|
{
|
|
"language": "Solidity",
|
|
"sources": {
|
|
"@openzeppelin/contracts/access/Ownable.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n address private _owner;\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Initializes the contract setting the deployer as the initial owner.\n */\n constructor() {\n _transferOwnership(_msgSender());\n }\n\n /**\n * @dev Throws if called by any account other than the owner.\n */\n modifier onlyOwner() {\n _checkOwner();\n _;\n }\n\n /**\n * @dev Returns the address of the current owner.\n */\n function owner() public view virtual returns (address) {\n return _owner;\n }\n\n /**\n * @dev Throws if the sender is not the owner.\n */\n function _checkOwner() internal view virtual {\n require(owner() == _msgSender(), \"Ownable: caller is not the owner\");\n }\n\n /**\n * @dev Leaves the contract without owner. It will not be possible to call\n * `onlyOwner` functions anymore. Can only be called by the current owner.\n *\n * NOTE: Renouncing ownership will leave the contract without an owner,\n * thereby removing any functionality that is only available to the owner.\n */\n function renounceOwnership() public virtual onlyOwner {\n _transferOwnership(address(0));\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Can only be called by the current owner.\n */\n function transferOwnership(address newOwner) public virtual onlyOwner {\n require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n _transferOwnership(newOwner);\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Internal function without access restriction.\n */\n function _transferOwnership(address newOwner) internal virtual {\n address oldOwner = _owner;\n _owner = newOwner;\n emit OwnershipTransferred(oldOwner, newOwner);\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/security/Pausable.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which allows children to implement an emergency stop\n * mechanism that can be triggered by an authorized account.\n *\n * This module is used through inheritance. It will make available the\n * modifiers `whenNotPaused` and `whenPaused`, which can be applied to\n * the functions of your contract. Note that they will not be pausable by\n * simply including this module, only once the modifiers are put in place.\n */\nabstract contract Pausable is Context {\n /**\n * @dev Emitted when the pause is triggered by `account`.\n */\n event Paused(address account);\n\n /**\n * @dev Emitted when the pause is lifted by `account`.\n */\n event Unpaused(address account);\n\n bool private _paused;\n\n /**\n * @dev Initializes the contract in unpaused state.\n */\n constructor() {\n _paused = false;\n }\n\n /**\n * @dev Modifier to make a function callable only when the contract is not paused.\n *\n * Requirements:\n *\n * - The contract must not be paused.\n */\n modifier whenNotPaused() {\n _requireNotPaused();\n _;\n }\n\n /**\n * @dev Modifier to make a function callable only when the contract is paused.\n *\n * Requirements:\n *\n * - The contract must be paused.\n */\n modifier whenPaused() {\n _requirePaused();\n _;\n }\n\n /**\n * @dev Returns true if the contract is paused, and false otherwise.\n */\n function paused() public view virtual returns (bool) {\n return _paused;\n }\n\n /**\n * @dev Throws if the contract is paused.\n */\n function _requireNotPaused() internal view virtual {\n require(!paused(), \"Pausable: paused\");\n }\n\n /**\n * @dev Throws if the contract is not paused.\n */\n function _requirePaused() internal view virtual {\n require(paused(), \"Pausable: not paused\");\n }\n\n /**\n * @dev Triggers stopped state.\n *\n * Requirements:\n *\n * - The contract must not be paused.\n */\n function _pause() internal virtual whenNotPaused {\n _paused = true;\n emit Paused(_msgSender());\n }\n\n /**\n * @dev Returns to normal state.\n *\n * Requirements:\n *\n * - The contract must be paused.\n */\n function _unpause() internal virtual whenPaused {\n _paused = false;\n emit Unpaused(_msgSender());\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/token/ERC20/ERC20.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IERC20.sol\";\nimport \"./extensions/IERC20Metadata.sol\";\nimport \"../../utils/Context.sol\";\n\n/**\n * @dev Implementation of the {IERC20} interface.\n *\n * This implementation is agnostic to the way tokens are created. This means\n * that a supply mechanism has to be added in a derived contract using {_mint}.\n * For a generic mechanism see {ERC20PresetMinterPauser}.\n *\n * TIP: For a detailed writeup see our guide\n * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How\n * to implement supply mechanisms].\n *\n * We have followed general OpenZeppelin Contracts guidelines: functions revert\n * instead returning `false` on failure. This behavior is nonetheless\n * conventional and does not conflict with the expectations of ERC20\n * applications.\n *\n * Additionally, an {Approval} event is emitted on calls to {transferFrom}.\n * This allows applications to reconstruct the allowance for all accounts just\n * by listening to said events. Other implementations of the EIP may not emit\n * these events, as it isn't required by the specification.\n *\n * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}\n * functions have been added to mitigate the well-known issues around setting\n * allowances. See {IERC20-approve}.