|
1 |
|
00:00:20,650 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุ today ุฅู ุดุงุก ุงููู we |
|
|
|
2 |
|
00:00:22,910 |
|
continue with chapter 9, at the last lecture we |
|
|
|
3 |
|
00:00:25,990 |
|
talked about hypothesis testing and we said that |
|
|
|
4 |
|
00:00:29,890 |
|
there are two cases when I will deal with the |
|
|
|
5 |
|
00:00:33,990 |
|
hypothesis tests. There are two cases, the first one |
|
|
|
6 |
|
00:00:37,710 |
|
we said, and it depends on the existence of sigma |
|
|
|
7 |
|
00:00:42,030 |
|
which is the population standard deviation. We said |
|
|
|
8 |
|
00:00:46,910 |
|
that the first case is when sigma is known and we |
|
|
|
9 |
|
00:00:50,510 |
|
took it in details at the last lecture. We said |
|
|
|
10 |
|
00:00:53,290 |
|
that we will use the z test, and under the z test there are |
|
|
|
11 |
|
00:00:57,090 |
|
two approaches: ุงู critical value approach and ุงูู P value approach, and we learned how we |
|
|
|
12 |
|
00:01:00,640 |
|
calculate the P value, and we said that we have to |
|
|
|
13 |
|
00:01:04,500 |
|
compare the P value with alpha, which is the level of |
|
|
|
14 |
|
00:01:07,520 |
|
significance. Today we will focus on the second |
|
|
|
15 |
|
00:01:16,340 |
|
case, which is when sigma is unknown. Okay, so the |
|
|
|
16 |
|
00:01:22,030 |
|
first slide says, "Do you ever truly know sigma, ุงูู" |
|
|
|
17 |
|
00:01:26,430 |
|
ูู ูู population standard deviationุ ูุนูู ูู ุงุญูุง ูู |
|
|
|
18 |
|
00:01:29,250 |
|
ูุนูุง ุฏุงุฆู
ุง ุชููู ุงู sigma ู
ุนุฑููุฉ ุนูุฏู ููุง ูุฃุ ุจุญูููู |
|
|
|
19 |
|
00:01:32,890 |
|
ุญูู probably not. ูุนูู perhaps ุงูู ู
ู
ูู ู
ุง ุชูููุด |
|
|
|
20 |
|
00:01:35,790 |
|
ู
ุนุฑููุฉ ุงู sigma ุนูุฏู. ูุจุญูููู ุงู virtually all |
|
|
|
21 |
|
00:01:39,590 |
|
real-world business situations, sigma is not known. |
|
|
|
22 |
|
00:01:42,970 |
|
ูุนูู ุจุงูุญูุงุฉ practically, ูุนูู ุจุงูุญูุงุฉ ุจุงููุงูุนูุฉ |
|
|
|
23 |
|
00:01:46,150 |
|
ู
ุซูุง ูุญูู ูู ุงู business situations ุจุงูุฃุบูุจ ุจุชููู |
|
|
|
24 |
|
00:01:49,820 |
|
ุงู sigma ู
ุด ู
ุนุฑููุฉ. Okay, ุงูู ุจุนุฏ ุจุญูููู if there is |
|
|
|
25 |
|
00:01:53,320 |
|
a situation where sigma is known, then mu is also |
|
|
|
26 |
|
00:01:57,380 |
|
known, since to calculate sigma, you need to know mu. |
|
|
|
27 |
|
00:02:00,580 |
|
ูุนูู ุจูููู ูู situation ูู
ุง ุจุชููู ุงููู ูู ุงู |
|
|
|
28 |
|
00:02:04,500 |
|
sigma ู
ุนุฑููุฉุ ูุฃููุฏ ุงููู ูู ุงู mu ู
ุนุฑููุฉ ููุดุ ูุฃูู |
|
|
|
29 |
|
00:02:08,360 |
|
ุงู sigma ูู
ุง ุฃุฌู ุฃุญุณุจ ุงู sigma ูู ุงููุงููู ุชุจุน ุญุณุงุจ |
|
|
|
30 |
|
00:02:11,400 |
|
ุงู sigmaุ ุงูุด ู
ูุฌูุฏุ ุงู mu. ูุจู
ุง ุงูู ุงูุง ุทูุนุช ุงู |
|
|
|
31 |
|
00:02:14,800 |
|
sigma ุงู ูุงูุช ู
ุนุฑููุฉ ุฃููุฏ ุงู mu ู
ุนุฑููุฉุ ูุฃู ุจุณุชุฎุฏู
ูุง |
|
|
|
32 |
|
00:02:17,560 |
|
ูู ุญุณุงุจ ุงู sigma. Okay, ุจุณู
ู ุจุชุญูู ูููุงุชู ุฎุงููู ุงู |
|
|
|
33 |
|
00:02:23,620 |
|
sigmaุ ุงููู ูู ุงู summation x minus mu square ุฃู |
|
|
|
34 |
|
00:02:29,880 |
|
ูุฑููู under square root. ุงุฐุง ูู ุญูููุง sigma is non |
|
|
|
35 |
|
00:02:33,560 |
|
known |
|
|
|
36 |
|
00:02:36,980 |
|
ูุนูู ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง |
|
|
|
37 |
|
00:02:42,300 |
|
ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง |
|
|
|
38 |
|
00:02:43,280 |
|
ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง |
|
|
|
39 |
|
00:02:43,300 |
|
ุฃูุง ู
ุธุจูุท ูุง ุนุฒูุฒูุ ูู ุงูู mu ู
ุนุฑููุฉุ ูุฃูุฏุฑ ุฃุญุตู |
|
|
|
40 |
|
00:02:47,220 |
|
ุนูู ุงู sigma. ููู ูู ูุงูุช ุงู sigma ุบูุฑ ู
ุนุฑููุฉุ |
|
|
|
41 |
|
00:02:53,380 |
|
ูุงู mu ุบูุฑ ู
ุนุฑููุฉุ ู
ุด ููุ ุฃูุง ูู ุดุบู ุจููุฏุณุ |
|
|
|
42 |
|
00:02:59,840 |
|
ูุจุงูุชุงูู ู
ุง ูููุงุด ุชููู ุนูุฏู ุงู mu ู
ุด ู
ุนุฑููุฉุ ู |
|
|
|
43 |
|
00:03:03,040 |
|
ุงู sigma. ูุจุงูุชุงูู ุฅุฐุง ูุงูุช ุงู mu ุบูุฑ ู
ุนุฑููุฉุ ุฃููุฏ |
|
|
|
44 |
|
00:03:06,140 |
|
ุงู sigma ุบูุฑ ู
ุนุฑููุฉ. Is it a real practice, |
|
|
|
45 |
|
00:03:09,480 |
|
problemsุ ูู ุงู business situations, is always sigma |
|
|
|
46 |
|
00:03:14,580 |
|
is unknown. |
|
|
|
47 |
|
00:03:19,900 |
|
ุงูู ุจุนุฏ ูู ุจูุญูููู if you truly know mu, there |
