a full | |
// word because each write operation emits an extra SLOAD to first read the | |
// slot's contents, replace the bits taken up by the boolean, and then write | |
// back. This is the compiler's defense against contract upgrades and | |
// pointer aliasing, and it cannot be disabled. | |
// The values being non-zero value makes deployment a bit more expensive, | |
// but in exchange the refund on every call to nonReentrant will be lower in | |
// amount. Since refunds are capped to a percentage of the total | |
// transaction's gas, it is best to keep them low in cases like this one, to | |
// increase the likelihood of the full refund coming into effect. | |
uint256 private constant _NOT_ENTERED = 1; | |
uint256 private constant _ENTERED = 2; | |
uint256 private _status; | |
constructor() { | |
_status = _NOT_ENTERED; | |
} | |
/** | |
* @dev Prevents a contract from calling itself, directly or indirectly. | |
* Calling a `nonReentrant` function from another `nonReentrant` | |
* function is not supported. It is possible to prevent this from happening | |
* by making the `nonReentrant` function external, and making it call a | |
* `private` function that does the actual work. | |
*/ | |
modifier nonReentrant() { | |
// On the first call to nonReentrant, _notEntered will be true | |
require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); | |
// Any calls to nonReentrant after this point will fail | |
_status = _ENTERED; | |
_; | |
// By storing the original value once again, a refund is triggered (see | |
// https://eips.ethereum.org/EIPS/eip-2200) | |
_status = _NOT_ENTERED; | |
} | |
} | |
// File @openzeppelin/contracts/token/ERC20/IERC20.sol@v4.5.0 | |
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Interface of the ERC20 standard as defined in the EIP. | |
*/ | |
interface IERC20 { | |
/** | |
* @dev Returns the amount of tokens in existence. | |
*/ | |
function totalSupply() external view returns (uint256); | |
/** | |
* @dev Returns the amount of tokens owned by `account`. | |
*/ | |
function balanceOf(address account) external view returns (uint256); | |
/** | |
* @dev Moves `amount` tokens from the caller's account to `to`. | |
* | |
* Returns a boolean value indicating whether the operation succeeded. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function transfer(address to, uint256 amount) external returns (bool); | |
/** | |
* @dev Returns the remaining number of tokens that `spender` will be | |
* allowed to spend on behalf of `owner` through {transferFrom}. This is | |
* zero by default. | |
* | |
* This value changes when {approve} or {transferFrom} are called. | |
*/ | |
function allowance(address owner, address spender) external view returns (uint256); | |
/** | |
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens. | |
* | |
* Returns a boolean value indicating whether the operation succeeded. | |
* | |
* IMPORTANT: Beware that changing an allowance with this method brings the risk | |
* that someone may use both the old and the new allowance by unfortunate | |
* transaction ordering. One possible solution to mitigate this race | |
* condition is to first reduce the spender's allowance to 0 and set the | |
* desired value afterwards: | |
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 | |
* | |
* Emits an {Approval} event. | |
*/ | |
function approve(address spender, uint256 amount) external returns (bool); | |
/** | |
* @dev Moves `amount` tokens from `from` to `to` using the | |
* allowance mechanism. `amount` is then deducted from the caller's | |
* allowance. | |
* | |
* Returns a boolean value indicating whether the operation succeeded. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function transferFrom( | |
address from, | |
address to, | |
uint256 amount | |
) external returns (bool); | |
/** | |
* @dev Emitted when `value` tokens are moved from one account (`from`) to | |
* another (`to`). | |
* | |
* Note that `value` may be zero. | |
*/ | |
event Transfer(address indexed from, address indexed to, uint256 value); | |
/** | |
* @dev Emitted when the allowance of a `spender` for an `owner` is set by | |
* a call to {approve}. `value` is the new allowance. | |
*/ | |
event Approval(address indexed owner, address indexed spender, uint256 value); | |
} | |
// File @openzeppelin/contracts/utils/Address.sol@v4.5.0 | |
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol) | |
pragma solidity ^0.8.1; | |
/** | |
* @dev Collection of functions related to the address type | |
*/ | |
library Address { | |
/** | |
* @dev Returns true if `account` is a contract. | |
* | |
* [IMPORTANT] | |
* ==== | |
* It is unsafe to assume that an address for which this function returns | |
* false is an externally-owned account (EOA) and not a contract. | |
* | |
* Among others, `isContract` will return false for the following | |
* types of addresses: | |
* | |
* - an externally-owned account | |
* - a contract in construction | |
* - an address where a contract will be created | |
* - an address where a contract lived, but was destroyed | |
* ==== | |
* | |
* [IMPORTANT] | |
* ==== | |
* You shouldn't rely on `isContract` to protect against flash loan attacks! | |
* | |
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets | |
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract | |
* constructor. | |
* ==== | |
*/ | |
function isContract(address account) internal view returns (bool) { | |
// This method relies on extcodesize/address.code.length, which returns 0 | |
// for contracts in construction, since the code is only stored at the end | |
// of the constructor execution. | |
return account.code.length > 0; | |
} | |
/** | |
