// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023. // SPDX-License-Identifier: MIT pragma solidity =0.5.16; interface IFireBirdFactory { event PairCreated(address indexed token0, address indexed token1, address pair, uint32 tokenWeight0, uint32 swapFee, uint256); function feeTo() external view returns (address); function formula() external view returns (address); function protocolFee() external view returns (uint256); function feeToSetter() external view returns (address); function getPair( address tokenA, address tokenB, uint32 tokenWeightA, uint32 swapFee ) external view returns (address pair); function allPairs(uint256) external view returns (address pair); function isPair(address) external view returns (bool); function allPairsLength() external view returns (uint256); function createPair( address tokenA, address tokenB, uint32 tokenWeightA, uint32 swapFee ) external returns (address pair); function getWeightsAndSwapFee(address pair) external view returns ( uint32 tokenWeight0, uint32 tokenWeight1, uint32 swapFee ); function setFeeTo(address) external; function setFeeToSetter(address) external; function setProtocolFee(uint256) external; } interface IFireBirdPair { event Approval(address indexed owner, address indexed spender, uint256 value); event Transfer(address indexed from, address indexed to, uint256 value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint256); function balanceOf(address owner) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 value) external returns (bool); function transfer(address to, uint256 value) external returns (bool); function transferFrom( address from, address to, uint256 value ) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint256); function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; event PaidProtocolFee(uint112 collectedFee0, uint112 collectedFee1); event Mint(address indexed sender, uint256 amount0, uint256 amount1); event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to); event Swap(address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint256); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns ( uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast ); function getCollectedFees() external view returns (uint112 _collectedFee0, uint112 _collectedFee1); function getTokenWeights() external view returns (uint32 tokenWeight0, uint32 tokenWeight1); function getSwapFee() external view returns (uint32); function price0CumulativeLast() external view returns (uint256); function price1CumulativeLast() external view returns (uint256); function mint(address to) external returns (uint256 liquidity); function burn(address to) external returns (uint256 amount0, uint256 amount1); function swap( uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data ) external; function skim(address to) external; function sync() external; function initialize( address, address, uint32, uint32 ) external; } /* Bancor Formula interface */ interface IFireBirdFormula { function getFactoryReserveAndWeights( address factory, address pair, address tokenA, uint8 dexId ) external view returns ( address tokenB, uint256 reserveA, uint256 reserveB, uint32 tokenWeightA, uint32 tokenWeightB, uint32 swapFee ); function getFactoryWeightsAndSwapFee( address factory, address pair, uint8 dexId ) external view returns ( uint32 tokenWeight0, uint32 tokenWeight1, uint32 swapFee ); function getAmountIn( uint256 amountOut, uint256 reserveIn, uint256 reserveOut, uint32 tokenWeightIn, uint32 tokenWeightOut, uint32 swapFee ) external view returns (uint256 amountIn); function getAmountOut( uint256 amountIn, uint256 reserveIn, uint256 reserveOut, uint32 tokenWeightIn, uint32 tokenWeightOut, uint32 swapFee ) external view returns (uint256 amountOut); function getFactoryAmountsIn( address factory, address tokenIn, address tokenOut, uint256 amountOut, address[] calldata path, uint8[] calldata dexIds ) external view returns (uint256[] memory amounts); function getFactoryAmountsOut( address factory, address tokenIn, address tokenOut, uint256 amountIn, address[] calldata path, uint8[] calldata dexIds ) external