|
1 |
|
00:00:00,000 --> 00:00:01,260 |
|
ู
ูุณููู |
|
|
|
2 |
|
00:00:19,490 --> 00:00:23,670 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุนูุฏ ุงูุขู ูุฅูู
ุงู ู
ุง ุงุจุชุฏุฃูุง |
|
|
|
3 |
|
00:00:23,670 --> 00:00:28,950 |
|
ูู ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ ููู section 5-7 ุงูุฐู ูุชุญุฏุซ ุนู |
|
|
|
4 |
|
00:00:28,950 --> 00:00:32,350 |
|
ุงููundetermined coefficients ุงููู ูู ุทุฑููุฉ |
|
|
|
5 |
|
00:00:32,350 --> 00:00:38,110 |
|
ุงูู
ุนุงู
ูุงุช ุงูู
ุฌูููุฉ ูุญู ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุจูุญู ุจูุฐู |
|
|
|
6 |
|
00:00:38,110 --> 00:00:42,370 |
|
ุงูุทุฑููุฉ ุฅุฐุง ุชุญูู ูู ุงูู
ุนุงุฏูุฉ ุฃู
ุฑุงู ุงูุฃู
ุฑ ุงูุฃูู |
|
|
|
7 |
|
00:00:42,370 --> 00:00:48,210 |
|
ูุงูุช ุงูู
ุนุงู
ูุงุช ูููุง ุซูุงุจุช ููู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุงูุฃู
ุฑ |
|
|
|
8 |
|
00:00:48,210 --> 00:00:53,450 |
|
ุงูุซุงูู ุดูู ุงูู F of X ูุจูู ุนูู ุดูู ู
ุนูู ู
ุง ูู ูุฐุง |
|
|
|
9 |
|
00:00:53,450 --> 00:00:57,810 |
|
ุงูุดููุ ุฃุญุฏ ุซูุงุซุฉ ุฃู
ูุฑ ุงูุฃู
ุฑ ุงูุฃูู ุฃู ูููู polynomial |
|
|
|
10 |
|
00:00:57,810 --> 00:01:01,930 |
|
ุงูุฃู
ุฑ ุงูุซุงูู polynomial ูู exponential ุงูุฃู
ุฑ |
|
|
|
11 |
|
00:01:01,930 --> 00:01:07,170 |
|
ุงูุซุงูุซ polynomial ูู exponential ูู sin x ุฃู cos x |
|
|
|
12 |
|
00:01:07,170 --> 00:01:12,390 |
|
ุฃู ู
ุฌู
ูุนูู
ุง ุฃู ุงููุฑู ููู
ุง ุจูููู
ุง ูุนุทููุง ุนูู ุฐูู ูู |
|
|
|
13 |
|
00:01:12,390 --> 00:01:17,270 |
|
ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ู
ุซุงููู ููุฐุง ูู ุงูู
ุซุงู ุฑูู
ุซูุงุซุฉ ูุจูู |
|
|
|
14 |
|
00:01:17,270 --> 00:01:21,270 |
|
ุจุฏูุง ูุญู ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุงููู ุนูุฏูุง ูุฐู ุฐูุฑูุง |
|
|
|
15 |
|
00:01:21,270 --> 00:01:24,830 |
|
ูู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุจูุฌุฒุฆูุง ุฅูู ุฌุฒุฆูู ุจูุงุฎุฏ ุงูู |
|
|
|
16 |
|
00:01:24,830 --> 00:01:28,730 |
|
homogeneous ูู
ู ุซู
ุงูู non homogeneous differential |
|
|
|
17 |
|
00:01:28,730 --> 00:01:34,790 |
|
equation ูุจูู ุจุฏุงุฌู ุฃูููู ุงูุชุฑุถ ุฃู Y ุชุณุงูู E ุฃุณ RX |
|
|
|
18 |
|
00:01:34,790 --> 00:01:45,450 |
|
ุจูู solution of the homogeneous differential |
|
|
|
19 |
|
00:01:45,450 --> 00:01:51,890 |
|
equation ุงููู ูู ุงูู
ุนุงุฏูุฉ ุงูุชุงููุฉ Y W Prime ุฒุงุฆุฏ Y |
|
|
|
20 |
|
00:01:51,890 --> 00:01:57,450 |
|
ูุณุงูู Zero then the characteristic equation |
|
|
|
21 |
|
00:02:12,070 --> 00:02:18,010 |
|
ุงูุญู ุงูู
ุชุฌุงูุณ ูุจูู |
|
|
|
22 |
|
00:02:22,280 --> 00:02:32,080 |
|
The Homogeneous Differential Equation is ูุณุงูู |
|
|
|
23 |
|
00:02:32,080 --> 00:02:40,580 |
|
ูุณุงูู ูุณุงูู |
|
|
|
24 |
|
00:02:40,580 --> 00:02:44,700 |
|
ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู |
|
|
|
25 |
|
00:02:44,700 --> 00:02:45,880 |
|
ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู |
|
|
|
26 |
|
00:02:45,880 --> 00:02:47,560 |
|
ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู |
|
|
|
27 |
|
00:02:47,560 --> 00:02:47,620 |
|
ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู ูุณุงูู |
|
|
|
28 |
|
00:02:47,620 --> 00:02:51,060 |
|
ูุณุงูู ูุณุงูู |
|
|
|
29 |
|
00:02:51,060 --> 00:02:56,550 |
|
ูุจูู ุฃุฑูุญ ุฃุฏูุฑ ุนูู particular solution ูุญู |
|
|
|
30 |
|
00:02:56,550 --> 00:03:01,730 |
|
ุงูู
ุนุงุฏูุฉ ุงููู ูู non homogeneous ูุจุงุฌู ุจูููู the |
|
|
|
31 |
|
00:03:01,730 --> 00:03:07,970 |
|
particular solution |
|
|
|
32 |
|
00:03:07,970 --> 00:03:17,010 |
|
of the Differential equation start ูุจุฑูุญ ุงููู ููู |
|
|
|
33 |
|
00:03:17,010 --> 00:03:24,150 |
|
ุงูุฃุณุงุณูุฉ ูุฐู ุจุณู
ููุง star (S) ู
ุฏููู ุงูุฑู
ุฒ YP ูุจุฏู |
|
|
|
34 |
|
00:03:24,150 --> 00:03:31,510 |
|
ุจููู ูุชุงูู X to the power S V ุจุฃุฌู ุนูู ุดูู ุงููู ูู |
|
|
|
35 |
|
00:03:31,510 --> 00:03:35,650 |
|
ุงูุฏุงูุฉ ุงููู ุนูุฏูุง ูุฐู ุฑูู
ูู sign ูุนูู polynomial |
|
|
|
36 |
|
00:03:35,650 --> 00:03:39,790 |
|
ู
ู ุงูุฏุฑุฌุฉ ุงูุตูุฑูุฉ ู
ุถุฑูุจุฉ ูู sign ุฅุฐุง ุจุฏู ุฃูุชุจ |
|
|
|
37 |
|
00:03:39,790 --> 00:03:43,630 |
|
polynomial ู
ู ุงูุฏุฑุฌุฉ ุงูุตูุฑูุฉ ูู sign ุฒุงุฆุฏ |
|
|
|
38 |
|
00:03:43,630 --> 00:03:49,090 |
|
polynomial ูู cosine ูุจูู ุจูุฏุฑ ุฃููู ูุฐู ุนุจุงุฑุฉ ุนู a |
|
|
|
39 |
|
00:03:49,090 --> 00:03:55,610 |
|
ูู cosine ุงูู x ุฒุงุฆุฏ b ูู sine ุงูู x ุจุงูุดูู ุงููู |
|
|
|
40 |
|
00:03:55,610 --> 00:04:04,280 |
|
ุนูุฏูุง ูุฐุง ุนูุฏู
ุง ุฃุจุญุซ ุนู ููู
ุฉ S ูู ูู 0 ุฃู 1 ุฃู 2 ุฃู |
|
|
|
41 |
|
00:04:04,280 --> 00:04:06,980 |
|
3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู |
|
|
|
42 |
|
00:04:06,980 --> 00:04:10,500 |
|
3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู |
|
|
|
43 |
|
00:04:10,500 --> 00:04:10,560 |
|
3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู |
|
|
|
44 |
|
00:04:10,560 --> 00:04:10,600 |
|
3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู |
|
|
|
45 |
|
00:04:10,600 --> 00:04:11,400 |
|
3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู |
|
|
|
46 |
|
00:04:11,400 --> 00:04:11,720 |
|
3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู |
|
|
|
47 |
|
00:04:11,720 --> 00:04:21,600 |
|
3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู 3 ุฃู |
|
|
|
48 |
|
00:04:24,720 --> 00:04:28,780 |
|
ุจูุงุญุฏ ูุดูู ูู ุญุทูุชูุง ุจูุงุญุฏ ุจูุธู ููู ุชุดุงุจู ููุง ุจูููู |
|
|
|
49 |
|
00:04:28,780 --> 00:04:34,980 |
|
ุงูุชูู ูุฐุง ุงูุชุดุงุจู ุฅุฐุง ูู ุญุทูุช S ุจูุงุญุฏ ุจูุตูุฑ AX Cos |
|
|
|
50 |
|
00:04:34,980 --> 00:04:41,400 |
|
ูููุง BX Sin ูู ูู ุฃู term ููุง ูุดุจู ุฃู term ููุง |
|
|
|
51 |
|
00:04:41,400 --> 00:04:48,920 |
|
