|
1 |
|
00:00:02,500 --> 00:00:05,260 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู |
|
|
|
2 |
|
00:00:05,260 --> 00:00:11,400 |
|
ูุจุฑูุงุชู ููุชูู
ู ูู ู
ุงุฏุฉ ุชุตู
ูู
ุงูุฃูุงุช ูุงุญุฏ ุงูู
ุญุงุถุฑุฉ |
|
|
|
3 |
|
00:00:11,400 --> 00:00:15,780 |
|
ุงููุงุชุชุฉ ุจุฏููุง chapter ุฃุฑุจุน ุจุฏูุง ูุญูู ุนู deflection |
|
|
|
4 |
|
00:00:15,780 --> 00:00:19,860 |
|
and stiffness analysis ุดูููุง ููู ูุญุณ ุงู deflection |
|
|
|
5 |
|
00:00:19,860 --> 00:00:23,560 |
|
ูู ุงู .. ูู ุงู beans ุจุงุณุชุฎุฏุงู
ุงูู
ุนุงุฏูุฉ M ุนูู EI |
|
|
|
6 |
|
00:00:23,560 --> 00:00:28,210 |
|
ุจุณุชู D square Y ุนูู DX squareุดูููุง ููู ูุญุณุจ ุงู |
|
|
|
7 |
|
00:00:28,210 --> 00:00:31,450 |
|
spring constant for different loading conditions |
|
|
|
8 |
|
00:00:31,450 --> 00:00:36,290 |
|
ูู axel loading ูู torsional loading ู ููุฐุง ุงูููู
|
|
|
|
9 |
|
00:00:36,290 --> 00:00:40,170 |
|
ูููู
ู ุทุฑู ุฃุฎุฑู ูุญุณุงุจุงุช ุงู deflection ู
ููุง |
|
|
|
10 |
|
00:00:40,170 --> 00:00:43,270 |
|
superposition momentary method numerical |
|
|
|
11 |
|
00:00:43,270 --> 00:00:46,850 |
|
integration Castellano method ู finite element |
|
|
|
12 |
|
00:00:46,850 --> 00:00:47,290 |
|
method |
|
|
|
13 |
|
00:00:50,050 --> 00:00:53,990 |
|
ูุจุฏุฃ ูู ุงู super beam deflection by superposition |
|
|
|
14 |
|
00:00:53,990 --> 00:00:58,910 |
|
ุงุญูุง ุจุดูู ุงุณุงุณ ุงู superposition ุงู ุงูุง ููู ุนูุฏู |
|
|
|
15 |
|
00:00:58,910 --> 00:01:05,390 |
|
ุจูููู ุงู beam ุชุญุช ุชุฃุซูุฑ loading ู
ุนูู ูุงู ุงูุง ุจุฌุฒุก |
|
|
|
16 |
|
00:01:05,390 --> 00:01:10,960 |
|
ุงู loading ูุญุงูุงุช ู
ูุฌูุฏุฉ ูู ุงูุฌุฏููู ุจุญูู ุงู total |
|
|
|
17 |
|
00:01:10,960 --> 00:01:16,060 |
|
effect ุจูุณุงูู ู
ุฌู
ูุน ุงู individual effect ูุงู ููุฑุฉ |
|
|
|
18 |
|
00:01:16,060 --> 00:01:20,780 |
|
ุงู superposition ููุณุชุฎุฏู
ุงู table A9 ู
ู ุงููุชุงุจ |
|
|
|
19 |
|
00:01:20,780 --> 00:01:26,580 |
|
ููุดูู ู
ู ุฎูุงู ู
ุซุงู ุนูุฏ |
|
|
|
20 |
|
00:01:26,580 --> 00:01:32,020 |
|
ุงูู
ุซุงู ู
ุจูู ุนูุฏ beam ุนูู |
|
|
|
21 |
|
00:01:32,020 --> 00:01:42,050 |
|
load ู
ูุฒุน W ููู load ู
ุฑูุฒ ููู
ุชู Fุนูู ุจุนุฏ A ู
ู |
|
|
|
22 |
|
00:01:42,050 --> 00:01:50,590 |
|
ุงูุทุฑู ุงูุดู
ุงู ุทูู ุงู B L ูุฌุฏ ุงู reaction reactions |
|
|
|
23 |
|
00:01:50,590 --> 00:01:54,490 |
|
ู deflection as a function of X ุจุงุณุชุฎุฏุงู
ุทุฑููุฉ |
|
|
|
24 |
|
00:01:54,490 --> 00:02:00,070 |
|
superposition ุงููู ุฃูุง ูู ุงู tables ููููู ู
ูุฌูุฏ |
|
|
|
25 |
|
00:02:00,070 --> 00:02:00,470 |
|
ุนูุฏู |
|
|
|
26 |
|
00:02:03,730 --> 00:02:08,150 |
|
ููููู ุนูุฏู ู
ูุฌูุฏ ู
ุนุงุฏูุงุช ูู reactions ูุงู |
|
|
|
27 |
|
00:02:08,150 --> 00:02:15,550 |
|
deflections ูู concentrated load ููู |
|
|
|
28 |
|
00:02:15,550 --> 00:02:20,110 |
|
ู
ุนุงุฏูุงุช ูู distributed load ูุญุงูู ุงุณุชููุฏ ู
ู ูุฐุง |
|
|
|
29 |
|
00:02:20,110 --> 00:02:26,650 |
|
ุนุดุงู ุงูุงุฌู ุงู total effect ูุงู |
|
|
|
30 |
|
00:02:26,650 --> 00:02:29,770 |
|
ุงู beam ูุฐุง ุงููู ูุญูู ูู ุฏู ุงู beam |
|
|
|
31 |
|
00:02:34,350 --> 00:02:50,870 |
|
ูู reactions ุนููู R ูุงุญุฏ ูR ุงุชููู ููู |
|
|
|
32 |
|
00:02:50,870 --> 00:02:58,350 |
|
distributed load W |
|
|
|
33 |
|
00:02:58,350 --> 00:03:03,910 |
|
ูุฐู ุงูู
ุณุงูุฉ A |
|
|
|
34 |
|
00:03:06,550 --> 00:03:17,550 |
|
ูุฐู P ูุทููู ููู L ูุฐู |
|
|
|
35 |
|
00:03:17,550 --> 00:03:30,570 |
|
ุจุฏู ุฃุญูู ู
ู ุงู P ูุฃูู ุจูุณุงูู F |
|
|
|
36 |
|
00:03:35,190 --> 00:03:41,010 |
|
ุชุณู
ู R1 prime R2 |
|
|
|
37 |
|
00:03:41,010 --> 00:03:47,370 |
|
prime ุฒุงุฆุฏ |
|
|
|
38 |
|
00:03:47,370 --> 00:03:50,670 |
|
D |
|
|
|
39 |
|
00:03:50,670 --> 00:03:51,230 |
|
ุจุชุงูู |
|
|
|
40 |
|
00:04:10,410 --> 00:04:17,410 |
|
ุนููู load ู
ูุฒุน W ูุนูู ุญููุช ุงู total effect ูู ุงู |
|
|
|
41 |
|
00:04:17,410 --> 00:04:20,670 |
|
effect due ู ุงู considered force ุฒู ุงู effect due |
|
|
|
42 |
|
00:04:20,670 --> 00:04:29,350 |
|
ู ุงู distributed load ูุฐุง ูุณู
ูู R1 double prime ู |
|
|
|
43 |
|
00:04:29,350 --> 00:04:32,170 |
|
R2 double prime |
|
|
|
44 |
|
00:04:38,620 --> 00:04:54,080 |
|
ุงูุญุงูุฉ ุฏู ู
ูุฌูุฏุฉ ูู ุงู tables ุงุฐุง |
|
|
|
45 |
|
00:04:54,080 --> 00:04:57,800 |
|
ุจุฑูุญ ุชู
ุจู ุจุฑูุญ ุนูู A96 |
|
|
|
46 |
|
00:05:01,940 --> 00:05:11,720 |
|