|
|
|
48 |
|
00:03:23,160 |
|
would be no need to gather a sample to estimate it. |
|
|
|
49 |
|
00:03:26,160 |
|
ูุนูู ุจูุญูู ุฅู ูู ู
ุซูุง ูู ุงู situation ุงููู ุนูุฏู |
|
|
|
50 |
|
00:03:28,640 |
|
ุงููู ูู ุงู muุ ุงููู ูู ุงู population mean ูุงู ู
ูุฌูุฏ |
|
|
|
51 |
|
00:03:31,380 |
|
ุนูุฏู ูู
ุง ููุด ุฏุงุนู ุฅู ุฃูุง ุฃุนู
ู ุฃุฌูุจ sample ุนุดุงู |
|
|
|
52 |
|
00:03:34,720 |
|
ุฃุญุณุจ ุงููู ูู ุงู sample mean ุนุดุงู ูุนูู ุฎูุงุต ูุนูู |
|
|
|
53 |
|
00:03:39,040 |
|
ุจุชููู ุงููู ูู ุงู population mean ุฅุฐุง ูุงู ู
ูุฌูุฏ |
|
|
|
54 |
|
00:03:41,020 |
|
ุฎูุงุต ุจูููู ุจูุณุชุฎุฏู
ู ูู. ุงูู
ูุถูุน ุงุณู
ุชู ุชุญูู ููุทุฉ |
|
|
|
55 |
|
00:03:44,440 |
|
ู
ูู
ุฉ. ุฅุฐุง ุงู mu ู
ุนุฑููุฉ ู
ู ุงูุฃุตูุ ุฃู ุงู mu is givenุ ู
ุง |
|
|
|
56 |
|
00:03:49,050 |
|
ููุช ุจู ูุดุฌุน ุฃุนู
ู testing ุฅุฐุง ุงู hypothesis test ุงููู |
|
|
|
57 |
|
00:03:52,110 |
|
ุจูุนู
ู. ุงูู
ูู
ูู ูู
ุง ุชููู ุงู mu is unknown. ุทุงูู
ุง |
|
|
|
58 |
|
00:03:57,110 |
|
ุงู mu is unknownุ ุฃููุฏ ุฃูุง ูุนู
ู sample. ููู ูู ุงู mu |
|
|
|
59 |
|
00:03:59,670 |
|
is givenุ ุจูุดุฌุน ุฃุนู
ู sample. ูุงุถุญุ ูุนูู ุงูุชุฑุถ ูุงุญุฏ |
|
|
|
60 |
|
00:04:03,230 |
|
ุจูุญูู ุนู
ุฑ ุทุงูุจ ุฌุงู
ุนุฉ ุงุณุชู
ูู 22 ุณูุฉ. ุนู
ุฑ ุทุงูุจ |
|
|
|
61 |
|
00:04:06,930 |
|
ุงูุฌุงู
ุนุฉ ูููุง. ุจูุดุฌุน ุฃุฎุฏ sample ุฃู ุฃุนู
ู estimation |
|
|
|
62 |
|
00:04:09,710 |
|
ุฃู ุฃุนู
ู test. ุฅุฐุง if the true mean is given, then |
|
|
|
63 |
|
00:04:13,490 |
|
there is no need. ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ |
|
|
|
64 |
|
00:04:18,290 |
|
ุชุฌุงุฑุจ ุชุฌุงุฑุจ ููููุช. Okay, ููููุช ุงู hypothesis |
|
|
|
65 |
|
00:04:23,690 |
|
testing when sigma is unknown. ููููุช ููุงุฎุฏ ุงู |
|
|
|
66 |
|
00:04:26,670 |
|
differences between ุงููู ูู ุงู case ูู
ุง ูููู ุงู |
|
|
|
67 |
|
00:04:29,770 |
|
sigma known ู ุงู sigma unknown. ุฑูุฒูุง ู
ุนุงูุง. ุฃูู |
|
|
|
68 |
|
00:04:32,890 |
|
difference ุจูุญูููู if the population standard |
|
|
|
69 |
|
00:04:35,650 |
|
deviation is unknownุ ุงููู ูู ุงู sigma ูู
ุง ูุงูุช ู
ุด |
|
|
|
70 |
|
00:04:38,750 |
|
ู
ุนุฑููุฉุ you instead use the sample standard |
|
|
|
71 |
|
00:04:41,490 |
|
deviation. ุฃุตูุง ูุนูู ุงุฎุชูุงู ุจุณูุท. ุจู
ุง ุฃู ุงู |
|
|
|
72 |
|
00:04:44,470 |
|
population standard deviation ุงููู ูู ุงู sigma ู
ุด |
|
|
|
73 |
|
00:04:47,050 |
|
ู
ุนุฑููุฉุ ูุณุชุฎุฏู
ุจุฏููุง ู
ููุ ุงููู ูู ุงู Sุ ุงููู ูู ุงู |
|
|
|
74 |
|
00:04:49,990 |
|
sample standard deviation. ูุงู ุฃูู ุงุฎุชูุงู. ุชุงูู ุฅุดู |
|
|
|
75 |
|
00:04:53,750 |
|
because of this exchange, you use the T |
|
|
|
76 |
|
00:04:56,890 |
|
distribution instead of useโฆ instead of the Z |
|
|
|
77 |
|
00:05:00,290 |
|
distribution to test the null hypothesis about the |
|
|
|
78 |
|
00:05:02,630 |
|
mean. ูุนูู ุจุฏู ุงููู ุงุญูุง ููุง ูุณุชุฎุฏู
ุงููู ูู Z |
|
|
|
79 |
|
00:05:05,730 |
|
distribution ุฃู Z test, ููุฃ ููุณุชุฎุฏู
ุฅุดู ุงุณู
ู T |
|
|
|
80 |
|
00:05:08,950 |
|
distribution ุฃู T test. ููุฃ ููุดูู ููู ูุนูู ุจูููู |
|
|
|
81 |
|
00:05:12,270 |
|
ุงูุฎุทูุงุช. ุชุงูุช ุงุฎุชูุงู when using the T distribution, |
|
|
|
82 |
|
00:05:16,500 |
|
you must assume the population you are sampling |
|
|
|
83 |
|
00:05:18,920 |
|
from follows a normal distribution. ูุนูู ูู
ุง ุฃุณุชุฎุฏู
|
|
|
|
84 |
|
00:05:22,580 |
|
ุงู T test ูุงุฒู
ูููู ุนูุฏู ููู assumption ุฃูุง ุฃูุชุฑุถู |
|
|
|
85 |
|
00:05:25,140 |
|
ุฃู ุญุชู ู
ู ุงูุณุคุงู ูู ุจูููู ู
ูุชุฑุถ ูู ูุง ุฅูู ุชููู ุงู |
|
|
|
86 |
|
00:05:28,460 |
|
population follows normal distributionุ ุชูุฒูุน ุทุจูุนู |
|
|
|
87 |
|
00:05:31,180 |
|
ุงู population. ูุจุนุฏูู ุจูุญูููู all other steps, |
|
|
|
88 |
|
00:05:33,860 |
|
concepts, and conclusions are the same. ุจุงูู ุงูุฎุทูุงุช |
|
|
|
89 |
|
00:05:37,180 |
|
as we took when sigma is known. ูุนูู ููุณ ุงูุฎุทูุงุช ุจุณ |
|
|
|
90 |
|
00:05:42,490 |
|
basically ูุญูู ูู ุชููู sigma is not given ูู ุงูุช |
|
|
|
91 |
|
00:05:46,610 |
|
ูุชูุงูู ุดุบูุชูู. ุฑูู
ูุงุญุฏ ุจู replace sigma which is |
|
|
|
92 |
|
00:05:50,510 |
|
unknown by S. ุฅุฐุง ูุดูู sigma ููุทูุน ุงูู โฆ ุงู |
