abdullah's picture
Add files using upload-large-folder tool
25b5648 verified
raw
history blame
34.9 kB
1
00:00:01,180 --> 00:00:03,500
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุฑุณูˆู„
2
00:00:03,500 --> 00:00:09,210
ุงู„ู„ู‡ุฃู‡ู„ุง ูˆ ุณู‡ู„ุง ุจูƒู… ููŠ ู…ุญุงุถุฑุฉ ุฌุฏูŠุฏุฉ ู…ู† ูˆุซุงุฆู‚ ุชู‚ูŠูŠู…
3
00:00:09,210 --> 00:00:12,350
ุงู„ุจูŠุงู†ุงุช ุงู„ูŠูˆู… ุงู† ุดุงุก ุงู„ู„ู‡ ู‡ุชุชูƒู„ู… ุนู„ู‰ ุงู„ second
4
00:00:12,350 --> 00:00:16,890
mining task ุงูˆ ุงู„ third mining task ุงู„ู„ูŠ ู‡ูŠ ุงู„
5
00:00:16,890 --> 00:00:20,750
clustering ุทุจุนุง ุงุญู†ุง ูƒู†ุง ุจุชูƒู„ู…ู†ุง ุณุงุจู‚ุง ุงู† ุงู„
6
00:00:20,750 --> 00:00:24,490
mining task ุชู†ู‚ุณู… ู…ู† ุงู„ predictive ุงูˆ ุงู„
7
00:00:24,490 --> 00:00:26,870
descriptive ูˆ ุงู„ predictive ุงุชูƒู„ู…ู†ุง ุนู† ุงู„
8
00:00:26,870 --> 00:00:28,990
classification ูˆ ุงู„ regression ูˆ ุงู„ recommendation
9
00:00:28,990 --> 00:00:31,470
ุงู„ูŠูˆู… ุทุจุนุง ุงู„ recommendation ู…ุง ุดุฑุญู†ุงู‡ุง ุนุดุงู†
10
00:00:31,470 --> 00:00:34,170
ุงุชูƒู„ู…ู†ุง ุนู† classification ูˆ regressionูˆุงู„ูŠูˆู… ุฅู†
11
00:00:34,170 --> 00:00:36,710
ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ู‡ู†ุชูƒู„ู… .. ู†ุจุฏุฃ ููŠ ุงู„ู€ descriptive
12
00:00:36,710 --> 00:00:41,370
task ู‡ู†ุชูƒู„ู… ุนู„ู‰ ุงู„ clustering ุทุจ ู„ู…ุง ุงุญู†ุง ุจู†ุชูƒู„ู…
13
00:00:41,370 --> 00:00:43,910
ุนู„ู‰ ุงู„ clustering ุจู†ุชูƒู„ู… ุนู„ู‰ unsupervised learning
14
00:00:43,910 --> 00:00:46,750
ูˆู‡ุฐุง ู†ูˆุน ู…ู† ุงู„ machine learning ุงู„ู„ูŠ ุจุชุนู„ู… ู…ู† ุงู„
15
00:00:46,750 --> 00:00:51,650
test data ูŠุนู†ูŠ ุงู†ุง ุจู‡ู…ู†ูŠ ุงู†ู‡ ุงู„ุจูŠุงู†ุงุช ุชุจุนุชูŠ ู…ุงูŠูƒูˆู†
16
00:00:51,650 --> 00:00:55,030
ู„ู‡ุงุด label ู‡ุฐุง ู…ูู‡ูˆู… ุงู„ test data ุงู† ุงู„ test data
17
00:00:55,030 --> 00:00:59,090
ุงู†ู‡ label ู…ุด ู…ูˆุฌูˆุฏ that has not been labeled
18
00:00:59,090 --> 00:01:04,580
ู…ุงู„ู‡ุงุด labelclassified or categorized ู…ุง ุชู…ุด
19
00:01:04,580 --> 00:01:09,020
ุชุตู†ูŠูู‡ุง ุฃูˆ ุชู‚ุณูŠู…ู‡ุง ู‚ุจู„ ู‡ูŠูƒ ุจุงู„ unsupervised
20
00:01:09,020 --> 00:01:14,400
learning ุนู„ู‰ ุฎู„ุงู ูƒู„ ุงู„ machine learning ู…ุงููŠุด
21
00:01:14,400 --> 00:01:19,420
ุนู†ุฏูŠ output ู…ุนุฑูˆู ู…ุณุจู‚ุง ูˆุจุงู„ุชุงู„ูŠ ู…ุงููŠุด ุนู†ุฏูŠ
22
00:01:19,420 --> 00:01:22,320
teacher ุฃูˆ instruction ู…ุงููŠุด ุนู†ุฏูŠ ุฃูŠ structure ู„ู„
23
00:01:22,320 --> 00:01:25,700
learning algorithm ูุญูŠู† ุงู†ู‡ ููŠ ุงู„ supervised
24
00:01:25,700 --> 00:01:28,020
learning ุณูˆุงุก ูƒุงู† ููŠ ุงู„ regression ุฃูˆ ูƒุงู† ููŠ ุงู„
25
00:01:28,020 --> 00:01:32,840
classification ูƒุงู† ุนู†ุฏูŠ ูˆุงุถุญุงู„ู€ label ู‡ูˆ ุงู„
26
00:01:32,840 --> 00:01:36,180
guidance ุชุจุนูŠ ุฃูˆ ู‡ูˆ ุงู„ู…ุนู„ู… ุชุจุนูŠ ุฅูŠู‡ ุงู„ุดุบู„ุงุช ุงู„ู„ูŠ
27
00:01:36,180 --> 00:01:39,260
ุฃู†ุง ุจุฏูŠู‡ุง ูˆุฅูŠู‡ ุงู„ role ุงู„ู„ูŠ ุฃู†ุง ูƒู†ุช ุจุญุงูˆู„ ุฃุญุตู„
28
00:01:39,260 --> 00:01:41,920
ุนู„ูŠู‡ุง ุงู„ unsupervised learning ุงู„ learning
29
00:01:41,920 --> 00:01:47,880
algorithm ูู‚ุท ุจุฃุนุฑุถ ุนู„ูŠู‡ ุงู„ุจูŠุงู†ุงุช ูˆ ุจุฃุทู„ุจ ูŠุนู…ู„
30
00:01:47,880 --> 00:01:50,840
extract ู„ู„ knowledge ุทุจุนุง extract ู„ู„ knowledge ู‡ุงู†
31
00:01:50,840 --> 00:01:54,500
ุฅู…ุง ุจุชู‚ุณูŠู…ู‡ู… ู„ู…ุฌู…ูˆุนุงุช ุฃูˆ ูŠู‚ูˆู„ ู„ูŠ ุฅูŠุด ุงู„ frequent
32
00:01:54,500 --> 00:01:57,720
pattern ููŠู‡ู… ุฒูŠ ู…ุง ููŠ ุงู„ association rules ุฅู„ู‰
33
00:01:57,720 --> 00:02:02,710
ุขุฎุฑูŠู†ุทุจุนุงู‹ ู„ู…ุง ุงุชูƒู„ู… ููŠ ุงู„ู€ unsupervised learning
34
00:02:02,710 --> 00:02:06,530
ุจุฏู„
35
00:02:06,530 --> 00:02:11,390
ู…ุง ุงู†ุง ุงุฎุฏ feedback ูˆ
36
00:02:11,390 --> 00:02:15,070
ุงู‚ุงุฑุจ ุงู„ู€ unsupervised learning ุจุนุฑู ุงู„
37
00:02:15,070 --> 00:02:19,510
communities ุฃูˆ ุงู„ุดุบู„ุงุช ุงู„ู…ุดุชุฑูƒุฉ ููŠ ุงู„ data ุงู„ุดุบู„ุงุช
38
00:02:19,510 --> 00:02:23,230
ุงู„ common ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุงู„ู„ูŠ ุจุชุชุดุงุฑูƒ ููŠู‡ุง ู…ุฌู…ุน ู…ุนุธู…
39
00:02:23,230 --> 00:02:28,960
ุงู„ instances ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠูˆุจุชู‚ุฑุฑ .. ูˆุจุช .. ุงู„ู„ูŠ
40
00:02:28,960 --> 00:02:32,640
ุจุนุฑู .. ุจุนุฏ ู…ุง ุจุชู‚ุฑุฑ ุนู„ู‰ ุงู„ุดุบู„ุงุช ุงู„ common ู‡ุงูŠ ุฃูˆ
41
00:02:32,640 --> 00:02:36,760
ุงู„ุดุบู„ุงุช ุงู„ู…ุดุชุฑูƒุฉ ู‡ุงูŠ ุจู†ุงุก ุนู„ูŠู‡ุง ุจุชุชุตุฑู ุงู…ุง ุจุชู‚ุฑุฑ
42
00:02:36,760 --> 00:02:41,420
.. ูŠุนู†ูŠ ุจุชุชุตุฑู ูˆุจุตูŠุฑ ุงู„ algorithm ุจู†ุงุก ุนู„ู‰ ูˆุฌูˆุฏ ุฃูˆ
43
00:02:41,420 --> 00:02:45,940
ุนุฏู… ูˆุฌูˆุฏ ุงู„ properties ุฃูˆ ุงู„ common properties
44
00:02:45,940 --> 00:02:49,440
