File size: 43,293 Bytes
3a258c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1
00:00:21,240 --> 00:00:27,440
ู„ุงุฒู„ู†ุง ููŠ ุดุจุชุฑ ุณุชุฉ ูˆู‡ูˆ ุงู„ isomorphism ุงู„ู…ุฑุฉ ุงู„ู„ู‰

2
00:00:27,440 --> 00:00:33,520
ูุงุชุช ุนุฑูู†ุง ุงู„ atomorphism ูˆุนุฑูู†ุง ุงู†ู‡ ุนุจุงุฑุฉ ุนู†

3
00:00:33,520 --> 00:00:37,880
isomorphism ู„ูƒู† ู…ู† ุงู„ group ุฅู„ู‰ ู†ูุณ ุงู„ group

4
00:00:37,880 --> 00:00:43,720
ูˆุจุงู„ุชุงู„ูŠ ุณู…ู†ุงู‡ atomorphismุนุฑูู†ุง ูƒู…ุงู† ุงู„ู€ Inner

5
00:00:43,720 --> 00:00:48,560
Atomorphism induced by an element of A group G

6
00:00:48,560 --> 00:00:55,940
ูˆู‚ู„ู†ุง ุงู„ู€ Phi A of X ูŠุณุงูˆูŠ A X A inverse ูˆุณู…ูŠู†ุง

7
00:00:55,940 --> 00:01:02,640
ู‡ุฐุง ุงู„ู€ Inner Atomorphism ู…ู† G ุงู„ุขู† ู„ูˆ ุฌู…ุนู†ุง ูƒู„

8
00:01:02,640 --> 00:01:08,570
ุงู„ู€ Atomorphism ููŠ G ูˆุณู…ูŠู†ุงู‡ู… ุงู„ุณุชAtomorphism ู„ู€ G

9
00:01:08,570 --> 00:01:14,310
ุฌู…ุนู†ุง ูƒู„ ุงู„ inner atomorphism ูˆุณู…ูŠู†ุงู‡ู… ุงู„ inner

10
00:01:14,310 --> 00:01:18,750
atomorphism of G ูŠูุฌุฑ ุงู„ุฑู…ุฒ ุงู„ู„ูŠ ู‚ุฏุงู… ุงู„

11
00:01:18,750 --> 00:01:24,110
atomorphism ู„ G ูƒู„ ุงู„ atomorphism ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ

12
00:01:24,110 --> 00:01:28,910
ุงู„ group G ุงู„ inner atomorphism ู„ G ูƒู„ ุงู„ inner

13
00:01:28,910 --> 00:01:34,490
atomorphism of group G ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุงุจุชู‚ูˆู„ ู„ูˆ

14
00:01:34,490 --> 00:01:38,210
ูƒุงู†ุช ุฌูŠ ุฌุฑูˆุจ ูŠุจู‚ู‰ ุงู„ุงุทู…ูˆุฑูุฒู… ูˆุงู„ inner

15
00:01:38,210 --> 00:01:45,270
-automorphism ู„ุฌุฑูˆุจ ุฌูŠ ูƒู„ ูˆุงุญุฏ ููŠู‡ู… ุนุจุงุฑุฉ ุนู† ุฌุฑูˆุจ

16
00:01:45,770 --> 00:01:49,370
ุจุฏูŠ ุฃุญุงูˆู„ ุฃุซุจุช ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ูˆู…ู† ุซู… ุฃุซุจุช ุงู„ู†ู‚ุทุฉ

17
00:01:49,370 --> 00:01:53,170
ุงู„ุซุงู†ูŠุฉ ุทุจุน ุงู„ูƒุชุงุจ ุชุฑูƒู„ู‡ .. ุชุฑูƒู‡ ู…ู„ูƒู‡ as an

18
00:01:53,170 --> 00:01:57,170
exercise ูŠุนู†ูŠ ุญุทู‡ ุงู„ .. ุงู„ .. ุงู„ .. ููŠ ุงู„ุชู…ุฑูŠู†

19
00:01:57,170 --> 00:02:02,190
ุชุจุนุช ู…ูŠู… ุชุจุนุช ุงู„ูƒุชุงุจ ุนู„ู‰ ุฃุณุงุณ ุงุชุญู„ู‡ ูƒ exercise

20
00:02:02,190 --> 00:02:07,070
ุงุญู†ุง ู‡ู†ุจุฑู‡ ุฅู†ู‡ ุจุฑู‡ุงู† ุนุงุฏูŠูŠุจู‚ู‰ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุจุฏูŠ

21
00:02:07,070 --> 00:02:11,590
ุฃุซุจุช ู„ู‡ ุงู† ุงู„ุงุชูˆ ู…ูˆุฑูุฒู… is a group ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช

22
00:02:11,590 --> 00:02:16,150
ุงู† ุงู„ binary operation ุงู„ู„ูŠ ุนู„ู‰ ุงู„ุงุชูˆ ู…ูˆุฑูุฒู… ุงู„ู„ูŠ

23
00:02:16,150 --> 00:02:20,150
ุฌูŠู‡ is a binary operation associative ุงู„ identity

24
00:02:20,150 --> 00:02:25,050
element ุงู„ inverse element ูˆ ู‡ูƒุฐุง ู†ุฌูŠ ู„ู„ู†ู‚ุทุฉ

25
00:02:25,050 --> 00:02:31,510
ุงู„ุฃูˆู„ู‰ ู„ุฐู„ูƒ ุจุฏูŠ ุฃู‚ูˆู„ู‡ letูุงูŠ ูˆุงุญุฏ ูˆูุงูŠ ุงุชู†ูŠู†

26
00:02:31,510 --> 00:02:39,110
ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ุงุชู…ูˆุฑูุฒู… ุงู„ู„ุงุฌุฆ ูŠุจู‚ู‰

27
00:02:39,110 --> 00:02:44,530
ุจู†ุงุก ุนู„ูŠู‡ ู…ุฏุงู… ุงุชู…ูˆุฑูุฒู… ูŠุจู‚ู‰ ูƒู„ ู…ู† ูุงูŠ ูˆุงุญุฏ ูˆูุงูŠ

28
00:02:44,530 --> 00:02:53,530
ุงุชู†ูŠู† is one to one and unto ูŠุจู‚ู‰ then ุงู„ูˆุงุญุฏ ูˆูุงูŠ

29
00:02:53,530 --> 00:03:01,210
ุงุชู†ูŠู† is one to one and untoู‡ุฐุง ุจูŠุนุทูŠู†ุง ู…ู† ู…ุจุงุฏุฆ

30
00:03:01,210 --> 00:03:06,910
ุงู„ุฑูŠุงุถูŠุงุช ุงู† ุงู„ composition ููŠู…ุง ุจูŠู†ู‡ู…ุง ููŠ ูˆุงุญุฏ ููŠ

31
00:03:06,910 --> 00:03:14,510
ุงุชู†ูŠู† is one to one and one to ูƒุฐู„ูƒู…ู† ู…ุจุงุฏุฆ

32
00:03:14,510 --> 00:03:18,330
ุงู„ุฑูŠุงุถูŠุงุช ู„ูˆ ูƒุงู† ุนู†ุฏู‰ two functions ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู…

33
00:03:18,330 --> 00:03:21,730
one to one and unto ูŠุจู‚ู‰ ุงู„ composition ุนู„ูŠู‡ู…

34
00:03:21,730 --> 00:03:26,450
ุจูŠุนุทูŠู†ุง one to one and unto function ุจุฏู‰ ุฃุดูˆู

35
00:03:26,450 --> 00:03:31,110
ู‡ุงู„ู‡ุฏู‰ ุจุชุฎุฏู… ุฎุงุตูŠุฉ ุงู„ isomorphism ูˆู„ุง ู„ุฃ ุฅู† ุฎุฏู…ุช

36
00:03:31,110 --> 00:03:36,000
ูŠุจู‚ู‰ ุจุตูŠุฑ ู‡ุฏู‰ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุงุชู…ูˆููŠุฒู…

37
00:03:44,810 --> 00:03:53,910
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐูŠ ุจุชุนุทูŠู†ุง ููŠ ูˆุงู† ู„ููŠ ุชูˆู XY ู„ูŠุด

38
00:03:53,910 --> 00:03:57,970
ู‡ุฐุง ุชุนุฑูŠู ุงู„ composition of functions ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡

39
00:03:57,970 --> 00:04:05,810
ููŠ calculus A ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ููŠ ูˆุงุญุฏ ุงู…ุงู„ุงู† ููŠ

40
00:04:05,810 --> 00:04:11,070
ุงุชู†ูŠู† ุงู†ุง ูุฑุถู‡ ุงุชูˆ ู…ูˆุฑูุฒู… ู„ุฌูŠ ูŠุนู†ูŠ ุงูŠุฒูˆ ู…ูˆุฑูุฒู… ุงุฐุง

41
00:04:11,070 --> 00:04:15,110
ุจู†ุงุก ุนู„ูŠู‡ ู„ู…ุง ูŠุฃุซุฑ ุนู„ู‰ ุงู„ X ูˆ Y ูŠุจุฏูˆ ูŠุณุงูˆูŠ ููŠ ููŠ

42
00:04:15,110 --> 00:04:23,790
ุชูˆ of X ููŠ ููŠ ุชูˆ of Y ูŠุจู‚ู‰ ููŠ ุชูˆ of X ููŠ ููŠ ุชูˆ of

43
00:04:23,790 --> 00:04:33,230
Y ู„ูŠุดุŸ since ู„ุฅู† ุงู„ ููŠ ุชูˆ is isomorphismุทูŠุจ ู‡ุฐุง

44
00:04:33,230 --> 00:04:42,890
ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูุงูŠ ูˆุงู† ู„ูุงูŠ two of x ูˆูƒู…ุงู† ูุงูŠ

45
00:04:42,890 --> 00:04:51,370
ูˆุงู† ู„ูุงูŠ two of y ู„ู†ูุณ ุงู„ุณุจุจ ู†ุธุฑุง ู„ุฅู† ูุงูŠ ูˆุงู† is

46
00:04:51,370 --> 00:04:57,510
an isomorphism ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… since ูุงูŠ ูˆุงู† is an

47
00:04:57,510 --> 00:05:01,930
isomorphismุทูŠุจ ุจุฏุง ุงู„ุดุบู„ุงู†ุฉ ุงู„ composition of

48
00:05:01,930 --> 00:05:06,930
functions ุจุฏู‡ ุฑุฌุนู‡ู… ุงู„ู‰ ุฃุตู„ู‡ู… ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ููŠ

49
00:05:06,930 --> 00:05:12,890
ูˆุงุญุฏ ููŠ ุงุชู†ูŠู† ูƒู„ู‡ as a function of x ูˆ ููŠ ูˆุงุญุฏ ููŠ

50
00:05:12,890 --> 00:05:19,290
ุงุชู†ูŠู† as a function of y ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ููŠ

51
00:05:19,290 --> 00:05:23,950
ูˆุงุญุฏ ููŠ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† is an isomorphism ูˆุจุงู„ุชุงู„ูŠ

52
00:05:23,950 --> 00:05:30,380
ุงุชูˆู…ูˆุฑูุฒู…ูŠุจู‚ู‰ ุงู„ atomorphism ู„ G is closed under

53
00:05:30,380 --> 00:05:34,500
the composition of functions ุฃูˆ ุงู„ composition of

54
00:05:34,500 --> 00:05:38,940
functions is a binary operation ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ G

55
00:05:38,940 --> 00:05:45,220
ูŠุจู‚ู‰ ูŠุง ุจุชุฑูˆุญ ุชู‚ูˆู„ูŠ ู‡ู†ุง ุงู„ atomorphism