|
|
|
93 |
|
00:05:54,760 |
|
simplicity ุนุจุงุฑุฉ ุนู ู
ููุ ุงู sample standard |
|
|
|
94 |
|
00:05:57,180 |
|
deviation. ูุฐุง ุฑูู
ูุงุญุฏ. ุฑูู
ุงุซููู ุจุฏู ู
ุง ููุง ูุณุชุฎุฏู
|
|
|
|
95 |
|
00:06:01,080 |
|
z for distribution ูู ุนูุฏูุง new test called T |
|
|
|
96 |
|
00:06:05,180 |
|
distribution. ุฅุฐุง ุงุญูุง ูุณุชุฎุฏู
T ูููุฑูููุง ุจุนุฏ ุดููุฉ |
|
|
|
97 |
|
00:06:08,080 |
|
table ุชุจุน ุงู T ู how can we compute the critical |
|
|
|
98 |
|
00:06:10,720 |
|
values using T distribution. ุงูููุทุฉ ุงูุฃุฎูุฑุฉ ู
ูู
ุฉ |
|
|
|
99 |
|
00:06:14,060 |
|
ุฌุฏุง ุงูู ูุงุฒู
ูููู ุนูุฏูุง ุงู normal assumption |
|
|
|
100 |
|
00:06:17,280 |
|
satisfied. ูุนูู ูุฑุถูุฉ ุงูุชูุฒูุน ุงูุทุจูุนู ุชููู ู
ุง ููุง |
|
|
|
101 |
|
00:06:20,460 |
|
is okay. ุฃู ุญุงุฌุฉ ุชุงููุฉ ุงู steps ุงููู ุญูููุง ุนูููู
|
|
|
|
102 |
|
00:06:24,440 |
|
still the same. ุชุจุชุฏูุง ููุณ ุงูุดูุก ุณูุงุก ู
ู ูุงุญูุฉ ุงู |
|
|
|
103 |
|
00:06:28,260 |
|
concepts ุฃู ุงู conclusions are still the same. Any |
|
|
|
104 |
|
00:06:33,120 |
|
questions? ูุฐุง ู
ูุฏู
ุฉ ูู
ูุถูุน ุงู sigma is unknown. |
|
|
|
105 |
|
00:06:43,750 |
|
Okay. ููุฃ ุฅุฐุง ุจุญูููู ุงูุขู ุจูุดูู ุงููู ูู ุฎุทูุงุช ุงู |
|
|
|
106 |
|
00:06:46,370 |
|
test. ุฃูู ุฅูุด ุจูุญููููุ Test of hypothesis for the |
|
|
|
107 |
|
00:06:49,390 |
|
mean when sigma is unknown. ุฅูุด ุจุฏูุง ูุญูู ุงููู ูู |
|
|
|
108 |
|
00:06:52,670 |
|
convert sample statistic x bar to a t state. ูุนูู |
|
|
|
109 |
|
00:06:56,710 |
|
ููุงู ููุง ูุญูู ู z state, ุชู statistic. Okay, ุงููู ูู |
|
|
|
110 |
|
00:07:03,350 |
|
ููุดูู ุงูุด ุงููุงููู ุงู t state ุฃู statistic equal ุงู |
|
|
|
111 |
|
00:07:08,890 |
|
x bar - mu divided by S over square root of N. ุฒู ู
ุง |
|
|
|
112 |
|
00:07:17,210 |
|
ุงุญูุง ุดุงูููู ุจุดุจู ุงููู ูู ุงู Z statistic ุจุณ ุงู |
|
|
|
113 |
|
00:07:20,170 |
|
difference ุงููุญูุฏ ุงุญูุง ุญูููุง ุจุฏู ุงูุณูุฌู
ุง ุงููู ูู |
|
|
|
114 |
|
00:07:23,330 |
|
population standard deviation ุฑุงุญ ูุณุชุจุฏููุง ุจ S |
|
|
|
115 |
|
00:07:26,350 |
|
ุจุงูู S ุงููู ูู ุงูุณู
ุจุงู standard deviation ุจุณ ููู |
|
|
|
116 |
|
00:07:29,350 |
|
ููุง ุญุทุช ูู ุงูู
ุฎุทุท. Hypothesis test test for the mean |
|
|
|
117 |
|
00:07:33,730 |
|
sigma known, Z test. ุฃู
ุง sigma unknown ููุณุชุฎุฏู
ุงู T |
|
|
|
118 |
|
00:07:37,810 |
|
test. The test statistic is a T statistic equal ููู |
|
|
|
119 |
|
00:07:41,990 |
|
X bar minus ุงูู mu divided by S over square root of |
|
|
|
120 |
|
00:07:46,310 |
|
N. ุจุณ ุงููู ุจุนุฏ ููุ ููุฃ ููุงุฎุฏ example. ุฑูุฒูุง ู
ุนุงู ูุฅูู |
|
|
|
121 |
|
00:07:54,840 |
|
ูู ุงุดูุงุก ุฌุฏูุฏุฉ ููุชุนุฑู ุนูููุง ูููุฑุฃ ู
ุน ุจุนุถ ุงู |
|
|
|
122 |
|
00:07:58,480 |
|
example. ุฎููุง ุงู example ูุงุญุฏุฉ ู
ููู
ุชูุฑุฃู ููุงุญุฏุฉ |
|
|
|
123 |
|
00:08:04,220 |
|
ุชุทูุน ุงูู
ุนููู
ุฉ ุงููู ููู. ุฎููุง ู
ุดุงุฑูุฉ ู
ููู
. ุชุนุงู ููุง. |
|
|
|
124 |
|
00:08:10,100 |
|
The average cost of a hotel room in New York is |
|
|
|
125 |
|
00:08:13,120 |
|
said to be $168 per night. To determine if this is |
|
|
|
126 |
|
00:08:19,760 |
|
true, a random sample of 25 hotels taken and |
|
|
|
127 |
|
00:08:25,550 |
|
resulted in an x-bar of $172.50 and an s of $15.40. ุงู |
|
|
|
128 |
|
00:08:38,050 |
|
standard sample standard deviation 15. This is the |
|
|
|
129 |
|
00:08:42,370 |
|
appropriate hypothesis at alpha 0.05. ุทูุน ุฒู
ููุชู |
|
|
|
130 |
|
00:08:50,130 |
|
ุญูุช ูู ุดุบูุชูู ู
ูู
ุงุช ูู ุงู example. ุจุชุญูู ุงู average |
|
|
|
131 |
|
00:08:54,780 |
|
cost of a hotel room is said to be $168. ุงูู 168 |
|
|
|
132 |
|
00:09:00,360 |
|
sample mean ููุง ุงู population meanุ ุงูู 168 ูู ุจูุญููุด |
|
|
|
133 |
|
00:09:06,740 |
|
ุงู average cost of a hotel room in New York ุจูุฏ |
|
|
|
134 |
|
00:09:09,640 |
|
ูููุง population. ุฅุฐุง ุงู 168 ูู mu. ุฅุฐุง ุงู mu 168. ูุฐุง |
|
|
|
135 |
|
00:09:18,400 |
|
ููุทุฉ ู
ูู
ุฉ. ุงูููุทุฉ ุงูุชุงููุฉ ุจุชุฃูุฏ ุฅุฐุง ูุงู ูุฐุง ุตุญูุญุ ุจุฏู |
|
|
|
136 |
|
00:09:27,240 |
|
ุฃุญุฏุซ ููู
ุฉ ุตุญูุญุฉ ููุง ูุฃุ ุฎู
ุณูู ูุนุดุฑูู ุฎู
ุณูู ูุนุดุฑูู |
|
|
|
137 |
|
00:09:37,930 |
|
ุฅู โฆ ุงูู ูุฐูุ x-bar. ุตูุญููุงุ ู