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ ูŠุนู†ูŠ ูŠุนู†ูŠ ุชุฎูŠู„ ุงู†ุง ู„ูˆ ุงู†ุง ููŠ ุนู†ุฏู‰
45
00:02:49,440 --> 00:02:53,910
ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุตูˆุฑ ูˆู‚ูˆู„ู†ุง ุจุฏู†ุง ู†ุตู†ูู‡ู…ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุตูˆุฑ
46
00:02:53,910 --> 00:02:56,290
ูˆุงู†ุง ุจุฏูŠ ุฃุตู†ูู‡ู… ู…ุนู†ุงุชู‡ ุญุชู‰ ุงู„ู„ูŠ ุนุฑู ุงู„ู…ุญุชูˆู‰ ุงู„ุตูˆุฑ
47
00:02:56,290 --> 00:03:01,830
ูˆุงุตูŠุฑูƒ ูˆุงู„ู„ู‡ ุงู† ุงู„ุชุตู†ูŠู ู‡ุฐุง ุจูŠุชุจุน ูƒุฏู‡ ุงูˆ ูŠุชุจุน ูƒุฏู‡
48
00:03:01,830 --> 00:03:05,230
ุงู„ู€ unsupervised learning ุฒูŠ ู…ุง ู‚ู„ู†ุงู‡ ุนุจุงุฑุฉ ุนู†
49
00:03:05,230 --> 00:03:09,330
descriptive model ููŠ ุงูƒุชุฑ ู…ู† ู†ูˆุน ููŠ ุงู„
50
00:03:09,330 --> 00:03:11,590
unsupervised learning ุฒูŠ ู…ุง ุจู†ุนุฑู ุณุงุจู‚ุง ู„
51
00:03:11,590 --> 00:03:14,630
clustering ุทุจุนุง ุดูู†ุงู‡ุง ููŠ ุงู„ู…ู‚ุฏู…ุฉ ุชุงุจุนุฉ ุงู„ู…ุณุงู‚ ู„
52
00:03:14,630 --> 00:03:18,930
clustering ู…ุนู†ุงุชู‡ ุงู†ุง ุจุฏูŠ ุงุฌุณู… ุงู„ data instances
53
00:03:18,930 --> 00:03:27,350
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู„ู…ุฌู…ูˆุนุฉ ู…ู†ุงู„ู€ groups ุทุจุนุงู‹ ู…ุฌู…ูˆุน
54
00:03:27,350 --> 00:03:32,050
ุงู„ู€ groups ู‡ุฐู‡ ุนุฏุฏู‡ุง ู…ุนุฑูˆู ู…ุณุจู‚ุงู‹ ุทุจ ู…ู† ู‡ู†ุง ุนู„ุดุงู†
55
00:03:32,050 --> 00:03:35,870
ู†ุชู… ุชุฌู…ูŠุนู‡ู… ุจุฏู†ุง ู†ุฏุฑุณ ุตูุงุช ุงู„ properties ู‡ุงูŠ
56
00:03:35,870 --> 00:03:38,970
ูˆุชุฌู…ูŠุนู‡ู… ู…ุน ุจุนุถู‡ู… ุงู„ anomaly detection ุฃูˆ ุงู„
57
00:03:38,970 --> 00:03:42,030
outlier detection ุฃุฑูˆุญ ุฃุฏูˆุฑ ุนู„ู‰ ุงู„ unusual ุฃูˆ
58
00:03:42,030 --> 00:03:48,270
ุงู„ุดุบู„ุงุช ุงู„ู†ุงุฏุฑุฉ ููŠ ุงู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ูˆ
59
00:03:48,270 --> 00:03:53,390
ุฃุธู‡ุฑู‡ุงุงู„ู€ association rules ู„ู…ุง ุงู†ุง ุจุชูƒู„ู… ุนู„ู‰ ุงู„
60
00:03:53,390 --> 00:03:58,570
patterns ูˆ ุจุฏูˆุฑ ุนู„ู‰ ุงู„ frequent pattern ุงู„ู„ูŠ ู…ู…ูƒู†
61
00:03:58,570 --> 00:04:02,410
ุชูƒูˆู† ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ูˆ ุงุฑุชุจุงุท ุงู„ุนู†ุงุตุฑ ูˆ ุงุดูˆู ุงุฑุชุจุงุท
62
00:04:02,410 --> 00:04:06,660
ุงู„ู‚ูˆุงู†ูŠู† ุงูˆ ุงุฑุชุจุงุท ุงู„ data ู…ุน ุจุนุถู‡ุงุนุดุงู† ุฃู‚ุฏุฑ ุฃุจู†ูŠ
63
00:04:06,660 --> 00:04:10,060
decision ูˆููŠ ุนู†ุฏูŠ transformation ุงู„ู„ูŠ ู‡ูŠ ูุนู„ูŠุง ุฃู†ุง
64
00:04:10,060 --> 00:04:13,760
ุฃู‚ุฏุฑ ุฃุญูˆู„ ุงู„ data ู„ data set ู…ุฎุชู„ูุฉ ุนุดุงู† ุฃู‚ุฏุฑ
65
00:04:13,760 --> 00:04:18,480
ุฃุฑุณู…ู‡ุง ุฃูˆ ุฃู‚ุฏุฑ ุฃุชุนุงู…ู„ ู…ุนุงู‡ุง ุจุดูƒู„ ุฃุจุณุท ุงุญู†ุง ุทุจุนุง
66
00:04:18,480 --> 00:04:22,980
ู‡ู†ุชูƒู„ู… ุนู„ู‰ ุงู„ course ู‡ุฐุง ุงู„ clustering ูˆ ุงู„
67
00:04:22,980 --> 00:04:27,600
association rules ุทุจุนุง ู„ู…ุง ู†ุชูƒู„ู… ูุนู„ุง ุงู„
68
00:04:27,600 --> 00:04:31,380
clustering ู…ุนู†ุงุชู‡ ุงู„ clustering algorithm ุจุฏู‡ ูŠุฑูˆุญ
69
00:04:31,380 --> 00:04:36,680
ูŠุฌุณู… ุงู„ data set ุงู„ู„ูŠ ุนู†ุฏูŠ ู„ distinct groupsุงู„ุฌุฑูˆุจ
70
00:04:36,680 --> 00:04:42,780
ู‡ุฐูŠ ู…ุนุฑูˆูุฉ ู…ุณุจู‚ุง ุชุฎูŠู„
71
00:04:42,780 --> 00:04:48,320
ุงู† ุงู„ raw data ุชุจุนุชูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุณู„ุฉ ุงู„ููˆุงูƒู‡ ุฑู…ุถุงู†
72
00:04:48,320 --> 00:04:51,600
ูƒุฑูŠู… ุงู† ุดุงุก ุงู„ู„ู‡ ูƒู„ ุนุงู… ุทูŠุจูŠู† ุงู† ุดุงุก ุงู„ู„ู‡ ุณู„ุฉ
73
00:04:51,600 --> 00:04:54,580
ุงู„ููˆุงูƒู‡ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ input data ุงู„ raw data
74
00:04:54,580 --> 00:05:00,580
ุชุจุนุชูŠ ูˆุงู†ุง ู‚ู„ุช ุจุฏูŠ ุงุฌุณู…ู‡ุง ู„ุชู„ุช ู…ุฌู…ูˆุนุงุชุทุจูŠุนูŠ ุงู„
75
00:05:00,580 --> 00:05:05,060
algorithm ู‡ูŠุฏุฑุณ ุฎุตุงุฆุต ุงู„ุนู†ุงุตุฑ ูƒู„ูŠุงุชู‡ุง ูŠุนุฑู ุงู„ุนู†ุงุตุฑ
76
00:05:05,060 --> 00:05:08,260
ุงู„ู…ุดุชุฑูƒุฉ ูˆูŠุญุฏุฏ ุงู„ุนู†ุงุตุฑ ุงู„ู…ุดุชุฑูƒุฉ ูˆุจุงู„ุชุงู„ูŠ ู‡ูŠู‚ูˆู„ ู„ูŠ
77
00:05:08,260 --> 00:05:12,700
ููŠ ุนู†ุฏูƒ ู…ุฌู…ูˆุนุฉ ุงู„ุชูุงุญ ูˆู…ุฌู…ูˆุนุฉ ุงู„ู…ูˆุฒ ูˆู…ุฌู…ูˆุนุฉ
78
00:05:12,700 --> 00:05:17,360
ุงู„ู…ุงู†ุฌูˆ ู‡ุฐุง ู„ู…ุง ู‚ู„ุช ู„ู‡ ุฌุณู… ู„ูŠู‡ุง ู„ุชู„ุช ู…ุฌู…ูˆุนุงุช
79
00:05:17,360 --> 00:05:19,940
ู…ุชุฐูƒุฑูŠู† ุงู„ definition ุงู„ุณุงุจู‚ุŸ ุงู†ุง ู‚ู„ุช ู„ู‡ุง
80
00:05:19,940 --> 00:05:25,040
predefine ุงูˆ predetermine number of groups ู„ุงุฒู…
81
00:05:25,040 --> 00:05:30,110
ุงุญุฏุฏู‡ ู…ุณุจู‚ุงุชู…ุงู… ุทูŠุจ ู„ูˆ ุงู†ุง ุฑูˆุญ ู‚ูˆู„ุชู„ู‡ ู„ ู…ุฌู…ูˆุนุชูŠู†
82
00:05:30,110 --> 00:05:35,970
ุฑูˆุญุช ู‚ูˆู„ุชู„ู‡ ุฌุณู…ู„ูŠ ุงูŠุงู‡ู… ู„ู…ุฌู…ูˆุนุชูŠู† ู…ุด ุชู„ุงุช ู…ุฌู…ูˆุนุงุช
83
00:05:35,970 --> 00:05:42,070
ุฏุฑุงุณุฉ ุงู„ุนู†ุงุตุฑ ู‡ุงูŠ ูˆ ู‡ูŠุฑูˆุญ ูˆ ูƒุฃู†ู‡ ู‡ูŠู‚ูˆู„ู„ูŠ ุงู†ู‡ ู‡ุฐู‡
84
00:05:42,070 --> 00:05:45,990
