|
1 |
|
00:00:20,690 --> 00:00:24,910 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุฅู ุดุงุก ุงููู ูุณุชู
ุฑ ูู ุงูุญููุฉ |
|
|
|
2 |
|
00:00:24,910 --> 00:00:32,310 |
|
ุงูุชุงุณุนุฉ 9 ุณุฃุจุฏุฃ ู
ุน ู
ูุถูุน ุงูุงุฎุชุตุงุฑุงุช ุงูุณูุงุณูุฉ |
|
|
|
3 |
|
00:00:32,310 --> 00:00:38,610 |
|
ูุงูููู
ุงูุฎุงุตุฉ ูู ูุฐู ุงูุญุงูุฉ ุณูููู ููุงู ุฃุดูุงุก ูุซูุฑุฉ |
|
|
|
4 |
|
00:00:38,610 --> 00:00:45,010 |
|
ููู ูุณุชุฎุฏู
ููู
ุงูุงุฎุชุตุงุฑุงุช ุงูุณูุงุณูุฉ ุจุงูุฅุถุงูุฉ ุฅูู |
|
|
|
5 |
|
00:00:45,010 --> 00:00:48,790 |
|
ููู ูุณุชุฎุฏู
ุงูููู
ุงูุฎุงุตุฉ |
|
|
|
6 |
|
00:00:50,440 --> 00:00:54,380 |
|
ุงูุขู ุฅุฐุง ูุงูุช ุงูู
ูุฒุฉ ุงูุนุงู
ูุฉ ูุฑูุจุฉ ู
ู ู
ูุฒุฉ ุงูู
ุฌุชู
ุน |
|
|
|
7 |
|
00:00:54,380 --> 00:00:59,000 |
|
ุงูู
ุตุทูุญุ ูููุณ ุงูู
ูุฒุฉ ุงูุญููููุฉ ู
ูุชุฑุถุฉ ุฅุฐุง ุชุฐูุฑุ |
|
|
|
8 |
|
00:00:59,000 --> 00:01:01,620 |
|
ููู
ูุฒุฉ ุงูุญููููุฉ ู
ูุฒุฉ |
|
|
|
9 |
|
00:01:01,620 --> 00:01:02,160 |
|
|
|
|
|
10 |
|
00:01:02,160 --> 00:01:07,900 |
|
|
|
|
|
11 |
|
00:01:07,900 --> 00:01:17,400 |
|
|
|
|
|
12 |
|
00:01:18,690 --> 00:01:24,630 |
|
ุชููู ุฅุฐุง ูุงูุช ุงูู
ุนุงู
ูุฉ ูุฑูุจุฉ |
|
|
|
13 |
|
00:01:24,630 --> 00:01:26,610 |
|
ุจู
ุง ููู ุงูููุงุกุฉ ูุงููุฉ ููู
ุนุงู
ูุฉ |
|
|
|
14 |
|
00:01:26,610 --> 00:01:28,470 |
|
|
|
|
|
15 |
|
00:01:28,470 --> 00:01:29,690 |
|
|
|
|
|
16 |
|
00:01:29,690 --> 00:01:29,730 |
|
|
|
|
|
17 |
|
00:01:29,730 --> 00:01:31,030 |
|
|
|
|
|
18 |
|
00:01:31,030 --> 00:01:31,150 |
|
|
|
|
|
19 |
|
00:01:31,150 --> 00:01:32,650 |
|
|
|
|
|
20 |
|
00:01:32,650 --> 00:01:36,890 |
|
|
|
|
|
21 |
|
00:01:36,890 --> 00:01:48,170 |
|
|
|
|
|
22 |
|
00:01:50,010 --> 00:01:55,090 |
|
ุฐุง ูุฐุง ูุนูู ุฃูู ุฅุฐุง ูุงู ููู
ุฉ ุงูู
ูุฒุงููุฉ ูุฑูุจุฉ ุฌุฏูุง |
|
|
|
23 |
|
00:01:55,090 --> 00:02:00,730 |
|
ู
ู ู
ูุฒุงููุฉ ุงูุญููุงูุงุชุ ููู ููุฌุญ ู
ู ูุงู ุงูุญููุงูุงุช |
|
|
|
24 |
|
00:02:00,730 --> 00:02:03,250 |
|
ุนูู ุงูุงุชุตุงู ุงูุขุฎุฑุ ุฅุฐุง ูุงูุช ู
ูุฒุงููุฉ ุงูุญููุงูุงุช |
|
|
|
25 |
|
00:02:03,250 --> 00:02:06,990 |
|
ุจุนูุฏุฉ ู
ู ู
ูุฒุงููุฉ ุงูุญููุงูุงุช ุงูู
ุตุทูุญุฉุ ููู ููุฌุญ ู
ู |
|
|
|
26 |
|
00:02:06,990 --> 00:02:10,910 |
|
ูุงู ุงูุญููุงูุงุชุ ููู ูุงูุช ุจุนูุฏุฉ ุนููุ ูุนูู ุนูู ุณุจูู |
|
|
|
27 |
|
00:02:10,910 --> 00:02:18,040 |
|
ุงูู
ุซุงู ุฅุฐุง X ุจุงุฑ ูู
ุง ุฐูุฑูุง 4ุ ูุฅุฐุง X ุจุงุฑ ูุงู 10 ููุง |
|
|
|
28 |
|
00:02:18,040 --> 00:02:23,620 |
|
ููุฌุฏ ูุฑู ูุจูุฑ ุจูู ู
ุตุฏุฑ ุงููุซููุฉ ู 30 ูู ูุฐู ุงูุญุงูุฉ |
|
|
|
29 |
|
00:02:23,620 --> 00:02:25,320 |
|
ูููุฐ ุงูู Hypothesis ุฏูุงูุฉ ุงูู Hypothesis |
|
|
|
30 |
|
00:02:34,120 --> 00:02:38,100 |
|
is far enough to rejected the zero ูุฏู ูููู ุงููุฑู ู
ุง |
|
|
|
31 |
|
00:02:38,100 --> 00:02:41,740 |
|
ุจูู ุงูู mean ููู sample ู ุงูู population ูุนูู ูุฏู |
|
|
|
32 |
|
00:02:41,740 --> 00:02:45,300 |
|
ูููู ุงููุฑู ู
ุง ุจูููู
ูุจูุฑ and we can reject null of |
|
|
|
33 |
|
00:02:45,300 --> 00:02:49,320 |
|
it ูุนูู ูุฏู ูููู ุงูู
ุณุงูุฉ ุจูููู
ูุจูุฑุฉ ุนุดุงู ุฃูุฏุฑ ุฃู |
|
|
|
34 |
|
00:02:49,320 --> 00:02:53,420 |
|
ุฃุฑูุถ ุงููุฑุถูุฉ ุงูุตูุฑูุฉ is how far is far enough ูุฐุง |
|
|
|
35 |
|
00:02:53,420 --> 00:02:55,960 |
|
ุงููู ุฅุญูุง ุจูุดูู ุนููู ู
ู ุฎูุงู ุญุงุฌุฉ ุงุณู
ูุง critical |
|
|
|
36 |
|
00:02:55,960 --> 00:03:02,300 |
|
values ุงูู ุนููุงู ุงูุงุตุทูุงุนู ูุชุฌุงุฑุจ |
|
|
|
37 |
|
00:03:02,300 --> 00:03:09,400 |
|
|
|
|
|
38 |
|
00:03:09,400 --> 00:03:10,220 |
|
|
|
|
|
39 |
|
00:03:10,220 --> 00:03:10,300 |
|
|
|
|
|
40 |
|
00:03:10,300 --> 00:03:14,260 |
|
|
|
|
|
41 |
|
00:03:14,260 --> 00:03:27,080 |
|
|
|
|
|
42 |
|
00:03:30,010 --> 00:03:38,130 |
|
ู
ุซููุงุ ูุญู ูุชุญุฏุซ ุนู ู
ุฌู
ูุนุฉ ุนุงู
ุฉุ ููุงู ุงุชุฌุงูุงุช |
|
|
|
43 |
|
00:03:38,130 --> 00:03:41,970 |
|
ู
ุฎุชููุฉุ ูุงุญุฏุฉ ุชุณู
ู ู
ุฌู
ูุนุฉ ุงุชุฌุงูุงุช ูุง ุงุชุฌุงู |
|
|
|
44 |
|
00:03:41,970 --> 00:03:46,210 |
|
ูุงูุซุงููุฉ ู
ุฌู
ูุนุฉ ุงุชุฌุงูุงุช ูุง ุงุชุฌุงู |
|
|
|
45 |
|
00:03:51,840 --> 00:03:54,180 |
|
ุชููู ููุงู ุฃู
ุงู
ูู |
|
|
|
46 |
|
00:03:54,180 --> 00:03:54,820 |
|
|
|
|
|
47 |
|
00:03:54,820 --> 00:03:57,200 |
|
|
|
|
|
48 |
|
00:03:57,200 --> 00:03:57,940 |
|
|
|
|
|
49 |
|
00:03:57,940 --> 00:04:00,260 |
|
|
|
|
|
50 |
|
00:04:00,260 --> 00:04:02,720 |
|
|
|
|
|
51 |
|
00:04:02,720 --> 00:04:03,820 |
|
|
|
|
|
52 |
|
00:04:03,820 --> 00:04:09,430 |
|
ู
ุน ุฐูู ูู
ูู ุฃู ูููู |
|
|
|
53 |
|
00:04:09,430 --> 00:04:10,190 |
|
|
|
|
|
54 |
|
00:04:10,190 --> 00:04:11,190 |
|
|
|
|
|
55 |
|
00:04:11,190 --> 00:04:14,950 |
|
|
|
|
|
56 |
|
00:04:14,950 --> 00:04:15,610 |
|
|
|
|
|
57 |
|
00:04:15,610 --> 00:04:18,930 |
|
|
|
|
|
58 |
|
00:04:18,930 --> 00:04:23,030 |
|
|
|
|
|
59 |
|
00:04:23,030 --> 00:04:24,330 |
|
|
|
|
|
60 |
|
00:04:24,330 --> 00:04:35,350 |
|
|
|
|
|
61 |
|
00:04:39,620 --> 00:04:45,700 |
|
ุงููุญุธุฉ ูู ุงูู mean ู
ุธุจูุท ุงูู region ูุฏูู ู
ุง ููู
ุฃุจุนุงุฏ ุนู |
|
|
|
62 |
|
00:04:45,700 --> 00:04:50,680 |
|
population ุงูู mean ูุฅุฐุง ูุงู ุฃูุง ู
ูุฌูุฏ ูู ุงูู .. ูู |
|
|
|
63 |
|
00:04:50,680 --> 00:04:52,780 |
|
these regions ูู ุงูู rejection region then we |
|
|
|
64 |
|
00:04:52,780 --> 00:04:56,140 |
|
reject the null hypothesis so suppose we are in |
|
|
|
65 |
|
00:04:56,140 --> 00:05:00,180 |
|
these regions then we reject the null hypothesis |
|
|
|
66 |
|
00:05:00,180 --> 00:05:02,400 |
|
now the question is how can we determine this |
|
|
|
67 |
|
00:05:02,400 --> 00:05:08,870 |
|
region and the other one ูุฐู ุงูุณุคุงู ููู
ุฌูุฏ ุงูููู
|
|
|
|
68 |
|
00:05:08,870 --> 00:05:18,010 |
|
ูุจู ุฐูู ุงุจุญุซ ุนู ุงุชูุงูุงุช ู
ุฎุชููุฉ ุงุณู
ูุง risk in |
|
|
|
69 |
|
00:05:18,010 --> 00:05:20,910 |
|
decision making using hypothesis testing ููุงู |
|
|
|
70 |
|
00:05:20,910 --> 00:05:24,350 |
|
ุงุชูุงูุงุช ู
ุฎุชููุฉ ุฃูู ุงุชูุงูุงุช ู
ุฎุชููุฉ ุงุณู
ูุง type one |
|
|
|
71 |
|
00:05:24,350 --> 00:05:27,530 |
|
type |
|
|
|
72 |
|
00:05:27,530 --> 00:05:31,570 |
|
one error ูุนูู ุงูุฎุทุฃ ู
ู ุงูููุน ุงูุฃูู ุงูู definition |
|
|
|
73 |
|
00:05:31,570 --> 00:05:37,950 |
|
ุชุจุนู ูู type one reject true null hypothesis type |
|
|
|
74 |
|
00:05:37,950 --> 00:05:49,050 |
|
one reject h0 when it is true ุฅุฐุง |
|
|
|
75 |
|
00:05:49,050 --> 00:05:52,050 |
|
ูู ุฃูู ุชุนุฑูู ูุฌุจ ุฃู ุฃุนุฑูู ุงููู ูู ุงูุฎุทุฃ ู
ู ุงูููุน |
|
|
|
76 |
|
00:05:52,050 --> 00:06:00,430 |
|
ุงูุฃูู ุงููู ูู ุนุจุงุฑุฉ ุนู ุฑูุถ h0 ููู ู
ุง ูุงูู ูู ุตุญูุญ |
|
|
|
77 |
|
00:06:00,430 --> 00:06:03,390 |
|
ุฅุฐุง reject h0 when it is true it is type one |
|
|
|
78 |
|
00:06:03,390 --> 00:06:03,690 |
|
error |
|
|
|
79 |
|
00:06:06,470 --> 00:06:11,090 |
|
ุงูู type 1 error is a false alarm ูุทูู ุนููู false |
|
|
|
80 |
|
00:06:11,090 --> 00:06:16,390 |
|
alarm ูุนูู ุชูุจูู ุฃู ุชุนุฐูุฑ ุฃู ูู ุนูุฏู ุฎุทุฃ ูุงูุฎุทุฃ |
|
|
|
81 |
|
00:06:16,390 --> 00:06:22,930 |
|
ุนุจุงุฑุฉ ุนู reject h0 when it's zero is true I mean when |
|
|
|
82 |
|
00:06:22,930 --> 00:06:28,720 |
|
it is true I mean when it's zero is true ุฅุฐุง type |
|
|
|
83 |
|
00:06:28,720 --> 00:06:31,960 |
|
one error it means rejection h0 when in fact |
|
|
|
84 |
|
00:06:31,960 --> 00:06:35,960 |
|
it's h0 is true ุฅุฐุง type ุงูุฎุทุฃ ู
ู ููุน ุงูุฃูู |