56
00:05:45,220 --> 00:05:54,740
atomorphism ู„ G is closed under the

57
00:05:59,540 --> 00:06:06,340
composition of functions ูŠุนู†ูŠ ุฅุฐุง ูƒุงู† ุจุฏู„ ุงู„ุนุจุงุฑุฉ

58
00:06:06,340 --> 00:06:09,300
ู‡ุฐู‡ ุจุชู‚ุฏุฑ ุชู‚ูˆู„ูŠ so the composition of a function

59
00:06:09,300 --> 00:06:14,700
is a binary operation ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ุงุชูˆู…ูˆุฑูุฒู… ู„ู…ูŠู†

60
00:06:14,700 --> 00:06:20,300
ุฅู„ู‰ ุฏูŠ ูŠุนู†ูŠ ุฅุญู†ุง ุญุชู‰ ุงู„ุขู† ุฃุซุจุชู†ุง ู…ูŠู† ุงู„ุฎุงุตูŠุฉ

61
00:06:20,300 --> 00:06:25,210
ุงู„ุฃูˆู„ู‰ ุฅู† ุงู„ operation is a binary operationุจุชู‚ุฏุฑ

62
00:06:25,210 --> 00:06:30,030
ุชู‚ูˆู„ู‡ุง ุจูŠู†ุฌูˆ ุณูŠู† ุญุทู‡ุง binary operation ุนู†ุฏูƒ ู…ุดุงู†

63
00:06:30,030 --> 00:06:34,390
ุชุชุฃูƒุฏ ุงู† ู‡ุฐู‡ ุงู„ุฎุทูˆุฉ ู‡ูŠ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุฅุซุจุงุช ุงู„

64
00:06:34,390 --> 00:06:40,690
group ุงู„ุฎุทูˆุฉ ุงู„ุชุงู†ูŠุฉ ุฎุงุตูŠุฉ associativity we know

65
00:06:40,690 --> 00:06:50,950
that ุงุญู†ุง ุจู†ุนุฑู ุงู† that the composition of

66
00:06:50,950 --> 00:06:52,870
functions

67
00:06:54,160 --> 00:06:59,880
is associative ูŠุจู‚ู‰ ููŠุด ุฏุงุนูŠ ุฃุฑูˆุญ ู†ุนู…ู„ู‡ุง ู„ุฅู†ู†ุง

68
00:06:59,880 --> 00:07:05,000
ุนุงุฑููŠู† ุฅู†ู‡ุง ู‡ุฐู‡ ูŠุจู‚ู‰ ุงุชุญู‚ู‚ุช ู…ู† ุงู„ุฎุงุตูŠุฉ ุงู„ุซุงู†ูŠุฉ

69
00:07:05,000 --> 00:07:10,660
ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ ุฎุงุตูŠุฉ ุงู„ identity element ุงู„ุขู† ุงู„ I

70
00:07:10,660 --> 00:07:20,440
ู…ู† G ุฅู„ู‰ G ู‡ุฐู‡ is the identity function

71
00:07:21,740 --> 00:07:24,580
ุฎู„ู‘ูŠู†ูŠ ุฃุณุฃู„ูƒู… ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุทุงู„ุน ู„ู…ุง ุฃุฎุฏุชู… ู…ุจุงุฏุฆ

72
00:07:24,580 --> 00:07:27,460
ุงู„ุฑูŠุงุถูŠุฉ ุงู„ identity function one to one and unto

73
00:07:27,460 --> 00:07:34,460
ูˆู„ุง ู„ุฃุŸ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ identity function which

74
00:07:34,460 --> 00:07:44,920
is one to one and unto ู…ุด ุนุฌุจุง ู‡ูƒุฐุง and ุงู„ I ู„ูˆ

75
00:07:44,920 --> 00:07:50,000
ุฃุซุฑุช ุนู„ู‰ ุงู„ X ููŠ YุŒ ุฃูŠุด ุจุชุนุทูŠู‡ ู„ูƒุŸุงู„ู€ X ููŠ Y ู„ุฃู†

76
00:07:50,000 --> 00:07:56,920
ุงู„ู€ Identity function ุงู„ู€ X ู‡ุฐู‡ ู„ูŠุณุช I of X ูˆู‡ุฐู‡ I

77
00:07:56,920 --> 00:08:02,520
of Yุฅุฐุง ุญู‚ู‚ุช ุงู„ุฎุงุตูŠุฉ ุชุจุน ุงู„ู€ isomorphism ุตุงุฑ one

78
00:08:02,520 --> 00:08:08,260
to one and unto ูˆ ุญู‚ู‚ ุงู„ุฎุงุตูŠุฉ ูˆ ู…ู† ุงู„ group ู„ู†ูุณู‡ุง

79
00:08:08,260 --> 00:08:15,880
ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ I ู…ูˆุฌูˆุฏ ููŠ ุงู„ atomorphism ุงู„ุฌูŠุจ ูŠุจู‚ู‰

80
00:08:15,880 --> 00:08:21,440
ุฃุตุจุญุช ุงู„ I ุนุจุงุฑุฉ ุนู† atomorphism ู‡ุฐุง ู‡ูˆ ุงู„ identity

81
00:08:21,440 --> 00:08:26,600
element ูŠุจู‚ู‰ is the identity

82
00:08:35,120 --> 00:08:42,320
Element of ุงู„ุงุชู…ูˆุฑูุฒู…

83
00:08:42,320 --> 00:08:49,620
ุงู„ู„ูŠ ุฌูŠู‡ ุจุฏูƒ ุชุนู…ู„ ุชุดูƒ ุชุงุฎุฏ ุงู„ identity ู…ุน ุงุชู…ูˆุฑูุฒู…

84
00:08:49,620 --> 00:08:52,740
ุชุงู†ูŠ ูˆ ุชุนู…ู„ ุจูŠู†ู‡ู… composites ุจูŠู†ู‡ู… ู…ุงู„ูˆุด ุชุฃุซูŠุฑ

85
00:08:52,740 --> 00:08:58,900
ู…ุงููŠุด ู…ุดูƒู„ุฉุทุจ ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ูŠู†ุŸ ู„ู„ู…ุนูƒูˆุณุŒ ุงู„ุงู†

86
00:08:58,900 --> 00:09:09,160
ุงู ููŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ atom ูˆุงุฑูุฒู… ู„ุฌูŠุจุฃุญุงูˆู„ ุฃู† ุฃุซุจุช ุฃู†

87
00:09:09,160 --> 00:09:13,300
ุงู„ู€Phi Inverse ุนุจุงุฑุฉ ุนู† Atomorphism ุฅุฐุง ุฃุซุจุชุช ุฃู†

88
00:09:13,300 --> 00:09:16,780
ุงู„ู€Phi Inverse ุนุจุงุฑุฉ ุนู† Atomorphism ูŠุจู‚ู‰ ุฃุซุงุฑุฉ

89
00:09:16,780 --> 00:09:21,860
ุงู„ู€Atomorphism is a group ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุซู„ุฉ ูŠุนู†ูŠ

90
00:09:21,860 --> 00:09:27,060
ูƒุฃู†ู†ุง ู†ุดุชุบู„ ุงู„ุขู† ู…ุง ุฃุดุชุบู„ู†ุงู‡ ููŠ ุงู„ุดุงุจุชุฑ ุงู„ุซุงู†ูŠ ุจุนุฏ

91
00:09:27,060 --> 00:09:34,080
ุดุงุจุชุฑ ุงู„ู…ู‚ุฏู…ุฉ ูˆู‡ูˆ ุดุงุจุชุฑ ุงู„ู€group ูŠุจู‚ู‰ then Phi is

92
00:09:34,080 --> 00:09:40,910
one to one and untoู…ุด ุนู„ู‰ ุฌุฏ ู‡ูŠูƒ ู…ุงุฏุงู… ููŠ one to

93
00:09:40,910 --> 00:09:47,350
one and one to one ูŠุจุฌู‰ ู…ุนุงูƒุณู‡ as one to one and

94
00:09:47,350 --> 00:09:53,650
one to ูƒุฐู„ูƒ functionูŠุจู‚ู‰ one to one and onto

95
00:09:53,650 --> 00:09:58,590
function ู‡ุฐุง ู…ุนู†ุงู‡ ุงู†ู‡ ููŠ ุงู†ูุฑุณ ุนุจุงุฑุฉ ุนู† one to

96
00:09:58,590 --> 00:10:03,510
one and onto function ุถุงูŠู„ ุนู„ูŠู†ุง ู…ูŠู†ุŸ ุถุงูŠู„ ุนู„ูŠู†ุง

97
00:10:03,510 --> 00:10:07,670
ู†ุซุจุช ุงู† ููŠ ุงู†ูุฑุณ is an isomorphism ูŠุนู†ูŠ ููŠ ุงู†ูุฑุณ

98
00:10:07,670 --> 00:10:11,250
of x y ู‡ูˆ ููŠ ุงู†ูุฑุณ of x ูˆููŠ ุงู†ูุฑุณ of y ุงุธู†

99
00:10:11,250 --> 00:10:16,590
ุงุซุจุชู†ุงู‡ุง ููŠ ุงู„ู†ุธุฑูŠุฉ ู‚ุจู„ ุงู„ู…ุงุถูŠุฉ ุงูˆ ุงู„ุณุจุน ู†ู‚ุงุท

100
00:10:16,590 --> 00:10:20,810
ุงุซุจุชู†ุงู‡ุง ููŠู‡ู… ุทูŠุจ ูˆ

101
00:10:23,400 --> 00:10:31,860
Prove that ุงุญู†ุง ุจุฑู‡ู†ู†ุง ูƒุฐู„ูƒ ุงู† ููŠ ุงู†ูุฑุณ of x y

102
00:10:31,860 --> 00:10:40,780
ูŠุณูˆู‰ ููŠ ุงู†ูุฑุณ of x ููŠ ููŠ ุงู†ูุฑุณ of y ุจุฑู‡ู†ู‡ุง ุณุงุจู‚ุง

103
00:10:40,780 --> 00:10:47,440
ูŠุจู‚ู‰ ุตุงุฑุฉ ููŠ ุงู†ูุฑุณ exist ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุญู‚ู‚ุช ุฎุงุตูŠุฉ

104
00:10:47,440 --> 00:10:52,570
ุงู„ isomorphism ูŠุจู‚ู‰ ู‡ ุฃูˆ ุงู„ atomorphismู‡ุฐุง ู…ุนู†ุงู‡

105
00:10:52,570 --> 00:10:59,690
ุงู† ููŠ ุงู†ูุฑุณ ู…ูˆุฌูˆุฏ ููŠ ุงู„ุงุชู…ูˆููŠุฒู… ู„ู…ุงู… ุงู„ุงุฌูŠู‡ ุตุงุฑ

106
00:10:59,690 --> 00:11:03,510
ุงู„ุงุชู…ูˆููŠุฒู… ุงู„ุงุฌูŠู‡ closed under the operation

107
00:11:03,510 --> 00:11:08,850
ุงู„ุนู…ู„ูŠุฉ associative ุงู„ identity element ู…ูˆุฌูˆุฏ

108
00:11:08,850 --> 00:11:15,170
ุงู„ู…ุนูƒูˆุณ ู„ุฃูŠ element ู…ูˆุฌูˆุฏ ููŠ ุงู„ุงุชู…ูˆููŠุฒู… ู…ูˆุฌูˆุฏ ูŠุจู‚ู‰