ุทุจุนุง ูุฃ ูุจูู ููุง here ููุง ุงูู S ุชุณุงูู ูุงุญุฏ ูู
ุง ุญุท ุงูู |
|
|
|
52 |
|
00:04:48,920 --> 00:04:53,740 |
|
S ุชุณุงูู ูุงุญุฏ ุจูููู ุฃุฒููุง ุงูุดุจู ุงููู ู
ูุฌูุฏ ุชู
ุงู
ุง ู
ุง |
|
|
|
53 |
|
00:04:53,740 --> 00:04:56,880 |
|
ุจูู ุงูู complementary solution ู ุงูู particular |
|
|
|
54 |
|
00:04:56,880 --> 00:05:02,600 |
|
solution ูุจูู ุจูุงุก ุนููู ููุตุจุญ YP ุนูู ุงูุดูู ุงูุชุงูู |
|
|
|
55 |
|
00:05:02,600 --> 00:05:12,510 |
|
AX ูู cosine X ุฒุงุฆุฏ BX ูู sine X ุงูุขู ุจุฏูุง ูุญุฏุฏ |
|
|
|
56 |
|
00:05:12,510 --> 00:05:19,010 |
|
ููู
ุชูู ุซูุงุจุช ุงูู A ู ุงูู B ูุฐูู ุจุฏู ุงุดุชู ู
ุฑุฉ ู ุงุซููู |
|
|
|
57 |
|
00:05:19,010 --> 00:05:26,590 |
|
ู ุฃุนูุถ ูู ุงูู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ูุจูู ุจุฏู ุฃุฎุฏ Y P Prime |
|
|
|
58 |
|
00:05:26,930 --> 00:05:34,310 |
|
ูุฐู ุงูู
ุดุชูุฉ ุญุตู ุถุฑุจ ุฏุงูุชูู ูุจูู a ูู cos x ูุงูุต ax |
|
|
|
59 |
|
00:05:34,310 --> 00:05:41,070 |
|
ูู sin x ุฒุงุฆุฏ ูู
ุงู ูุฐู ุญุตู ุถุฑุจ ุฏุงูุชูู ูุจูู b ูู |
|
|
|
60 |
|
00:05:41,070 --> 00:05:50,100 |
|
sin x ุฒุงุฆุฏ bx ูู cos x ูุจูู ุงุดุชููุง ููู ู
ู X ู Cos X |
|
|
|
61 |
|
00:05:50,100 --> 00:05:56,040 |
|
ู X ู Sin X ูุญุงุตู ุถุฑุจ ุฏุงูุชูู ูุฐุง ุญุตููุง ุนูู Y' ุทุจุนุง |
|
|
|
62 |
|
00:05:56,040 --> 00:06:00,020 |
|
ู
ุง ููุด ููุง term ุฒู ุงูุซุงูู ูุจูู ุจูุฎูู ูู ุดูุก ุฒู ู
ุง |
|
|
|
63 |
|
00:06:00,020 --> 00:06:06,500 |
|
ูู ุจุฏูุง ูุฑูุญ ูุฌูุจ YPW' ูุจูู ุจุฏูุง ูุดุชู ูุฐู ุจุงูุณุงูุจ |
|
|
|
64 |
|
00:06:06,500 --> 00:06:16,830 |
|
A Sin X ููุฐู ุงูุณุงูุจ A Sin X ุจุนุฏ ุฐูู ุงูุณุงูุจ ax ูู |
|
|
|
65 |
|
00:06:16,830 --> 00:06:23,190 |
|
cos x ุงุดุชูุช ูุฐู ุญุตู ุถุฑุจ ุฏุงูุชูู ุจูุงููุฌ ุงููู ุจุนุฏูุง |
|
|
|
66 |
|
00:06:23,190 --> 00:06:29,610 |
|
ูุจูู ุฒุงุฆุฏ b ูู cos x ุฎูุตูุง ู
ููุง ุจุฏุฃุช ุฃุดุชู ูุฐู ุญุตู |
|
|
|
67 |
|
00:06:29,610 --> 00:06:38,190 |
|
ุถุฑุจ ุฏุงูุชูู ูุจูู ุฒุงุฆุฏ b ูู cos x ูุงูุต bx ูู sin x |
|
|
|
68 |
|
00:06:38,620 --> 00:06:42,780 |
|
ูุจูู ุงุดุชููุงู ุญุตู ุถุฑุจ ุฏุงูุชูู ููุง ูู ุจุนุถ ุงูุนูุงุตุฑ |
|
|
|
69 |
|
00:06:42,780 --> 00:06:50,640 |
|
ู
ุชุดุงุจูุฉ ูู ุนูุฏ ููุง ุณุงูุจ ุงุซููู a ูู sine ุงูู X ูุนูุฏู |
|
|
|
70 |
|
00:06:50,640 --> 00:06:56,880 |
|
ูู
ุงู ุฒุงุฆุฏ ุงุซููู b ูู cosine ุงูู X ูุฏูู ุงุซููู ู
ุน ุจุนุถ |
|
|
|
71 |
|
00:06:56,880 --> 00:07:03,720 |
|
ููุฏูู ุงุซููู ู
ุน ุจุนุถ ุจุงูู ุนูุฏู ูุงูุต ax ูู cosine ุงูู |
|
|
|
72 |
|
00:07:03,720 --> 00:07:10,180 |
|
X ููุงูุต bx ูู sine ุงูู X ุจุนุฏ ุฐูู ุงุฎุฐ ุงูู
ุนููู
ุงุช ุงููู |
|
|
|
73 |
|
00:07:10,180 --> 00:07:15,040 |
|
ุญุตูุช ุนูููุง ู ุฃุนูุถ ูู ุงูู
ุนุงุฏูุฉ star ูุจูู ููุง |
|
|
|
74 |
|
00:07:15,040 --> 00:07:23,320 |
|
substitute in |
|
|
|
75 |
|
00:07:23,320 --> 00:07:33,740 |
|
the differential equation star we get ุจูุญุตู ุนูู ู
ุง |
|
|
|
76 |
|
00:07:33,740 --> 00:07:34,200 |
|
ูุฃุชู |
|
|
|
77 |
|
00:07:40,110 --> 00:07:43,630 |
|
ูุฌุจ ุฃู ุงุฒุงูุฉ ูู ุฏุงุจูู ุจุฑุงูู
ูุงุญุท ููู
ุชูุง ูู ุฏุงุจูู |
|
|
|
78 |
|
00:07:43,630 --> 00:07:48,950 |
|
ุจุฑุงูู
ูู ุญุตููุง ุนูููุง ูุจูู ูุงูุต ุงุซููู ุงู ุตูู |
|
|
|
79 |
|
00:07:48,950 --> 00:07:55,980 |
|
ุงูุฒุงููุฉ ุซุชุง ุตูู ุงูุฒุงููุฉ X ุชู
ุงู
ุ ุงููู ุจุนุฏูุง ุฒุงุฆุฏ |
|
|
|
80 |
|
00:07:55,980 --> 00:08:04,340 |
|
ุงุซููู B ูู cosine ุงูู X ุงููู ุจุนุฏูุง ูุงูุต ุงูู AX ูู |
|
|
|
81 |
|
00:08:04,340 --> 00:08:11,080 |
|
cosine ุงูู X ูุงูุต ุงูู BX ูู sine ุงูู X ูุฐุง ููู ุงููู |
|
|
|
82 |
|
00:08:11,080 --> 00:08:17,400 |
|
ุฃุฎุฏุชู ู
ููุ YW prime ุถุงูู ููุง ู
ููุ Y ููู Y ูุงููุงุ |
|
|
|
83 |
|
00:08:17,400 --> 00:08:24,560 |
|
ุจุฏู ุฃุฌู
ุนูู
ูุฏูู ูุจูู ุฒุงุฆุฏูู ุงููู ูู ู
ูู ax ูู cos |
|
|
|
84 |
|
00:08:24,560 --> 00:08:33,520 |
|
x ูุจุนุฏ ูู ูุฏู ุฒุงุฆุฏ bx ูู sin x ููู ุจูุณุงูู ุงูุทุฑู |
|
|
|
85 |
|
00:08:33,520 --> 00:08:40,300 |
|
ุงููู ูุชุจุน ุงูู
ุนุงุฏูุฉ ุงููู ูู 4 ูู sin x ุจูุฌู ูุฌู
ุน ุนู |
|
|
|
86 |
|
00:08:40,300 --> 00:08:47,940 |
|
ax cos ุจุงูุณุงูุจ ู ax cos ุจุงูู
ูุฌุจ ุนูุง bx sin ุจุงูุณุงูุจ |
|
|
|
87 |
|
00:08:47,940 --> 00:08:53,220 |
|
ู bx ุจูู
ูู ุจุงูู
ูุฌุจ ูุจูู ุตูุฉ ุงูู
ุนุงุฏูุฉ ุนูู ุงูุดูู |
|
|
|
88 |
|
00:08:53,220 --> 00:09:00,740 |
|
ุงูุชุงูู ูุงูุต ุงุซููู a sin x ุฒุงุฆุฏู ุงุซููู b cos x ููู |
|
|
|
89 |
|
00:09:00,740 --> 00:09:07,540 |
|
ุจุฏู ูุณุงูู ุฃุฑุจุน sin x ุจุนุฏ ุฐูู ููุฑุฑ ุงูู
ุนุงู
ูุงุช ูู |
|
|
|
90 |
|
00:09:07,540 --> 00:09:13,340 |
|
ุงูุทุฑููู ุฅุฐุง ูู ูุฑุฑูุง ุงูู
ุนุงู
ูุงุช ูู ุงูุทุฑููู ุจุณูุง ููุต |
|
|
|
91 |
|
00:09:13,340 --> 00:09:19,580 |
|
ุงุซููู a ุจุฏู ุฃุณุงูู ูุฏุงุดุ ุฃุฑุจุน ูุนูุฏู ุงุซููู b ุจุฏู ุนูุฏู |
|
|
|
92 |
|
00:09:19,580 --> 00:09:26,520 |
|
cosine ููุง ู
ุง ุนูุฏูุงุด ูุจูู ุจูู Zero ูุฐุง ู
ุนูุงู ุฃู ุงูู a |
|
|
|
93 |
|
00:09:26,520 --> 00:09:33,330 |
|
ุชุณุงูู ุณุงูุจ ุงุซููู ู ุงูู b ุชุณุงูู Zero ูุจูู ุฃุตุจุญ ุดูู ุงูู |
|
|
|
94 |
|
00:09:33,330 --> 00:09:46,570 |
|
YP ุนูู ุงูุดูู ุงูุชุงูู ูุจูู |
|
|
|
95 |
|
00:09:46,570 --> 00:09:50,570 |
|
ุฃุตุจุญ ูุฐุง ุดูู ุงูู YP |
|
|
|
96 |
|
00:10:01,840 --> 00:10:11,150 |
|
Y ูุณุงูู YC ุฒุงุฆุฏ YP ูุจูู ุจูุงุก ุนููู ูุตุจุญ y ูุณุงูู yc ูู |
|
|
|
97 |
|
00:10:11,150 --> 00:10:20,070 |
|
ุงูู
ูุฌูุฏุฉ ุนูุฏู ูุจูู c1 cos x ุฒุงุฆุฏ c2 ูู sin x ูุฒุงุฆุฏ |
|
|
|
98 |
|
00:10:20,070 --> 00:10:28,010 |
|
yp ูุงูุต 2x ูู cos x ูุจูู ูุฐุง ุงูุญู ุงูููุงุฆู ุชุจุน ู
ูุ |
|
|
|
99 |
|
00:10:28,010 --> 00:10:32,990 |
|
ุชุจุน ุงูู
ุนุงุฏูุฉ ูุงุญุธู ููุง term ู
ู ุงูุซูุงุซ termุงุช ุฒู |
|
|
|
100 |
|
00:10:32,990 --> 00:10:38,240 |
|
ุงูุซุงูู ู