|
|
|
85 |
|
00:06:35,960 --> 00:06:41,680 |
|
ู
ุนูุงู ุฑูุถ ุงููุฑุถูุฉ ุงูุตูุฑูุฉ ููู ุฅูุด ููู ุตุญูุญุฉ ุฅุฐุง |
|
|
|
86 |
|
00:06:41,680 --> 00:06:47,960 |
|
ุฃูุง ุฏู ุฃุจูู ุฑูุถ h0 ููู ุตุญูุญุฉ ุฃูุง ุจุฑูุถ ุดูุก |
|
|
|
87 |
|
00:06:47,960 --> 00:06:52,040 |
|
ุตุญ ู
ุน ูุฏู we commit type one error ุงููู ุจุฑูุถ ุดูุก |
|
|
|
88 |
|
00:06:52,040 --> 00:06:55,280 |
|
ุตุญ ู
ุน ูุฏู ูู ุนูุฏู ุฎุทุฃ ู
ุด ููู ูุณู
ูู type one error |
|
|
|
89 |
|
00:06:56,780 --> 00:07:05,100 |
|
ุงูุนููุงู ุงููุงูุนู ููุฎุทุฃ ุงููุงุญุฏ ูู Alpha ุงููุงูุนู |
|
|
|
90 |
|
00:07:05,100 --> 00:07:17,120 |
|
ููุฎุทุฃ |
|
|
|
91 |
|
00:07:17,120 --> 00:07:23,820 |
|
ุงููุงุญุฏ ูุนูู ุงุญุชู
ุงู ุงููููุน ูู ุงูุฎุทุฃ ู
ู ุงูููุน ุงูุฃูู |
|
|
|
92 |
|
00:07:25,430 --> 00:07:30,610 |
|
ูุฐุง ุจูุณู
ูู alpha ูุฐุง pronounced as alpha ูุฐุง |
|
|
|
93 |
|
00:07:30,610 --> 00:07:38,070 |
|
Greek letter alpha ุฒู ู
ูู ู ุฒู ุณูุฌู
ุง Greek letter this |
|
|
|
94 |
|
00:07:38,070 --> 00:07:44,290 |
|
alpha is called level |
|
|
|
95 |
|
00:07:44,290 --> 00:07:45,890 |
|
of significance of the test |
|
|
|
96 |
|
00:07:52,460 --> 00:07:55,300 |
|
ุงููุจูุฑ ู
ุซููุง ููุง ู
ุณุชูู ุงูู
ุนูููุฉ ุฃู ู
ุณุชูู ุงูุฃูู
ูุฉ |
|
|
|
97 |
|
00:07:55,300 --> 00:08:03,360 |
|
ูุณู
ููุง alpha is level of significance ูู |
|
|
|
98 |
|
00:08:03,360 --> 00:08:09,180 |
|
ู
ุณุชูู ุงูู
ุนูููุฉ this |
|
|
|
99 |
|
00:08:09,180 --> 00:08:13,540 |
|
alpha is set by researcher in advance ุงููู ุจูุญุทูุง |
|
|
|
100 |
|
00:08:13,540 --> 00:08:17,380 |
|
ูููุณุฉ ู
ู ุงูุจุฏุงูุฉ ูุฐุง ุฃูุง ูู ุนููู ุชุนุฑูู ู
ูู
ููุฐุง |
|
|
|
101 |
|
00:08:17,380 --> 00:08:20,680 |
|
ุญุงุฌุฉ ุบุฑูุจุฉ ุดูู ูุจูุฑ it's called type one error ุงููู |
|
|
|
102 |
|
00:08:20,680 --> 00:08:25,420 |
|
ูู ุงูุฎุทุฃ ู
ู ุงูููุน ุงูุฃูู ุชุนุฑููู reject true null |
|
|
|
103 |
|
00:08:25,420 --> 00:08:28,440 |
|
hypothesis it means we reject the null hypothesis |
|
|
|
104 |
|
00:08:28,440 --> 00:08:31,860 |
|
when in fact it is true ูุนูู ุจุฑูุถู ููู ุงููุงูุน |
|
|
|
105 |
|
00:08:31,860 --> 00:08:36,420 |
|
ู
ุนู ุตุญ ูู ุจุฑูุถ ุดูุก ุตุญ ู
ุน ูุฏู ูุนูุฏู ุฎุทุฃ ูุฐุง ุฎุทุฃ |
|
|
|
106 |
|
00:08:36,420 --> 00:08:42,820 |
|
ุจุณู
ูู ุฎุทุฃ ู
ู ุงูููุน ุงูุฃูู type one error ุงูุณุคุงู |
|
|
|
107 |
|
00:08:42,820 --> 00:08:45,580 |
|
ุงูุซุงูู ูู ุงุญุชู
ุงู ุงููููุน ูู ุงูุฎุทุฃ ู
ู ุงูููุน ุงูุฃูู |
|
|
|
108 |
|
00:08:45,580 --> 00:08:49,800 |
|
ุจุงุณู
ู Alpha ุฅุฐุง ุงุญุชู
ุงู ูุฐุง ุงูุฎุทุฃ ูู ุงุญุชู
ุงู ุงููููุน |
|
|
|
109 |
|
00:08:49,800 --> 00:08:52,840 |
|
ูู ุงูุฎุทุฃ ู
ู ุงูููุน ุงูุฃูู ุจุงุณู
ู Alpha ุฅุฐุง Alpha |
|
|
|
110 |
|
00:08:52,840 --> 00:09:01,700 |
|
ุนุจุงุฑุฉ ุนู ุงุญุชู
ุงู ุงููููุน ูู ุงูุฎุทุฃ ู
ู ุงูููุน ุงูุฃูู |
|
|
|
111 |
|
00:09:01,700 --> 00:09:05,700 |
|
ู
ุงูู ููู
ุฉ Alphaุ |
|
|
|
112 |
|
00:09:10,610 --> 00:09:14,630 |
|
ุงูููู
ุฉ Alpha ุจูุญุทูุง ุงูุจุงุญุซ ูู ุงูุจุฏุงูุฉ Do you think |
|
|
|
113 |
|
00:09:14,630 --> 00:09:19,050 |
|
Alpha is large or smallุ ุฃุชููุน Alpha ุชููู ุตุบูุฑุฉ ููุง |
|
|
|
114 |
|
00:09:19,050 --> 00:09:22,550 |
|
ูุจูุฑุฉุ ูุงุฒู
ุชููู ุตุบูุฑุฉ ูุฅูุดุ ูุฅู ุฅุญูุง we reject |
|
|
|
115 |
|
00:09:22,550 --> 00:09:27,290 |
|
true null ุจุฑูุถ ุดูุก ุตุญ ู
ุง ุจูู ูุฏู ุจุชุฎูู ุฎุทุฃ |
|
|
|
116 |
|
00:09:27,290 --> 00:09:32,390 |
|
ุฃุนู
ุงูู ุตุบูุฑุฉ ูุจุงูุชุงูู Alpha should be small the |
|
|
|
117 |
|
00:09:32,390 --> 00:09:34,230 |
|
other error is called type 2 error |
|
|
|
118 |
|
00:09:40,130 --> 00:09:44,430 |
|
ุฎุทุฃ ู
ู ุงูููุน ุงูุซุงูู ุงูู complement ุชุจุน type 1 error |
|
|
|
119 |
|
00:09:44,430 --> 00:09:48,210 |
|
ุงูู ู
ูู
ู ุฅูู ููุ ุฅูุด ุงูู type 1 errorุ reject |
|
|
|
120 |
|
00:09:48,210 --> 00:09:52,190 |
|
true null hypothesis ุงูุซุงูู ุฅูุด ู
ูุชูุจ ุนูููุ |
|
|
|
121 |
|
00:09:52,190 --> 00:09:55,850 |
|
failure to reject false null hypothesis ุงููุญุธุฉ ุนูุณู |
|
|
|
122 |
|
00:09:55,850 --> 00:09:59,850 |
|
ุชู
ุงู
ูุง ููุง ุจูุญูู reject ุงูุซุงูู ุฅูุด ู
ูุฌูุฏุ failure |
|
|
|
123 |
|
00:09:59,850 --> 00:10:03,090 |
|
to .. ุฅูุด ู
ุนูุงู failure to rejectุ ูุดูุ ุนุฏู
ุฑูุถ |
|
|
|
124 |
|
00:10:05,790 --> 00:10:10,210 |
|
failure to reject ููุง ุฅูุด ูุงู true ุฅูุด ุตุงุฑ false |
|
|
|
125 |
|
00:10:10,210 --> 00:10:15,670 |
|
ุฅุฐุง ุงูุงุซููู ู
ูู
ูุงุช ูุจุนุถ ุฅุฐุง failure to reject |
|
|
|
126 |
|
00:10:15,670 --> 00:10:22,670 |
|
false ููุนุจ false ูุณู
ูู type two error ุฅุฐุง ุงูุนูุณ |
|
|
|
127 |
|
00:10:22,670 --> 00:10:24,930 |
|
ุงููู ููุง ุจุฏู ู
ุง ุฃุญูู reject ุฃุญูููุงุด failure |
|
|
|
128 |
|
00:10:24,930 --> 00:10:34,580 |
|
failure to reject h0 ูุนูู you can say just |
|
|
|
129 |
|
00:10:34,580 --> 00:10:38,520 |
|
accept but it's better to say failure to reject so |
|
|
|
130 |
|
00:10:38,520 --> 00:10:42,580 |
|
we are usually we prefer to say failure to reject |
|
|
|
131 |
|
00:10:42,580 --> 00:10:46,720 |
|
or don't reject don't say accept ุฒู ู
ุง ุจูุญูู ุฏุงุฆู
ูุง |
|
|
|
132 |
|
00:10:46,720 --> 00:10:51,020 |
|
ุนุฏู
ุฑูุถ ู
ุง ุจูุญููุด ูุจูู ุฅุฐุง failure to reject is |
|
|
|
133 |
|
00:10:51,020 --> 00:10:57,320 |
|
h0 when it is false when it's h0 is false ูุนูู |
|
|
|
134 |
|
00:10:57,320 --> 00:11:03,970 |
|
ู
ุด ู
ุนูุงู ุนุฏู
ู
ุด ูุงุญุธ ููุง ู
ุด ู
ูุฌูุฏ ุฑูุถ ุฅูุด ุจูุตูุฑ ุนุฏู
|
|
|
|
135 |
|
00:11:03,970 --> 00:11:11,590 |
|
ุฑูุถู ุนุฏู
ุฑูุถ ุงูู h0 ููู ุฎุงุทุฆุฉ ุฃูุง ุจุฑูุถุด ุดูุก ุบูุท |
|
|
|
136 |
|
00:11:11,590 --> 00:11:17,770 |
|
ุจุฑูุถุด ูุนูู ุจูุจู ุดูุก ุฎุทุฃ ู
ุน ูู ูุนู ุฏู ุบูุท ุฅุฐุง when |
|
|
|
137 |
|
00:11:17,770 --> 00:11:19,930 |
|
we don't reject the null hypothesis when the fact |
|
|
|
138 |
|
00:11:19,930 --> 00:11:24,690 |
|
is false it means we commit type 2 error ูุงุถุญ ูู
ุง |
|
|
|
139 |
|
00:11:24,690 --> 00:11:31,690 |
|
ุจุฑูุถุด ุดูุก ุบูุท ููุนุช ุฎุทุฃ this error is called type 2 |
|
|
|
140 |
|
00:11:31,690 --> 00:11:37,620 |
|
error ูู ุฃุณูุฃ ู
ู ุงูุฏู
ุงุบ ุงูู type 1ุ ูู
ุง ุงูุงุซููู ุนูุณ |
|
|
|
141 |
|
00:11:37,620 --> 00:11:42,460 |
|
ุจุนุถ ุฅุญูุง ููุฑูุฒ ุนูู ูุงุญุฏ ู
ููู
ุจุนุฏ ุดููุฉ ุงูู |
|
|
|
142 |
|
00:11:42,460 --> 00:11:46,800 |
|
probability of type two error is beta |
|
|
|
143 |
|
00:11:46,800 --> 00:11:56,400 |
|
ููุทู beta ู
ุด beta ุงูู probability ุงูู probability |
|
|
|
144 |
|
00:11:56,400 --> 00:12:08,750 |
|
of type two error ููุง ููุง ูุณู
ููุง alpha ูู ุชูุชุจ beta |
|
|
|
145 |
|
00:12:08,750 --> 00:12:16,310 |
|
ุจุณ ุชูุชุจ beta ููู ุจุณ ููุทู beta ู
ุง ููุด ุญุงุฌุฉ ุงุณู
ูุง |
|
|
|
146 |
|
00:12:16,310 --> 00:12:21,270 |
|
beta ูู ุงูู curriculum beta, theta and so on ุฅุฐุง |
|
|
|
147 |
|
00:12:21,270 --> 00:12:24,090 |
|
there are two types of error one is called type |
|
|
|
148 |
|
00:12:24,090 --> 00:12:29,170 |
|
one type one it means we reject true null |
|
|
|
149 |
|
00:12:29,170 --> 00:12:33,910 |
|
hypothesis ูุฑูุถ ุงููุฑุถูุฉ ุงูุตูุฑูุฉ ุตุญ ุจุงููุณุจุฉ ููู |
|
|
|
150 |
|
00:12:33,910 --> 00:12:36,050 |
|
Probability ุชุจุน ุงูู Type I Error ุชุณู
ู Alpha ู |
|
|
|
151 |
|
00:12:36,050 --> 00:12:39,050 |
|
Alpha ุชุณู
ู Level of Significance ุงูู Type II Error |
|
|
|
152 |
|
00:12:39,050 --> 00:12:43,290 |
