abdullah's picture
Add files using upload-large-folder tool
ac87599 verified
raw
history blame
37.1 kB
1
00:00:20,650 --> 00:00:22,910
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู…ุŒ today ุฅู† ุดุงุก ุงู„ู„ู‡ we
2
00:00:22,910 --> 00:00:25,990
continue with chapter 9, at the last lecture we
3
00:00:25,990 --> 00:00:29,890
talked about hypothesis testing and we said that
4
00:00:29,890 --> 00:00:33,990
there are two cases when I will deal with the
5
00:00:33,990 --> 00:00:37,710
hypothesis tests. There are two cases, the first one
6
00:00:37,710 --> 00:00:42,030
we said, and it depends on the existence of sigma
7
00:00:42,030 --> 00:00:46,910
which is the population standard deviation. We said
8
00:00:46,910 --> 00:00:50,510
that the first case is when sigma is known and we
9
00:00:50,510 --> 00:00:53,290
took it in details at the last lecture. We said
10
00:00:53,290 --> 00:00:57,090
that we will use the z test, and under the z test there are
11
00:00:57,090 --> 00:01:00,640
two approaches: ุงู„ critical value approach and ุงู„ู€ P value approach, and we learned how we
12
00:01:00,640 --> 00:01:04,500
calculate the P value, and we said that we have to
13
00:01:04,500 --> 00:01:07,520
compare the P value with alpha, which is the level of
14
00:01:07,520 --> 00:01:11,620
significance. Today we will focus on the second
15
00:01:16,340 --> 00:01:22,030
case, which is when sigma is unknown. Okay, so the
16
00:01:22,030 --> 00:01:26,430
first slide says, "Do you ever truly know sigma, ุงู„ู€"
17
00:01:26,430 --> 00:01:29,250
ู„ูŠ ู‡ูŠ population standard deviationุŸ ูŠุนู†ูŠ ู‡ู„ ุงุญู†ุง ู‡ู„
18
00:01:29,250 --> 00:01:32,890
ูุนู„ุง ุฏุงุฆู…ุง ุชูƒูˆู† ุงู„ sigma ู…ุนุฑูˆูุฉ ุนู†ุฏูŠ ูˆู„ุง ู„ุฃุŸ ุจุญูƒูŠู„ูƒ
19
00:01:32,890 --> 00:01:35,790
ุญูŠู† probably not. ูŠุนู†ูŠ perhaps ุงู†ู‡ ู…ู…ูƒู† ู…ุง ุชูƒูˆู†ุด
20
00:01:35,790 --> 00:01:39,590
ู…ุนุฑูˆูุฉ ุงู„ sigma ุนู†ุฏูŠ. ูุจุญูƒูŠู„ูƒ ุงู† virtually all
21
00:01:39,590 --> 00:01:42,970
real-world business situations, sigma is not known.
22
00:01:42,970 --> 00:01:46,150
ูŠุนู†ูŠ ุจุงู„ุญูŠุงุฉ practically, ูŠุนู†ูŠ ุจุงู„ุญูŠุงุฉ ุจุงู„ูˆุงู‚ุนูŠุฉ
23
00:01:46,150 --> 00:01:49,820
ู…ุซู„ุง ู†ุญูƒูŠ ููŠ ุงู„ business situations ุจุงู„ุฃุบู„ุจ ุจุชูƒูˆู†
24
00:01:49,820 --> 00:01:53,320
ุงู„ sigma ู…ุด ู…ุนุฑูˆูุฉ. Okay, ุงู„ู€ ุจุนุฏ ุจุญูƒูŠู„ูƒ if there is
25
00:01:53,320 --> 00:01:57,380
a situation where sigma is known, then mu is also
26
00:01:57,380 --> 00:02:00,580
known, since to calculate sigma, you need to know mu.
27
00:02:00,580 --> 00:02:04,500
ูŠุนู†ูŠ ุจู‚ูˆู„ูƒ ููŠ situation ู„ู…ุง ุจุชูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุงู„
28
00:02:04,500 --> 00:02:08,360
sigma ู…ุนุฑูˆูุฉุŒ ูุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ mu ู…ุนุฑูˆูุฉ ู„ูŠุดุŸ ู„ุฃู†ู‡
29
00:02:08,360 --> 00:02:11,400
ุงู„ sigma ู„ู…ุง ุฃุฌูŠ ุฃุญุณุจ ุงู„ sigma ููŠ ุงู„ู‚ุงู†ูˆู† ุชุจุน ุญุณุงุจ
30
00:02:11,400 --> 00:02:14,800
ุงู„ sigmaุŒ ุงูŠุด ู…ูˆุฌูˆุฏุŸ ุงู„ mu. ูุจู…ุง ุงู†ูŠ ุงู†ุง ุทู„ุนุช ุงู„
31
00:02:14,800 --> 00:02:17,560
sigma ุงูˆ ูƒุงู†ุช ู…ุนุฑูˆูุฉ ุฃูƒูŠุฏ ุงู„ mu ู…ุนุฑูˆูุฉุŒ ู„ุฃู† ุจุณุชุฎุฏู…ู‡ุง
32
00:02:17,560 --> 00:02:23,620
ููŠ ุญุณุงุจ ุงู„ sigma. Okay, ุจุณู…ูƒ ุจุชุญูƒูŠ ู„ู„ู‡ุงุชู ุฎุงู†ูˆู† ุงู„
33
00:02:23,620 --> 00:02:29,880
sigmaุŒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ summation x minus mu square ุฃูˆ
34
00:02:29,880 --> 00:02:33,560
ูˆุฑู‚ูŠู† under square root. ุงุฐุง ู„ูˆ ุญูƒูŠู†ุง sigma is non
35
00:02:33,560 --> 00:02:36,980
known
36
00:02:36,980 --> 00:02:42,300
ูŠุนู†ูŠ ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง
37
00:02:42,300 --> 00:02:43,280
ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง
38
00:02:43,280 --> 00:02:43,300
ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง
39
00:02:43,300 --> 00:02:47,220
ุฃู†ุง ู…ุธุจูˆุท ูŠุง ุนุฒูŠุฒูŠุŒ ู„ูˆ ุงู„ู€ mu ู…ุนุฑูˆูุฉุŒ ูุฃู‚ุฏุฑ ุฃุญุตู„
40
00:02:47,220 --> 00:02:53,380
ุนู„ู‰ ุงู„ sigma. ู„ูƒู† ู„ูˆ ูƒุงู†ุช ุงู„ sigma ุบูŠุฑ ู…ุนุฑูˆูุฉุŒ
41
00:02:53,380 --> 00:02:59,840
ูุงู„ mu ุบูŠุฑ ู…ุนุฑูˆูุฉุŒ ู…ุด ู‡ูŠุŸ ุฃู†ุง ูƒู„ ุดุบู„ ุจูŠู‚ุฏุณุŒ
42
00:02:59,840 --> 00:03:03,040
ูุจุงู„ุชุงู„ูŠ ู…ุง ูŠูู‡ุงุด ุชูƒูˆู† ุนู†ุฏูƒ ุงู„ mu ู…ุด ู…ุนุฑูˆูุฉุŒ ูˆ
43
00:03:03,040 --> 00:03:06,140
ุงู„ sigma. ูุจุงู„ุชุงู„ูŠ ุฅุฐุง ูƒุงู†ุช ุงู„ mu ุบูŠุฑ ู…ุนุฑูˆูุฉุŒ ุฃูƒูŠุฏ
44
00:03:06,140 --> 00:03:09,380
ุงู„ sigma ุบูŠุฑ ู…ุนุฑูˆูุฉ. Is it a real practice,
45
00:03:09,480 --> 00:03:14,580
problemsุŸ ููŠ ุงู„ business situations, is always sigma
46
00:03:14,580 --> 00:03:14,900
is unknown.
47
00:03:19,900 --> 00:03:23,160
ุงู„ู€ ุจุนุฏ ู‡ูˆ ุจูŠุญูƒูŠู„ูƒ if you truly know mu, there
48
00:03:23,160 --> 00:03:26,160
would be no need to gather a sample to estimate it.
