zellic-audit
Initial commit
f998fcd
raw
history blame
20.1 kB
// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023.
// SPDX-License-Identifier: MIT
// File @openzeppelin/contracts/utils/Context.sol@v4.1.0
pragma solidity ^0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File @openzeppelin/contracts/access/Ownable.sol@v4.1.0
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File @openzeppelin/contracts/utils/math/SafeMath.sol@v4.1.0
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is no longer needed starting with Solidity 0.8. The compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// File contracts/libs/Babylonian.sol
pragma solidity 0.8.4;
// computes square roots using the babylonian method
// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
library Babylonian {
function sqrt(uint256 y) internal pure returns (uint256 z) {
if (y > 3) {
z = y;
uint256 x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
// else z = 0
}
}
// File contracts/libs/FixedPoint.sol
pragma solidity 0.8.4;
// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
library FixedPoint {
// range: [0, 2**112 - 1]
// resolution: 1 / 2**112
struct uq112x112 {
uint224 _x;
}
// range: [0, 2**144 - 1]
// resolution: 1 / 2**112
struct uq144x112 {
uint256 _x;
}
uint8 private constant RESOLUTION = 112;
uint256 private constant Q112 = uint256(1) << RESOLUTION;
uint256 private constant Q224 = Q112 << RESOLUTION;
// encode a uint112 as a UQ112x112
function encode(uint112 x) internal pure returns (uq112x112 memory) {
return uq112x112(uint224(x) << RESOLUTION);
}
// encodes a uint144 as a UQ144x112
function encode144(uint144 x) internal pure returns (uq144x112 memory) {
return uq144x112(uint256(x) << RESOLUTION);
}
// divide a UQ112x112 by a uint112, returning a UQ112x112
function div(uq112x112 memory self, uint112 x) internal pure returns (uq112x112 memory) {
require(x != 0, "FixedPoint: DIV_BY_ZERO");
return uq112x112(self._x / uint224(x));
}
// multiply a UQ112x112 by a uint, returning a UQ144x112
// reverts on overflow
function mul(uq112x112 memory self, uint256 y) internal pure returns (uq144x112 memory) {
uint256 z;
require(
y == 0 || (z = uint256(self._x) * y) / y == uint256(self._x),
"FixedPoint: MULTIPLICATION_OVERFLOW"
);
return uq144x112(z);
}
// returns a UQ112x112 which represents the ratio of the numerator to the denominator
// equivalent to encode(numerator).div(denominator)
function fraction(uint112 numerator, uint112 denominator)
internal
pure
returns (uq112x112 memory)
{
require(denominator > 0, "FixedPoint: DIV_BY_ZERO");
return uq112x112((uint224(numerator) << RESOLUTION) / denominator);
}
// decode a UQ112x112 into a uint112 by truncating after the radix point
function decode(uq112x112 memory self) internal pure returns (uint112) {
return uint112(self._x >> RESOLUTION);
}
// decode a UQ144x112 into a uint144 by truncating after the radix point
function decode144(uq144x112 memory self) internal pure returns (uint144) {
return uint144(self._x >> RESOLUTION);
}
// take the reciprocal of a UQ112x112
function reciprocal(uq112x112 memory self) internal pure returns (uq112x112 memory) {
require(self._x != 0, "FixedPoint: ZERO_RECIPROCAL");
return uq112x112(uint224(Q224 / self._x));
}
// square root of a UQ112x112
function sqrt(uq112x112 memory self) internal pure returns (uq112x112 memory) {
return uq112x112(uint224(Babylonian.sqrt(uint256(self._x)) << 56));
}
}
// File contracts/libs/UQ112x112.sol
pragma solidity 0.8.4;
// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
// range: [0, 2**112 - 1]
// resolution: 1 / 2**112
library UQ112x112 {
uint224 constant Q112 = 2**112;
// encode a uint112 as a UQ112x112
function encode(uint112 y) internal pure returns (uint224 z) {
z = uint224(y) * Q112; // never overflows
}
// divide a UQ112x112 by a uint112, returning a UQ112x112
function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
z = x / uint224(y);
}
}
// File contracts/interfaces/IPairOracle.sol
pragma solidity 0.8.4;
pragma experimental ABIEncoderV2;
interface IPairOracle {
function consult(address token, uint256 amountIn) external view returns (uint256 amountOut);