ุด X. x-bar of $172.5 |
|
|
|
138 |
|
00:09:45,350 |
|
ูุนุทู x-bar. Average ู
ูู ุงููู ูุนุทู ุงู average ูู 25 |
|
|
|
139 |
|
00:09:50,150 |
|
ุงูู 25 sample. ู
ุธุจูุทุ ููุฐู ุนุจุงุฑุฉ ุนู ุงู sample mean ููุง |
|
|
|
140 |
|
00:09:54,450 |
|
ุงู population meanุ ุงู sample. ุทุงูู
ุง ุญููุช random |
|
|
|
141 |
|
00:09:58,010 |
|
sample ูู 25 resulted in. ู
ุน ูุฏู ุนูุฏ ุงู sample mean |
|
|
|
142 |
|
00:10:02,730 |
|
ุฅุฐุง ุงู x-bar equal 172.5 |
|
|
|
143 |
|
00:10:12,650 |
|
ู S 15.4. ูุฐุง ุงู S ูู samples standard deviation ู |
|
|
|
144 |
|
00:10:20,150 |
|
ุงู S 15.4. ุทุงูุนุด ุจูุณุฃู ุงู test the appropriate |
|
|
|
145 |
|
00:10:27,090 |
|
hypothesis. ุจุฏูุง ุงู hypothesis ุงูู
ูุงุณุจุฉ. ูู ุงูุด โฆ |
|
|
|
146 |
|
00:10:32,280 |
|
ุงูุด ุงููู ุงุนุทุงูู ุงู ุงู average overall 168? We are |
|
|
|
147 |
|
00:10:36,180 |
|
testing this average, this null hypothesis against |
|
|
|
148 |
|
00:10:39,500 |
|
do you think mu should be โฆ does not equal to or |
|
|
|
149 |
|
00:10:43,260 |
|
greater than or smaller thanุ ุงููู ู
ูุญูู
ูุง ุงููู |
|
|
|
150 |
|
00:10:46,220 |
|
ุฃูู ููุง ุฃูุจุฑุ ูู ุญูู ูู ุงูู
ุซูุฉ direction ู
ุนููุ ูุฃ |
|
|
|
151 |
|
00:10:50,710 |
|
ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ |
|
|
|
152 |
|
00:10:54,390 |
|
ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ |
|
|
|
153 |
|
00:10:55,550 |
|
ูุฃ ูุฃ |
|
|
|
154 |
|
00:10:59,170 |
|
ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ |
|
|
|
155 |
|
00:10:59,350 |
|
ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ |
|
|
|
156 |
|
00:11:08,530 |
|
ูุฃ |
|
|
|
157 |
|
00:11:19,730 |
|
ุงูุขู ูุชุทูุนูุง ุงู information ุงููู ูุงุฒู
ุฉ ู
ู ุงูู
ุซูุฉุ |
|
|
|
158 |
|
00:11:23,670 |
|
ู
ุงุดูููุ ุจุจุฏุฃ ุฃูู
ูุ ุฃูู
ู ุฃูุงุ ุจู
ุง ุฃู ูุชุจูุง ุงุญูุง ุงููู |
|
|
|
159 |
|
00:11:30,200 |
|
ูู null hypothesis ู ุงููู ูู ุงู alternative |
|
|
|
160 |
|
00:11:32,680 |
|
hypothesisุ ุงููู ูู ุฅู ุงู mu equal 168 ูุฅู ุงู |
|
|
|
161 |
|
00:11:37,160 |
|
alternative hypothesis ุฅู ุงู mu not equal 168. ุฃูู |
|
|
|
162 |
|
00:11:42,260 |
|
ุดุบู ุจูุทูุน ูููุง ุจุงูุณุคุงูุ ุฒู ู
ุง ููุง ู
ุงุฎุฏููู ูุจู ูุฏูุ ุจูุดูู |
|
|
|
163 |
|
00:11:44,940 |
|
ุฅุฐุง ุงู sigma known ููุง unknown. ุทุจุนุง ุนูุฏู ุงูุณุคุงู ุงุญูุง |
|
|
|
164 |
|
00:11:48,500 |
|
ูุชุจูุง ูู ุงูู
ุนุทูุงุชุ ู
ุนุทููู ุงู sample standard |
|
|
|
165 |
|
00:11:51,180 |
|
deviation ุฃู
ุง ุงู sigma ู
ุด ู
ุนุฑููุฉ. So ุจูุญูู ุฅูู โฆ |
|
|
|
166 |
|
00:11:54,960 |
|
so ุนูุฏู ุงููู ูู ุงู sigma is unknown. So |
|
|
|
167 |
|
00:12:02,830 |
|
we will use โฆ ุฅูุด ููุณุชุฎุฏู
ุ T test โฆ T test. ูุจู
ุง |
|
|
|
168 |
|
00:12:11,770 |
|
ุฃููุง ููุณุชุฎุฏู
ุงู T test ููู ูุชุจ ูู you assume the |
|
|
|
169 |
|
00:12:14,350 |
|
population distribution is normal. ุงุญูุง ุญูููุง ุฅูู |
|
|
|
170 |
|
00:12:16,930 |
|
ุนุดุงู ูุณุชุฎุฏู
ุงู T test ูุงุฒู
ููุชุฑุถ ุฅูู ุงู population |
|
|
|
171 |
|
00:12:19,770 |
|
follows normal distribution. ูุนูู ุงูุชูุฒูุน ุทุจูุนู. |
|
|
|
172 |
|
00:12:22,830 |
|
ุทุจุนุง ูู ุงู T test ุจุฏูุง ูุฌูุจ ุฅุดู ุงุณู
ู T statistic |
|
|
|
173 |
|
00:12:27,010 |
|
ุงููู ูุจู ุดููุฉ ูุชุจูุง ูุงูููู ูููุง. ุฃูู ุฅุดู ุจูุฌูุจ ุงู T |
|
|
|
174 |
|
00:12:30,210 |
|
statistic. |
|
|
|
175 |
|
00:12:35,440 |
|
divided by ุงู S ุนูู a square root of n. ููู |
|
|
|
176 |
|
00:12:39,980 |
|
ุงูู
ูุถูุนุงุช ุทูุนูุงูู
ุฏุบุฑู. ู
ู ุจุจูู ุดุจูุฉ. Minus ุงููู ูู |
|
|
|
177 |
|
00:12:47,200 |
|
168 divided by ุงู S ุงููู ูู |
|
|
|
178 |
|
00:12:50,920 |
|
sample standard deviation 15.4 ุนูู |
|
|
|
179 |
|
00:12:55,980 |
|
ุงููู ูู a square root of n 25. ุจูุทูุน ุนูุฏู |
|
|
|
180 |
|
00:13:00,280 |
|
ุงู T statistic 1.46. ุงูุญู
ุฏ ููู ุงูู |
|
|
|
181 |
|
00:13:07,530 |
|
ููุงููุชูุง ุจุนุฏ ู
ุง ุฌุจูุง ุงู T statistic ุจุฏูุง ูุฌ |
|
|
|
216 |
|
00:15:50,230 |
|
ุฃูุชูุง ุดุงูููู ูู ุนูุฏูู
T-table hands ุฅูุด ุงุณู
ูุ ุงููู |
|
|
|
217 |
|
00:15:53,950 |
|
ูู DF ุตุญุ ูุฐุง ุงูู DF is equal DF ูู degree of |
|
|
|
218 |
|
00:16:02,070 |
|
freedom ุงููู ูู ุจุงูุนุฑุจู ุฏุฑุฌุฉ ุงูุญุฑูุฉ ูุนูู ุงููู ูู |
|
|
|
219 |
|
00:16:07,400 |