ุงู†ุง ุจุชูˆู‚ุน ุงู† ูŠูƒูˆู† ู‡ุฐู‡ ุงู„ุชูุงุญ ูˆ ุงู„ู…ุงู†ุฌูˆ ููŠ ู…ุฌู…ูˆุนุฉ ูˆ
85
00:05:45,990 --> 00:05:49,690
ุงู„ู…ูˆุฒ ููŠ ู…ุฌู…ูˆุนุฉ ุชุงู†ูŠุฉ ู„ุฃู† ุงู„ุดูƒู„ ูˆ ุงู„ู„ูˆู† ู…ุฎุชู„ู ุจุนุงุฏ
86
00:05:49,690 --> 00:05:54,430
ูƒุชูŠุฑ ุนู†ุจุนุถู‡ู… ูˆุจุงู„ุชุงู„ูŠ ุนุฏุฏ ุงู„ู…ุฌู…ูˆุนุงุช ู‡ูˆ ุงู„ู„ูŠ ูŠู„ุนุจ
87
00:05:54,430 --> 00:05:57,370
ุฏูˆุฑ ุทุจุนุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ูƒู„ ู…ุง ูƒุงู† ุนู†ุฏู‰ ุนุฏุฏ
88
00:05:57,370 --> 00:06:00,950
ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ู„ูŠ ุงู†ุง ุจุชุฏูŠู‡ุง ุชุจุนุชูŠ ู‡ูˆ ุงู„ุตุญ ู…ุนู†ุงุชู‡ ุงู†ุง
89
00:06:00,950 --> 00:06:04,370
ุจุฃุดุชุบู„ ุนู„ูŠู‡ุง ุจุดูƒู„ ูƒูˆูŠุณ ุฃูˆ ุจูƒูˆู† ุนู†ุฏู‰ ุงู„ู†ุชูŠุฌุฉ ุชุจุนุชูŠ
90
00:06:04,370 --> 00:06:09,310
ุตุญ ู„ู…ุง ุจุชูƒู„ู… ููŠ ุงู„ clustering ู…ุนู†ุงุชู‡ ุงู†ุง ุจุชูƒู„ู… ุงู†
91
00:06:09,310 --> 00:06:13,250
ุงู„ method ุชุจุนุชูŠ ู‡ูŠ ุงู„ .. ุงู„ .. ุงูˆ ุงู„ clustering ู‡ูŠ
92
00:06:13,250 --> 00:06:17,470
ุนุจุงุฑุฉ ุนู† method ุจุชุฌุณู… ุงู„ุจูŠุงู†ุงุช ุงู„ู„ูŠ ุจุชุดุงุฑูƒ
93
00:06:19,620 --> 00:06:26,360
ุงู„ุตูุงุช ุงู„ู…ุดุชุฑูƒุฉ ุฃูˆ ุงู„ู€ similar trend and better
94
00:06:26,360 --> 00:06:32,520
ูŠุนู†ูŠ ุงู† ุงู„ instances ู‡ุชุชูˆุฒุน ุจู†ุงุก ุนู„ู‰ ู…ุญุชูˆู‰ ุนู„ู‰
95
00:06:32,520 --> 00:06:36,820
ุงุญุชูˆุงุฆู‡ุง ุนู„ู‰ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุดุบู„ุงุช ุงู„ู…ุดุชุฑูƒุฉ ูŠุนู†ูŠ ู‡ูŠูƒูˆู†
96
00:06:36,820 --> 00:06:40,140
ููŠ ุนู†ุฏูŠ ุชุดุงุจู‡ ูƒุจูŠุฑ ุฌุฏุง ู…ุง ุจูŠู† ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ููŠ
97
00:06:40,140 --> 00:06:45,200
ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ูˆุงุญุฏุฉ ุงู„ู‡ุฏู ุงู„ุฃุณุงุณูŠ ูุนู„ูŠุง ู…ู† ุงู„
98
00:06:45,200 --> 00:06:48,660
clustering ู…ุนู†ุงุชู‡ ู‡ูˆ ุนุจุงุฑุฉ ุนู† split up ุชู‚ุณูŠู… ุงู„
99
00:06:48,660 --> 00:06:56,200
dataุจุทุฑูŠู‚ุฉ ุทุจุนุง ุชู‚ุณู…ู‡ุง ู„ groups ุจุทุฑูŠู‚ุฉ ุงู† ุงู„ู†ู‚ุงุท
100
00:06:56,200 --> 00:06:59,220
ุงู„ู„ูŠ ููŠ ุงู„ cluster ุงู„ูˆุงุญุฏ ุงูˆ ููŠ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ูˆุงุญุฏุฉ
101
00:06:59,220 --> 00:07:03,820
are very similar ู…ุชุดุงุจู‡ุฉ ุฌุฏุง ุนุดุงู† ู‡ูŠูƒ ูƒุงู†ุช ููŠ
102
00:07:03,820 --> 00:07:08,920
ุงู„ุฑุณู… ุงู„ุณุงุจู‚ ู‡ุงู† ู„ู…ุง ุงุชูƒู„ู…ู†ุง ูƒุงู† ุงู„ุชูุงุญ ู„ุญุงู„
103
00:07:08,920 --> 00:07:12,400
ุงู„ู…ุงู†ุฌูˆ ู„ุญุงู„ ูˆ ุงู„ู…ูˆุฒ ู„ุญุงู„ ูˆ ู„ู…ุง ู‚ู„ุชู„ูƒ ุงู†ุง ุจุชู‚ุณู…ู‡ู…
104
00:07:12,400 --> 00:07:16,460
ู„ู…ุฌู…ูˆุนุชูŠู† ู…ุด ู„ุชู„ุงุช ู…ุฌู…ูˆุนุงุชู…ุนู†ุงู‡ ุชู‚ูˆู„ ู†ุญู† ู‡ู†ุง
105
00:07:16,460 --> 00:07:21,980
ู†ุถูŠูู‡ู… ุนู„ู‰ ู…ุน ุจุนุถู‡ู… ู„ูƒู† ุงู„ุงู† ุงูŠุด ุงู„ุดุบู„ุงุช ุงู„ู…ุดุชุฑูƒุฉ
106
00:07:21,980 --> 00:07:25,280
ุงู„ู„ูŠ ุงู†ุช ุงุนุชู…ุฏุช ุนู„ูŠู‡ุง ุงู„ุญุฌู… ู…ุซู„ุง ูˆ ุงู„ู„ูˆู† ู„ูƒู† ู„ูˆ
107
00:07:25,280 --> 00:07:27,640
ูˆุงุญุฏ ุงูŠุฌูŠ ุฌุงู„ูŠ ูˆุงู„ู„ู‡ ุงู†ุง ุจุชู‚ุณู…ู‡ู… ู‡ุงู„ู†ุง ู…ุฌู…ูˆุนุชูŠู†
108
00:07:27,640 --> 00:07:32,400
ุจู†ุงุก ุนู„ู‰ ุทุจูŠุนุฉ ุงู„ูุงูƒู‡ุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ุงูŠ ูˆุจุงู„ุชุงู„ูŠ
109
00:07:32,400 --> 00:07:35,660
ุงุญู†ุง ู†ุชูƒู„ู… ููŠ ุนู†ุฏูŠ ููˆุงูƒู‡ ุงุณุชูˆุงุฆูŠุฉ ุงู„ mango ูˆ ุงู„ู…ูˆุฒ
110
00:07:35,660 --> 00:07:42,040
ูุงูƒู‡ุฉ ุงุณุชูˆุงุฆูŠุฉ ูˆู„ุง ู„ุฃ ูˆุจุงู„ุชุงู„ูŠ ู…ู…ูƒู† ูŠูƒูˆู† ุชุตู†ูŠู ููŠ
111
00:07:42,040 --> 00:07:46,540
ุงู„ุขุฎุฑู…ุงููŠุด ุนู†ุฏูŠ ู‚ุฑุงุฑ ุตุญูŠุญ ู…ุงุฆุฉ ููŠ ุงู„ู…ุงุฆุฉ ุฃู†
112
00:07:46,540 --> 00:07:50,520
ุงู„ุชู‚ุณูŠู…ุฉ ุชุจุนุชูŠ ู‡ุฐู‡ ุตุญ ุฃูˆ .. ู„ูƒู† ุจู‚ุฏุฑ ุฃู‚ูˆู„ ูˆุงู„ู„ู‡
113
00:07:50,520 --> 00:07:53,820
ุงู„ุชู‚ุณูŠู…ุฉ ู‡ุฐู‡ ุฃุตุญ ู…ู† ู‡ุฐู‡ ุงู„ุชู‚ุณูŠู…ุฉ ุจู†ุงุก ุนู„ู‰ ู…ุนุฑูุชูŠ
114
00:07:53,820 --> 00:07:56,640
ุจุงู„ุจูŠุงู†ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ุทุจุนุง ุงู„ similarity
115
00:07:56,640 --> 00:08:01,640
ุทุจุนุง ุงู„ุชุดุงุจู‡ ู…ุง ุจูŠู† ุงู„ algorithm for the
116
00:08:01,640 --> 00:08:03,600
unsupervised learning ูˆ ุงู„ classification
117
00:08:03,600 --> 00:08:08,820
algorithm ุฃู†ู‡ ุงู„ cluster algorithm ุจูŠุฎุตุต ุฃูˆ ุจุชู†ุจุฃ
118
00:08:08,820 --> 00:08:11,780
ุฑู‚ู… ุงู„ู…ุฌู…ูˆุนุฉ
119
00:08:14,590 --> 00:08:16,970
ู„ู„ู€ point ูŠุนู†ูŠ ุงู†ุง ุฑูˆุญ ู‚ู„ุชู„ู‡ ูˆุงู„ู„ู‡ ุงู†ุง ุจุฏูŠ ุชู„ุช
120
00:08:16,970 --> 00:08:19,850
ู…ุฌู…ูˆุนุงุช ุจุฑูˆุญ ุจู‚ูˆู„ูŠ ู‡ุฐู‡ ุงู„ point ููŠ ุงู„ู…ุฌู…ูˆุนุฉ ุฑู‚ู…
121
00:08:19,850 --> 00:08:22,830
ูˆุงุญุฏ ู‡ุฐู‡ ุงู„ point ููŠ ุงู„ู…ุฌู…ูˆุนุฉ ุฑู‚ู… ุงุชู†ูŠู† ู‡ุฐู‡ ุงู„
122
00:08:22,830 --> 00:08:25,090
point ููŠ ุงู„ู…ุฌู…ูˆุนุฉ ุฑู‚ู… ุชู„ุงุชุฉ ู‡ุฐู‡ ุงู„ point ููŠ
123