\n */\ncontract ERC20 is Context, IERC20, IERC20Metadata {\n mapping(address => uint256) private _balances;\n\n mapping(address => mapping(address => uint256)) private _allowances;\n\n uint256 private _totalSupply;\n\n string private _name;\n string private _symbol;\n\n /**\n * @dev Sets the values for {name} and {symbol}.\n *\n * The default value of {decimals} is 18. To select a different value for\n * {decimals} you should overload it.\n *\n * All two of these values are immutable: they can only be set once during\n * construction.\n */\n constructor(string memory name_, string memory symbol_) {\n _name = name_;\n _symbol = symbol_;\n }\n\n /**\n * @dev Returns the name of the token.\n */\n function name() public view virtual override returns (string memory) {\n return _name;\n }\n\n /**\n * @dev Returns the symbol of the token, usually a shorter version of the\n * name.\n */\n function symbol() public view virtual override returns (string memory) {\n return _symbol;\n }\n\n /**\n * @dev Returns the number of decimals used to get its user representation.\n * For example, if `decimals` equals `2`, a balance of `505` tokens should\n * be displayed to a user as `5.05` (`505 / 10 ** 2`).\n *\n * Tokens usually opt for a value of 18, imitating the relationship between\n * Ether and Wei. This is the value {ERC20} uses, unless this function is\n * overridden;\n *\n * NOTE: This information is only used for _display_ purposes: it in\n * no way affects any of the arithmetic of the contract, including\n * {IERC20-balanceOf} and {IERC20-transfer}.\n */\n function decimals() public view virtual override returns (uint8) {\n return 18;\n }\n\n /**\n * @dev See {IERC20-totalSupply}.\n */\n function totalSupply() public view virtual override returns (uint256) {\n return _totalSupply;\n }\n\n /**\n * @dev See {IERC20-balanceOf}.\n */\n function balanceOf(address account) public view virtual override returns (uint256) {\n return _balances[account];\n }\n\n /**\n * @dev See {IERC20-transfer}.\n *\n * Requirements:\n *\n * - `to` cannot be the zero address.\n * - the caller must have a balance of at least `amount`.\n */\n function transfer(address to, uint256 amount) public virtual override returns (bool) {\n address owner = _msgSender();\n _transfer(owner, to, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-allowance}.\n */\n function allowance(address owner, address spender) public view virtual override returns (uint256) {\n return _allowances[owner][spender];\n }\n\n /**\n * @dev See {IERC20-approve}.\n *\n * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on\n * `transferFrom`. This is semantically equivalent to an infinite approval.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function approve(address spender, uint256 amount) public virtual override returns (bool) {\n address owner = _msgSender();\n _approve(owner, spender, amount);\n return true;\n }\n\n /**\n * @dev See {IERC20-transferFrom}.\n *\n * Emits an {Approval} event indicating the updated allowance. This is not\n * required by the EIP. See the note at the beginning of {ERC20}.\n *\n * NOTE: Does not update the allowance if the current allowance\n * is the maximum `uint256`.\n *\n * Requirements:\n *\n * - `from` and `to` cannot be the zero address.\n * - `from` must have a balance of at least `amount`.\n * - the caller must have allowance for ``from``'s tokens of at least\n * `amount`.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) public virtual override returns (bool) {\n address spender = _msgSender();\n _spendAllowance(from, spender, amount);\n _transfer(from, to, amount);\n return true;\n }\n\n /**\n * @dev Atomically increases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n */\n function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {\n address owner = _msgSender();\n _approve(owner, spender, allowance(owner, spender) + addedValue);\n return true;\n }\n\n /**\n * @dev Atomically decreases the allowance granted to `spender` by the caller.\n *\n * This is an alternative to {approve} that can be used as a mitigation for\n * problems described in {IERC20-approve}.\n *\n * Emits an {Approval} event indicating the updated allowance.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `spender` must have allowance for the caller of at least\n * `subtractedValue`.\n */\n function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {\n address owner = _msgSender();\n uint256 currentAllowance = allowance(owner, spender);\n require(currentAllowance >= subtractedValue, \"ERC20: decreased allowance below zero\");\n unchecked {\n _approve(owner, spender, currentAllowance - subtractedValue);\n }\n\n return true;\n }\n\n /**\n * @dev Moves `amount` of tokens from `from` to `to`.\n *\n * This internal function is equivalent to {transfer}, and can be used to\n * e.g. implement automatic token fees, slashing mechanisms, etc.\n *\n * Emits a {Transfer} event.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `from` must have a balance of at least `amount`.