|
ูุงููู ุซุงุจุช ุงููู ูู ุงูู N ููุต ูุงุญุฏ ุงููู ูู ุงูู sample |
|
|
|
220 |
|
00:16:10,900 |
|
size minus one okay ุจูุฌูุจ ุงูุฏูููุฉ ูุฃูู ุฅุดู ุทุจุนุง |
|
|
|
221 |
|
00:16:15,300 |
|
ูุฅููุง ุงูู N ูุฏุงุด 25 minus one ูุฏุด ุจุทูุน 24 ููุฃ ูุงุญูุง |
|
|
|
222 |
|
00:16:22,320 |
|
ุจูุฌูุจ ุงููู ูู ุนูุฏู ุฃูุง two sides okay ููุฃ ูู ุทูุนูุง |
|
|
|
223 |
|
00:16:26,600 |
|
ุนูู ุงูุฌุฏูู ุจูุญูู ูู ู
ุนุทูู ุฅูู table entry for B and |
|
|
|
224 |
|
00:16:30,680 |
|
C is the critical value T star with probability B |
|
|
|
225 |
|
00:16:35,020 |
|
lying to its right and probability C lying between |
|
|
|
226 |
|
00:16:38,460 |
|
minus T star and T star ู
ุนุทููู ุงูุฌุฏูู ุฅู ุฃูู ุดู |
|
|
|
227 |
|
00:16:43,880 |
|
ููู ุงูู DF ุงููู ุงุญูุง ุญุณุจูุงูุง ุงููู ูู ุงูู N minus one |
|
|
|
228 |
|
00:16:47,380 |
|
ูุนูู ูุงุฒู
ุชุฌูุจู ูููุง ุงูู DF N minus one ู ุจูุญูููู |
|
|
|
229 |
|
00:16:50,740 |
|
ุฅู
ุง ุจุชุฑูุญู ุชุณุชุฎุฏู
ู ุงูู .. ุงูู upper tail probability |
|
|
|
230 |
|
00:16:54,240 |
|
ุงูู B ูุฐูู ูุนูู ูุฐุง ุงูู B ุฃู ู
ู
ูู ูุณุชุฎุฏู
ุงููู ูู ุงูู |
|
|
|
231 |
|
00:16:59,140 |
|
ุงุญุชูุงุท ุฃู ุฅุฐุง ูุงู ุนูุฏู ู
ูุฌุฉ ุจุณุงูุจ T ุฒู ู
ุง ุงุญูุง |
|
|
|
232 |
|
00:17:02,140 |
|
ุนูุฏูุง ู
ูุฌุฉ ุจุณุงูุจ T ู
ู
ูู ูุณุชุฎุฏู
ุงููู ูู ุงูู hand |
|
|
|
233 |
|
00:17:05,100 |
|
ุงูู
ุณุงุญุฉ ุงููู hand ุงููู ู
ูุฌูุฏุฉ ุจุฃุฎุฑ ุงูุฌุฏูู ุชุญุช |
|
|
|
234 |
|
00:17:08,600 |
|
ู
ู
ุชุงุฒ ุงูุขู ุฒู
ููุชู ูุงูุช ุญุงููุฉ ูุงูุช ุชุงููุฉ ุงูู table |
|
|
|
235 |
|
00:17:13,340 |
|
ุงููู ุนูุฏู ุงุณู
ู T table ูุจูุนุทู ุงูู area to the right |
|
|
|
236 |
|
00:17:17,400 |
|
ุดุงููุฉ ุงูุตูุฑุงุก ูุฐู ุงููู ููุง ูุฐู ุงูู area to the right |
|
|
|
237 |
|
00:17:21,340 |
|
ุงูู
ูุทูุฉ ุงููู ููุง ุงูู Z table ูุงู ูุนุทู ุงูู area ูููู |
|
|
|
238 |
|
00:17:26,200 |
|
to the left ุงูู T table to the right ุฅุฐุง ููุณู ุงูุขู |
|
|
|
239 |
|
00:17:29,640 |
|
ุงูู Z ุงูู Z area to the left ุงูู T table ุงูู area to |
|
|
|
240 |
|
00:17:33,520 |
|
the right ุงูู rows represent degrees of freedom |
|
|
|
241 |
|
00:17:38,620 |
|
ุฏุฑุฌุงุช ุงูุญุฑูุฉ ุฒู ู
ุง ุญูุช degrees of freedom equals n |
|
|
|
242 |
|
00:17:42,770 |
|
minus one in this case we have sample size of |
|
|
|
243 |
|
00:17:45,750 |
|
twenty five so degrees of freedom of twenty five |
|
|
|
244 |
|
00:17:48,350 |
|
minus one which is twenty four so now two steps |
|
|
|
245 |
|
00:17:52,990 |
|
just locate the row of twenty four because degrees |
|
|
|
246 |
|
00:17:59,850 |
|
of freedom of twenty four and column of this |
|
|
|
247 |
|
00:18:04,870 |
|
probability which is point zero two five |
|
|
|
248 |
|
00:18:10,190 |
|
ุงูู degrees of freedom ุจุนู
ูู across ู
ุน ู
ูู ู
ุน ุงูู |
|
|
|
249 |
|
00:18:16,050 |
|
probability which is point zero to five ุงุนู
ู |
|
|
|
250 |
|
00:18:19,210 |
|
across ุงููู ููู ุจุทูุน ุงูุฌูุงุจ ุจุทูุน ุงูุฌูุงุจ ูุงู ุงููู |
|
|
|
251 |
|
00:18:25,630 |
|
ูู two point zero two zero six four ุฅุฐุง |
|
|
|
252 |
|
00:18:32,010 |
|
ุงูุฌูุงุจ ุทูุน two point zero six four ุทุจุนุง |
|
|
|
253 |
|
00:18:37,110 |
|
ุนูุฏู ู
ูุฌุจ ุณุงูุจ Tูู
ูู ุงูู DF 24 ูุงูู probability |
|
|
|
254 |
|
00:18:43,830 |
|
ูุงูุช 0.025 ููู
ุชูุง ุทุจุนุง ููู
ุฉ ูุงุญุฏุฉ ุจุณ ูู
ููุณ ุงูููู
ุฉ |
|
|
|
255 |
|
00:18:48,630 |
|
ูุชููู ูุฅูู normal distribution ุจุณ ูุงุญุฏุฉ ุจุงูู |
|
|
|
256 |
|
00:18:51,870 |
|
negative ููุงุญุฏุฉ ุจุงูู positive ู
ูุฌุฉ ุจุงูุณุงูุจ 2.064 |
|
|
|
257 |
|
00:18:59,190 |
|
6 4 ุตุญุ ูุฃ ูุฃ ุฃูู 2 ุตุญูุญ ุจุณ ููู ุตุญ ูุนูู ุจุณ ุญุท ุงูู |
|
|
|
258 |
|
00:19:05,690 |
|
point ูุงุถุญ ูุฃู ุงูุฃููู two point zero six four ูุงูู |
|
|
|
259 |
|
00:19:12,120 |
|
ุชุงููุฉ ุฒููุง negative two point zero six four ูุฏูู |
|
|
|
260 |
|
00:19:19,200 |
|
ูู
ุนูุฏู ุทุจุนุง ูุงู ุงูู
ูุฌุฉ ุจุณุงูุจ ุงุชููู point zero six |
|
|
|
261 |
|
00:19:23,560 |
|
four ูู
ุฅูุด ุงูู critical values ูุฏูู ูู |
|
|
|
262 |
|
00:19:34,420 |
|
ูู ุฃู ุนุตุฑููุฃ ุนูุฏ .. ุจูุฑุฌุน ููู ุฌูุจูุง .. ุงููู ูู ุงูู |
|
|
|
263 |
|
00:19:38,040 |
|
T statistic ุงููู ุฅุญูุง ุฌูุจูุงูุง ูู one point four |
|
|
|
264 |