00:08:25,090 --> 00:08:29,550
ุงู„ู…ุฌู…ูˆุนุฉ ุฑู‚ู… ุชู„ุงุชุฉ ูˆุจุงู„ุชุงู„ูŠ ู‡ูˆ ุจูŠุนู…ู„ predict ู„ุฑู‚ู…
124
00:08:29,550 --> 00:08:32,370
ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ู„ูŠ ุงู†ุง ู‚ู„ุจุชู‡ ู…ู† ุงู„ุจุฏุงูŠุฉ ุนุดุงู† ุงู†ุง ู‚ู„ุชู„ู‡
125
00:08:32,370 --> 00:08:37,550
ุจุฏูŠ ุชู„ุช ู…ุฌู…ูˆุนุงุช ูู‡ูˆ ู‡ุฌุณู… ู„ูŠู‡ู… ุชู„ุช ู…ุฌู…ูˆุนุงุช ุทุจุนุง ูˆ
126
00:08:37,550 --> 00:08:39,950
ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ูู‡ูˆู… ุงู„ุชุดุงุจู‡ ุงู„ู„ูŠ ุงู†ุง ุจุชูƒู„ู… ุนู„ูŠู‡ ุงู†ู‡ู…
127
00:08:39,950 --> 00:08:45,040
ุจู†ุนู…ู„ prediction ู„ุงู„ู€ number ุจุญูŠุซ ุงู†ู‡ ูุนู„ูŠุง ูƒู…ุง ุฒูŠ
128
00:08:45,040 --> 00:08:48,480
ู…ุง ู‚ู„ู†ุง ุงู† ู‡ุฐุง ุงู„ number ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุฑู‚ู… ุงู„ู…ุฌู…ูˆุนุฉ
129
00:08:48,480 --> 00:08:51,620
ุฃูˆ ุฑู‚ู… ุงู„ cluster ุงู„ู„ูŠ ุจูŠุญุชูˆูŠ ุงู„ point ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
130
00:08:51,620 --> 00:08:57,000
ุนู†ุฏู‡ุง ุทุจุนุง
131
00:08:57,000 --> 00:08:59,820
ู„ู…ุง ุจุชูƒู„ู… ุนู„ู‰ ุงู„ clustering ู…ุนู†ุงุชู‡ ุงู† ุงู†ุง ุจุฏูŠ ุงุฎุฏ
132
00:08:59,820 --> 00:09:07,020
ุจูŠุงู†ุงุช ูƒู„ู‡ุง ููŠ ู†ูุณ ุงู„ space ุจุชูƒู„ู… ุนู„ู‰ ุจูŠุงู†ุงุช ูƒู„ู‡ุง
133
00:09:07,020 --> 00:09:13,040
ููŠ ู†ูุณ ุงู„ spaceููŠ ู…ุฌู…ูˆุนุงุช ู…ุนูŠู†ุฉ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู€ space
134
00:09:13,040 --> 00:09:17,240
ู‡ูˆ ุนุจุงุฑุฉ ุนู† high dimensional ู…ู…ูƒู† ูŠูƒูˆู† 2D, 3D, 4D
135
00:09:17,240 --> 00:09:23,080
ุทุจุนุง ุงุชูƒู„ู… ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุนุฏุฏ ุงู„ attribute ูˆ ุจุฑูˆุญ ุงู„ู„ูŠ
136
00:09:23,080 --> 00:09:28,300
ุจุฌุณู…ู„ูŠู‡ุง ู„ู…ุฌู…ูˆุนุงุช ุจุฌุณู… ุงู„ rows ุงู„ instances ุฃูˆ ุงู„
137
00:09:28,300 --> 00:09:33,860
points ู‡ุงูŠ ุจุฌุณู…ู„ูŠู‡ุง ู„ู…ุฌู…ูˆุนุงุช ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุนุงุช ุฃูˆ
138
00:09:33,860 --> 00:09:46,740
ุทุจุนุงุงู„ู„ูŠ ุจ guess ุงู„ point ู‡ุฐู‡ ู„ู…ุฌู…ูˆุนุงุช ุงุตุบุฑ ุจ
139
00:09:46,740 --> 00:09:51,060
guess similarly ุนููˆุง ุงู„ู„ูŠ ู‚ูˆู„ู†ุง ุงุญู†ุง ูƒู…ุงู† ู…ุฑุฉ ุงู†
140
00:09:51,060 --> 00:09:56,440
ููƒุฑุฉ ุงู„ algorithm ุจูŠุงุฎุฏ ุงู„ points ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
141
00:09:56,440 --> 00:10:00,220
ุนู†ุฏู‡ุง ุจุบุถ ุงู„ู†ุธุฑ ุนู† ุงู„ space ุงูˆ ุงู„ dimensionality
142
00:10:00,220 --> 00:10:05,440
ุชุจุนุชู‡ุงู„ูƒู† ูƒู„ ุงู„ points ุฃูˆ ุงู„ data set ุชุจุนุชูŠ ุนู„ู‰
143
00:10:05,440 --> 00:10:09,560
ู†ูุณ ุงู„ุนุฏุฏ ู…ู† ุงู„ attributes ุซุงุจุชุฉ ุจุฑูˆุญ ุจุฌุณู…ู„ูŠู‡ุง
144
00:10:09,560 --> 00:10:12,760
ู„ู…ุฌู…ูˆุนุงุช ุฃุตุบุฑ ูŠุนู†ูŠ ุจูŠู† ุฌูˆุณูŠู† ูƒุงู†ุช ูˆุงู„ู„ู‡ ุนู†ุฏูŠ ุงู„
145
00:10:12,760 --> 00:10:15,780
data set ููŠู‡ุง ู…ุงุฆุฉ ุฃู„ู record ูˆู‚ู„ุชู„ู‡ ุฌุณู…ู„ูŠู‡ุง ู„ุชู„ุช
146
00:10:15,780 --> 00:10:18,980
ู…ุฌู…ูˆุนุงุช ุงู„ู…ุงุฆุฉ ุฃู„ู ู‡ุฏูˆู„ุฉ ุจุชุฌุณู…ูˆุง ุนู„ู‰ ุชู„ุช ู…ุฌู…ูˆุนุงุช
147
00:10:18,980 --> 00:10:25,500
ุญุชู…ุงEach cluster consists of a point that are near
148
00:10:25,500 --> 00:10:31,080
to some in some sense ูˆู‡ุฐู‡ ุงู„ู†ู‚ุงุท ููŠ ูƒู„ ู…ุฌู…ูˆุนุฉ
149
00:10:31,080 --> 00:10:36,460
ู…ุชุดุงุจู‡ุฉ ุจุดูƒู„ ุงูˆ ุจุงุฎุฑ ุทุจุนุง ู„ู…ุง ู†ุชูƒู„ู… ุนู„ู‰ ุงู„ similar
150
00:10:36,460 --> 00:10:41,660
ุฃูˆ ุงู„ุนู„ุงู‚ุฉ related similar to another ููŠ ู†ูุณ
151
00:10:41,660 --> 00:10:46,640
ุงู„ู…ุฌู…ูˆุนุฉ ุนู†ุงุตุฑ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ูˆุงุญุฏุฉ ู…ุชุดุงุจู‡ุฉ ูˆุนู†ุงุตุฑ
152
00:10:46,640 --> 00:10:49,860
ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ู…ุฎุชู„ูุฉ ุบูŠุฑ ู…ุชุดุงุจู‡ุฉ
153
00:10:52,050 --> 00:10:58,450
ู‡ุฐุง ุงู„ู…ุตุทู„ุญ ุฃู‡ู… ูˆ more professional ุฃู† ุงู„ู€ intra
154
00:10:58,450 --> 00:11:03,050
distance ุฃูˆ ุงู„ cluster distance ูŠุฌุจ ุฃู† ูŠูƒูˆู† ู‚ู„ูŠู„
155
00:11:06,170 --> 00:11:10,330
ูƒุงู† ุงู„ู…ุณุงูุฉ ู…ุง ุจูŠู† ุนู†ุงุตุฑ ุงู„ in instance ุฃูˆ ุงู„
156
00:11:10,330 --> 00:11:14,550
cluster ุงู„ูˆุงุญุฏุฉ ุชูƒูˆู† ู‚ุตูŠุฑุฉ ุฌุฏุง ู„ูŠุณ ู…ู†ู‡ุง in
157
00:11:14,550 --> 00:11:20,110
instance ุงูˆ ุงู„ distance ู„ู…ุง ุจุชูƒู„ู… ุนู„ู‰ distance ูŠุง
158
00:11:20,110 --> 00:11:24,310
ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ู„ูˆ ุชุฎูŠู„ ุงู† ููŠ ุงุชู†ูŠู† ู…ุชุทุงุจู‚ูŠู† ุงูˆ
159
00:11:24,310 --> 00:11:30,150
ู…ุชุดุงุจู‡ูŠู† ุงู„ู…ุณุงูุฉ ุจูŠู†ู‡ู… ุฌุฏูŠุด ุตูุฑ ุฃุตุจุญู„ูƒู† ู„ู…ุง ูŠูƒูˆู†
160
00:11:30,150 --> 00:11:34,690
ุงู„ู…ุฎุชู„ููŠู† ุงู„ู…ุณุงูุฉ ุจูŠู†ู‡ู… ุฃุจุนุฏ ู…ุง ูŠู…ูƒู† ูˆุจุงู„ุชุงู„ูŠ ุงู†ุง
161
00:11:34,690 --> 00:11:37,670