|
ูุนูู ุฃููุง ูุง ูุฑูุถ false null hypothesis ู |
|
|
|
153 |
|
00:12:43,290 --> 00:12:48,690 |
|
Probability ูุณู
ููุง Beta ูุฐูู ุงูู Two Types Of Error |
|
|
|
154 |
|
00:12:48,690 --> 00:12:57,270 |
|
ุงูุขู ูุฐุง ุงูููุงู
ูู
ุซู ุญุงูุฉ ุงูุชุฑุฌู
ุฉ ุฃู ูุง ุชุฑุฌู
ุฉ ุงูุขู |
|
|
|
155 |
|
00:12:57,270 --> 00:13:07,290 |
|
ูุฑุงุฑ ุชุจุนูุง either don't reject ุฃู reject ุงููุถุน |
|
|
|
156 |
|
00:13:07,290 --> 00:13:13,990 |
|
ุงูุญูููู ุฅู
ุง H0 ูู ุตุญ ุฃู H0 ูู ุฎุงุทุฆ ุฅุฐุง H0 ูุงูุช ุตุญ |
|
|
|
157 |
|
00:13:13,990 --> 00:13:23,330 |
|
ุฃู ุฎุงุทุฆุฉ ูุฑุงุฑู ุฅู
ุง ุนุฏู
ุฑูุถ ุฃู ุฑูุถ ูู
ุณู |
|
|
|
158 |
|
00:13:23,330 --> 00:13:27,690 |
|
ูุงุญุฏ ูุงุญุฏ ูู ุญููุช don't reject h0 when it is |
|
|
|
159 |
|
00:13:27,690 --> 00:13:34,630 |
|
true ุจุฑูุถุด ุดูุก ุตุญูุญ ูุนูู ุจูุจู ุดูุก ุตุญูุญ ู
ุนูุงู ุฅูุดุ no |
|
|
|
160 |
|
00:13:34,630 --> 00:13:40,070 |
|
error ุฅุฐุง ูุฐุง correct decision ุฅุฐุง ูุฐุง correct |
|
|
|
161 |
|
00:13:40,070 --> 00:13:49,310 |
|
ูุนูู ูุฑุงุฑ ู
ุง ูู ุตุญูุญ ุฅุฐุง don't reject h0 when |
|
|
|
162 |
|
00:13:49,310 --> 00:13:53,770 |
|
fact it is true it means correct decision ูุฑุงุฑ |
|
|
|
163 |
|
00:13:53,770 --> 00:14:02,340 |
|
ุตุญูุญ ุฎูุงุต ุจุฑุถู ูู
ุง ุจุญูู rejected h0 when it is |
|
|
|
164 |
|
00:14:02,340 --> 00:14:09,940 |
|
false ุจุฑูุถ ุดูุก ุฎุทุฃ ุฃูุง ุจุฑูุถ ุดูุก ุบูุท ูุฑุงุฑ ุตุญ ููุง .. |
|
|
|
165 |
|
00:14:09,940 --> 00:14:17,240 |
|
ููุง .. ุฅุฐุง ูุฐุง ุตุญ ุฅุฐุง ูุฐุง correct decision ุฅุฐุง |
|
|
|
166 |
|
00:14:17,240 --> 00:14:23,200 |
|
ุงููุฑุงุฑ ุณููู
ุจูุฌู ูู ุญุงูุชูู ุฅู
ุง ุนุฏู
ุฑูุถ ุดูุก ุตุญูุญ ุฃู |
|
|
|
167 |
|
00:14:23,200 --> 00:14:27,580 |
|
ุฑูุถ ุดูุก ุฎุงุทุฆ ู
ุธุจูุท ูุฏูู ุงุซููู correct decision ุนูุณ |
|
|
|
168 |
|
00:14:27,580 --> 00:14:31,100 |
|
ุงููู ูุงุชูุง ูุฃู ุงูู type one error ุจูุฌู ู
ู ููู ููุฑุฃ |
|
|
|
169 |
|
00:14:31,100 --> 00:14:35,300 |
|
ู
ู ููุงู ููุฑุฃ |
|
|
|
170 |
|
00:14:35,300 --> 00:14:37,660 |
|
ู
ู ููุงู ููุฑุฃ ู
ู ููุงู ููุฑุฃ ู
ู ููุงู ููุฑุฃ ู
ู ููุงู |
|
|
|
171 |
|
00:14:37,660 --> 00:14:37,740 |
|
ููุงู ููุฑุฃ ู
ู ููุงู ููุฑุฃ ู
ู ููุงู ููุฑุฃ ู
ู ููุงู |
|
|
|
172 |
|
00:14:37,740 --> 00:14:37,940 |
|
ู
ู ููุงู ููุฑุฃ ู
ู ููุงู ููุฑุฃ ู
ู ููุงู ููุฑุฃ ู
ู ููุงู |
|
|
|
173 |
|
00:14:37,940 --> 00:14:38,620 |
|
ู
ู ููุงู ููุฑุฃ ู
ู ููุงู ููุฑุฃ ู
ู ููุงู ููุฑุฃ ู
ู ููุงู |
|
|
|
174 |
|
00:14:38,620 --> 00:14:53,720 |
|
ููุฑุฃ ู
ู ููุงู ููุฑุฃ ู
ู |
|
|
|
175 |
|
00:14:53,720 --> 00:14:57,310 |
|
ููุงู ูุฐูู ุงุซููู complement ุฅุฐุง ูุฐู alpha ุฅูุด ุจุชููู |
|
|
|
176 |
|
00:14:57,310 --> 00:15:02,030 |
|
ุงููุงุญุฏ ูุงูุต alpha ุฅุฐุง ูุฐู beta ุงูุซุงููุฉ ูุงุญุฏ ูุงูุต |
|
|
|
177 |
|
00:15:02,030 --> 00:15:06,150 |
|
beta ุชู
ุงู
ุฃุญุณู ูุงุญุฏุฉ ูููู
ูุนูู ุงูู power ููู test |
|
|
|
178 |
|
00:15:06,150 --> 00:15:11,490 |
|
ุจุชููู ู
ู ุฌุงูุฉ ูู
ุง we reject ุดูุก ุฎุทุฃ ู
ุธุจูุท ูู
ุง ุจุฑูุถ |
|
|
|
179 |
|
00:15:11,490 --> 00:15:15,470 |
|
ุดูุก ุบูุท ู
ุน ูุฏู ูู ุนูุฏู ููุฉ ุฅุฐุง probability h0 |
|
|
|
180 |
|
00:15:15,470 --> 00:15:21,090 |
|
when we reject h0 when it is false it's called |
|
|
|
181 |
|
00:15:22,520 --> 00:15:26,500 |
|
ุงูู Power ุงูู Power ููุชุณุช ุนุจุงุฑุฉ ุนู 1-ฮฒ ููุฉ |
|
|
|
182 |
|
00:15:26,500 --> 00:15:30,660 |
|
ุงูุงุฎุชุจุงุฑ ุจุชูุฌู ู
ู ุฎูุงู ุฑูุถู ูููุฑุถูุฉ ุงูุตูุฑูุฉ ููู |
|
|
|
183 |
|
00:15:30,660 --> 00:15:43,440 |
|
ุฅูุด ุงูู power ู
ุนูุงูุง reject h0 when it is |
|
|
|
184 |
|
00:15:43,440 --> 00:15:51,060 |
|
false ุงูู probability ุงููู ูู 1-ฮฒ ูู ุจุชุณู
ููุง ุงูู |
|
|
|
185 |
|
00:15:51,060 --> 00:15:55,370 |
|
power ููุชุณุช ุฅุฐุง ุงูู power ููู test ุนุจุงุฑุฉ ุนู one minus |
|
|
|
186 |
|
00:15:55,370 --> 00:16:01,390 |
|
beta ุฅูุด betaุ ูู beta ุงููู ูู probability of type |
|
|
|
187 |
|
00:16:01,390 --> 00:16:04,210 |
|
two error type two error ุนุจุงุฑุฉ ุนู failure to |
|
|
|
188 |
|
00:16:04,210 --> 00:16:08,750 |
|
reject h0 when it is false ุฎูุงุต ุฅุฐุง ุฏูู |
|
|
|
189 |
|
00:16:08,750 --> 00:16:13,750 |
|
ุงูุฃุฑุจุน ุญุงุฌุงุช ูุงุฒู
ุฃุนุฑููู
ูู ุนูุฏู correct decision |
|
|
|
190 |
|
00:16:13,750 --> 00:16:16,490 |
|
either don't reject h0 when it is true or |
|
|
|
191 |
|
00:16:16,490 --> 00:16:20,070 |
|
reject h0 when it is false Type 1 Error ูุนูู |
|
|
|
192 |
|
00:16:20,070 --> 00:16:24,290 |
|
ุฅูู ู
ุฌุฑุฏ ุฅ |
|
|
|
216 |
|
00:17:54,330 --> 00:18:00,310 |
|
alpha equal five percent ุงู |
|
|
|
217 |
|
00:18:00,310 --> 00:18:05,530 |
|
one minus alpha ุฅูุด ูุชุณุงูู 95% ุงููู ูู ูุงุญุฏ ูุงูุต |
|
218 |
|
00:18:05,530 --> 00:18:07,550 |
|
ุฎู
ุณุฉ ูู ุงูู
ูุฉ ุงููู ูู ุงูู complement ุงููู ูู |
|
|
|
219 |
|
00:18:07,550 --> 00:18:10,150 |
|
probability of not rejecting zero when it is true |
|
|
|
220 |
|
00:18:10,150 --> 00:18:14,210 |
|
The confidence level of a hypothesis test is one |
|
|
|
221 |
|
00:18:14,210 --> 00:18:17,250 |
|
minus alpha times one hundred percent ูู ุฃุทูุน ูุณุจุฉ |
|
|
|
222 |
|
00:18:17,250 --> 00:18:22,960 |
|
ุงูู
ุฆููุฉ ุฅูุด ุจุฃุนู
ูุ ุจุงุฌู ูุฐู ู
ุงุฐุง ุจุนู
ู ูููุงุ ุจุถุฑุจูุง |
|
|
|
223 |
|
00:18:22,960 --> 00:18:27,100 |
|
ูู 100 ูุชุทูุน ู
ุนุงูุง ุฅูุดุ ุฅุฐุง ุจุญูู point nine five |
|
|
|
224 |
|
00:18:27,100 --> 00:18:32,760 |
|
ููู ุชุทูุน ูุณุจุงูู ุงูู
ุฆููุฉุ ุชุถุฑุจููุง ูู 100 ููุฐุง ุญุณุงุจ |
|
|
|
225 |
|
00:18:32,760 --> 00:18:37,960 |
|
95% ูุฐู ุจูุณู
ููุง the confidence level ูุนูู ุฅูุดุ |
|
|
|
226 |
|
00:18:37,960 --> 00:18:44,380 |
|
ู
ุณุชูู ุงูุซูุฉ ุฅุฐุง ุฅุฐุง ูุงู ุงูุฎุทุฃ 5% ุงูุซูุฉ ุฅูุด ุจุชูููุ |
|
|
|
227 |
|
00:18:44,380 --> 00:18:50,200 |
|
95 ูู ุงูู complement ุจุชุงุนุชูุง ุฅุฐุง ุฅุฐุง Alpha ุงููู ูู |
|
|
|
228 |
|
00:18:50,200 --> 00:18:54,680 |
|
ุชุนุฑูููุง ู
ุฑุฉ ุซุงููุฉ Alpha probability of type one |
|
|
|
229 |
|
00:18:54,680 --> 00:18:57,900 |
|
error ูุนูู Alpha ุนุจุงุฑุฉ ุนู probability of rejecting |
|
|
|
230 |
|
00:18:57,900 --> 00:19:01,260 |
|
zero when it is true ูุงูู one minus Alpha ุนุจุงุฑุฉ ุนู |
|
|
|
231 |
|
00:19:01,260 --> 00:19:03,640 |
|
probability of not rejecting zero when it is true |
|
|
|
232 |
|
00:19:03,640 --> 00:19:08,420 |
|
ุงูู one minus Alpha is called confidence level |
|
|
|
233 |
|
00:19:08,420 --> 00:19:11,860 |
|
ู
ุณุชูู ุงูุซูุฉ ููู Alpha is one percent it means one |
|
|
|
234 |
|
00:19:11,860 --> 00:19:15,680 |
|
minus Alpha is nine nine percent and so on the |
|
|
|
235 |
|
00:19:15,680 --> 00:19:19,700 |
|
power of a statistical power ุงูููุฉ ุงูุงุฎุชุจุงุฑ ุงููู |
|
|
|
236 |
|
00:19:19,700 --> 00:19:23,180 |
|
ุญููุช ุนูููุง ุนุจุงุฑุฉ ุนู ู
ูู one minus beta is a |
|
|
|
237 |
|
00:19:23,180 --> 00:19:26,140 |
|
probability of rejecting a zero when it is false |
|
|
|
238 |
|
00:19:26,140 --> 00:19:30,320 |
|
ุงููู ูุงูุช ุฃุฎุฑ ุญุฏุซ ูู ุงูุฌุฏูู ูููุง ุฏู rejected zero |
|
|
|
239 |
|
00:19:30,320 --> 00:19:33,260 |
|
when it is false is called the power of the test |
|
|
|
240 |
|
00:19:33,260 --> 00:19:36,780 |
|
ุฅุฐุง ุงูู power ุนุจุงุฑุฉ ุนู rejected zero when in fact |
|
|
|
241 |
|
00:19:36,780 --> 00:19:41,340 |
|
it is false ุจุฑูุถ ุดูุก ุบูุท ูุฐุง ุนุจุงุฑุฉ ุนู ููุฉ ุงูุงุฎุชุจุงุฑ |
|
|
|
242 |
|