ุง ููุด ุชุดุงุจู ุจูู ุฃู term ูุงูู term ุงูุซุงูู |
|
|
|
101 |
|
00:10:38,240 --> 00:10:46,440 |
|
ุงูู
ุซุงู ุฑูู
ุฃุฑุจุนุฉ ูุจูู example ุฃุฑุจุนุฉ |
|
|
|
102 |
|
00:10:46,440 --> 00:10:50,720 |
|
ุจููู |
|
|
|
103 |
|
00:10:50,720 --> 00:10:56,260 |
|
ุฏู term a suitable |
|
|
|
104 |
|
00:10:56,260 --> 00:11:03,480 |
|
form ุดูู |
|
|
|
105 |
|
00:11:03,480 --> 00:11:09,990 |
|
ู
ูุงุณุจ For the |
|
|
|
106 |
|
00:11:09,990 --> 00:11:19,330 |
|
particular solution |
|
|
|
107 |
|
00:11:19,330 --> 00:11:23,490 |
|
of the |
|
|
|
108 |
|
00:11:23,960 --> 00:11:32,520 |
|
Differential equation ููู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ YW' ูุงูุต |
|
|
|
109 |
|
00:11:32,520 --> 00:11:49,540 |
|
4Y' ุฒุงุฆุฏ 4Y ูุณุงูู 2X ุชุฑุจูุน ุฒุงุฆุฏ 4X E ุฃุณ 2X ุฒุงุฆุฏ X |
|
|
|
110 |
|
00:11:49,540 --> 00:11:55,100 |
|
ูู Sin 2X ููุฐู ุจุฏู ุงุณู
ููุง ุงูู
ุนุงุฏูุฉ ูู ู
ู |
|
|
|
111 |
|
00:11:55,100 --> 00:12:00,960 |
|
ุงูู star ูุจูู ุฌุณูู don't |
|
|
|
112 |
|
00:12:00,960 --> 00:12:07,800 |
|
don't evaluate the |
|
|
|
113 |
|
00:12:07,800 --> 00:12:08,620 |
|
constants |
|
|
|
114 |
|
00:12:38,460 --> 00:12:43,640 |
|
ูุงูุจ ุงูููููุฉ ุชุงููููุฑุฃ ุงูุณุคุงู ู
ุฑุฉ ุซุงููุฉ ููุดูู ุดู |
|
|
|
115 |
|
00:12:43,640 --> 00:12:51,120 |
|
ุงูู
ุทููุจ ุจูููู ูู ุญุฏุฏ ุญู ูู ุดูู ู
ูุงุณุจ ููู particular |
|
|
|
116 |
|
00:12:51,120 --> 00:12:54,400 |
|
solution y, z ุชุจุน ุงูู differential equation ูุฐุง |
|
|
|
117 |
|
00:12:54,400 --> 00:12:57,020 |
|
ูุจูู ุงููุงุณ ุจุชุญุฏุฏ ุดูู ุงูู particular solution |
|
|
|
118 |
|
00:12:57,020 --> 00:13:00,840 |
|
ููููู ูู ู
ุง ุชุญุณุจุด ุงูุซูุงุจุช ุงุถุงูุน ุดูุงุฌุฏู ูุฃูุช ุจุชุฌูุจ |
|
|
|
119 |
|
00:13:00,840 --> 00:13:04,120 |
|
ุงูู
ุดุชูุฉ ุงูุฃููู ูุงูุซุงููุฉ ูุชุนูุถ ูู ุงูู
ุนุงุฏูุฉ ูุชุฌูุจ |
|
|
|
120 |
|
00:13:04,120 --> 00:13:07,940 |
|
ููู ูุฏ ุงูุด ููู
ุฉ a ู b ุฃู a ู b ู c ูู
ุง ุฅูุง ุจุชุฏูุด ููู
ุฉ |
|
|
|
121 |
|
00:13:07,940 --> 00:13:11,650 |
|
ุซูุงุจุช ุจุณ ูุชูู ุดูู ุงูู main ุงูู Particular solution ููุณ |
|
|
|
122 |
|
00:13:11,650 --> 00:13:15,790 |
|
ูุงุฒู
ูููู ููู
ุชู ุซุงุจุชุฉ ุจูููู ูููุณ ูุจูู ูุญุชุงุฌ |
|
|
|
123 |
|
00:13:15,790 --> 00:13:20,350 |
|
ููู
ุนุงุฏูุฉ ูุญุชุงุฌ ุฃู ูุฃุฎุฐ ุงูู Homogeneous differential |
|
|
|
124 |
|
00:13:20,350 --> 00:13:24,550 |
|
equation ูุจูู ูุจุฏุฃ ูู
ุง ุจุฏุฃุช ูู ุงูู
ุซุงู ุงููู ูุจูู |
|
|
|
125 |
|
00:13:24,550 --> 00:13:29,290 |
|
let Y ุชุณุงูู E ุฃุณ RX ุจุฅููุ |
|
|
|
126 |
|
00:13:41,220 --> 00:13:50,680 |
|
ูุจูู ุจุงุฌู ุจูููู the characteristic Equation is R |
|
|
|
127 |
|
00:13:50,680 --> 00:13:56,060 |
|
ุชุฑุจูุน ูุงูุต ุฃุฑุจุนุฉ R ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูุณุงูู Zero ุฃู ุฃู |
|
|
|
128 |
|
00:13:56,060 --> 00:14:02,560 |
|
ุดุฆุชู
ูููููุง R ูุงูุต ุงุซููู ููู ุชุฑุจูุน ุชุณุงูู Zero ุฃู |
|
|
|
129 |
|
00:14:02,560 --> 00:14:09,370 |
|
ุงูู R ุชุณุงูู ุงุซููู ูุงูุญู ูุฐุง ู
ูุจุฑ ูู
ู
ุฑุฉุ ูุจูู ู
ุฑุชูู |
|
|
|
130 |
|
00:14:09,370 --> 00:14:12,850 |
|
ูุจูู of multiplicity two |
|
|
|
131 |
|
00:14:19,800 --> 00:14:25,640 |
|
2 ูุนูู ุงูุญู ู
ูุฑุฑ ู
ุฑุชูู ุจูุงุก ุนููู ุจุฑูุญ ุจูููู ููุง |
|
|
|
132 |
|
00:14:25,640 --> 00:14:32,220 |
|
ูุจูู solution yc ุจุฏู ูุณุงูู ุงูุญู real ูู
ูุฑุฑ ู
ุฑุชูู |
|
|
|
133 |
|
00:14:32,220 --> 00:14:38,680 |
|
ูุจูู c1 ุฒุงุฆุฏ c2x e ุฃุณ r |
|
|
|
134 |
|
00:14:44,740 --> 00:14:49,820 |
|
ุจูุจุฑูุฒ ูุฐุง ุงูุญู ูุจูุณูุจู ูุจูุฑูุญ ูุฑุฌุน ูู ุจุนุฏ ูููู |
|
|
|
135 |
|
00:14:49,820 --> 00:14:52,800 |
|
ุงูุขู ุจุฏูุง ููุฌู ููู non homogeneous differential |
|
|
|
136 |
|
00:14:52,800 --> 00:14:56,280 |
|
equation ุงููู ุงูู star ุงููู ุนูุฏูุง ุจุฏูุง ูุชุทูุน ุนูู |
|
|
|
137 |
|
00:14:56,280 --> 00:15:00,240 |
|
ุดูู ุงูู F of X ุงููู ูู ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ูู ูู |
|
|
|
138 |
|
00:15:00,240 --> 00:15:05,740 |
|
polynomial ููุทุ ุฃู polynomial ูู exponential ุฃู |
|
|
|
139 |
|
00:15:05,740 --> 00:15:09,360 |
|
polynomial ูู sin ุฃู cos ุงูู
ุฌู
ูุนุฉ ุงูุญู
ุฏ ููู ุฌุงูุจุฉ |
|
|
|
140 |
|
00:15:09,360 --> 00:15:13,720 |
|
ุงูุซูุงุซ ุญุงูุงุช ูููู
ุจุณุคุงู ุงููุงุนู ูู polynomial ู
ู |
|
|
|
141 |
|
00:15:13,720 --> 00:15:17,180 |
|
ุงูุฏุฑุฌุฉ ุงูุซุงููุฉ polynomial ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู |
|
|
|
142 |
|
00:15:17,180 --> 00:15:21,820 |
|
exponential polynomial ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู sin ุฅุฐุง |
|
|
|
143 |
|
00:15:21,820 --> 00:15:27,630 |
|
ุฅูุด ูุฃุนู
ู ูู ุงูู
ุนุงุฏูุฉ ุงููู ุนูุฏูุ ูุฃุฌุฒููุง ุฅูู ุซูุงุซ |
|
|
|
144 |
|
00:15:27,630 --> 00:15:31,690 |
|
ู
ุนุงุฏูุงุช ุชู
ุงู
ุ ู ุฃุญู ูู ูุงุญุฏุฉ ูููู
ู ุฃุฌูุจ ุงูู |
|
|
|
145 |
|
00:15:31,690 --> 00:15:35,390 |
|
particular solution ุชุจุนูุง ูุฃุฌู
ุน ุงูุญููู ุงูุซูุงุซุฉ |
|
|
|
146 |
|
00:15:35,390 --> 00:15:38,810 |
|
ุจูุนุทููู ุงูู particular solution ูู
ููุ ููู
ุนุงุฏูุฉ |
|
|
|
147 |
|
00:15:38,810 --> 00:15:43,970 |
|
ุทุจูุง ูููุธุฑูุฉ ุงููู ุฃุนุทุงูููุง ููู
ูู ุฃูู section ูู |
|
|
|
148 |
|
00:15:43,970 --> 00:15:46,970 |
|
ุงูู non homogeneous differential equation ููููุง ููู
|
|
|
|
149 |
|
00:15:46,970 --> 00:15:53,150 |
|
ูุฐุง ุจููุฒู
ูุง ูู
ููุ ููู sections ุงููุงุฏู
ุฉ ุชู
ุงู
ุ ูุจูู |
|
|
|
150 |
|
00:15:53,150 --> 00:16:01,260 |
|
ุจุฏุงุฌู ุฃูููู ููุง differential equation star is |
|
|
|
151 |
|
00:16:01,260 --> 00:16:08,360 |
|
written as ูู
ูููุง ุฃู ููุชุจูุง ุนูู ุงูุดูู ุงูุชุงูู ุงูู y |
|
|
|
152 |
|
00:16:08,360 --> 00:16:14,460 |
|
double prime ูุงูุต ุฃุฑุจุนุฉ y prime ุฒุงุฆุฏ ุฃุฑุจุนุฉ y ูุณุงูู |
|
|
|
153 |
|