ุฑูุญ ุนูู table A9-6 ุงูุญุงู ูุชููู ู
ูุฌูุฏุฉ ู
ุนุทูู ุงู |
|
|
|
47 |
|
00:05:11,720 --> 00:05:18,580 |
|
reaction forces ู ุงู shear diagram ู ุงู moment |
|
|
|
48 |
|
00:05:18,580 --> 00:05:27,360 |
|
diagram ูุนูู ู
ุนุทูู ุงู R1 ุจุฑุงูู ุจุชุณุงูู |
|
|
|
49 |
|
00:05:27,360 --> 00:05:29,600 |
|
FB ุนูู L |
|
|
|
50 |
|
00:05:34,610 --> 00:05:42,530 |
|
ู R ุงุชููู ุจุฑุงูู
ู R ุงุชููู ุจุฑุงูู
ุงููู ูู F A ุนูู L |
|
|
|
51 |
|
00:05:42,530 --> 00:05:52,170 |
|
F A ุนูู L ูู
ุนุทููู |
|
|
|
52 |
|
00:05:52,170 --> 00:05:59,930 |
|
ุงู deflection ู
ุนุฏูุชู ู
ู A ู B ููุนูู A B |
|
|
|
53 |
|
00:05:59,930 --> 00:06:01,510 |
|
C |
|
|
|
54 |
|
00:06:05,190 --> 00:06:13,650 |
|
ABC ูุนุทููุง ู
ู A ู B YAB |
|
|
|
55 |
|
00:06:13,650 --> 00:06:16,950 |
|
ุจุงูุณุงููุฉ |
|
|
|
56 |
|
00:06:16,950 --> 00:06:24,110 |
|
FBX ุนูู |
|
|
|
57 |
|
00:06:24,110 --> 00:06:25,790 |
|
6EIL |
|
|
|
58 |
|
00:06:31,870 --> 00:06:47,050 |
|
ูู X ุชุฑุจูุน ุฒุงุฆุฏ B ุชุฑุจูุน ูุงูุต L ุชุฑุจูุน ูุชุณู
ููุง |
|
|
|
59 |
|
00:06:47,050 --> 00:06:53,970 |
|
prime ุจุฑุถู ูุฅู ูุงุฏ ูุฏูู ููุท ููุงุฏู ุงู loading ูุณู
ู |
|
|
|
60 |
|
00:06:53,970 --> 00:06:58,010 |
|
Y A B Y B C prime |
|
|
|
61 |
|
00:06:59,880 --> 00:07:08,420 |
|
ู
ุนุทููู FA ูู L minus X ุนูู |
|
|
|
62 |
|
00:07:08,420 --> 00:07:13,640 |
|
6 EIL |
|
|
|
63 |
|
00:07:13,640 --> 00:07:16,760 |
|
ูู |
|
|
|
64 |
|
00:07:16,760 --> 00:07:23,920 |
|
X ุชุฑุจูุน ุฒุงุฆุฏ A ุชุฑุจูุน ูุงูุต 2LX |
|
|
|
65 |
|
00:07:33,990 --> 00:07:37,690 |
|
ู
ุนูุงุชู ูุฐุง ุงู effect due ู ุงู concentrated load |
|
|
|
66 |
|
00:07:37,690 --> 00:07:45,730 |
|
ูุงู ูู ุญุงูุฉ ุงู distributed load ููุฑูุญ ุงู appendix |
|
|
|
67 |
|
00:07:45,730 --> 00:07:50,630 |
|
A ุชุณุนุฉ |
|
|
|
68 |
|
00:07:50,630 --> 00:07:54,810 |
|
ุณุจุนุฉ A ุชุณุนุฉ |
|
|
|
69 |
|
00:07:54,810 --> 00:08:04,030 |
|
ุณุจุนุฉ ุจุฑุถู ู
ุงุนุทููุง ุงู reactions ุงู R ูุงุญุฏdouble |
|
|
|
70 |
|
00:08:04,030 --> 00:08:11,070 |
|
prime ุจูุณุชูู ุงู R2 double prime ุจูุณุชูู WL ุนูู |
|
|
|
71 |
|
00:08:11,070 --> 00:08:21,990 |
|
ุงุชููู ูู
ุนุทูู ุงู deflection ูููุง Y ุจูุณุชูู |
|
|
|
72 |
|
00:08:21,990 --> 00:08:27,130 |
|
WX ุนูู |
|
|
|
73 |
|
00:08:27,130 --> 00:08:30,710 |
|
ุงุฑุจุน ุนุดุฑูู AI |
|
|
|
74 |
|
00:08:35,770 --> 00:08:46,090 |
|
ูู 2LX ุชุฑุจูุน minus |
|
|
|
75 |
|
00:08:46,090 --> 00:08:52,250 |
|
X ุชูููุจ minus |
|
|
|
76 |
|
00:08:52,250 --> 00:08:59,450 |
|
L ุชูููุจ ูุชุณู
ููุง |
|
|
|
77 |
|
00:08:59,450 --> 00:09:01,330 |
|
Y double prime |
|
|
|
78 |
|
00:09:06,970 --> 00:09:10,510 |
|
ู
ุนูุงุฉ ุงูู total effect ุงูุฑุฏ ุงููุนู R1 ุงูุด ูููู |
|
|
|
79 |
|
00:09:10,510 --> 00:09:13,950 |
|
ุงูุณุงููุ |
|
|
|
80 |
|
00:09:13,950 --> 00:09:22,630 |
|
R1 prime ุงููู |
|
|
|
81 |
|
00:09:22,630 --> 00:09:29,370 |
|
ูู ูููู FB ุนูู L ุฒุงุฆุฏ |
|
|
|
82 |
|
00:09:29,370 --> 00:09:34,850 |
|
WL ุนูู 2 ูR2 |
|
|
|
83 |
|
00:09:36,680 --> 00:09:44,420 |
|
ููููู ุณูุงุก ุฑ ุงุชููู prime ุฒุงุฏ ุฑ ุงุชููู double prime |
|
|
|
84 |
|
00:09:44,420 --> 00:09:55,200 |
|
ูุนูู FA ุนูู L ุฒุงุฏ WL ุนูู ุงุชููู |
|
|
|
85 |
|
00:10:00,700 --> 00:10:03,660 |
|
ู ุงู total deflection ูุชุถุน ุฃูุตุฑ ู
ู ุงูุฌุฒุฆูู ูุฃูู |
|
|
|
86 |
|
00:10:03,660 --> 00:10:14,720 |
|
ุจุณุจุจ ุงู load ูุฐุง ูุญูู y a b y a b ููููู ุณูุงุก y a b |
|
|
|
87 |
|
00:10:14,720 --> 00:10:22,120 |
|
prime ุฒุงุฆุฏ |
|
|
|
88 |
|
00:10:22,120 --> 00:10:34,210 |
|
y a b double prime ูุนูู ููููู ุณูุงุกyab prime ุงููู |
|
|
|
89 |
|
00:10:34,210 --> 00:10:38,230 |
|
ูู fb |
|
|
|
90 |
|
00:10:38,230 --> 00:10:56,210 |
|
x ุนูู 6 ei l ูู x ุชุฑุจูุน ุฒุงุฆุฏ b ุชุฑุจูุน minus l ุชุฑุจูุน |
|
|
|
91 |
|
00:10:58,710 --> 00:11:06,850 |
|
ุฒุงุฆุฏ y a ุจุชุจุฑุงูู ุงููู ูู ููุณูุง ุฏู ุฒุงุฆุฏ w x ุนูู |
|
|
|
92 |
|
00:11:06,850 --> 00:11:10,910 |
|
24 E |
|
|
|
93 |
|
00:11:10,910 --> 00:11:14,670 |
|
I ูู |
|
|
|
94 |
|
00:11:14,670 --> 00:11:25,950 |
|
2 L x ุชุฑุจูุน minus x ุชูููุจ minus L ุชูููุจ |
|
|
|
95 |
|
00:11:27,760 --> 00:11:36,360 |
|
ูุนูู ูููู ุนูุฏู YAB |
|
|
|
96 |
|
00:11:36,360 --> 00:11:44,260 |
|
ูุงุฎุฏ ุนูุฏู ูุงุญุฏ |
|
|
|
97 |
|
00:11:44,260 --> 00:11:49,920 |
|
ุนูู ุฃุฑุจุน ูุนุดุฑูู EI |
|
|
|
98 |
|
00:11:49,920 --> 00:11:54,920 |
|
ุนู
ู
ุดุชุฑู ููู |
|
|