00:19:41,340 --> 00:19:46,990 |
|
ูุฏูู definitions ุงููู ุฃุนุฑูููู
ุงูุขู ููุนุทู ูู two |
|
|
|
243 |
|
00:19:46,990 --> 00:19:50,470 |
|
slides ุงูู relationship between type 1 and type 2 |
|
|
|
244 |
|
00:19:50,470 --> 00:19:53,830 |
|
errors ุงูุนูุงูุฉ ู
ุง ุจูู ุงูุฎุทุฃ ู
ู ุงูููุน ุงูุฃูู ู ุงูุฎุทุฃ ู
ู |
|
|
|
245 |
|
00:19:53,830 --> 00:19:54,750 |
|
ุงูููุน ุงูุซุงูู |
|
|
|
246 |
|
00:20:14,190 --> 00:20:17,270 |
|
ุงูู type 1 ู ุงูู type 2 ูุง ูู
ูู ุฃู ูุญุฏุซูุง ูู ููุณ |
|
|
|
247 |
|
00:20:17,270 --> 00:20:21,250 |
|
ุงูููุช ุงูุงุซููู ูุง ูุญุฏุซูุง ู
ุน ุจุนุถ ุงูุณุจุจ ูู ุทูุนุช ุนูู |
|
|
|
248 |
|
00:20:21,250 --> 00:20:26,390 |
|
ุงูู definitions ุงูู type 1 error ูุง ุชูุฌุญ ูู ุงูู |
|
|
|
249 |
|
00:20:26,390 --> 00:20:30,770 |
|
zero ู ุงูู true ุงูู type 2 error ุฅุฐุง ูู ุงูู type 1 |
|
|
|
250 |
|
00:20:30,770 --> 00:20:35,150 |
|
ุชูุฌุญ ูู ุงูู zero ู ุงูู true ุงูู |
|
|
|
251 |
|
00:20:35,150 --> 00:20:39,450 |
|
type 2 ุนูุณู ูุญุธุฉ ุจูุญูู ุชูุฌุญ ูู ุงูู zero ู ุงูู true |
|
|
|
252 |
|
00:20:39,450 --> 00:20:43,580 |
|
ุงูุซุงูู ุนุจุงุฑุฉ ุนู ุฅูุดุ don't reject a zero when it is |
|
|
|
253 |
|
00:20:43,580 --> 00:20:47,360 |
|
false ุฅุฐุง ูุฐูู ุงุซููู ู
ุง ูุญุฏุซูุด ู
ุน ุจุนุถ ุฅุฐุง type one |
|
|
|
254 |
|
00:20:47,360 --> 00:20:53,820 |
|
and type two errors ูุนู
ู
ุด ุตุญูุญ ูุนูู ู
ู
ููุด ุฃุฑูุถ ู |
|
|
|
255 |
|
00:20:53,820 --> 00:20:59,180 |
|
ุฃูุจู ูู ููุณ ุงููุญุธุฉ ู
ุธุจูุท |
|
|
|
256 |
|
00:20:59,180 --> 00:21:02,420 |
|
ููู ุฅุฐุง type one and type two errors cannot happen |
|
|
|
257 |
|
00:21:02,420 --> 00:21:08,090 |
|
at the same time ุงูุณุจุจ ุฒู ุฒู
ููุชู ุจุญูุช type 1 error |
|
|
|
258 |
|
00:21:08,090 --> 00:21:12,930 |
|
can only occur if its 0 is true ู
ุธุจูุท type 1 |
|
|
|
259 |
|
00:21:12,930 --> 00:21:17,950 |
|
rejects 0 when it is true type 2 can only occur if |
|
|
|
260 |
|
00:21:17,950 --> 00:21:21,930 |
|
its 0 is false ุงููู ูู we don't reject its 0 when |
|
|
|
261 |
|
00:21:21,930 --> 00:21:26,050 |
|
it is false for this reason type 1 and 2 error |
|
|
|
262 |
|
00:21:26,050 --> 00:21:31,750 |
|
cannot happen at the same time ูุฃู ูู ูุงุญุฏ ุจูุญุฏุซ |
|
|
|
263 |
|
00:21:31,750 --> 00:21:35,670 |
|
ูู
ุง H0 ุชููู ุตุญูุญุฉ ู ุงูุซุงูู ุจูุญุฏุซ ุฅุฐุง ูุงูุช ุงูู 0 ุฎุงุทุฆุฉ |
|
|
|
264 |
|
00:21:35,670 --> 00:21:39,790 |
|
ูุจุงูุชุงูู ุญุฏูุซูู
ู
ุน ุจุนุถ ุจูููู conflict of interest |
|
|
|
265 |
|
00:21:39,790 --> 00:21:43,190 |
|
ู
ูุฌูุฏุด ู
ุน ุจุนุถ ูุจุงูุชุงูู ู
ุด ู
ู
ูู ูุญุฏุซ ุฃู ุงูู type I ุฃู |
|
|
|
266 |
|
00:21:43,190 --> 00:21:45,470 |
|
ุงูู type II error happened at the same time |
|
|
|
267 |
|
00:21:45,470 --> 00:21:49,990 |
|
furthermore if type I error probability ฮฑ |
|
|
|
268 |
|
00:21:49,990 --> 00:21:53,950 |
|
increases ุฅุฐุง Alpha ุฒุงุฏุช ุงูู type II error |
|
|
|
269 |
|
00:21:53,950 --> 00:21:59,150 |
|
probability decreases ูุนูู ุฅุฐุง type I error ุฒุงุฏ ุงูู |
|
|
|
270 |
|
00:21:59,150 --> 00:22:03,630 |
|
1- ฮฒ ุงูู Beta ููุณูุง ู
ุงููุง ุจุชูู ูุนูู ูู ุนูุงูุฉ ุนูุณูุฉ |
|
|
|
271 |
|
00:22:03,630 --> 00:22:06,230 |
|
ู
ุง ุจูู ุงูุงุซููู ุฅุฐุงู there is inverse relationship |
|
|
|
272 |
|
00:22:06,230 --> 00:22:08,810 |
|
between type 1 and type 2 here ุฅุฐุงู if Alpha |
|
|
|
273 |
|
00:22:08,810 --> 00:22:13,770 |
|
increases Beta ู
ุงููุง decreases ุทุจ ุฃุญูู Alpha |
|
|
|
274 |
|
00:22:13,770 --> 00:22:23,370 |
|
ุจุงูุฒูุงุฏุฉ ุงูู Beta ู
ุงููุง ุจุชูู ุทุจ ุงูู 1-Beta ูู
ุง ุจุญูู |
|
|
|
275 |
|
00:22:23,370 --> 00:22:32,020 |
|
Beta ููุตุชุงููุง ูุงุญุฏ ูุงูุต ุจูุชุง ู
ุงูู ุจูุฒูุฏ ุทุจุนุง ู
ุด ุนูุฏู |
|
|
|
276 |
|
00:22:32,020 --> 00:22:35,140 |
|
ูุงุญุฏ ูุงูุต ุจูุชุง ูุนูู ุชุฎููู ุจูุชุง ุจุชุณุงูู ุงุซููู ู
ู |
|
|
|
277 |
|
00:22:35,140 --> 00:22:40,600 |
|
ุงูู
ูุฉ ุฅูุด ูุงุญุฏ ูุงูุต ุจูุชุง ุฃู ุจูุชุง one minus ุจูุชุง ูู |
|
|
|
278 |
|
00:22:40,600 --> 00:22:46,540 |
|
ูุงุฏ ุจุงุซููู ุฅูุด ูุชููู ูู ูุงุฏ ุจุชูุงุชุฉ ูู ูุงุฏ ุจูู |
|
|
|
279 |
|
00:22:46,540 --> 00:22:52,310 |
|
ุฃุฑุจุนุฉ ู
ุง ุนูุฏุง ูู beta ู
ุง ุจูุฒูุฏ ุงูู one minus beta |
|
|
|
280 |
|
00:22:52,310 --> 00:22:56,450 |
|
ู
ุงูู ุจููู ุนูุงูุฉ ุนูุณูุฉ ุจูููู
ูุงูู beta ุงููู ู
ุง ุจุชูู |
|
|
|
281 |
|
00:22:56,450 --> 00:23:00,930 |
|
ุงูู one minus beta ู
ุงููุง ุจูุฒูุฏ ุฅุฐุง alpha ุจูุฒูุฏ ู |
|
|
|
282 |
|
00:23:00,930 --> 00:23:07,930 |
|
beta ู
ุงููุง ุจุชูู ูุฐุง ูุงุญุฏ all else equal beta |
|
|
|
283 |
|
00:23:07,930 --> 00:23:12,930 |
|
decreases ููุชุด ุงูู beta ุจูุฒูุฏ ุฅูุด ุงูู beta ุงููู ูู |
|
|
|
284 |
|
00:23:12,930 --> 00:23:18,070 |
|
don't reject zero when .. ุฎูููู ุฃูุชุจ ุจุชุงุนุชูุง ูู ุงูู |
|
|
|
285 |
|
00:23:18,070 --> 00:23:29,870 |
|
beta fail or failure to reject its zero when it is |
|
|
|
286 |
|
00:23:29,870 --> 00:23:34,650 |
|
false failure to reject when it is false ุจุญูู beta |
|
|
|
287 |
|
00:23:34,650 --> 00:23:40,390 |
|
increases ูุนูู ุนุฏู
ุฑูุถู ูููุฑุถูุฉ ุงูุตูุฑูุฉ ู ูู ุบูุท |
|
|
|
288 |
|
00:23:41,780 --> 00:23:46,540 |
|
ูุฐุง ุจูุฒูุฏ ุงุญุชู
ุงู ุนุฏู
ุฑูุถู ูุดูุก ุฎุงุทุฆ ุจูุฒูุฏ ูุฐุง ุจูุญุฏุซ |
|
|
|
289 |
|
00:23:46,540 --> 00:23:49,540 |
|
ูู ุขู when the difference between the hypothesized |
|
|
|
290 |
|
00:23:49,540 --> 00:23:53,880 |
|
parameter and true parameter decreases ูู
ุง ูููู |
|
|
|
291 |
|
00:23:53,880 --> 00:23:59,560 |
|
ุงููุฑู ู
ุง ุจูู beta ุจูุฒูุฏ ุงูุฎุทุฃ ูุฐุง ุจูุฒูุฏ ุงููู ูู ุฑูุถู |
|
|
|
292 |
|
00:23:59,560 --> 00:24:02,620 |
|
ุนุฏู
ุฑูุถู ูููุฑุถูุฉ ุงูุตูุฑูุฉ ููู ูู ุงููุงูุน ุฎุงุทุฆุฉ ูุฐุง |
|
|
|
293 |
|
00:24:02,620 --> 00:24:05,800 |
|
ุจูุฒูุฏ ูู
ุง ุงููุฑู between ุงูู hypothesized parameter |
|
|
|
294 |
|
00:24:05,800 --> 00:24:10,640 |
|
and true value decreases ูุนูู ููู ุชุฐูุฑ ุญูููุง mu |
|
|
|
295 |
|
00:24:10,640 --> 00:24:18,160 |
|
equal to 30 ูุฐู ูุณู
ููุง 30 hypothesized parameter ูุฐู |
|
|
|
296 |
|
00:24:18,160 --> 00:24:23,420 |
|
ูุณู
ููุง hypothesized parameter |
|
|
|
297 |
|
00:24:23,420 --> 00:24:27,780 |
|
ูุงูู |
|
|
|
298 |
|
00:24:27,780 --> 00:24:35,060 |
|
x bar equal for example is 26 ุจูุณู
ููุง ุงูู true |
|
|
|
299 |
|
00:24:35,060 --> 00:24:37,080 |
|
value ูุฐู ูุณู
ููุง ุงูู sample mean |
|
|
|
300 |
|
00:24:41,220 --> 00:24:42,920 |
|
ูู ุจูุญูู where is the difference between a |
|
|
|
301 |
|
00:24:42,920 --> 00:24:48,400 |
|
hypothesized parameter ูุฐุง ุฃูุง ุจูุชุฑุถูุง ูู ุนูุฏู ุงูู |
|
|
|
302 |
|
00:24:48,400 --> 00:24:53,420 |
|
true parameter ูุฐุง ุงูู true parameter ูู
ุง |
|
|
|
303 |
|
00:24:53,420 --> 00:24:55,780 |
|
ูููู ุงููุฑู ู
ุง ุจูู ุงูุงุซููู ูุฏูู ุงูู hypothesized |
|
|
|
304 |
|
00:24:55,780 --> 00:24:59,020 |
|
ุงูุซูุงุซูู ู ุงูู true parameter decreases ุงูู beta |
|
|
|
305 |
|
00:24:59,020 --> 00:25:03,340 |
|
ู
ุงููุง ุจุชุฒูุฏ ุฅุฐุง ูู ู
ุง ูุงู ุงููุฑู ู
ุง ุจูู ุงูููู
ุฉ |
|
|
|
306 |
|
00:25:03,340 --> 00:25:07,400 |
|
ุงูุงูุชุฑุงุถูุฉ ููุง ู ุงูู population ูุนูู ููุณ ุงูู true |
|
|
|
307 |
|
00:25:07,400 --> 00:25:12,640 |
|
parameter ูู ู
ุง ุตุบุฑ ุงูู beta ู
ุงููุง ุจุชุฒูุฏ ุงูุจุนุฏุฉ beta |
|
|
|
308 |
|
00:25:12,640 --> 00:25:16,280 |
|
decreases ู
ู alpha ุฒู ู
ุง ุญูููุง ุดููุฉ decrease ูุนูู |