00:16:14,460 --> 00:16:20,580 |
|
ูู
ุ ูุณุงูู ุงุซููู x ุชุฑุจูุน ุงูู
ุนุงุฏูุฉ ุงูุซุงููุฉ ุงููู ูู |
|
|
|
154 |
|
00:16:20,580 --> 00:16:33,690 |
|
ู
ููุ YW'-4Y' ุฒุงุฆุฏ 4Y ูุณุงูู 4XE2X |
|
|
|
155 |
|
00:16:33,690 --> 00:16:45,370 |
|
ุงูู
ุนุงุฏูุฉ ุงูุซุงูุซุฉ YW'-4Y' ุฒุงุฆุฏ 4Y ูุณุงูู XSIN2X ูุณุงูู |
|
|
|
156 |
|
00:16:45,370 --> 00:16:50,350 |
|
X ูู SIN2X ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
157 |
|
00:16:58,280 --> 00:17:03,840 |
|
ุทูุจุ ุงูุขู ูุนูู ูุฃูู ุตุงุฑ ุนูุฏู ู
ุด ู
ุณุฃูุฉ ูุงุญุฏุฉุ ุซูุงุซ |
|
|
|
158 |
|
00:17:03,840 --> 00:17:07,120 |
|
ู
ุณุงุฆูุ ุจุฏู ุฃุญู ูู ูุงุญุฏ ุฃุฌูุจ ุงูู particle solution |
|
|
|
159 |
|
00:17:07,120 --> 00:17:12,980 |
|
ูุฃูู ูุง ุนูุงูุฉ ููุง ุจู
ููุ ุจุงูุฃุฎุฑูุ ูุจูู ููุง ุจุฏู ุฃุฌูุจ |
|
|
|
160 |
|
00:17:12,980 --> 00:17:20,180 |
|
ุงูู YP1 ูุจูู YP1 ูุณุงูู X to the power S ูููุ ูุฐู |
|
|
|
161 |
|
00:17:20,180 --> 00:17:21,740 |
|
polynomial ู
ู ุงูุฏุฑุฌุฉ |
|
|
|
162 |
|
00:17:34,810 --> 00:17:40,490 |
|
ูู ุฃู term ู
ู ููุง ูุดุจู |
|
|
|
163 |
|
00:17:40,490 --> 00:17:42,250 |
|
ุฃู term ูููุ |
|
|
|
164 |
|
00:17:45,280 --> 00:17:52,060 |
|
ู
ุถุฑูุจุฉ ูุนูู ูุฐุง C1 E2 X ู C2 X E2 ูููุ ู
ุง ุนูุฏูุด |
|
|
|
165 |
|
00:17:52,060 --> 00:17:56,020 |
|
exponential ููุงู ุจู
ุง ููุด ูุจูู ููุง S ุจูุฏุฑ ุฅููุ ุจ |
|
|
|
166 |
|
00:17:56,020 --> 00:18:03,680 |
|
Zero ูุจูู here ุงูู S ุชุณุงูู Zero ูุจูู ุฃุตุจุญ Y P1 ุจุฏู |
|
|
|
167 |
|
00:18:03,680 --> 00:18:11,780 |
|
ูุณุงูู A0 X ุชุฑุจูุน ุฒุงุฆุฏ A1 X ุฒุงุฆุฏ A2 ุณูุจููุง ู
ู ูุฐุง |
|
|
|
168 |
|
00:18:11,780 --> 00:18:20,370 |
|
ููุชูู ุนูู ุงููู ุจุนุฏูุง ูุจูู ุจุฏู ุฃูุชุจ ูุจูู |
|
|
|
169 |
|
00:18:20,370 --> 00:18:23,230 |
|
ุจุฏู ุฃูุชุจ polynomial ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู |
|
|
|
170 |
|
00:18:23,230 --> 00:18:26,990 |
|
exponential ูุจูู ุจุฏู ุฃูุชุจ polynomial ู
ู ุงูุฏุฑุฌุฉ |
|
|
|
171 |
|
00:18:26,990 --> 00:18:32,070 |
|
ุงูุฃููู ูู ุงูู exponential ูุจูู ุจุฏู ุฃูุชุจ polynomial |
|
|
|
172 |
|
00:18:32,070 --> 00:18:34,410 |
|
ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู exponential ูุจูู ุจุฏู ุฃูุชุจ |
|
|
|
173 |
|
00:18:34,410 --> 00:18:37,350 |
|
polynomial ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูู ุงูู exponential |
|
|
|
174 |
|
00:18:37,350 --> 00:18:37,390 |
|
exponential ูุจูู ุจุฏู ุฃูุชุจ polynomial ู
ู ุงูุฏุฑุฌุฉ |
|
|
|
175 |
|
00:18:37,390 --> 00:18:38,650 |
|
ุงูุฃููู ูู ุงูู exponential ูุจูู ุจุฏู ุฃูุชุจ polynomial |
|
|
|
176 |
|
0 |
|
|
|
201 |
|
00:20:37,040 --> 00:20:47,000 |
|
ูู ูุฐุง ุงูููุงู
ู
ุถุฑูุจ ูู cos 2x ุฒุงุฆุฏ e<sup>x</sup> |
|
|
|
202 |
|
00:20:47,000 --> 00:20:53,980 |
|
ุฒุงุฆุฏ e<sup>x</sup> ููู ู
ุถุฑูุจ ูู sin 2x ู exponential ู
ุงุนูุฏูุด |
|
|
|
203 |
|
00:20:56,240 --> 00:21:03,100 |
|
ูู ุฃู term ู
ู ุงูู
ุณุชุทูู ุงููู ููู ูุฐุง ูุดุจู ุฃู term |
|
|
|
204 |
|
00:21:03,100 --> 00:21:07,720 |
|
ู
ู ุงูู
ุณุชุทูู ุงููู ููู ูุฐุงุ ูุฃ ููุง ููู sign ููุง cos |
|
|
|
205 |
|
00:21:07,720 --> 00:21:08,120 |
|
ุณุงูู |
|
|
|
206 |
|
00:21:13,370 --> 00:21:20,650 |
|
ุงูู S ุจุฏูุง ุชุณุงูู 0 ูุจูู ุฃุตุจุญ YP3 ุจุฏูุง ุชุณุงูู D e<sup>x</sup> |
|
|
|
207 |
|
00:21:20,650 --> 00:21:32,590 |
|
X ุฒุงุฆุฏ D1 ูู Cos 2X ุฒุงุฆุฏ E e<sup>x</sup> ุฒุงุฆุฏ E1 ูู Sin |
|
|
|
208 |
|
00:21:32,590 --> 00:21:38,120 |
|
2X ูุจูู ุงูู Particular solution ุงููู ุจุฏูุง ูุง ุจูุงุช |
|
|
|
209 |
|
00:21:38,120 --> 00:21:47,060 |
|
ูุจูู ูุณุงูู YP1 ุฒุงุฆุฏ YP2 ุฒุงุฆุฏ YP3 ูุจูู ุฃุตุจุญ YP |
|
|
|
210 |
|
00:21:47,060 --> 00:21:55,380 |
|
ูุณุงูู YP1 ูุงู ู ุจูุฒูู ุฒู ู
ุง ูู A0 X ุชุฑุจูุน A1X ุฒุงุฆุฏ |
|
|
|
211 |
|
00:21:55,380 --> 00:21:57,580 |
|
A2 ุฒุงุฆุฏ |
|
|
|
212 |
|
00:22:19,860 --> 00:22:21,260 |
|
YP2 YP3 YP4 YP5 YP6 YP7 |
|
|
|
213 |
|
00:22:29,550 --> 00:22:36,330 |
|
ูุจูู ูุฐุง ููู ูุนุชุจุฑ ู
ู ุงู particular solution ุงููู |
|
|
|
214 |
|
00:22:36,330 --> 00:22:41,990 |
|
ู
ุทููุจ ุนููุง ุญุฏ ููููุง ูู ุฃู ุชุณุงุคู ููุง ูู ูุฐุง ุงูุณุคุงูุ |
|
|
|
215 |
|
00:22:41,990 --> 00:22:48,270 |
|
ูู ุฃู ุชุณุงุคูุ ุทูุจ ุนูู ููู ุงูุชูู ูุฐุง ุงู section ูุฅูู |
|
|
|
216 |
|
00:22:48,270 --> 00:22:55,590 |
|
ูููู ุฃุฑูุงู
ุงูู
ุณุงุฆู ูุจูู exercises ุฎู
ุณุฉ ุณุจุนุฉ |
|
|
|
217 |
|
00:22:55,590 --> 00:23:01,730 |
|
ุงูู
ุณุงุฆู ุงูุชุงููุฉ ู
ู ูุงุญุฏ ูุบุงูุฉ ุนุดุฑูู ูู
ู ุฎู
ุณุฉ |
|
|
|
218 |
|
00:23:01,730 --> 00:23:08,730 |
|
ูุนุดุฑูู ูุบุงูุฉ ุซูุงุซูู ู
ุฑูู |
|
|
|
219 |
|
00:23:08,730 --> 00:23:13,530 |
|
ุฃุฏููู ูุฏ ู
ุง ุชูุฏุฑู ุจุชุตูุฑ ูุฐุง ุงูู
ูุถูุน ุจุตูุฑ ุฌุฏุง |
|
|
|
220 |
|
00:23:26,290 --> 00:23:49,450 |
|
ุงููู ููู ูุฐุง ุงูุชูููุง ู
ูู ุฃุธู ุฎูุงุตุ |
|
|
|
221 |
|
00:23:49,450 --> 00:23:55,440 |
|
ุทูุจ ูู
ุง ููุชูู ุฅูู ุงู section ุงูุฃุฎูุฑ ู
ู ูุฐุง ุงู |
|
|
|
222 |
|
00:23:55,440 --> 00:24:00,320 |
|
chapter ููู ุงูุทุฑููุฉ ุงูุซุงููุฉ ู
ู ุทุฑู ุญู ุงู non |
|
|
|
223 |
|
00:24:00,320 --> 00:24:03,800 |
|
homogeneous differential equation ููู ุทุฑููุฉ ุงู |
|
|
|
224 |
|
00:24:03,800 --> 00:24:11,280 |
|
variation of parameters ุชุบููุฑ ุงููุณูุทุงุช ูุจูู 85 ุฃู |
|
|
|
225 |
|
00:24:11,280 --> 00:24:19,340 |
|
58 ุงููู ูู variation of |
|
|
|
226 |
|
00:24:20,530 --> 00:24:29,030 |
|
Parameters ูุณุชุฎุฏู
|
|
|
|
227 |
|
00:24:29,030 --> 00:24:39,410 |
|
ูุฐู ุงูุทุฑููุฉ ูุณุชุฎุฏู
ูุฐู ุงูุทุฑููุฉ to find a |
|
|
|
228 |
|
00:24:39,410 --> 00:24:45,850 |
|
particular solution to find a particular |
|
|
|
229 |
|
00:24:54,020 --> 00:24:58,120 |
|
YP ุงูุฑู
ุฒ ููุฅููุงุน |
|
|
|
230 |
|
00:25:01,140 --> 00:25:07,280 |
|