|
99 |
|
00:11:54,920 --> 00:12:12,460 |
|
ูููู ุนูุฏ Fุงุฑุจุน FBX ูู |
|
|
|
100 |
|
00:12:12,460 --> 00:12:24,380 |
|
X ุชุฑุจูุน ุฒุงุฆุฏ B ุชุฑุจูุน minus L ุชุฑุจูุน ุฒุงุฆุฏ |
|
|
|
101 |
|
00:12:24,380 --> 00:12:25,140 |
|
WX |
|
|
|
102 |
|
00:12:29,050 --> 00:12:39,230 |
|
ููู ุงุชููู ุงู X ุชุฑุจูุน minus X ุชูููุจ minus ุงู ุชูููุจ |
|
|
|
103 |
|
00:12:39,230 --> 00:12:43,030 |
|
ูุงู |
|
|
|
104 |
|
00:12:43,030 --> 00:12:49,870 |
|
deflection ู
ู A ู B ู ุงู deflection ู
ู B ู C |
|
|
|
105 |
|
00:12:54,430 --> 00:13:10,350 |
|
ููููู ybc prime ุฒู ybc double prime ุจุฑุถู |
|
|
|
106 |
|
00:13:10,350 --> 00:13:21,430 |
|
ููููู ู
ุชุณุงูู ูุงุญุฏ ุนูู ุงุฑุจุน ูุนุดุฑูู ei ููู ุงุฑุจุน |
|
|
|
107 |
|
00:13:21,430 --> 00:13:22,030 |
|
fa |
|
|
|
108 |
|
00:13:26,340 --> 00:13:43,460 |
|
ูู L-X ูู X ุชุฑุจูุน ุฒุงุฏ A ุชุฑุจูุน ูุงูุต ุงุชููู LX ุฒุงุฏ |
|
|
|
109 |
|
00:13:43,460 --> 00:13:46,540 |
|
WX |
|
|
|
110 |
|
00:13:46,540 --> 00:13:55,000 |
|
ูู ุงุชููู LX ุชุฑุจูุน ู
ุงูููุณ X ุชูููุจ ู
ุงูููุณ L ุชูููุจ |
|
|
|
111 |
|
00:13:57,290 --> 00:14:02,310 |
|
ูุงุญูุง ุฌุจูุง ุงู deflection ุจุงุณุชุฎุฏุงู
ุงู superposition |
|
|
|
112 |
|
00:14:02,310 --> 00:14:16,550 |
|
ุทูุจ |
|
|
|
113 |
|
00:14:16,550 --> 00:14:19,250 |
|
ุจูุดูู ู
ุซุงู ุชุงููุ ูู ุงู ุณุคุงูุ |
|
|
|
114 |
|
00:14:48,320 --> 00:14:52,620 |
|
ูุนูุฏ B simply |
|
|
|
115 |
|
00:14:52,620 --> 00:14:57,740 |
|
supported ุนูุฏ A ูB ุงูู
ุณุงูุฉ |
|
|
|
116 |
|
00:14:57,740 --> 00:15:04,700 |
|
ู
ู A ู B ูุงู ูุงูู
ุณุงูุฉ ู
ู B ู C A ูู load ู
ูุฒุน ูู |
|
|
|
117 |
|
00:15:04,700 --> 00:15:11,980 |
|
ุงูู
ุณุงูุฉ ู
ู A ู B ููู load ู
ุฑูุฒ ุนู ููุทุฉ C ุจุฏูุง ูุญุณุจ |
|
|
|
118 |
|
00:15:11,980 --> 00:15:16,530 |
|
deflections equations using superpositionู
ุนูุงุชู |
|
|
|
119 |
|
00:15:16,530 --> 00:15:22,790 |
|
ุงูุง ูุดูู ุงูุด ุนูุฏู ูู ุงู tables ุนูุฏู ูู ุงู tables a |
|
|
|
120 |
|
00:15:22,790 --> 00:15:28,030 |
|
9 7 ุงููู ูู ุงู distributed load condition ูู ุนูุฏู |
|
|
|
121 |
|
00:15:28,030 --> 00:15:33,830 |
|
a 9 10 ูู ุนูุฏู ููุณ ุงูุญุงูุฉ ูู ุนูุฏ ุงู end ูู |
|
|
|
122 |
|
00:15:33,830 --> 00:15:40,090 |
|
concentrated load ุทูุจ |
|
|
|
123 |
|
00:15:40,090 --> 00:15:41,730 |
|
ู
ุนูุงุชู ุญุงุฌุฉ ุงุญูู ุนู ุงู beam ูุฐุง |
|
|
|
124 |
|
00:15:52,610 --> 00:16:03,050 |
|
ูู ุงููู ูู ูู ุนูุฏู distribute load ููู |
|
|
|
125 |
|
00:16:03,050 --> 00:16:13,690 |
|
ุฑุฏ ูุนู ุนูุฏ A ูุนูู A R ูุงุญุฏ ูุนูุฏู R ุงุชููู ุนูุฏ B |
|
|
|
126 |
|
00:16:13,690 --> 00:16:15,710 |
|
ูุนูุฏ C ูู ุงูุด |
|
|
|
127 |
|
00:16:23,090 --> 00:16:29,170 |
|
ูุงูู
ุณุงูุฉ ูุฏู ูุฏู |
|
|
|
128 |
|
00:16:29,170 --> 00:16:39,590 |
|
L ูุฏู A ูุฏู ุญุฏ ุณุงูู two loading conditions ู
ุฌู
ูุน |
|
|
|
129 |
|
00:16:39,590 --> 00:16:45,230 |
|
two loading conditions ูุงุญุฏุฉ distributed load |
|
|
|
130 |
|
00:16:53,070 --> 00:17:02,710 |
|
ูู ุชุฌุนููุง R1 prime ู R2 prime |
|
|
|
131 |
|
00:17:02,710 --> 00:17:07,050 |
|
ููุง |
|
|
|
132 |
|
00:17:07,050 --> 00:17:18,430 |
|
ุนูุฏู A B C ุฒุงุฆุฏ ูุงู |
|
|
|
133 |
|
00:17:18,430 --> 00:17:26,580 |
|
AB C R |
|
|
|
134 |
|
00:17:26,580 --> 00:17:33,980 |
|
R |
|
|
|
135 |
|
00:17:33,980 --> 00:17:37,000 |
|
ูุงุญุฏ |
|
|
|
136 |
|
00:17:37,000 --> 00:17:41,600 |
|
double |
|
|
|
137 |
|
00:17:41,600 --> 00:17:47,400 |
|
prime R ุงุชููู double prime |
|
|
|
138 |
|
00:17:55,660 --> 00:18:04,620 |
|
ูุฐู ุงูุญุงูุฉ ุงููู ูู ุทุจุนุง ูุชูุฌุฉ deflection ูุชูุฌุฉ |
|
|
|
139 |
|
00:18:04,620 --> 00:18:12,260 |
|
deflection ูุฐู ููุตูุฑ ุฒู ููู ู
ุธุจูุท |
|
|
|
140 |
|
00:18:12,260 --> 00:18:17,580 |
|
ููุฐู |
|
|
|
141 |
|
00:18:17,580 --> 00:18:24,060 |
|
ูุชููู ุงุดูุฑ |
|
|
|
142 |
|
00:18:24,060 --> 00:18:24,540 |
|
ุฒู ููู |
|
|
|
143 |
|
00:18:31,880 --> 00:18:41,320 |
|
ูุฐุง ูุชููู appendix ุฃูู ูุงุญุฏุฉ A ุชุณุนุฉ ุนุดุฑุฉ A ุชุณุนุฉ |
|
|
|
144 |
|
00:18:41,320 --> 00:18:51,580 |
|
ุณุจุนุฉ ู ูุฐุง |
|
|
|
145 |
|
00:18:51,580 --> 00:18:57,700 |
|
A ุชุณุนุฉ ุนุดุฑุฉ |
|
|
|
146 |
|
00:18:59,790 --> 00:19:04,590 |
|
ุทุจ ูู ุฃูุฉ ุงูุณุจุจ ู
ุงุนุทููู ุงู R ูุงุญุฏ ุนูุฏ ุงู R ูุงุญุฏ |
|
|
|
147 |
|
00:19:04,590 --> 00:19:21,910 |
|
ูุณุชูู R ุงุชููู ูุณุชูู W L ุนูู ุงุชููู ุตุญุ ู ุงู Y ูุณุชูู |
|
|
|
148 |
|