ุจู‚ู‰ ุงุชูƒู„ู… ุงู†ู‡ ู„ุงุฒู… ูŠูƒูˆู† ููŠ ุนู†ุฏ ุงู„ Inter distance
162
00:11:37,670 --> 00:11:42,270
ุฃุจุนุฏ ู…ุง ูŠู…ูƒู† ูˆ ุงู„ intra distance ุฃุตุบุฑ ู…ุง ูŠู…ูƒู†
163
00:11:42,270 --> 00:11:46,830
ูˆุจู‡ูŠูƒ ุงู†ุง ุจูƒูˆู† ู†ุฌุญุช ููŠ ุชู‚ุณูŠู… ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
164
00:11:46,830 --> 00:11:51,940
ุนู†ุฏู‡ุง ุทุจุนุง ู„ูˆ ุงู†ุง ุจุฏู‡ ุงุนู…ู„ ู…ู‚ุงุฑู†ุฉ ูุนู„ูŠุง ู…ุง ุจูŠู†ุงู„ู€
165
00:11:51,940 --> 00:11:55,440
Clustering ูˆ ุงู„ู€ Classification ุจู†ุงุก ุนู„ู‰ ุงู„ data
166
00:11:55,440 --> 00:11:59,220
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ุทุจุนุง ุงู„ุฑุณู… ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ููˆู‚ ุจุชู…ุซู„
167
00:11:59,220 --> 00:12:03,700
classification ูˆ ุงู„ุฑุณู… ุงู„ู„ูŠ ุชุญุช ุจุชู…ุซู„ ุงู„
168
00:12:03,700 --> 00:12:05,820
clustering ุทุจุนุง ุงู„ู„ูŠ ุจุชูƒู„ู… ุนู† ุงู„ classification
169
00:12:05,820 --> 00:12:09,520
ูŠุนู†ูŠ ุงู† ููŠ ุนู†ุฏูŠ label ู„ุงุฒู… ูŠูƒูˆู† label ู‡ูŠ ุงู„ label
170
00:12:09,520 --> 00:12:13,960
ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ุจุงู„ู„ูˆู† ุงู„ุฃุฎุถุฑ proteins ูˆ ุงู„ู„ูŠ ุจุงู„ู„ูˆู†
171
00:12:13,960 --> 00:12:18,120
ุงู„ุจู† ุงู„ุบุงู…ู‚ ู‡ุฐุง ุงูˆ ุงู„ุจู† ุงู„ุฏุงูƒู† ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„
172
00:12:18,120 --> 00:12:22,870
genes ูˆ ู…ุนู†ุงุชู‡ ุงู† ู„ุงุฒู… ูŠูƒูˆู† ููŠ ุนู†ุฏูŠ ruleูŠุฎุตุต ูƒู„
173
00:12:22,870 --> 00:12:26,950
point ู„ label ูˆุงุถุญ ุทุจุนุง ุงู„ rule ู‡ุฐุง ุฒูŠ ู…ุง ุจู†ุนุฑู ููŠ
174
00:12:26,950 --> 00:12:32,270
ุงู„ prediction ุฃูˆ ููŠ ู‡ุงูŠ ููŠ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ุฎุท ุงู„ูุงุตู„ ู‡ูˆ
175
00:12:32,270 --> 00:12:36,010
ุงู„ุนู†ุงุตุฑ ุงู„ู…ูˆุฌุฑุฉ ูŠุนู†ูŠ ู„ูˆ ุงู†ุง ุงุฌูŠุช ุชุจุนุง ู„ู„ variable
176
00:12:36,010 --> 00:12:40,510
ุงู„ุฃูˆู„ ูˆ ู‚ู„ุช ูˆุงู„ู„ู‡ ู„ูˆ ูƒุงู† ุงู„ variable ุงู„ุฃูˆู„ ุชุจุนูŠ
177
00:12:40,510 --> 00:12:49,550
ู‚ูŠู…ุชู‡ ูƒุฐุงู…ุนู†ุงุชู‡ ู‡ุฐุง ู‡ูŠูƒูˆู† ุฃูƒุจุฑ ุฃูˆ ุชุณุงูˆูŠ X ู…ุนู†ุงุชู‡
178
00:12:49,550 --> 00:12:59,030
ุฃู†ุง ุจุชูƒู„ู… ุนู„ู‰ ุฃู† ู‡ุฐุง ู‡ูŠูƒูˆู† ู…ุน ุงู„ label ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
179
00:12:59,030 --> 00:13:02,970
ูƒู…ุงู† ู…ุฑุฉ ุจู‚ูˆู„ ู„ูˆ ุฃู†ุง ุฅุฌูŠุช ูุนู„ูŠุง ุงู„ุฎุท ู‡ุฐุง ู‡ูˆ ุจู…ุซู„
180
00:13:02,970 --> 00:13:06,470
ุงู„ู…ุนุงุฏู„ุฉ ุฃูˆ ุงู„ role ุชุจุนุชูŠ ููŠ ุงู„ classification ู„ูˆ
181
00:13:06,470 --> 00:13:09,510
ุฃู†ุง ุฎุฏุช ุฎุท ู…ุณุชู‚ูŠุจ ู„ high ุนู„ู‰ ุงู„ point ุงู„ู„ูŠ ุนู†ุฏูŠ
182
00:13:09,510 --> 00:13:14,880
ู‡ู†ุงุจุงู„ุดูƒู„ ู‡ุฐุง ุงูˆ ุงุชูƒู„ู…ุช ูุนู„ูŠุง ุงู†ุง ู‡ูŠ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
183
00:13:14,880 --> 00:13:19,660
ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ู†ุงุฃู†ุง ูุนู„ูŠุงู‹ ู„ู…ุง ุชูƒูˆู† ุงู„ point ุชุจุนุชูŠ
184
00:13:19,660 --> 00:13:24,700
ุจุงู„ู†ุณุจุฉ ู„ู„ variable ุงู„ุฃูˆู„ ุฃูƒุจุฑ ุฃูˆ ุชุณุงูˆูŠ X ู…ุนู†ุงุชู‡
185
00:13:24,700 --> 00:13:29,020
ู‡ุฐุง genes otherwise ุจูƒูˆู† ุงู„ protein ูˆู‡ุฐุง ู…ุนุงุฏู„ุฉ
186
00:13:29,020 --> 00:13:31,640
ุงู„ุฎุท ุงู„ู…ุณุชู‚ูŠู… ุฒูŠ ู…ุง ููŠ ุนู†ุฏูŠ classifier ุงุณู…ู‡
187
00:13:31,640 --> 00:13:34,560
support vector machine ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุฃูุถู„ line ูŠูุตู„
188
00:13:34,560 --> 00:13:38,120
ู…ุง ุจูŠู† ุงู„ุนู†ุงุตุฑ ุงู„ู…ูˆุฌูˆุฏุฉ ุทุจุนุงู‹ ุจู‡ุฐุง supervised
189
00:13:38,120 --> 00:13:41,880
learning ููŠ ุงู„ non-clustering ุฃูˆ ุนููˆุง ููŠ ุงู„
190
00:13:41,880 --> 00:13:47,580
unsupervised ููŠ ุงู„ clustering ุฃู†ุง ู…ุงุนู†ุฏูŠุด labelุฃู†ุง
191
00:13:47,580 --> 00:13:52,140
ู…ุฌุฑุฏ ูˆ ุงุชุฌู…ุนุช ุงู„ุจูŠุงู†ุงุช ุจู†ุงุก ุนู„ู‰ ุงู„ similarity ุนู„ู‰
192
00:13:52,140 --> 00:13:55,980
ุงู„ุชุดุงุจู‡ ุงู„ู„ูŠ ุจูŠู†ู‡ุง ูƒู„ู‡ู… ู…ุชุดุงุจู‡ูŠู† ู…ุน ุจุนุถ ุจู†ุงุก ุนู„ู‰
193
00:13:55,980 --> 00:14:00,100
ุงู„ distance ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุงู„ distance ุจูŠู† ุฃูŠ ู†ู‚ุทูŠู†
194
00:14:00,100 --> 00:14:04,920
ุงู„ู„ูŠ ู‡ูŠ ุงู„ intra distance ู„ุงุฒู… ุชูƒูˆู† ุฃุตุบุฑ ู…ู† ุฃู‚ุฑุจ
195
00:14:04,920 --> 00:14:11,900
ู†ู‚ุทูŠู† ูŠุนู†ูŠ ุฃูƒุจุฑ intra distance ู„ุงุฒู… ุชูƒูˆู† ุฃู‚ุตุฑ ู…ู†
196
00:14:11,900 --> 00:14:19,350
ุฃูŠู…ู† ุงูƒุชุฑ ุงู„ู€ Inter distance ูƒู…ุงู† ู…ุฑุฉ ุจู‚ูˆู„ ุงู†ู‡ ููŠ
197
00:14:19,350 --> 00:14:23,190
ุงู„ clustering ู„ู…ุง ุงู†ุง ุจุฃุฌูŠ ุจุชูƒู„ู… ู‡ู†ุง ุงู†ู‡ ุงู„ู…ูุฑูˆุถ
198
00:14:23,190 --> 00:14:31,030
ุงู„ ุงู‚ูˆู‰ ุงู„ intra distance ุงู„ู…ูุฑูˆุถ ุชูƒูˆู† ุนู†ุฏู‰ ุงู‚ุตุฑ
199
00:14:31,030 --> 00:14:36,170