Differential equation ููู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ a<sub>0</sub> as a |
|
|
|
231 |
|
00:25:07,280 --> 00:25:14,040 |
|
function of x ุฒุงุฆุฏ ุงู a<sub>1</sub> as a function of x ูู |
|
|
|
232 |
|
00:25:14,040 --> 00:25:21,470 |
|
derivative n-1 ุฒุงุฆุฏ ูุจูู ู
ุงุดู ูุบุงูุฉ a<sub>n</sub> |
|
|
|
233 |
|
00:25:21,470 --> 00:25:27,750 |
|
-1 as a function of x y' ุฒุงุฆุฏ a<sub>n</sub> as a |
|
|
|
234 |
|
00:25:27,750 --> 00:25:33,130 |
|
function of x ูู ุงู y ุจุฏู ูุณุงูู F(x) |
|
|
|
235 |
|
00:25:33,130 --> 00:25:36,790 |
|
ููุฐู ุงููู ููุง ุจูุทูู ุนูููุง ุงูู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ุงููู ูู |
|
|
|
236 |
|
00:25:36,790 --> 00:25:46,210 |
|
star where ุญูุซ ุงู a<sub>0</sub>(x) ู ุงู a<sub>1</sub>(x) ู |
|
|
|
237 |
|
00:25:46,210 --> 00:25:54,330 |
|
ูุบุงูุฉ ุงู a<sub>n</sub>(x) ูุฏูู ูููู
need not need not |
|
|
|
238 |
|
00:25:54,330 --> 00:26:00,510 |
|
constants need |
|
|
|
239 |
|
00:26:00,510 --> 00:26:09,410 |
|
not constants and no restriction ู
ุงุนูุฏูุด ูููุฏ |
|
|
|
240 |
|
00:26:09,410 --> 00:26:24,010 |
|
ู
ุงุนูุฏูุด |
|
|
|
241 |
|
00:26:24,010 --> 00:26:24,850 |
|
ูููุฏ ุนูููุง |
|
|
|
242 |
|
00:26:33,720 --> 00:26:46,600 |
|
YC ูุจุฏู ูุณุงูู C<sub>1</sub>Y<sub>1</sub> ุฒุงุฆุฏ C<sub>2</sub>Y<sub>2</sub> ุฒุงุฆุฏ C<sub>n</sub>Y<sub>n</sub> Assume that |
|
|
|
243 |
|
00:26:46,600 --> 00:26:57,440 |
|
is a solution of the homo |
|
|
|
244 |
|
00:27:10,960 --> 00:27:16,840 |
|
ุฒุงุฆุฏ ุฒุงุฆุฏ a<sub>n-1</sub> as a function of x ูู ุงู y |
|
|
|
245 |
|
00:27:16,840 --> 00:27:23,680 |
|
prime ุฒุงุฆุฏ a<sub>n</sub>(x) y ุจุฏู ูุณุงูู ูุฏูุ ุจุฏู ูุณุงูู 0 |
|
|
|
246 |
|
00:27:29,020 --> 00:27:32,880 |
|
to get a |
|
|
|
247 |
|
00:27:32,880 --> 00:27:37,540 |
|
particular solution |
|
|
|
248 |
|
00:27:37,540 --> 00:27:46,180 |
|
to get a particular solution yp of the |
|
|
|
249 |
|
00:27:46,180 --> 00:27:56,140 |
|
differential equation star by the method |
|
|
|
250 |
|
00:27:59,990 --> 00:28:07,590 |
|
of variation of |
|
|
|
251 |
|
00:28:07,590 --> 00:28:20,570 |
|
parameters replace |
|
|
|
252 |
|
00:28:20,570 --> 00:28:32,010 |
|
ุงุณุชุจุฏู replace the above constants above constants |
|
|
|
253 |
|
00:28:32,010 --> 00:28:42,250 |
|
in |
|
|
|
254 |
|
00:28:42,250 --> 00:28:48,930 |
|
the solution yc |
|
|
|
255 |
|
00:28:48,930 --> 00:28:52,550 |
|
by the functions |
|
|
|
256 |
|
00:28:55,020 --> 00:29:10,660 |
|
The functions C<sub>1</sub>(X) C<sub>2</sub>(X) ู ูุบุงูุฉ C<sub>n</sub>(X) That |
|
|
|
257 |
|
00:29:10,660 --> 00:29:11,060 |
|
is |
|
|
|
258 |
|
00:29:15,470 --> 00:29:25,490 |
|
YP ูุตุจุญ ุนูู ุงูุดูู ุงูุชุงูู C<sub>1</sub>(X)Y<sub>1</sub> C<sub>2</sub>(X)Y<sub>2</sub> ุฒุงุฆุฏ |
|
|
|
259 |
|
00:29:25,490 --> 00:29:29,470 |
|
C<sub>n</sub>(X)Y<sub>n</sub> |
|
|
|
260 |
|
00:29:35,370 --> 00:29:44,010 |
|
ุงูู C<sub>m</sub> as a function of X ูุณูู ุชูุงู
ู ุงููุฑูุณููู m |
|
|
|
261 |
|
00:29:44,010 --> 00:29:51,350 |
|
as a function of X ูู F<sub>1</sub>(X) ุนูู |
|
|
|
262 |
|
00:29:51,350 --> 00:29:59,090 |
|
ุงููุฑูุณููู (X) ููู ุจุงููุณุจุฉ ุฅูู DX ูุงูู M |
|
|
|
263 |
|
00:30:02,270 --> 00:30:09,990 |
|
ู ูุบุงูุฉ ุงู N ู |
|
|
|
264 |
|
00:30:09,990 --> 00:30:14,950 |
|
ูุบุงูุฉ |
|
|
|
265 |
|
00:30:14,950 --> 00:30:21,750 |
|
ุงู N ู ูุบุงูุฉ ุงู N ู ูุบุงูุฉ ุงู N ู ูุบุงูุฉ ุงู N |
|
|
|
266 |
|
00:30:28,070 --> 00:30:34,350 |
|
is the determinant ุงูู
ุญุฏุฏ |
|
|
|
267 |
|
00:30:34,350 --> 00:30:41,370 |
|
obtained from |
|
|
|
268 |
|
00:30:41,370 --> 00:30:46,810 |
|
ุงููุงูุณููู |
|
|
|
269 |
|
00:30:46,810 --> 00:30:52,130 |
|
of X by replacing |
|
|
|
270 |
|
00:30:58,290 --> 00:31:15,810 |
|
By replacing the m column By the column By |
|
|
|
271 |
|
00:31:15,810 --> 00:31:26,730 |
|
the column Zero Zero ููุธู ู
ุงุดููู ูุบุงูุฉ ุงููุงุญุฏ and |
|
|
|
272 |
|
00:31:30,230 --> 00:31:42,150 |
|
ุงูู F<sub>1</sub>(X) ุชุณุงูู ุงูู F(X) ู
ูุณูู
ุฉ ุนูู A<sub>0</sub>(X) |
|
|
|
273 |
|
00:31:42,150 --> 00:31:45,550 |
|
Note |
|
|
|
274 |
|
00:31:45,550 --> 00:31:50,310 |
|
When |
|
|
|
275 |
|
00:31:50,310 --> 00:32:00,490 |
|
we use the method when we use the method of |
|
|
|
276 |
|
00:32:00,490 --> 00:32:05,590 |
|
variation |
|
|
|
277 |
|
00:32:05,590 --> 00:32:15,910 |
|
of parameters ุนูุฏู
ุง |
|
|
|
278 |
|
00:32:15,910 --> 00:32:23,110 |
|
ูุณุชุฎุฏู
ูุฐู ุงูุทุฑููุฉ variation of parameters the |
|
|
|
279 |
|
00:32:23,110 --> 00:32:23,850 |
|
coefficient |
|
|
|
280 |
|
00:32:33,870 --> 00:32:45,010 |
|
ูุฌุจ ุฃู ูููู ููู
ู ููู
ู |
|
|
|
281 |
|
00:32:45,010 --> 00:32:47,290 |
|
ููู
ู ููู
ู ููู
ู ููู
ู ููู
ู ููู
ู ููู
ู |
|
|
|
282 |
|
00:32:58,790 --> 00:33:11,670 |
|
is of the second order |
|
|
|
283 |
|
00:33:11,670 --> 00:33:14,970 |
|
that |
|
|
|
284 |
|
00:33:14,970 --> 00:33:18,690 |
|
is |
|
|
|
285 |
|
00:33:20,880 --> 00:33:30,340 |
|
ุงูู A<sub>0</sub>(x) y'' A<sub>1</sub>(x) y' A<sub>2</sub>(x) y |
|
|
|
286 |
|
00:33:30,340 --> 00:33:35,420 |
|
ุจุฏูุง ุชุณุงูู f |
|
|
|
287 |
|
00:33:35,420 --> 00:33:50,710 |
|
of x and f y<sub>1</sub> and y<sub>2</sub> are two solutions are two |
|
|
|
288 |
|
00:33:50,710 --> 00:33:57,990 |
|
solutions of |
|
|
|
289 |
|
00:33:57,990 --> 00:34:12,570 |
|
the homogeneous equation A<sub>0</sub>(x) y'' A<sub>1</sub>(x) |
|
|
|
290 |
|
00:34:12,570 --> 00:34:18,570 |
|
y' A<sub>2</sub>(x) y ุจุฏู ูุณุงูู zero then |
|
|
|
291 |
|
00:34:23,050 --> 00:34:33,070 |
|
ุงูู C<sub>1</sub>(X) ูู ุชูุงู
ู ููุงูุต Y<sub>2</sub> as a function of X |
|
|
|
292 |
