abdullah commited on
Commit
4d1c471
โ€ข
1 Parent(s): 7c4a2e4

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes. ย  See raw diff
Files changed (50) hide show
  1. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/-qxIOZHFx-I_postprocess.srt +1716 -0
  2. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/0Tykoh4qs08_raw.json +0 -0
  3. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/1KeNWDdy4kc_raw.json +0 -0
  4. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/2VZjLKgeRAs_raw.json +0 -0
  5. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/3eQp6W53jbo_postprocess.srt +1848 -0
  6. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/3zZhd_x-pt0_raw.json +0 -0
  7. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/6wYdmeO7zro.srt +1301 -0
  8. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/9ztjtNMsYXg.srt +1628 -0
  9. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/BZBTTMoYXDc_raw.srt +1980 -0
  10. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/E3_JyQeSPp8_postprocess.srt +1836 -0
  11. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/HH8I6sciKRM_postprocess.srt +1280 -0
  12. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/HH8I6sciKRM_raw.srt +1300 -0
  13. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/HSZXZRH7pd0_raw.json +0 -0
  14. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/JYkoCgwSRmw.srt +1418 -0
  15. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/LnjjOsm63Sg_raw.srt +1740 -0
  16. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/OshDqhIzcK8_raw.srt +1580 -0
  17. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/QZepsKIgm9Y.srt +1307 -0
  18. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/TyJEG3dRJH8_postprocess.srt +1132 -0
  19. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/W-gk0MowpAY.srt +1458 -0
  20. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/W-gk0MowpAY_raw.srt +1672 -0
  21. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/_E3ug1jsGaY_raw.json +0 -0
  22. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/_O3Qrzgzn80.srt +1355 -0
  23. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/_O3Qrzgzn80_postprocess.srt +1480 -0
  24. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/bP46PxbK2bE_postprocess.srt +1804 -0
  25. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/czq6xxZJyIg_raw.json +0 -0
  26. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/eSiXtXR8S5g_raw.json +0 -0
  27. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/eSiXtXR8S5g_raw.srt +1172 -0
  28. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/i9JeLMWGd-k_postprocess.srt +1600 -0
  29. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/ioT12D_ruOo_raw.json +0 -0
  30. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/nmLJemVXdy8.srt +1491 -0