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to | |
* `recipient`, forwarding all available gas and reverting on errors. | |
* | |
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost | |
* of certain opcodes, possibly making contracts go over the 2300 gas limit | |
* imposed by `transfer`, making them unable to receive funds via | |
* `transfer`. {sendValue} removes this limitation. | |
* | |
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. | |
* | |
* IMPORTANT: because control is transferred to `recipient`, care must be | |
* taken to not create reentrancy vulnerabilities. Consider using | |
* {ReentrancyGuard} or the | |
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. | |
*/ | |
function sendValue(address payable recipient, uint256 amount) internal { | |
require(address(this).balance >= amount, "Address: insufficient balance"); | |
(bool success, ) = recipient.call{value: amount}(""); | |
require(success, "Address: unable to send value, recipient may have reverted"); | |
} | |
/** | |
* @dev Performs a Solidity function call using a low level `call`. A | |
* plain `call` is an unsafe replacement for a function call: use this | |
* function instead. | |
* | |
* If `target` reverts with a revert reason, it is bubbled up by this | |
* function (like regular Solidity function calls). | |
* | |
* Returns the raw returned data. To convert to the expected return value, | |
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. | |
* | |
* Requirements: | |
* | |
* - `target` must be a contract. | |
* - calling `target` with `data` must not revert. | |
* | |
* _Available since v3.1._ | |
*/ | |
function functionCall(address target, bytes memory data) internal returns (bytes memory) { | |
return functionCall(target, data, "Address: low-level call failed"); | |
} | |
/** | |
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with | |
* `errorMessage` as a fallback revert reason when `target` reverts. | |
* | |
* _Available since v3.1._ | |
*/ | |
function functionCall( | |
address target, | |
bytes memory data, | |
string memory errorMessage | |
) internal returns (bytes memory) { | |
return functionCallWithValue(target, data, 0, errorMessage); | |
} | |
/** | |
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], | |
* but also transferring `value` wei to `target`. | |
* | |
* Requirements: | |
* | |
* - the calling contract must have an ETH balance of at least `value`. | |
* - the called Solidity function must be `payable`. | |
* | |
* _Available since v3.1._ | |
*/ | |
function functionCallWithValue( | |
address target, | |
bytes memory data, | |
uint256 value | |
) internal returns (bytes memory) { | |
return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); | |
} | |
/** | |
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but | |
* with `errorMessage` as a fallback revert reason when `target` reverts. | |
* | |
* _Available since v3.1._ | |
*/ | |
function functionCallWithValue( | |
address target, | |
bytes memory data, | |
uint256 value, | |
string memory errorMessage | |
) internal returns (bytes memory) { | |
require(address(this).balance >= value, "Address: insufficient balance for call"); | |
require(isContract(target), "Address: call to non-contract"); | |
(bool success, bytes memory returndata) = target.call{value: value}(data); | |
return verifyCallResult(success, returndata, errorMessage); | |
} | |
/** | |
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], | |
* but performing a static call. | |
* | |
* _Available since v3.3._ | |
*/ | |
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { | |
return functionStaticCall(target, data, "Address: low-level static call failed"); | |
} | |
/** | |
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], | |
* but performing a static call. | |
* | |
* _Available since v3.3._ | |
*/ | |
function functionStaticCall( | |
address target, | |
bytes memory data, | |
string memory errorMessage | |
) internal view returns (bytes memory) { | |
require(isContract(target), "Address: static call to non-contract"); | |
(bool success, bytes memory returndata) = target.staticcall(data); | |
return verifyCallResult(success, returndata, errorMessage); | |
} | |
/** | |
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], | |
* but performing a delegate call. | |
* | |
* _Available since v3.4._ | |
*/ | |
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { | |
return functionDelegateCall(target, data, "Address: low-level delegate call failed"); | |
} | |
/** | |
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], | |
* but performing a delegate call. | |
* | |
* _Available since v3.4._ | |
*/ | |
function functionDelegateCall( | |
address target, | |
bytes memory data, | |
string memory errorMessage | |
) internal returns (bytes memory) { | |
require(isContract(target), "Address: delegate call to non-contract"); | |
(bool success, bytes memory returndata) = target.delegatecall(data); | |
return verifyCallResult(success, returndata, errorMessage); | |
} | |
/** | |
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the | |
* revert reason using the provided one. | |
* | |
* _Available since v4.3._ | |
*/ | |
function verifyCallResult( | |
bool success, | |
bytes memory returndata, | |
string memory errorMessage | |
) internal pure returns (bytes memory) { | |
if (success) { | |
return returndata; | |
} else { | |
// Look for revert reason and bubble it up if present | |
if (returndata.length > 0) { | |
// The easiest way to bubble the revert reason is using memory via assembly | |
assembly { | |
let returndata_size := mload(returndata) | |
revert(add(32, returndata), returndata_size) | |
} | |
} else { | |