|
00:34:33,070 --> 00:34:39,550 |
|
ูู ุงูู F<sub>1</sub>(X) ุนูู W(X) DX |
|
|
|
293 |
|
00:34:43,770 --> 00:34:51,950 |
|
ุงูู C<sub>2</sub> as a function of X ุจุฏู ูุณุงูู ุชูุงู
ู ูู
ููุ |
|
|
|
294 |
|
00:34:51,950 --> 00:34:58,690 |
|
ุจุฏู ูุณุงูู ุชูุงู
ู ููู Y<sub>1</sub> as a function of X ูู ุงูู |
|
|
|
295 |
|
00:34:58,690 --> 00:35:05,170 |
|
F<sub>1</sub>(X) ููู ุนูู ุงูู W(X) ูู ุงูู DX |
|
|
|
296 |
|
00:35:05,170 --> 00:35:10,030 |
|
example |
|
|
|
297 |
|
00:35:10,030 --> 00:35:10,490 |
|
1 |
|
|
|
298 |
|
00:35:15,200 --> 00:35:26,200 |
|
Find the general solution of |
|
|
|
299 |
|
00:35:26,200 --> 00:35:32,340 |
|
the differential equation ููู
ุนุงุฏูุฉ |
|
|
|
300 |
|
00:35:32,340 --> 00:35:38,340 |
|
ุงูุชูุงุถููุฉ Y'''-2Y |
|
|
|
301 |
|
00:35:43,090 --> 00:35:51,990 |
|
ููู
ุนุงู
ูุฉ ุงูุชุญูู ุนุถููุฉ y |
|
|
|
302 |
|
00:35:51,990 --> 00:36:03,650 |
|
''' ุฒุงุฆุฏ y' ุจุฏู ูุณุงูู x ูุณุงูู |
|
|
|
303 |
|
00:36:03,650 --> 00:36:12,610 |
|
x ู ูุงูุต y ุนูู 2 ุฃูู ู
ู x ุฃูู ู
ู y ุนูู 2 |
|
|
|
304 |
|
00:37:01,140 --> 00:37:06,600 |
|
ุงูุทุฑููุฉ ุงูุซุงููุฉ ู
ู ุญู ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุบูุฑ |
|
|
|
305 |
|
00:37:06,600 --> 00:37:11,260 |
|
ุงูู
ุชุฌุงูุณุฉ ูุฐู ุงูุทุฑููุฉ ุณู
ููุง ุงู variation of |
|
|
|
306 |
|
00:37:11,260 --> 00:37:14,940 |
|
parameters ูุจูู ุฃูู ุทุฑููุฉ ุทุฑููุฉ ุงู undetermined |
|
|
|
307 |
|
00:37:14,940 --> 00:37:18,380 |
|
coefficients ูุงูุทุฑููุฉ ุงูุซุงููุฉ ุงูุชู ูู ุทุฑููุฉ ุงู |
|
|
|
308 |
|
00:37:18,380 --> 00:37:23,200 |
|
variation of parameters ุชุบููุฑ ุงููุณูุทุงุช ุชุชูุฎุต ูุฐู |
|
|
|
309 |
|
00:37:23,200 --> 00:37:26,740 |
|
ุงูุทุฑููุฉ ููู
ุง ูุฃุชู ุทุจุนุง ุงูู Undetermined |
|
|
|
310 |
|
00:37:26,740 --> 00:37:30,880 |
|
coefficients ูููุง ู
ุดุงู ูุดุชุบู ุจูุง ุจุฏู ุดุฑุทูู ุฃู |
|
|
|
311 |
|
00:37:30,880 --> 00:37:34,860 |
|
ุงูู
ุนุงู
ูุฉ ุซุงุจุชุฉ ู ุงู F(x) ุชุจูู ุนูู ุดูู ู
ุนูู ุญุณุจ |
|
|
|
312 |
|
00:37:34,860 --> 00:37:37,660 |
|
ุงูุฌุฏูู ุงููู ุงุนุทุงูุงููุง ูุนููุ ู
ุธุจูุทุ ููุง ุงู |
|
|
|
313 |
|
00:37:37,660 --> 00:37:41,460 |
|
variation ุจููููู ูุฃ ุงูู
ุนุงู
ูุฉ ุซุงุจุชุฉ ู ุงููู ู
ุชุบูุฑุฉ |
|
|
|
314 |
|
00:37:41,460 --> 00:37:45,660 |
|
ู
ุงุนูุฏูุด ู
ุดููุฉ ุงู F(x) ุงููู ูู ุงูุทุฑู ุงููู
ูู ูุฐู |
|
|
|
315 |
|
00:37:45,660 --> 00:37:49,180 |
|
ุงู F(x) ูุงูุช ุนูู ุดูู ู
ุนูู ู ุงููู ุบูุฑ ุนูููุง ุดูู |
|
|
|
316 |
|
00:37:49,180 --> 00:37:53,590 |
|
ู
ุนูู ู
ุงุนูุฏูุด ู
ุดููุฉ ูุนูู ุฃูุด ู
ุง ูููู ุดูู ุงู F ูููู ู |
|
|
|
317 |
|
00:37:53,590 --> 00:37:56,590 |
|
ุงูุด ู
ุง ูููู ุงูู
ุนุงู
ูุฉ ุซูุงุจุช ุฃู ู
ุชุบูุฑุงุช ู
ุงุนูุฏูุด |
|
|
|
318 |
|
00:37:56,590 --> 00:38:00,970 |
|
ู
ุดููุฉ ูุจูู ูุฐุง ุงูุดูู ุงูุนุงู
ููู
ุนุงุฏูุฉ (*) ุญูุซ ูุฏูู |
|
|
|
319 |
|
00:38:00,970 --> 00:38:05,350 |
|
ุงูุฏูุงู need not constants ููุณ ุจุงูุถุฑูุฑุฉ ูููููุง constants ูุนูู |
|
|
|
320 |
|
00:38:05,350 --> 00:38:08,470 |
|
ู
ู
ูู ูููููุง constants ูู
ู
ูู ูููููุง ู
ุชุบูุฑุงุช ู
ุงุนูุฏูุด |
|
|
|
321 |
|
00:38:08,470 --> 00:38:12,070 |
|
ู
ุดููุฉ ูู ูุฐู ุงูุญุงูุฉ and |
|
|
|
322 |
|
00:38:13,430 --> 00:38:18,250 |
|
and no restrictions |
|
|
|
323 |
|
00:38:18,250 --> 00:38:23,170 |
|
ู
ุงุนูุฏูุด ูููุฏ ุนูู ุดูู ุงู F(x) ูู ุงู Undetermined |
|
|
|
324 |
|
00:38:23,170 --> 00:38:25,650 |
|
ููุช ูุงุจูููููู
ูุงู ูุงุจูููููู
ูุงู ูู ุงูุงูุณุจูููุดูู |
|
|
|
325 |
|
00:38:25,650 --> 00:38:28,830 |
|
ูุงุจูููููู
ูุงู ูู ุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู |
|
|
|
326 |
|
00:38:28,830 --> 00:38:33,850 |
|
ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู |
|
|
|
327 |
|
00:38:33,850 --> 00:38:35,710 |
|
ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู |
|
|
|
328 |
|
00:38:35,710 --> 00:38:36,610 |
|
ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู |
|
|
|
329 |
|
00:38:36,610 --> 00:38:37,770 |
|
ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู |
|
|
|
330 |
|
00:38:37,770 --> 00:38:38,170 |
|
ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู |
|
|
|
331 |
|
00:38:38,170 --> 00:38:40,250 |
|
ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู ุงูุงูุณุจูููุดูู ูู |
|
|
|
332 |
|
00:38:40,250 --> 00:38:45,310 |
|
ุงูุงูุณุจูููุดูู ูู ุงูุงูุณ ูุฐุง ุงูุดุบู ุงููุญูุฏ ุงููู ูู ุงูุญู |
|
|
|
333 |
|
00:38:45,310 --> 00:38:47,610 |
|
ุงููComplementary Solution ุจุฏู ุฃุฏูุฑ ุนูู ุงูู |
|
|
|
334 |
|
00:38:47,610 --> 00:38:51,270 |
|
Particular Solution ุชุจุน ุงูู
ุนุงุฏูุฉ ู
ููุ ุชุจุน ุงูู
ุนุงุฏูุฉ |
|
|
|
335 |
|
00:38:51,270 --> 00:38:55,570 |
|
(*) ูุจุฌู ุจููู ุจุฏู ุฃูุชุฑุถ ุงูุญู ุจุทุฑููุฉ ุงู version of |
|
|
|
336 |
|
00:38:55,570 --> 00:38:59,870 |
|
parameters ูู ููุณ ุงูุญู ูุฐุง ุจุณ ุจุฏู ุฃุดูู ุซูุงุจุช ู |
|
|
|
337 |
|
00:38:59,870 --> 00:39:04,230 |
|
ุฃุถุน ุจุฏููู
ุฏูุงู ูู X ูุจูู (*) ุดูู ุงู Particular |
|
|
|
338 |
|
00:39:04,230 --> 00:39:09,490 |
|
Solution ูู C<sub>1</sub>(X) Y<sub>1</sub> ุฒุงุฆุฏ C<sub>2</sub>(X) Y<sub>2</sub> ุฒุงุฆุฏ ุฒุงุฆุฏ |
|
|
|
339 |
|
00:39:09,490 --> 00:39:14,560 |
|
C<sub>n</sub>(X)Y<sub>n</sub> ุทูุจ ู
ูู ูู ุงููC ูุงุช ููู ุจุฏู ุฃุญุณุจูุง |
|
|
|
340 |
|
00:39:14,560 --> 00:39:19,980 |
|
ูุฐูุ ุจุนุฏ ุดููุฉ ุญุณุงุจุงุช ูุฌููุง ูู ูุงุนุฏุฉ ุจูุงุณุทุชูุง ุจุฌูุจ |
|
|
|
341 |
|
00:39:19,980 --> 00:39:25,320 |
|
ูู ุฏุงูุฉ ู
ู ูุฐู ุงูุฏูุงู ู
ูู ููุ ูุงุนุฏุฉ C<sub>m</sub>(X) ุทุจุนุง |
|
|
|
342 |
|
00:39:25,320 --> 00:39:29,500 |
|
ุจูุงุญุฏ ูุงุซููู ูุบุงูุฉ ุงู N ูุนูู ุจC ูุงุญุฏ ูC ุงุชููู ูC |
|
|
|
343 |
|
00:39:29,500 --> 00:39:34,890 |
|