00:19:21,910 --> 00:19:26,750 |
|
W X ุนูู ุงุฑุจุน ู ุนุดุฑูู AI |
|
|
|
149 |
|
00:19:34,860 --> 00:19:43,580 |
|
ูู ุงุชููู LX ุชุฑุจูุน minus |
|
|
|
150 |
|
00:19:43,580 --> 00:19:48,040 |
|
X ุชูููุจ minus |
|
|
|
151 |
|
00:19:48,040 --> 00:19:56,420 |
|
L ุชูููุจ ุงู |
|
|
|
152 |
|
00:19:56,420 --> 00:19:58,780 |
|
loading condition ุจุชุงุนูุง ุงููู ูู ุงู concentrated |
|
|
|
153 |
|
00:20:07,150 --> 00:20:10,950 |
|
ูุฃ ุนูุฏู ูู ุงูู
ุณูู ุงููุฏ ูุฏู ูุณูู reflection ู ูุฏู |
|
|
|
154 |
|
00:20:10,950 --> 00:20:21,670 |
|
ููุฒู ุชุญุช ุทุจุนุง ุงู |
|
|
|
155 |
|
00:20:21,670 --> 00:20:31,190 |
|
ุจุณ ุงูู ูุฏู ู
ุด ูุชููู ูุชูููุด ุฒู ููู ุตุญูุญ ููุงู
ู ุนูุณ |
|
|
|
156 |
|
00:20:31,190 --> 00:20:33,530 |
|
ููููู |
|
|
|
157 |
|
00:20:38,830 --> 00:20:46,190 |
|
ุงุดู ุฒู ููู ุทูุจ |
|
|
|
158 |
|
00:20:46,190 --> 00:20:55,550 |
|
ุงู R ุงุชููู ุงู ุงู R ูุงุญุฏ double prime ููููู ุงูุณุงููุฉ |
|
|
|
159 |
|
00:20:55,550 --> 00:21:04,210 |
|
F A ุนูู |
|
|
|
160 |
|
00:21:04,210 --> 00:21:08,070 |
|
L ูู |
|
|
|
161 |
|
00:21:10,800 --> 00:21:17,380 |
|
L ุฒุงุฆุฏ A F |
|
|
|
162 |
|
00:21:17,380 --> 00:21:20,920 |
|
A |
|
|
|
163 |
|
00:21:20,920 --> 00:21:30,080 |
|
ุนูู L ุทุจุนุง ูููู ุนุด ุจุงูุณุงูุจ ู
ุธุจูุท |
|
|
|
164 |
|
00:21:30,080 --> 00:21:36,900 |
|
ู R2 double prime ูุชููู |
|
|
|
165 |
|
00:21:36,900 --> 00:21:39,780 |
|
ุชุณุงูู F |
|
|
|
166 |
|
00:21:41,620 --> 00:21:49,760 |
|
ุนูู L ูู L ุฒุงุฆุฏ A ุงุฐุง |
|
|
|
167 |
|
00:21:49,760 --> 00:21:55,520 |
|
ุจุชุฌู
ุนูู
ุจุชุทูุน ู
ู ุฌููู
ุงูู ุดูู ุณุงูู F ูุนูู ุงูุง ุงุฎุฏ |
|
|
|
168 |
|
00:21:55,520 --> 00:22:00,640 |
|
F ุนูู L ุนูู ุงูู
ุดุชุฑู ุจูููู minus A ุฒุงุฆุฏ L ุฒุงุฆุฏ A |
|
|
|
169 |
|
00:22:00,640 --> 00:22:08,580 |
|
ุจูุตูุฑ FL ุนูู L ูุนูู F ู ุงู Y ู
ู A ู B |
|
|
|
170 |
|
00:22:11,590 --> 00:22:16,710 |
|
ุทุจุนุง ูุงุฏ ุงู Y ูุงุฏ |
|
|
|
171 |
|
00:22:16,710 --> 00:22:22,790 |
|
ู
ู A ู B ุจุณ ู
ุงุญูููุงุด ู
ู B ู C ุงุญูุง ูู
ููุญูู ุนูููุง |
|
|
|
172 |
|
00:22:22,790 --> 00:22:34,950 |
|
Y prime Y double prime ู
ู A ู B ุจุชุณุงูู F Ax ุนูู 6 |
|
|
|
173 |
|
00:22:34,950 --> 00:22:35,510 |
|
E IL |
|
|
|
174 |
|
00:22:46,500 --> 00:22:53,600 |
|
ูู L ุชุฑุจูุฉ ูุงูุต X ุชุฑุจูุฉ YAB |
|
|
|
175 |
|
00:22:53,600 --> 00:23:04,960 |
|
YBC double prime ู X minus |
|
|
|
176 |
|
00:23:04,960 --> 00:23:09,120 |
|
L ุนูู |
|
|
|
177 |
|
00:23:09,120 --> 00:23:10,380 |
|
6EI |
|
|
|
178 |
|
00:23:21,840 --> 00:23:31,780 |
|
ูู X ูุงูุต L ููู ุชุฑุจูุน minus |
|
|
|
179 |
|
00:23:31,780 --> 00:23:35,680 |
|
A ูู |
|
|
|
180 |
|
00:23:35,680 --> 00:23:38,620 |
|
ุชูุงุชุฉ X minus L |
|
|
|
181 |
|
00:23:49,130 --> 00:23:55,150 |
|
ูุฐู y ุฏู ุงูู prime ุจูู c ูุฃู ูุฑุฌุน ูุญุงูุฉ ุงูุฃููู ูุฃู |
|
|
|
182 |
|
00:23:55,150 --> 00:23:58,670 |
|
ุจูุตูุฑ deflection ู ุจูุทูุน ู
ุนูุงู ุงู ุงู slope ุจูุจูู |
|
|
|
183 |
|
00:23:58,670 --> 00:24:05,370 |
|
constant ู
ุธุจูุทุ ุงู slope ู
ู b ู c ุจูุจูู constant |
|
|
|
184 |
|
00:24:05,370 --> 00:24:20,500 |
|
ูุฃู ูุญุณุจ ุงููู ูู dy prime ab by dx ุญุฏ ุณุงูู ุงู wุนูู |
|
|
|
185 |
|
00:24:20,500 --> 00:24:28,620 |
|
24EI ุงูุง ูุฏุฎู X ุฌูุง ุจุนุฏูู ุงุดุทู ุงุดุทู ุงูุชููู L X |
|
|
|
186 |
|
00:24:28,620 --> 00:24:34,280 |
|
ุชูููุจ ูููููุงุด 6L X |
|
|
|
187 |
|
00:24:34,280 --> 00:24:44,660 |
|
ุชุฑุจูุน minus 4 X ุชูููุจ minus L ุชูููุจ ูุงู |
|
|
|
188 |
|
00:24:44,660 --> 00:24:47,380 |
|
ุงู slope ุนูุฏ DY |
|
|
|
189 |
|
00:24:49,960 --> 00:24:56,920 |
|
prime AB by DX ุนูุฏ X ุจุงูุณุงููุฉ L ุงููู ูู ููุทุฉ B |
|
|
|
190 |
|
00:24:56,920 --> 00:25:07,060 |
|
ูุนูู ููุนูุถ ุนู X ุจุงู L ุตุญุ ูุชููู 6L ุชูููุจ ููุต 4L |
|
|
|
191 |
|
00:25:07,060 --> 00:25:11,820 |
|
ุชูููุจ ููุต L ุชูููุจ ุจูุงุชู L ุชูููุจ ุตุญุ ูุชููู ุชุณุงููุฉ W |
|
|
|
192 |
|
00:25:11,820 --> 00:25:17,640 |
|
L ุชูููุจ ุนูู 24 |
|
|
|
193 |
|
00:25:24,080 --> 00:25:33,420 |
|
ุนูู ุงู 24 EI ูุฐุง ุงู slope ู
ุนูุงู |
|
|
|
194 |
|
00:25:33,420 --> 00:25:43,480 |
|
ุนุดุงู ูุฌู ุงู equation ู
ู B ู C ูุงุฎุฏ ู
ุณุงูุฉ X X |
|
|
|
195 |
|
00:25:43,480 --> 00:25:46,680 |
|
ู
ุนูุงู |
|
|
|
196 |
|
00:25:46,680 --> 00:25:56,850 |
|
ูุฐู ุงูู
ุณุงูุฉ ูู
ุณุชููู ุฏูููุชููุฐุง X-L ูุงุฎุฏุช ุงูู
ุซูุซ |
|
|
|
197 |
|
00:25:56,850 --> 00:26:08,830 |