ู…ู† ุงู„ inter distance ุงู„ู„ู‰ ู…ูˆุฌูˆุฏุฉ ุงู„ู„ู‰ ู‡ู†ุง ู„ูˆ ุงู†ุง
200
00:14:36,170 --> 00:14:40,310
ุงุฌูŠุช ูˆ ู‚ู„ุชู„ูƒ ุงู† ู‡ุฐู‡ ุงู„ data ุงู„ู„ู‰ ุนู†ุฏูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู†
201
00:14:40,310 --> 00:14:45,330
data ุนุดุงู† ู†ูˆุถุญ ุงู„ู…ูˆุถูˆุน ุงู„ clusteringุทุจุนุงู‹ ุนู†ุฏู…ุง
202
00:14:45,330 --> 00:14:49,930
ุฃุชูƒู„ู… ุนู† ุงู„ูˆุถุน ููŠ ุงู„ุจูŠุงู†ุงุช ูŠุนู†ูŠ ุฃู†ู†ูŠ ุฃุชูƒู„ู… ุนู†
203
00:14:49,930 --> 00:14:54,630
ุชูˆุฒูŠุน ุงู„ุจูŠุงู†ุงุช ูˆุจุดูˆู ุฑุณู… ุฃูˆ ู‡ูŠูƒุฑูŠุฉ ุงู„ุจูŠุงู†ุงุช ุงู„ู„ูŠ
204
00:14:54,630 --> 00:14:58,650
ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู„ูˆ ุฃู†ุง ุฃุชู‚ุนุฏ ู†ุดูˆู ุจุงู„ู…ุซุงู„ ููŠ ุงู„ุจุณูŠุท
205
00:14:58,650 --> 00:15:02,530
ู‡ุฐุง ุฌุงุจ ู…ู† ุงู„ .. ู„ูˆ ุฃุฌูŠุช ูˆ ู‚ู„ุช ุฃู† ุงู„ data ู‡ูŠุจุชู…ุซู„
206
00:15:02,530 --> 00:15:06,970
ุงู„ customer purchases ูˆ ุฃุฌูŠุช ูˆ ู‚ู„ุช ูƒุงู„ุชุงู„ูŠ ู‡ุฏู‚
207
00:15:06,970 --> 00:15:10,130
ุทุจุนุงู‹ ุฃู†ุง ู…ูŠุฒุช ู‡ุงู† ุจุงู„ุฃู„ูˆุงู† ุนุดุงู† ุฃุณู‡ู„ ุนู„ูŠูƒู… ุนู…ู„ูŠุฉ
208
00:15:10,130 --> 00:15:15,420
ุงู„ุงุณุชูŠุนุงุจ ุงู„ู„ูŠ ู‡ุชุตูŠุฑ ูƒุงู„ุชุงู„ูŠุฃู†ุง ูุนู„ูŠุง ู„ูˆ ุฃุฏุฑุณ
209
00:15:15,420 --> 00:15:19,360
ุงู„ุจูŠุงู†ุงุช ุงู„ู„ู‰ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ ู‡ุงู† ุงู„ู„ู‰ ุจุงู„ู„ูˆู† ุงู„ุฃุญู…ุฑ
210
00:15:19,360 --> 00:15:23,640
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู‚ุทุน ุงู„ุตุบูŠุฑุฉ ุฃูˆ ุนููˆุง
211
00:15:23,640 --> 00:15:29,760
ุงู„ุฃุนุฏุงุฏ ุงู„ู‚ู„ูŠู„ุฉ ูˆุงู„ู„ูŠ ุฃุณุนุงุฑู‡ุง ุนุงู„ูŠุฉ ุฌุฏุง ูŠุนู†ู‰ ุนู†ุฏู‰
212
00:15:29,760 --> 00:15:38,280
1700 ุนู„ู‰ 2 ุจุชูƒู„ู… ููŠ ุญุฏูˆุฏ 6850 3000 ุนู„ู‰ 2000 ุนู„ู‰
213
00:15:38,280 --> 00:15:45,880
3000 ุจุชูƒู„ู… ุนู„ู‰ 660 ุชู‚ุฑูŠุจุงุจู†ุชูƒู„ู… ุนู„ู‰ 2300 ุนู„ู‰ 4
214
00:15:45,880 --> 00:15:50,580
ุจูŠู†ู…ุง ุงู„ู„ูŠ ุชุญุช ุจู†ุชูƒู„ู… ุนู„ู‰ ุฃุนุฏุงุฏ ุฃุนุฏุงุฏ ูƒุจูŠุฑุฉ ูˆ
215
00:15:50,580 --> 00:15:55,200
ุฃุณุนุงุฑ ู‚ู„ูŠู„ุฉ ุจูŠู†ู…ุง ุงู„ู„ูŠ ุชุญุช ุฃุนุฏุงุฏ ู‚ู„ูŠู„ุฉ ูˆ ุฃุณุนุงุฑ
216
00:15:55,200 --> 00:16:00,020
ู‚ู„ูŠู„ุฉุŒ ู…ุธุจูˆุทุŸ ู„ุฃ ู„ูˆ ุฃู†ุง ุจุฏูŠ ุฃุฌูŠ ุฃุฌุณู…ุŒ ู…ุนู†ุงุชู‡ ู‡ูŠูƒูˆู†
217
00:16:00,020 --> 00:16:02,480
ุงู„ุชู‚ุณูŠู… ููŠ ุงู„ cluster ุงู„ุฃูˆู„ ุงู„ู„ูŠ ุนู„ู‰ ุฃุณุฑ ุจุงู„ู„ูˆู†
218
00:16:02,480 --> 00:16:08,220
ุงู„ุฃุญู…ุฑ ุงู„ู„ูŠ ู‡ูŠ few purchases with high pricesุทุจุนุง
219
00:16:08,220 --> 00:16:10,620
ุงุญู†ุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ูˆ ุชู„ุงุช ุงู„ู„ูŠ ู‡ูŠ ุงู„
220
00:16:10,620 --> 00:16:13,660
raw number ุงู„ู„ูŠ ุจุงู„ู„ูˆู† ุงู„ุฃุณูˆุฏ ุฃู†ุง ู…ุด ู…ู„ูˆู†ู‡ุง ู…ุนู†ู‰
221
00:16:13,660 --> 00:16:16,300
ู‡ุงู† ุนุดุงู† ุงู‚ูˆู„ูƒ ุงู† ู‡ุฐู‡ ู…ุงุชุฏุฎู„ ููŠ ุงู„ุชุตู†ูŠู ู…ุงู„ู‡ุงุด
222
00:16:16,300 --> 00:16:22,060
ุฏุงุฎู„ ู„ุฃู† ู…ู…ูƒู† ุงู„ data ุชูƒูˆู† ุนู†ุฏ ู‡ุงู† shuffledุŒ not
223
00:16:22,060 --> 00:16:22,880
ordered
224
00:16:25,670 --> 00:16:30,370
ุทูŠุจ ุงู„ cluster ุงู„ุชุงู†ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† money prices ุงูˆ
225
00:16:30,370 --> 00:16:34,610
purchase money ูู‡ูŠ ุนู†ุฏู‰ ู…ุฌู…ูˆุนุฉ ุนุงู„ูŠุฉ ู…ู† ุงู„ items
226
00:16:34,610 --> 00:16:39,530
ุนุงู„ูŠุฉ ูˆ ุงู„ purchases ุชุจุนุชู‰ high prices ูƒุฐู„ูƒ ูˆู‡ุฐู‡
227
00:16:39,530 --> 00:16:42,370
ุงู„ู„ู‰ ุจุงู„ู„ูˆู† ุงู„ุฃุฒุฑู‚ ูƒุฐู„ูƒ ุจุงู„ู„ูˆู† ุงู„ุฃุฎุถุฑ ู„ู…ุง ุงู†ุง
228
00:16:42,370 --> 00:16:47,470
ุจุชูƒู„ู… ุงู† ุงู„ customer ุจูŠุดุชุฑูŠ ู…ุฌู…ูˆุนุฉ ู‚ู„ูŠู„ุฉ ู…ู†
229
00:16:47,470 --> 00:16:52,510
ุงู„ุนู†ุงุตุฑ ุจุงุณุนุงุฑ ู‚ู„ูŠู„ุฉ ุฃูˆ ุจุงุณุนุงุฑ ุฒู‡ูŠุฏุฉ ู†ูˆุนุง ู…ุง ุชู…ุงู…
230
00:16:54,270 --> 00:16:57,630
ุทุจุนุงู‹ ูˆูŠู† ุงู„ู…ุฌุงู„ุงุช ุฃูˆ ูˆูŠู† ุงู„ุชุทุจูŠู‚ุงุช ุงู„ู„ูŠ ู…ู…ูƒู† ุงู†ุง
231
00:16:57,630 --> 00:17:01,750
ุงุดุบู„ ููŠู‡ุง ุงุนููˆุง ุงุดุบู„ ููŠู‡ุง ุงูˆ ุงุทุจู‚ ููŠู‡ุง ุงู„
232
00:17:01,750 --> 00:17:05,590
clustering ุงู„ุนุฏูŠุฏ ู…ู† ุงู„ู…ุฌุงู„ุงุช ููŠ ุงู„ target
233
00:17:05,590 --> 00:17:11,230
marketing ููŠ ุงู„ุชุณูˆูŠู‚ ุงู„ู…ูˆุฌู‡ ู„ู…ุง ุงู†ุง ุญุงุจุจ ุงุณุชูƒุดู ู…ู†
234
00:17:11,230 --> 00:17:15,950
ุงู„ู†ุงุณ ุงู„ู„ูŠ ู…ู…ูƒู† ูŠุดุชุฑูŠู‡ุงู„ุฅุจุฏุงุน ุชุจุนุชูŠ ูˆ ุฃุฑูˆุญ ุฃูˆุฌู‡
235
00:17:15,950 --> 00:17:20,910
ู„ู‡ู… ุงู„ุฅุนู„ุงู†ุงุช ุฃูˆ ุฃุนุฑุถ ุนู„ูŠู‡ู… ุงู„ู…ู†ุชุฌ ุชุจุนูŠ ู…ุซู„ุง ุงู†ุง ูˆ
236
00:17:20,910 --> 00:17:27,750
ุงู„ู„ู‡ ู„ูˆ ุฌูŠู†ุง ุณุฃู„ู†ุง ุงู†ุง ุนู…ุงู„ ุจุนู…ู„ ุชุทุจูŠู‚ IOS ุนุดุงู†
237
00:17:27,750 --> 00:17:32,670
ูŠุชูƒู„ู… ุงูˆ ุจุนู…ู„ูŠ high prediction ู„ุถุบุท ุงู„ุฏู… ูˆ ุนุฏุฏ
238
00:17:32,670 --> 00:17:37,450