ุซูุงุซุฉ ูุฏู ุฅูู ุงูุขุฎุฑ ูุณุงูู ุงูู W(m) F<sub>1</sub>(X) ุนูู |
|
|
|
344 |
|
00:39:34,890 --> 00:39:38,530 |
|
W(X) DX ูุฌู ุนูู ุงูู W(X) ุงูู |
|
|
|
345 |
|
00:39:38,530 --> 00:39:42,330 |
|
W(X) ูุฐุง ุชุงุจุน ููุญููู ุงููู ูู ุงูุญุงูุฉ ุงูุฃููู |
|
|
|
346 |
|
00:39:42,330 --> 00:39:46,190 |
|
Y<sub>1</sub> ู Y<sub>2</sub> ู Y<sub>n</sub> ุจุฌูุจ ุงููู ูู
ุงูู W(X) ุจูููู ูุฐุง |
|
|
|
347 |
|
00:39:46,190 --> 00:39:50,140 |
|
ูู ุงูู W(X) ุชุงุจุน ูุญุตูู ุนูู ุดุฌุฑุฉ ุจุฏู W(1) ู |
|
|
|
348 |
|
00:39:50,140 --> 00:39:54,760 |
|
W(2) ู W(3) ูุบุงูุฉ W(n) ู
ูู ูู ูุฐุงุ |
|
|
|
349 |
|
00:39:54,760 --> 00:39:58,720 |
|
ูุฐุง ุงู W(1) ุจุงุฌู ุนูู ุงู W(X) ุฏู ุจุดูู |
|
|
|
350 |
|
00:39:58,720 --> 00:40:02,880 |
|
ุงูุนู
ูุฏ ุงูุฃูู ู ุจุญุท ุจุฏุงูู ุงูุนู
ูุฏ ูุฐุง ู ุจุญุณุจ ูุฏุงุด |
|
|
|
351 |
|
00:40:02,880 --> 00:40:07,890 |
|
ููู
ุฉ ุงู W(X) ุทุจ ุจุฏู W(2) ุจุณูุจ ุงู W(X) ูุฐุง |
|
|
|
352 |
|
00:40:07,890 --> 00:40:13,670 |
|
ุฒู ู
ุง ูู ู ุจุฌู ุนูู ุงูุนู
ูุฏ ุงูุซุงูู ุจุดููู ููู ู ุจุญุท |
|
|
|
353 |
|
00:40:13,670 --> 00:40:16,810 |
|
ุจุฏุงูู ุงูุนู
ูุฏ ูุฐุง ู ููุฐุง W(3) W(X) |
|
|
|
354 |
|
00:40:16,810 --> 00:40:21,210 |
|
ูุบุงูุฉ ุจูู
ููู
ูููู
ูุจูู ูู ูุฐู ุงูุญุงูุฉ ุฌุจุชูุง ุทุจ ู
ูู |
|
|
|
355 |
|
00:40:21,210 --> 00:40:25,850 |
|
ูู ุงู F<sub>1</sub>(X) ูุฐูุ ุงู ุงู F<sub>1</sub>(X) ูุฐู ูู
ุง ุชูุฌู ุงูู
ุนุงุฏูุฉ ุจุฏ |
|
|
|
356 |
|
00:40:25,850 --> 00:40:30,310 |
|
ุงูู
ุนุงุฏูุฉ ููุง ุงูู
ุนุงู
ู ุชุจุนู ูููู ุฌุฏูุดูุฐุง ูุนูู ุฃููู |
|
|
|
357 |
|
00:40:30,310 --> 00:40:36,110 |
|
ุฃูุณู
ุงูุทุฑููู ุนูู ู
ูู ุนูู A<sub>0</sub>(X) ูุจูู ุงู F<sub>1</sub> ูู |
|
|
|
358 |
|
00:40:36,110 --> 00:40:42,270 |
|
ุนุจุงุฑุฉ ุนู F(x) ู
ูุณูู
ุฉ ุนูู ุงู A<sub>0</sub>(X) ูุจูู ุงู F<sub>1</sub> |
|
|
|
359 |
|
00:40:42,270 --> 00:40:47,270 |
|
(X) ูู ุงู F(X) ู
ูุณูู
ุฉ ุนูู ู
ูู ุนูู ุงู A<sub>0</sub>(X) |
|
|
|
360 |
|
00:40:47,270 --> 00:40:52,490 |
|
ุฃุตูุง ูุงุถุญ ููุงู
ูุฐุง ุทูุจ ุงูุขู ูู ู
ูุงุญุธุฉ ุจุฏูุง ูุดูุฑ |
|
|
|
361 |
|
00:40:52,490 --> 00:40:57,290 |
|
ุฅูููุง ุงูู
ูุงุญุธุฉ ูุงูุช ุงูุชุงููุฉ ููุชูุง ุจุณ ุจุฏูุง ูุนูุฏูุง ููุง |
|
|
|
362 |
|
00:40:57,290 --> 00:41:00,590 |
|
ุนูุฏู
ุง ูุณุชุฎุฏู
ุงู variation of parameters ูุงุฒู
ูููู |
|
|
|
363 |
|
00:41:00,590 --> 00:41:05,610 |
|
ุงูู
ุนุงู
ู ุชุจุน Y'' ูู ู
ูู ู ูุณูุช ู ุญุทูุช ุงู F(x) |
|
|
|
364 |
|
00:41:05,610 --> 00:41:11,110 |
|
ูุฐู ุจุฏู ูุฐู ุจุตู ููุงู
ู ุบูุท ุจุตู ุชุญููุด ู ู
ุง ุชูุฏุฑุด |
|
|
|
365 |
|
00:41:11,110 --> 00:41:16,250 |
|
ุชุชูุงู
ูู ุชู
ุงู
ูุจูู ุชุชุฃูุฏู ุนูุฏู
ุง ุจุฏู ุชุณุชุฎุฏู
ุงูุชูุงู
ู |
|
|
|
366 |
|
00:41:16,250 --> 00:41:20,390 |
|
ุจุชุฎูู ุงูู
ุนุงู
ู ุชุจุน Y to the derivative ุฃู ูู ูุงุญุฏ |
|
|
|
367 |
|
00:41:20,390 --> 00:41:24,610 |
|
ุตุญูุญ ุชู
ุงู
ูู ููุทุฉ ุงูุฃููู ุจุนุฏูู ูููุง ู
ูุงุญุธุฉ ุซุงููุฉ |
|
|
|
368 |
|
00:41:25,260 --> 00:41:28,720 |
|
ุจูููู ุงู equation (*) ูุฐู ูู ูุงูุช ู
ู ุงูุฑุชุจุฉ |
|
|
|
369 |
|
00:41:28,720 --> 00:41:32,680 |
|
ุงูุซุงููุฉ ูุจูู ุจุฏู ุงู W(1) ู ูุต ููุชูุง ู
ุญุณุจููู ู |
|
|
|
370 |
|
00:41:32,680 --> 00:41:38,320 |
|
ุฎูุตููู ู ุฌุงูุฒูู ุงูุด ุจูููู ุงู C<sub>1</sub>(X) ุจุชุญุทู ููุญู |
|
|
|
371 |
|
00:41:38,320 --> 00:41:42,940 |
|
ุงูุซุงูู ุจุฅุดุงุฑุฉ ุณุงูุจ ูู ุงู F<sub>1</sub>(X) ุนูู ุงู W(X) |
|
|
|
372 |
|
00:41:42,940 --> 00:41:48,260 |
|
ุทูุจ ู ุงู C<sub>2</sub>ุ ู ุงู C<sub>2</sub> ูู ุงูุญู ุงูุฃูู ูู ุงู Y<sub>1</sub>(X) |
|
|
|
373 |
|
00:41:48,260 --> 00:41:51,850 |
|
ุนูู ู
ููุ ุนูู ุงู W(X) ูุจูู ูู
ุงู ูุงุจุฏ ุชุญุณุจ |
|
|
|
374 |
|
00:41:51,850 --> 00:41:54,950 |
|
ุงู W(X) ูุฃ ูุฐุง ุฅู ูุงูุช ู
ู ุงูุฑุชุจุฉ ุงูุซุงููุฉุ ู
ู |
|
|
|
375 |
|
00:41:54,950 --> 00:41:59,930 |
|
ุงูุฑุชุจุฉ ุงูุซุงูุซุฉุ ุจุฏู ุฃุฑุฌุน ุนุงูู
ูุง ููููุงู
ุงูุฃููุ ูุงุถุญ |
|
|
|
376 |
|
00:41:59,930 --> 00:42:03,590 |
|
ููุงู
ูููุ ุงูุฃู
ู ุงููู ุญุทูู ุนูู ุฃุฑุถ ูุงูุนุฉ ุฌุงูู ูุญู |
|
|
|
377 |
|
00:42:03,590 --> 00:42:08,430 |
|
ุงูู
ุนุงุฏูุฉ ูุฐู ุจูููู ุชู
ุงู
ูุจูู ุฃูุง ุจุฏู ุฃุจุฏุฃ ุจุญู ุงู |
|
|
|
378 |
|
00:42:08,430 --> 00:42:12,190 |
|
homogeneous differential equation ูู
ุง ููุง ู
ู ูุจู |
|
|
|
379 |
|
00:42:12,190 --> |
|
|
|
401 |
|
00:44:50,280 --> 00:44:58,140 |
|
ูู
ุงู ู
ุฑุฉ Zero ูุงูุต Cos X ูุงูุต Sine X ุจุฏู ุฃููู |
|
|
|
402 |
|
00:44:58,140 --> 00:45:05,170 |
|
ุจุงุณุชุฎุฏุงู
ุนูุงุตุฑ ุงูุนู
ูุฏ ุงูุฃูู ูุจูู ูุงุญุฏ ููู ูุดุท ุจุตูู |
|
|
|
403 |
|
00:45:05,170 --> 00:45:11,630 |
|
ุนู
ูุฏู ูุจูู Sin ุชุฑุจูุน ุงู X ุฒุงุฆุฏ Cosine ุชุฑุจูุน ุงู X |
|
|
|
404 |
|
00:45:11,630 --> 00:45:16,650 |
|
ุงููู ูู ูุฏุงุด ุงููุงุญุฏ ุจุฏู ุฃุฌูุจ ุงูู Ronskian 1 as a |
|
|
|
405 |
|
00:45:16,650 --> 00:45:20,810 |
|
function of X ุจุฏู ุฃุดูู ุงูุนู
ูุฏ ูุฐุง ู ุฃุณุชุจุฏูู |
|
|
|
406 |
|
00:45:20,810 --> 00:45:31,390 |
|
ุจุงูุนู
ูุฏ 001 ูุงูุงุชููู ูุฏูู ุฒู ู
ุง ูู
Cos X Sin X -Sin |
|
|
|
407 |
|
00:45:31,390 --> 00:45:41,050 |
|
X Cos X - Cos X - Sin X ููุณุงูู ุจุฏู ุฃููู ุจุฑุถู ุจุงุณุชุฎุฏุงู
|
|
|
|
408 |
|
00:45:41,050 --> 00:45:46,830 |
|
ุงูุนู
ูุฏ ุงูุฃูู ูุจูู Zero ูุงูุต Zero ุฒุงุฆุฏ ูุงุญุฏ ูู ูุดุท |
|
|
|
409 |
|
00:45:46,830 --> 00:45:51,250 |
|
ุจุตูู ุนู
ูุฏู Cosine ุชุฑุจูุน ุฒุงุฆุฏ Sine ุชุฑุจูุน Cosine |
|
|
|
410 |
|
00:45:51,250 --> 00:45:57,430 |
|
ุชุฑุจูุน ุงู X ุฒุงุฆุฏ Sine ุชุฑุจูุน ุงู X ููู ุจูุฏุงุด ุจูุงุญุฏ |
|
|
|
411 |
|
00:45:57,910 --> 00:46:02,810 |
|
ูุจูู ุจูุงุก ุนููู ุจุฏู ุฃุฌูุจ ุงูู Ronskian 2 as a |
|
|
|
412 |
|
00:46:02,810 --> 00:46:05,910 |
|
function of x ูุจูู ุงูุนู
ูุฏู ุงููู ุงููู ูู ุจุฏู ุฃุฑุฌุน |
|
|
|
413 |
|