109
00:11:15,170 --> 00:11:23,170
ุงู„ุงุชู…ูˆููŠุฒู… ู…ุงู„ู‡ุง is a groupูŠุจู‚ู‰ ุงู„ atomorphism ู„ุฏูŠ

110
00:11:23,170 --> 00:11:34,990
is a group under the composition of

111
00:11:34,990 --> 00:11:36,790
functions

112
00:11:38,510 --> 00:11:44,830
ุทูŠุจ ูƒูˆูŠุณ ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ุฃูˆู„ู‰ ู†ุฌู„ ู†ู‚ุทุฉ ุซุงู†ูŠุฉ ุงู„ inner

113
00:11:44,830 --> 00:11:50,910
atom morphism ู„ G the set of all elements Phi A

114
00:11:50,910 --> 00:11:58,610
such that ุงู„ Phi A of X ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ A X A inverse

115
00:11:58,610 --> 00:12:05,960
ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูƒู„ ุงู„ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ Gู‡ุฐู‡ ุนุฑูู†ุงู‡ุง

116
00:12:05,960 --> 00:12:09,380
ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ู‡ุง ุฏู‡ุŒ ุจุฏูŠ ุฃุญุงูˆู„

117
00:12:09,380 --> 00:12:14,840
ุฃุซุจุช ุฅู†ู‡ ู‡ุฐู‡ is a group ุทุจ ุฎู„ูŠู†ูŠ ุฃุณุฃู„ูƒูˆุง ุงู„ุณุคุงู„

118
00:12:14,840 --> 00:12:19,960
ุงู„ุชุงู„ูŠุŒ ู„ูˆ ู‚ุฏุฑุช ุฃุซุจุช ุฅู† ุงู„ inner atomorphism ุงู„ู„ูŠ

119
00:12:19,960 --> 00:12:25,000
ุฌูŠ subgroup ู…ู† ุงู„ atomorphism ุงู„ู„ูŠ ุฌูŠ ู…ุด ุงู„ inner

120
00:12:25,000 --> 00:12:32,000
ุจุตูŠุฑ groupู„ุฃู† ุงู„ู€ subgroup ู‡ูŠ ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ ู…ู†

121
00:12:32,000 --> 00:12:36,560
ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฃุตู„ูŠุฉ ุจุณ ุชุญุช ู†ูุณ ุงู„ุนู…ู„ูŠุฉ ุฅุฐุง ู„ูˆ ู‚ุฏุฑุช

122
00:12:36,560 --> 00:12:41,540
ุฃุซุจุช ุฅู† ุงู„ inner atomorphisms ุงู„ู„ูŠ ุฌูŠู‡ ู‡ูŠ ุนุจุงุฑุฉ ุนู†

123
00:12:41,540 --> 00:12:45,580
subgroup ู…ู† ุงู„ atomorphism ุงู„ู„ูŠ ุฌูŠู‡ ุจุตูŠุฑ ู‡ุฐู‡ group

124
00:12:45,580 --> 00:12:52,360
ูˆู†ูƒูˆู† ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุณุฃู„ุฉ ู‡ุฐู‡ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุซุจุชู‡ุง

125
00:12:52,760 --> 00:13:00,500
ุจุฏู†ุง ู†ุซุจุช ุงู† ุงู„ inner ู‡ุฐู‡ is a group ู…ุดุงู† ุฃุซุจุชู‡ุง

126
00:13:00,500 --> 00:13:04,440
group ุจุฏุฃ ุฃุซุจุชู‡ุง sub group ู…ู† ุงู„ atom morphism ู„ G

127
00:13:04,440 --> 00:13:14,920
ุงู„ inner atom morphism ู„ G is non empty non empty

128
00:13:14,920 --> 00:13:16,280
ู„ูŠุดุŸ because

129
00:13:19,280 --> 00:13:27,680
ุงู„ู€ Phi E ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Inner Atomorphism ู„ุฌูŠ ูŠุนู†ูŠ

130
00:13:27,680 --> 00:13:36,440
ู‡ุฐุง ู‡ูˆ ุงู„ identity element because and ุงู„ Phi E is

131
00:13:36,440 --> 00:13:47,260
the identity element element andุงู„ู€ Inner

132
00:13:47,260 --> 00:13:49,740
Atomorphism ู„ู€ G

133
00:14:01,130 --> 00:14:05,330
ุงู†ุง ุจุชุฏุนูŠ ุงู†ู‡ ุงู„ identity element ุงู„ุงู† ุจุฏู‰ ุจูŠู† ุงู†

134
00:14:05,330 --> 00:14:10,470
ู‡ุฐุง ู‡ูˆ ุงู„ identity element ุชุจุน ุงู„ atomorphism ูŠุจู‚ู‰

135
00:14:10,470 --> 00:14:17,110
ู‡ุฐุง ุจุฏู‰ ูŠุนุทูŠู†ูŠ ุงู† ุงู„ phi E of X ูŠุณุงูˆูŠ ุงู„ X ูŠุณุงูˆูŠ

136
00:14:17,110 --> 00:14:22,410
ุดุฑูŠูƒ ุงู„ X ู‡ุฐู‡ ู„ูˆ ุถุฑุจุช ููŠ ุงู„ identity element ุชุชุบูŠุฑ

137
00:14:22,410 --> 00:14:30,360
ูŠุนู†ูŠ ู„ูˆ ู‚ู„ุชู„ูƒ ู‡ุฐู‡ E X ุตุญ ูˆู„ุง ุบู„ุทุŸู…ูŠุฉ ุงู„ู…ูŠุฉ ุทุจ ู„ูˆ

138
00:14:30,360 --> 00:14:34,440
ู‚ู„ุชู„ูƒ ูƒู…ุงู† ุถุฑุจุช ููŠ ู…ุนูƒูˆุณ ุงู„ identity element ู…ูŠู†

139
00:14:34,440 --> 00:14:39,600
ู…ุนูƒูˆุณ ุงู„ identity element ุงู„ identity element ู†ูุณู‡

140
00:14:39,600 --> 00:14:47,140
ูŠุจู‚ู‰ ุณุนุฑ ุงู„ ููŠ ุฅูŠู‡ ุฏู‡ ู…ูˆุฌูˆุฏ ููŠ ุงู„ inner atom

141
00:14:47,140 --> 00:14:51,880
morphism ู„ G ูˆู…ู† ู‡ู†ุง ุงู„ inner atom morphism ู„ G is

142
00:14:51,880 --> 00:14:59,450
non emptyุทุจ ูƒูˆูŠุณ ุงู„ุงู† ุจุฏุฃ ุงุฎุฏ two elements ู…ูˆุฌูˆุฏุงุช

143
00:14:59,450 --> 00:15:05,190
ููŠ ุงู„ inner ูˆ ุงุซุจุช ุงู† ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ

144
00:15:05,190 --> 00:15:13,910
ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุงู‚ูˆู„ู‡ let code ู„ูุงูŠ a ูˆูุงูŠ ุจูŠ ู…ูˆุฌูˆุฏุงุช

145
00:15:13,910 --> 00:15:18,750
ููŠ ุงู„ inner atomorphism ู„ุฌูŠู‡ then

146
00:15:20,330 --> 00:15:28,470
ุจุฏูŠ ุงุฎุฏ ูุงูŠ ุง ูุงูŠ ุจูŠ ุงู†ูุฑุณ ูƒู„ู‡ as a function of x

147
00:15:28,470 --> 00:15:34,330
ูˆุดูˆู ู‡ู„ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ inner ูˆู„ุง ู„ุฃ ุจู…ุนู†ู‰ ุงุฎุฑ ู‡ู„

148
00:15:34,330 --> 00:15:40,430
ุจู‚ุฏุฑ ุงูƒุชุจ ุญุตู„ ุงู„ุถุฑุจ ู‡ุฐุง ุนู„ู‰ ุดูƒู„ inner atomorphism

149
00:15:40,430 --> 00:15:47,060
ูˆุงู„ู„ู‡ ู…ู‚ุฏุฑุด ู‡ุฐุง ู…ุง ุณู†ุฌูŠุจ ุนู„ูŠู‡ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ

150
00:15:47,060 --> 00:15:52,820
as a

151
00:15:52,820 --> 00:15:58,700
function of x ุทุจุนุง ุจุฑู‡ู…ู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุณุงุจู‚ุง ูู‰

152
00:15:58,700 --> 00:16:03,440
ู†ุธุฑูŠุงุช ุงู„ุณุงุจู‚ุฉ ุจูŠุงู†ู†ุง ุงู† ูุงูŠ ุงูŠ ุงู†ูุฑุณ ุงู„ุงู†ูุฑุณ

153
00:16:03,440 --> 00:16:08,720
ุจู†ุฒู„ู‡ ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰ ุงู„ element ูŠุจู‚ู‰ ู‡ุงูŠ ู†ุฒู„ู†ุง ุงู„

154
00:16:08,720 --> 00:16:12,470
inverse ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰ ุงู„ element ุงู„ู„ู‰ ุฌูˆุงู‡ุฐุง

155
00:16:12,470 --> 00:16:20,610
composition of functions ูŠุจู‚ู‰ ูุงูŠ a ู„ู…ูŠู† ู„ูุงูŠ ุจูŠ

156
00:16:20,610 --> 00:16:27,150
ุงู†ูุฑุณ as a function of x ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ูุงูŠ ุงู„ู„ูŠ ุจุฑุง

157
00:16:27,150 --> 00:16:32,810
ู‡ุฐู‡ ุงู„ูุงูŠ ุงู„ู„ูŠ ุจุฑุง a ูˆุงู„ู„ูŠ ุฌูˆุง ู‡ุฐูŠ ุจุฏู‡ ุงุทุจู‚ ุนู„ูŠู‡ุง

158
00:16:32,810 --> 00:16:38,560
ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุงุญู†ุง ุฌุงูŠู„ูŠู†ู‡ ู‡ู†ุงูŠุจู‚ู‰ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† B

159
00:16:38,560 --> 00:16:46,220
inverse X B inverse Inverse ุทุจู‚ ู„ู‡ุฐุง ุงู„ุชุนุฑูŠู Phi A

160
00:16:46,220 --> 00:16:51,800
ุงู„ element A X A inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ element X ุงู„

161
00:16:51,800 --> 00:16:57,850
element inverse ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุงู„ุงู† ุจุฏูŠ ุงุทุจู‚

162
00:16:57,850 --> 00:17:04,110
ุงู„ุชุนุฑูŠู ูƒู…ุงู† ู…ุฑุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ูŠ ุงู„ a b

163
00:17:04,110 --> 00:17:13,250
inverse x b inverse x b inverse inverse ูƒู„ ู‡ุฐุง

164
00:17:13,250 --> 00:17:20,410
ุงู„ูƒู„ุงู… ููŠ ู…ู†ุŸ ููŠ ุงู„ a inverseูŠุจู‚ู‰ ุงุนุชุจุฑุช ู‡ุฐุง ูƒู„ู‡

165
00:17:20,410 --> 00:17:24,790
element ููŠ domain ุงู„ู€ phi of A ุทุจู‚ุช ุนู„ูŠู‡ ุงู„ุชุนุฑูŠู

166
00:17:24,790 --> 00:17:30,030
ุงู„ู„ูŠ ู‡ู†ุงูƒ A ู†ูุณ ุงู„ element ุงู„ A inverse ุงู„ุงู†

167
00:17:30,030 --> 00:17:35,170
ุจุงู„ุฏุงู„ูŠ ู„ุฎุงุตูŠุฉ ุงู„ associativity ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง

168
00:17:35,170 --> 00:17:42,120
ุจู‚ุฏุฑ ุงู‚ูˆู„ A B inverse ููŠ ุงู„ X ููŠู‡ุฃุชุทู„ุนู„ูŠ ู‡ุฐุง ุงู„

169
00:17:42,120 --> 00:17:45,660
element inverse ูˆ ู‡ุฐุง ุงู„ element inverse ุจู‚ุฏุฑ

170
00:17:45,660 --> 00:17:51,360
ุฃุฌู…ุนู‡ู… ุจ inverse ูˆุงุญุฏ ุจุนุฏ ู…ุง ุฃุบูŠุฑ ุฃูˆ ุฃุจุฏู„ ู…ูˆุงู‚ุนู‡ู…

171
00:17:51,360 --> 00:17:57,740
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ a b inverse ุงู„ูƒู„

172
00:17:57,740 --> 00:18:02,480
inverse ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู‡ุฐุง inverse ูˆ

173
00:18:02,480 --> 00:18:07,160
ู‡ุฐุง inverse ุฌู„ุจุช ูˆุถุนู‡ู… ูˆ ุฎู„ุช inverse ู„ู„ูƒู„ ุงุชุทู„ุนู„ูŠ

174
00:18:07,160 --> 00:18:12,120
ู„ู„ู…ู‚ุฏุงุฑ ุจูŠู† ุงู„ู‚ุงูˆุณูŠู† ู‡ูˆ ู‡ุฐุง ูˆู„ุง ู„ุงูŠุจู‚ู‰ ุตุงุฑ ุงู„

175
00:18:12,120 --> 00:18:18,180
element ู‡ุฐุง ู‡ูˆ ุงู„ element ู‡ุฐุง ุจุณ inverse ุฃู„ูŠุณ ู‡ูˆ

176
00:18:18,180 --> 00:18:25,760
ุชุนุฑูŠู inner atomorphism ูŠุนู†ูŠ ู‡ุฐุง ูƒุฃู†ู‡ ู…ูŠู† ูƒุฃู†ู‡ ููŠ

177
00:18:25,760 --> 00:18:32,300
a b inverse of x ุชู…ุงู…

178
00:18:32,970 --> 00:18:40,210
ูŠุจู‚ู‰ ุงุจุชุฏุงุช ุจ element ููŠ ู…ุนูƒูˆุณูŠ ุซุงู†ูŠ ุทู„ุน ุนู†ุฏูŠ Phi

179
00:18:40,210 --> 00:18:45,910
of AB inverse ูŠุนู†ูŠ ุฅูŠุดุŸ ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูˆ inner

180
00:18:45,910 --> 00:18:53,370
atomorphism ุฅุฐุง ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ inner atomorphism ู„ G

181
00:18:55,870 --> 00:19:00,910
ุซุจุช ู‡ู†ุง ุงู†ู‡ non-empty ุฃุฎุฏุช ุงู„ elements ู…ูˆุฌูˆุฏุงุช ููŠ

182
00:19:00,910 --> 00:19:06,350
ุงู„ inner ูุฑุฏุช ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ุทู„ุน ู…ูˆุฌูˆุฏ ูˆูŠู†

183
00:19:06,350 --> 00:19:12,810
ููŠ ุงู„ inner atomorphism ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ inner

184
00:19:12,810 --> 00:19:20,150
atomorphism ู„ุฌูŠ is a subgroup ู…ู† ุงู„ atomorphism

185
00:19:20,150 --> 00:19:22,970
ู„ุฌูŠ ู‡ุฐุง ุจูŠุนุทูŠู†ุง

186
00:19:48,290 --> 00:19:52,050
ุญุฏ ู„ูˆ ูŠุชุณุงูˆู„ ุจุงู„ู†ุณุจุฉ ู„ู„ู†ุธุฑูŠุฉ

187
00:19:55,710 --> 00:20:02,030
ุนู„ูŠ ุตูˆุชูƒ ุดูˆูŠุฉ ุนุดุงู†

188
00:20:02,030 --> 00:20:13,110
ู†ุซุจุช ุงู†ู‡ุง non-empty ู…ู…ุชุงุฒ ุชุนุงู„

189
00:20:13,110 --> 00:20:17,810
ู‡ู†ุง ุชุนุงู„ ุชุนุงู„ ุงู„ุญู‚ ุงู„ุญู‚ ู‚ูˆู„

190
00:20:26,310 --> 00:20:31,150
ุงู†ุง ุงุฏุนูŠุช ุงู† ู‡ุฐุง ู‡ูˆ ุงู„ identity element ู‡ุงูŠูˆ ุฌุงูŠู„ูƒ

191
00:20:31,150 --> 00:20:34,990
ู‡ุฐุง is identity element ุงู† ุฌูŠู‡ ุฌูŠุช ู‚ูˆู„ุชู„ูƒ ู…ุฏุงู…

192
00:20:34,990 --> 00:20:39,410
identity ูŠุจู‚ู‰ ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ูŠูƒู…ุธุจูˆุท ุชุฃุซูŠุฑู‡ ุนู„ู‰ ุงู„

193
00:20:39,410 --> 00:20:43,350
element ุจูŠุณูˆูŠ ุงู„ element ู‡ุฐู‡ ุงู„ู†ุชูŠุฌุฉ ุจุฏูŠ ุงุญุงูˆู„ ุงุญุท

194
00:20:43,350 --> 00:20:49,510
ุนู„ู‰ ุดูƒู„ inner atomorphism ูุฑูˆุญุช ู‚ูˆู„ุช ุงู„ููŠ ูŠุณูˆูŠ X

195
00:20:49,510 --> 00:20:54,670
ูŠุณูˆูŠ E X E inverse ู‡ุฐุง ุดูƒู„ inner atomorphism

196
00:20:54,670 --> 00:21:02,070
ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ู…ูˆุฌูˆุฏ ู‡ู†ุง ู‚ุณู…ุฉ ุนุงู„ู…ูŠุฉ ุฃุฑุจุนุฉ ุจูŠุตูŠุฑ

197
00:21:02,070 --> 00:21:09,380
ููŠ A X ุจูŠุณูˆูŠ E X E inverseูุงูŠ ุงูŠ ู‡ูŠ ุงู„ identity ู‡ูŠ

198
00:21:09,380 --> 00:21:14,840
ุฌุงูŠู„ูƒ ู…ู† ุงู„ุฃูˆู„ ููŠ ุงูŠ ู…ูˆุฌูˆุฏุฉ ูˆู‡ูŠ ุงู„ identity ู…ุด ุงู„

199
00:21:14,840 --> 00:21:19,620
ุงูŠ ุงู„ ุงูŠ ู‡ูˆ ุงู„ identity ุชุจุน ุงู„ group ู„ูƒู† ููŠ ุงูŠ ู‡ูˆ

200
00:21:19,620 --> 00:21:23,020
ุงู„ identity element ุชุจุน ุงู„ atom morphism ูˆุชุจุน ุงู„

201
00:21:23,020 --> 00:21:26,800
inner atom morphism ุฏุฑ ุจุงู„ูƒ ูŠุนู†ูŠ ู‡ุฏูˆู„ functions

202
00:21:26,800 --> 00:21:32,580
ูˆู„ูŠุณุช elements ุนุงุฏูŠุฉ ุชู…ุงู… ู„ูƒู† ุตูˆุฑู‡ุง ู‡ูŠ ุงู„ elements

203
00:21:32,580 --> 00:21:36,400
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ูˆูŠู† ููŠ ู†ูุณ ุงู„ group ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฌูŠู‡ุญุฏ

204
00:21:36,400 --> 00:21:41,380
ูŠู„ุงู‚ูŠ ุชุณุงูˆูŠ ุงู„ุขุฎุฑุŸ ุทูŠุจ ุจุฏู†ุง ู†ุฑูˆุญ ูˆ ู†ูˆุถุน ู‡ุฐุง ุงู„ูƒู„ุงู…

205
00:21:41,380 --> 00:21:49,800
ุจู…ุซุงู„ example

206
00:22:12,580 --> 00:22:22,400
ุจู‚ูˆู„ ุงู„ู ุฏูŠ ููˆุฑ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ R ู†ูˆุฏ R ุชุณุนูŠู† R ู…ูŠุฉ ูˆ

207
00:22:22,400 --> 00:22:35,360
ุชู…ุงู†ูŠู† R ู…ูŠุชูŠู† ูˆ ุณุจุนูŠู† H V D D prime find find ุงูˆ

208
00:22:35,360 --> 00:22:38,340
ุฌุฏ ู„ูŠู‡ ุงู„ inner

209
00:22:41,510 --> 00:22:47,710
ู„ู…ุงู† ู„ุฏูŠ four ุจุฏู†ุง ุงู„ inner atomorphism ู„ุฏูŠ four

210
00:22:47,710 --> 00:22:53,550
solution

211
00:23:03,160 --> 00:23:08,840
ุชุนุงู„ู‰ ู†ุดูˆู ุงู„ู„ู‰ ู‡ูˆ ุงู„ elements ุงู„ู…ุฎุชู„ูุฉ ุงู„ู„ู‰ ุจุฏู†ุง

212
00:23:08,840 --> 00:23:13,480
ู†ุฌูŠุจู‡ุง ู…ู† ุฎู„ุงู„ ุงู„ elements ุงู„ู„ู‰ ุนู†ุฏู†ุง ู†ุชูƒู„ู… ุงุญู†ุง

213
00:23:13,480 --> 00:23:17,620
ุนู„ู‰ ุงู„ inner ู…ุฏุงู… ุนู„ู‰ ุงู„ inner ูŠุจู‚ู‰ ู†ุชูƒู„ู… ุนู„ู‰

214
00:23:17,620 --> 00:23:23,560
functions ูƒู„ู‡ุง ุจู‡ุฐุง ุงู„ุดูƒู„ ุชู…ุงู…ุŸ ุจุฏู‰ ุฃุฑูˆุญ ุฃุฌูŠุจ ู‡ู†ุง

215
00:23:23,560 --> 00:23:34,730
ูุงูŠ ุงุฑุชุณ ุงุฑุฒูŠุฑูˆ as a function of xุทุจุนุง ุงู„ X ู…ูŠู† ูŠุง

216
00:23:34,730 --> 00:23:41,130
ุดุจุงุจ ุงู„ X ุงูŠ ุนู†ุตุฑ ู…ู† ู‡ุฏูˆู„ ู…ูŠู† ู…ุงูƒุงู† ูŠูƒูˆู† ูŠุจู‚ู‰ ู‡ุฐุง

217
00:23:41,130 --> 00:23:45,870
ู„ูƒู„ ุงู„ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G ูŠุจู‚ู‰ ู‡ุฐุง ุญุณุจ ุงู„

218
00:23:45,870 --> 00:23:52,890
definition ุจุฏู‡ ูŠุณุงูˆูŠ R node X R node inverse ุญุฏ

219
00:23:52,890 --> 00:23:59,030
ููŠูƒู… ูŠู‚ุฏุฑ ูŠู‚ูˆู„ูŠ ู‚ุฏุงุด ุงู„ู†ุงุชุฌุŸูƒุฏุงุดุŸ X ู„ุฃู† ู‡ุฐุง ู‡ูˆ ุงู„

220
00:23:59,030 --> 00:24:02,450
identity element ูˆู…ุนูƒูˆุณ ุงู„ identity element ุงู„

221
00:24:02,450 --> 00:24:06,210
identity element ู†ูุณู‡ ูˆูŠุถุฑุจู‡ ููŠ ุฃูŠ element ุจูŠุนุทูŠู†ุง

