# coding=utf-8 # Lint as: python3 """The Maps Token Classification Dataset.""" import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @misc{maps_token_classification, title = {Maps Token Classification Dataset}, author = {Your Name}, year = {2023}, publisher = {Your Institution}, } """ _DESCRIPTION = """\ Maps Token Classification Dataset This dataset is designed for token classification tasks in the context of maps applications. It includes categories for actions, layers, locations, and modifiers. """ _URL = "https://raw.githubusercontent.com/aabidk20/mapsVoiceDataset/main/" _TRAINING_FILE = "maps_train.conll" _DEV_FILE = "maps_dev.conll" _TEST_FILE = "maps_test.conll" class MapsTokenClassificationConfig(datasets.BuilderConfig): """The Maps Token Classification Dataset.""" def __init__(self, **kwargs): """BuilderConfig for Maps Token Classification. Args: **kwargs: keyword arguments forwarded to super. """ super(MapsTokenClassificationConfig, self).__init__(**kwargs) class MapsTokenClassification(datasets.GeneratorBasedBuilder): """The Maps Token Classification Dataset.""" BUILDER_CONFIGS = [ MapsTokenClassificationConfig( name="maps_token_classification", version=datasets.Version("1.0.0"), description="The Maps Token Classification Dataset" ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-zoomIn", "I-zoomIn", "B-zoomOut", "I-zoomOut", "B-panLeft", "B-panRight", "B-panUp", "B-panDown", "B-goTo", "B-location", "I-location", "B-negation", "B-layer", "I-layer", ] ) ), } ), supervised_keys=None, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: current_tokens = [] current_labels = [] sentence_counter = 0 for row in f: row = row.rstrip() if row: token, label = row.split("\t") current_tokens.append(token) current_labels.append(label) else: # New sentence if not current_tokens: # Consecutive empty lines will cause empty sentences continue assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels" sentence = ( sentence_counter, { "id": str(sentence_counter), "tokens": current_tokens, "ner_tags": current_labels, }, ) sentence_counter += 1 current_tokens = [] current_labels = [] yield sentence # Don't forget last sentence in dataset 🧐 if current_tokens: yield sentence_counter, { "id": str(sentence_counter), "tokens": current_tokens, "ner_tags": current_labels, }