|
|
|
309 |
|
00:25:16,280 --> 00:25:19,920 |
|
beta ุจุงูุฒูุงุฏุฉ ูู
ุง ุงุซููู ุนูุณ ุจุนุถ alpha ุจุชูู beta |
|
|
|
310 |
|
00:25:19,920 --> 00:25:23,520 |
|
ุจุงูุฒูุงุฏุฉ ูู
ุง ุณูุฌู
ุง ุจุงูุฒูุงุฏุฉ ูุนูู ูู ู
ุง ุงูุงูุญุฑุงู ุงูู
ุนูุงุฑู ุฒุงุฏ |
|
|
|
311 |
|
00:25:23,520 --> 00:25:30,800 |
|
beta ู
ุง ููุง ุจุชุฒูุฏ ุงูุฃุฎูุฑุฉ beta ุจุงูุฒูุงุฏุฉ ูู
ุง n ู
ุง ููุง |
|
|
|
312 |
|
00:25:30,800 --> 00:25:35,720 |
|
decreases ู
ุนูุงู ูุฏู ูู inverse relationship |
|
|
|
313 |
|
00:25:35,720 --> 00:25:36,820 |
|
between beta ูู
ูู |
|
|
|
314 |
|
00:25:40,350 --> 00:25:43,370 |
|
ุงูุงุฎุชูุงู ุจูู ุงูู hypothes and true value ุฏู ูุงุญุฏุฉ |
|
|
|
315 |
|
00:25:43,370 --> 00:25:48,670 |
|
ู ุงูุซุงููุฉุ Beta ู Alpha ู ุงูุซุงูุซุฉ Beta ู ุฃูุง ูุฐูู |
|
|
|
316 |
|
00:25:48,670 --> 00:25:54,230 |
|
ูููู
ุนูุงูุฉ ู
ุงููุง ุนูุณูุฉ ุทุจ ูุชุฑุจุทููุง ู
ุน ู
ููุ ุจุณ ู
ุน |
|
|
|
317 |
|
00:25:54,230 --> 00:25:59,250 |
|
Sigma ุฎูุงุตุ so there is direct relationship |
|
|
|
318 |
|
00:25:59,250 --> 00:26:06,010 |
|
between Beta and Sigma Beta is .. ุฅูุด ุณู
ููุง Betaุ |
|
|
|
319 |
|
00:26:16,370 --> 00:26:24,870 |
|
ุงูุนูุงูุฉ ุจูู n ูุงูุฃููุง |
|
|
|
320 |
|
00:26:24,870 --> 00:26:34,830 |
|
ูู ุงูู hypothesized parameter ูููู
ุชู ุงูุญููููุฉ ุงูุชุงููุฉ |
|
|
|
321 |
|
00:26:34,830 --> 00:26:39,930 |
|
ูู level of significance Alpha ูุงูู
ูุทูุฉ ุงูุงูุชูุงููุฉ |
|
|
|
322 |
|
00:26:39,930 --> 00:26:45,570 |
|
ููู ูู
ูููุง ุฃู ูุชุฃูุฏ ู
ู ุงูููู
ุงูุญุฑุฌุฉ ููุฐูู ู
ู |
|
|
|
323 |
|
00:26:45,570 --> 00:26:47,670 |
|
ุงูู
ูุทูุฉ ุงูุญุฑุฌุฉ ุฏุนููุง ูุฑู |
|
|
|
324 |
|
00:27:06,290 --> 00:27:12,550 |
|
ุงูุขู ุฅุฐุง ููุง ู
ูุชู
ูู ุจู
ูุงุฑูุฉ ฮผ equal ุซูุงุซุฉ ู
ูุงุฑูุฉ |
|
|
|
325 |
|
00:27:12,550 --> 00:27:18,750 |
|
ฮผ ูุง ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ |
|
|
|
326 |
|
00:27:18,750 --> 00:27:21,710 |
|
ูุง ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ ูุง ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ ูุง |
|
|
|
327 |
|
00:27:21,710 --> 00:27:27,950 |
|
ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ ูุง ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ ูุง |
|
|
|
328 |
|
00:27:27,950 --> 00:27:30,050 |
|
ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ ูุง ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ ูุง |
|
|
|
329 |
|
00:27:30,050 --> 00:27:32,530 |
|
ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ ูุง ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ ูุง |
|
|
|
330 |
|
00:27:32,530 --> 00:27:35,130 |
|
ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ ูุง ููู ุซูุงุซุฉ ู
ูุงุฑูุฉ ฮผ ูุง |
|
|
|
331 |
|
00:27:38,150 --> 00:27:44,350 |
|
ูููุทูุน ุนูุฏู two rejection regions ูุงุญุฏุฉ ุนูู ุงูู left |
|
|
|
332 |
|
00:27:44,350 --> 00:27:47,650 |
|
ูุงุญุฏุฉ ุนูู ุงูู right ูุฐู ุงูููุงุท represent ู |
|
|
|
333 |
|
00:27:47,650 --> 00:27:53,590 |
|
critical values ุฅุฐุง ุงูููุงุท ูุฏูู critical values |
|
|
|
334 |
|
00:27:53,590 --> 00:27:58,150 |
|
critical values |
|
|
|
335 |
|
00:27:58,150 --> 00:28:05,030 |
|
ุฎูููู ุฃุณู
ููุง critical value |
|
|
|
336 |
|
00:28:06,740 --> 00:28:10,240 |
|
ุงููู ุจูุณู
ููุง ููุทุฉ ุงูุญุฑุฌุฉ ูููุง ูู
ุงู ูู ูุงุญุฏุฉ ููู |
|
|
|
337 |
|
00:28:10,240 --> 00:28:15,260 |
|
critical value ุซุงููุฉ ุฅุฐุง in case of two-tailed |
|
|
|
338 |
|
00:28:15,260 --> 00:28:24,780 |
|
test ูุฐุง ูู ุงููุงุญุฏุฉ two-tailed test ูุนูู ุงุฎุชุจุงุฑ ู
ู |
|
|
|
339 |
|
00:28:24,780 --> 00:28:32,980 |
|
ุทุฑููู ุงูู 30 against 30 is not 30 ุงุฎุชุจุงุฑ |
|
|
|
340 |
|
00:28:32,980 --> 00:28:33,560 |
|
ู
ู ุทุฑููู |
|
|
|
341 |
|
00:28:36,150 --> 00:28:40,830 |
|
ุงูู test ู
ุนูุงูุง ุงุฎุชุจุงุฑ ุงูู two ู
ุนูุงูุง ุงุซููู ุฃูุซุฑ |
|
|
|
342 |
|
00:28:40,830 --> 00:28:46,370 |
|
ู
ุนูุงูุง ุทุฑู ุชุทูุน ุงุฎุชุจุงุฑ ู
ู ุงูุทุฑููู ู
ุธุจูุท ุงูู mean |
|
|
|
343 |
|
00:28:46,370 --> 00:28:52,390 |
|
ุทุจุนุง ุงูู value in the center now |
|
|
|
344 |
|
00:28:52,390 --> 00:28:54,510 |
|
the question is how can we determine these |
|
|
|
345 |
|
00:28:54,510 --> 00:28:58,110 |
|
critical values one to the right and other to the |
|
|
|
346 |
|
00:28:58,110 --> 00:29:04,010 |
|
left now we have level of significance alpha ุฃููุง |
|
|
|
347 |
|
00:29:04,010 --> 00:29:07,970 |
|
ู
ุฑุฉ ุฃุฎุฑู ูู ู
ุตุทูุญ ูููู ุฅูู ูุฒู ุนูุฏู
ุง ููุชูู ุฅูู |
|
|
|
348 |
|
00:29:07,970 --> 00:29:11,550 |
|
ูุฒู ูููู ุฅูู ูุฒู ูููู ุฅูู ูุฒู ูููู ุฅูู ูุฒู ูููู |
|
|
|
349 |
|
00:29:11,550 --> 00:29:12,130 |
|
ุฅูู ูุฒู ูููู ุฅูู ูุฒู ูููู ุฅูู ูุฒู ูููู ุฅูู ูุฒู |
|
|
|
350 |
|
00:29:12,130 --> 00:29:14,750 |
|
ูููู ุฅูู ูุฒู ูููู ุฅูู ูุฒู ูููู ุฅูู ูุฒู ูููู ุฅูู |
|
|
|
351 |
|
00:29:14,750 --> 00:29:19,150 |
|
ูุฒู ูููู ุฅูู ูุฒู ูููู ุฅูู ูุฒู ูููู ุฅูู ูุฒู ูููู |
|
|
|
352 |
|
00:29:19,150 --> 00:29:25,030 |
|
ุฅูู ูุฒู ูููู ุฅูู ูุฒู ูููู ุฅูู ูุฒู ูููู ุฅูู ูุฒู |
|
|
|
353 |
|
00:29:25,030 --> 00:29:28,170 |
|
ูููู |
|
|
|
354 |
|
00:29:32,600 --> 00:29:39,560 |
|
ุงูุจูุงูุงุช ูู ุชููู 95% ููู ู
ู
ูู ุชุทูุน ุงูู value ูุฐุง ู |
|
|
|
355 |
|
00:29:39,560 --> 00:29:47,540 |
|
ุงูุซุงููุฉ ุชุทูุน ุงูู value ูุฐุง ู ุงูุซุงููุฉ ุชุทูุน |
|
|
|
356 |
|
00:29:47,540 --> 00:29:51,300 |
|
ุงูู value ูุฐุง ู |
|
|
|
357 |
|
00:29:51,300 --> 00:30:00,620 |
|
ุงูุซุงููุฉ ุชุทูุน ุงูู |
|
|
|
358 |
|
00:30:01,540 --> 00:30:08,340 |
|
ุงููู ุนูู ูู
ูููุง 2.5% ูุนูู ุนูู ูุณุงุฑูุง ูุฏู ุฅุฐุง ุนูู |
|
|
|
359 |
|
00:30:08,340 --> 00:30:13,460 |
|
ูู
ูููุง 2.5% ุฅูุด ุจูููู ุนูู ุงููุณุงุฑ 97.5% ุฃู ุฃุทูุน |
|
|
|
360 |
|
00:30:13,460 --> 00:30:16,420 |
|
ุงููุชุงุจุฉ ุงูู value ุงููู ููุง ุงููู ุนูู ูุณุงุฑูุง 2.5% |
|
|
|
361 |
|
00:30:16,420 --> 00:30:20,780 |
|
ุทุจุนุง ูุณู ูุทูุน ุญุงุฏุฉ ู
ุจุงุดุฑุฉ ู
ู ุงูุฌุฏูู ู
ุธุจูุท ุฃุทูุน |
|
|
|
362 |
|
00:30:20,780 --> 00:30:24,540 |
|
ุงูุฌุฏูู ุนูู 2.5% 0.25 ุฅูุด ุงูููู
ุฉ ุจุชุณุงูู |
|
|
|
363 |
|
00:30:35,840 --> 00:30:41,680 |
|
ุฃุทูุน ุนูู ุงูู table ุนูู IZ |
|
|
|
364 |
|
00:30:41,680 --> 00:30:52,260 |
|
table ุฃูุง ุจุฏูุฑ ุนูู 025 ุฃุทูุน |
|
|
|
365 |
|
00:30:52,260 --> 00:30:57,960 |
|
in the body of the table ุนูู 025 ููู ู
ูุฌูุฏุฉุ |
|
|
|
366 |
|
00:31:00,870 --> 00:31:06,170 |
|
ู
ุด ูู ุงูููู
ุฉ ุฅุฐุง |
|
|
|
367 |
|
00:31:06,170 --> 00:31:12,090 |
|
ุณุงูุจ one point nine under six ุฅุฐุง ุงูููู
ุฉ ุงููู ููุง |
|
|
|
368 |
|
00:31:12,090 --> 00:31:19,110 |
|
ุณุงูุจ ูู negative one point nine six ู
ุธุจูุท ุฅุฐุง ูู |
|
|
|
369 |
|
00:31:19,110 --> 00:31:24,050 |
|
ุงูู table ู
ุฏูุฑุฉ zero to five ูุงุถุญ ุฅู ุชุญุช ุณุงูุจ one |
|
|
|
370 |
|
00:31:24,050 --> 00:31:31,330 |
|
nine under six ุงูู
ูุฑูุถ ุงูุซุงููุฉ ูุฃู ูู
ูููุง 0.25 ู |
|
|
|
371 |
|
00:31:31,330 --> 00:31:35,630 |
|
ุฏุง ูุณุงุฑูุง 0.25 the same value ุจุณ ุจุฅุดุงุฑุฉ ู
ุฎุชููุฉ |
|
|
|
372 |
|
00:31:35,630 --> 00:31:41,030 |
|
ูุฐุง negative 196 ุฅุฐุง ุฃูุง should be positive ูุฏูู |
|
|
|
373 |
|
00:31:41,030 --> 00:31:45,170 |
|
ุจุชุณู
ููู
critical values ูุฐุง ุงูู critical values |
|
|
|
374 |
|
00:31:45,170 --> 00:31:48,450 |
|
ุจุชุทูุน ู
ู ูููุ ู
ู ุงูู z table ู ุงูู z table ุฃุฎุฐูุง |
|
|
|
375 |
|
00:31:48,450 --> 00:31:55,310 |
|