49
00:03:26,160 --> 00:03:28,640
ูŠุนู†ูŠ ุจูŠุญูƒูŠ ุฅู† ู„ูˆ ู…ุซู„ุง ููŠ ุงู„ situation ุงู„ู„ูŠ ุนู†ุฏูŠ
50
00:03:28,640 --> 00:03:31,380
ุงู„ู„ูŠ ู‡ูˆ ุงู„ muุŒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ population mean ูƒุงู† ู…ูˆุฌูˆุฏ
51
00:03:31,380 --> 00:03:34,720
ุนู†ุฏู‡ ูู…ุง ููŠุด ุฏุงุนูŠ ุฅู† ุฃู†ุง ุฃุนู…ู„ ุฃุฌูŠุจ sample ุนุดุงู†
52
00:03:34,720 --> 00:03:39,040
ุฃุญุณุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ sample mean ุนุดุงู† ูŠุนู†ูŠ ุฎู„ุงุต ูŠุนู†ูŠ
53
00:03:39,040 --> 00:03:41,020
ุจุชูƒููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ population mean ุฅุฐุง ูƒุงู† ู…ูˆุฌูˆุฏ
54
00:03:41,020 --> 00:03:44,440
ุฎู„ุงุต ุจูŠูƒููŠ ุจูŠุณุชุฎุฏู…ู‡ ู‡ูˆ. ุงู„ู…ูˆุถูˆุน ุงุณู…ุชู‡ ุชุญูƒูŠ ู†ู‚ุทุฉ
55
00:03:44,440 --> 00:03:49,050
ู…ู‡ู…ุฉ. ุฅุฐุง ุงู„ mu ู…ุนุฑูˆูุฉ ู…ู† ุงู„ุฃุตู„ุŒ ุฃูˆ ุงู„ mu is givenุŒ ู…ุง
56
00:03:49,050 --> 00:03:52,110
ูƒู†ุช ุจู€ ูŠุดุฌุน ุฃุนู…ู„ testing ุฅุฐุง ุงู„ hypothesis test ุงู„ู„ูŠ
57
00:03:52,110 --> 00:03:57,110
ุจู†ุนู…ู„. ุงู„ู…ู‡ู… ู‡ูˆ ู„ู…ุง ุชูƒูˆู† ุงู„ mu is unknown. ุทุงู„ู…ุง
58
00:03:57,110 --> 00:03:59,670
ุงู„ mu is unknownุŒ ุฃูƒูŠุฏ ุฃู†ุง ู‡ุนู…ู„ sample. ู„ูƒู† ู„ูˆ ุงู„ mu
59
00:03:59,670 --> 00:04:03,230
is givenุŒ ุจูŠุดุฌุน ุฃุนู…ู„ sample. ูˆุงุถุญุŸ ูŠุนู†ูŠ ุงูุชุฑุถ ูˆุงุญุฏ
60
00:04:03,230 --> 00:04:06,930
ุจูŠุญูƒูŠ ุนู…ุฑ ุทุงู„ุจ ุฌุงู…ุนุฉ ุงุณุชู…ูŠู‡ 22 ุณู†ุฉ. ุนู…ุฑ ุทุงู„ุจ
61
00:04:06,930 --> 00:04:09,710
ุงู„ุฌุงู…ุนุฉ ูƒู„ู‡ุง. ุจูŠุดุฌุน ุฃุฎุฏ sample ุฃูˆ ุฃุนู…ู„ estimation
62
00:04:09,710 --> 00:04:13,490
ุฃูˆ ุฃุนู…ู„ test. ุฅุฐุง if the true mean is given, then
63
00:04:13,490 --> 00:04:18,290
there is no need. ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ
64
00:04:18,290 --> 00:04:23,690
ุชุฌุงุฑุจ ุชุฌุงุฑุจ ู‡ู„ู‚ูŠุช. Okay, ู‡ู„ู‚ูŠุช ุงู„ hypothesis
65
00:04:23,690 --> 00:04:26,670
testing when sigma is unknown. ู‡ู„ู‚ูŠุช ู‡ู†ุงุฎุฏ ุงู„
66
00:04:26,670 --> 00:04:29,770
differences between ุงู„ู„ูŠ ู‡ูˆ ุงู„ case ู„ู…ุง ูŠูƒูˆู† ุงู„
67
00:04:29,770 --> 00:04:32,890
sigma known ูˆ ุงู„ sigma unknown. ุฑูƒุฒูˆุง ู…ุนุงูŠุง. ุฃูˆู„
68
00:04:32,890 --> 00:04:35,650
difference ุจูŠุญูƒูŠู„ูƒ if the population standard
69
00:04:35,650 --> 00:04:38,750
deviation is unknownุŒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ sigma ูˆู…ุง ูƒุงู†ุช ู…ุด
70
00:04:38,750 --> 00:04:41,490
ู…ุนุฑูˆูุฉุŒ you instead use the sample standard
71
00:04:41,490 --> 00:04:44,470
deviation. ุฃุตู„ุง ูŠุนู†ูŠ ุงุฎุชู„ุงู ุจุณูŠุท. ุจู…ุง ุฃู† ุงู„
72
00:04:44,470 --> 00:04:47,050
population standard deviation ุงู„ู„ูŠ ู‡ูˆ ุงู„ sigma ู…ุด
73
00:04:47,050 --> 00:04:49,990
ู…ุนุฑูˆูุฉุŒ ู‡ุณุชุฎุฏู… ุจุฏู„ู‡ุง ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูˆ ุงู„ SุŒ ุงู„ู„ูŠ ู‡ูˆ ุงู„
74
00:04:49,990 --> 00:04:53,750
sample standard deviation. ู‡ุงูŠ ุฃูˆู„ ุงุฎุชู„ุงู. ุชุงู†ูŠ ุฅุดูŠ
75
00:04:53,750 --> 00:04:56,890
because of this exchange, you use the T
76
00:04:56,890 --> 00:05:00,290
distribution instead of useโ€ฆ instead of the Z
77
00:05:00,290 --> 00:05:02,630
distribution to test the null hypothesis about the
78
00:05:02,630 --> 00:05:05,730
mean. ูŠุนู†ูŠ ุจุฏู„ ุงู„ู„ูŠ ุงุญู†ุง ูƒู†ุง ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ Z
79
00:05:05,730 --> 00:05:08,950
distribution ุฃูˆ Z test, ู‡ู„ุฃ ู‡ู†ุณุชุฎุฏู… ุฅุดูŠ ุงุณู…ู‡ T
80
00:05:08,950 --> 00:05:12,270
distribution ุฃูˆ T test. ู‡ู„ุฃ ู‡ู†ุดูˆู ูƒูŠู ูŠุนู†ูŠ ุจูŠูƒูˆู†
81
00:05:12,270 --> 00:05:16,500
ุงู„ุฎุทูˆุงุช. ุชุงู„ุช ุงุฎุชู„ุงู when using the T distribution,
82
00:05:16,500 --> 00:05:18,920
you must assume the population you are sampling
83
00:05:18,920 --> 00:05:22,580
from follows a normal distribution. ูŠุนู†ูŠ ู„ู…ุง ุฃุณุชุฎุฏู…
84
00:05:22,580 --> 00:05:25,140
ุงู„ T test ู„ุงุฒู… ูŠูƒูˆู† ุนู†ุฏูŠ ููŠู‡ assumption ุฃู†ุง ุฃูุชุฑุถู‡
85
00:05:25,140 --> 00:05:28,460
ุฃูˆ ุญุชู‰ ู…ู† ุงู„ุณุคุงู„ ู‡ูˆ ุจูŠูƒูˆู† ู…ูุชุฑุถ ู„ูƒ ูŠุง ุฅู†ู‡ ุชูƒูˆู† ุงู„
86
00:05:28,460 --> 00:05:31,180
population follows normal distributionุŒ ุชูˆุฒูŠุน ุทุจูŠุนูŠ
87
00:05:31,180 --> 00:05:33,860
ุงู„ population. ูˆุจุนุฏูŠู† ุจูŠุญูƒูŠู„ูƒ all other steps,
88
00:05:33,860 --> 00:05:37,180
concepts, and conclusions are the same. ุจุงู‚ูŠ ุงู„ุฎุทูˆุงุช
89
00:05:37,180 --> 00:05:42,490
as we took when sigma is known. ูŠุนู†ูŠ ู†ูุณ ุงู„ุฎุทูˆุงุช ุจุณ
90
00:05:42,490 --> 00:05:46,610
basically ู†ุญูƒูŠ ู„ูˆ ุชูƒูˆู† sigma is not given ู‡ูŠ ุงู†ุช
91
00:05:46,610 --> 00:05:50,510
ู‡ุชู„ุงู‚ูŠ ุดุบู„ุชูŠู†. ุฑู‚ู… ูˆุงุญุฏ ุจูŠ replace sigma which is
92
00:05:50,510 --> 00:05:54,760
unknown by S. ุฅุฐุง ู†ุดูŠู„ sigma ูˆู†ุทู„ุน ุงู„ู€ โ€ฆ ุงู„
93
00:05:54,760 --> 00:05:57,180
simplicity ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุงู„ sample standard
94
00:05:57,180 --> 00:06:01,080
deviation. ู‡ุฐุง ุฑู‚ู… ูˆุงุญุฏ. ุฑู‚ู… ุงุซู†ูŠู† ุจุฏู„ ู…ุง ูƒู†ุง ู†ุณุชุฎุฏู…
95
00:06:01,080 --> 00:06:05,180
z for distribution ููŠ ุนู†ุฏู†ุง new test called T
96
00:06:05,180 --> 00:06:08,080
distribution. ุฅุฐุง ุงุญู†ุง ู†ุณุชุฎุฏู… T ูˆู‡ูˆุฑูŠูƒูˆุง ุจุนุฏ ุดูˆูŠุฉ
97
00:06:08,080 --> 00:06:10,720
table ุชุจุน ุงู„ T ูˆ how can we compute the critical
98
00:06:10,720 --> 00:06:14,060
values using T distribution. ุงู„ู†ู‚ุทุฉ ุงู„ุฃุฎูŠุฑุฉ ู…ู‡ู…ุฉ
99
00:06:14,060 --> 00:06:17,280
ุฌุฏุง ุงู†ู‡ ู„ุงุฒู… ูŠูƒูˆู† ุนู†ุฏู†ุง ุงู„ normal assumption
100
00:06:17,280 --> 00:06:20,460
satisfied. ูŠุนู†ูŠ ูุฑุถูŠุฉ ุงู„ุชูˆุฒูŠุน ุงู„ุทุจูŠุนูŠ ุชูƒูˆู† ู…ุง ู„ู‡ุง
101
00:06:20,460 --> 00:06:24,440
is okay. ุฃูŠ ุญุงุฌุฉ ุชุงู†ูŠุฉ ุงู„ steps ุงู„ู„ูŠ ุญูƒูŠู†ุง ุนู„ูŠู‡ู…
102
00:06:24,440 --> 00:06:28,260
still the same. ุชุจุชุฏูˆุง ู†ูุณ ุงู„ุดูŠุก ุณูˆุงุก ู…ู† ู†ุงุญูŠุฉ ุงู„
103
00:06:28,260 --> 00:06:33,120
concepts ุฃูˆ ุงู„ conclusions are still the same. Any
104
00:06:33,120 --> 00:06:39,040
questions? ู‡ุฐุง ู…ู‚ุฏู…ุฉ ู„ู…ูˆุถูˆุน ุงู„ sigma is unknown.