revert(errorMessage); | |
} | |
} | |
} | |
} | |
// File @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol@v4.5.0 | |
// OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @title SafeERC20 | |
* @dev Wrappers around ERC20 operations that throw on failure (when the token | |
* contract returns false). Tokens that return no value (and instead revert or | |
* throw on failure) are also supported, non-reverting calls are assumed to be | |
* successful. | |
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, | |
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc. | |
*/ | |
library SafeERC20 { | |
using Address for address; | |
function safeTransfer( | |
IERC20 token, | |
address to, | |
uint256 value | |
) internal { | |
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); | |
} | |
function safeTransferFrom( | |
IERC20 token, | |
address from, | |
address to, | |
uint256 value | |
) internal { | |
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); | |
} | |
/** | |
* @dev Deprecated. This function has issues similar to the ones found in | |
* {IERC20-approve}, and its usage is discouraged. | |
* | |
* Whenever possible, use {safeIncreaseAllowance} and | |
* {safeDecreaseAllowance} instead. | |
*/ | |
function safeApprove( | |
IERC20 token, | |
address spender, | |
uint256 value | |
) internal { | |
// safeApprove should only be called when setting an initial allowance, | |
// or when resetting it to zero. To increase and decrease it, use | |
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance' | |
require( | |
(value == 0) || (token.allowance(address(this), spender) == 0), | |
"SafeERC20: approve from non-zero to non-zero allowance" | |
); | |
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); | |
} | |
function safeIncreaseAllowance( | |
IERC20 token, | |
address spender, | |
uint256 value | |
) internal { | |
uint256 newAllowance = token.allowance(address(this), spender) + value; | |
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); | |
} | |
function safeDecreaseAllowance( | |
IERC20 token, | |
address spender, | |
uint256 value | |
) internal { | |
unchecked { | |
uint256 oldAllowance = token.allowance(address(this), spender); | |
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); | |
uint256 newAllowance = oldAllowance - value; | |
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); | |
} | |
} | |
/** | |
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement | |
* on the return value: the return value is optional (but if data is returned, it must not be false). | |
* @param token The token targeted by the call. | |
* @param data The call data (encoded using abi.encode or one of its variants). | |
*/ | |
function _callOptionalReturn(IERC20 token, bytes memory data) private { | |
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since | |
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that | |
// the target address contains contract code and also asserts for success in the low-level call. | |
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); | |
if (returndata.length > 0) { | |
// Return data is optional | |
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); | |
} | |
} | |
} | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Interface of the ERC165 standard, as defined in the | |
* https://eips.ethereum.org/EIPS/eip-165[EIP]. | |
* | |
* Implementers can declare support of contract interfaces, which can then be | |
* queried by others ({ERC165Checker}). | |
* | |
* For an implementation, see {ERC165}. | |
*/ | |
interface IERC165 { | |
/** | |
* @dev Returns true if this contract implements the interface defined by | |
* `interfaceId`. See the corresponding | |
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] | |
* to learn more about how these ids are created. | |
* | |
* This function call must use less than 30 000 gas. | |
*/ | |
function supportsInterface(bytes4 interfaceId) external view returns (bool); | |
} | |
// File @openzeppelin/contracts/token/ERC721/IERC721.sol@v4.5.0 | |
// OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Required interface of an ERC721 compliant contract. | |
*/ | |
interface IERC721 is IERC165 { | |
/** | |
* @dev Emitted when `tokenId` token is transferred from `from` to `to`. | |
*/ | |
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); | |
/** | |
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. | |
*/ | |
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); | |
/** | |
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. | |
*/ | |
event ApprovalForAll(address indexed owner, address indexed operator, bool approved); | |
/** | |
* @dev Returns the number of tokens in ``owner``'s account. | |
*/ | |
function balanceOf(address owner) external view returns (uint256 balance); | |
/** | |
* @dev Returns the owner of the `tokenId` token. | |
* | |
* Requirements: | |
* | |
* - `tokenId` must exist. | |
*/ | |
function ownerOf(uint256 tokenId) external view returns (address owner); | |
/** | |
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients | |
* are aware of the ERC721 protocol to prevent tokens from being forever locked. | |
* | |
* Requirements: | |
* | |
* - `from` cannot be the zero address. | |
* - `to` cannot be the zero address. | |
* - `tokenId` token must exist and be owned by `from`. | |
* - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. | |
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function safeTransferFrom( | |
address from, | |
address to, | |
uint256 tokenId | |
) external; | |
/** | |
* @dev Transfers `tokenId` token from `from` to `to`. | |
* | |
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. | |
* | |