ูููุ ุดุฑุทุฉ 6 ู ุจุนุฏ ูุฏู ุดุฑุทุฉ 6 ู
ูู
ูู ุดุฑุทุฉ 9 ู
ุธุจูุทุ |
|
|
|
376 |
|
00:31:55,310 --> 00:32:01,460 |
|
ูู ุฃู ุณุคุงูุ ุฅูุด ูุนุจูุง ูุฏู ุฃููู
ู
ุง ู
ุนูุงูุงุ ู
ุง ููุด |
|
|
|
377 |
|
00:32:01,460 --> 00:32:06,140 |
|
ุณุคุงู ุทุจ ุงูุญู
ุฏ ููู ูุฐุง ูุถู ู
ู ุฑุจูุง ุฃูุง ู
ุด ูุงูู
ูู |
|
|
|
378 |
|
00:32:06,140 --> 00:32:11,380 |
|
ู
ุนูุงู ูุฏู ุฅูู ุงููู ู
ุนูุงู ูู
ุฃูุง ู
ุด ูุงูู
ุฃู ู
ุงุดู |
|
|
|
379 |
|
00:32:11,380 --> 00:32:17,580 |
|
ุนููู ุจุนุฏูุง ุงููู ุฃูุง ุญููุช ุนููู ูุฐุง two-tailed ุงููู |
|
|
|
380 |
|
00:32:17,580 --> 00:32:20,660 |
|
ูุงู ุงููุชุงุจ ูุงูู ูุบุงูุฉ ููุง ู ุจุนุฏูู ู
ุง ุฃุนุทู example |
|
|
|
381 |
|
00:32:20,660 --> 00:32:28,580 |
|
ุฃูุง ู
ุด ูุนู
ู ุฒูู ุฃูุง ููู
ู ูุนุทููู one-tailed right ุฃู |
|
|
|
382 |
|
00:32:28,580 --> 00:32:34,500 |
|
left ุฅุฐุง |
|
|
|
383 |
|
00:32:34,500 --> 00:32:38,560 |
|
ุฑูู
|
|
|
|
384 |
|
00:32:38,560 --> 00:32:49,260 |
|
ุงุซููู ูุงุฎุฏ upper tail ุฅูุด upper tail ุงูุทุฑู |
|
|
|
385 |
|
00:32:49,260 --> 00:32:53,420 |
|
ุงูุฃุนูู ูุฐุง ุงูู lower tail ูุญุธุฉ ฮผ dose not equal |
|
|
|
386 |
|
00:32:53,420 --> 00:32:58,040 |
|
ุซูุงุซุฉ ูู ุงูู upper tail ุฅูุด ููููู ููููู ููููู ฮผ |
|
|
|
387 |
|
00:32:58,040 --> 00:33:07,420 |
|
equal ุซูุงุซุฉ ู ุงูู H1 ุชููู ุฃูุจุฑ ูุนูู ุฅูุด ุฃูุจุฑ ู
ุนูุงู |
|
|
|
388 |
|
00:33:07,420 --> 00:33:10,660 |
|
ูุฏู ุงูู rejection region ูุชููู ูุงุญุฏุฉ ููุง ุงุซูุชูู |
|
|
|
389 |
|
00:33:10,660 --> 00:33:12,800 |
|
ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ |
|
|
|
390 |
|
00:33:12,800 --> 00:33:13,180 |
|
ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ |
|
|
|
391 |
|
00:33:13,180 --> 00:33:13,220 |
|
ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ |
|
|
|
392 |
|
00:33:13,220 --> 00:33:13,320 |
|
ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ |
|
|
|
393 |
|
00:33:13,320 --> 00:33:17,160 |
|
ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ |
|
|
|
394 |
|
00:33:17,160 --> 00:33:20,520 |
|
ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ |
|
|
|
395 |
|
00:33:20,520 --> 00:33:23,940 |
|
ูุงุญุฏุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ |
|
|
|
396 |
|
00:33:26,390 --> 00:33:29,170 |
|
ุฎูููุง ุจุงููู
ุฃูุง ุจุญูู level of significance alpha |
|
|
|
397 |
|
00:33 |
|
|
|
431 |
|
00:36:46,500 --> 00:36:50,640 |
|
five ูุนูู ู
ุฒูุฏ ุฎู
ุณุฉ ูุงูุซุงููุฉ four zero four nine |
|
|
|
432 |
|
00:36:50,640 --> 00:36:53,980 |
|
five ุชูู ุฎู
ุณุฉ ูู ุงู average ุจูู ุงูุงุซููู ุจุชูุน ููุณ |
|
|
|
433 |
|
00:36:53,980 --> 00:36:57,440 |
|
ุงููุตุฉ negative one is point six four five ุฅุฐุง ุงู |
|
|
|
434 |
|
00:36:57,440 --> 00:37:02,000 |
|
critical values can be determined for two tail |
|
|
|
435 |
|
00:37:02,000 --> 00:37:06,080 |
|
test upper tail and lower tail it depends on the |
|
|
|
436 |
|
00:37:06,080 --> 00:37:10,060 |
|
question ุจุชุนุชู
ุฏ ุนูู ุงูุณุคุงู ูุฃู ุงู areas ูุฏูู ุงููู |
|
|
|
437 |
|
00:37:10,060 --> 00:37:12,820 |
|
ุฃูุง ู
ุนูู ุนูููู
ุจุงูุฃุณูุฏ ูุฏูู ุจูุณู
ููู
|
|
|
|
438 |
|
00:37:16,220 --> 00:37:19,440 |
|
rejection region ููุนุฑู ุจุนุฏ ุดููุฉ ุฅูุด ุจููุตุฏ |
|
|
|
439 |
|
00:37:19,440 --> 00:37:23,580 |
|
rejection region ุฅุฐุง ููุง ูู ุงู two-tailed ูุงู
|
|
|
|
440 |
|
00:37:23,580 --> 00:37:28,420 |
|
rejection region ู
ูุฌูุฏุชูู ูุงุญุฏุฉ ุฃูุจุฑ ู
ู 1.96 |
|
|
|
441 |
|
00:37:28,420 --> 00:37:32,350 |
|
ูุงุญุฏุฉ ุฃูู ู
ู negative ููู ุงู upper tail ูู one |
|
|
|
442 |
|
00:37:32,350 --> 00:37:37,010 |
|
rejection region ุงููู ุฃูุจุฑ ู
ู 1.645 ููู ุงู lower ูู |
|
|
|
443 |
|
00:37:37,010 --> 00:37:41,930 |
|
ูุงุญุฏุฉ ุงููู ุฃูู ู
ู minus 1.645 ูุฐุง ููุงู
ุตุญูุญ ูู |
|
|
|
444 |
|
00:37:41,930 --> 00:37:45,950 |
|
ูุงูุช Alpha ุดู ุจุชุณุงูู ุฎู
ุณุฉ ุงุญูุง ุบุงูุจุง ุจูุงุฎุฏ ุฎู
ุณุฉ |
|
|
|
445 |
|
00:37:45,950 --> 00:37:50,170 |
|
ุบุงูุจุง ููู ุฃุญูุงูุง ูู ุฃุฎุฐูุง ุบูุฑ ูุฏู ุจูุณุชุฎุฏู
ุงูุฌุฏูู |
|
|
|
446 |
|
00:37:50,170 --> 00:37:55,130 |
|
ูุฃูุช ุญุงูุธููุง ุฅุฐุง Alpha 5% ู
ู ุบูุฑ ู
ุง ูุณุชุฎุฏู
ุงู |
|
|
|
447 |
|
00:37:55,130 --> 00:38:04,150 |
|
table ุฅุฐุง ูุงู two-tailed 1.96 negative ู plus ุฅุฐุง |
|
|
|
448 |
|
00:38:04,150 --> 00:38:09,450 |
|
ูุงู upper tail ุจุชููู plus 1.645 ุฅุฐุง lower tail |
|
|
|
449 |
|
00:38:09,450 --> 00:38:13,150 |
|
ุจุชููู negative 1.645 ุงุญูุธููุง ูุฎูุงุต ู
ู ุบูุฑ ู
ุง |
|
|
|
450 |
|
00:38:13,150 --> 00:38:18,270 |
|
ูุณุชุฎุฏู
ุงู table ุฅุฐุง ุจูุณุฃู ุงู 5% ูุฏูู ูุชูุจููููู
ุฒู |
|
|
|
451 |
|
00:38:18,270 --> 00:38:30,510 |
|
ุงู empirical rule 68 95 99.7 questions ุฃู ุณุคุงูุ ูู |
|
|
|
452 |
|
00:38:30,510 --> 00:38:38,920 |
|
ุฃู ุณุคุงูุ ุทูุจ ููู
ู ุงูุขู ููุจุฏุฃ ุฃูู ููุทุฉ ู
ูู
ุฉ ุชุฐูุฑ |
|
|
|
453 |
|
00:38:38,920 --> 00:38:42,600 |
|
ุญูููุง ูู ุงู objectives ูุฑุฌุน ุซุงูู ูู objectives |
|
|
|
454 |
|
00:38:42,600 --> 00:38:47,800 |
|
ุงูุชุงุจุนุฉ ูู chapter ุชุณุนุฉ ุงููู ุญูููุง ุนูููู
ุงููู ูููุง |
|
|
|
455 |
|
00:38:47,800 --> 00:38:51,540 |
|
ุงููู ูุงุช ุญูููุง ุฃูู ูุงุญุฏ the basic principles of |
|
|
|
456 |
|
00:38:51,540 --> 00:38:56,060 |
|
hypothesis testing ุงููู ุงุญูุง ุฎูุตูุงู ูุฃู ูุนูู ูุบุงูุฉ |
|
|
|
457 |
|
00:38:56,060 --> 00:38:59,300 |
|
ุงูููู
ุฃูุง ุจุณู
ูู basic principles ู
ุจุงุฏุฆ ุฃุณุงุณูุฉ |
|
|
|
458 |
|
00:38:59,300 --> 00:39:04,020 |
|
ูุงุฎุชุจุงุฑ ุงููุฑุถูุฉ ุงูุขู ููุจุฏุฃ how to use hypothesis |
|
|
|
459 |
|
00:39:04,020 --> 00:39:10,240 |
|
testing ููู ูุณุชุฎุฏู
ูุง to test ุฃู
ูู ูุงุญุฏ ูุงูููุงุก |
|
|
|
460 |
|
00:39:10,240 --> 00:39:13,720 |
|
ุงูุฌุงู ุงููู ููููู ููู
ุขุฎุฑ ุจูุฑุฉ ุงูููุงุก ุงูุฌุงู or a |
|
|
|
461 |
|
00:39:13,720 --> 00:39:17,940 |
|
proportion ูุนูู ุงูููุงุก ููููู ุฑุงุจุนุฉ ู
ุด ูู ูุนูู ุฃููุง |
|
|
|
462 |
|
00:39:17,940 --> 00:39:22,140 |
|
ุงูุฃุซููู ูุงูุฃุฑุจุนุฉ ุจูุฎูุต chapter ุชุณุนุฉ |
|
|
|
463 |
|
00:39:44,100 --> 00:39:49,460 |
|
ุฅุฐุง ุงูุนููุงู ุชุจุนูุง ุงูุฌุฏูุฏ ูุฐุง ุนุจุงุฑุฉ ุนู objective ุฑูู
|
|
|
|
464 |
|
00:39:49,460 --> 00:39:51,920 |
|
ุงุซููู ุงููู ูู hypothesis |
|
|
|
465 |
|
00:39:59,210 --> 00:40:08,030 |
|
testing ุฃูู ูุงุญุฏุฉ ูุงุฎุฏูุง ุฅูู for the mean ูููุณุท |
|
|
|
466 |
|
00:40:08,030 --> 00:40:11,930 |
|
ุฃู |
|
|
|
467 |
|
00:40:11,930 --> 00:40:18,430 |
|
ุฃูุง ูุฃุทูุน ุฅู ุฎูุงู ุงูุดุฑุญ ูู ุญูู 90% ู
ูุฑุฑ ุฃุฎุฐูุงูุง |
|
|
|
468 |
|
00:40:18,430 --> 00:40:25,830 |
|
ูู 6 ู7 ูุงูุจุงูู ุฌุฏูุฏ chapter ุชุณุนุฉ ูุฃุฎุฐูุง ู
ูู ุฌุฒุก ูู |
|
|
|
469 |
|
00:40:25,830 --> 00:40:29,390 |
|
ุงู basic principles ุฃู
ุณ ูุงูููู
ูุฃููู ูุฃู |
|
|
|
470 |
|
00:40:29,390 --> 00:40:33,850 |
|
ูู ุดุบูุฉ ุฌุฏูุฏุฉ ุจุณ ููุชุนุฑู ุนูููุง ู
ุน ุจุนุถ ุงู hypothesis |
|
|
|
471 |
|
00:40:33,850 --> 00:40:38,890 |
|
is for ฮผูู ู
ูู ูุนูู ุงูู
ูู ูุฏุงุฆู
ุง ุฒู ู
ุง ุญููุช ู
ุฑุฉ |
|
|
|
472 |
|
00:40:38,890 --> 00:40:42,390 |
|
ูุงุช ุจุนู
ู testing about population parameter ุงุฎุชุจุงุฑ |
|
|
|
473 |
|
00:40:42,390 --> 00:40:45,570 |
|
ุญูู ุงู population ููุณู ุณูุงุก ุงู mean ุชุจุน ุงู |
|
|
|
474 |
|
00:40:45,570 --> 00:40:50,810 |
|
population ุฃู ุงูููุงุกุงุช ุงูุฌุงูุฉ ูู proportion ูุฃู |
|
|
|
475 |
|
00:40:50,810 --> 00:40:54,410 |
|
ููุฌูุจ ุงูุฌุฒุฆูู hypothesis for mu there are two |