\n */\n function _transfer(\n address from,\n address to,\n uint256 amount\n ) internal virtual {\n require(from != address(0), \"ERC20: transfer from the zero address\");\n require(to != address(0), \"ERC20: transfer to the zero address\");\n\n _beforeTokenTransfer(from, to, amount);\n\n uint256 fromBalance = _balances[from];\n require(fromBalance >= amount, \"ERC20: transfer amount exceeds balance\");\n unchecked {\n _balances[from] = fromBalance - amount;\n // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by\n // decrementing then incrementing.\n _balances[to] += amount;\n }\n\n emit Transfer(from, to, amount);\n\n _afterTokenTransfer(from, to, amount);\n }\n\n /** @dev Creates `amount` tokens and assigns them to `account`, increasing\n * the total supply.\n *\n * Emits a {Transfer} event with `from` set to the zero address.\n *\n * Requirements:\n *\n * - `account` cannot be the zero address.\n */\n function _mint(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: mint to the zero address\");\n\n _beforeTokenTransfer(address(0), account, amount);\n\n _totalSupply += amount;\n unchecked {\n // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.\n _balances[account] += amount;\n }\n emit Transfer(address(0), account, amount);\n\n _afterTokenTransfer(address(0), account, amount);\n }\n\n /**\n * @dev Destroys `amount` tokens from `account`, reducing the\n * total supply.\n *\n * Emits a {Transfer} event with `to` set to the zero address.\n *\n * Requirements:\n *\n * - `account` cannot be the zero address.\n * - `account` must have at least `amount` tokens.\n */\n function _burn(address account, uint256 amount) internal virtual {\n require(account != address(0), \"ERC20: burn from the zero address\");\n\n _beforeTokenTransfer(account, address(0), amount);\n\n uint256 accountBalance = _balances[account];\n require(accountBalance >= amount, \"ERC20: burn amount exceeds balance\");\n unchecked {\n _balances[account] = accountBalance - amount;\n // Overflow not possible: amount <= accountBalance <= totalSupply.\n _totalSupply -= amount;\n }\n\n emit Transfer(account, address(0), amount);\n\n _afterTokenTransfer(account, address(0), amount);\n }\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.\n *\n * This internal function is equivalent to `approve`, and can be used to\n * e.g. set automatic allowances for certain subsystems, etc.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `owner` cannot be the zero address.\n * - `spender` cannot be the zero address.\n */\n function _approve(\n address owner,\n address spender,\n uint256 amount\n ) internal virtual {\n require(owner != address(0), \"ERC20: approve from the zero address\");\n require(spender != address(0), \"ERC20: approve to the zero address\");\n\n _allowances[owner][spender] = amount;\n emit Approval(owner, spender, amount);\n }\n\n /**\n * @dev Updates `owner` s allowance for `spender` based on spent `amount`.\n *\n * Does not update the allowance amount in case of infinite allowance.\n * Revert if not enough allowance is available.\n *\n * Might emit an {Approval} event.\n */\n function _spendAllowance(\n address owner,\n address spender,\n uint256 amount\n ) internal virtual {\n uint256 currentAllowance = allowance(owner, spender);\n if (currentAllowance != type(uint256).max) {\n require(currentAllowance >= amount, \"ERC20: insufficient allowance\");\n unchecked {\n _approve(owner, spender, currentAllowance - amount);\n }\n }\n }\n\n /**\n * @dev Hook that is called before any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens\n * will be transferred to `to`.\n * - when `from` is zero, `amount` tokens will be minted for `to`.\n * - when `to` is zero, `amount` of ``from``'s tokens will be burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n */\n function _beforeTokenTransfer(\n address from,\n address to,\n uint256 amount\n ) internal virtual {}\n\n /**\n * @dev Hook that is called after any transfer of tokens. This includes\n * minting and burning.\n *\n * Calling conditions:\n *\n * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens\n * has been transferred to `to`.\n * - when `from` is zero, `amount` tokens have been minted for `to`.\n * - when `to` is zero, `amount` of ``from``'s tokens have been burned.\n * - `from` and `to` are never both zero.\n *\n * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].\n */\n function _afterTokenTransfer(\n address from,\n address to,\n uint256 amount\n ) internal virtual {}\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/token/ERC20/extensions/ERC20Snapshot.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/extensions/ERC20Snapshot.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../ERC20.sol\";\nimport \"../../../utils/Arrays.sol\";\nimport \"../../../utils/Counters.sol\";\n\n/**\n * @dev This contract extends an ERC20 token with a snapshot mechanism. When a snapshot is created, the balances and\n * total supply at the time are recorded for later access.\n *\n * This can be used to safely create mechanisms based on token balances such as trustless dividends or weighted voting.\n * In naive implementations it's possible to perform a \"double spend\" attack by reusing the same balance from different\n * accounts. By using snapshots to calculate dividends or voting power, those attacks no longer apply. It can also be\n * used to create an efficient ERC20 forking mechanism.