* Requirements: | |
* | |
* - `from` cannot be the zero address. | |
* - `to` cannot be the zero address. | |
* - `tokenId` token must be owned by `from`. | |
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function transferFrom( | |
address from, | |
address to, | |
uint256 tokenId | |
) external; | |
/** | |
* @dev Gives permission to `to` to transfer `tokenId` token to another account. | |
* The approval is cleared when the token is transferred. | |
* | |
* Only a single account can be approved at a time, so approving the zero address clears previous approvals. | |
* | |
* Requirements: | |
* | |
* - The caller must own the token or be an approved operator. | |
* - `tokenId` must exist. | |
* | |
* Emits an {Approval} event. | |
*/ | |
function approve(address to, uint256 tokenId) external; | |
/** | |
* @dev Returns the account approved for `tokenId` token. | |
* | |
* Requirements: | |
* | |
* - `tokenId` must exist. | |
*/ | |
function getApproved(uint256 tokenId) external view returns (address operator); | |
/** | |
* @dev Approve or remove `operator` as an operator for the caller. | |
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. | |
* | |
* Requirements: | |
* | |
* - The `operator` cannot be the caller. | |
* | |
* Emits an {ApprovalForAll} event. | |
*/ | |
function setApprovalForAll(address operator, bool _approved) external; | |
/** | |
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. | |
* | |
* See {setApprovalForAll} | |
*/ | |
function isApprovedForAll(address owner, address operator) external view returns (bool); | |
/** | |
* @dev Safely transfers `tokenId` token from `from` to `to`. | |
* | |
* Requirements: | |
* | |
* - `from` cannot be the zero address. | |
* - `to` cannot be the zero address. | |
* - `tokenId` token must exist and be owned by `from`. | |
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. | |
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function safeTransferFrom( | |
address from, | |
address to, | |
uint256 tokenId, | |
bytes calldata data | |
) external; | |
} | |
// File @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol@v4.5.0 | |
// OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721Receiver.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @title ERC721 token receiver interface | |
* @dev Interface for any contract that wants to support safeTransfers | |
* from ERC721 asset contracts. | |
*/ | |
interface IERC721Receiver { | |
/** | |
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} | |
* by `operator` from `from`, this function is called. | |
* | |
* It must return its Solidity selector to confirm the token transfer. | |
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. | |
* | |
* The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`. | |
*/ | |
function onERC721Received( | |
address operator, | |
address from, | |
uint256 tokenId, | |
bytes calldata data | |
) external returns (bytes4); | |
} | |
// File @openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol@v4.5.0 | |
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension | |
* @dev See https://eips.ethereum.org/EIPS/eip-721 | |
*/ | |
interface IERC721Metadata is IERC721 { | |
/** | |
* @dev Returns the token collection name. | |
*/ | |
function name() external view returns (string memory); | |
/** | |
* @dev Returns the token collection symbol. | |
*/ | |
function symbol() external view returns (string memory); | |
/** | |
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. | |
*/ | |
function tokenURI(uint256 tokenId) external view returns (string memory); | |
} | |
// File @openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol@v4.5.0 | |
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension | |
* @dev See https://eips.ethereum.org/EIPS/eip-721 | |
*/ | |
interface IERC721Enumerable is IERC721 { | |
/** | |
* @dev Returns the total amount of tokens stored by the contract. | |
*/ | |
function totalSupply() external view returns (uint256); | |
/** | |
* @dev Returns a token ID owned by `owner` at a given `index` of its token list. | |
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens. | |
*/ | |
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256); | |
/** | |
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract. | |
* Use along with {totalSupply} to enumerate all tokens. | |
*/ | |
function tokenByIndex(uint256 index) external view returns (uint256); | |
} | |
// File @openzeppelin/contracts/utils/Strings.sol@v4.5.0 | |
// OpenZeppelin Contracts v4.4.1 (utils/Strings.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @dev String operations. | |
*/ | |
library Strings { | |
bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; | |
/** | |
* @dev Converts a `uint256` to its ASCII `string` decimal representation. | |
*/ | |
function toString(uint256 value) internal pure returns (string memory) { | |
// Inspired by OraclizeAPI's implementation - MIT licence | |
// https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol | |
if (value == 0) { | |
return "0"; | |
} | |
uint256 temp = value; | |
uint256 digits; | |
while (temp != 0) { | |
digits++; | |
temp /= 10; | |
} | |
bytes memory buffer = new bytes(digits); | |
while (value != 0) { | |
digits -= 1; | |
buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); | |
value /= 10; | |
} | |
return string(buffer); | |
} | |
/** | |
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. | |
*/ | |
function toHexString(uint256 value) internal pure returns (string memory) { | |
if (value == 0) { | |
return "0x00"; | |
} | |
uint256 temp = value; | |
uint256 length = 0; | |
while (temp != 0) { | |
length++; | |
temp >>= 8; | |
} | |