ุถุฑุจุงุช ุงู„ู‚ู„ุจ ูˆ ุงู„ุงุฎุฑู‡ ู…ูŠู† ุงู„ู…ุนู†ูŠูŠู† ู„ูˆ ุงู†ุง ุจุฏู‡ ุงุฑูˆุญ
239
00:17:37,450 --> 00:17:42,950
ุงุฏูˆุฑ ููŠ ุงู„ data ุงูˆ ุจุฏู‡ ุงุญุงูˆู„ ุงุณุชูƒุดูุนู†ุฏูŠ data set
240
00:17:42,950 --> 00:17:45,830
ู„ู„ customers ุงู„ู„ูŠ ุจูŠุดุชุบู„ูˆุง applications ู…ู…ูƒู† ุงู†ุง
241
00:17:45,830 --> 00:17:48,430
ุงุฑูˆุญ ุงุฏูˆุฑ ุนู„ู‰ ูุฆุฉ ุงู„ู†ุงุณ ุงู„ู„ูŠ ู…ู…ูƒู† ุชุดุชุฑูŠ ุงู„
242
00:17:48,430 --> 00:17:51,230
application ู‡ุฐุง ู…ู† ุฎู„ุงู„ ุงู…ุง ู…ู† ุฎู„ุงู„ ุงู„ similarity
243
00:17:51,230 --> 00:17:55,390
ุงูˆ ู…ู† ุฎู„ุงู„ ุงู„ุงู‡ุชู…ุงู…ุงุช
244
00:17:55,390 --> 00:17:59,510
ุชุจุนุชู‡ู… ููŠ ุงู„ุขุฎุฑ ู„ุงุฒู… ุจู„ุงู‚ูŠ ุจูŠู† ุงู„ุนู†ุงุตุฑ ู‡ุฏูˆู„ุฉ ุดุบู„ุงุช
245
00:17:59,510 --> 00:18:02,670
ู…ุดุชุฑูƒุฉ ูˆู…ู…ูƒู† ุงู†ุง ุงุชูˆุฌู‡ู‡ู… ู„ุงู†ู‡ ู…ู…ูƒู† ุงุชูˆุฌู‡ู‡ู… ู„ูƒู„
246
00:18:02,670 --> 00:18:05,950
ุงู„ู…ุฌู…ูˆุนุงุช ูู„ู…ุง ุงู†ุง ุจุฑูˆุญ ูˆ ุงุฌุณู…ู‡ู… ู„ู…ุฌู…ูˆุนุงุช ุจู„ุงู‚ูŠ
247
00:18:05,950 --> 00:18:13,310
ุญุชู…ุง ู…ุฌู…ูˆุนุฉ ููŠู‡ุง ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑููŠ ุงู„ genomics ุฃูˆ ููŠ
248
00:18:13,310 --> 00:18:17,730
ุนู„ู… ุงู„ุฌูŠู†ุงุช ู…ู…ูƒู† ุงู†ุง ุงุฑูˆุญ ุงุตู†ู ุงู„ุฌูŠู†ุงุช ูƒุฐู„ูƒ ุงูˆ
249
00:18:17,730 --> 00:18:21,310
ุนููˆุง ุงู‚ุณู… ุงู„ุฌูŠู†ุงุช ู„ู…ุฌู…ูˆุนุงุช ููŠ ุงู„ astronomy ุงูˆ ููŠ
250
00:18:21,310 --> 00:18:26,670
ุนู„ู… ุงู„ูุถุงุก ุนุดุงู† ุงุตู†ู ุงูˆ ุงุฌุณู… ุงู„ู…ุฌู…ูˆุนุงุช ุงูˆ ุงูˆุฌุฏ
251
00:18:26,670 --> 00:18:30,470
ู…ุฌู…ูˆุนุงุช ู„ู„ similar stars ูˆ ุงู„ galaxies ูˆ ุงู„ู…ุฌุงุฑุงุช
252
00:18:30,470 --> 00:18:33,660
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‰ููŠ ุงู„ insurance ุฃูˆ ููŠ ุงู„ุชุฃู…ูŠู† ุนุดุงู†
253
00:18:33,660 --> 00:18:37,460
ุงุนุฑู ููŠ ุงู„ู…ุฌู…ูˆุนุงุช ุงู„ู„ูŠ ุงู†ุง ูุนู„ูŠุง ูƒูŠู ู…ู…ูƒู† ุงุนุฑู
254
00:18:37,460 --> 00:18:44,420
ููŠู‡ุง ุงู„ vehicles ุงูˆ ุงู†ุตุฏุฑ ุงูˆ ุงู‚ุณู… ุจูˆู„ูŠุณุช ุงู„ุชุฃู…ูŠู†
255
00:18:44,420 --> 00:18:48,240
ุญุณุจ ุงู„ holder ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ุง ู„ูˆ ุฌุฏูŠุด ู‚ูŠู…ุฉ ุงู„
256
00:18:48,240 --> 00:18:51,200
insuranceููŠ ุงู„ city planning ูƒุฐู„ูƒ ููŠ ุงู„ุชุฎุทูŠุท
257
00:18:51,200 --> 00:18:56,200
ุงู„ุญุถุฑูŠ ู„ู„ู…ุฏู† ูƒูŠู ูŠุชู… ุฌุณู…ู‡ุง ู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ houses
258
00:18:56,200 --> 00:19:03,220
ุจู†ุงุก ุนู„ู‰ ุฃู†ูˆุงุนู‡ู… ูˆุงู†ูˆุงุน ุณูุฑุชู‡ู… ูˆ ุงู„ location ุฃูˆ ุงู„
259
00:19:03,220 --> 00:19:07,260
geographical location ุชุจุนุชู‡ู… ู„ูƒู† ุฃู†ุง ูุนู„ูŠุง ุฌุงู…ุนุฉ
260
00:19:07,260 --> 00:19:11,300
ุงู„ุฎูŠุฑูƒู„ ุงู„ูƒู„ุงู… ุงู„ุฌู…ูŠู„ ุนู† ุงู„ clustering ููŠ ุนู†ุฏูŠ ู…ู†
261
00:19:11,300 --> 00:19:13,860
ุถู…ู† ุงู„ูƒู„ุงู… ูƒุงู† ููŠ ุนู†ุฏูŠ ู…ุดูƒู„ุฉ ูˆุงุถุญุฉ ุฃูˆ ู‡ูŠ ุงู„
262
00:19:13,860 --> 00:19:19,560
challenge ุงู„ุฃุณุงุณูŠ ููŠ ู…ูˆุถูˆุน ุงู„ clustering ูุนู„ูŠุง ุฅุฐุง
263
00:19:19,560 --> 00:19:23,240
ุงู„ data unlabeled ูŠุฏูŠุด ุนุฏุฏ ุงู„ clusters ุงู„ุญู‚ูŠู‚ูŠุฉ
264
00:19:23,240 --> 00:19:28,380
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู„ูˆ ุฃู†ุง ุนุฑุถุช ุนู†ูƒ ุงู„ data ู‡ุงูŠ ูƒุงู…
265
00:19:28,380 --> 00:19:34,600
clustersุŸ ู‡ุงูŠ ุงู„ data set unlabeled data ู…ุงููŠุด
266
00:19:34,600 --> 00:19:38,000
ุนู„ูŠู‡ุง ุฃูŠ ุนู„ุงู…ุงุช ู…ู…ูŠุฒุฉ ูˆ ุณุฃู„ุชูƒ ู‡ุฐู‡ ูƒุงู… ู…ุฌู…ูˆุนุฉุŸ
267
00:19:47,800 --> 00:19:55,400
ู…ู…ูƒู† ุงูƒุชุฑ ุŸ ุงู‡ ู…ู…ูƒู† ู‡ุงูŠ ุงุฑุจุน clusters ู‡ุงุฏูˆู„ ู…ุนุจู‚
268
00:19:55,400 --> 00:20:06,910
ู‡ุงุฏู‰ ู„ุญุงู„ ู‡ุงุฏูˆู„ ู„ุญุงู„ ู‡ุงุฏู‰ ู„ุญุงู„ ุงูˆ ู‡ุงุฏู„ุญุงู„ ู…ู…ูƒู† ุณุชุฉ
269
00:20:06,910 --> 00:20:10,630
ูƒุฐู„ูƒ ุทุจ ุฃูŠ ุนุฏุฏ ููŠู‡ู… ุงู„ุตุญ ุทุจ ุงู„ุชู„ุงุชุฉ ู„ูŠุด ู…ุด ุชู„ุงุชุฉุŸ
270
00:20:10,630 --> 00:20:14,130
ู„ูˆ ุฃู†ุง ู‚ู„ุช ู„ู‡ ุชู„ุงุชุฉ ุญุงุฌุฉ ุงุณู…ู‡ู… ุนู„ู‰ ุชู„ุงุชุฉ ู…ูŠู† ุงู„ุตุญ
271
00:20:14,130 --> 00:20:19,030
ููŠู‡ู…ุŸ ุชูŠู† ูˆู„ุง ุชู„ุงุชุฉ ูˆู„ุง ุฃุฑุจุนุฉ ูˆู„ุง ุณุชุฉ ูˆู„ุง ุฎู…ุณุฉุŸ
272
00:20:19,030 --> 00:20:23,850
ู…ูŠู†ุŸ ู„ุฃู† ุงู„ label ุบุงูŠุจ ุนู†ุฏูŠ ู…ุนู†ุงุชู‡ ุงู†ุง ููŠ ุนู†ุฏูŠ
273
00:20:23,850 --> 00:20:26,810
ู…ุดูƒู„ุฉ ุงูˆ ุงุญู†ุง ุจูŠู‚ูˆู„ ููŠ ุนู†ุฏูŠ challenge ุญู‚ูŠู‚ูŠุฉ ู„ุงู†
274
00:20:26,810 --> 00:20:32,480
ุงู‚ุฏุฑ ุงู‚ูŠู…ุงู„ู€ Cluster Algorithm ุฃูˆ ุงู„ู€ Behavior ุชุจุน
275
00:20:32,480 --> 00:20:34,340
ุงู„ู€ Cluster Algorithm ุนู„ุดุงู† ู‡ูŠ ุจูŠู‚ูˆู„ ุงู„ู€
276
00:20:34,340 --> 00:20:39,120
Clustering can be ambiguous ู…ู…ูƒู† ูŠูƒูˆู† ู…ุถู„ู„ุŒ ู…ุถู„ู„
277
00:20:39,120 --> 00:20:42,600
ูŠุนู†ูŠ ู…ุด ูˆุงุถุญ ุฃูˆ ุถุจุงุจูŠ ููŠ ุงู„ุชุนุงู…ู„ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ุง
278