222
00:24:06,210 --> 00:24:12,790
ู†ูุณ ุงู„ element ุทูŠุจ ูƒูˆูŠุณ ุงุฐุง ุชุฃุซูŠุฑ ููŠ ุงุฑู†ูˆุฏ ุนู„ู‰

223
00:24:12,790 --> 00:24:17,350
ุฌู…ูŠุน ุฃู†ุงุตุฑ ุฌูŠู‡ ุจูŠุนุทูŠู†ูŠ ุฌู…ูŠุน ุฃู†ุงุตุฑ ุฏูŠ ุญุท ุนู„ู‰ ุดุฌุฑุฉ

224
00:24:17,350 --> 00:24:24,350
ุงู„ุงู† ุจุฏุงุฌุฉ ุงุฎุฏ ููŠ ุงุฑ ู…ูŠุฉ ูˆุชู…ุงู†ูŠู† as a function of

225
00:24:24,350 --> 00:24:33,860
XูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจุฏูˆ ูŠุณุงูˆูŠ R180 X R180 Inverse

226
00:24:33,860 --> 00:24:41,360
ุงู„ุณุคุงู„ ู‡ูˆ ู‚ุจู„ ู…ุณุงูุฑ ุงุนุทูŠุชูƒูˆุง ุงู„ center ุชุจุน ุงู„ D4

227
00:24:41,360 --> 00:24:46,860
ุงูˆ ุงู„ DN ู‚ู„ู†ุง ู„ูƒูˆุง ุงุฐุง ุงู„ N ูุฑุฏูŠ ูŠุจู‚ู‰ ุงู„ center

228
00:24:46,860 --> 00:24:53,340
ู…ุงููŠู‡ ุงู„ุง ุงู„ identity elementูˆุฅุฐุง ุงู„ู€ DN ุงู„ู€ N

229
00:24:53,340 --> 00:24:58,140
ุฒูˆุฌูŠ ูŠุจู‚ู‰ ููŠู‡ุง ุงู„ู€ Identity Element ูˆุงู„ู€ R180 ุตุญูŠุญ

230
00:24:58,140 --> 00:25:02,860
ูˆู„ุง ู„ุฃุŸ ุฅุฐุง ุงู„ู€ R180 ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Center ูŠุนู†ูŠ

231
00:25:02,860 --> 00:25:10,100
ูƒู…ูŠูˆุชุณ ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ D4 ุฅุฐุง ู‡ุฐู‡ ู„ูˆ ุจุฏู„ุชู‡ุง ู‡ู†ุง ุจุตูŠุฑ

232
00:25:10,100 --> 00:25:14,400
X R180 IR Inverse ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ู€ Identity ูŠุจู‚ู‰ ู†ุงุชุฌ

233
00:25:14,400 --> 00:25:15,660
ูƒุฏู‡ ุจุฏู‡ ูŠุนุทูŠู†ุง

234
00:25:19,650 --> 00:25:27,540
ู„ุฃู† ุงู„ู€ R 180 ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Center ุชุจุน ุงู„ู€ D4ุทุจ ู…ู†

235
00:25:27,540 --> 00:25:33,520
ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุฅุฐุง ุงู„ู†ุงุชุฌ ู‡ูˆ ู†ูุณู‡ ู…ุนู†ุงุชู‡ ููŠ ุงุฑ ู†ูˆุช

236
00:25:33,520 --> 00:25:37,200
ุชุฃุซูŠุฑู‡ุง ุนู„ู‰ ุงู„ elements ุจุชุณุงูˆูŠ ููŠ ุงุฑ ู†ูˆุช ุชุฃุซูŠุฑู‡ุง

237
00:25:37,200 --> 00:25:40,920
ุนู„ู‰ ุงู„ุงุฑ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ุชุฃุซูŠุฑู‡ุง ุนู„ู‰ ุงู„ elements ูŠุจู‚ู‰

238
00:25:40,920 --> 00:25:49,640
ุฃุตุจุญ ููŠ ุงุฑ ู†ูˆุช ุจุชุณุงูˆูŠ ููŠ ุงุฑ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ุชู…ุงู… ูŠุจู‚ู‰

239
00:25:49,640 --> 00:25:53,600
ู‡ุฏูˆู„ ููŠ ุงู„ atom morphism ุนู†ุตุฑูŠู† ูˆู„ุง ุนู†ุตุฑ ูˆุงุญุฏ

240
00:25:54,780 --> 00:26:01,440
ุงู†ุตุฑูŠู† ูˆู„ุง ูˆุงุญุฏ ูˆุงุญุฏ ู…ู…ุชุงุฒ ุฌุฏุง ุทูŠุจ ุชุนุงู„ู‰ ู†ุดูˆู ูุงูŠ

241
00:26:01,440 --> 00:26:10,120
R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ุชุซูŠุฑู‡ุง ุนู„ู‰ X ูŠุจู‚ู‰ ู‡ุฐู‡

242
00:26:10,120 --> 00:26:19,700
R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† X R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† inverse ูˆุชุณุงูˆูŠุงูŠุด

243
00:26:19,700 --> 00:26:28,240
ุฑุงูŠูƒ ุงู„ R270 ุจู‚ุฏุฑ ุงูƒุชุจู‡ุง R180 ู…ุถุฑูˆุจุฉ ููŠ R90 ุตุญูŠุญ

244
00:26:28,240 --> 00:26:33,500
ูˆู„ุง ู„ุงุŸู„ุฃู† ู‡ุฐู‡ ู†ูุณู‡ุง ุงู„ rotation ู‡ูˆ ู†ูุณู‡ ู…ุงุนู†ุงู‡ ู…ุด

245
00:26:33,500 --> 00:26:39,960
ู…ุดูƒู„ุฉ ุทูŠุจ ู‡ู†ุง ุงู„ X ุงู„ R ู…ูŠุชูŠู† .. ุงู‡ ู‡ุฐู‡ R ู…ูŠุชูŠู† ูˆ

246
00:26:39,960 --> 00:26:45,220
ุณุจุนูŠู† inverse ุญุณุจ ุงู„ุชุนุฑูŠู ุทุจุนุง ูŠุจู‚ู‰ R ู…ูŠุชูŠู† ูˆ

247
00:26:45,220 --> 00:26:49,120
ุณุจุนูŠู† inverse ููŠ ุงู„ H ู…ุด ุฎู„ูŠู†ูŠ ุงุณุฃู„ูƒูˆุง ุงู„ุณุคุงู„

248
00:26:49,120 --> 00:26:56,640
ุงู„ุชุงู„ูŠ R ุชู„ุชู…ูŠุฉ ูˆ ุณุชูŠู† ูƒุฏู‡ุด ุชุณุงูˆูŠ ูŠุง ุดุจุงุจ ุงุฑู†ูˆุฏ

249
00:26:56,640 --> 00:27:06,420
ุทุจุนุงุทูŠุจ ุงุฑู†ูˆุฏ ู„ูˆ ุถุฑุจุชู‡ุง ููŠ R ุชุณุนูŠู† ุงู†ูุฑุณ ุจูŠุตูŠุฑ ุงู„

250
00:27:06,420 --> 00:27:17,440
R ู…ูŠุชูŠู† ูˆ ุณุจุนูŠู† ุชุณุงูˆูŠ ุงู„ R ุชุณุนูŠู† ุงู†ูุฑุณ ูŠุนู†ูŠ ุถุฑุจุช

251
00:27:17,440 --> 00:27:24,200
ุงู„ุทุฑููŠู† ููŠ ู…ูŠู†ุŸุฑ ุชุณุนูŠู† ุงู†ูุฑุณ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ุงุฑ

252
00:27:24,200 --> 00:27:30,500
ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ุงู†ูุฑุณ ุงู„ุงุฑ ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ุงู†ูุฑุณ ู„ูˆ ุจุฏุฃ

253
00:27:30,500 --> 00:27:35,660
ุงุฎุฏ ุงู„ุงู†ูุฑุณ ู‡ู†ุง ูŠู‚ูˆู„ ู‡ูŠุนุทูŠู†ูŠ ู…ู† ุงู„ุงู†ูุฑุณ ู‡ู†ุง ูŠุจู‚ู‰

254
00:27:35,660 --> 00:27:43,180
ุงู„ุงุฑ ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ุงู†ูุฑุณ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุงุฑ ุชุณุนูŠู† ุทูŠุจ

255
00:27:45,430 --> 00:27:54,010
ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐู‡ ุงู„ R ุงู„ุชูŠ ู‡ูŠ

256
00:27:54,010 --> 00:28:02,850
R ุชุณุนูŠู† inverse ููŠ R ู…ูŠุฉ ูˆุชู…ุงู†ูŠู† inverseุงู„ู€ R 180

257
00:28:02,850 --> 00:28:07,570
ู…ูˆุฌูˆุฏุฉ ู…ุน ุงู„ู€ Center ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุจ ุชู‡ุงุฏูŠ ู…ุนู‡ุฏุด ุจุตูŠุฑ

258
00:28:07,570 --> 00:28:15,670
ุงู„ู€ Identity Element ูŠุจู‚ู‰ ุจุตูŠุฑ ุงู„ู†ุงุชุฌ R 90 X R 90

259
00:28:15,670 --> 00:28:21,410
Inverse ุฃู„ูŠุณ ุชู‡ุงุฏูŠ ุนู„ู‰ ุงู„ุตูŠุบุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง

260
00:28:21,410 --> 00:28:31,640
ู‡ุฐู‡ุŸูŠุจู‚ู‰ ู‡ุฐู‡ ูุงูŠ R ุชุณุนูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ ูุงูŠ R ุชุณุนูŠู† as a

261
00:28:31,640 --> 00:28:39,440
function of X ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ุนู†ุฏ ู‡ู†ุง ู…ูŠู† ูุงูŠ

262
00:28:39,440 --> 00:28:48,640
R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ุจุฏู‡ ุณูˆู‰ ูุงูŠ R ุชุณุนูŠู† ู‡ุฐู‡ ุจุฑูˆุฒู†ุงู‡ุง

263
00:28:48,640 --> 00:28:54,030
ูˆู‡ุฐู‡ ุจุฑูˆุฒู†ุงู‡ุง ุงู„ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุงูŠุจู‚ู‰ ุฎู„ุตู†ุง

264
00:28:54,030 --> 00:28:59,650
ู…ู† R ู†ูˆุฏ ูˆ ู…ู† R ุชุณุนูŠู† ูˆ ู…ู† R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ูˆ ู…ู† R

265
00:28:59,650 --> 00:29:07,710
ู…ูŠุชูŠู† ูˆ ุณุจุนูŠู† ุจุฏู†ุง ู†ุฌูŠ ู„ุงู…ุงู… ู„ูุงูŠ H as a function

266
00:29:07,710 --> 00:29:19,670
of X ูŠุจู‚ู‰ H X H inverse ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุจุงู„ุฏุฌู„ ุงู„

267
00:29:19,670 --> 00:29:26,360
H ุนู†ุฏู†ุงู„ูˆ ุฑูˆุญุช ูุชุญุช ุนู„ู‰ ุงู„ุฌุฏูˆู„ ุตูุญุฉ ูˆุงุญุฏ ูˆ ุชู„ุงุชูŠู†

268
00:29:26,360 --> 00:29:33,100
ุชุงุจุน ุงู„ูƒู„ุชุงุจ ุงู„ู„ุงู…ุงู† ู„ู„ ุฏูŠ ููˆุฑ ุตูุญุฉ ูˆุงุญุฏ ูˆ ุชู„ุงุชูŠู†

269
00:29:33,100 --> 00:29:40,460
ูˆุฑูˆุญ ุชุฏูˆุฑ ุนู„ู‰ ุญ ู…ู…ูƒู† ุชุณุงูˆูŠ ู‡ู„ุงุฌูŠู‡ุง R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู†