return toHexString(value, length); | |
} | |
/** | |
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. | |
*/ | |
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { | |
bytes memory buffer = new bytes(2 * length + 2); | |
buffer[0] = "0"; | |
buffer[1] = "x"; | |
for (uint256 i = 2 * length + 1; i > 1; --i) { | |
buffer[i] = _HEX_SYMBOLS[value & 0xf]; | |
value >>= 4; | |
} | |
require(value == 0, "Strings: hex length insufficient"); | |
return string(buffer); | |
} | |
} | |
// File @openzeppelin/contracts/utils/introspection/ERC165.sol@v4.5.0 | |
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) | |
pragma solidity ^0.8.0; | |
/** | |
* @dev Implementation of the {IERC165} interface. | |
* | |
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check | |
* for the additional interface id that will be supported. For example: | |
* | |
* ```solidity | |
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { | |
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); | |
* } | |
* ``` | |
* | |
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. | |
*/ | |
abstract contract ERC165 is IERC165 { | |
/** | |
* @dev See {IERC165-supportsInterface}. | |
*/ | |
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { | |
return interfaceId == type(IERC165).interfaceId; | |
} | |
} | |
// props to chiru for 721A | |
pragma solidity ^0.8.4; | |
error ApprovalCallerNotOwnerNorApproved(); | |
error ApprovalQueryForNonexistentToken(); | |
error ApproveToCaller(); | |
error ApprovalToCurrentOwner(); | |
error BalanceQueryForZeroAddress(); | |
error MintToZeroAddress(); | |
error MintZeroQuantity(); | |
error OwnerQueryForNonexistentToken(); | |
error TransferCallerNotOwnerNorApproved(); | |
error TransferFromIncorrectOwner(); | |
error TransferToNonERC721ReceiverImplementer(); | |
error TransferToZeroAddress(); | |
error URIQueryForNonexistentToken(); | |
/** | |
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including | |
* the Metadata extension. Built to optimize for lower gas during batch mints. | |
* | |
* Assumes serials are sequentially minted starting at _startTokenId() (defaults to 0, e.g. 0, 1, 2, 3..). | |
* | |
* Assumes that an owner cannot have more than 2**64 - 1 (max value of uint64) of supply. | |
* | |
* Assumes that the maximum token id cannot exceed 2**256 - 1 (max value of uint256). | |
*/ | |
contract ERC721A is Context, ERC165, IERC721, IERC721Metadata { | |
using Address for address; | |
using Strings for uint256; | |
// Compiler will pack this into a single 256bit word. | |
struct TokenOwnership { | |
// The address of the owner. | |
address addr; | |
// Keeps track of the start time of ownership with minimal overhead for tokenomics. | |
uint64 startTimestamp; | |
// Whether the token has been burned. | |
bool burned; | |
} | |
// Compiler will pack this into a single 256bit word. | |
struct AddressData { | |
// Realistically, 2**64-1 is more than enough. | |
uint64 balance; | |
// Keeps track of mint count with minimal overhead for tokenomics. | |
uint64 numberMinted; | |
// Keeps track of burn count with minimal overhead for tokenomics. | |
uint64 numberBurned; | |
// For miscellaneous variable(s) pertaining to the address | |
// (e.g. number of whitelist mint slots used). | |
// If there are multiple variables, please pack them into a uint64. | |
uint64 aux; | |
} | |
// The tokenId of the next token to be minted. | |
uint256 internal _currentIndex; | |
// The number of tokens burned. | |
uint256 internal _burnCounter; | |
// Token name | |
string private _name; | |
// Token symbol | |
string private _symbol; | |
// Mapping from token ID to ownership details | |
// An empty struct value does not necessarily mean the token is unowned. See _ownershipOf implementation for details. | |
mapping(uint256 => TokenOwnership) internal _ownerships; | |
// Mapping owner address to address data | |
mapping(address => AddressData) private _addressData; | |
// Mapping from token ID to approved address | |
mapping(uint256 => address) private _tokenApprovals; | |
// Mapping from owner to operator approvals | |
mapping(address => mapping(address => bool)) private _operatorApprovals; | |
constructor(string memory name_, string memory symbol_) { | |
_name = name_; | |
_symbol = symbol_; | |
_currentIndex = _startTokenId(); | |
} | |
/** | |
* To change the starting tokenId, please override this function. | |
*/ | |
function _startTokenId() internal view virtual returns (uint256) { | |
return 1; | |
} | |
/** | |
* @dev Burned tokens are calculated here, use _totalMinted() if you want to count just minted tokens. | |
*/ | |
function totalSupply() public view returns (uint256) { | |
// Counter underflow is impossible as _burnCounter cannot be incremented | |
// more than _currentIndex - _startTokenId() times | |
unchecked { | |
return _currentIndex - _burnCounter - _startTokenId(); | |
} | |
} | |
/** | |
* Returns the total amount of tokens minted in the contract. | |
*/ | |
function _totalMinted() internal view returns (uint256) { | |
// Counter underflow is impossible as _currentIndex does not decrement, | |
// and it is initialized to _startTokenId() | |
unchecked { | |
return _currentIndex - _startTokenId(); | |
} | |
} | |
/** | |
* @dev See {IERC165-supportsInterface}. | |
*/ | |
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { | |
return | |
interfaceId == type(IERC721).interfaceId || | |
interfaceId == type(IERC721Metadata).interfaceId || | |
super.supportsInterface(interfaceId); | |
} | |
/** | |
* @dev See {IERC721-balanceOf}. | |
*/ | |
function balanceOf(address owner) public view override returns (uint256) { | |
return uint256(_addressData[owner].balance); | |