|
ูุฐุง ุทุจุนุง ูุฐุง ุญุณู ูููุง ูุฐู ุงูู
ุณุงูุฉ YBC' |
|
|
|
198 |
|
00:26:10,310 --> 00:26:16,930 |
|
ุตุญุ ูุงุฎุฏุช ุดุจุงุจ ุงูู
ุซูุซ ูุฐุง ุงูู
ุซูุซ ุงูุตุบูุฑ ู
ุน ุงูู
ุซูุซ |
|
|
|
199 |
|
00:26:16,930 --> 00:26:32,510 |
|
ุงููุจูุฑููููู y b c prime ูุนู
|
|
|
|
200 |
|
00:26:32,510 --> 00:26:37,070 |
|
x |
|
|
|
201 |
|
00:26:37,070 --> 00:26:42,270 |
|
ุนูุฏู ุณูู Lุฅุฐุง ุงูุช ุญุทูุช ุนูู ุฌูุจ X ููุต ูุฐุงุ ูุฐู |
|
|
|
202 |
|
00:26:42,270 --> 00:26:47,890 |
|
ุงูู
ุณุงูุฉ ูููุง X ู ูุฐู L ุตุญุ ุงู ู
ุนูุงุชู ูุฐู X minus L |
|
|
|
203 |
|
00:26:47,890 --> 00:26:54,250 |
|
ุงููู ู
ุด ุงูุฌูุจ ูุฃ ูุฐู ูุฐู ูุฐู X minus L ุงูุขู ุงู |
|
|
|
204 |
|
00:26:54,250 --> 00:27:03,870 |
|
slope ุงููู ูู ุงูุฒุงููุฉ ูุฐู ุซุชุง ุตุญุ ุตุญุ ุชุงู ุซุชุง ุดู |
|
|
|
205 |
|
00:27:03,870 --> 00:27:04,470 |
|
ุงูุณุงููุฉุ |
|
|
|
206 |
|
00:27:09,500 --> 00:27:10,880 |
|
YBC' |
|
|
|
207 |
|
00:27:12,760 --> 00:27:21,560 |
|
ุนูู ุงูู
ุณุงูุฉ ูุฐู ุตุญ ุงููู ูู ุนูู X minus L ุจุณุงูุฉ ูุงู |
|
|
|
208 |
|
00:27:21,560 --> 00:27:27,620 |
|
ุงู slope ุงููู ูู WL |
|
|
|
209 |
|
00:27:27,620 --> 00:27:34,220 |
|
ุชูููุจ ุนูู 24EI ู
ุนูุงุชู Y |
|
|
|
210 |
|
00:27:37,900 --> 00:27:48,200 |
|
BC' ูุชููู ุณุงููุฉ W ุงูุชูููุจ ุนูู ุงุฑุจุน ู ุนุดุฑูู EI |
|
|
|
211 |
|
00:27:48,200 --> 00:27:56,320 |
|
ููุชูู |
|
|
|
212 |
|
00:27:56,320 --> 00:28:00,960 |
|
ุงู total deflection |
|
|
|
213 |
|
00:28:02,930 --> 00:28:06,630 |
|
ููููู ูุฌู
ูุน ุงูู two deflections ูุฏูู ุตุญุ ูุนูู ูููู |
|
|
|
214 |
|
00:28:06,630 --> 00:28:10,650 |
|
ุนูุฏู y ู
ู |
|
|
|
215 |
|
00:28:10,650 --> 00:28:24,070 |
|
a ู b ููููู ุณูุงู a b prime ุฒู y a b double prime y |
|
|
|
216 |
|
00:28:24,070 --> 00:28:31,750 |
|
a b ุงููู ูู ูุฐู ุงููู ูู ูุฐู w x |
|
|
|
217 |
|
00:28:36,200 --> 00:28:48,860 |
|
ุนูู 24 EI ูู 2L X ุชุฑุจูุน minus X ุชูููุจ minus L |
|
|
|
218 |
|
00:28:48,860 --> 00:28:56,220 |
|
ุชูููุจ ุฒุงุฏ Y A double prime ุงููู ูู ุฒุงุฏ F |
|
|
|
219 |
|
00:28:56,220 --> 00:29:05,500 |
|
A X ุนูู 6 EI ูู L ุชุฑุจูุน |
|
|
|
220 |
|
00:29:09,130 --> 00:29:23,930 |
|
-X ุชุฑุจูุนู YBC |
|
|
|
221 |
|
00:29:23,930 --> 00:29:32,510 |
|
ุจูุฒุงุฏ YBC double |
|
|
|
222 |
|
00:29:32,510 --> 00:29:32,990 |
|
prime |
|
|
|
223 |
|
00:29:36,680 --> 00:29:43,280 |
|
YBC prime ุงููู ูู WL ุชูููุจ ุนูู |
|
|
|
224 |
|
00:29:43,280 --> 00:29:46,520 |
|
24EI |
|
|
|
225 |
|
00:29:46,520 --> 00:29:53,500 |
|
ูู X minus L ุฒุงุฆุฏ |
|
|
|
226 |
|
00:29:53,500 --> 00:29:59,200 |
|
F |
|
|
|
227 |
|
00:29:59,200 --> 00:30:06,160 |
|
ูู X minus L ุนูู 6EI |
|
|
|
228 |
|
00:30:09,090 --> 00:30:21,010 |
|
ูู x minus L ููู ุชุฑุจูุน minus a ูู ุชูุงุชุฉ x minus L |
|
|
|
229 |
|
00:30:21,010 --> 00:30:27,890 |
|
ุงููุจูุง |
|
|
|
230 |
|
00:30:27,890 --> 00:30:31,610 |
|
ุงู total reflection ุงู total reaction ุทุจุนุง ููููู |
|
|
|
231 |
|
00:30:31,610 --> 00:30:35,250 |
|
ุนูุฏู R ูุงุญุฏ |
|
|
|
232 |
|
00:30:41,010 --> 00:30:50,310 |
|
R1' R1W' R1' WL2 |
|
|
|
233 |
|
00:30:50,310 --> 00:30:55,990 |
|
-FAL |
|
|
|
234 |
|
00:31:01,330 --> 00:31:11,670 |
|
ุจุณุชูู R2 prime ุฒู R2 double prime ุงููู |
|
|
|
235 |
|
00:31:11,670 --> 00:31:25,180 |
|
ูู WL ุนูู ุงุชููู ุฒู F ุนูู L ูู L ุฒู ADeflection at |
|
|
|
236 |
|
00:31:25,180 --> 00:31:28,760 |
|
C ู
ูุฌูุฏ ูู ุงูู Appendix ุจุณ ูุงุด ุงุญูุง ู
ุง ุงุณุชุฎุฏู
ูุงู |
|
|
|
237 |
|
00:31:28,760 --> 00:31:33,380 |
|
ูุดุบููุงู ูุนูู YC ุชุณุงูู minus F ู
ู ุจููุฉ ุงูููุฏูููุงุช |
|
|
|
238 |
|
00:31:33,380 --> 00:31:39,960 |
|
ูุฐุง ุนู ููุทุฉ C ุนู ููุทุฉ C ุนู ููุทุฉ C ูุนูู ุงูุง ู
ุนูุถ ุนู |
|
|
|
239 |
|
00:31:39,960 --> 00:31:43,360 |
|
X |
|
|
|
240 |
|
00:31:43,360 --> 00:31:47,200 |
|
ูู L ุฒุงุฏุฉ ุจูุฌูุจ Deflection at C ุงูุง ุฌุงุจ Deflection |
|
|
|
241 |
|
00:31:47,200 --> 00:31:51,760 |
|
ุนูุฏ ุงู locationุญูุญูู ุงูุทุฑููุฉ ุงูุชุงููุฉ ุงููู ูู ุทุฑููุฉ |
|
|
|
242 |
|
00:31:51,760 --> 00:31:54,900 |
|
Castellana ุจุณ ุจุฏูุง ููุฏู
ูุง ูุญูู ุนู ุงู strain energy |
|
|
|
243 |
|
00:31:54,900 --> 00:32:01,340 |
|
ุงุฐุง ูุงูุฑูู ูู ุญุงูุฉ ุช .. ูู
ุง ุนู
ููุง ุงู tensile test |
|
|
|
244 |
|
00:32:01,340 --> 00:32:10,040 |
|
ู ุฑุณู
ูุง ุงู stress strain curve ูู |
|
|
|
245 |
|
00:32:10,040 --> 00:32:14,560 |
|
