{ "language": "Solidity", "settings": { "evmVersion": "london", "libraries": {}, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 200 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }, "sources": { "contracts/SafeMath.sol": { "content": "// SPDX-License-Identifier: BSD-3-Clause\npragma solidity ^0.8.10;\n\n// From https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol\n// Subject to the MIT license.\n\n/**\n * @dev Wrappers over Solidity's arithmetic operations with added overflow\n * checks.\n *\n * Arithmetic operations in Solidity wrap on overflow. This can easily result\n * in bugs, because programmers usually assume that an overflow raises an\n * error, which is the standard behavior in high level programming languages.\n * `SafeMath` restores this intuition by reverting the transaction when an\n * operation overflows.\n *\n * Using this library instead of the unchecked operations eliminates an entire\n * class of bugs, so it's recommended to use it always.\n */\nlibrary SafeMath {\n /**\n * @dev Returns the addition of two unsigned integers, reverting on overflow.\n *\n * Counterpart to Solidity's `+` operator.\n *\n * Requirements:\n * - Addition cannot overflow.\n */\n function add(uint256 a, uint256 b) internal pure returns (uint256) {\n uint256 c;\n unchecked { c = a + b; }\n require(c >= a, \"SafeMath: addition overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the addition of two unsigned integers, reverting with custom message on overflow.\n *\n * Counterpart to Solidity's `+` operator.\n *\n * Requirements:\n * - Addition cannot overflow.\n */\n function add(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n uint256 c;\n unchecked { c = a + b; }\n require(c >= a, errorMessage);\n\n return c;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting on underflow (when the result is negative).\n *\n * Counterpart to Solidity's `-` operator.\n *\n * Requirements:\n * - Subtraction cannot underflow.\n */\n function sub(uint256 a, uint256 b) internal pure returns (uint256) {\n return sub(a, b, \"SafeMath: subtraction underflow\");\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting with custom message on underflow (when the result is negative).\n *\n * Counterpart to Solidity's `-` operator.\n *\n * Requirements:\n * - Subtraction cannot underflow.\n */\n function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b <= a, errorMessage);\n uint256 c = a - b;\n\n return c;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on overflow.\n *\n * Counterpart to Solidity's `*` operator.\n *\n * Requirements:\n * - Multiplication cannot overflow.\n */\n function mul(uint256 a, uint256 b) internal pure returns (uint256) {\n // Gas optimization: this is cheaper than requiring 'a' not being zero, but the\n // benefit is lost if 'b' is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) {\n return 0;\n }\n\n uint256 c;\n unchecked { c = a * b; }\n require(c / a == b, \"SafeMath: multiplication overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on overflow.\n *\n * Counterpart to Solidity's `*` operator.\n *\n * Requirements:\n * - Multiplication cannot overflow.\n */\n function mul(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n // Gas optimization: this is cheaper than requiring 'a' not being zero, but the\n // benefit is lost if 'b' is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) {\n return 0;\n }\n\n uint256 c;\n unchecked { c = a * b; }\n require(c / a == b, errorMessage);\n\n return c;\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers.\n * Reverts on division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity's `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b) internal pure returns (uint256) {\n return div(a, b, \"SafeMath: division by zero\");\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers.\n * Reverts with custom message on division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity's `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n // Solidity only automatically asserts when dividing by 0\n require(b > 0, errorMessage);\n uint256 c = a / b;\n // assert(a == b * c + a % b); // There is no case in which this doesn't hold\n\n return c;\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts when dividing by zero.\n *\n * Counterpart to Solidity's `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b) internal pure returns (uint256) {\n return mod(a, b, \"SafeMath: modulo by zero\");\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts with custom message when dividing by zero.