} | |
/** | |
* Returns the number of tokens minted by `owner`. | |
*/ | |
function _numberMinted(address owner) internal view returns (uint256) { | |
return uint256(_addressData[owner].numberMinted); | |
} | |
/** | |
* Returns the number of tokens burned by or on behalf of `owner`. | |
*/ | |
function _numberBurned(address owner) internal view returns (uint256) { | |
return uint256(_addressData[owner].numberBurned); | |
} | |
/** | |
* Returns the auxillary data for `owner`. (e.g. number of whitelist mint slots used). | |
*/ | |
function _getAux(address owner) internal view returns (uint64) { | |
return _addressData[owner].aux; | |
} | |
/** | |
* Sets the auxillary data for `owner`. (e.g. number of whitelist mint slots used). | |
* If there are multiple variables, please pack them into a uint64. | |
*/ | |
function _setAux(address owner, uint64 aux) internal { | |
_addressData[owner].aux = aux; | |
} | |
/** | |
* Gas spent here starts off proportional to the maximum mint batch size. | |
* It gradually moves to O(1) as tokens get transferred around in the collection over time. | |
*/ | |
function _ownershipOf(uint256 tokenId) internal view returns (TokenOwnership memory) { | |
uint256 curr = tokenId; | |
unchecked { | |
if (_startTokenId() <= curr && curr < _currentIndex) { | |
TokenOwnership memory ownership = _ownerships[curr]; | |
if (!ownership.burned) { | |
if (ownership.addr != address(0)) { | |
return ownership; | |
} | |
// Invariant: | |
// There will always be an ownership that has an address and is not burned | |
// before an ownership that does not have an address and is not burned. | |
// Hence, curr will not underflow. | |
while (true) { | |
curr--; | |
ownership = _ownerships[curr]; | |
if (ownership.addr != address(0)) { | |
return ownership; | |
} | |
} | |
} | |
} | |
} | |
revert OwnerQueryForNonexistentToken(); | |
} | |
/** | |
* @dev See {IERC721-ownerOf}. | |
*/ | |
function ownerOf(uint256 tokenId) public view override returns (address) { | |
return _ownershipOf(tokenId).addr; | |
} | |
/** | |
* @dev See {IERC721Metadata-name}. | |
*/ | |
function name() public view virtual override returns (string memory) { | |
return _name; | |
} | |
/** | |
* @dev See {IERC721Metadata-symbol}. | |
*/ | |
function symbol() public view virtual override returns (string memory) { | |
return _symbol; | |
} | |
/** | |
* @dev See {IERC721Metadata-tokenURI}. | |
*/ | |
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { | |
if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); | |
string memory baseURI = _baseURI(); | |
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : ''; | |
} | |
/** | |
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each | |
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty | |
* by default, can be overriden in child contracts. | |
*/ | |
function _baseURI() internal view virtual returns (string memory) { | |
return ''; | |
} | |
/** | |
* @dev See {IERC721-approve}. | |
*/ | |
function approve(address to, uint256 tokenId) public override { | |
address owner = ERC721A.ownerOf(tokenId); | |
if (to == owner) revert ApprovalToCurrentOwner(); | |
if (_msgSender() != owner && !isApprovedForAll(owner, _msgSender())) { | |
revert ApprovalCallerNotOwnerNorApproved(); | |
} | |
_approve(to, tokenId, owner); | |
} | |
/** | |
* @dev See {IERC721-getApproved}. | |
*/ | |
function getApproved(uint256 tokenId) public view override returns (address) { | |
if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); | |
return _tokenApprovals[tokenId]; | |
} | |
/** | |
* @dev See {IERC721-setApprovalForAll}. | |
*/ | |
function setApprovalForAll(address operator, bool approved) public virtual override { | |
if (operator == _msgSender()) revert ApproveToCaller(); | |
_operatorApprovals[_msgSender()][operator] = approved; | |
emit ApprovalForAll(_msgSender(), operator, approved); | |
} | |
/** | |
* @dev See {IERC721-isApprovedForAll}. | |
*/ | |
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { | |
return _operatorApprovals[owner][operator]; | |
} | |
/** | |
* @dev See {IERC721-transferFrom}. | |
*/ | |
function transferFrom( | |
address from, | |
address to, | |
uint256 tokenId | |
) public virtual override { | |
_transfer(from, to, tokenId); | |
} | |
/** | |
* @dev See {IERC721-safeTransferFrom}. | |
*/ | |
function safeTransferFrom( | |
address from, | |
address to, | |
uint256 tokenId | |
) public virtual override { | |
safeTransferFrom(from, to, tokenId, ''); | |
} | |
/** | |
* @dev See {IERC721-safeTransferFrom}. | |
*/ | |
function safeTransferFrom( | |
address from, | |
address to, | |
uint256 tokenId, | |
bytes memory _data | |
) public virtual override { | |
_transfer(from, to, tokenId); | |
if (to.isContract() && !_checkContractOnERC721Received(from, to, tokenId, _data)) { | |
revert TransferToNonERC721ReceiverImplementer(); | |
} | |
} | |
/** | |
* @dev Returns whether `tokenId` exists. | |
* | |
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. | |
* | |
* Tokens start existing when they are minted (`_mint`), | |
*/ | |
function _exists(uint256 tokenId) internal view returns (bool) { | |
return _startTokenId() <= tokenId && tokenId < _currentIndex && !_ownerships[tokenId].burned; | |
} | |
function _safeMint(address to, uint256 quantity) internal { | |
_safeMint(to, quantity, ''); | |
} | |
/** | |
* @dev Safely mints `quantity` tokens and transfers them to `to`. | |
* | |
* Requirements: | |
* | |
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called for each safe transfer. | |
* - `quantity` must be greater than 0. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function _safeMint( | |
address to, | |
uint256 quantity, | |