view returns (uint256[] memory amounts); function ensureConstantValue( uint256 reserve0, uint256 reserve1, uint256 balance0Adjusted, uint256 balance1Adjusted, uint32 tokenWeight0 ) external view returns (bool); function getReserves( address pair, address tokenA, address tokenB ) external view returns (uint256 reserveA, uint256 reserveB); function getOtherToken(address pair, address tokenA) external view returns (address tokenB); function quote( uint256 amountA, uint256 reserveA, uint256 reserveB ) external pure returns (uint256 amountB); function sortTokens(address tokenA, address tokenB) external pure returns (address token0, address token1); function mintLiquidityFee( uint256 totalLiquidity, uint112 reserve0, uint112 reserve1, uint32 tokenWeight0, uint32 tokenWeight1, uint112 collectedFee0, uint112 collectedFee1 ) external view returns (uint256 amount); } interface IFireBirdERC20 { event Approval(address indexed owner, address indexed spender, uint256 value); event Transfer(address indexed from, address indexed to, uint256 value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint256); function balanceOf(address owner) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 value) external returns (bool); function transfer(address to, uint256 value) external returns (bool); function transferFrom( address from, address to, uint256 value ) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint256); function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; } // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math) library SafeMath { function add(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x + y) >= x, "ds-math-add-overflow"); } function sub(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x - y) <= x, "ds-math-sub-underflow"); } function mul(uint256 x, uint256 y) internal pure returns (uint256 z) { require(y == 0 || (z = x * y) / y == x, "ds-math-mul-overflow"); } function div(uint256 a, uint256 b) internal pure returns (uint256 c) { require(b > 0, "ds-math-division-by-zero"); c = a / b; } } contract FireBirdERC20 is IFireBirdERC20 { using SafeMath for uint256; string public constant name = "FireBird Liquidity Provider"; string public constant symbol = "FLP"; uint8 public constant decimals = 18; uint256 public totalSupply; mapping(address => uint256) public balanceOf; mapping(address => mapping(address => uint256)) public allowance; bytes32 public DOMAIN_SEPARATOR; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint256) public nonces; constructor() public { uint256 chainId; assembly { chainId := chainid } DOMAIN_SEPARATOR = keccak256( abi.encode(keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256(bytes("1")), chainId, address(this)) ); } function _mint(address to, uint256 value) internal { totalSupply = totalSupply.add(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(address(0), to, value); } function _burn(address from, uint256 value) internal { balanceOf[from] = balanceOf[from].sub(value); totalSupply = totalSupply.sub(value); emit Transfer(from, address(0), value); } function _approve( address owner, address spender, uint256 value ) private { allowance[owner][spender] = value; emit Approval(owner, spender, value); } function _transfer( address from, address to, uint256 value ) private { balanceOf[from] = balanceOf[from].sub(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(from, to, value); } function approve(address spender, uint256 value) external returns (bool) { _approve(msg.sender, spender, value); return true; } function transfer(address to, uint256 value) external returns (bool) { _transfer(msg.sender, to, value); return true; } function transferFrom( address from, address to, uint256 value ) external returns (bool) { if (allowance[from][msg.sender] != uint256(-1)) { allowance[from][msg.sender] = allowance[from][msg.sender].sub(value); } _transfer(from, to, value); return true; } function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { require(deadline >= block.timestamp, "FLP: EXPIRED"); bytes32 digest = keccak256(abi.encodePacked("\x19\x01", DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline)))); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, "FLP: INVALID_SIGNATURE"); _approve(owner, spender, value); } } // a library for performing various math operations library Math { function min(uint256 x, uint256 y) internal pure returns (uint256 z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint256 y) internal pure returns (uint256 z) { if (y > 3) { z = y; uint256 x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format)) // range: [0, 2**112 - 1] // resolution: 1 / 2**112 library UQ112x112 { uint224 constant Q112 = 2**112; // encode a uint112 as a UQ112x112 function encode(uint112 y) internal pure returns (uint224 z) { z = uint224(y) * Q112; // never overflows } // divide a UQ112x112 by a uint112, returning a UQ112x112 function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) { z = x / uint224(y); } } interface IERC20 { event Approval(address indexed owner, address indexed spender, uint256 value); event Transfer(address indexed from, address indexed to, uint256 value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function totalSupply() external view returns (uint256); function balanceOf(address owner) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 value) external returns (bool); function transfer(address to, uint256 value) external returns (bool); function transferFrom( address from, address to, uint256 value ) external returns (bool); } interface IUniswapV2Callee { function uniswapV2Call( address sender, uint256 amount0, uint256 amount1, bytes calldata data ) external; } contract FireBirdPair is IFireBirdPair, FireBirdERC20 { using SafeMath for uint256; using UQ112x112 for uint224; uint256 public constant MINIMUM_LIQUIDITY = 10**3; bytes4 private constant SELECTOR = bytes4(keccak256(bytes("transfer(address,uint256)"))); address public factory; address public token0; address public token1; uint112 private reserve0; // uses single storage slot, accessible via getReserves uint112 private reserve1; // uses single storage slot, accessible via getReserves uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint256 public price0CumulativeLast; uint256 public price1CumulativeLast; uint256 private unlocked = 1; address public formula; uint112 private collectedFee0; // uses single storage slot, accessible via getReserves uint112 private collectedFee1; // uses single storage slot, accessible via getReserves uint32 private tokenWeight0; uint32 private swapFee; modifier lock() { require(unlocked == 1, "FLP: LOCKED"); unlocked = 0; _; unlocked = 1; } function getReserves() public view returns ( uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast ) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } function getCollectedFees() public view returns (uint112 _collectedFee0, uint112 _collectedFee1) { _collectedFee0 = collectedFee0; _collectedFee1 = collectedFee1; } function getTokenWeights() public view returns (uint32 _tokenWeight0, uint32 _tokenWeight1) { _tokenWeight0 = tokenWeight0; _tokenWeight1 = 100 - tokenWeight0; } function getSwapFee() public view returns (uint32 _swapFee) { _swapFee = swapFee; } function _safeTransfer( address token, address to, uint256 value ) private { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), "FLP: TRANSFER_FAILED"); } constructor() public { factory = msg.sender; } // called once by the factory at time of deployment function initialize( address _token0, address _token1, uint32 _tokenWeight0, uint32 _swapFee ) external { require(msg.sender == factory, "FLP: FORBIDDEN"); // sufficient check token0 = _token0; token1 = _token1; tokenWeight0 = _tokenWeight0; swapFee = _swapFee; formula = IFireBirdFactory(factory).formula(); } // update reserves and, on the first call per block, price accumulators function _update( uint256 balance0, uint256 balance1, uint112 _reserve0, uint112 _reserve1 ) private { uint32 _tokenWeight0 = tokenWeight0; require(balance0 * (100 - _tokenWeight0) <= uint112(-1) && balance1 * _tokenWeight0 <= uint112(-1), "FLP: OVERFLOW"); uint32 blockTimestamp = uint32(block.timestamp % 2**32); uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) { // * never