|
00:19:40,860 |
|
six ุจูุดูู ุฅุฐุง ูู ู
ูุฌูุฏุฉ ุจู rejection region ููุง ุจุงูู |
|
|
|
265 |
|
00:19:44,100 |
|
non rejection region ุญุณุจ ู
ููุ ุญุณุจ ุงูู critical |
|
|
|
266 |
|
00:19:46,440 |
|
values ููู ู
ูุฌูุฏุฉุ ุงููู ูู one point four six ููู |
|
|
|
267 |
|
00:19:50,160 |
|
ูุชููู ู
ูุฌูุฏุฉุ ูู rejection .. ูู rejection region |
|
|
|
268 |
|
00:19:52,260 |
|
ููุง non rejection regionุ non .. non rejection |
|
|
|
269 |
|
00:19:54,860 |
|
region ูุฃููุง ูุชููู ูุฐู ุชูุฑูุจุง one point four six |
|
|
|
270 |
|
00:20:00,060 |
|
ูุชููู ูู ุงูู non rejection region ูุจู
ุง ุฅูู ูู ูู ุงูู |
|
|
|
271 |
|
00:20:04,180 |
|
non rejection region so we will ash don't reject |
|
|
|
272 |
|
00:20:08,140 |
|
ุงููู ูู ash ุงูู null hypothesis ุจูุญูู |
|
|
|
273 |
|
00:20:12,880 |
|
ูุฐู ุนูุฏ ุงููู ุจูุฃุชู stat |
|
|
|
274 |
|
00:20:19,750 |
|
one less than ุงููู ูู two point between them is |
|
|
|
275 |
|
00:20:25,610 |
|
six part so four point major |
|
|
|
276 |
|
00:20:35,870 |
|
point |
|
|
|
277 |
|
00:20:39,670 |
|
ูุจู
ุง ุฅูู ุงูู .. ุฃู
ุง ูู
ุง ููุฌู ูุนู
ู proof ููู .. ุงูู |
|
|
|
278 |
|
00:20:43,890 |
|
alternative hypothesis ููุญูู ุฅูู there is .. ุงููู |
|
|
|
279 |
|
00:20:46,590 |
|
ูู insufficient evidence that the true .. the true |
|
|
|
280 |
|
00:20:50,450 |
|
mean is different .. different from the given mean |
|
|
|
281 |
|
00:20:54,510 |
|
ุงููู ูู 168 ู
ู
ุชุงุฒุฉ ุทูุน ุฒู
ููุชู ุงููู ุนู
ูุชู ุงูุดุบูุชูู |
|
|
|
282 |
|
00:21:00,050 |
|
ูุฑุง ุจุนุถ ุฑูู
ูุงุญุฏ ุญุณุจุช ุงูู T statistic one point four |
|
|
|
283 |
|
00:21:05,120 |
|
six ุญุณุจุช ุงูู critical values ู
ู ุงูู T table ูุงูู T |
|
|
|
284 |
|
00:21:12,360 |
|
table ุงุณุชุฎุฏุงู
ู ุณูู ููุฑุฏูู ูุง ุจู ุดููุฉ ู
ุด ููู ุงููู |
|
|
|
285 |
|
00:21:16,780 |
|
ูู ุฅูู ุงูู T table ูู ุงูู T table ุฒู ู
ุง ุญููุช ู
ุฑุฉ |
|
|
|
286 |
|
00:21:21,120 |
|
ุชุงููุฉ ุจุฑุทูุน degrees of freedom at one four ูุจุฏูุฑ |
|
|
|
287 |
|
00:21:25,160 |
|
ุนูู ุงูู probability of one zero two five ุทูุนุช ุงูู |
|
|
|
288 |
|
00:21:28,800 |
|
critical value two point zero six four ุฅุฐุง ุงูุชุธุฑ |
|
|
|
289 |
|
00:21:33,170 |
|
ุฅูู ุงูู 2.064 ุงููููุชุด ูุชููู negative 2.064 We |
|
|
|
290 |
|
00:21:38,670 |
|
reject if this statistic fall either to the upper |
|
|
|
291 |
|
00:21:45,250 |
|
side I mean greater than 2.064 ุฃู ุฃูู ู
ู ุงูู |
|
|
|
292 |
|
00:21:49,310 |
|
negative 2.064 Now is this value fall in the |
|
|
|
293 |
|
00:21:54,030 |
|
rejection region ุงูู 1.46 ุฃูู ู
ู 2.064 ูุฃูู ูุชุฌุงูุฒ |
|
|
|
294 |
|
00:22:00,050 |
|
ุจูู ูุฐู ุงูุงุซููู ุงูููู
. ูุฐุง ูุนูู ุฃููุง ูุง ูุชุฌุงูุฒ |
|
|
|
295 |
|
00:22:03,730 |
|
ุงูู hypothesis. ุฅุฐุง ูุฑุงุฑูุง ุฅูุดุ ูุง ุชุชุฌุงูุฒุ ููู ุตุญูุญ. |
|
|
|
296 |
|
00:22:09,730 |
|
ูุง ูููู ูุญุงููุ ุนุงูุฒ ูุดุชุบู ู
ู ุงููุฌุงุฑูุฉ ุฅูู ุงููุชูุฌุฉ. |
|
|
|
297 |
|
00:22:13,650 |
|
ุงููุชูุฌุฉุ ููู
ุชูู ุจุญูููู
ุฏุงุฆู
ุงุ ู
ูุฑุฑุงุช. ุทุงูู
ุง ุญููุช |
|
|
|
298 |
|
00:22:17,370 |
|
ูุง ุชุชุฌุงูุฒุ ู
ุน ูุฏูุ ูุง ููุฌุฏ ุฏููู ูุงูู ูุฅุธูุงุฑ ุฃู ุงูู |
|
|
|
299 |
|
00:22:21,330 |
|
true mean Cost is different from 168 ูุนูู ุงูุฅุฏุนุงุก |
|
|
|
300 |
|
00:22:26,270 |
|
ุงููู ุจูุญูู ุฅูู ูุฎุชูู ุนู 168 ู
ุง ูุฏุนุจุ ู
ุง ููุด ุฏููู |
|
|
|
301 |
|
00:22:32,090 |
|
ูุงูู ูุฏุนุจ ูู ุฃู ุณุคุงูุ |
|
|
|
302 |
|
00:22:39,010 |
|
ูู ุงูู T-testุ ุงูู T-test depends on a new term |
|
|
|
303 |
|
00:22:42,150 |
|
called degrees of freedom ุฏุฑุฌุงุช ุงูุญุฑูุฉุ ุฃูุช ู
ุด |
|
|
|
304 |
|
00:22:45,890 |
|
ู
ุทููุจ ู
ูู ูู ุงูู course of basic statistics ุชุนุฑู ุฅูู |
|
|
|
305 |
|
00:22:50,190 |
|
ุฃูุซุฑ ู
ู degrees of freedom equals n-1 |
|
|
|
306 |
|
00:22:57,220 |
|
ูุฃูุง ุจุฅู
ูุงูู ุงุณุชุฎุฏุงู
ูุง ููุท ููุชุงุจุฉ ุงูููู
|
|
|
|
307 |
|
00:23:00,320 |
|
ุงูู critical ุฅุฐุง ุนุดุงู ุชุนู
ู location ููููู
|
|
|
|
308 |
|
00:23:03,100 |
|
ุงูู critical ุจูุฒู
ูู ุดุบูุชูู ููุฑุฑุช ุจูู ุชุงูุช ู
ุฑุฉ |
|
|
|
309 |
|
00:23:07,240 |
|
ุจูุฒู
ูู ู
ูู ุงูู degrees of freedom ุงููู ูู 24 ุงููู |
|
|
|
310 |
|
00:23:11,880 |
|
ูู n-1 ูุงูู probability ุงููู ุฃูุง ุนุงูุฒูุง in this |