bytes memory _data | |
) internal { | |
_mint(to, quantity, _data, true); | |
} | |
/** | |
* @dev Mints `quantity` tokens and transfers them to `to`. | |
* | |
* Requirements: | |
* | |
* - `to` cannot be the zero address. | |
* - `quantity` must be greater than 0. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function _mint( | |
address to, | |
uint256 quantity, | |
bytes memory _data, | |
bool safe | |
) internal { | |
uint256 startTokenId = _currentIndex; | |
if (quantity == 0) revert MintZeroQuantity(); | |
_beforeTokenTransfers(address(0), to, startTokenId, quantity); | |
// Overflows are incredibly unrealistic. | |
// balance or numberMinted overflow if current value of either + quantity > 1.8e19 (2**64) - 1 | |
// updatedIndex overflows if _currentIndex + quantity > 1.2e77 (2**256) - 1 | |
unchecked { | |
_addressData[to].balance += uint64(quantity); | |
_addressData[to].numberMinted += uint64(quantity); | |
_ownerships[startTokenId].addr = to; | |
_ownerships[startTokenId].startTimestamp = uint64(block.timestamp); | |
uint256 updatedIndex = startTokenId; | |
uint256 end = updatedIndex + quantity; | |
if (safe && to.isContract()) { | |
do { | |
emit Transfer(address(0), to, updatedIndex); | |
if (!_checkContractOnERC721Received(address(0), to, updatedIndex++, _data)) { | |
revert TransferToNonERC721ReceiverImplementer(); | |
} | |
} while (updatedIndex != end); | |
// Reentrancy protection | |
if (_currentIndex != startTokenId) revert(); | |
} else { | |
do { | |
emit Transfer(address(0), to, updatedIndex++); | |
} while (updatedIndex != end); | |
} | |
_currentIndex = updatedIndex; | |
} | |
_afterTokenTransfers(address(0), to, startTokenId, quantity); | |
} | |
/** | |
* @dev Transfers `tokenId` from `from` to `to`. | |
* | |
* Requirements: | |
* | |
* - `to` cannot be the zero address. | |
* - `tokenId` token must be owned by `from`. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function _transfer( | |
address from, | |
address to, | |
uint256 tokenId | |
) private { | |
TokenOwnership memory prevOwnership = _ownershipOf(tokenId); | |
if (prevOwnership.addr != from) revert TransferFromIncorrectOwner(); | |
bool isApprovedOrOwner = (_msgSender() == from || | |
isApprovedForAll(from, _msgSender()) || | |
getApproved(tokenId) == _msgSender()); | |
if (!isApprovedOrOwner) revert TransferCallerNotOwnerNorApproved(); | |
if (to == address(0)) revert TransferToZeroAddress(); | |
_beforeTokenTransfers(from, to, tokenId, 1); | |
// Clear approvals from the previous owner | |
_approve(address(0), tokenId, from); | |
// Underflow of the sender's balance is impossible because we check for | |
// ownership above and the recipient's balance can't realistically overflow. | |
// Counter overflow is incredibly unrealistic as tokenId would have to be 2**256. | |
unchecked { | |
_addressData[from].balance -= 1; | |
_addressData[to].balance += 1; | |
TokenOwnership storage currSlot = _ownerships[tokenId]; | |
currSlot.addr = to; | |
currSlot.startTimestamp = uint64(block.timestamp); | |
// If the ownership slot of tokenId+1 is not explicitly set, that means the transfer initiator owns it. | |
// Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls. | |
uint256 nextTokenId = tokenId + 1; | |
TokenOwnership storage nextSlot = _ownerships[nextTokenId]; | |
if (nextSlot.addr == address(0)) { | |
// This will suffice for checking _exists(nextTokenId), | |
// as a burned slot cannot contain the zero address. | |
if (nextTokenId != _currentIndex) { | |
nextSlot.addr = from; | |
nextSlot.startTimestamp = prevOwnership.startTimestamp; | |
} | |
} | |
} | |
_afterTokenTransfers(from, to, tokenId, 1); | |
} | |
/** | |
* @dev This is equivalent to _burn(tokenId, false) | |
*/ | |
function _burn(uint256 tokenId) internal virtual { | |
_burn(tokenId, false); | |
} | |
/** | |
* @dev Destroys `tokenId`. | |
* The approval is cleared when the token is burned. | |
* | |
* Requirements: | |
* | |
* - `tokenId` must exist. | |
* | |
* Emits a {Transfer} event. | |
*/ | |
function _burn(uint256 tokenId, bool approvalCheck) internal virtual { | |
TokenOwnership memory prevOwnership = _ownershipOf(tokenId); | |
address from = prevOwnership.addr; | |
if (approvalCheck) { | |
bool isApprovedOrOwner = (_msgSender() == from || | |
isApprovedForAll(from, _msgSender()) || | |
getApproved(tokenId) == _msgSender()); | |
if (!isApprovedOrOwner) revert TransferCallerNotOwnerNorApproved(); | |
} | |
_beforeTokenTransfers(from, address(0), tokenId, 1); | |
// Clear approvals from the previous owner | |
_approve(address(0), tokenId, from); | |
// Underflow of the sender's balance is impossible because we check for | |
// ownership above and the recipient's balance can't realistically overflow. | |
// Counter overflow is incredibly unrealistic as tokenId would have to be 2**256. | |
unchecked { | |
AddressData storage addressData = _addressData[from]; | |
addressData.balance -= 1; | |
addressData.numberBurned += 1; | |
// Keep track of who burned the token, and the timestamp of burning. | |
TokenOwnership storage currSlot = _ownerships[tokenId]; | |
currSlot.addr = from; | |
currSlot.startTimestamp = uint64(block.timestamp); | |
currSlot.burned = true; | |
// If the ownership slot of tokenId+1 is not explicitly set, that means the burn initiator owns it. | |
// Set the slot of tokenId+1 explicitly in storage to maintain correctness for ownerOf(tokenId+1) calls. | |
uint256 nextTokenId = tokenId + 1; | |
TokenOwnership storage nextSlot = _ownerships[nextTokenId]; | |
if (nextSlot.addr == address(0)) { | |
// This will suffice for checking _exists(nextTokenId), | |
// as a burned slot cannot contain the zero address. | |