|
|
|
476 |
|
00:40:54,410 --> 00:40:57,690 |
|
scenarios when sigma is known I mean when sigma is |
|
|
|
477 |
|
00:40:57,690 --> 00:41:05,070 |
|
given sigma is called what's the sigma no it's not |
|
|
|
478 |
|
00:41:05,070 --> 00:41:12,890 |
|
standard deviation ููุง standard ููุง variance ุงู |
|
|
|
479 |
|
00:41:12,890 --> 00:41:16,670 |
|
sigma ุนุจุงุฑุฉ ุนู ุฅูุด population standard deviation |
|
|
|
480 |
|
00:41:16,670 --> 00:41:19,430 |
|
ุฃู
ููุฒ ุงู sigma ูุฐู |
|
|
|
481 |
|
00:41:22,630 --> 00:41:25,950 |
|
population standard deviation ูู
ุง ูู ุนูุฏ ุงู sample |
|
|
|
482 |
|
00:41:25,950 --> 00:41:29,330 |
|
standard deviation ุงููู ูู ุงู S ุฃูุง ุจุชููู
ุนู ุงู |
|
|
|
483 |
|
00:41:29,330 --> 00:41:34,130 |
|
sigma ุงููู ูู population standard deviation ุฅุฐุง |
|
|
|
484 |
|
00:41:34,130 --> 00:41:37,930 |
|
when sigma is known the test is called z test |
|
|
|
485 |
|
00:41:37,930 --> 00:41:41,690 |
|
ุงูุงุฎุชุจุงุฑ ุงุณู
ู z ุงููู ูู ุงุฒุงู ุงู z score ุงููู |
|
|
|
486 |
|
00:41:41,690 --> 00:41:46,510 |
|
ุฃุฎุฐูุงูุง ูู chapter 7 ู
ุด 6 ููุดุ ูู
ุง ุฃุชููู
ุนูู ุงู |
|
|
|
487 |
|
00:41:46,510 --> 00:41:51,050 |
|
mean ู ุงู mean ูุงูุช ูู chapter ุณุจุนุฉ ุจุฐูุฑ ูุงู ุงู z ุฃูู |
|
|
|
488 |
|
00:41:51,050 --> 00:41:55,670 |
|
ุนู x bar minus mu divided by sigma over root n ูุฐุง |
|
|
|
489 |
|
00:41:55,670 --> 00:42:00,230 |
|
chapter ุณุจุนุฉ ุงูุญุงุฌุฉ ุงูุซุงููุฉ when sigma is unknown |
|
|
|
490 |
|
00:42:00,230 --> 00:42:05,650 |
|
ูุนูู sigma ู
ุด ู
ุนููู
ุฉ ููุงุฎุฏ ุงู new test is called t |
|
|
|
491 |
|
00:42:05,650 --> 00:42:09,590 |
|
test for next time ุฅู ุดุงุก ุงููู next time ุงููู ุฃุนูู
|
|
|
|
492 |
|
00:42:10,560 --> 00:42:14,320 |
|
ู
ุด ุดุฑุท ุจูุฑุฉ ู
ู
ูู ูููููุง ู
ู ุงูุฃุฑุจุนุงุก ุงููุงุฏู
ุฉ ุฃู ููุง |
|
|
|
493 |
|
00:42:14,320 --> 00:42:21,260 |
|
ุญุณุจ ููู ุนูู ุงูุฃูู ูุฃุจุฏุฃ when sigma is known ุฅุฐุง ุฃูุง |
|
|
|
494 |
|
00:42:21,260 --> 00:42:27,960 |
|
ุฃุชููู
ุนู ุงู test for the mean ูู ุดุบูุชูู ุฅูู ูุงุญุฏุฉ sigma is |
|
|
|
495 |
|
00:42:27,960 --> 00:42:33,180 |
|
known ุฅูุด ู
ุนูู known ูุนูู ุงู sigma ุฃูุง ุนุงุฑู |
|
|
|
496 |
|
00:42:33,180 --> 00:42:37,420 |
|
ุจุงูุนุฑุจู ู
ุนูุงู sigma is given ู
ุนุทู ู
ุนุงู ูุนูู sigma |
|
|
|
497 |
|
00:42:37,420 --> 00:42:43,790 |
|
ู
ุนุฑููุฉ ูู ุงูู
ุซุงู ูู ุงููู ูุฃุนู
ูู step number one convert |
|
|
|
498 |
|
00:42:43,790 --> 00:42:49,210 |
|
sample statistic x bar to z statistic ุณูู ุฃู ูุง |
|
|
|
499 |
|
00:42:49,210 --> 00:42:57,550 |
|
ูุนูู ูู ุงููู ุจุนู
ูู ุจุทูู ุนููู z statistic ูุฐุง z stat means |
|
|
|
500 |
|
00:42:57,550 --> 00:43:02,650 |
|
for z statistic z stat ูุนูู z test statistic |
|
|
|
501 |
|
00:43:02,650 --> 00:43:09,030 |
|
ููู
ุฉ ุงูุงุฎุชุจุงุฑ ู
ุด ุจุงูุณุงูู ุฃุฎุฐูุงูุง ูุจู ูุฏู ุชุฐูุฑ X bar |
|
|
|
502 |
|
00:43:09,030 --> 00:43:13,650 |
|
minus ุงู mean ูุฐุง |
|
|
|
503 |
|
00:43:13,650 --> 00:43:18,130 |
|
ู
ู ุฃู chapterุ chapter 7 ุฅุฐุง chapter 7 ุฏุฎู ู
ุนุงูุง |
|
|
|
504 |
|
00:43:18,130 --> 00:43:21,950 |
|
ุนูู ุญุณุงุจ ุชุณู
ูุฉ test statistic |
|
|
|
505 |
|
00:43:27,880 --> 00:43:30,180 |
|
ุฅุฐุง ุฃุฎุจุฑุชู ุฃูู ุชุญุณุจ ุงู test statistic ููู
ุฉ |
|
|
|
506 |
|
00:43:30,180 --> 00:43:36,720 |
|
ุงูุงุฎุชุจุงุฑ ุจููู
ุฉ ุงูุงุฎุชุจุงุฑ ุจููู
ุฉ ุงูุงุฎุชุจุงุฑ ุจููู
ุฉ |
|
|
|
507 |
|
00:43:36,720 --> 00:43:40,460 |
|
ุงูุงุฎุชุจุงุฑ ุจููู
ุฉ |
|
|
|
508 |
|
00:43:40,460 --> 00:43:47,580 |
|
ุงูุงุฎุชุจุงุฑ ุจููู
ุฉ ุงูุงุฎุชุจุงุฑ ุจููู
ุฉ ุงูุงุฎุชุจุงุฑ ุจููู
ุฉ |
|
|
|
509 |
|
00:43:47,580 --> 00:43:48,460 |
|
ุงูุงุฎุชุจุงุฑ |
|
|
|
510 |
|
00:43:54,340 --> 00:43:57,400 |
|
ูุนูู for two-tailed test for the mean sigma known |
|
|
|
511 |
|
00:43:57,400 --> 00:44:01,600 |
|
-convert x bar to z statistic ุฎูุตูุง step 2 |
|
|
|
512 |
|
00:44:01,600 --> 00:44:05,840 |
|
determine the critical z values ุญุฏุฏ ุงู critical |
|
|
|
513 |
|
00:44:05,840 --> 00:44:08,900 |
|
values ุงููู ุทูุนูุงูู
ู
ู ุดููุฉ ุงููู ูู
ูู
ุง ุงู alpha |
|
|
|
514 |
|
00:44:08,900 --> 00:44:16,000 |
|
ูุงูุช 5% ุฅูุด ูุงููุง ุจูุณุงููุง plus or minus 1.96 ูุฏูู |
|
|
|
515 |
|
00:44:16,000 --> 00:44:20,760 |
|
ุงู critical values step 1 step 2 ุฃุทูุน ุงู critical |
|
|
|
516 |
|
00:44:20,760 --> 00:44:22,840 |
|
values |
|
|
|
517 |
|
00:44:25,720 --> 00:44:30,040 |
|
ููุฏูู ุฒู ู
ุง ุญููุช ุจูุทูุนูุง ุจูุชุญู
ููุง ู
ู ู
ู ุงู table |
|
|
|
518 |
|
00:44:30,040 --> 00:44:35,780 |
|
ุทุจุนุง for specified level of significance alpha ุญุณุจ |
|
|
|
519 |
|
00:44:35,780 --> 00:44:37,620 |
|
ููู
ุฉ ุงู alpha ุงุญูุง ุฃุฎุฐูุง ุงู alpha ุฎู
ุณุฉ ูู ุงูู
ูุฉ |
|
|
|
520 |
|
00:44:37,620 --> 00:44:42,160 |
|
from ุงู table ุฃุฎุฐูุง ุงู table ุชุนุฒูุฒู ุงู table or |
|
|
|
521 |
|
00:44:42,160 --> 00:44:46,260 |
|
using computer software ู
ุงูุนุด ูููุง ูุนูู ุจุงู Excel |
|
|
|
522 |
|
00:44:46,260 --> 00:44:51,180 |
|
ู
ู
ูู ุฃู ุฃู ุญุณุงุจ ุฃู ุฃู ุจุฑูุงู
ุฌ ูุญุตู ุฅุฐุง step ุฑูู
2 |
|
|
|
523 |
|
00:44:51,180 --> 00:44:58,140 |
|
ุณูู ูุฐุง ุฃุฐูุฑู ููู ุนุงููู
ุด ูู ูุงูุช Alpha ุจ 5% ููุงู |
|
|
|
524 |
|
00:44:58,140 --> 00:45:01,740 |
|
ููู two-tailed ุฅูุด ูุชุทูุน ุงูุฌูุงุจ plus or |
|
|
|
525 |
|
00:45:01,740 --> 00:45:07,540 |
|
minusุ ู
ุธุจูุท ูุงุญุฏุฉ ุนูู ุงููู
ูู 1.96 ูุงูุซุงููุฉ ุนูู ุงูุดู
ุงู |
|
|
|
526 |
|
00:45:07,540 --> 00:45:15,560 |
|
negative 1.96 ููู ูุงู one-tailed ุญุณุจ ูุชููู 1.645 |
|
|
|
527 |
|
00:45:15,560 --> 00:45:20,500 |
|
ุฅุฐุง ูุงูุช ุนูู ุงู right ูุนูู ุงู upper ู
ุธุจูุท |
|
|
|
528 |
|
00:45:22,760 --> 00:45:27,760 |
|
ุฃู negative 1.645 ุฅุฐุง ูุงูุช ุฃุณูู ุฃุนุชูุฏ ูุฏู ุณููุฉ ุณููุฉ |
|
|
|
529 |
|
00:45:27,760 --> 00:45:35,980 |
|
ูุฐุง ุงู second step ุทูุจ ูุงุญุธ ู
ู ุฃู chapter ุงุณุชุฎุฏุงู
|
|
|
|
530 |
|
00:45:35,980 --> 00:45:39,920 |
|
ุงู Z-table ู
ู chapter 6 ู
ุธุจูุท ุฅุฐุง ูุงุถุญ step 1 ู 2 |
|
|
|
531 |
|
00:45:39,920 --> 00:45:44,300 |
|
ู
ู where ู
ู ุงู previous chapters ู
ู 6 ู 7 ุจุชุชู
ุนูุฏ |
|
|
|
532 |
|
00:45:44,300 --> 00:45:50,020 |
|
chapter 9 ููู
ุฉ ุตุบูุฑุฉ ุชุญุช ุงููู ูู step 3 ุงููู ูู |
|
|
|
533 |
|
00:45:50,020 --> 00:45:55,690 |
|
decision rule ุงููุฑุงุฑ ุชุจุนูุง ูุนูู ูู ุดุบููุง ุนูู ุงู |
|
|
|
534 |
|
00:45:55,690 --> 00:46:02,250 |
|
decision rule ูู chapter 9 ุจูุญูู ุงููุงุนุฏุฉ ุงููู ูู rule |
|
|
|
535 |
|
00:46:02,250 --> 00:46:08,070 |
|
of thumb if the test statistic ุฅุฐุง ููู
ุฉ ุงูุงุฎุชุจุงุฑ |
|
|
|
536 |
|
00:46:08,070 --> 00:46:13,230 |
|
falls in the rejection region ุงู rejection ุจููู ูู |
|
|
|
537 |
|
00:46:13,230 --> 00:46:16,750 |
|
ูู ูู
ุงูุฃุณูุฏ ุงูุนุงูู
ูู ูุงูุดู
ุงู ูู ุงู two tail ุงููู |
|
|
|
538 |
|
00:46:16,750 --> 00:46:24,090 |
|
ูู
ูุฏูู ููุง ูุงูุช ูุฏูู ุงูุงุซููู ุจูุณู
ููู
rejection |
|
|
|
539 |
|
00:46:24,090 --> 00:46:27,950 |
|
region ู |
|
|
|
540 |
|
00:46:27,950 --> 00:46:31,870 |
|
ุงู upper tail ูููููุง |
|
|
|
541 |
|
00:46:31,870 --> 00:46:36,290 |
|
ุนูู ุงููู
ูู ูุงู lower tail ูููุ ุนูู ุงูุดู
ุงู ูุฏูู |
|
|
|
542 |
|
00:46:36,290 --> 00:46:42,270 |
|
ุจูุณู
ููู
rejection regions ุจูุญูู ุทุจุนุง ุฃู ู
ุซุงู ุจุชููู |
|
|
|
543 |
|
00:46:42,270 --> 00:46:46,610 |
|
ุฅู