105
00:06:43,750 --> 00:06:46,370
Okay. ู‡ู„ุฃ ุฅุฐุง ุจุญูƒูŠู„ูƒ ุงู„ุขู† ุจู†ุดูˆู ุงู„ู„ูŠ ู‡ูŠ ุฎุทูˆุงุช ุงู„
106
00:06:46,370 --> 00:06:49,390
test. ุฃูˆู„ ุฅูŠุด ุจูŠุญูƒูŠู„ูƒุŸ Test of hypothesis for the
107
00:06:49,390 --> 00:06:52,670
mean when sigma is unknown. ุฅูŠุด ุจุฏู†ุง ู†ุญูˆู„ ุงู„ู„ูŠ ู‡ูˆ
108
00:06:52,670 --> 00:06:56,710
convert sample statistic x bar to a t state. ูŠุนู†ูŠ
109
00:06:56,710 --> 00:07:03,350
ู‡ู†ุงูƒ ูƒู†ุง ู†ุญูˆู„ ู„ z state, ุชูŠ statistic. Okay, ุงู„ู„ูŠ ู‡ูˆ
110
00:07:03,350 --> 00:07:08,890
ู‡ู†ุดูˆู ุงูŠุด ุงู„ู‚ุงู†ูˆู† ุงู„ t state ุฃูˆ statistic equal ุงู„
111
00:07:08,890 --> 00:07:17,210
x bar - mu divided by S over square root of N. ุฒูŠ ู…ุง
112
00:07:17,210 --> 00:07:20,170
ุงุญู†ุง ุดุงูŠููŠู† ุจุดุจู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ Z statistic ุจุณ ุงู„
113
00:07:20,170 --> 00:07:23,330
difference ุงู„ูˆุญูŠุฏ ุงุญู†ุง ุญูƒูŠู†ุง ุจุฏู„ ุงู„ุณูŠุฌู…ุง ุงู„ู„ูŠ ู‡ูŠ
114
00:07:23,330 --> 00:07:26,350
population standard deviation ุฑุงุญ ู†ุณุชุจุฏู„ู‡ุง ุจ S
115
00:07:26,350 --> 00:07:29,350
ุจุงู„ู€ S ุงู„ู„ูŠ ู‡ูŠ ุงู„ุณู… ุจุงู„ standard deviation ุจุณ ูˆู‡ูŠ
116
00:07:29,350 --> 00:07:33,730
ู‡ู†ุง ุญุทุช ู„ูƒ ุงู„ู…ุฎุทุท. Hypothesis test test for the mean
117
00:07:33,730 --> 00:07:37,810
sigma known, Z test. ุฃู…ุง sigma unknown ู‡ู†ุณุชุฎุฏู… ุงู„ T
118
00:07:37,810 --> 00:07:41,990
test. The test statistic is a T statistic equal ู‡ูŠูˆ
119
00:07:41,990 --> 00:07:46,310
X bar minus ุงู„ู€ mu divided by S over square root of
120
00:07:46,310 --> 00:07:54,840
N. ุจุณ ุงู„ู„ูŠ ุจุนุฏ ู‡ู‡ุŸ ู‡ู„ุฃ ู‡ู†ุงุฎุฏ example. ุฑูƒุฒูˆุง ู…ุนุงู‡ ู„ุฅู†ู‡
121
00:07:54,840 --> 00:07:58,480
ููŠ ุงุดูŠุงุก ุฌุฏูŠุฏุฉ ู‡ู†ุชุนุฑู ุนู„ูŠู‡ุง ูู†ู‚ุฑุฃ ู…ุน ุจุนุถ ุงู„
122
00:07:58,480 --> 00:08:04,220
example. ุฎู„ู†ุง ุงู„ example ูˆุงุญุฏุฉ ู…ู†ูƒู… ุชู‚ุฑุฃู‡ ูˆูˆุงุญุฏุฉ
123
00:08:04,220 --> 00:08:08,780
ุชุทู„ุน ุงู„ู…ุนู„ูˆู…ุฉ ุงู„ู„ูŠ ููŠู‡. ุฎู„ู†ุง ู…ุดุงุฑูƒุฉ ู…ู†ูƒู…. ุชุนุงู„ ู‡ู†ุง.
124
00:08:10,100 --> 00:08:13,120
The average cost of a hotel room in New York is
125
00:08:13,120 --> 00:08:19,760
said to be $168 per night. To determine if this is
126
00:08:19,760 --> 00:08:25,550
true, a random sample of 25 hotels taken and
127
00:08:25,550 --> 00:08:38,050
resulted in an x-bar of $172.50 and an s of $15.40. ุงู„
128
00:08:38,050 --> 00:08:42,370
standard sample standard deviation 15. This is the
129
00:08:42,370 --> 00:08:50,130
appropriate hypothesis at alpha 0.05. ุทู„ุน ุฒู…ูŠู„ุชูƒ
130
00:08:50,130 --> 00:08:54,780
ุญูƒุช ููŠ ุดุบู„ุชูŠู† ู…ู‡ู…ุงุช ููŠ ุงู„ example. ุจุชุญูƒูŠ ุงู„ average
131
00:08:54,780 --> 00:09:00,360
cost of a hotel room is said to be $168. ุงู„ู€ 168
132
00:09:00,360 --> 00:09:06,740
sample mean ูˆู„ุง ุงู„ population meanุŸ ุงู„ู€ 168 ู‡ูˆ ุจูŠุญูƒูŠุด
133
00:09:06,740 --> 00:09:09,640
ุงู„ average cost of a hotel room in New York ุจู„ุฏ
134
00:09:09,640 --> 00:09:18,400
ูƒู„ู‡ุง population. ุฅุฐุง ุงู„ 168 ู‡ูŠ mu. ุฅุฐุง ุงู„ mu 168. ู‡ุฐุง
135
00:09:18,400 --> 00:09:27,240
ู†ู‚ุทุฉ ู…ู‡ู…ุฉ. ุงู„ู†ู‚ุทุฉ ุงู„ุชุงู†ูŠุฉ ุจุชุฃูƒุฏ ุฅุฐุง ูƒุงู† ู‡ุฐุง ุตุญูŠุญุŒ ุจุฏูŠ
136
00:09:27,240 --> 00:09:35,400
ุฃุญุฏุซ ูƒู„ู…ุฉ ุตุญูŠุญุฉ ูˆู„ุง ู„ุฃุŸ ุฎู…ุณูŠู† ูˆุนุดุฑูŠู† ุฎู…ุณูŠู† ูˆุนุดุฑูŠู†
137
00:09:37,930 --> 00:09:45,350
ุฅู† โ€ฆ ุงูŠู‡ ู‡ุฐู‡ุŸ x-bar. ุตู„ุญูˆู‡ุงุŒ ู…ุด X. x-bar of $172.5
138
00:09:45,350 --> 00:09:50,150
ูŠุนุทู‰ x-bar. Average ู…ูŠู† ุงู„ู„ูŠ ูŠุนุทูŠ ุงู„ average ู„ู€ 25
139
00:09:50,150 --> 00:09:54,450
ุงู„ู€ 25 sample. ู…ุธุจูˆุทุŸ ูู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงู„ sample mean ูˆู„ุง
140
00:09:54,450 --> 00:09:58,010
ุงู„ population meanุŸ ุงู„ sample. ุทุงู„ู…ุง ุญูƒูŠุช random
141
00:09:58,010 --> 00:10:02,730
sample ู„ู€ 25 resulted in. ู…ุน ูƒุฏู‡ ุนู†ุฏ ุงู„ sample mean
142
00:10:02,730 --> 00:10:06,390
ุฅุฐุง ุงู„ x-bar equal 172.5
143
00:10:12,650 --> 00:10:20,150
ูˆ S 15.4. ู‡ุฐุง ุงู„ S ู„ู„ samples standard deviation ูˆ
144
00:10:20,150 --> 00:10:27,090
ุงู„ S 15.4. ุทุงู„ุนุด ุจูŠุณุฃู„ ุงู„ test the appropriate
145
00:10:27,090 --> 00:10:32,280
hypothesis. ุจุฏูˆุง ุงู„ hypothesis ุงู„ู…ู†ุงุณุจุฉ. ู‡ูˆ ุงูŠุด โ€ฆ
146
00:10:32,280 --> 00:10:36,180
ุงูŠุด ุงู„ู„ูŠ ุงุนุทุงู†ูŠ ุงู† ุงู„ average overall 168? We are
147
00:10:36,180 --> 00:10:39,500
testing this average, this null hypothesis against
148
00:10:39,500 --> 00:10:43,260
do you think mu should be โ€ฆ does not equal to or
149
00:10:43,260 --> 00:10:46,220