ุงู elastic region ูุงูุช |
|
|
|
246 |
|
00:32:14,560 --> 00:32:22,230 |
|
ุนูุงูุฉ ุจูู ุงู stress ู ุงู strain sigmaุจุณุงูู E ูู |
|
|
|
247 |
|
00:32:22,230 --> 00:32:31,570 |
|
ุฃุจุณููู for certain stress level ุณูุฌุจุง ู strain |
|
|
|
248 |
|
00:32:31,570 --> 00:32:40,130 |
|
level ุงูู
ุณุงุญุฉ ูุงุฏุฉ ุณุงู
ููุง ุงู area ุจุณ ูู ู
ุณุงุญุฉ ู
ุซูุซ |
|
|
|
249 |
|
00:32:40,130 --> 00:32:48,110 |
|
ุตุญ ูุต ุฃุจุณููู ูู ุฅูุด ูู ุณูุฌุจุง |
|
|
|
250 |
|
00:32:55,290 --> 00:32:59,630 |
|
ูุงูุฃุจุณููู ููุงู ูุฏู .. ููุงู ูุฏู ุงู strength energy |
|
|
|
251 |
|
00:32:59,630 --> 00:33:03,570 |
|
per unit volume ุงู strength energy per unit volume |
|
|
|
252 |
|
00:33:03,570 --> 00:33:11,030 |
|
ูุชููู ุงู .. ูู ุนูุงูุฉ ู
ู ุงู .. ูุฃู ุงูุฃุจุณููู ุณูู ุณุฌู
|
|
|
|
253 |
|
00:33:11,030 --> 00:33:21,350 |
|
ุนูู ุงููุ ูููู ูุต ูู ุงู sigma ุนูู ุงููุ ูู ุงู sigma |
|
|
|
254 |
|
00:33:23,360 --> 00:33:30,580 |
|
ูุนูู ูููู ูุต ูู sigma |
|
|
|
255 |
|
00:33:30,580 --> 00:33:41,580 |
|
ุชุฑุจูู ุนูู a ู |
|
|
|
256 |
|
00:33:41,580 --> 00:33:47,200 |
|
ุงู stress sigma ุจูุณุชูู force ูุนูููุง ูุณู
ููุง force |
|
|
|
257 |
|
00:33:47,200 --> 00:33:51,280 |
|
ุนูู area ูุฐู ูุณู
ููุง u small ูุณู
ููุง u small |
|
|
|
258 |
|
00:33:51,280 --> 00:33:52,720 |
|
ูุฅุณุชุฎุฏุงู
ุงูุจุฑูููุงุช volume |
|
|
|
259 |
|
00:34:00,100 --> 00:34:15,520 |
|
ูุฐู ุจุชุณุงูู U ูุนูู U ูุชููู ุชุณุงูู ูุต F ุชุฑุจูุน ูุต |
|
|
|
260 |
|
00:34:15,520 --> 00:34:19,400 |
|
F ุชุฑุจูุน ุนูู |
|
|
|
261 |
|
00:34:19,400 --> 00:34:25,780 |
|
A ุชุฑุจูุน ูู |
|
|
|
262 |
|
00:34:25,780 --> 00:34:26,020 |
|
E |
|
|
|
263 |
|
00:34:30,860 --> 00:34:36,540 |
|
ูุนูู ูุชููู ุงูุณูุงุก ูุต ูู |
|
|
|
264 |
|
00:34:36,540 --> 00:34:41,060 |
|
F ุนูู |
|
|
|
265 |
|
00:34:41,060 --> 00:34:48,140 |
|
ูู |
|
|
|
266 |
|
00:34:48,140 --> 00:34:57,040 |
|
F ุชุฑุจูุน ูู ูู F ุนูู A ูู A ุงู ููุช ูุฃ ุงูุง ุจุฏู |
|
|
|
267 |
|
00:34:57,040 --> 00:35:01,450 |
|
ุงุนู
ููุง ุจุตูุบุฉ ุชุงููุฉุจูุชุญูู ุงู epsilon ู ุงู sigma |
|
|
|
268 |
|
00:35:01,450 --> 00:35:06,850 |
|
ูุนูู ูุนู
ูู ุนูู ุตูุบุฉ .. ุนูู ุตูุบุฉ .. ุตูุบุฉ ุชุงููุฉ ุฎููุง |
|
|
|
269 |
|
00:35:06,850 --> 00:35:13,270 |
|
ุฃุณูููุง ุฃูุชุฑ ุฃูู .. ุฃูู ูุฐุง ุนุจุงุฑุฉ ุนู force per unit |
|
|
|
270 |
|
00:35:13,270 --> 00:35:21,470 |
|
area ูุฐุง force ุงููู ูู ุงู sigma ุจุณูุฉ F ุนูู A ุจุณูุฉ |
|
|
|
271 |
|
00:35:21,470 --> 00:35:26,210 |
|
epsilon ูู R ูู E |
|
|
|
272 |
|
00:35:32,320 --> 00:35:45,540 |
|
ูุงูุฃุจุณููู ูู delta ุนูู L ูู A ุตุญุ ู ุงู F ุจุงูุณุงููุฉ |
|
|
|
273 |
|
00:35:45,540 --> 00:35:58,120 |
|
A ุนูู A ูู E ุนูู L ูู Delta ู ุงูุนูุงูุฉ .. ู ุงูุนูุงูุฉ |
|
|
|
274 |
|
00:35:58,120 --> 00:36:01,990 |
|
ุทุจุนุง ุงู cross section ุซุงุจุชุฉู
ุนูุงุชู ุงูุนูุงูุฉ ูู |
|
|
|
275 |
|
00:36:01,990 --> 00:36:06,730 |
|
ุงูุนูุงูุฉ linear ุจุงู cross section ุจูู ุงู stress ูุงู |
|
|
|
276 |
|
00:36:06,730 --> 00:36:14,110 |
|
strain ุงูู
ุนูุงุชู ูุชููู linearุจูู ุงู force ู ุงู |
|
|
|
277 |
|
00:36:14,110 --> 00:36:17,590 |
|
deflectionุ ุจูู ุงู force ู ุงู deflectionุ ุจู
ุนูุงุชู |
|
|
|
278 |
|
00:36:17,590 --> 00:36:21,290 |
|
ุงู area ูุชููู ูู ุนุจุงุฑุฉ ุนู ุงูุดุ ุงู force ู
ุน ุงู |
|
|
|
279 |
|
00:36:21,290 --> 00:36:23,590 |
|
deflection ุงู areaุ ุงุฐุง ูุงูุฑู ุงู springs ูู ุงู |
|
|
|
280 |
|
00:36:23,590 --> 00:36:28,170 |
|
dynamics ุจุชููู ุงูุดุ ุงู potential energy ูู spring |
|
|
|
281 |
|
00:36:28,170 --> 00:36:31,350 |
|
ุงู ุงู ุงูุดุ ุงู U ูุจุชููู ุงู potential energy ูู |
|
|
|
282 |
|
00:36:31,350 --> 00:36:35,590 |
|
ุนุจุงุฑุฉ ุนู ุงู strength U ุงููู ูู ู
ุณุงุญุฉ ู
ุซูุซ ูุญูู |
|
|
|
283 |
|
00:36:35,590 --> 00:36:37,930 |
|
ุงููุ deflectionุ ุจุฏู ุงุนุชุจุฑ ุงู member ูุฃูู ูุฐุง |
|
|
|
284 |
|
00:36:37,930 --> 00:36:38,490 |
|
ุฒูุจุฑู |
|
|
|
285 |
|
00:36:41,730 --> 00:36:48,810 |
|
ูุงูุนูุงูุฉ F ู
ุน X ู
ุน Deflection ูุฅุฐุง ุดุฏููุช ุฒุจูุงุฑู |
|
|
|
286 |
|
00:36:48,810 --> 00:36:58,250 |
|
ู
ุณุงูุฉ X ูููู ููู
ุฉ ุงูู Strength ุงููู ูู ูุต ูู F ูู |
|
|
|
287 |
|
00:36:58,250 --> 00:37:01,730 |
|
X ุงููู |
|
|
|
288 |
|
00:37:01,730 --> 00:37:08,190 |
|
ูู ุงููู ุฃูุชูุง ุดุงูููููุง ุทุจุนุง ุฑุงุญ ุฃุนูุถ ุนู Y ุฃู X F |
|
|
|
289 |
|
00:37:08,190 --> 00:37:12,930 |