\n *\n * Counterpart to Solidity's `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {\n require(b != 0, errorMessage);\n return a % b;\n }\n}\n" }, "contracts/Timelock.sol": { "content": "// SPDX-License-Identifier: BSD-3-Clause\npragma solidity ^0.8.10;\n\nimport \"./SafeMath.sol\";\n\ncontract Timelock {\n using SafeMath for uint;\n\n event NewAdmin(address indexed newAdmin);\n event NewPendingAdmin(address indexed newPendingAdmin);\n event NewDelay(uint indexed newDelay);\n event CancelTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);\n event ExecuteTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);\n event QueueTransaction(bytes32 indexed txHash, address indexed target, uint value, string signature, bytes data, uint eta);\n\n uint public constant GRACE_PERIOD = 14 days;\n uint public constant MINIMUM_DELAY = 30 minutes;\n uint public constant MAXIMUM_DELAY = 30 days;\n\n address public admin;\n address public pendingAdmin;\n uint public delay;\n\n mapping (bytes32 => bool) public queuedTransactions;\n\n\n constructor(address admin_, uint delay_) public {\n require(delay_ >= MINIMUM_DELAY, \"Timelock::constructor: Delay must exceed minimum delay.\");\n require(delay_ <= MAXIMUM_DELAY, \"Timelock::setDelay: Delay must not exceed maximum delay.\");\n\n admin = admin_;\n delay = delay_;\n }\n\n fallback() external payable { }\n\n function setDelay(uint delay_) public {\n require(msg.sender == address(this), \"Timelock::setDelay: Call must come from Timelock.\");\n require(delay_ >= MINIMUM_DELAY, \"Timelock::setDelay: Delay must exceed minimum delay.\");\n require(delay_ <= MAXIMUM_DELAY, \"Timelock::setDelay: Delay must not exceed maximum delay.\");\n delay = delay_;\n\n emit NewDelay(delay);\n }\n\n function acceptAdmin() public {\n require(msg.sender == pendingAdmin, \"Timelock::acceptAdmin: Call must come from pendingAdmin.\");\n admin = msg.sender;\n pendingAdmin = address(0);\n\n emit NewAdmin(admin);\n }\n\n function setPendingAdmin(address pendingAdmin_) public {\n require(msg.sender == address(this), \"Timelock::setPendingAdmin: Call must come from Timelock.\");\n pendingAdmin = pendingAdmin_;\n\n emit NewPendingAdmin(pendingAdmin);\n }\n\n function queueTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public returns (bytes32) {\n require(msg.sender == admin, \"Timelock::queueTransaction: Call must come from admin.\");\n require(eta >= getBlockTimestamp().add(delay), \"Timelock::queueTransaction: Estimated execution block must satisfy delay.\");\n\n bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));\n queuedTransactions[txHash] = true;\n\n emit QueueTransaction(txHash, target, value, signature, data, eta);\n return txHash;\n }\n\n function cancelTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public {\n require(msg.sender == admin, \"Timelock::cancelTransaction: Call must come from admin.\");\n\n bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));\n queuedTransactions[txHash] = false;\n\n emit CancelTransaction(txHash, target, value, signature, data, eta);\n }\n\n function executeTransaction(address target, uint value, string memory signature, bytes memory data, uint eta) public payable returns (bytes memory) {\n require(msg.sender == admin, \"Timelock::executeTransaction: Call must come from admin.\");\n\n bytes32 txHash = keccak256(abi.encode(target, value, signature, data, eta));\n require(queuedTransactions[txHash], \"Timelock::executeTransaction: Transaction hasn't been queued.\");\n require(getBlockTimestamp() >= eta, \"Timelock::executeTransaction: Transaction hasn't surpassed time lock.\");\n require(getBlockTimestamp() <= eta.add(GRACE_PERIOD), \"Timelock::executeTransaction: Transaction is stale.\");\n\n queuedTransactions[txHash] = false;\n\n bytes memory callData;\n\n if (bytes(signature).length == 0) {\n callData = data;\n } else {\n callData = abi.encodePacked(bytes4(keccak256(bytes(signature))), data);\n }\n\n // solium-disable-next-line security/no-call-value\n (bool success, bytes memory returnData) = target.call{value: value}(callData);\n require(success, \"Timelock::executeTransaction: Transaction execution reverted.\");\n\n emit ExecuteTransaction(txHash, target, value, signature, data, eta);\n\n return returnData;\n }\n\n function getBlockTimestamp() internal view returns (uint) {\n // solium-disable-next-line security/no-block-members\n return block.timestamp;\n }\n}\n" } } }