  31. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/r9WgIkSN3M4.srt +1498 -0
  32. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/r9WgIkSN3M4_raw.srt +1740 -0
  33. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/v0cHtZxEtkI_raw.srt +1520 -0
  34. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/x6ZZjvJCeB8_postprocess.srt +1920 -0
  35. PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/xaphhldfua0.srt +1270 -0
  36. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/7iThC-B-ye0_postprocess.srt +592 -0
  37. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/7iThC-B-ye0_raw.srt +592 -0
  38. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/AXkgumImG1k.srt +790 -0
  39. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/AXkgumImG1k_postprocess.srt +916 -0
  40. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/FF2OJnsBtxQ.srt +1307 -0
  41. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/FF2OJnsBtxQ_postprocess.srt +1420 -0
  42. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/IXclJGn-2-8_postprocess.srt +1152 -0
  43. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/IXclJGn-2-8_raw.srt +1152 -0
  44. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/MW-5DMQ9IDw.srt +503 -0
  45. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/NzfyIgoOlVI.srt +889 -0
  46. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/NzfyIgoOlVI_postprocess.srt +1016 -0
  47. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/NzfyIgoOlVI_raw.srt +1016 -0
  48. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/SVwP9n8zGEI_raw.json +0 -0
  49. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/SVwP9n8zGEI_raw.srt +616 -0
  50. PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/WLq6UsdptII_raw.srt +432 -0
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/-qxIOZHFx-I_postprocess.srt ADDED
@@ -0,0 +1,1716 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:21,430 --> 00:00:26,070
3
+ ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุนูˆุฏ ุฅู„ู‰ ู†ูุณ ุงู„ section ุงู„ู„ูŠ
4
+
5
+ 2
6
+ 00:00:26,070 --> 00:00:29,950
7
+ ุจูŠู†ู†ุง ุงู„ู„ูŠ ุจูŠู†ู†ุง ู†ู‚ูˆู„ linear dependence and linear
8
+
9
+ 3
10
+ 00:00:29,950 --> 00:00:34,050
11
+ independence ููƒุฑุฉ ุงุนุชุฏุช ุนู„ูŠู‡ุง ููŠ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ู‚ุจู„
12
+
13
+ 4
14
+ 00:00:34,050 --> 00:00:40,230
15
+ ูˆู‚ุจู„ ุญุงุฌุฉ ุงู„ู…ู‚ุงุจู„ุฉ ุงู„ู…ุงุถูŠุฉ ุงุนุชุฏู‡ุง ุงู„ู…ุงุถูŠุฉ ู…ูุงุฏู‡ุงุฅู†
16
+
17
+ 5
18
+ 00:00:40,230 --> 00:00:43,710
19
+ ู„ูˆ ุนู†ุฏูŠ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vector ุจู‚ูˆู„ ุนู†ู‡ู… linearly
20
+
21
+ 6
22
+ 00:00:43,710 --> 00:00:49,830
23
+ dependent ุฅุฐุง ู‚ุฏุฑุช ุฃูƒุฏ ูˆุงุญุฏ ุฃูˆ as a linear
24
+
25
+ 7
26
+ 00:00:49,830 --> 00:00:55,050
27