function update() external;
}
// File contracts/interfaces/IUniswapLP.sol
pragma solidity 0.8.4;
interface IUniswapLP {
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves()
external
view
returns (
uint112 reserve0,
uint112 reserve1,
uint32 blockTimestampLast
);
function price0CumulativeLast() external view returns (uint256);
function price1CumulativeLast() external view returns (uint256);
function getTokenWeights() external view returns (uint32 tokenWeight0, uint32 tokenWeight1);
}
// File contracts/oracle/PcsPairOracle.sol
pragma solidity 0.8.4;
contract PcsPairOracle is Ownable, IPairOracle {
using FixedPoint for *;
using SafeMath for uint256;
uint256 public PERIOD = 1800; // 30-minute TWAP (time-weighted average price)
IUniswapLP public immutable pair;
address public immutable token0;
address public immutable token1;
uint256 public price0CumulativeLast;
uint256 public price1CumulativeLast;
uint32 public blockTimestampLast;
FixedPoint.uq112x112 public price0Average;
FixedPoint.uq112x112 public price1Average;
constructor(address pairAddress) {
IUniswapLP _pair = IUniswapLP(pairAddress);
pair = _pair;
token0 = _pair.token0();
token1 = _pair.token1();
price0CumulativeLast = _pair.price0CumulativeLast(); // Fetch the current accumulated price value (1 / 0)
price1CumulativeLast = _pair.price1CumulativeLast(); // Fetch the current accumulated price value (0 / 1)
uint112 reserve0;
uint112 reserve1;
(reserve0, reserve1, blockTimestampLast) = _pair.getReserves();
require(reserve0 != 0 && reserve1 != 0, "PairOracle: NO_RESERVES"); // Ensure that there's liquidity in the pair
}
function setPeriod(uint256 _period) external onlyOwner {
PERIOD = _period;
}
function update() external override {
(uint256 price0Cumulative, uint256 price1Cumulative, uint32 blockTimestamp) =
currentCumulativePrices(address(pair));
uint32 timeElapsed = blockTimestamp - blockTimestampLast; // Overflow is desired
// Ensure that at least one full period has passed since the last update
require(timeElapsed >= PERIOD, "PairOracle: PERIOD_NOT_ELAPSED");
// Overflow is desired, casting never truncates
// Cumulative price is in (uq112x112 price * seconds) units so we simply wrap it after division by time elapsed
price0Average = FixedPoint.uq112x112(
uint224((price0Cumulative - price0CumulativeLast) / timeElapsed)
);
price1Average = FixedPoint.uq112x112(
uint224((price1Cumulative - price1CumulativeLast) / timeElapsed)
);
price0CumulativeLast = price0Cumulative;
price1CumulativeLast = price1Cumulative;
blockTimestampLast = blockTimestamp;
}
// Note this will always return 0 before update has been called successfully for the first time.
function consult(address token, uint256 amountIn)
external
view
override
returns (uint256 amountOut)
{
if (token == token0) {
amountOut = price0Average.mul(amountIn).decode144();
} else {
require(token == token1, "PairOracle: INVALID_TOKEN");
amountOut = price1Average.mul(amountIn).decode144();
}
}
function currentBlockTimestamp() internal view returns (uint32) {
return uint32(block.timestamp % 2**32);
}
// produces the cumulative price using counterfactuals to save gas and avoid a call to sync.
function currentCumulativePrices(address _pair)
internal
view
returns (
uint256 price0Cumulative,
uint256 price1Cumulative,
uint32 blockTimestamp
)
{
blockTimestamp = currentBlockTimestamp();
IUniswapLP uniswapPair = IUniswapLP(_pair);
price0Cumulative = uniswapPair.price0CumulativeLast();
price1Cumulative = uniswapPair.price1CumulativeLast();
// if time has elapsed since the last update on the pair, mock the accumulated price values
(uint112 reserve0, uint112 reserve1, uint32 _blockTimestampLast) =
uniswapPair.getReserves();
if (_blockTimestampLast != blockTimestamp) {
// subtraction overflow is desired
uint32 timeElapsed = blockTimestamp - _blockTimestampLast;
// addition overflow is desired
// counterfactual
price0Cumulative += uint256(FixedPoint.fraction(reserve1, reserve0)._x) * timeElapsed;
// counterfactual
price1Cumulative += uint256(FixedPoint.fraction(reserve0, reserve1)._x) * timeElapsed;
}
}
}