greater than or smaller thanุŸ ุงู„ู„ูŠ ู…ูŠุญูƒู…ูˆุง ุงู„ู„ูŠ
150
00:10:46,220 --> 00:10:50,710
ุฃู‚ู„ ูˆู„ุง ุฃูƒุจุฑุŸ ู‡ู„ ุญูƒู‰ ููŠ ุงู„ู…ุซู„ุฉ direction ู…ุนูŠู†ุŸ ู„ุฃ
151
00:10:50,710 --> 00:10:54,390
ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ
152
00:10:54,390 --> 00:10:55,550
ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ
153
00:10:55,550 --> 00:10:59,170
ู„ุฃ ู„ุฃ
154
00:10:59,170 --> 00:10:59,350
ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ
155
00:10:59,350 --> 00:11:08,530
ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ
156
00:11:08,530 --> 00:11:12,830
ู„ุฃ
157
00:11:19,730 --> 00:11:23,670
ุงู„ุขู† ู‡ุชุทู„ุนู†ุง ุงู„ information ุงู„ู„ูŠ ู„ุงุฒู…ุฉ ู…ู† ุงู„ู…ุซู„ุฉุŒ
158
00:11:23,670 --> 00:11:30,200
ู…ุงุดูŠูŠู†ุŸ ุจุจุฏุฃ ุฃูƒู…ู„ุŸ ุฃูƒู…ู„ ุฃู†ุงุŸ ุจู…ุง ุฃู† ูƒุชุจู†ุง ุงุญู†ุง ุงู„ู„ูŠ
159
00:11:30,200 --> 00:11:32,680
ู‡ูŠ null hypothesis ูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ alternative
160
00:11:32,680 --> 00:11:37,160
hypothesisุŒ ุงู„ู„ูŠ ู‡ูˆ ุฅู† ุงู„ mu equal 168 ูˆุฅู† ุงู„
161
00:11:37,160 --> 00:11:42,260
alternative hypothesis ุฅู† ุงู„ mu not equal 168. ุฃูˆู„
162
00:11:42,260 --> 00:11:44,940
ุดุบู„ ุจู†ุทู„ุน ููŠู‡ุง ุจุงู„ุณุคุงู„ุŒ ุฒูŠ ู…ุง ูƒู†ุง ู…ุงุฎุฏูŠู†ู‡ ู‚ุจู„ ูƒุฏู‡ุŒ ุจู†ุดูˆู
163
00:11:44,940 --> 00:11:48,500
ุฅุฐุง ุงู„ sigma known ูˆู„ุง unknown. ุทุจุนุง ุนู†ุฏูƒ ุงู„ุณุคุงู„ ุงุญู†ุง
164
00:11:48,500 --> 00:11:51,180
ูƒุชุจู†ุง ูƒู„ ุงู„ู…ุนุทูŠุงุชุŒ ู…ุนุทูŠู†ูŠ ุงู„ sample standard
165
00:11:51,180 --> 00:11:54,960
deviation ุฃู…ุง ุงู„ sigma ู…ุด ู…ุนุฑูˆูุฉ. So ุจู†ุญูƒูŠ ุฅู†ู‡ โ€ฆ
166
00:11:54,960 --> 00:12:02,830
so ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ sigma is unknown. So
167
00:12:02,830 --> 00:12:11,770
we will use โ€ฆ ุฅูŠุด ู‡ู†ุณุชุฎุฏู…ุŸ T test โ€ฆ T test. ูˆุจู…ุง
168
00:12:11,770 --> 00:12:14,350
ุฃู†ู†ุง ู‡ู†ุณุชุฎุฏู… ุงู„ T test ูˆู‡ูˆ ูƒุชุจ ู„ู‡ you assume the
169
00:12:14,350 --> 00:12:16,930
population distribution is normal. ุงุญู†ุง ุญูƒูŠู†ุง ุฅู†ู‡
170
00:12:16,930 --> 00:12:19,770
ุนุดุงู† ู†ุณุชุฎุฏู… ุงู„ T test ู„ุงุฒู… ู†ูุชุฑุถ ุฅู†ู‡ ุงู„ population
171
00:12:19,770 --> 00:12:22,830
follows normal distribution. ูŠุนู†ูŠ ุงู„ุชูˆุฒูŠุน ุทุจูŠุนูŠ.
172
00:12:22,830 --> 00:12:27,010
ุทุจุนุง ููŠ ุงู„ T test ุจุฏู†ุง ู†ุฌูŠุจ ุฅุดูŠ ุงุณู…ู‡ T statistic
173
00:12:27,010 --> 00:12:30,210
ุงู„ู„ูŠ ู‚ุจู„ ุดูˆูŠุฉ ูƒุชุจู†ุง ู‚ุงู†ูˆู†ู‡ ู‡ูŠู‡ุง. ุฃูˆู„ ุฅุดูŠ ุจู†ุฌูŠุจ ุงู„ T
174
00:12:30,210 --> 00:12:30,950
statistic.
175
00:12:35,440 --> 00:12:39,980
divided by ุงู„ S ุนู„ู‰ a square root of n. ูˆู‡ูŠ
176
00:12:39,980 --> 00:12:47,200
ุงู„ู…ูˆุถูˆุนุงุช ุทู„ุนู†ุงู‡ู… ุฏุบุฑูŠ. ู…ูˆ ุจุจู‚ู‰ ุดุจูƒุฉ. Minus ุงู„ู„ูŠ ู‡ูˆ
177
00:12:47,200 --> 00:12:50,920
168 divided by ุงู„ S ุงู„ู„ูŠ ู‡ูŠ
178
00:12:50,920 --> 00:12:55,980
sample standard deviation 15.4 ุนู„ู‰
179
00:12:55,980 --> 00:13:00,280
ุงู„ู„ูŠ ู‡ูˆ a square root of n 25. ุจูŠุทู„ุน ุนู†ุฏูŠ
180
00:13:00,280 --> 00:13:07,530
ุงู„ T statistic 1.46. ุงู„ุญู…ุฏ ู„ู„ู‡ ุงู‡ูˆ
181
00:13:07,530 --> 00:13:11,170
ู‡ู„ุงู‚ูŠุชู‡ุง ุจุนุฏ ู…ุง ุฌุจู†ุง ุงู„ T statistic ุจุฏู†ุง ู†ุฌ
216
00:15:50,230 --> 00:15:53,950
ุฃู†ุชูˆุง ุดุงูŠููŠู† ููŠ ุนู†ุฏู‡ู… T-table hands ุฅูŠุด ุงุณู…ู‡ุŸ ุงู„ู„ูŠ
217
00:15:53,950 --> 00:16:02,070
ู‡ูˆ DF ุตุญุŸ ู‡ุฐุง ุงู„ู€ DF is equal DF ู‡ูŠ degree of
218
00:16:02,070 --> 00:16:07,400
freedom ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ุนุฑุจูŠ ุฏุฑุฌุฉ ุงู„ุญุฑูŠุฉ ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูŠ
219
00:16:07,400 --> 00:16:10,900
ู‚ุงู†ูˆู† ุซุงุจุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ N ู†ู‚ุต ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ sample
220
00:16:10,900 --> 00:16:15,300
size minus one okay ุจู†ุฌูŠุจ ุงู„ุฏู‚ูŠู‚ุฉ ูุฃูˆู„ ุฅุดูŠ ุทุจุนุง
221
00:16:15,300 --> 00:16:22,320
ู„ุฅู†ู†ุง ุงู„ู€ N ู‚ุฏุงุด 25 minus one ู‚ุฏุด ุจุทู„ุน 24 ู‡ู„ุฃ ูˆุงุญู†ุง
222
00:16:22,320 --> 00:16:26,600
ุจู†ุฌูŠุจ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ุฃู†ุง two sides okay ู‡ู„ุฃ ู„ูˆ ุทู„ุนู†ุง
223
00:16:26,600 --> 00:16:30,680
ุนู„ู‰ ุงู„ุฌุฏูˆู„ ุจูŠุญูƒูŠ ู„ูŠ ู…ุนุทู„ูƒ ุฅู†ู‡ table entry for B and
224
00:16:30,680 --> 00:16:35,020
C is the critical value T star with probability B
225
00:16:35,020 --> 00:16:38,460
lying to its right and probability C lying between
226
00:16:38,460 --> 00:16:43,880
minus T star and T star ู…ุนุทู„ูƒูŠ ุงู„ุฌุฏูˆู„ ุฅู† ุฃูˆู„ ุดูŠ