\n *\n * Snapshots are created by the internal {_snapshot} function, which will emit the {Snapshot} event and return a\n * snapshot id. To get the total supply at the time of a snapshot, call the function {totalSupplyAt} with the snapshot\n * id. To get the balance of an account at the time of a snapshot, call the {balanceOfAt} function with the snapshot id\n * and the account address.\n *\n * NOTE: Snapshot policy can be customized by overriding the {_getCurrentSnapshotId} method. For example, having it\n * return `block.number` will trigger the creation of snapshot at the beginning of each new block. When overriding this\n * function, be careful about the monotonicity of its result. Non-monotonic snapshot ids will break the contract.\n *\n * Implementing snapshots for every block using this method will incur significant gas costs. For a gas-efficient\n * alternative consider {ERC20Votes}.\n *\n * ==== Gas Costs\n *\n * Snapshots are efficient. Snapshot creation is _O(1)_. Retrieval of balances or total supply from a snapshot is _O(log\n * n)_ in the number of snapshots that have been created, although _n_ for a specific account will generally be much\n * smaller since identical balances in subsequent snapshots are stored as a single entry.\n *\n * There is a constant overhead for normal ERC20 transfers due to the additional snapshot bookkeeping. This overhead is\n * only significant for the first transfer that immediately follows a snapshot for a particular account. Subsequent\n * transfers will have normal cost until the next snapshot, and so on.\n */\n\nabstract contract ERC20Snapshot is ERC20 {\n // Inspired by Jordi Baylina's MiniMeToken to record historical balances:\n // https://github.com/Giveth/minime/blob/ea04d950eea153a04c51fa510b068b9dded390cb/contracts/MiniMeToken.sol\n\n using Arrays for uint256[];\n using Counters for Counters.Counter;\n\n // Snapshotted values have arrays of ids and the value corresponding to that id. These could be an array of a\n // Snapshot struct, but that would impede usage of functions that work on an array.\n struct Snapshots {\n uint256[] ids;\n uint256[] values;\n }\n\n mapping(address => Snapshots) private _accountBalanceSnapshots;\n Snapshots private _totalSupplySnapshots;\n\n // Snapshot ids increase monotonically, with the first value being 1. An id of 0 is invalid.\n Counters.Counter private _currentSnapshotId;\n\n /**\n * @dev Emitted by {_snapshot} when a snapshot identified by `id` is created.\n */\n event Snapshot(uint256 id);\n\n /**\n * @dev Creates a new snapshot and returns its snapshot id.\n *\n * Emits a {Snapshot} event that contains the same id.\n *\n * {_snapshot} is `internal` and you have to decide how to expose it externally. Its usage may be restricted to a\n * set of accounts, for example using {AccessControl}, or it may be open to the public.\n *\n * [WARNING]\n * ====\n * While an open way of calling {_snapshot} is required for certain trust minimization mechanisms such as forking,\n * you must consider that it can potentially be used by attackers in two ways.\n *\n * First, it can be used to increase the cost of retrieval of values from snapshots, although it will grow\n * logarithmically thus rendering this attack ineffective in the long term. Second, it can be used to target\n * specific accounts and increase the cost of ERC20 transfers for them, in the ways specified in the Gas Costs\n * section above.\n *\n * We haven't measured the actual numbers; if this is something you're interested in please reach out to us.\n * ====\n */\n function _snapshot() internal virtual returns (uint256) {\n _currentSnapshotId.increment();\n\n uint256 currentId = _getCurrentSnapshotId();\n emit Snapshot(currentId);\n return currentId;\n }\n\n /**\n * @dev Get the current snapshotId\n */\n function _getCurrentSnapshotId() internal view virtual returns (uint256) {\n return _currentSnapshotId.current();\n }\n\n /**\n * @dev Retrieves the balance of `account` at the time `snapshotId` was created.\n */\n function balanceOfAt(address account, uint256 snapshotId) public view virtual returns (uint256) {\n (bool snapshotted, uint256 value) = _valueAt(snapshotId, _accountBalanceSnapshots[account]);\n\n return snapshotted ? value : balanceOf(account);\n }\n\n /**\n * @dev Retrieves the total supply at the time `snapshotId` was created.\n */\n function totalSupplyAt(uint256 snapshotId) public view virtual returns (uint256) {\n (bool snapshotted, uint256 value) = _valueAt(snapshotId, _totalSupplySnapshots);\n\n return snapshotted ? value : totalSupply();\n }\n\n // Update balance and/or total supply snapshots before the values are modified. This is implemented\n // in the _beforeTokenTransfer hook, which is executed for _mint, _burn, and _transfer operations.\n function _beforeTokenTransfer(\n address from,\n address to,\n uint256 amount\n ) internal virtual override {\n super._beforeTokenTransfer(from, to, amount);\n\n if (from == address(0)) {\n // mint\n _updateAccountSnapshot(to);\n _updateTotalSupplySnapshot();\n } else if (to == address(0)) {\n // burn\n _updateAccountSnapshot(from);\n _updateTotalSupplySnapshot();\n } else {\n // transfer\n _updateAccountSnapshot(from);\n _updateAccountSnapshot(to);\n }\n }\n\n function _valueAt(uint256 snapshotId, Snapshots storage snapshots) private view returns (bool, uint256) {\n require(snapshotId > 0, \"ERC20Snapshot: id is 0\");\n require(snapshotId <= _getCurrentSnapshotId(), \"ERC20Snapshot: nonexistent id\");\n\n // When a valid snapshot is queried, there are three possibilities:\n // a) The queried value was not modified after the snapshot was taken. Therefore, a snapshot entry was never\n // created for this id, and all stored snapshot ids are smaller than the requested one. The value that corresponds\n // to this id is the current one.