|
ุนูู Kุจุตูุฑ ุงู strength energy ุงู U ุงู U capital |
|
|
|
290 |
|
00:37:12,930 --> 00:37:21,430 |
|
ุจุงูุณุงููุฉ F ุนูู ุงุชููู ูู Y ุงู X ุฒุงุฆุฏ F square ุนูู |
|
|
|
291 |
|
00:37:21,430 --> 00:37:27,290 |
|
ุงู ุงุชููู K ู
ุนูุงุชู ุงุฐุง ุนูุฏู mechanical under pure |
|
|
|
292 |
|
00:37:27,290 --> 00:37:35,710 |
|
tension ุจูุตูุฑ ูู ู
ุฎุฒูู ู
ุฎุฒูู ุทุงูุฉ ู ุฏู ุงููู ุงููู |
|
|
|
293 |
|
00:37:35,710 --> 00:37:41,800 |
|
ุจุถูู ุดุฏู ุงุด ุจูุตูุฑ ูููุชุชุนุจ ุตุญุ ู
ุงุฒุงู ุชุชุนุจ ู
ุนูุงุชู ูู |
|
|
|
294 |
|
00:37:41,800 --> 00:37:46,620 |
|
ุงุดู ุจููุงู
ู ูู ุนูุฏู ุทุงูุฉ ูููู ุจุชููู strain energy |
|
|
|
295 |
|
00:37:46,620 --> 00:37:51,640 |
|
ู
ุฎุฒููุฉ ูู ุงู .. ูู ุงู mechanical element ุงู due ูู |
|
|
|
296 |
|
00:37:51,640 --> 00:37:57,120 |
|
.. ูู loading ูุงู strain energy ุณูุงุก F square ุนูู |
|
|
|
297 |
|
00:37:57,120 --> 00:38:03,320 |
|
ุงุชููู K ู
ุนูุงุชู ูู ุญุงูุฉ ูุฐุง ุงู general equation |
|
|
|
298 |
|
00:38:03,320 --> 00:38:06,140 |
|
ุงููู ูู ุงู strain energy |
|
|
|
299 |
|
00:38:08,840 --> 00:38:15,620 |
|
ุจุณ ูู ุงู ุณูููุฑ ุนูู ุงุชููู ูุชุฑ ูู ุญุงูุฉ actually |
|
|
|
300 |
|
00:38:15,620 --> 00:38:19,820 |
|
loaded member actually |
|
|
|
301 |
|
00:38:19,820 --> 00:38:28,700 |
|
loaded member ุงูููู ุงูุด ูุงูุชููู ุงู ุงู ุนูู ุงู ุทุจุนุง |
|
|
|
302 |
|
00:38:28,700 --> 00:38:35,620 |
|
ุฎูููู ุงุดูู ุงููุญุฏุงุช ุงู area ู ุงูุด ูุญุฏุงุชูุง ู
ุชุฑ ุณูููุฑ |
|
|
|
303 |
|
00:38:39,040 --> 00:38:46,640 |
|
ุงููููุชู ุนูู ู
ุชุฑ square ุตุญุ ูููุง ุนูุฏู ุงูุงุด ู
ุชุฑ |
|
|
|
304 |
|
00:38:46,640 --> 00:38:52,880 |
|
ูู
ุนูุงุชู ูุชููู ุงููููุชู ุนูู ู
ุชุฑ ุฏู ูุงุญุฏุฉ ุงูุงุด ุงู K |
|
|
|
305 |
|
00:38:52,880 --> 00:38:55,640 |
|
ู
ุนูุงุชู ุชุญุณุฑ ุงู view ูู ุญุงูุฉ actually loaded member |
|
|
|
306 |
|
00:38:55,640 --> 00:39:05,080 |
|
ุจูุณุชููู square ุนูู ุจูุนูุถ ุนู K ุงููู ูู ุงุชููู ุงููู |
|
|
|
307 |
|
00:39:05,080 --> 00:39:25,450 |
|
ูู AEุนูู L ูุนูู ูุชููู Fยฒ L ุนูู 2A E ุฃู |
|
|
|
308 |
|
00:39:28,910 --> 00:39:33,150 |
|
ุฅุฐุง ูุงูุช ุงู force ู
ุชุบูุฑุฉ ุชุชุบูุฑ ู
ู ููุทุฉ ูููุทุฉ |
|
|
|
309 |
|
00:39:33,150 --> 00:39:37,390 |
|
ู
ุนูุงุชู ูุงุฒู
ู
ุด ุงุนู
ู integration ูุงุฒู
ุงุนู
ู ุงุฎุฏ |
|
|
|
310 |
|
00:39:37,390 --> 00:39:42,210 |
|
element ุตุบูุฑ ู ุงุฌู
ุน ุงู total effect ุงููู ูู |
|
|
|
311 |
|
00:39:42,210 --> 00:39:46,130 |
|
integration ู
ุนูุงุชู ุงู U ุจุชููู ูู ุญุงูุฉ tension ุงู |
|
|
|
312 |
|
00:39:46,130 --> 00:39:49,370 |
|
axially loaded condition ุณูุงุก ูุงู tension ุงู |
|
|
|
313 |
|
00:39:49,370 --> 00:39:56,790 |
|
compression ุจุชููู ุชุณุงูู ุชูุงู
ู F squared ุนูู 2 AEDX |
|
|
|
314 |
|
00:39:59,610 --> 00:40:06,470 |
|
ูู ุญุงูุฉ original loading ุงู K ูุงูุช ุณูุงุก ุฌู ุฌู ุนูู |
|
|
|
315 |
|
00:40:06,470 --> 00:40:14,030 |
|
I ุตุญ ุนูู L ุฌู ุฌู ุนูู L |
|
|
|
316 |
|
00:40:16,600 --> 00:40:19,360 |
|
ูู ุจูุณุชูู ุงูุง ุจุนูุถ ูู ุงูู
ุนุงุฏูุฉ ูุฐุง ุงู equation ุงู |
|
|
|
317 |
|
00:40:19,360 --> 00:40:24,740 |
|
U ุจูุณุชูู F2 ุนูู 2K ุจุนูุถ ุนู K ุจุชููู ุงู U ุจูุณุชูู T2L |
|
|
|
318 |
|
00:40:24,740 --> 00:40:29,800 |
|
ุนูู 2GJ ูู ูุงูุช ุงู torsion ุจุชุบูุฑ ู
ุน ุงู distance X |
|
|
|
319 |
|
00:40:29,800 --> 00:40:36,040 |
|
ู
ุนูุงุชู ุจูุนู
ู integration ุงู U ุจูุณุชูู ุชูู
ู T2 ุนูู |
|
|
|
320 |
|
00:40:36,040 --> 00:40:39,080 |
|
2GJ DX |
|
|
|
321 |
|
00:40:45,350 --> 00:40:50,730 |
|
ุจููุณ ุงูููุฑุฉ ุจุงุนูุถ ุนู K ุจุญุณุจ ุงููู ูู ุงู strain |
|
|
|
322 |
|
00:40:50,730 --> 00:40:54,950 |
|
energy due to direct shear loading direct shear |
|
|
|
323 |
|
00:40:54,950 --> 00:40:58,510 |
|
loading ุจุชููู ุณุงููู ุณูู F square ุนูู L F square L |
|
|
|
324 |
|
00:40:58,510 --> 00:41:04,190 |
|
ุนูู 2 AG ุงู ุงุฐุง ูุงูุช ุงู F ู
ุชุบูุฑู ู
ุน ุงู X ุจุชููู |
|
|
|
325 |
|
00:41:04,190 --> 00:41:07,130 |
|
ุชูุงู
ู F square ุนูู 2 AG DX |
|
|
|
326 |
|
00:41:10,480 --> 00:41:13,260 |
|
ุจุฑุถู ููุณ ุงูููุฑุฉ ุจูุญุท ุงู bending loading ุจูููู |
|
|
|
327 |
|
00:41:13,260 --> 00:41:18,140 |
|
strain energy due to bending loading ูู ูุงูุช ุงู M |
|
|
|
328 |
|
00:41:18,140 --> 00:41:22,920 |
|
constantุ ู
square L ุนูู ููู EIุ ุฅุฐุง ูุงูุช ุงู M |
|
|
|
329 |
|
00:41:22,920 --> 00:41:25,560 |
|
ู
ุชุบูุฑุฉ ู