270
00:29:40,460 --> 00:29:47,490
ููŠ VูŠุจู‚ู‰ ุฑ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ููŠ V ู‡ูŠ ุงู„ H ุฅุฐุง ู…ู…ูƒู†

271
00:29:47,490 --> 00:29:56,890
ุฃุดูŠู„ู‡ุง ูˆ ุฃูƒุชุจ ุฑ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† V ููŠ ุงู„ X ููŠ ุงู„ R ู…ูŠุฉ

272
00:29:56,890 --> 00:30:05,800
ูˆ ุชู…ุงู†ูŠู† V ู„ูƒู„ inverseุทุจ ู„ูŠุด ูƒุชุจุชู‡ุง ู‡ูŠูƒุŸ ุนุดุงู† ุฃุณู‡ู„

273
00:30:05,800 --> 00:30:10,180
ุนู…ู„ูŠุฉ ุงู„ุงุฎุชุตุงุฑุงุช ูŠุนู†ูŠ ุจุฏูŠ ุฃุญุงูˆู„ ุฃูƒุชุจู‡ุง ุจุฏู„ุงู„ุฉ ู…ู†ุŸ

274
00:30:10,180 --> 00:30:14,560
ุจุฏู„ุงู„ุฉ ุงู„ R180 ูƒูˆู† ุงู„ R180 ููŠ ุงู„ center ุฅุฐุง

275
00:30:14,560 --> 00:30:20,780
ุจุชุฎุชุตุฑู†ูŠ ู†ุต ุงู„ุดูŠุก ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ

276
00:30:20,780 --> 00:30:23,060
R180

277
00:30:25,010 --> 00:30:33,570
ูู‰ V ูู‰ ุงู„ X ู‡ุฐู‡ ุงู„ inverse ุงู„ู„ู‰ V inverse R ู…ูŠุฉ ูˆ

278
00:30:33,570 --> 00:30:40,030
ุชู…ุงู†ูŠู† inverse ุทุจ ู‡ุฐู‡ ู„ูˆ ุฌุจุช ุนู†ุฏู‡ุง ุฏูŠ ุจู‚ู‰ ูƒู… ุจุตูŠุฑ

279
00:30:40,030 --> 00:30:48,770
ุจุงู„ identity ุงูŠุด ุจุตูŠุฑ ุนู†ุฏู†ุง ู‡ู†ุง VX V inverse ูŠุจู‚ู‰

280
00:30:48,770 --> 00:30:57,900
ู‡ุฐู‡ ู…ูŠู† ู‡ุฐู‡ Phi V of XูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ุนู†ุฏูŠ ูุงูŠ

281
00:30:57,900 --> 00:31:06,700
H ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูุงูŠ V ุจู‚ู‰ ุงู„ู„ูŠ ุนู†ุฏูŠ ุฃุฎุฑ ุญุงุฌุฉ ูุงูŠ D

282
00:31:06,700 --> 00:31:14,780
Prime as a function of X ูŠุจู‚ู‰ ู‡ูŠ D Prime X D Prime

283
00:31:14,780 --> 00:31:21,100
Inverseุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ู‰ ุฌุจุช ููŠู‡ุง H ุจุฏู‰ ุฃุฑูˆุญ ุฃุฌูŠุจ

284
00:31:21,100 --> 00:31:28,460
D' ุจุฑูˆุญ ุจูุชุญ ุงู„ุฌุฏูˆู„ ุตูุญุฉ ูˆุงุญุฏ ูˆ ุชู„ุงุชูŠู† ุนู„ู‰ ุงู„ D'

285
00:31:29,220 --> 00:31:35,820
ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰ ุงู„ D' ุจุฏู‰ R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ุนุดุงู† ูŠุฌูŠุจู„ูŠ

286
00:31:35,820 --> 00:31:42,530
D' ุจุตูŠุฑ R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ููŠ DูŠุจู‚ู‰ ุจุดูŠู„ู‡ุง ูˆ ุจูƒุชุจ

287
00:31:42,530 --> 00:31:51,250
ุจุฏุงู„ู‡ุง R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ููŠ D ููŠ X ููŠ ุงู„ R ู…ูŠุฉ ูˆ

288
00:31:51,250 --> 00:31:58,270
ุชู…ุงู†ูŠู† ููŠ D ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…

289
00:31:58,270 --> 00:32:02,370
ุจูŠุตูŠุฑ R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ููŠ D

290
00:32:12,070 --> 00:32:18,930
ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุน ู‡ุฐู‡ ุจู…ูŠู† ุจุงู„ identity element ุชู…ุงู…

291
00:32:18,930 --> 00:32:26,920
ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ู‡ุชุนุทูŠูƒ DX D inverseู‡ุฐู‡ ู‡ูŠ ุนุจุงุฑุฉ ุนู†

292
00:32:26,920 --> 00:32:35,380
main ูุงูŠุฏูŠ of x ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ูุงูŠุฏูŠ prime

293
00:32:35,380 --> 00:32:38,300
ุจุฏู‡ ูŠุณุงูˆูŠ ูุงูŠุฏูŠ

294
00:32:40,110 --> 00:32:45,830
ูŠุจู‚ู‰ ุงู„ุชู…ุงู†ูŠุฉ inner atomorphism

295
00:32:45,830 --> 00:32:54,030
ุตุงุฑูˆุง ูƒุฏู‡ุŸ ุฃุฑุจุนุฉ ูˆู„ูŠุณุช ุชู…ุงู†ูŠุฉ ุงู„ุฃุฑุจุน ุตุงุฑูˆุง ุนู„ู‰

296
00:32:54,030 --> 00:32:55,850
ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ

297
00:33:11,130 --> 00:33:19,170
ูŠุจู‚ู‰ ู‡ู†ุง ุณุง ุงู„ inner atomorphism ู„ D for ู‡ูˆ ุนุจุงุฑุฉ

298
00:33:19,170 --> 00:33:26,130
ุนู† ุงู„ ููŠ R ู†ูˆุช ุทุจุนุง ูŠุณูˆูŠ ููŠ R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ูˆุงู„ุชุงู†ูŠ

299
00:33:26,130 --> 00:33:33,850
ููŠ R ุชุณุนูŠู† ุงู„ู„ูŠ ูŠุณูˆูŠ ููŠ R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ูˆุงู„ุชุงู„ุช

300
00:33:33,850 --> 00:33:39,690
ุงู„ู„ูŠ ู‡ูˆ ููŠ H ูˆุงู„ุฑุงุจุน ุงู„ู„ูŠ ู‡ูˆ main ููŠ D ุจู‡ุฐุง ุงู„ุดูƒู„

301
00:33:40,480 --> 00:33:46,740
ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงู„ inner atomorphism ู„ู…ู†ุŸ ู„ู€G ุงู„ุณุคุงู„ ู‡ูˆ

302
00:33:46,740 --> 00:33:53,380
ู‡ู„ ุงู„ inner atomorphism ู„ู€G ุฃู‚ู„ ู…ู† ุฐู„ูƒ ูˆ ุงู„ู„ู‡ูŠู‡ู…

303
00:33:53,380 --> 00:33:58,720
ุงู„ุฃุฑุจุนุฉ ููŠุด ุบูŠุฑู‡ู… ุจู…ุนู†ู‰ ุฃุฎุฑ ู‡ู„ ุงู„ุฃุฑุจุนุฉ ู‡ุฏูˆู„ ุจู‚ุฏุฑ

304
00:33:58,720 --> 00:34:04,040
ุฃุฎุณุฑู‡ู… ู„ุชู„ุงุชุฉ ูˆู„ุง ู„ุงุชู†ูŠู† ุชุนุงู„ูˆุง ู†ุดูˆููˆุง ู†ุชุฃูƒุฏ ู…ู†

305
00:34:04,040 --> 00:34:09,640
ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ุง ุฃุฏุนูŠ ุฃู† ู‡ุฐู‡ ุงู„ุฃุฑุจุนุฉ are destined

306
00:34:10,700 --> 00:34:21,380
ูŠุจู‚ู‰ ู‡ู†ุง this ุฃูˆ the elements ู„ู‡ five R node ูˆfive

307
00:34:21,380 --> 00:34:29,580
R ุชุณุนูŠู† ูˆfive H and ุงู„ููŠ

308
00:34:29,580 --> 00:34:31,260
ุฏูŠ are destiny

309
00:34:34,120 --> 00:34:38,580
ุฅุฐุง Destinate ู…ุนู†ุงุชู‡ ุฅูŠู‡ุŸ ู…ุนู†ุงุชู‡ ุฅู†ู‡ ูุนู„ุง ุงู„ู€

310
00:34:38,580 --> 00:34:43,080
Inner Atomorphism ููŠู‡ ุงู„ู€D ูˆ ุงู„ู€G ู…ุงููŠุด ููŠู‡ ุฅู„ุง

311
00:34:43,080 --> 00:34:49,600
ุงู„ุฃุฑุจุน ุนู†ุงุตุฑ ู‡ุฏูˆู„ ุฃูˆ ุงู„ุฃุฑุจุน Inner Atomorphism ู…ุดุงู†

312
00:34:49,600 --> 00:34:54,540
ุฃุซุจุชู‡ู… Destinate ูŠูƒููŠู†ูŠ counter example ูˆุงุญุฏ ู„ูƒู„

313
00:34:54,540 --> 00:34:59,670
ูˆุงุญุฏุฉ ููŠู‡ู… ุชุนุงู„ู‰ ู†ุดูˆูุงู„ุงู† ุงู†ุง ุงุฏุนู‰ ุงู†ู‡ู… ู‡ุฐูˆู„

314
00:34:59,670 --> 00:35:06,830
destinect ุงุฐุง ู„ูˆ ุฌูŠุช ู‚ู„ุช ูุงูŠ ุงุฑ ู†ูˆุฏ ูˆ ุจุฏู‡ ุงุฎู„ูŠู‡

315
00:35:06,830 --> 00:35:15,910
ุงุซุฑ ู…ุซู„ุง ุนู„ู‰ ุงุชุด ุงุฎุฏ ุงุชุด ุนุดูˆุงุฆูŠุง ู…ู† ุงู„ D4 ูŠุจู‚ู‰ ู‡ุฐุง

316
00:35:15,910 --> 00:35:23,290
ุจุฏู‡ ูŠุณูˆูŠ ุงุฑ ู†ูˆุฏ ุงุชุด ุงุฑ ู†ูˆุฏ ุงู„ู„ูŠ ู‡ูˆ main ุจ ุงุชุดุงู„ุงู†

317
00:35:23,290 --> 00:35:31,170
ุจุฏุฃ ุงุฎุฏ ูุงูŠ R ุชุณุนูŠู† as a function of H ูŠุจู‚ู‰ ู‡ุฐุง

318
00:35:31,170 --> 00:35:39,850
ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ R ุชุณุนูŠู† H R ุชุณุนูŠู† inverse ูˆ ูŠุณุงูˆูŠ

319
00:35:39,850 --> 00:35:46,370
ุจุฑุถู‡ ุจุฏู‡ ุงุฑุฌุน ู„ู„ุฌุฏูˆู„ R ุชุณุนูŠู† H ุงู„ู„ูŠ ููŠ ุตูุญุฉ ูˆุงุญุฏุฉ

320
00:35:46,370 --> 00:35:55,890
ูˆ ุชู„ุงุชูŠู† R ุชุณุนูŠู† HR ุชุณุนูŠู† ุชุถุฑุจู‡ุง ููŠ H ุจูŠุทู„ุน D