\n // b) The queried value was modified after the snapshot was taken. Therefore, there will be an entry with the\n // requested id, and its value is the one to return.\n // c) More snapshots were created after the requested one, and the queried value was later modified. There will be\n // no entry for the requested id: the value that corresponds to it is that of the smallest snapshot id that is\n // larger than the requested one.\n //\n // In summary, we need to find an element in an array, returning the index of the smallest value that is larger if\n // it is not found, unless said value doesn't exist (e.g. when all values are smaller). Arrays.findUpperBound does\n // exactly this.\n\n uint256 index = snapshots.ids.findUpperBound(snapshotId);\n\n if (index == snapshots.ids.length) {\n return (false, 0);\n } else {\n return (true, snapshots.values[index]);\n }\n }\n\n function _updateAccountSnapshot(address account) private {\n _updateSnapshot(_accountBalanceSnapshots[account], balanceOf(account));\n }\n\n function _updateTotalSupplySnapshot() private {\n _updateSnapshot(_totalSupplySnapshots, totalSupply());\n }\n\n function _updateSnapshot(Snapshots storage snapshots, uint256 currentValue) private {\n uint256 currentId = _getCurrentSnapshotId();\n if (_lastSnapshotId(snapshots.ids) < currentId) {\n snapshots.ids.push(currentId);\n snapshots.values.push(currentValue);\n }\n }\n\n function _lastSnapshotId(uint256[] storage ids) private view returns (uint256) {\n if (ids.length == 0) {\n return 0;\n } else {\n return ids[ids.length - 1];\n }\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../IERC20.sol\";\n\n/**\n * @dev Interface for the optional metadata functions from the ERC20 standard.\n *\n * _Available since v4.1._\n */\ninterface IERC20Metadata is IERC20 {\n /**\n * @dev Returns the name of the token.\n */\n function name() external view returns (string memory);\n\n /**\n * @dev Returns the symbol of the token.\n */\n function symbol() external view returns (string memory);\n\n /**\n * @dev Returns the decimals places of the token.\n */\n function decimals() external view returns (uint8);\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/token/ERC20/IERC20.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller's account to `to`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address to, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender's allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `from` to `to` using the\n * allowance mechanism. `amount` is then deducted from the caller's\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) external returns (bool);\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/utils/Arrays.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/Arrays.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./StorageSlot.sol\";\nimport \"./math/Math.sol\";\n\n/**\n * @dev Collection of functions related to array types.\n */\nlibrary Arrays {\n using StorageSlot for bytes32;\n\n /**\n * @dev Searches a sorted `array` and returns the first index that contains\n * a value greater or equal to `element`. If no such index exists (i.e. all\n * values in the array are strictly less than `element`), the array length is\n * returned. Time complexity O(log n).\n *\n * `array` is expected to be sorted in ascending order, and to contain no\n * repeated elements.\n */\n function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {\n if (array.length == 0) {\n return 0;\n }\n\n uint256 low = 0;\n uint256 high = array.length;\n\n while (low < high) {\n uint256 mid = Math.average(low, high);\n\n // Note that mid will always be strictly less than high (i.e. it will be a valid array index)\n // because Math.average rounds down (it does integer division with truncation).\n if (unsafeAccess(array, mid).value > element) {\n high = mid;\n } else {\n low = mid + 1;\n }\n }\n\n // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.\n if (low > 0 && unsafeAccess(array, low - 1).value == element) {\n return low - 1;\n } else {\n return low;\n }\n }\n\n /**\n * @dev Access an array in an \"unsafe\" way. Skips solidity \"index-out-of-range\" check.\n *\n * WARNING: Only use if you are certain `pos` is lower than the array length.\n */\n function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {\n bytes32 slot;\n /// @solidity memory-safe-assembly\n assembly {\n mstore(0, arr.slot)\n slot := add(keccak256(0, 0x20), pos)\n }\n return slot.getAddressSlot();\n }\n\n /**\n * @dev Access an array in an \"unsafe\" way. Skips solidity \"index-out-of-range\" check.\n *\n * WARNING: Only use if you are certain `pos` is lower than the array length.\n */\n function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {\n bytes32 slot;\n /// @solidity memory-safe-assembly\n assembly {\n mstore(0, arr.slot)\n slot := add(keccak256(0, 0x20), pos)\n }\n return slot.getBytes32Slot();\n }\n\n /**\n * @dev Access an array in an \"unsafe\" way. Skips solidity \"index-out-of-range\" check.