ุน ุงู Xุ ุจุนู
ู integration |
|
|
|
330 |
|
00:41:30,580 --> 00:41:34,140 |
|
ูุฐู ุงูู
ุนุงุฏูุฉ ูู ุญุงูุฉ ูู Transverse Shear Loading |
|
|
|
331 |
|
00:41:34,140 --> 00:41:38,860 |
|
ููุง ูู ุฅุถุงูุฉ ุงูุชู ูู U ุจุงูุณุงููุฉ ุชูู
ู CVยฒ ุนูู 2 |
|
|
|
332 |
|
00:41:38,860 --> 00:41:43,760 |
|
AGDX ููุง ุงูู C Modifier ุจุญุณุจ ุดูู ุงูู
ูุทุน |
|
|
|
333 |
|
00:41:46,590 --> 00:41:50,830 |
|
ุงูู C ุจุชุนุชู
ุฏ ุฅุฐุง ูุงู ุงูู
ูุทุน ุงูู
ุฏูุฑ ุฅููุง ููู
ุฉ ุฃู |
|
|
|
334 |
|
00:41:50,830 --> 00:41:56,190 |
|
ู
ุณุชุทูู ุฅููุง ููู
ุฉ ุฃู thin walled tubular tube ุฅููุง |
|
|
|
335 |
|
00:41:56,190 --> 00:42:00,810 |
|
ููู
ุฉ ุฃู box section ุฃู structural section ูุงูู C |
|
|
|
336 |
|
00:42:00,810 --> 00:42:05,750 |
|
ุจุชุชุบูุฑ ุจุญุณุจ ุดูู ุงูู
ูุทุน ุจูุดูู ู
ุซุงู |
|
|
|
337 |
|
00:42:34,270 --> 00:42:37,910 |
|
ุนูุฏู can deliver beam with a round cross section |
|
|
|
338 |
|
00:42:37,910 --> 00:42:42,830 |
|
has a concentrated load F at the end find straight |
|
|
|
339 |
|
00:42:42,830 --> 00:42:47,990 |
|
energy in the beam ูู |
|
|
|
340 |
|
00:42:47,990 --> 00:42:56,490 |
|
ุฃุฎุฏุช ุงู beam ุนูุฏู ุนุจุงุฑุฉ ุนู concentrated load ูููู |
|
|
|
341 |
|
00:42:56,490 --> 00:43:02,330 |
|
ุชุฃุซูุฑ force F ุญููุช |
|
|
|
342 |
|
00:43:02,330 --> 00:43:03,170 |
|
ูุงู ุงู accent ุฏู |
|
|
|
343 |
|
00:43:08,350 --> 00:43:16,090 |
|
ุงุฎุฏุช ู
ุณุงูุฉ ุงูุดุ X ูุงุฎุฏุช ุงู free body diagram ุงููู |
|
|
|
344 |
|
00:43:16,090 --> 00:43:30,130 |
|
ุนูุฏููู F ูุฐู ุงูุดุ F ู ูุฐู ุงูุดุ M ูุฐู ุงูู
ุณุงูุฉ ุงูุดุ |
|
|
|
345 |
|
00:43:33,230 --> 00:43:37,550 |
|
ููู transverse shear ุงููู ูู ุงู V ุฅูุด ูุณุงููุ ูุฐู F |
|
|
|
346 |
|
00:43:37,550 --> 00:43:48,030 |
|
ูุฐู V ุตุญุ ุงู V ุฅูุด ูุณุงููุ ุณุงูู F ุตุญุ ุงู moment ุงู |
|
|
|
347 |
|
00:43:48,030 --> 00:43:53,870 |
|
M F |
|
|
|
348 |
|
00:43:53,870 --> 00:44:03,300 |
|
ูู X F ูู X ู
ุนูุงุชู ุงู strainer ุงู U ุงููููุฉูู |
|
|
|
349 |
|
00:44:03,300 --> 00:44:10,180 |
|
strategy due to transfer share ููู strategy due to |
|
|
|
350 |
|
00:44:10,180 --> 00:44:20,300 |
|
moment ending moment ุงูุงู due to transfer share ุงู |
|
|
|
351 |
|
00:44:20,300 --> 00:44:23,120 |
|
U ุจูุณุชูู ุทุจุนุง ุงู V ุนูุฏู ูู ุงูุญุงูุฉ ูุงุฏ ุงูู ุงุดู
ููุง |
|
|
|
352 |
|
00:44:23,120 --> 00:44:38,030 |
|
constant ูุชููู C V ุชุฑุจูุนุงู ุนูู ุงุชููู A G ุฒุงุฏ ุงู U |
|
|
|
353 |
|
00:44:38,030 --> 00:44:42,950 |
|
two bending moment ู
ุชุบูุฑุฉ ูุงู ุงู M ู
ุชุบูุฑุฉ ู
ุญุชุงุฌุฉ |
|
|
|
354 |
|
00:44:42,950 --> 00:44:50,650 |
|
ุชููู ุฒุงุฏ ุงูุชูุงู
ู ู
ู ุณูุฑ ู L ูู |
|
|
|
355 |
|
00:44:50,650 --> 00:44:55,390 |
|
M square ุนูู |
|
|
|
356 |
|
00:44:55,390 --> 00:45:06,530 |
|
ุงุชููู EIDX ุงู EI constant ูุชููู ูุชููู ุงูุณุงูู U |
|
|
|
357 |
|
00:45:06,530 --> 00:45:12,530 |
|
transfer share stress ุฒุงุฆุฏ ุชูุงู
ู ู
ู ุตูุฑ ู L ู F X |
|
|
|
358 |
|
00:45:12,530 --> 00:45:23,850 |
|
ุชุฑุจูุน F ุชุฑุจูุน X ุชุฑุจูุน ุนูู ุงุชููู EI DX ูุนูู ููููู |
|
|
|
359 |
|
00:45:23,850 --> 00:45:41,200 |
|
ุงูุณุงููU transverse ุฒุงุฆุฏ F ุชุฑุจูุน X ุชูููุจ ุนูู ุณุชุฉ EI |
|
|
|
360 |
|
00:45:41,200 --> 00:45:49,680 |
|
ู
ู Zero ุฅูู ุฃูู ู
ุนูุงุชู ุงู U ูููุง ูุชููู ุงููู ูู ุงู |
|
|
|
361 |
|
00:45:49,680 --> 00:46:00,250 |
|
C ุทูุจ ู
ู ุงู tables ู
ูุทุน ูุถูู ุตุญุC 1.11 C one point |
|
|
|
362 |
|
00:46:00,250 --> 00:46:07,130 |
|
eleven ู ุงู V ุนุจุงุฑุฉ ุนู F L |
|
|
|
363 |
|
00:46:07,130 --> 00:46:14,730 |
|
ุนูู ุงุชููู AG ุฒุงุฆุฏ |
|
|
|
364 |
|
00:46:14,730 --> 00:46:22,330 |
|
F ุชุฑุจูุน ุงูุชูููุจ ุนูู ุณุชุฉ |
|
|
|
365 |
|
00:46:25,080 --> 00:46:31,020 |
|
EI ู
ุนูุงุชู ูุชูุฌุฉ ุงู force ุงูู
ุฃุซุฑ ุนูู ุงูุทุฑู ุจูููู |
|
|
|
366 |
|
00:46:31,020 --> 00:46:35,940 |
|
ููู ู
ุฎุฒูู ุทุงูุฉ ุงููู ูู ูููู
ุชูุง ุฌุฒุก ุงูุฏูู ุช |
|
|
|
367 |
|
00:46:35,940 --> 00:46:40,840 |
|
transfer share ู ุฌุฒุก ุงูุฏูู ุช ู
ูุฏุฌ ูุนูู ุงูู
ุฎุฒูู ูุฃู |
|
|
|
368 |
|
00:46:40,840 --> 00:46:47,360 |
|
ุงูู
ุงุฏุฉ ุจุชุดุชุบู ูุฒูุจุฑุฉ ุตุญุ ูุจูููู ูููุง ู
ุฎุฒูู ุทุงูุฉ ู |
|
|
|
369 |
|
00:46:47,360 --> 00:46:51,560 |
|
ุงูุฏููู ุถุงูู ุถุบุท ุนููู ูุชุชุนุจ ุตุญุ ู
ุนูุงุชู ูู ุดุบู |
|
|
|
370 |
|
00:46:54,330 --> 00:46:56,070 |
|
ู
ุญุงุถุฑุฉ ุฌุงู
ุนุฉ ูู
ุงู ุชุงูููุง ุนุงููุฉ |
|
|
|
|