ุง two tail ุฃู one tail ุฃู upper tail lower tail |
|
|
|
544 |
|
00:46:46,610 --> 00:46:49,530 |
|
ุฃู upper tail ู
ุง ุจููููุด ุชูุงุชุฉ ู
ุน ุจุนุถ ูุงุญุฏุฉ ู
ููู
ุจุณ |
|
|
|
545 |
|
00:46:50,530 --> 00:46:55,610 |
|
ูุจูุทูุน ุงู rejection region ุงููุฑุงุฑ if the test |
|
|
|
546 |
|
00:46:55,610 --> 00:46:58,870 |
|
statistic ููู
ุฉ ุงูุงุฎุชุจุงุฑ ุงููู ููู ุทูุน ุญุณุจุชู step |
|
|
|
547 |
|
00:46:58,870 --> 00:47:02,770 |
|
ูุงุญุฏ if the test falls in the rejection region |
|
|
|
548 |
|
00:47:02,770 --> 00:47:12,590 |
|
ุจููุน ุฌูุง then we reject H zero is an if the test |
|
|
|
549 |
|
00:47:12,590 --> 00:47:19,150 |
|
statistic ุฎูููุง ูุญูููุง ุจุตูุฑุฉ ุฃุฏู if the value ููู
ุฉ |
|
|
|
550 |
|
00:47:19,150 --> 00:47:22,830 |
|
ุฅุฐุง ููู
ุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ |
|
|
|
551 |
|
00:47:22,830 --> 00:47:28,390 |
|
ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ |
|
|
|
552 |
|
00:47:28,390 --> 00:47:29,750 |
|
ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ |
|
|
|
553 |
|
00:47:29,750 --> 00:47:29,770 |
|
ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ |
|
|
|
554 |
|
00:47:29,770 --> 00:47:32,830 |
|
ูู
ูุฉ |
|
|
|
555 |
|
00:47:32,830 --> 00:47:38,870 |
|
ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ |
|
|
|
556 |
|
00:47:38,870 --> 00:47:43,670 |
|
ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ |
|
|
|
557 |
|
00:47:43,670 --> 00:47:44,750 |
|
ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ |
|
|
|
558 |
|
00:47:44,750 --> 00:47:44,770 |
|
ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ุงูุงุฎุชุจุงุฑ ูู
ูุฉ |
|
|
|
559 |
|
00:47:44,770 --> 00:47:47,460 |
|
ุงูุงุฎุชุจุงุฑ ูู
ูุฉ ููุน ุฌูุง ูุนูู ุฅูุดุ ูุนูู ูู ูุงูุช two |
|
|
|
560 |
|
00:47:47,460 --> 00:47:49,980 |
|
-tailed ูุฃ ูู ุฃูุจุฑ ู
ู ูุฐู ุฃู ุฃูู ู
ู ุงููุงุญูุฉ ุงู |
|
|
|
561 |
|
00:47:49,980 --> 00:47:54,620 |
|
negative ู
ุง ุฃูุง ููุน ูููุงุ ูุนูู ุชุฎูู ู
ุนุงูุง ุฃุฎุฐ |
|
|
|
562 |
|
00:47:54,620 --> 00:48:00,760 |
|
example ุจุชููู
ุนูู 1.96 ูู critical values ุงู |
|
|
|
563 |
|
00:48:00,760 --> 00:48:05,960 |
|
rejection region ู
ูุฌูุฏ ุนูู ุงููู
ูู ููุงุ ู
ุธุจูุท ุฃู |
|
|
|
564 |
|
00:48:05,960 --> 00:48:11,680 |
|
ุนูู ุงูุดู
ุงู ุงูุขู ุจุชุนุทูู for example suppose Z equal |
|
|
|
565 |
|
00:48:11,680 --> 00:48:19,360 |
|
3.5 ูุฐุง ุฒู ููู
ุฉ ุฒู stat ูุฐุง ุงู test ุงู |
|
|
|
566 |
|
00:48:19,360 --> 00:48:23,060 |
|
statistic ุฃุณุฃู ููุณู does this value fall in the |
|
|
|
567 |
|
00:48:23,060 --> 00:48:27,580 |
|
rejection region ูุนูู ุฅู
ุง ุชููู ุฃูุจุฑ ู
ู 1.96 ุฃู ุฃูู |
|
|
|
568 |
|
00:48:27,580 --> 00:48:33,280 |
|
ู
ู negative ููุงุถุญ ูุฐู ููุง ุฅุฐุง we reject the null |
|
|
|
569 |
|
00:48:33,280 --> 00:48:37,660 |
|
hypothesis ุทูุจ ูู ูุงูุช for example z equal |
|
|
|
570 |
|
00:48:37,660 --> 00:48:41,700 |
|
negative one ุฃูุง ุฃุชููู
ุช |
|
|
|
571 |
|
00:48:49,770 --> 00:48:55,290 |
|
ู
ุด ูู ุณุงูุจ ุจู reject ููุง ูู ู
ูุฌุจ ุจู reject ููุง |
|
|
|
572 |
|
00:48:55,290 --> 00:49:00,470 |
|
ุจุชููู
ุนู two-tailed negative 1.4 ุงู |
|
|
|
573 |
|
00:49:00,470 --> 00:49:08,030 |
|
rejection ุฑ ุฑ ูุชุนูุฏ ุนูููุง ุฑ ุฑ ูุนูู ุฅูุด rejection |
|
|
|
574 |
|
00:49:08,030 --> 00:49:13,390 |
|
region ูุชููู ุฃูุจุฑ ู
ู 1.96 ุฃู ุฃูู ู
ู ู
ู |
|
|
|
575 |
|
00:49:13,390 --> 00:49:15,150 |
|
ุณุงูุจ |
|
|
|
576 |
|
00:49:16,600 --> 00:49:20,840 |
|
ุชุณุฃู ููุณู ุงู negative 1.4 ูู ูู ุฃูู ู
ู ูุงูุต 1.9ุ |
|
|
|
577 |
|
00:49:20,840 --> 00:49:26,380 |
|
ูุฃุ ู
ูุฌูุฏุฉ ููุงุ ู
ุธุจูุทุ ููุง ูุฐู ุงู area ุงูุจูุถุงุกุ |
|
|
|
578 |
|
00:49:26,380 --> 00:49:30,480 |
|
ุจูุณู
ููุง non rejection areaุ ู
ู ุงูู
ูุทูุฉ ุงูุจูุถุงุก |
|
|
|
579 |
|
00:49:30,480 --> 00:49:34,800 |
|
ุงููู ุจูู ุงูุงุซูููุ ุจุณ ูููุง ู
ูุทูุฉ ุนุฏู
ุงูุฑูุถ ุทูุจุ |
|
|
|
580 |
|
00:49:34,800 --> 00:49:39,120 |
|
ุฃุนุทููู example ูููุง reject ููู
ุซุงู ูุฐุงุ ุฃุนุทููู ุงู z |
|
|
|
581 |
|
00:49:39,120 --> 00:49:46,640 |
|
ูููู ูููุง reject 2.5 ูู ููุน ููุง ุงูุซุงูู ุจุงูุงุซููู |
|
|
|
582 |
|
00:49:46,640 --> 00:49:50,520 |
|
ูุงูุน ููุง ูู ุงู region of rejection ุฃุนุทููู ุญุงูุฉ ูู |
|
|
|
583 |
|
00:49:50,520 --> 00:49:56,500 |
|
.. don't reject 1 .. 1 ููุง ุงูุซุงูู 1 2 |
|
|
|
584 |
|
00:49:56,500 --> 00:50:01,620 |
|
ููุง 1.4 ููุง ูููุฐุง 1.4 ูุนูู ุฃู |
|
|
|
585 |
|
00:50:01,620 --> 00:50:04,360 |
|
ุญุงุฌุฉ between negative 1.96 and 1. |
|
|
|
586 |
|
00:50:04,360 --> 00:50:08,940 |
|
96 non rejection region ุฃุนุทููู ูุฐู ุงูุญุงูุฉ |
|
|
|
587 |
|
00:50:08,940 --> 00:50:12,900 |
|
ูู
ููุ ูู two tailed ูุงุฎุฐ one tailed ุฅุฐุง ู
ุฑุฉ ุซุงููุฉ |
|
|
|
588 |
|
00:50:12,900 --> 00:50:17,920 |
|
three steps Compute the test statistic ู
ู Chapter 7 |
|
|
|
589 |
|
00:50:17,920 --> 00:50:23,980 |
|
ุงุญุณุจ ุงู Critical values ู
ู Chapter 6 Chapter 9 ุจุณ |
|
|
|
590 |
|
00:50:23,980 --> 00:50:28,920 |
|
ุดุบู ุตุบูุฑุฉ ุงููู ูู ุงู decision rule We reject the |
|
|
|
591 |
|
00:50:28,920 --> 00:50:33,220 |
|
null if the statistic value falls in the rejection |
|
|
|
592 |
|
00:50:33,220 --> 00:50:37,220 |
|
region Now for two-tailed test, the rejection |
|
|
|
593 |
|
00:50:37,220 --> 00:50:41,620 |
|
region is in the lower tail and upper tail But on |
|
|
|
594 |
|
00:50:41,620 --> 00:50:44,780 |
|
the other hand, if we are talking about one-tailed |
|
|
|
595 |
|
00:50:44,780 --> 00:50:52,730 |
|
test 1 tail ุฏุฎููุง ูุฑุณู
ูุง ุชุญุช ููุง ูู ุงู right |
|
|
|
596 |
|
00:50:52,730 --> 00:50:56,690 |
|
suppose we are talking about right tail and alpha |
|
|
|
597 |
|
00:50:56,690 --> 00:51:00,870 |
|
is five percent so this value equals ุฅูุด ุงูููู
ุฉ |
|
|
|
598 |
|
00:51:00,870 --> 00:51:08,590 |
|
ุจุชุณุงูู ุงุญูุธูู ูุงูุง 1.645 ู
ุธุจูุท ุทุจ ูู ุงุฒุงู ุงู |
|
|
|
599 |
|
00:51:08,590 --> 00:51:16,090 |
|
statistic ุณูู 1.5 ูุงูุน ููุง ูู ุงู rejection |
|
|
|
600 |
|
00:51:16,090 --> 00:51:20,750 |
|
ุฅุฐุง ุงู rejection ุชููู ุงู z stat ู
ุงููุง ุฃูุจุฑ |
|
|
|
601 |
|
00:51:20,750 --> 00:51:30,910 |
|
ู
ู 1.645 ููุง ุฅูุด ูุงูุช ุฃูุจุฑ ุฃู ุฃูู ู
ุธุจูุท ููุง ุจุณ |
|
|
|
602 |
|
00:51:30,910 --> 00:51:33,970 |
|
ุฃูุจุฑ ููุดุ ูุฃู ุนูุฏู upper tail ูุนูู ูู ุจุฎุชุจุฑ ู
ูู |
|
|
|
603 |
|
00:51:33,970 --> 00:51:39,730 |
|
ุฃูุจุฑ ู
ู 30 ููุง ุจุฎุชุจุฑ ู
ูู ุจุชุณุงููุด 30 ุทุจ ุฃุนุทููู ุญุงุฌุฉ |
|
|
|
604 |
|
00:51:39,730 --> 00:51:47,940 |
|
reject ุฃู ุญุงุฌุฉ ุฃูุจุฑ ู
ู 1.645 1.7 2 ุฃู ุญุงุฌุฉ ุฌูุง |
|
|
|
605 |
|
00:51:47,940 --> 00:51:53,980 |
|
4 5 6 ุฃู ุญุงุฌุฉ ุฌูุง ุทุจ ูุฐุง upper tail ูุงุฎุฐ |
|
|
|
606 |
|
00:51:53,980 --> 00:52:00,220 |
|
lower tail lower tail the area to the left ุงููู ูู |
|
|
|
607 |
|
00:52:00,220 --> 00:52:06,100 |
|
negative 1.645 ุทุจ ุฃ reject ุฅุฐุง ูุงูุช ุงู z-stat ู
ุงููุง |
|
|
|
608 |
|
00:52:06,100 --> 00:52:12,620 |
|
ุฃูู ู
ู negative ุทุจ ูู ุณูู ุงู z-stat negative 1 |
|
|
|
609 |
|
00:52:14,830 --> 00:52:17,090 |
|
ุงู negative 1 ูู ุงู non-rejection region ูุฐุง |
|
|
|
610 |
|
00:52:17,090 --> 00:52:24,290 |
|
ูุง ููุฌุญ ุฅุฐุง ุณูู negative 2 ูุง ููุฌุญ ูุง ููุฌุญ ูุง |
|
|
|
611 |
|
00:52:24,290 --> 00:52:30,450 |
|
ููุฌุญ ูููุง ููุฌุญ ูุงุถุญุ ู
ุนูุงู ูุฏู ุฅูู ุชุญูู ุงูู
ุซุงู |