00:20:43,850 --> 00:20:46,950
ุงู„ู€ Clustering Types ู„ู…ุง ุฃุชูƒู„ู… ุนู„ู‰ ุงู„ู€ Clustering
279
00:20:46,950 --> 00:20:51,630
Types ุงู„ู…ุนู†ู‰ ู‡ูˆ .. ุงู„ .. ุงู„ Clustering ู‡ูŠ ุนุจุงุฑุฉ ุนู†
280
00:20:51,630 --> 00:20:56,110
ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุณุช ููŠ ุงู„ clusters ูˆู‡ุฐู‡ ุชุฑุงูˆุญ ู…ุฌู…ูˆุนุงุช
281
00:20:56,110 --> 00:20:59,010
ุงู„ clusters ู‡ุฐู‡ ุฅู…ุง ู…ุง ุจูŠู† ุงู„ hierarchical ุฃูˆ ุงู„
282
00:20:59,010 --> 00:21:03,830
partitional ุงู„ cluster ุฅู…ุง ุจุชูƒูˆู† ู‡ุฑู…ูŠ ุฃูˆ ุชุฌุฒูŠุฆูŠ ุฃูˆ
283
00:21:03,830 --> 00:21:06,810
ุชู‚ุทูŠุนูŠ ุงู„ clusters ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู„ู…ุง ุฃุชูƒู„ู… ุนู„ู‰
284
00:21:06,810 --> 00:21:09,250
partitional ุงู„ clustering ู…ุนู†ุงุชู‡ ุฃู†ุง ุจุชูƒู„ู… ุนู„ู‰
285
00:21:09,250 --> 00:21:15,790
division ู„ู„ dataุนู„ู‰ ู…ุฌู…ูˆุนุงุช ุบูŠุฑ ู…ุชู‚ุงุทุนุฉ ุงู†ุง ุจุฌุณู…
286
00:21:15,790 --> 00:21:20,310
ุงู„ data objects ุฃูˆ ุงู„ instances ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู„ู‰
287
00:21:20,310 --> 00:21:25,870
ู…ุฌู…ูˆุนุงุช ุบูŠุฑ ู…ุชู‚ุงุทุนุฉ ูˆู‡ุฐุง ู…ุง ู†ุณู…ูŠู‡ุง non overlapping
288
00:21:25,870 --> 00:21:29,330
clusters ุงูˆ non overlapping subsets ุงูˆ ู†ุณู…ูŠู‡ุง ุงุญู†ุง
289
00:21:29,330 --> 00:21:36,230
cluster ูˆุจุงู„ุชุงู„ูŠ ูƒู„ element ุจูƒูˆู† ู…ูˆุฌูˆุฏ ูู‚ุท ููŠ one
290
00:21:36,230 --> 00:21:40,140
subsetุจูŠู†ู…ุง ููŠ ุงู„ู€ Hierarchical Clustering ู…ุนู†ุงุชู‡
291
00:21:40,140 --> 00:21:45,860
ุฃู†ุง ุจุชูƒู„ู… ุนู„ู‰ set of nested clusters organized as
292
00:21:45,860 --> 00:21:49,720
hierarchical tree ูˆุจุงู„ุชุงู„ูŠ ู„ุฃ ุงู†ุง ููŠ ุนู†ุฏูŠ ุชู‚ุงุทุน ู…ุง
293
00:21:49,720 --> 00:21:53,060
ุจูŠู† ูƒู„ cluster ูˆ ุงู„ุชุงู†ูŠ ู„ู…ุง ุงู† ููŠ ุนู†ุฏูŠ ู‡ูŠูƒู„ูŠุฉ ุงูˆ
294
00:21:53,060 --> 00:21:56,660
hierarchy ู‡ูŠุฑุงู…ูŠุฉ ุงูˆ ููŠ ุนู†ุฏูŠ tree ู…ุนู†ุงุชู‡ ุงู†ุง ู‚ุงุนุฏ
295
00:21:56,660 --> 00:22:00,420
ููŠ ุนู†ุฏูŠ ุนู†ุงุตุฑ ุงู„ู„ูŠ ู‡ุชูƒูˆู† ุนู†ุฏูŠ ู…ุงุฎุฏุฉ ุฃุดูƒุงู„ ู…ุฎุชู„ูุฉ
296
00:22:00,420 --> 00:22:03,660
ู„ูˆ ุงู†ุง ู‚ู„ุช ู‡ูŠ ุงู„ data ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุงู† ูˆุจุฏุฃ ุงุทุจู‚
297
00:22:03,660 --> 00:22:07,660
ุนู„ูŠู‡ุง partitionary clusteringู…ุนู†ุงุชู‡ ู…ู…ูƒู† ู‡ูŠูƒูˆู†
298
00:22:07,660 --> 00:22:10,860
ุนุจุงุฑุฉ ุนู† ุงู„ู€ Partition Different Partitional
299
00:22:10,860 --> 00:22:15,140
Clustering ู„ูˆ ุงู†ุง ุงูุชุฑุถุช ุงู†ู‡ ุจุงู„ู€ Hierarchical
300
00:22:15,140 --> 00:22:17,660
data ู…ุนู†ุงุชู‡ ุงู†ุง ู…ู…ูƒู† ุงุญูŠูŠ ุงู„ู€ Hierarchical ููƒุฑุฉ
301
00:22:17,660 --> 00:22:24,370
ุงู†ู‡ ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ู‡ุงู† ููŠ one clusterูˆุงู„ู€ cluster
302
00:22:24,370 --> 00:22:27,870
ู‡ุฐุง ู…ุน ุฃุฑุจุนุฉ ูƒูˆู‘ู†ูˆุง cluster ุฌุฏูŠุฏ ู…ุน ูˆุงุญุฏ ูƒูˆู‘ู†ูˆุง
303
00:22:27,870 --> 00:22:30,830
cluster ุฌุฏูŠุฏ ูˆู‡ุฐู‡ ุทุจุนุง ุจุณู…ูŠู‡ุง traditional
304
00:22:30,830 --> 00:22:33,710
hierarchical clustering ุจูŠู†ู…ุง ู‡ุฐู‡ ุจุณู…ูŠู‡ุง
305
00:22:33,710 --> 00:22:37,850
dendrogram ูˆุทุจุนุง ุงู„ู€ dendrogram ุจูŠุจูŠู† ุจุดูƒู„ ูˆุงุถุญ
306
00:22:37,850 --> 00:22:41,290
ุนู„ุงู‚ุฉ ุงู„ instances ู…ุน ุจุนุถ ูŠุนู†ูŠ ุฃู†ุง ูˆุงุถุญ ุงู† ุนู†ุฏูŠ
307
00:22:41,290 --> 00:22:47,950
ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ุงู†ุฌู…ุนูˆุง ุจุนุฏูŠู† ุงู†ุฌู…ุน ู„ู‡ู… ุฃุฑุจุนุฉ ูˆ
308
00:22:47,950 --> 00:22:54,500
ุจุนุฏูŠู† ุงู†ุฌู…ุน ู„ูƒู„ ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏุฉูƒุฐู„ูƒ ู‡ู†ุง ู‡ู†ุง ุงู„ู€ non
309
00:22:54,500 --> 00:22:56,940
-traditional ุงู„ู‡ูŠุฑุงุฑูŠูƒุงู„ .. ุงู„ู‡ูŠุฑุงุฑูŠูƒุงู„ ุทุจุนุง ุงู„
310
00:22:56,940 --> 00:22:59,740
traditional ููŠ ูƒู„ ู…ุฑุฉ ุงู†ุง ุนู…ุงู„ูŠ ุจุถูŠู point ู„ูƒู† ููŠ
311
00:22:59,740 --> 00:23:02,220
ุงู„ non-traditional ู„ุฃ ู…ู…ูƒู† ุชูƒูˆู† ุงู„ุฃู…ูˆุฑ ุดูˆูŠุฉ ู…ุฎุชู„ูุฉ
312
00:23:02,220 --> 00:23:05,500
ู…ู…ูƒู† ุจูŠ ูˆุงุญุฏ ูˆ ุจูŠ ุงุชู†ูŠู† ู…ุน ุจุนุถ ุจูŠ ุงุชู†ูŠู† ูˆ ุจูŠ ุชู„ุงุชุฉ
313
00:23:05,500 --> 00:23:08,840
ู…ุน ุจุนุถ ุจูŠ ุชู„ุงุชุฉ ูˆ ุจูŠ ุฃุฑุจุนุฉ ูˆ ู‡ุฏูˆู„ ูƒู„ู‡ู… ู…ูˆุฌูˆุฏูŠู† ู…ุน
314
00:23:08,840 --> 00:23:13,200
ุจุนุถ ูˆ ู‡ุฏู‡ ู‡ูŠ ููŠ ุงู„ dendogram ุงู„ู„ูŠ ุจุชุธู‡ุฑ ุนู†ุฏู†ุง ุงู†
315
00:23:13,200 --> 00:23:16,840
ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ููŠ ุงู„ุชุณุฌูŠู„ ุงู„ุฌุงูŠ ู‡ุฑูˆุญ ุจุงุชุฌุงู‡ ุงู„
316
00:23:16,840 --> 00:23:20,300
partitional clustering ุฃุดูˆููƒู… ุนู„ู‰ ุฎูŠุฑ ุงู† ุดุงุก ุงู„ู„ู‡
317
00:23:20,300 --> 00:23:21,640
ูˆ ุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆ ู…ุฑุญุจุง ู„ู„ู‡