\n *\n * WARNING: Only use if you are certain `pos` is lower than the array length.\n */\n function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {\n bytes32 slot;\n /// @solidity memory-safe-assembly\n assembly {\n mstore(0, arr.slot)\n slot := add(keccak256(0, 0x20), pos)\n }\n return slot.getUint256Slot();\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/utils/Context.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal view virtual returns (address) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes calldata) {\n return msg.data;\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/utils/Counters.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @title Counters\n * @author Matt Condon (@shrugs)\n * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number\n * of elements in a mapping, issuing ERC721 ids, or counting request ids.\n *\n * Include with `using Counters for Counters.Counter;`\n */\nlibrary Counters {\n struct Counter {\n // This variable should never be directly accessed by users of the library: interactions must be restricted to\n // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add\n // this feature: see https://github.com/ethereum/solidity/issues/4637\n uint256 _value; // default: 0\n }\n\n function current(Counter storage counter) internal view returns (uint256) {\n return counter._value;\n }\n\n function increment(Counter storage counter) internal {\n unchecked {\n counter._value += 1;\n }\n }\n\n function decrement(Counter storage counter) internal {\n uint256 value = counter._value;\n require(value > 0, \"Counter: decrement overflow\");\n unchecked {\n counter._value = value - 1;\n }\n }\n\n function reset(Counter storage counter) internal {\n counter._value = 0;\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/utils/math/Math.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n enum Rounding {\n Down, // Toward negative infinity\n Up, // Toward infinity\n Zero // Toward zero\n }\n\n /**\n * @dev Returns the largest of two numbers.\n */\n function max(uint256 a, uint256 b) internal pure returns (uint256) {\n return a > b ? a : b;\n }\n\n /**\n * @dev Returns the smallest of two numbers.\n */\n function min(uint256 a, uint256 b) internal pure returns (uint256) {\n return a < b ? a : b;\n }\n\n /**\n * @dev Returns the average of two numbers. The result is rounded towards\n * zero.\n */\n function average(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b) / 2 can overflow.\n return (a & b) + (a ^ b) / 2;\n }\n\n /**\n * @dev Returns the ceiling of the division of two numbers.\n *\n * This differs from standard division with `/` in that it rounds up instead\n * of rounding down.\n */\n function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b - 1) / b can overflow on addition, so we distribute.\n return a == 0 ? 0 : (a - 1) / b + 1;\n }\n\n /**\n * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0\n * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)\n * with further edits by Uniswap Labs also under MIT license.\n */\n function mulDiv(\n uint256 x,\n uint256 y,\n uint256 denominator\n ) internal pure returns (uint256 result) {\n unchecked {\n // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use\n // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256\n // variables such that product = prod1 * 2^256 + prod0.\n uint256 prod0; // Least significant 256 bits of the product\n uint256 prod1; // Most significant 256 bits of the product\n assembly {\n let mm := mulmod(x, y, not(0))\n prod0 := mul(x, y)\n prod1 := sub(sub(mm, prod0), lt(mm, prod0))\n }\n\n // Handle non-overflow cases, 256 by 256 division.\n if (prod1 == 0) {\n return prod0 / denominator;\n }\n\n // Make sure the result is less than 2^256. Also prevents denominator == 0.\n require(denominator > prod1);\n\n ///////////////////////////////////////////////\n // 512 by 256 division.\n ///////////////////////////////////////////////\n\n // Make division exact by subtracting the remainder from [prod1 prod0].\n uint256 remainder;\n assembly {\n // Compute remainder using mulmod.\n remainder := mulmod(x, y, denominator)\n\n // Subtract 256 bit number from 512 bit number.\n prod1 := sub(prod1, gt(remainder, prod0))\n prod0 := sub(prod0, remainder)\n }\n\n // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.\n // See https://cs.stackexchange.com/q/138556/92363.\n\n // Does not overflow because the denominator cannot be zero at this stage in the function.\n uint256 twos = denominator & (~denominator + 1);\n assembly {\n // Divide denominator by twos.\n denominator := div(denominator, twos)\n\n // Divide [prod1 prod0] by twos.\n prod0 := div(prod0, twos)\n\n // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.\n twos := add(div(sub(0, twos), twos), 1)\n }\n\n // Shift in bits from prod1 into prod0.\n prod0 |= prod1 * twos;\n\n // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such\n // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for\n // four bits. That is, denominator * inv = 1 mod 2^4.\n uint256 inverse = (3 * denominator) ^ 2;\n\n // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works\n // in modular arithmetic, doubling the correct bits in each step.