227
00:16:43,880 --> 00:16:47,380
ู‡ูŠู† ุงู„ู€ DF ุงู„ู„ูŠ ุงุญู†ุง ุญุณุจู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ N minus one
228
00:16:47,380 --> 00:16:50,740
ูŠุนู†ูŠ ู„ุงุฒู… ุชุฌูŠุจูŠ ู„ูŠู‡ุง ุงู„ู€ DF N minus one ูˆ ุจูŠุญูƒูŠู„ูƒ
229
00:16:50,740 --> 00:16:54,240
ุฅู…ุง ุจุชุฑูˆุญูŠ ุชุณุชุฎุฏู…ูŠ ุงู„ู€ .. ุงู„ู€ upper tail probability
230
00:16:54,240 --> 00:16:59,140
ุงู„ู€ B ู‡ุฐูŠูƒ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู€ B ุฃูˆ ู…ู…ูƒู† ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
231
00:16:59,140 --> 00:17:02,140
ุงุญุชูŠุงุท ุฃูˆ ุฅุฐุง ูƒุงู† ุนู†ุฏูƒ ู…ูˆุฌุฉ ุจุณุงู„ุจ T ุฒูŠ ู…ุง ุงุญู†ุง
232
00:17:02,140 --> 00:17:05,100
ุนู†ุฏู†ุง ู…ูˆุฌุฉ ุจุณุงู„ุจ T ู…ู…ูƒู† ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ hand
233
00:17:05,100 --> 00:17:08,600
ุงู„ู…ุณุงุญุฉ ุงู„ู„ูŠ hand ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุจุฃุฎุฑ ุงู„ุฌุฏูˆู„ ุชุญุช
234
00:17:08,600 --> 00:17:13,340
ู…ู…ุชุงุฒ ุงู„ุขู† ุฒู…ูŠู„ุชูŠ ูƒุงู†ุช ุญุงูƒูŠุฉ ูƒุงู†ุช ุชุงู„ูŠุฉ ุงู„ู€ table
235
00:17:13,340 --> 00:17:17,400
ุงู„ู„ูŠ ุนู†ุฏูŠ ุงุณู…ู‡ T table ูˆุจูŠุนุทูŠ ุงู„ู€ area to the right
236
00:17:17,400 --> 00:17:21,340
ุดุงูŠูุฉ ุงู„ุตูุฑุงุก ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ู†ุง ู‡ุฐู‡ ุงู„ู€ area to the right
237
00:17:21,340 --> 00:17:26,200
ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ู‡ู†ุง ุงู„ู€ Z table ูƒุงู† ูŠุนุทูŠ ุงู„ู€ area ู„ูˆูŠู†
238
00:17:26,200 --> 00:17:29,640
to the left ุงู„ู€ T table to the right ุฅุฐุง ู†ู†ุณู‰ ุงู„ุขู†
239
00:17:29,640 --> 00:17:33,520
ุงู„ู€ Z ุงู„ู€ Z area to the left ุงู„ู€ T table ุงู„ู€ area to
240
00:17:33,520 --> 00:17:38,620
the right ุงู„ู€ rows represent degrees of freedom
241
00:17:38,620 --> 00:17:42,770
ุฏุฑุฌุงุช ุงู„ุญุฑูŠุฉ ุฒูŠ ู…ุง ุญูƒุช degrees of freedom equals n
242
00:17:42,770 --> 00:17:45,750
minus one in this case we have sample size of
243
00:17:45,750 --> 00:17:48,350
twenty five so degrees of freedom of twenty five
244
00:17:48,350 --> 00:17:52,990
minus one which is twenty four so now two steps
245
00:17:52,990 --> 00:17:59,850
just locate the row of twenty four because degrees
246
00:17:59,850 --> 00:18:04,870
of freedom of twenty four and column of this
247
00:18:04,870 --> 00:18:06,830
probability which is point zero two five
248
00:18:10,190 --> 00:18:16,050
ุงู„ู€ degrees of freedom ุจุนู…ู„ู‡ across ู…ุน ู…ูŠู† ู…ุน ุงู„ู€
249
00:18:16,050 --> 00:18:19,210
probability which is point zero to five ุงุนู…ู„
250
00:18:19,210 --> 00:18:25,630
across ุงู„ู„ูŠ ู‡ูˆู† ุจุทู„ุน ุงู„ุฌูˆุงุจ ุจุทู„ุน ุงู„ุฌูˆุงุจ ู‡ุงูŠ ุงู„ู„ูŠ
251
00:18:25,630 --> 00:18:32,010
ู‡ูˆ two point zero two zero six four ุฅุฐุง
252
00:18:32,010 --> 00:18:37,110
ุงู„ุฌูˆุงุจ ุทู„ุน two point zero six four ุทุจุนุง
253
00:18:37,110 --> 00:18:43,830
ุนู†ุฏูŠ ู…ูˆุฌุจ ุณุงู„ุจ Tู„ู…ูŠู† ุงู„ู€ DF 24 ูˆุงู„ู€ probability
254
00:18:43,830 --> 00:18:48,630
ูƒุงู†ุช 0.025 ู‚ูŠู…ุชู‡ุง ุทุจุนุง ู‚ูŠู…ุฉ ูˆุงุญุฏุฉ ุจุณ ู‡ู… ู†ูุณ ุงู„ู‚ูŠู…ุฉ
255
00:18:48,630 --> 00:18:51,870
ู‡ุชูƒูˆู† ู„ุฅู†ู‡ normal distribution ุจุณ ูˆุงุญุฏุฉ ุจุงู„ู€
256
00:18:51,870 --> 00:18:59,190
negative ูˆูˆุงุญุฏุฉ ุจุงู„ู€ positive ู…ูˆุฌุฉ ุจุงู„ุณุงู„ุจ 2.064
257
00:18:59,190 --> 00:19:05,690
6 4 ุตุญุŸ ู„ุฃ ู„ุฃ ุฃู‚ู„ 2 ุตุญูŠุญ ุจุณ ู‡ูŠูƒ ุตุญ ูŠุนู†ูŠ ุจุณ ุญุท ุงู„ู€
258
00:19:05,690 --> 00:19:12,120
point ูˆุงุถุญ ู„ุฃู† ุงู„ุฃูˆู„ู‰ two point zero six four ูˆุงู„ู€
259
00:19:12,120 --> 00:19:19,200
ุชุงู†ูŠุฉ ุฒูŠู‡ุง negative two point zero six four ู‡ุฏูˆู„
260
00:19:19,200 --> 00:19:23,560
ู‡ู… ุนู†ุฏูŠ ุทุจุนุง ู‡ุงูŠ ุงู„ู…ูˆุฌุฉ ุจุณุงู„ุจ ุงุชู†ูŠู† point zero six
261
00:19:23,560 --> 00:19:34,420
four ู‡ู… ุฅูŠุด ุงู„ู€ critical values ู‡ุฏูˆู„ ู‡ูŠ
262
00:19:34,420 --> 00:19:38,040
ูƒู„ ุฃูŠ ุนุตุฑู‡ู„ุฃ ุนู†ุฏ .. ุจู†ุฑุฌุน ู„ู„ูŠ ุฌูŠุจู†ุง .. ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
263
00:19:38,040 --> 00:19:40,860
T statistic ุงู„ู„ูŠ ุฅุญู†ุง ุฌูŠุจู†ุงู‡ุง ู‡ูŠ one point four
264
00:19:40,860 --> 00:19:44,100
six ุจู†ุดูˆู ุฅุฐุง ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ุจู€ rejection region ูˆู„ุง ุจุงู„ู€
265
00:19:44,100 --> 00:19:46,440
non rejection region ุญุณุจ ู…ูŠู†ุŸ ุญุณุจ ุงู„ู€ critical
266
00:19:46,440 --> 00:19:50,160
values ูˆูŠู† ู…ูˆุฌูˆุฏุฉุŸ ุงู„ู„ูŠ ู‡ูŠ one point four six ูˆูŠู†
267
00:19:50,160 --> 00:19:52,260
ู‡ุชูƒูˆู† ู…ูˆุฌูˆุฏุฉุŸ ููŠ rejection .. ููŠ rejection region
268
00:19:52,260 --> 00:19:54,860