|
|
|
311 |
|
00:23:15,780 |
|
case Alpha is 5% ุฅุฐุง ุงูู probability ูุชููู ุจูู ุฌุณู
ูุง |
|
|
|
312 |
|
00:23:20,060 |
|
ุนูู ุงุชููู zero to five ุนูู ุงููู
ูู ู zero to five |
|
|
|
313 |
|
00:23:22,440 |
|
ุนูู ุงูุดู
ุงู ุงู ุงูู alpha ุจุชูู ูุนูู ูู ู
ุง ูุถูุด ุงูู |
|
|
|
314 |
|
00:23:26,360 |
|
alpha we assume alpha to be five percent any |
|
|
|
315 |
|
00:23:30,160 |
|
question ุฃู ุณุคุงู ู
ู
ูู ุงูุฏูุชูุฑ ุจุฑุถู ูู non |
|
|
|
316 |
|
00:23:36,280 |
|
rejection ูุฃู ููุง 95 ูู ุชุญุช ุงููู ูู ุงูู minus ุชุดูู |
|
|
|
317 |
|
00:23:41,720 |
|
ุงูู table ู
ู ุชุญุช ุฎุงูุต ูุนุทููุง ุงููู ูู Z star ุงูู Z |
|
|
|
318 |
|
00:23:48,430 |
|
star ูุฏูู ุงูู Z ุงููู ุฎุฏูุงูุง ูู ุงูุฃูู ุทุจุนุง ุงูู T ูุงูู |
|
|
|
319 |
|
00:23:52,210 |
|
Z close to each other for large sample size ูุนูู |
|
|
|
320 |
|
00:23:56,730 |
|
when the sample size gets bigger and bigger T |
|
|
|
321 |
|
00:24:00,630 |
|
becomes very small to Z ูุนูู ูู
ุง N ุจุชูุจุฑ ูุชูุฑ |
|
|
|
322 |
|
00:24:04,350 |
|
ุจุชุตูุฑ ููู
ุฉ ุงูู T ูููู
ุฉ ุงูู Z ู
ุงููู
ุญูุงูู ุจุนุถ ุชูุงุญุธ |
|
|
|
323 |
|
00:24:09,590 |
|
ููุง ูู
ุง ุงูู degree of freedom 1000 ุทูุน ุนูู ููู
ุฉ T |
|
|
|
324 |
|
00:24:14,240 |
|
ุงูุณุทุฑ ุงููู ุฌุงุจูู ุงูุฃุฎูุฑ ูุงูุณุทุฑ ุงูุฃุฎูุฑ ุงููุฑู ุจูููู
|
|
|
|
325 |
|
00:24:17,920 |
|
ู
ุงูู ุจุณูุท ุงูุฃูู ููู
ุฉ 0.675 ูุชุญุช ูุฏูุ 0.674 ูุฐุง |
|
|
|
326 |
|
00:24:25,720 |
|
ูุชุญุช Z ููู ุญุงูุฉ ุชุจุนุชูุง ุฅุฐุง ุชุฐูุฑ ูู
ุง ูุงูุช ุงูู Z star |
|
|
|
327 |
|
00:24:31,580 |
|
1.96 ููุง job 1.962 ูุงูุตูุงุฉ ุงูุฃุฎูุฑุฉ ุจูุจูู ูู ูุฏ ุฅูุด |
|
|
|
328 |
|
00:24:37,560 |
|
ูุฑูุจ ุงูุชูุฒูุน ุงูุทุจูุนู ุงูู Z ู
ู ุชูุฒูุน ุงูู T ุฅุฐุง as N |
|
|
|
329 |
|
00:24:41,640 |
|
gets bigger and bigger ุจูููู ุงูู T ู
ุงูู ูุฑูุจ ู
ู ุงูู |
|
|
|
330 |
|
00:24:45,720 |
|
Z ูุนูู ูู
ุง N ูุจูุฑุฉ ุจูููู ููู
ุฉ ุงูู T ุชูุฑูุจุง ููุณ ููู
ุฉ |
|
|
|
331 |
|
00:24:51,160 |
|
ุงูู Z ุจุณ ูู ุฃู ุณุคุงูุ ุฃู ุณุคุงูุ |
|
|
|
332 |
|
00:25:01,060 |
|
ูู
ููุง ุฏูุ ุงูุจุนุฏ ูู to use the t-test must assume |
|
|
|
333 |
|
00:25:07,050 |
|
the population is normal ุฒู ู
ุง ุญูููุง ุฅูู ูู ูุงุฒู
|
|
|
|
334 |
|
00:25:10,310 |
|
ุฅูู ููุชุฑุถ ุฅูู ุงูู population is normal |
|
|
|
335 |
|
00:25:12,750 |
|
distribution, follows normal distribution ุจูุญูู ูู |
|
|
|
336 |
|
00:25:15,970 |
|
ุนูู ุฅุดู as long as the sample size is not very |
|
|
|
337 |
|
00:25:18,770 |
|
small and the population is not very skewed, the t |
|
|
|
338 |
|
00:25:22,750 |
|
-test can be used ุณุจู ูุญูููุง ุงุญูุง ูุจู ููู ุฅูู ูู ู
ุง |
|
|
|
339 |
|
00:25:26,960 |
|
ุงูู sample size ูุจุฑุช ูู ู
ุง ูุงู ุนูุฏู ุญุฌู
ุงูุนููุฉ ุฃูุจุฑ |
|
|
|
340 |
|
00:25:30,480 |
|
ูู ู
ุง ูุฑุจุช ุฅู ูู ุจูููู ุดูููุง ุจูุจุฏุฃ ูุชูุฒุน ุฃูุซุฑ |
|
|
|
341 |
|
00:25:33,620 |
|
ูุจุงูุชุงูู ุจุชูุฑุจ ุฅู ูู ุชุตูุฑ normal distribution |
|
|
|
342 |
|
00:25:35,800 |
|
ุฃูุซุฑ ูุจูุญูู ูู ุฅู ุงุญูุง ูู ู
ุง ุญุฌู
ุงูุนููุฉ ูุจุฑ ูุงูู |
|
|
|
343 |
|
00:25:41,060 |
|
population ููููู ุฃูุซุฑ ุฃูุฑุจ ูู ุงูู normal |
|
|
|
344 |
|
00:25:43,280 |
|
distribution ูุจููุฏุฑ ุฅู ูุณุชุฎุฏู
ุงูู T test ูุจุนุฏ ููู |
|
|
|
345 |
|
00:25:46,840 |
|
ุญูู ูู ุงููู ูู .. ุฃูุง ูุงุถุญูุง ุฏู ุฃูุซุฑ ุงูุดุฑุท ุงูุฃุณุงุณู |
|
|
|
346 |
|
00:25:51,690 |
|
ุนุดุงู ุงุณุชุฎุฏู
ุชูู ุฅู ูููู ุนูุฏู normal distribution is |
|
|
|
347 |
|
00:25:54,850 |
|
satisfied ุนุดุงู ุฃุถู
ู normal distribution ูุงุฒู
ุงูู |
|
|
|
348 |
|
00:25:58,410 |
|
sample size ูููู not very small ูุนูู ุฅูุด ุนูุณ not |
|
|
|
349 |
|
00:26:02,150 |
|
very smallุ large .. large .. ูุฐู ูุงุญุฏุ ุงูุญุงูุฉ |
|
|
|
350 |
|
00:26:05,630 |
|
ุงูุชุงููุฉ and the population is not very skewed |
|
|
|
351 |
|
00:26:07,990 |
|
ู
ุง ููููุด ู
ูุชูู ูู
ูู ุฃู ุดู
ุงู ุจุฏุฑุฌุฉ ูุจูุฑุฉ ูุนูู ู
ู
ูู |
|
|
|
352 |
|
00:26:11,990 |
|
ูููู ููู ุงูุชูุงุก ุดููุฉ ููู ู
ุง ููููุด ุงูุชูุงุก ุจุฏุฑุฌุฉ |
|
|
|
353 |
|
00:26:14,950 |
|
ูุจูุฑุฉุ ูุฐุง ูู ุญุงูุฉ sample size is large enough or |
|
|
|
354 |
|
00:26:19,930 |
|
population is not very skewed either to the right |
|
|
|
355 |
|
00:26:22,830 |
|