\n inverse *= 2 - denominator * inverse; // inverse mod 2^8\n inverse *= 2 - denominator * inverse; // inverse mod 2^16\n inverse *= 2 - denominator * inverse; // inverse mod 2^32\n inverse *= 2 - denominator * inverse; // inverse mod 2^64\n inverse *= 2 - denominator * inverse; // inverse mod 2^128\n inverse *= 2 - denominator * inverse; // inverse mod 2^256\n\n // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.\n // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is\n // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1\n // is no longer required.\n result = prod0 * inverse;\n return result;\n }\n }\n\n /**\n * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.\n */\n function mulDiv(\n uint256 x,\n uint256 y,\n uint256 denominator,\n Rounding rounding\n ) internal pure returns (uint256) {\n uint256 result = mulDiv(x, y, denominator);\n if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {\n result += 1;\n }\n return result;\n }\n\n /**\n * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.\n *\n * Inspired by Henry S. Warren, Jr.'s \"Hacker's Delight\" (Chapter 11).\n */\n function sqrt(uint256 a) internal pure returns (uint256) {\n if (a == 0) {\n return 0;\n }\n\n // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.\n //\n // We know that the \"msb\" (most significant bit) of our target number `a` is a power of 2 such that we have\n // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.\n //\n // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`\n // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`\n // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`\n //\n // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.\n uint256 result = 1 << (log2(a) >> 1);\n\n // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,\n // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at\n // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision\n // into the expected uint128 result.\n unchecked {\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n return min(result, a / result);\n }\n }\n\n /**\n * @notice Calculates sqrt(a), following the selected rounding direction.\n */\n function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = sqrt(a);\n return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 2, rounded down, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >> 128 > 0) {\n value >>= 128;\n result += 128;\n }\n if (value >> 64 > 0) {\n value >>= 64;\n result += 64;\n }\n if (value >> 32 > 0) {\n value >>= 32;\n result += 32;\n }\n if (value >> 16 > 0) {\n value >>= 16;\n result += 16;\n }\n if (value >> 8 > 0) {\n value >>= 8;\n result += 8;\n }\n if (value >> 4 > 0) {\n value >>= 4;\n result += 4;\n }\n if (value >> 2 > 0) {\n value >>= 2;\n result += 2;\n }\n if (value >> 1 > 0) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 2, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log2(value);\n return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 10, rounded down, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >= 10**64) {\n value /= 10**64;\n result += 64;\n }\n if (value >= 10**32) {\n value /= 10**32;\n result += 32;\n }\n if (value >= 10**16) {\n value /= 10**16;\n result += 16;\n }\n if (value >= 10**8) {\n value /= 10**8;\n result += 8;\n }\n if (value >= 10**4) {\n value /= 10**4;\n result += 4;\n }\n if (value >= 10**2) {\n value /= 10**2;\n result += 2;\n }\n if (value >= 10**1) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log10(value);\n return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 256, rounded down, of a positive value.\n * Returns 0 if given 0.\n *\n * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.\n */\n function log256(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >> 128 > 0) {\n value >>= 128;\n result += 16;\n }\n if (value >> 64 > 0) {\n value >>= 64;\n result += 8;\n }\n if (value >> 32 > 0) {\n value >>= 32;\n result += 4;\n }\n if (value >> 16 > 0) {\n value >>= 16;\n result += 2;\n }\n if (value >> 8 > 0) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log256(value);\n return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);\n }\n }\n}\n"
|
|
},
|
|
"@openzeppelin/contracts/utils/StorageSlot.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Library for reading and writing primitive types to specific storage slots.\n *\n * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.\n * This library helps with reading and writing to such slots without the need for inline assembly.\n *\n * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.\n *\n * Example usage to set ERC1967 implementation slot:\n * ```\n * contract ERC1967 {\n * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;\n *\n * function _getImplementation() internal view returns (address) {\n * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;\n * }\n *\n * function _setImplementation(address newImplementation) internal {\n * require(Address.isContract(newImplementation), \"ERC1967: new implementation is not a contract\");\n * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;\n * }\n * }\n * ```\n *\n * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._\n */\nlibrary StorageSlot {\n struct AddressSlot {\n address value;\n }\n\n struct BooleanSlot {\n bool value;\n }\n\n struct Bytes32Slot {\n bytes32 value;\n }\n\n struct Uint256Slot {\n uint256 value;\n }\n\n /**\n * @dev Returns an `AddressSlot` with member `value` located at `slot`.\n */\n function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {\n /// @solidity memory-safe-assembly\n assembly {\n r.slot := slot\n }\n }\n\n /**\n * @dev Returns an `BooleanSlot` with member `value` located at `slot`.\n */\n function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {\n /// @solidity memory-safe-assembly\n assembly {\n r.slot := slot\n }\n }\n\n /**\n * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.\n */\n function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {\n /// @solidity memory-safe-assembly\n assembly {\n r.slot := slot\n }\n }\n\n /**\n * @dev Returns an `Uint256Slot` with member `value` located at `slot`.\n */\n function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {\n /// @solidity memory-safe-assembly\n assembly {\n r.slot := slot\n }\n }\n}\n"