overflows, and + overflow is desired uint112 mReserve0 = _reserve0 * (100 - _tokenWeight0); uint112 mReserve1 = _reserve1 * _tokenWeight0; price0CumulativeLast += uint256(UQ112x112.encode(mReserve1).uqdiv(mReserve0)) * timeElapsed; price1CumulativeLast += uint256(UQ112x112.encode(mReserve0).uqdiv(mReserve1)) * timeElapsed; } reserve0 = uint112(balance0); reserve1 = uint112(balance1); blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) { address feeTo = IFireBirdFactory(factory).feeTo(); uint112 protocolFee = uint112(IFireBirdFactory(factory).protocolFee()); feeOn = feeTo != address(0); (uint112 _collectedFee0, uint112 _collectedFee1) = getCollectedFees(); if (protocolFee > 0 && feeOn && (_collectedFee0 > 0 || _collectedFee1 > 0)) { uint32 _tokenWeight0 = tokenWeight0; uint256 liquidity = IFireBirdFormula(formula).mintLiquidityFee(totalSupply, _reserve0, _reserve1, _tokenWeight0, 100 - _tokenWeight0, _collectedFee0 / protocolFee, _collectedFee1 / protocolFee); if (liquidity > 0) _mint(feeTo, liquidity); } if (_collectedFee0 > 0) collectedFee0 = 0; if (_collectedFee1 > 0) collectedFee1 = 0; } // this low-level function should be called from a contract which performs important safety checks function mint(address to) external lock returns (uint256 liquidity) { (uint112 _reserve0, uint112 _reserve1, ) = getReserves(); // gas savings uint256 balance0 = IERC20(token0).balanceOf(address(this)); uint256 balance1 = IERC20(token1).balanceOf(address(this)); uint256 amount0 = balance0.sub(_reserve0); uint256 amount1 = balance1.sub(_reserve1); _mintFee(_reserve0, _reserve1); uint256 _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee if (_totalSupply == 0) { liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY); _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1); } require(liquidity > 0, "FLP: INSUFFICIENT_LIQUIDITY_MINTED"); _mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1); emit Mint(msg.sender, amount0, amount1); } // this low-level function should be called from a contract which performs important safety checks function burn(address to) external lock returns (uint256 amount0, uint256 amount1) { (uint112 _reserve0, uint112 _reserve1, ) = getReserves(); // gas savings address _token0 = token0; // gas savings address _token1 = token1; // gas savings uint256 balance0 = IERC20(_token0).balanceOf(address(this)); uint256 balance1 = IERC20(_token1).balanceOf(address(this)); uint256 liquidity = balanceOf[address(this)]; _mintFee(_reserve0, _reserve1); uint256 _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution require(amount0 > 0 && amount1 > 0, "FLP: INSUFFICIENT_LIQUIDITY_BURNED"); _burn(address(this), liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); emit Burn(msg.sender, amount0, amount1, to); } // this low-level function should be called from a contract which performs important safety checks function swap( uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data ) external lock { require(amount0Out > 0 || amount1Out > 0, "FLP: INSUFFICIENT_OUTPUT_AMOUNT"); uint112 _reserve0 = reserve0; // gas savings uint112 _reserve1 = reserve1; // gas savings require(amount0Out < _reserve0 && amount1Out < _reserve1, "FLP: INSUFFICIENT_LIQUIDITY"); uint256 balance0; uint256 balance1; { // scope for _token{0,1}, avoids stack too deep errors address _token0 = token0; address _token1 = token1; require(to != _token0 && to != _token1, "FLP: INVALID_TO"); if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); } uint256 amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0; uint256 amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0; require(amount0In > 0 || amount1In > 0, "FLP: INSUFFICIENT_INPUT_AMOUNT"); { // scope for reserve{0,1}Adjusted, avoids stack too deep errors uint256 balance0Adjusted = balance0.mul(10000); uint256 balance1Adjusted = balance1.mul(10000); { // avoids stack too deep errors if (amount0In > 0) { uint256 amount0InFee = amount0In.mul(swapFee); balance0Adjusted = balance0Adjusted.sub(amount0InFee); collectedFee0 = uint112(uint256(collectedFee0).add(amount0InFee)); } if (amount1In > 0) { uint256 amount1InFee = amount1In.mul(swapFee); balance1Adjusted = balance1Adjusted.sub(amount1InFee); collectedFee1 = uint112(uint256(collectedFee1).add(amount1InFee)); } uint32 _tokenWeight0 = tokenWeight0; // gas savings if (_tokenWeight0 == 50) { // gas savings for pair 50/50 require(balance0Adjusted.mul(balance1Adjusted) >= uint256(_reserve0).mul(_reserve1).mul(10000**2), "FLP: K"); } else { require(IFireBirdFormula(formula).ensureConstantValue(uint256(_reserve0).mul(10000), uint256(_reserve1).mul(10000), balance0Adjusted, balance1Adjusted, _tokenWeight0), "FLP: K"); } } } _update(balance0, balance1, _reserve0, _reserve1); emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); } // force balances to match reserves function skim(address to) external lock { address _token0 = token0; // gas savings address _token1 = token1; // gas savings _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0)); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1)); } // force reserves to match balances function sync() external lock { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } } contract FireBirdFactory is IFireBirdFactory { address public feeTo; address public formula; uint256 public protocolFee; address public feeToSetter; mapping(bytes32 => address) private _pairSalts; address[] public allPairs; mapping(address => uint64) private _pairs; constructor(address _feeToSetter, address _formula) public { feeToSetter = _feeToSetter; formula = _formula; } function isPair(address b) external view returns (bool) { return _pairs[b] > 0; } function allPairsLength() external view returns (uint256) { return allPairs.length; } function getPair( address tokenA, address tokenB, uint32 tokenWeightA, uint32 swapFee ) external view returns (address pair) { (address token0, address token1, uint32 tokenWeight0) = tokenA < tokenB ? (tokenA, tokenB, tokenWeightA) : (tokenB, tokenA, 100 - tokenWeightA); bytes32 salt = keccak256(abi.encodePacked(token0, token1, tokenWeight0, swapFee)); pair = _pairSalts[salt]; } function createPair( address tokenA, address tokenB, uint32 tokenWeightA, uint32 swapFee ) external returns (address pair) { require(tokenA != tokenB, "FLP: IDENTICAL_ADDRESSES"); require(tokenWeightA >= 2 && tokenWeightA <= 98 && (tokenWeightA % 2) == 0, "FLP: INVALID_TOKEN_WEIGHT"); // swap fee from [0.01% - 20%] require(swapFee >= 1 && swapFee <= 2000, "FLP: INVALID_SWAP_FEE"); (address token0, address token1, uint32 tokenWeight0) = tokenA < tokenB ? (tokenA, tokenB, tokenWeightA) : (tokenB, tokenA, 100 - tokenWeightA); require(token0 != address(0), "FLP: ZERO_ADDRESS"); // single check is sufficient bytes memory bytecode = type(FireBirdPair).creationCode; bytes32 salt = keccak256(abi.encodePacked(token0, token1, tokenWeight0, swapFee)); require(_pairSalts[salt] == address(0), "FLP: PAIR_EXISTS"); assembly { pair := create2(0, add(bytecode, 32), mload(bytecode), salt) } IFireBirdPair(pair).initialize(token0, token1, tokenWeight0, swapFee); _pairSalts[salt] = address(pair); allPairs.push(pair); uint64 weightAndFee = uint64(swapFee); weightAndFee |= uint64(tokenWeight0) << 32; _pairs[address(pair)] = weightAndFee; emit PairCreated(token0, token1, pair, tokenWeight0, swapFee, allPairs.length); } function setFeeTo(address _feeTo) external { require(msg.sender == feeToSetter, "FLP: FORBIDDEN"); feeTo = _feeTo; } function setFeeToSetter(address _feeToSetter) external { require(msg.sender == feeToSetter, "FLP: FORBIDDEN"); feeToSetter = _feeToSetter; } function setProtocolFee(uint256 _protocolFee) external { require(msg.sender == feeToSetter, "FLP: FORBIDDEN"); require(_protocolFee == 0 || (_protocolFee >= 10000 && _protocolFee <= 100000), "FLP: Invalid Protocol fee"); protocolFee = _protocolFee; } function getWeightsAndSwapFee(address pair) public view returns ( uint32 tokenWeight0, uint32 tokenWeight1, uint32 swapFee ) { uint64 weightAndFee = _pairs[pair]; if (weightAndFee > 0) { swapFee = uint32(weightAndFee); tokenWeight0 = uint32(weightAndFee >> 32); tokenWeight1 = 100 - tokenWeight0; } else { // Default is 0.3% return (50, 50, 30); } } }