ูˆู„ุง non rejection regionุŸ non .. non rejection
269
00:19:54,860 --> 00:20:00,060
region ู„ุฃู†ู‡ุง ู‡ุชูƒูˆู† ู‡ุฐู‡ ุชู‚ุฑูŠุจุง one point four six
270
00:20:00,060 --> 00:20:04,180
ู‡ุชูƒูˆู† ููŠ ุงู„ู€ non rejection region ูุจู…ุง ุฅู†ู‡ ู‡ูŠ ููŠ ุงู„ู€
271
00:20:04,180 --> 00:20:08,140
non rejection region so we will ash don't reject
272
00:20:08,140 --> 00:20:12,880
ุงู„ู„ูŠ ู‡ูˆ ash ุงู„ู€ null hypothesis ุจู†ุญูƒูŠ
273
00:20:12,880 --> 00:20:16,020
ู‡ุฐู‡ ุนู†ุฏ ุงู„ู„ูŠ ุจูŠุฃุชูŠ stat
274
00:20:19,750 --> 00:20:25,610
one less than ุงู„ู„ูŠ ู‡ูˆ two point between them is
275
00:20:25,610 --> 00:20:35,870
six part so four point major
276
00:20:35,870 --> 00:20:35,990
point
277
00:20:39,670 --> 00:20:43,890
ูˆุจู…ุง ุฅู†ู‡ ุงู„ู€ .. ุฃู…ุง ู„ู…ุง ู†ูŠุฌูŠ ู†ุนู…ู„ proof ู„ู„ู€ .. ุงู„ู€
278
00:20:43,890 --> 00:20:46,590
alternative hypothesis ู‡ู†ุญูƒูŠ ุฅู†ู‡ there is .. ุงู„ู„ูŠ
279
00:20:46,590 --> 00:20:50,450
ู‡ูˆ insufficient evidence that the true .. the true
280
00:20:50,450 --> 00:20:54,510
mean is different .. different from the given mean
281
00:20:54,510 --> 00:21:00,050
ุงู„ู„ูŠ ู‡ูˆ 168 ู…ู…ุชุงุฒุฉ ุทู„ุน ุฒู…ูŠู„ุชูƒ ุงู„ู„ูŠ ุนู…ู„ุชู‡ ุงู„ุดุบู„ุชูŠู†
282
00:21:00,050 --> 00:21:05,120
ูˆุฑุง ุจุนุถ ุฑู‚ู… ูˆุงุญุฏ ุญุณุจุช ุงู„ู€ T statistic one point four
283
00:21:05,120 --> 00:21:12,360
six ุญุณุจุช ุงู„ู€ critical values ู…ู† ุงู„ู€ T table ูˆุงู„ู€ T
284
00:21:12,360 --> 00:21:16,780
table ุงุณุชุฎุฏุงู…ู‡ ุณู‡ู„ ูˆูˆุฑุฏูƒูŠ ูŠุง ุจู† ุดูˆูŠุฉ ู…ุด ู‡ูŠูƒ ุงู„ู„ูŠ
285
00:21:16,780 --> 00:21:21,120
ู‡ูˆ ุฅูŠู‡ ุงู„ู€ T table ููŠ ุงู„ู€ T table ุฒูŠ ู…ุง ุญูƒูŠุช ู…ุฑุฉ
286
00:21:21,120 --> 00:21:25,160
ุชุงู†ูŠุฉ ุจุฑุทู„ุน degrees of freedom at one four ูˆุจุฏูˆุฑ
287
00:21:25,160 --> 00:21:28,800
ุนู„ู‰ ุงู„ู€ probability of one zero two five ุทู„ุนุช ุงู„ู€
288
00:21:28,800 --> 00:21:33,170
critical value two point zero six four ุฅุฐุง ุงู†ุชุธุฑ
289
00:21:33,170 --> 00:21:38,670
ุฅูŠู‡ ุงู„ู€ 2.064 ุงู„ู„ูŠูุชุด ู‡ุชูƒูˆู† negative 2.064 We
290
00:21:38,670 --> 00:21:45,250
reject if this statistic fall either to the upper
291
00:21:45,250 --> 00:21:49,310
side I mean greater than 2.064 ุฃูˆ ุฃู‚ู„ ู…ู† ุงู„ู€
292
00:21:49,310 --> 00:21:54,030
negative 2.064 Now is this value fall in the
293
00:21:54,030 --> 00:22:00,050
rejection region ุงู„ู€ 1.46 ุฃู‚ู„ ู…ู† 2.064 ู„ุฃู†ู‡ ูŠุชุฌุงูˆุฒ
294
00:22:00,050 --> 00:22:03,730
ุจูŠู† ู‡ุฐู‡ ุงู„ุงุซู†ูŠู† ุงู„ู‚ูŠู…. ู‡ุฐุง ูŠุนู†ูŠ ุฃู†ู†ุง ู„ุง ู†ุชุฌุงูˆุฒ
295
00:22:03,730 --> 00:22:09,110
ุงู„ู€ hypothesis. ุฅุฐุง ู‚ุฑุงุฑู†ุง ุฅูŠุดุŸ ู„ุง ุชุชุฌุงูˆุฒุŒ ูู‡ูˆ ุตุญูŠุญ.
296
00:22:09,730 --> 00:22:12,890
ู„ุง ูŠูƒููŠ ู„ุญุงู„ู‡ุŒ ุนุงูŠุฒ ูŠุดุชุบู„ ู…ู† ุงู„ู†ุฌุงุฑูŠุฉ ุฅู„ู‰ ุงู„ู†ุชูŠุฌุฉ.
297
00:22:13,650 --> 00:22:17,370
ุงู„ู†ุชูŠุฌุฉุŒ ูƒู„ู…ุชูŠู† ุจุญูƒูŠู‡ู… ุฏุงุฆู…ุงุŒ ู…ูƒุฑุฑุงุช. ุทุงู„ู…ุง ุญูƒูŠุช
298
00:22:17,370 --> 00:22:21,330
ู„ุง ุชุชุฌุงูˆุฒุŒ ู…ุน ูƒุฏู‡ุŒ ู„ุง ูŠูˆุฌุฏ ุฏู„ูŠู„ ูƒุงููŠ ู„ุฅุธู‡ุงุฑ ุฃู† ุงู„ู€
299
00:22:21,330 --> 00:22:26,270
true mean Cost is different from 168 ูŠุนู†ูŠ ุงู„ุฅุฏุนุงุก
300
00:22:26,270 --> 00:22:32,090
ุงู„ู„ูŠ ุจูŠุญูƒูŠ ุฅู†ู‡ ูŠุฎุชู„ู ุนู† 168 ู…ุง ูŠุฏุนุจุŒ ู…ุง ููŠุด ุฏู„ูŠู„
301
00:22:32,090 --> 00:22:39,010
ูƒุงููŠ ูŠุฏุนุจ ููŠ ุฃูŠ ุณุคุงู„ุŸ
302
00:22:39,010 --> 00:22:42,150
ููŠ ุงู„ู€ T-testุŒ ุงู„ู€ T-test depends on a new term
303
00:22:42,150 --> 00:22:45,890
called degrees of freedom ุฏุฑุฌุงุช ุงู„ุญุฑูŠุฉุŒ ุฃู†ุช ู…ุด
304
00:22:45,890 --> 00:22:50,190
ู…ุทู„ูˆุจ ู…ู†ูƒ ููŠ ุงู„ู€ course of basic statistics ุชุนุฑู ุฅูŠู‡
305
00:22:50,190 --> 00:22:52,790
ุฃูƒุซุฑ ู…ู† degrees of freedom equals n-1
306
00:22:57,220 --> 00:23:00,320
ูˆุฃู†ุง ุจุฅู…ูƒุงู†ูŠ ุงุณุชุฎุฏุงู…ู‡ุง ูู‚ุท ู„ูƒุชุงุจุฉ ุงู„ู‚ูŠู…
307
00:23:00,320 --> 00:23:03,100
ุงู„ู€ critical ุฅุฐุง ุนุดุงู† ุชุนู…ู„ location ู„ู„ู‚ูŠู…
308
00:23:03,100 --> 00:23:07,240
ุงู„ู€ critical ุจู„ุฒู…ู†ูŠ ุดุบู„ุชูŠู† ูˆู‚ุฑุฑุช ุจู‚ู‰ ุชุงู„ุช ู…ุฑุฉ
309
00:23:07,240 --> 00:23:11,880
ุจู„ุฒู…ู†ูŠ ู…ูŠู† ุงู„ู€ degrees of freedom ุงู„ู„ูŠ ู‡ูŠ 24 ุงู„ู„ูŠ
310
00:23:11,880 --> 00:23:15,780
ู‡ูŠ n-1 ูˆุงู„ู€ probability ุงู„ู„ูŠ ุฃู†ุง ุนุงูŠุฒู‡ุง in this
311
00:23:15,780 --> 00:23:20,060
case Alpha is 5% ุฅุฐุง ุงู„ู€ probability ู‡ุชูƒูˆู† ุจู‚ู‰ ุฌุณู…ู‡ุง
312
00:23:20,060 --> 00:23:22,440
ุนู„ู‰ ุงุชู†ูŠู† zero to five ุนู„ู‰ ุงู„ูŠู…ูŠู† ูˆ zero to five
313
00:23:22,440 --> 00:23:26,360
ุนู„ู‰ ุงู„ุดู…ุงู„ ุงู‡ ุงู„ู€ alpha ุจุชูƒูŠ ูŠุนู†ูŠ ู„ูˆ ู…ุง ู‚ุถู†ุด ุงู„ู€