if (nextTokenId != _currentIndex) { | |
nextSlot.addr = from; | |
nextSlot.startTimestamp = prevOwnership.startTimestamp; | |
} | |
} | |
} | |
emit Transfer(from, address(0), tokenId); | |
_afterTokenTransfers(from, address(0), tokenId, 1); | |
// Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. | |
unchecked { | |
_burnCounter++; | |
} | |
} | |
/** | |
* @dev Approve `to` to operate on `tokenId` | |
* | |
* Emits a {Approval} event. | |
*/ | |
function _approve( | |
address to, | |
uint256 tokenId, | |
address owner | |
) private { | |
_tokenApprovals[tokenId] = to; | |
emit Approval(owner, to, tokenId); | |
} | |
/** | |
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target contract. | |
* | |
* @param from address representing the previous owner of the given token ID | |
* @param to target address that will receive the tokens | |
* @param tokenId uint256 ID of the token to be transferred | |
* @param _data bytes optional data to send along with the call | |
* @return bool whether the call correctly returned the expected magic value | |
*/ | |
function _checkContractOnERC721Received( | |
address from, | |
address to, | |
uint256 tokenId, | |
bytes memory _data | |
) private returns (bool) { | |
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) { | |
return retval == IERC721Receiver(to).onERC721Received.selector; | |
} catch (bytes memory reason) { | |
if (reason.length == 0) { | |
revert TransferToNonERC721ReceiverImplementer(); | |
} else { | |
assembly { | |
revert(add(32, reason), mload(reason)) | |
} | |
} | |
} | |
} | |
/** | |
* @dev Hook that is called before a set of serially-ordered token ids are about to be transferred. This includes minting. | |
* And also called before burning one token. | |
* | |
* startTokenId - the first token id to be transferred | |
* quantity - the amount to be transferred | |
* | |
* Calling conditions: | |
* | |
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be | |
* transferred to `to`. | |
* - When `from` is zero, `tokenId` will be minted for `to`. | |
* - When `to` is zero, `tokenId` will be burned by `from`. | |
* - `from` and `to` are never both zero. | |
*/ | |
function _beforeTokenTransfers( | |
address from, | |
address to, | |
uint256 startTokenId, | |
uint256 quantity | |
) internal virtual {} | |
/** | |
* @dev Hook that is called after a set of serially-ordered token ids have been transferred. This includes | |
* minting. | |
* And also called after one token has been burned. | |
* | |
* startTokenId - the first token id to be transferred | |
* quantity - the amount to be transferred | |
* | |
* Calling conditions: | |
* | |
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been | |
* transferred to `to`. | |
* - When `from` is zero, `tokenId` has been minted for `to`. | |
* - When `to` is zero, `tokenId` has been burned by `from`. | |
* - `from` and `to` are never both zero. | |
*/ | |
function _afterTokenTransfers( | |
address from, | |
address to, | |
uint256 startTokenId, | |
uint256 quantity | |
) internal virtual {} | |
} | |
/**/ | |
pragma solidity ^0.8.0; | |
contract Katanaz is ERC721A, Ownable { | |
using Strings for uint; | |
//Standard Variables | |
uint256 MAX_MINTS = 1; | |
uint256 MAX_SUPPLY = 888; | |
uint256 public mintRate = 0.0 ether; | |
bool public paused = true; | |
bool public wlOnly = true; | |
address[] private wl; | |
constructor( | |
) ERC721A("Kozoku Katanaz", "KK")payable{ | |
_mint(msg.sender, 100,"",true); | |
} | |
//Public Functions | |
function publicMint(uint qty) external payable | |
{ | |
require( | |
totalSupply() + qty <= MAX_SUPPLY, | |
"Not enough tokens left" | |
); | |
if (msg.sender != owner()) { | |
require(!paused); | |
require( | |
qty + _numberMinted(msg.sender) <= MAX_MINTS, | |
"Exceeded the limit" | |
); | |
require(balanceOf(msg.sender) < 1, "Exceeded the limit"); | |
require(msg.value >= mintRate * qty); | |
if (wlOnly) { | |
require(onWl(msg.sender), "Not On Whitelist"); | |
} | |
} | |
_safeMint(msg.sender, qty); | |
} | |
//Metadata Functions | |
string private _baseTokenURI; | |
function _baseURI() internal view virtual override returns (string memory) | |
{ | |
return _baseTokenURI; | |
} | |
function exists(uint256 tokenId) public view returns (bool) | |
{ | |
return _exists(tokenId); | |
} | |
function tokenURI(uint tokenId) public view virtual override returns (string memory) | |
{ | |
string memory currentBaseURI = _baseURI(); | |
return bytes(currentBaseURI).length > 0 | |
? string(abi.encodePacked(currentBaseURI, tokenId.toString(), ".json")) | |
: ""; | |
} | |
//OnlyOwner Functions | |
function setBaseURI(string memory baseURI) external onlyOwner | |
{ | |
_baseTokenURI = baseURI; | |
} | |
function giftMint(address recipient, uint qty) external onlyOwner | |
{ | |
require(_totalMinted() + qty < MAX_SUPPLY, "SOLD OUT!"); | |
_mint(recipient, qty, '', true); | |
} | |
function airDrop(address[] memory users) external onlyOwner | |
{ | |
for (uint256 i; i < users.length; i++) | |
{ | |
_mint(users[i], 1, '', true); | |
} | |
} | |
function pause(bool _state) public onlyOwner() | |
{ | |
paused = _state; | |
} | |
function setWL(address[] calldata _wallets) external onlyOwner { | |
delete wl; | |
wl = _wallets; | |
} | |
function wlGate(bool _wlOnly) public onlyOwner { | |
wlOnly = _wlOnly; | |
} | |
function onWl(address _u) public view returns (bool) { | |
uint i = 0; | |
while(i < wl.length){ | |
if(wl[i] == _u){ | |
return true; | |
} | |
i++; | |
} | |
return false; | |
} | |
function withdraw() public payable onlyOwner | |
{ | |
(bool success, ) = payable(msg.sender).call{value: address(this).balance}(""); | |
require(success); | |
} | |
} |