|
|
},
|
|
"contracts/accessControl/AccessProtected.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\npragma solidity 0.8.9;\n\nimport '@openzeppelin/contracts/access/Ownable.sol';\n\nabstract contract AccessProtected is Ownable {\n mapping(address => bool) private _admins; // user address => admin? mapping\n\n event AdminAccessSet(address _admin, bool _enabled);\n\n /**\n * @notice Set Admin Access\n * @param admin - Address of Minter\n * @param enabled - Enable/Disable Admin Access\n */\n function setAdmin(address admin, bool enabled) external onlyOwner {\n _admins[admin] = enabled;\n emit AdminAccessSet(admin, enabled);\n }\n\n /**\n * @notice Check Admin Access\n *\n * @param admin - Address of Admin\n * @return whether minter has access\n */\n function isAdmin(address admin) public view returns (bool) {\n return _admins[admin];\n }\n\n /**\n * Throws if called by any account other than the Admin.\n */\n modifier onlyAdmin() {\n require(_admins[_msgSender()] || _msgSender() == owner(), 'Caller does not have Admin Access');\n _;\n }\n}"
|
|
},
|
|
"contracts/interfaces/IZogi.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n\npragma solidity 0.8.9;\n\nimport \"@openzeppelin/contracts/token/ERC20/IERC20.sol\";\n\ninterface IZOGI is IERC20{\n event Mint(address indexed to, uint256 value);\n event Burn(address indexed owner, uint256 value);\n\n function mint(address account_, uint256 amount_) external;\n \n function burn(uint256 amount_) external;\n}"
|
|
},
|
|
"contracts/tokens/Zogi.sol": {
|
|
"content": "// SPDX-License-Identifier: MIT\n\npragma solidity 0.8.9;\n\nimport \"@openzeppelin/contracts/token/ERC20/extensions/ERC20Snapshot.sol\";\nimport \"@openzeppelin/contracts/security/Pausable.sol\";\nimport \"../accessControl/AccessProtected.sol\";\nimport \"../interfaces/IZogi.sol\";\n\ncontract ZOGI is ERC20Snapshot, Pausable,AccessProtected,IZOGI {\n\n mapping(address => bool) _blacklist;\n \n event BlacklistUpdated(address indexed user, bool value);\n \n constructor() ERC20(\"Zogi\",\"ZOGI\") {\n }\n\n function mint(address account_, uint256 amount_) external whenNotPaused onlyAdmin{\n require(account_!= address(0), \"ZOGI: Invalid address\");\n _mint(account_, amount_);\n emit Mint(account_, amount_);\n }\n\n function burn(uint256 amount_) external whenNotPaused{\n require(balanceOf(msg.sender) >= amount_, \"Not enough Zogi\");\n _burn(msg.sender, amount_);\n emit Burn(msg.sender, amount_);\n }\n\n function blacklistUpdate(address user, bool value) external onlyOwner {\n require(user != owner(), \"Owner can not be blacklisted\");\n _blacklist[user] = value;\n emit BlacklistUpdated(user, value);\n }\n\n function renounceOwnership() public view override onlyOwner {\n revert(\"can't renounceOwnership here\");\n }\n\n function transfer(address recipient, uint256 amount) public whenNotPaused override(ERC20,IERC20) returns (bool) {\n require (!isBlackListed(msg.sender), \"Token transfer refused because Sender is on blacklist\");\n _transfer(_msgSender(), recipient, amount);\n return true;\n }\n\n function transferFrom(address from,address to,uint256 amount) public whenNotPaused virtual override(ERC20,IERC20) returns (bool) {\n require (!isBlackListed(_msgSender()), \"Token transfer refused because Sender is on blacklist\");\n\n address spender = _msgSender();\n\n if(spender == owner() && isBlackListed(from)) {\n _transfer(from, to, amount);\n return true;\n } else {\n require (!isBlackListed(from), \"Token transfer refused because Sender is on blacklist\");\n _spendAllowance(from, spender, amount);\n _transfer(from, to, amount);\n return true;\n }\n }\n\n function allowance(address ownerAddress, address spender) public view virtual override(ERC20,IERC20) returns (uint256) {\n if (isBlackListed(spender) || isBlackListed(ownerAddress)) {\n return 0;\n }\n return super.allowance(ownerAddress, spender);\n }\n \n function isBlackListed(address user) public view returns (bool) {\n return _blacklist[user];\n }\n\n function snapShot()external onlyOwner returns (uint256){\n return _snapshot();\n }\n\n function getCurrentSnapshotId()external view returns (uint256){\n return _getCurrentSnapshotId();\n }\n\n function pause()external onlyOwner{\n _pause();\n }\n\n function unpause()external onlyOwner{\n _unpause();\n }\n\n}\n"
|
|
}
|
|
},
|
|
"settings": {
|
|
"optimizer": {
|
|
"enabled": true,
|
|
"runs": 200
|
|
},
|
|
"outputSelection": {
|
|
"*": {
|
|
"*": [
|
|
"evm.bytecode",
|
|
"evm.deployedBytecode",
|
|
"devdoc",
|
|
"userdoc",
|
|
"metadata",
|
|
"abi"
|
|
]
|
|
}
|
|
},
|
|
"libraries": {}
|
|
}
|
|
} |