314
00:23:26,360 --> 00:23:30,160
alpha we assume alpha to be five percent any
315
00:23:30,160 --> 00:23:36,280
question ุฃูŠ ุณุคุงู„ ู…ู…ูƒู† ุงู„ุฏูƒุชูˆุฑ ุจุฑุถู‡ ู‡ูŠ non
316
00:23:36,280 --> 00:23:41,720
rejection ู„ุฃู† ู‡ู†ุง 95 ููŠ ุชุญุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ minus ุชุดูˆู
317
00:23:41,720 --> 00:23:48,430
ุงู„ู€ table ู…ู† ุชุญุช ุฎุงู„ุต ูŠุนุทูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ Z star ุงู„ู€ Z
318
00:23:48,430 --> 00:23:52,210
star ู‡ุฏูˆู„ ุงู„ู€ Z ุงู„ู„ูŠ ุฎุฏู†ุงู‡ุง ููŠ ุงู„ุฃูˆู„ ุทุจุนุง ุงู„ู€ T ูˆุงู„ู€
319
00:23:52,210 --> 00:23:56,730
Z close to each other for large sample size ูŠุนู†ูŠ
320
00:23:56,730 --> 00:24:00,630
when the sample size gets bigger and bigger T
321
00:24:00,630 --> 00:24:04,350
becomes very small to Z ูŠุนู†ูŠ ู„ู…ุง N ุจุชูƒุจุฑ ูƒุชูŠุฑ
322
00:24:04,350 --> 00:24:09,590
ุจุชุตูŠุฑ ู‚ูŠู…ุฉ ุงู„ู€ T ูˆู‚ูŠู…ุฉ ุงู„ู€ Z ู…ุงู„ู‡ู… ุญูˆุงู„ูŠ ุจุนุถ ุชู„ุงุญุธ
323
00:24:09,590 --> 00:24:14,240
ู‡ู†ุง ู„ู…ุง ุงู„ู€ degree of freedom 1000 ุทู„ุน ุนู„ู‰ ู‚ูŠู…ุฉ T
324
00:24:14,240 --> 00:24:17,920
ุงู„ุณุทุฑ ุงู„ู„ูŠ ุฌุงุจู†ูŠ ุงู„ุฃุฎูŠุฑ ูˆุงู„ุณุทุฑ ุงู„ุฃุฎูŠุฑ ุงู„ูุฑู‚ ุจูŠู†ู‡ู…
325
00:24:17,920 --> 00:24:25,720
ู…ุงู„ู‡ ุจุณูŠุท ุงู„ุฃูˆู„ ู‚ูŠู…ุฉ 0.675 ู„ุชุญุช ูƒุฏู‡ุŸ 0.674 ู‡ุฐุง
326
00:24:25,720 --> 00:24:31,580
ู„ุชุญุช Z ูููŠ ุญุงู„ุฉ ุชุจุนุชู†ุง ุฅุฐุง ุชุฐูƒุฑ ู„ู…ุง ูƒุงู†ุช ุงู„ู€ Z star
327
00:24:31,580 --> 00:24:37,560
1.96 ู‡ู†ุง job 1.962 ูุงู„ุตู„ุงุฉ ุงู„ุฃุฎูŠุฑุฉ ุจูŠุจูŠู† ู„ูŠ ู‚ุฏ ุฅูŠุด
328
00:24:37,560 --> 00:24:41,640
ู‚ุฑูŠุจ ุงู„ุชูˆุฒูŠุน ุงู„ุทุจูŠุนูŠ ุงู„ู€ Z ู…ู† ุชูˆุฒูŠุน ุงู„ู€ T ุฅุฐุง as N
329
00:24:41,640 --> 00:24:45,720
gets bigger and bigger ุจูŠูƒูˆู† ุงู„ู€ T ู…ุงู„ู‡ ู‚ุฑูŠุจ ู…ู† ุงู„ู€
330
00:24:45,720 --> 00:24:51,160
Z ูŠุนู†ูŠ ู„ู…ุง N ูƒุจูŠุฑุฉ ุจูŠูƒูˆู† ู‚ูŠู…ุฉ ุงู„ู€ T ุชู‚ุฑูŠุจุง ู†ูุณ ู‚ูŠู…ุฉ
331
00:24:51,160 --> 00:25:01,060
ุงู„ู€ Z ุจุณ ููŠ ุฃูŠ ุณุคุงู„ุŸ ุฃูŠ ุณุคุงู„ุŸ
332
00:25:01,060 --> 00:25:07,050
ูƒู… ู„ู‡ุง ุฏู‡ุŸ ุงู„ุจุนุฏ ู‡ูˆ to use the t-test must assume
333
00:25:07,050 --> 00:25:10,310
the population is normal ุฒูŠ ู…ุง ุญูƒูŠู†ุง ุฅู†ู‡ ููŠ ู„ุงุฒู…
334
00:25:10,310 --> 00:25:12,750
ุฅู†ู‡ ู†ูุชุฑุถ ุฅู†ู‡ ุงู„ู€ population is normal
335
00:25:12,750 --> 00:25:15,970
distribution, follows normal distribution ุจูŠุญูƒูŠ ู„ูƒ
336
00:25:15,970 --> 00:25:18,770
ุนู„ู‰ ุฅุดูŠ as long as the sample size is not very
337
00:25:18,770 --> 00:25:22,750
small and the population is not very skewed, the t
338
00:25:22,750 --> 00:25:26,960
-test can be used ุณุจู‚ ูˆุญูƒูŠู†ุง ุงุญู†ุง ู‚ุจู„ ู‡ูŠูƒ ุฅู†ู‡ ูƒู„ ู…ุง
339
00:25:26,960 --> 00:25:30,480
ุงู„ู€ sample size ูƒุจุฑุช ูƒู„ ู…ุง ูƒุงู† ุนู†ุฏูŠ ุญุฌู… ุงู„ุนูŠู†ุฉ ุฃูƒุจุฑ
340
00:25:30,480 --> 00:25:33,620
ูƒู„ ู…ุง ู‚ุฑุจุช ุฅู† ู‡ูŠ ุจูŠูƒูˆู† ุดูƒู„ู‡ุง ุจูŠุจุฏุฃ ูŠุชูˆุฒุน ุฃูƒุซุฑ
341
00:25:33,620 --> 00:25:35,800
ูุจุงู„ุชุงู„ูŠ ุจุชู‚ุฑุจ ุฅู† ู‡ูŠ ุชุตูŠุฑ normal distribution
342
00:25:35,800 --> 00:25:41,060
ุฃูƒุซุฑ ูุจูŠุญูƒูŠ ู„ูƒ ุฅู† ุงุญู†ุง ูƒู„ ู…ุง ุญุฌู… ุงู„ุนูŠู†ุฉ ูƒุจุฑ ูุงู„ู€
343
00:25:41,060 --> 00:25:43,280
population ู‡ูŠูƒูˆู† ุฃูƒุซุฑ ุฃู‚ุฑุจ ู„ู€ ุงู„ู€ normal
344
00:25:43,280 --> 00:25:46,840
distribution ูุจู†ู‚ุฏุฑ ุฅู† ู†ุณุชุฎุฏู… ุงู„ู€ T test ูˆุจุนุฏ ู‡ูŠูƒ
345
00:25:46,840 --> 00:25:51,690
ุญูƒู‰ ู„ูƒ ุงู„ู„ูŠ ู‡ูˆ .. ุฃู†ุง ูˆุงุถุญู‡ุง ุฏูŠ ุฃูƒุซุฑ ุงู„ุดุฑุท ุงู„ุฃุณุงุณูŠ
346
00:25:51,690 --> 00:25:54,850
ุนุดุงู† ุงุณุชุฎุฏู…ุชูŠู‡ ุฅู† ูŠูƒูˆู† ุนู†ุฏู‡ normal distribution is
347
00:25:54,850 --> 00:25:58,410
satisfied ุนุดุงู† ุฃุถู…ู† normal distribution ู„ุงุฒู… ุงู„ู€
348
00:25:58,410 --> 00:26:02,150
sample size ูŠูƒูˆู† not very small ูŠุนู†ูŠ ุฅูŠุด ุนูƒุณ not
349
00:26:02,150 --> 00:26:05,630
very smallุŸ large .. large .. ู‡ุฐู‡ ูˆุงุญุฏุŒ ุงู„ุญุงู„ุฉ
350
00:26:05,630 --> 00:26:07,990
ุงู„ุชุงู†ูŠุฉ and the population is not very skewed
351
00:26:07,990 --> 00:26:11,990
ู…ุง ูŠูƒูˆู†ุด ู…ู„ุชูˆูŠ ูŠู…ูŠู† ุฃูˆ ุดู…ุงู„ ุจุฏุฑุฌุฉ ูƒุจูŠุฑุฉ ูŠุนู†ูŠ ู…ู…ูƒู†
352
00:26:11,990 --> 00:26:14,950
ูŠูƒูˆู† ููŠู‡ ุงู„ุชูˆุงุก ุดูˆูŠุฉ ู„ูƒู† ู…ุง ูŠูƒูˆู†ุด ุงู„ุชูˆุงุก ุจุฏุฑุฌุฉ
353
00:26:14,950 --> 00:26:19,930
ูƒุจูŠุฑุฉุŒ ู„ุฐุง ููŠ ุญุงู„ุฉ sample size is large enough or
354
00:26:19,930 --> 00:26:22,830
population is not very skewed either to the right
355
00:26:22,830 --> 00:26:25,870
or to the left in this case we can assume the
356
00:26:25,870 --> 00:26:29,830