or to the left in this case we can assume the |
|
|
|
356 |
|
00:26:25,870 |
|
population is normal and go ahead using T test ุฅุฐุง |
|
|
|
357 |
|
00:26:29,830 |
|
ุจุณุชุฎุฏู
T ูู ูุฏูู ุงูุญุงูุชูู how can we evaluate |
|
|
|
358 |
|
00:26:33,330 |
|
normality as we did before in section 6.3 either |
|
|
|
359 |
|
00:26:38,950 |
|
by using histogram or normal probability plot we can |
|
|
|
360 |
|
00:26:43,710 |
|
evaluate if the data is normally distributed ุฎุฏูุง |
|
|
|
361 |
|
00:26:47,150 |
|
ุฌุจู ููู ุงูุขู ูู ููุทุฉ ุฃูุง ูุดุฑุญูุง ุงููู ูู .. ุงููู |
|
|
|
362 |
|
00:26:51,690 |
|
ูุดุฑุญูุง ูู ุฒู
ููุชู ุงูู critical value approach ุทุฑููุฉ |
|
|
|
363 |
|
00:26:55,330 |
|
ุงูู critical value ููู
ุฉ ุงูุญุฑุฌุฉ ูู ุทุฑููุฉ ุซุงููุฉ ุงุณู
ูุง |
|
|
|
364 |
|
00:26:58,810 |
|
ูุงุด ุงูู P value approach ููู
ุฉ ุงูู P value ุฒู ู
ุง |
|
|
|
365 |
|
00:27:03,050 |
|
ุงุณุชุฎุฏู
ูุงูุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุงูุขู ุจุฏู ุฃููุฏ ุฃูุช ูุญุงูู |
|
|
|
366 |
|
00:27:07,050 |
|
ู
ุนุงูู ุฏูููุชูู ุชุทูุนู ูู ููู
ุฉ ุงูู P value ู
ู ุงูู table |
|
|
|
367 |
|
00:27:11,930 |
|
ูุฐุง |
|
|
|
368 |
|
00:27:15,050 |
|
ุงูู slide ู
ุด ุนูุฏู .. ู
ุด ูู ุงููุชุงุจ ู
ูุฌูุฏุฉ ูุฐุง ุงูู |
|
|
|
369 |
|
00:27:18,670 |
|
slide ู
ุด ู
ูุฌูุฏุฉ ูู ุถู
ู ุงูู slides ุงููู ู
ุนุงู ูุฐุง ุงูู |
|
|
|
370 |
|
00:27:21,490 |
|
slide ุจุชุญูู ุนู ุงูู P value approach ุฃูุช ุญุณุจู ููู ูู |
|
|
|
371 |
|
00:27:24,810 |
|
ุจูุฏู ุงูุขู ุจุญูู ูููู ุทูุนู ูุฑูุฉ ุตุบูุฑุฉ ูุงุญุณุจู ููู
ุฉ ุงูู |
|
|
|
372 |
|
00:27:30,630 |
|
P value ููู test ุงููู ุทูุนุช ููู
ุชู one point four six |
|
|
|
373 |
|
00:27:34,650 |
|
ุญุงููู ูุชุทูุนู ุงูุฌูุงุจ ููู P value approach |
|
|
|
374 |
|
00:27:41,430 |
|
ุฃูู ู
ุง ูุฎุจุฑ ุงูุทุงูุจ ุจุฃู P-Value ูู one point ูููุงู |
|
|
|
375 |
|
00:27:44,570 |
|
ุดูุก ุบูุท ูุฃู P-Value ุจูู 0 ู1 ุทุจุนุง |
|
|
|
376 |
|
00:27:51,170 |
|
P-Value ูู probability ุจูู 0 ู1 ุทูุจุ |
|
|
|
377 |
|
00:27:57,670 |
|
ูู ูู
ูู ุฃุญุฏ ุฃู ูุฑููู ููู ุฃุฎุฑุฌ ุงูููุญุฉุ |
|
|
|
378 |
|
00:28:16,430 |
|
ุทูุจ ุฎูููู ุฃุญููุง ูุฃุดูู ุงูุฎุทุฃ ุนูุฏู ุจูู ุงูู
ูุถูุน |
|
|
|
379 |
|
00:28:20,030 |
|
ุฑูุฒู ู
ุนุงูุง ุงูู
ูู ู
ุงููุง ู
ุง ุชุณุงููุด 168 ูุนูู one-tailed |
|
|
|
380 |
|
00:28:30,610 |
|
ููุง two-tailedุ two-tailed ุฅุฐุง |
|
|
|
381 |
|
00:28:39,150 |
|
ุงูู P value |
|
|
|
382 |
|
00:28:42,580 |
|
ูุญู ูุจุญุซ ุนู ุงุนุชูุงุฏ T ุฅู
ุง ุฃู ูุณูุท ูู ูุฐุง ุงูุฌุงูุจ |
|
|
|
383 |
|
00:28:53,700 |
|
ุงูุตุญูุญุ ุงูุขู ููู
ุฉ ุชุงุนุชูุงุฏ T ูู 1.46ุ ูุฐูู ุฃูุจุฑ ู
ู |
|
|
|
384 |
|
00:29:02,420 |
|
1.46. ุงูุขู ุจู
ุง ุฃููุง ูุชุญุฏุซ ุนู ุชุฌุงุฑุจ 2D ุชููู ููุงู |
|
|
|
385 |
|
00:29:11,470 |
|
ุงุชูุงููู ู
ู ุงูู
ูุงุทู ูุงุญุฏ ุนูู ุงููู
ูู ู
ู 1.46 ูุงูุขุฎุฑ |
|
|
|
386 |
|
00:29:17,410 |
|
ุนูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ |
|
|
|
387 |
|
00:29:23,170 |
|
ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู |
|
|
|
388 |
|
00:29:27,570 |
|
ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1 |
|
|
|
389 |
|
00:29:33,050 |
|
.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู |
|
|
|
390 |
|
00:29:35,950 |
|
ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1 |
|
|
|
391 |
|
00:29:38,850 |
|
.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅุฐุง ูู ุงูู two-sided ุฃู ุงู |
|
|
|
431 |
|
00:33:06,000 |
|
ุฃูุซุฑ ู
ู Alpha ู
ู 5% ูุฐูู ูุง ูููุฒ |
|
|
|
432 |
|
00:33:36,530 |
|
ุจุฅู
ูุงูู ุงุณุชุฎุฏุงู
ุจุฑุงู
ุฌ ุญุงุณูุจูุฉ ุฌุงูุฒุฉ ุชุนุทูู ุงูู exact |
|
|
|
433 |
|
00:33:42,310 |
|
result |
|
|
|
434 |
|
00:33:46,800 |
|
around point one five seven point one five seven |
|
|
|
435 |
|
00:33:52,740 |
|
ูุฐู ุงูู exact answer ูุญู ู
ุด ูุชุทูุน ุงูู exact ููุงุฆูุงุ |
|
|
|
436 |
|
00:33:59,280 |
|
ูุชุทูุน ุงูู approximate value ุฎูุงุตุ ุฅุฐุง ูุงู ุงูู two |
|
|
|
437 |
|
00:34:02,980 |
|
approaches to reject or don't reject the null |
|
|
|
438 |
|
00:34:05,680 |
|
hypothesis ุทูุจ ุงููู ูุงู ุฌุงู ุจุงุฎุฏ ุงูู one tipุ |
|
|
|
439 |
|
00:34:10,080 |
|
ุฐุงูุฑูู ุฅูู ุจูุ ุฎูุงุตุ |
|
|
|
440 |
|
00:34:14,460 |
|
ู
ุด ู
ุดููุฉุ ุจูุฑุง ุจููู
ู ุฅู ุดุงุก ุงููู |
|
|