00:46:05,910 --> 00:46:09,970 |
|
ูู
ุง ูุงู ูุง ุจูุงุช ุฃู ูุงุญุฏ Zero Zero ุงูุนู
ูุฏู ุงูุซุงูู |
|
|
|
414 |
|
00:46:09,970 --> 00:46:13,550 |
|
ูู ุงููู ุจุฏู ุฃุณุชุจุฏูู ุจ Zero Zero ูุงุญุฏ ูุงูุนู
ูุฏู |
|
|
|
415 |
|
00:46:13,550 --> 00:46:20,110 |
|
ุงูุซุงูุซ ูู
ุง ูุงู Sine ุงู X Cosine ุงู X ูุงูุต Sine ุงู |
|
|
|
416 |
|
00:46:20,110 --> 00:46:25,970 |
|
X ูุจูู ุจูุงุก ุนููู ูุฐุง ุงูููุงู
ูุณุงูู ุจุฏู ุฃููู ุจุงุณุชุฎุฏุงู
|
|
|
|
417 |
|
00:46:25,970 --> 00:46:31,590 |
|
ุนูุงุตุฑ ุงูุนู
ูุฏ ุงูุฃูู ูุจูู ูุดุท ุจุตูู ูุนู
ูุฏู Zero ูุงูุต |
|
|
|
418 |
|
00:46:31,590 --> 00:46:36,470 |
|
Cosine ุงู X ูุจูู ูุงูุต Cosine ุงู X ุฎูููุง ูุฌูุจ |
|
|
|
419 |
|
00:46:36,470 --> 00:46:43,350 |
|
ุงูู Ronskian 3 as a function of X ูุณุงูู 1 0 0 ุงูุนู
ูุฏ |
|
|
|
420 |
|
00:46:43,350 --> 00:46:50,590 |
|
ุงูุซุงูู ูู
ุง ูู Cosine ุงู X ูุงูุต Sine ุงู X ูููุง ูุงูุต |
|
|
|
421 |
|
00:46:50,590 --> 00:46:58,270 |
|
Cosine ุงู X ูููุง 001 ุจุงูุดูู ุงููู ุงููุนูุงู ุจุฏู ุฃููู |
|
|
|
422 |
|
00:46:58,270 --> 00:47:02,590 |
|
ุจุงุณุชุฎุฏุงู
ุนูุงุตุฑ ุงูุนู
ูุฏ ุงูุฃูู ุจูุดุท ุจุตู ูุนู
ูุฏู ูุงูุต |
|
|
|
423 |
|
00:47:02,590 --> 00:47:11,780 |
|
Sin X ุฎูุตูุง ู
ููุ ุณุฃุญุตู ุนูู ุงูู C1 as a function of |
|
|
|
424 |
|
00:47:11,780 --> 00:47:19,880 |
|
X ุงูุชูุงู
ู ู
ู ุฃููุ ุงูุชูุงู
ู ููู Ronskian 1 of X ูู |
|
|
|
425 |
|
00:47:19,880 --> 00:47:24,260 |
|
ุงูู F of X ูุง ููุฌุฏ ูููุง ุชุบููุฑ ูู
ุง ูู ุนูู ุงูู |
|
|
|
426 |
|
00:47:24,260 --> 00:47:30,180 |
|
Ronskian of X ููู ุจุงููุณุจุฉ ุฅูู DX ูุณุงูู ุชูุงู
ู Ronskian |
|
|
|
427 |
|
00:47:30,180 --> 00:47:35,670 |
|
1 ุทูุนูุงู ุจูุฏุงุด ุจูุงุญุฏ ูุจูู ูุฐุง ูุงุญุฏ ููู ุงูู F of X |
|
|
|
428 |
|
00:47:35,670 --> 00:47:41,410 |
|
ุงููู ูุจูู ุฏูุดุฉ ุจูุงุช Sec ุงู X ุงุฒุงู ุนูู Sec ุงู X ุนูู |
|
|
|
429 |
|
00:47:41,410 --> 00:47:47,270 |
|
ุงูู Ronskian of X ุงูุฃูู ุจุฑุถู ูุงุญุฏ ููู DX ูุจูู ุชูุงู
ู |
|
|
|
430 |
|
00:47:47,270 --> 00:47:53,190 |
|
ุงูู Sec ููู Absolute value ูู Sec ุงู X ุฒุงุฆุฏ Tan ุงู X |
|
|
|
431 |
|
00:47:53,190 --> 00:47:59,710 |
|
ุจุฏูุง ูุฌูุจ C2 as a function of X ูุจูู ุชูุงู
ู Ronskian 2 |
|
|
|
432 |
|
00:47:59,710 --> 00:48:06,470 |
|
of x ูู f of x ุนูู Ronskian of x dx ูุณุงูู ุชูุงู
ู |
|
|
|
433 |
|
00:48:06,470 --> 00:48:11,790 |
|
Ronskian 2 ูู ุจูุงูุต Cos x |
|
|
|
434 |
|
00:48:22,510 --> 00:48:28,490 |
|
ูุจูู ุชูุงู
ู ููุงูุต DX ูุจูู ุจูุงูุต X ููุง ุชูุชุจู |
|
|
|
435 |
|
00:48:28,490 --> 00:48:33,650 |
|
Constants ูุฃู ูู ุตูุงุฉ ููุชุงุจ ูุนู
ููุง ููู ุชูุฑุงุฑ ูุจูู |
|
|
|
436 |
|
00:48:33,650 --> 00:48:38,510 |
|
ุณูุจูู ู
ู ุงูุชูุฑุงุฑ ูุจูู ุจูุชุจูุง ููุท ุฒู ููู ุจุฏุฃ ูุงุฎุฏ |
|
|
|
437 |
|
00:48:38,510 --> 00:48:39,590 |
|
C3 |
|
|
|
438 |
|
00:48:46,760 --> 00:48:54,240 |
|
ูุจูู ุจูุฏู C3A of X ูุจูู ูุณุงูู ุชูุงู
ู Ronskian 3 of X |
|
|
|
439 |
|
00:48:54,240 --> 00:49:00,900 |
|
ูู F of X ุนูู Ronskian of X DX Y ูุณุงูู ุงูู Ronskian 3 |
|
|
|
440 |
|
00:49:00,900 --> 00:49:09,010 |
|
ูู ุณุงูุจ Sin X ูุงูุฏุงูุฉ Sec ุงู X ูุงูุฑู
ุฒ ูุงู ูุงุญุฏ DX |
|
|
|
441 |
|
00:49:09,010 --> 00:49:15,810 |
|
ูุจูู ูุณุงูู ุชูุงู
ู ุณุงูุจ Sin X ุงูู Sec ู
ูููุจ ุงูู Cos X DX |
|
|
|
442 |
|
00:49:15,810 --> 00:49:20,570 |
|
ุฃุธู ุงูุจุณุทุฉ ูุงุถู ุงูู
ูุงู
ูุจูู ุงูุฌูุงุจ ููู Absolute |
|
|
|
443 |
|
00:49:20,570 --> 00:49:28,570 |
|
value ูู Cos X ูุจูู ุฌุจุช ุงูู C ุงูุซูุงุซ ูุจูู ุณุงุฑ YP |
|
|
|
444 |
|
00:49:28,570 --> 00:49:33,720 |
|
ูุณุงูู ููู YP ูุง ุจูุงุชููู ุจุฏู ุฃุดูู ุงูู C1 ุงูู C1 |
|
|
|
445 |
|
00:49:33,720 --> 00:49:38,720 |
|
ุฌูุจูุงูุง ุงููู ูู ูุฏุงุด ุงููู ูู ุงูู Ln Absolute value |
|
|
|
446 |
|
00:49:38,720 --> 00:49:47,480 |
|
ูู Sec ุงู X ุฒุงุฆุฏ Tan ุงู X ุฒุงุฆุฏ C2 ููู C2 ููู ุฒุงุฆุฏ |
|
|
|
447 |
|
00:49:47,480 --> 00:49:52,280 |
|
ุงููู ูู ูุงูุต X ูู ู
ููุ ูู Cosine ุงู X |
|
|
|
448 |
|
00:50:04,270 --> 00:50:12,930 |
|
ูุจูู y ูุณุงูู yc ูู |
|
|
|
449 |
|
00:50:12,930 --> 00:50:23,580 |
|
ุชุญุช ูุจูู c ูุงุญุฏ ุฒุงุฆุฏ C2 Cos X ุฒุงุฆุฏ C3 Sin X ุฒุงุฆุฏ YP |
|
|
|
450 |
|
00:50:23,580 --> 00:50:28,540 |
|
ูุงู ูุจุฏู ุฃูุฒูู ุฒู ู
ุง ูู ุจุณ ููู ุฎุงุทุฑ ุฃุฑุชุจู ูุจูู ูุงู |
|
|
|
451 |
|
00:50:28,540 --> 00:50:36,820 |
|
Sin X ูู Ln Absolute value ูู Cos X ูุงูุต X ูู Cos |
|
|
|
452 |
|
00:50:36,820 --> 00:50:45,600 |
|
X ุฒุงุฆุฏ Ln Absolute value ูู Sec X ุฒุงุฆุฏ Tan ุงู X ููุงู |
|
|
|
453 |
|
00:50:45,600 --> 00:50:50,160 |
|
ุงููู ุจุงูุณุฑ ุนูููุง ูุจูู ูุฐุง ุญู ุงูุณุคุงู ุงููู ุนูุฏูุง |
|
|
|
454 |
|
00:50:50,160 --> 00:50:54,780 |
|
ุชู
ุงู
ูููุฐุง ูุนูู ุงูุดุบู ุจูุฐู ุงูุทุฑููุฉ ุทุจุนุง ูู ุฌูุจูุงู |
|
|
|
455 |
|
00:50:54,780 --> 00:50:58,200 |
|
ุณุคุงู ูู ุงูุงู
ุชุญุงู ูู ูุฒูุฏ ุนู ุงูุฑุชุจุฉ ุงูุซุงูุซุฉ ุฃู |
|
|
|
456 |
|
00:50:58,200 --> 00:51:01,780 |
|
ุฏุฎููุง ูู ุงูุฑุชุจุฉ ุงูุฑุงุจุนุฉ ุจุฏู ู
ุญุฏุฏ ู
ู ุงูุฏุฑุฌุฉ ุงูุฑุงุจุนุฉ |
|
|
|
457 |
|
00:51:01,780 --> 00:51:05,760 |
|
ุจูุงุฎุฏ ููุช ูุชูุฑ ูุงูุช ุชุญู ููู ูุจูู ููุท ู
ู ุงูุฏุฑุฌุฉ |
|
|
|
458 |
|
00:51:05,760 --> 00:51:11,260 |
|
ุงูุซุงูุซุฉ ุฃู ุงูุฏุฑุฌุฉ ุงูุซุงููุฉ ุฅู ุดุงุก ุงููู ูุงุฒููุง ูู |
|
|
|
459 |
|
00:51:11,260 --> 00:51:15,600 |
|
ููุณ ุงูู Section ููู
ุง ููุชูู ุจุนุฏ ูู ุนูุฏู ุจุนุถ ุงูุฃู
ุซูุฉ |
|
|
|
460 |
|
00:51:15,600 --> 00:51:20,060 |
|
ุนูู ููุณ ุงูู
ูุถูุน ุจุงูุฅุถุงูุฉ ุฅูู ุขุฎุฑ ุทุฑููุฉ ุงููู ูู |
|
|
|
461 |
|
00:51:20,060 --> 00:51:24,340 |
|
ุทุฑููุฉ Reduction of Order ูุงุฎุชุฒุงู ุงูุฑุชุจุฉ ููู
ุญุงุถุฑุฉ |
|
|
|
462 |
|
00:51:24,340 --> 00:51:26,760 |
|
ุงูููู
ุจุนุฏ ุงูุธูุฑ ุฅู ุดุงุก ุงููู ูุชุนุงูู |
|
|