population is normal and go ahead using T test ุฅุฐุง
357
00:26:29,830 --> 00:26:33,330
ุจุณุชุฎุฏู… T ููŠ ู‡ุฏูˆู„ ุงู„ุญุงู„ุชูŠู† how can we evaluate
358
00:26:33,330 --> 00:26:38,950
normality as we did before in section 6.3 either
359
00:26:38,950 --> 00:26:43,710
by using histogram or normal probability plot we can
360
00:26:43,710 --> 00:26:47,150
evaluate if the data is normally distributed ุฎุฏู†ุง
361
00:26:47,150 --> 00:26:51,690
ุฌุจู„ ู‡ูŠูƒ ุงู„ุขู† ููŠ ู†ู‚ุทุฉ ุฃู†ุง ู‡ุดุฑุญู‡ุง ุงู„ู„ูŠ ู‡ูŠ .. ุงู„ู„ูŠ
362
00:26:51,690 --> 00:26:55,330
ู‡ุดุฑุญู‡ุง ููŠ ุฒู…ูŠู„ุชูŠ ุงู„ู€ critical value approach ุทุฑูŠู‚ุฉ
363
00:26:55,330 --> 00:26:58,810
ุงู„ู€ critical value ู‚ูŠู…ุฉ ุงู„ุญุฑุฌุฉ ููŠ ุทุฑูŠู‚ุฉ ุซุงู†ูŠุฉ ุงุณู…ู‡ุง
364
00:26:58,810 --> 00:27:03,050
ูŠุงุด ุงู„ู€ P value approach ู‚ูŠู…ุฉ ุงู„ู€ P value ุฒูŠ ู…ุง
365
00:27:03,050 --> 00:27:07,050
ุงุณุชุฎุฏู…ู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู„ุขู† ุจุฏูŠ ุฃูƒูŠุฏ ุฃู†ุช ู„ุญุงู„ูƒ
366
00:27:07,050 --> 00:27:11,930
ู…ุนุงูƒูŠ ุฏู‚ูŠู‚ุชูŠู† ุชุทู„ุนูŠ ู„ูŠ ู‚ูŠู…ุฉ ุงู„ู€ P value ู…ู† ุงู„ู€ table
367
00:27:11,930 --> 00:27:15,050
ู‡ุฐุง
368
00:27:15,050 --> 00:27:18,670
ุงู„ู€ slide ู…ุด ุนู†ุฏูƒ .. ู…ุด ููŠ ุงู„ูƒุชุงุจ ู…ูˆุฌูˆุฏุฉ ู‡ุฐุง ุงู„ู€
369
00:27:18,670 --> 00:27:21,490
slide ู…ุด ู…ูˆุฌูˆุฏุฉ ููŠ ุถู…ู† ุงู„ู€ slides ุงู„ู„ูŠ ู…ุนุงูƒ ู‡ุฐุง ุงู„ู€
370
00:27:21,490 --> 00:27:24,810
slide ุจุชุญูƒูŠ ุนู† ุงู„ู€ P value approach ุฃู†ุช ุญุณุจูŠ ู„ูŠู‡ ู‡ูŠ
371
00:27:24,810 --> 00:27:30,630
ุจูŠุฏูƒ ุงู„ุขู† ุจุญูƒูŠ ู„ู„ูƒู„ ุทู„ุนูŠ ูˆุฑู‚ุฉ ุตุบูŠุฑุฉ ูˆุงุญุณุจูŠ ู‚ูŠู…ุฉ ุงู„ู€
372
00:27:30,630 --> 00:27:34,650
P value ู„ู„ู€ test ุงู„ู„ูŠ ุทู„ุนุช ู‚ูŠู…ุชู‡ one point four six
373
00:27:34,650 --> 00:27:38,350
ุญุงูˆู„ูŠ ู‡ุชุทู„ุนูŠ ุงู„ุฌูˆุงุจ ู„ู„ู€ P value approach
374
00:27:41,430 --> 00:27:44,570
ุฃูˆู„ ู…ุง ูŠุฎุจุฑ ุงู„ุทุงู„ุจ ุจุฃู† P-Value ู‡ูˆ one point ูู‡ู†ุงูƒ
375
00:27:44,570 --> 00:27:51,170
ุดูŠุก ุบู„ุท ู„ุฃู† P-Value ุจูŠู† 0 ูˆ1 ุทุจุนุง
376
00:27:51,170 --> 00:27:57,670
P-Value ู‡ูŠ probability ุจูŠู† 0 ูˆ1 ุทูŠุจุŒ
377
00:27:57,670 --> 00:28:00,210
ู‡ู„ ูŠู…ูƒู† ุฃุญุฏ ุฃู† ูŠุฑูŠู†ูŠ ูƒูŠู ุฃุฎุฑุฌ ุงู„ู„ูˆุญุฉุŸ
378
00:28:16,430 --> 00:28:20,030
ุทูŠุจ ุฎู„ูŠู†ูŠ ุฃุญู„ู‡ุง ูˆุฃุดูˆู ุงู„ุฎุทุฃ ุนู†ุฏูƒ ุจูŠู† ุงู„ู…ูˆุถูˆุน
379
00:28:20,030 --> 00:28:30,610
ุฑูƒุฒูŠ ู…ุนุงูŠุง ุงู„ู…ูŠูˆ ู…ุงู„ู‡ุง ู…ุง ุชุณุงูˆูŠุด 168 ูŠุนู†ูŠ one-tailed
380
00:28:30,610 --> 00:28:39,150
ูˆู„ุง two-tailedุŸ two-tailed ุฅุฐุง
381
00:28:39,150 --> 00:28:39,710
ุงู„ู€ P value
382
00:28:42,580 --> 00:28:53,700
ู†ุญู† ู†ุจุญุซ ุนู† ุงุนุชู‚ุงุฏ T ุฅู…ุง ุฃู† ูŠุณู‚ุท ููŠ ู‡ุฐุง ุงู„ุฌุงู†ุจ
383
00:28:53,700 --> 00:29:02,420
ุงู„ุตุญูŠุญุŒ ุงู„ุขู† ู‚ูŠู…ุฉ ุชุงุนุชู‚ุงุฏ T ู‡ูŠ 1.46ุŒ ู„ุฐู„ูƒ ุฃูƒุจุฑ ู…ู†
384
00:29:02,420 --> 00:29:11,470
1.46. ุงู„ุขู† ุจู…ุง ุฃู†ู†ุง ู†ุชุญุฏุซ ุนู† ุชุฌุงุฑุจ 2D ุชูƒูˆู† ู‡ู†ุงูƒ
385
00:29:11,470 --> 00:29:17,410
ุงุชูุงู‚ูŠู† ู…ู† ุงู„ู…ู†ุงุทู‚ ูˆุงุญุฏ ุนู„ู‰ ุงู„ูŠู…ูŠู† ู…ู† 1.46 ูˆุงู„ุขุฎุฑ
386
00:29:17,410 --> 00:29:23,170
ุนู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ
387
00:29:23,170 --> 00:29:27,570
ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰
388
00:29:27,570 --> 00:29:33,050
ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1
389
00:29:33,050 --> 00:29:35,950
.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰
390
00:29:35,950 --> 00:29:38,850
ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1
391
00:29:38,850 --> 00:29:42,300
.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅุฐุง ููŠ ุงู„ู€ two-sided ุฃูˆ ุงู„
431
00:33:06,000 --> 00:33:14,720
ุฃูƒุซุฑ ู…ู† Alpha ู…ู† 5% ู„ุฐู„ูƒ ู„ุง ู†ู‚ูุฒ
432
00:33:36,530 --> 00:33:42,310
ุจุฅู…ูƒุงู†ูƒ ุงุณุชุฎุฏุงู… ุจุฑุงู…ุฌ ุญุงุณูˆุจูŠุฉ ุฌุงู‡ุฒุฉ ุชุนุทูŠูƒ ุงู„ู€ exact
433
00:33:42,310 --> 00:33:42,830
result
434
00:33:46,800 --> 00:33:52,740
around point one five seven point one five seven
435
00:33:52,740 --> 00:33:59,280
ู‡ุฐู‡ ุงู„ู€ exact answer ู†ุญู† ู…ุด ู‡ุชุทู„ุน ุงู„ู€ exact ู†ู‡ุงุฆูŠุงุŒ
436
00:33:59,280 --> 00:34:02,980
ู‡ุชุทู„ุน ุงู„ู€ approximate value ุฎู„ุงุตุŸ ุฅุฐุง ู‡ุงูŠ ุงู„ู€ two
437
00:34:02,980 --> 00:34:05,680
approaches to reject or don't reject the null
438
00:34:05,680 --> 00:34:10,080
hypothesis ุทูŠุจ ุงู„ู„ูŠ ู‚ุงู„ ุฌุงูŠ ุจุงุฎุฏ ุงู„ู€ one tipุŒ
439
00:34:10,080 --> 00:34:14,460
ุฐุงูƒุฑูŠู† ุฅูŠู‡ ุจูˆุŸ ุฎู„ุงุตุŸ
440
00:34:14,460 --> 00:34:16,080
ู…ุด ู…ุดูƒู„ุฉุŒ ุจูƒุฑุง ุจู†ูƒู…ู„ ุฅู† ุดุงุก ุงู„ู„ู‡