321
00:35:55,890 --> 00:36:02,590
Prime ูŠุจู‚ู‰ ู‡ุฐูŠ D Prime R ุชุณุนูŠู† Inverse ุงู„ู„ูŠ ู‡ูŠ

322
00:36:02,590 --> 00:36:09,250
ุจู…ูŠู† ุจR ู…ูŠุชูŠู† ูˆุงู„ุณุจุนูŠู† ูŠุจู‚ู‰ R ู…ูŠุชูŠู† ูˆุงู„ุณุจุนูŠู† ุงู„ D

323
00:36:09,250 --> 00:36:13,950
Prime ููŠ ุงู„ R ู…ูŠุชูŠู† ูˆุงู„ุณุจุนูŠู† ุนู†ุฏูƒ D Prime ููŠ ุงู„ R

324
00:36:13,950 --> 00:36:20,340
ู…ูŠุชูŠู† ูˆุงู„ุณุจุนูŠู† ุงู„ู„ูŠ ู‡ูˆ ุจูŠุนุทูŠู„ูƒ V ุจูŠุนุทูŠู„ูƒ Vู‡ุฐู‡

325
00:36:20,340 --> 00:36:29,460
ุงุนุทุชู†ู‰ H ูˆู‡ุฐู‡ ุงุนุทุชู†ู‰ V ุฅุฐุง ู„ุง ูŠู…ูƒู† ู„ู„ R ู„ู„ FI R

326
00:36:29,460 --> 00:36:37,460
ุชุณุนูŠู† ุงู†ู‡ ูŠุณุงูˆูŠ ู…ูŠู† ุงู†ู‡ ูŠุณุงูˆูŠ ุงู„ FI R ู†ูˆุช ุงู„ุงู†

327
00:36:37,460 --> 00:36:45,240
ุจุงู„ู…ุซู„ ู„ูˆ ุฌูŠุช ู‚ูˆู„ุช FI R ุชุณุนูŠู† ุจุฏูŠ ุงุจุญุซู‡ุง ู…ุน ู…ูŠู† ู…ุน

328
00:36:45,240 --> 00:36:50,710
FI H ุจุฏูŠ ุงุซุจุช ุงู†ู‡ ู…ููŠุด ุชุณุงูˆูŠ ููŠู…ุง ุจูŠู†ู‡ู…ุงูŠุจู‚ู‰ ููŠ ุงุฑ

329
00:36:50,710 --> 00:36:57,030
ุชุณุนูŠู† ู…ุซู„ุง ู„ูˆ ุฎู„ุชู‡ุง ุชุฃุซุฑ ุนู„ู‰ ุงุฑ ุชุณุนูŠู† ูŠุจู‚ุงุด ุจูŠุตูŠุฑ

330
00:36:57,030 --> 00:37:05,510
ุงุฑ ุชุณุนูŠู† ุงุฑ ุชุณุนูŠู† ุงุฑ ุชุณุนูŠู† ุงู†ูุฑุณ ุงู„ู„ูŠ ู‡ูˆ ุจู‚ุฏุงุด ุงุฑ

331
00:37:05,510 --> 00:37:14,770
ุชุณุนูŠู† ุงู„ุงู† ุจุฏูŠ ุงู†ุง ุงุฎุฏ ููŠ ุงุชุดุฑ ุชุณุนูŠู† ูŠุจู‚ู‰ ู‡ุฐุง

332
00:37:14,770 --> 00:37:24,750
ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ H R ุชุณุนูŠู† H inverse ูŠุจู‚ู‰

333
00:37:24,750 --> 00:37:30,090
H inverse Y ูŠุณุงูˆูŠ ุจุงู„ุฏุงุฌู„ ุงู„ H R ุชุณุนูŠู† ุจุฑุถู‡ ู…ู†

334
00:37:30,090 --> 00:37:37,710
ุตูุญุฉ ูˆุงุญุฏุฉ ูˆุชู„ุงุชูŠู†ุจุฏูŠ ู…ู†ุŸ ุจุฏูŠ ุงู„ H R ุชุณุนูŠู† ุนู†ุฏูƒ ุงู„

335
00:37:37,710 --> 00:37:46,570
H R ุชุณุนูŠู† ุงู„ู„ูŠ ู‡ูŠ ุจ D ุฏูŠ ุฏูŠ ุทุจ ูˆ ุงู„ H ุงู†ูุฑุณ ู…ุด ู‡ูŠ

336
00:37:46,570 --> 00:37:54,720
H ูŠุง ุดุจุงุจ ูˆู„ุง ู„ุงุŸ ุณูƒุช ุงู„ุดุนุจุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡

337
00:37:54,720 --> 00:37:59,260
ู‡ูˆ ุงู„ุฑุงุญุฉ H ุชุฑุจูŠู‡ุง ุชุณุงูˆูŠ V ุชุฑุจูŠู‡ุง ุชุณุงูˆูŠ D ุชุฑุจูŠู‡ุง

338
00:37:59,260 --> 00:38:03,460
ุชุณุงูˆูŠ D ุชุฑุจูŠู‡ุง ุชุณุงูˆูŠ ุงู„ identity ู‚ูˆู„ู†ุง ูŠุจู‚ู‰ ุงู„ู€H

339
00:38:03,460 --> 00:38:06,900
ูˆุงู„ู€H inverse DD inverse VV inverse D prime ูŠุง D

340
00:38:06,900 --> 00:38:10,480
prime inverseุŒ ู…ุธุจูˆุทุŸ ุฅุฐุง ุงุดูŠู„ุชู‡ุง ูˆุญุทูŠุช ู‚ูŠู…ุชู‡ุงุŒ

341
00:38:10,480 --> 00:38:16,680
ุงู„ุขู† ุจุฏูŠ ุฃุดูˆู ุงู„ู€DH ู…ูŠู† ู‡ูŠุŒ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ู„ู€D ููŠ HุŒ

342
00:38:16,680 --> 00:38:25,460
D ููŠ H ุจุงู„ู„ูŠ ุจู‚ู‰ 270ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ุงุฑ ู…ุชูŠู†

343
00:38:25,460 --> 00:38:30,980
ูˆุณุจุนูŠู† ูŠุจู‚ู‰ ู…ู† ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู„ูŠ

344
00:38:30,980 --> 00:38:37,780
ู‡ูˆ ูุงูŠ ุงุฑ ุชุณุนูŠู† ู„ุง ูŠู…ูƒู† ุงู† ุชุณุงูˆูŠ ุงู„ูุงูŠ ุงุชุด ุงู„ู„ูŠ

345
00:38:37,780 --> 00:38:43,590
ุนู†ุฏู†ุง ุจู‚ู‰ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู…ูŠู† ุจู‚ู‰ ุงู„ูุงูŠุฏูŠู†ุงู„ุงู† ุงุญู†ุง

346
00:38:43,590 --> 00:38:47,850
ุจูŠุงู†ู†ุง ู‡ู‰ ุงู„ุชู†ุชูŠู† ุงู„ุงูˆู„ู‰ ู†ูŠุงุชู‰ ูˆ ู‡ู‰ ุงู„ุชู†ุชูŠู†

347
00:38:47,850 --> 00:38:53,850
ุงู„ุชุงู†ูŠุงุช ูˆ ู‡ู‰ ุงู„ุชู†ุชูŠู† ุงู„ู„ู‰ ุจุนุถู‡ู… ูุงูŠ R ุชุณุนูŠู† ุจุฑุถู‡

348
00:38:53,850 --> 00:38:59,770
ุจุฏู‡ ูŠุฎู„ู‰ ูŠุฃุซุฑ ุนู„ู‰ R ุชุณุนูŠู† ุงุนุทุงู†ู‰ R ุชุณุนูŠู† itself

349
00:38:59,770 --> 00:39:08,140
ุจุฏู‡ ุงุฎุฏ ุงุฎุฑ ูˆุงุญุฏุฉ ูุงูŠ Dู„ู…ุง ุชุฃุซุฑ ุนู„ู‰ R ุชุณุนูŠู† ูŠุจู‚ู‰

350
00:39:08,140 --> 00:39:16,660
ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ DR ุชุณุนูŠู† D inverseู‡ูˆ ูŠุณุงูˆูŠ ุจุฏูŠ

351
00:39:16,660 --> 00:39:22,760
ุฃุฌูŠุจ ู„ู‡ ุงู„ D R ุชุณุนูŠู† ู…ู† ุงู„ุฌุฏูˆู„ ุงู„ D R ุชุณุนูŠู† ุนุจุงุฑุฉ

352
00:39:22,760 --> 00:39:30,140
ุนู† V ูŠุจู‚ู‰ ู‡ุฐู‡ V ูˆ ุงู„ D inverse ู‡ูŠ ุนุจุงุฑุฉ ุนู† D ุจุฏูŠ

353
00:39:30,140 --> 00:39:38,300
ุฃุฌูŠุจ ู„ู‡ ุงู„ V ููŠ D ูŠุจู‚ู‰ ุงู„ V ููŠ D ุงู„ู„ูŠ ูŠุจู‚ู‰ R ู…ูŠุชูŠู†

354
00:39:38,300 --> 00:39:46,120
ูˆุณุจุนูŠู†ูŠุจู‚ู‰ ู‡ุฐู‡ ุชุณุงูˆูŠ R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ู…ู„ูŠ ุงุชู†ูŠู† ู‡ุฏูˆู„

355
00:39:46,120 --> 00:39:54,260
ุจุณ ุชู†ุชุฌ ุงู† ุงู„ูุงูŠ R ุชุณุนูŠู† ู„ุง ูŠู…ูƒู† ุงู† ุชุณุงูˆูŠ ุงู„ูุงูŠ D

356
00:39:55,610 --> 00:40:00,970
ุงู„ู„ูŠ ุนู…ู„ุชู‡ ุงู†ุง ู„ุณู‡ ุดุบู„ุฉ ุงุซุจุช ุงู† ุงู„ู€ Phi R ุชุณุนูŠู† ู„ุง

357
00:40:00,970 --> 00:40:05,030
ุจุชุณุงูˆูŠ ู‡ุฐู‡ ูˆู„ุง ุจุชุณุงูˆูŠ ู‡ุฐู‡ ูˆู„ุง ุจุชุณุงูˆูŠ ู‡ุฐู‡ ุงู„ุงู† ุงู†ุช

358
00:40:05,030 --> 00:40:09,710
ุจูƒุชุจ ุงู† ุงู„ Phi H ุจุณุงูˆูŠุด ู‡ุฐู‡ Phi H ุจุณุงูˆูŠุด ู‡ุฐู‡ ูˆ Phi

359
00:40:09,710 --> 00:40:14,590
H ุจุณุงูˆูŠุด ู‡ุฐู‡ ูˆ ุจุนุฏูŠู† Phi D ูŠุจู‚ู‰ ุจุฑูˆุญ ุจู‚ูˆู„ู‡

360
00:40:14,590 --> 00:40:15,910
similarly

361
00:40:18,410 --> 00:40:28,530
similarly for ุงู„ู„ูŠ ู‡ูˆ ูุงูŠ ุงุชุด and ูุงูŠ ุฏูŠ thus ูˆ

362
00:40:28,530 --> 00:40:35,850
ู‡ูƒุฐุง ุงู„ inner atom morphism ุงู„ู„ูŠ ุฏูŠ for ู‡ูˆ ุนุจุงุฑุฉ

363
00:40:35,850 --> 00:40:46,050
ุนู† ุงู„ูุงูŠ ุงุฑ ู†ูˆุฏ ูˆ ุงู„ูุงูŠ ุงุฑ ุชุณุนูŠู† ูˆ ุงู„ูุงูŠ ุงุชุด ูˆ

364
00:40:46,050 --> 00:40:55,540
ุงู„ูุงูŠ ุฏูŠูู‚ุท ู„ุง ุบูŠุฑ ุทูŠุจ ุจุฏูŠ ุฃุณุฃู„ ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠ ุฃู†ุง

365
00:40:55,540 --> 00:41:01,360
ุฃุฎุฏ ุชุฃุซูŠุฑ ุงู„ R node ุนู„ู‰ H ูˆ R node ุนู„ู‰ H ุทุจ ู„ูˆ

366
00:41:01,360 --> 00:41:08,060
ุบูŠุฑุช ุงู„ H ู‡ุฐู‡ ูŠู…ูƒู† ูŠุทู„ุน ุงุชู†ูŠู† ุฒูŠ ุจุนุถ ุงู‡ ุฏูŠุฑ ุจุงู„ูƒ

367
00:41:08,060 --> 00:41:13,370
ุงุตุจุฑ ุดูˆูŠุฉ ุงุตุจุฑ ุนู„ูŠุง ุดูˆูŠุฉุงู†ุง ู‡ู†ุง ุงุซุจุช ู„ู‡ ุงู† ุงู„ุงุฑุฏ

368
00:41:13,370 --> 00:41:18,690
ู†ูˆุฏ ุงู„ุงุฑุฏ ู†ูˆุฏ ู‡ูŠ ุงู„ุงุฑุฏ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ุนู„ู‰ ู…ูŠู† ุนู„ู‰

369
00:41:18,690 --> 00:41:25,270
ุงูƒุณ ู‡ู„ ุงู„ X ุงุฎุชุฑุช ุฑู…ุฒ ู…ุนูŠู† ูˆู„ุง ุฌูŠุช ุนู„ู‰ ุชู…ุงู†ูŠุฉ ุฑู…ูˆุฒ

370
00:41:25,270 --> 00:41:30,770
ุนู„ู‰ ุชู…ุงู†ูŠุฉ ู…ู…ุชุงุฒ ุงุฐุงุฅุฐุง ุฃู†ุง ู„ู…ุง ุฃู‚ูˆู„ ู‡ุฐู‡ ู„ุง ุชุณุงูˆูŠ

371
00:41:30,770 --> 00:41:36,190
ู‚ุฏ ุชุณุงูˆูŠ ุนู„ู‰ ุจุนุถ ุงู„ุฑู…ูˆุฒ ูˆู„ุง ุชุณุงูˆูŠ ุนู„ู‰ ุงู„ุจุนุถ ุงู„ุขุฎุฑ

372
00:41:36,190 --> 00:41:41,050
ูŠุจู‚ู‰ ุฃู†ุง ุจุณ ุฌุจุช counter example ุฃู†ู‡ุง ู„ุง ุชุณุงูˆูŠ in

373
00:41:41,050 --> 00:41:46,430
general ู„ูƒู† ู‚ุฏ ูŠุญุฏุซ ุชุณุงูˆูŠ ุขุฎุฑ ู„ุง ู…ุดูƒู„ุฉ ููŠ ุฐู„ูƒ ู„ุฃู†

374
00:41:46,430 --> 00:41:52,620
ุฃู†ุง ุจุฏูŠ ุนุฏู… ุงู„ุชุณุงูˆูŠ ูŠูƒูˆู† ุนู„ู‰ ุงู„ูƒู„ ุจู„ุง ุงุณุชุซู†ุงุกุงุฐุง

375
00:41:52,620 --> 00:41:58,260
ู„ูˆ ู„ุฌูŠุช ุฑู…ุฒ ูˆุงุญุฏ ู…ู† ุงู„ุชู…ุงู†ูŠุฉ ุงู„ุชุณุงูˆูŠ ุบูŠุฑ ุญุงุตู„ ุฒูŠ

376
00:41:58,260 --> 00:42:04,160
ู…ุง ุดูˆูุช ู‡ู†ุง ูŠุจู‚ู‰ ู‡ุฏูˆู„ ูŠู…ูƒู† ุงู† ูŠุชุณุงูˆู‰ ุฑุบู… ุงู† ู‡ู…

377
00:42:04,160 --> 00:42:08,680
ู…ู…ูƒู† ูŠุชุณุงูˆู‰ ุนู„ู‰ ุจุนุถ ุงู„ุนู†ุงุตุฑ ู„ูƒู† in general ุนู„ู‰ D4

378
00:42:08,680 --> 00:42:15,720
ูƒู„ู‡ุง ุจุญุตู„ุด ุชุณุงูˆูŠ ูˆุงุถุญ ูƒู„ุงู…ูŠุŸ ุงูŠูˆุฉ ู…ุด ุณุงู…ุน ุงูŠุด

379
00:42:15,720 --> 00:42:18,220
ุจุชู‚ูˆู„ ู‡ู„ุตูˆุชูƒ

380
00:42:23,350 --> 00:42:24,650
ู…ูŠู† ุงู„ู…ุชุณุงูˆูŠู†ุŸ

381
00:42:33,630 --> 00:42:38,550
ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ุงู†ุง ุจู‚ูˆู„ูƒ ุงู†ู‡ ู…ู…ูƒู† ูŠุญุตู„ ุชุณุงูˆูŠ ู„ูƒู†

382
00:42:38,550 --> 00:42:42,710
ุงุฐุง ุจุฏูƒ ุงู„ุชุณุงูˆูŠ ุนู„ู‰ ุฌู…ูŠุน ุงู„ุนู†ุงุตุฑ ูˆู„ูŠุณ ุนู„ู‰ ุจุนุถู‡ุง

383
00:42:42,710 --> 00:42:47,130
ุนุดุงู† ูŠุญุตู„ ุงู„ุชุณุงูˆูŠ ุทุจุนุง ุงุฐุง ุงู†ุง ู…ู† ุงู„ุชู…ุงู† ุนู†ุงุตุฑ

384
00:42:47,130 --> 00:42:52,650
ูุจุนุฏ if ู„ูˆ ู„ุฌูŠุช ุนู†ุตุฑ ูˆุงุญุฏ ุงู„ุชุณุงูˆูŠ ุบูŠุฑ ุญุงุตู„ ุงุฐุง in

385
00:42:52,650 --> 00:42:56,670
general ุงู„ุชุณุงูˆูŠ ุบูŠุฑ ุญุงุตู„ู…ุดุงู† ูŠูƒูˆู† ุชุณุงูˆูŠ ุจุฏูŠ ูŠูƒูˆู†

386
00:42:56,670 --> 00:43:02,510
ู„ุฌู…ูŠุน ุงู„ุนู†ุงุตุฑ X ูŠุนู†ูŠ ุฌู…ูŠุน ุนู†ุงุตุฑ D4 ุงู„ุซู…ุงู†ูŠุฉ ุจู„ุง

387
00:43:02,510 --> 00:43:06,710
ุงุณุชุซู†ุงุก ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฏูˆู„ ุนู†ุงุตุฑ ุงู„ inner

388
00:43:06,710 --> 00:43:11,790
automorphism ุชุจุนุช ู…ู†ู‡ู… ุชุจุนุงุช ุงู„ D4 ุงู„ู„ูŠ ู‡ูˆ ุทู„ุจู‡ู…

389
00:43:11,790 --> 00:43:18,570
ูˆุจุงู„ุชุงู„ูŠ ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ุณุคุงู„ ู†ู†ุชู‚ู„ ุงู„ุขู† ุฅู„ู‰ ุณุคุงู„

390
00:43:20,250 --> 00:43:24,970
ุงู„ุณุคุงู„ ุงู„ุขุฎุฑ ูˆู‡ูˆ very important ูˆ ู„ูˆ ุงู†ู‡ ู„ู… ูŠุจู‚ู‰

391
00:43:24,970 --> 00:43:45,030
ู„ู‡ ูˆู‚ุช ุงู„ุณุคุงู„ ุงู„ุขุฎุฑ ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุฎู„ูŠู‡

392
00:43:45,030 --> 00:43:47,330
ุจู„ูƒู† ูƒู…ุงู† example

393
00:43:51,320 --> 00:44:02,000
example ุจู‚ูˆู„ ุงู„ูƒู…ุจูŠูˆุช ุงุญุณุจู„ูŠ ุงู„ atomorphism ู„ z

394
00:44:02,000 --> 00:44:04,080
ู…ู†ูŠู† ู„ z ุนุดุฑุฉ

395
00:44:12,500 --> 00:44:17,500
ุฃู†ุง ุจุฏูŠ ุงุญุณุจ ู„ู‡ ูƒู„ ุงู„ุงุชูˆู…ูˆุฑูุฒู… ู„ู€ Z10 ูŠุนู†ูŠ ุงู†ุง ุจุฏูŠ

396
00:44:17,500 --> 00:44:24,460
function ู…ู† Z10 ุฅู„ู‰ Z10 ุชุจู‚ู‰ ูˆุงู†ุช ูˆุงู† ูˆุงู†ุช ูˆ ุชุฎุฏู…

397
00:44:24,460 --> 00:44:29,800
ุฎุงุตูŠุฉ ู…ู† ุงู„ู€ isomorphism ูƒู„ function ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ

398
00:44:29,800 --> 00:44:35,480
ุจุชุจู‚ู‰ ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ููŠ ุงู„ุงุชูˆู…ูˆุฑูุฒู… ู„ู…ูŠู†ุŸ ู„ู€ Z10 ุทุจุนุง

399
00:44:35,480 --> 00:44:41,590
ู‡ู†ุซุจุช ุงู† ู‡ุฏูˆู„ ุฃุฑุจุนุฉ ูู‚ุท ู„ุบูŠุฑูˆู‡ุฐุง ู…ุง ุณูŠูƒูˆู† ููŠ

400
00:44:41,590 --> 00:44:45,690
ุงู„ู…ุญุงุถุฑุฉ ุจุนุถ ุงู„ุธู‡ุฑ ู„ุฅู†ู‡ ู…ุงุถู„ุด ู…ุนุงู†ุง ูˆุงุฌุฏ ุฅู„ุง ุชู…ุงู…ุŸ

401
00:44:45,690 --> 00:44:49,230
ู‡ุฐุง ุฃู†ุง ุจุบุดุดูƒ ู…ู† ุงู„ุญูŠู† ุฅุฐุง ู…ุนุงูƒ ุงู„ูƒุชุงุจ ู…ูˆุฌูˆุฏุฉ ููŠ

402
00:44:49,230 --> 00:44:53,890
ุงู„ูƒุชุงุจ ุชู…ุฑ ุนู„ูŠู‡ุง ูˆู„ู† ุชูู‡ู… ู…ู†ู‡ุง ุฅู„ุง ุงู„ู‚ู„ูŠู„ ุฃู†ุง

403
00:44:53,890 --> 00:44:58,290
ู…ุชุฃูƒุฏ ู…ุด ู‡ุชูู‡ู… ุฅู† ู‡ูˆ ูƒุชุงุจ ุฅู„ุง ุงู„ู‚ู„ูŠู„ ู„ูƒู† ุงู† ุดุงุก

404
00:44:58,290 --> 00:45:02,510
ุงู„ู„ู‡ ุจู†ูˆุถุญู‡ุง ู„ูƒ ูˆ ุจู†ูู‡ู…ู‡ุง ู„ูƒ ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‚ุงุฏู…ุฉ

405
00:45:02,510 --> 00:45:04,170
ุงู† ุดุงุก ุงู„ู„ู‡ ูŠุนุทูŠูƒูˆุง ุงู„ุนููˆ