+ combination ู…ู† ู…ู† ุงู„ุขุฎุฑูŠู† ุฅุฐุง ุฌูŠุช ู„ุฃูŠ vector ู…ู†
28
+
29
+ 8
30
+ 00:00:55,050 --> 00:00:58,910
31
+ ู‡ุฐุง ุงู„ vector ู…ู† ุงู„ู…ุนู„ุงู‚ุงุช ูˆ ู‚ุฏุฑุช ุฃูƒุฏู‡ as a linear
32
+
33
+ 9
34
+ 00:00:58,910 --> 00:01:03,050
35
+ combination ู…ู† ุงู„ุขุฎุฑูŠู† ุจู‚ูˆู„ ู‡ุฏูˆู„ ุงู„ู…ุฌู…ูˆุนุฉ are
36
+
37
+ 10
38
+ 00:01:03,050 --> 00:01:09,030
39
+ linearly dependentุชู…ุงู… ูˆ ุฃุนุทูŠู†ูŠ ุนู„ู‰ ุฐู„ูƒ ู…ุซุงู„ ูˆุงุญุฏุฉ
40
+
41
+ 11
42
+ 00:01:09,030 --> 00:01:13,430
43
+ ู…ู† ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฃุฎุฏู†ุง two vectors ูˆ ู‚ุฏุฑุช ุฃุซุจุช ุฃู†
44
+
45
+ 12
46
+ 00:01:13,430 --> 00:01:17,010
47
+ ูˆุงุญุฏุฉ ููŠู‡ู… ู…ุถุงุนูุงุช ุชุงู†ูŠุฉ ูˆ ุจุงู„ุชุงู„ูŠ ุงู„ุงุชู†ูŠู† ู‡ุฐูˆู„
48
+
49
+ 13
50
+ 00:01:17,010 --> 00:01:22,570
51
+ ุตุงุฑูˆุง linearly ุฏุฌุงู„ุฉ ู†ู†ุชู‚ู„ ุงู„ุขู† ุฅู„ู‰ ุงู„ู…ุซุงู„ ุฑู‚ู…
52
+
53
+ 14
54
+ 00:01:22,570 --> 00:01:26,310
55
+ ุงุชู†ูŠู† ุงุนุทูŠู†ูŠ ุงุฑุจุนุฉ vectors ุฒูŠ ู…ุง ุงู†ุชูˆุง ุดุงูŠููŠู† ููŠ
56
+
57
+ 15
58
+ 00:01:26,310 --> 00:01:31,720
59
+ R3ูˆ ุจูŠู‚ูˆู„ูŠ ุญุฏ ุงุฎุฏูŠ ู‡ู„ ุงู„ vectors ู‡ุฐูˆู„ are linearly
60
+
61
+ 16
62
+ 00:01:31,720 --> 00:01:36,800
63
+ dependent ูˆ ู„ุง linearly independent ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ
64
+
65
+ 17
66
+ 00:01:36,800 --> 00:01:42,940
67
+ ูŠุจู‚ู‰ ุงู†ุง ุนู†ุฏูŠ ุงุฑุจุนุฉ vectors ุงุฐุง ุฌุฏู„ุช ุงูƒุชุจ ุงูŠ ูˆุงุญุฏ
68
+
69
+ 18
70
+ 00:01:42,940 --> 00:01:47,020
71
+ ููŠู‡ู… ุจุฏู„ุงุช ุงู„ุขุฎุฑูŠู† ูŠุจู‚ู‰ ู†ู‚ุทุฉ ุงู„ุฎุท ุจูŠุตูŠุฑ ู‡ุฐุง ุงู„ู…ู„ู‡ู…
72
+
73
+ 19
74
+ 00:01:47,020 --> 00:01:52,320
75
+ linearly dependent ุชุจู‚ู‰ ู„ู†ุต ุงู„ู†ุธุฑูŠุฉ ุทุจุนุง ุนู†ุฏูŠ
76
+
77
+ 20
78
+ 00:01:52,320 --> 00:01:57,750
79
+ ุงุฑุจุนุฉ ุฃููƒ ู…ูŠู† ู…ู†ู‡ู…ู‡ูˆ ู†ุงุฌูŠ ุฌุฏุง ูƒุซูŠุฑ ู…ุงุนู†ุงู‡ุงุด ู…ุดูƒู„ุฉ
80
+
81
+ 21
82
+ 00:01:57,750 --> 00:02:02,490
83
+ ูŠุจู‚ู‰ ู„ูˆ ุฑุงุญุช .. ู„ูˆ ุฑุงุญุช ุงุฎุฐ ุงูŠ ูˆุงุญุฏ ููŠู‡ู… ุนู„ู‰ ุณุจูŠู„
84
+
85
+ 22
86
+ 00:02:02,490 --> 00:02:06,230
87
+ ุงู„ู…ุซุงู„ ูˆ ูƒู†ุช ุงุดูˆู ู‡ู„ ุจุฏุฑ ุงูู‚ู„ูŠู†ุง ุงู„ mobile nation
88
+
89
+ 23
90
+ 00:02:06,230 --> 00:02:12,190
91
+ ู…ู† ุงู„ุงุฎุฑูŠู† ุงู… ู„ุง ูู…ุซู„ุง ู…ุงุดูŠ ุฑุฃูŠูƒ ู…ุง ุงู†ุง ุงุฎุฏ ุงุฎุฏ
92
+
93
+ 24
94
+ 00:02:12,190 --> 00:02:16,610
95
+ ููŠู‡ ุงุฑุจุนุฉ ู…ุซู„ุฉ ูˆ ู†ุดูˆู ู‡ู„ ุจุฏุฑ ุงูู‚ู„ูŠู†ุง ุงู„ mobile
96
+
97
+ 25
98
+ 00:02:16,610 --> 00:02:20,030
99
+ nation ู…ู† ุงู„ุฃูˆู„ ุงู„ูŠ ุงุชูŠ ุงู„ุชู„ุงุชุฉุฃูˆ ุงู„ุฃูˆู„ ู‡ุงู„ุจุนุฏ
100
+
101
+ 26
102
+ 00:02:20,030 --> 00:02:22,690
103
+ ุฑุงูƒุจู‡ ู„ูŠู„ูŠุง ู‚ูˆู… ุจุงู†ูŠุดูŠ ู…ู† ุงู„ุชู„ุงุชุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุŒ ุงู„ู„ูŠ
104
+
105
+ 27
106
+ 00:02:22,690 --> 00:02:28,030
107
+ ุจุชูƒูˆูŠู†ู‡ุงุŒ ู…ุงู„ุงุด ู…ุดูƒู„ุฉุŒ ุฃูŠ ูˆุงุญุฏ ู…ู†ู‡ู… ูŠุจู‚ู‰ ุฏูŠ ูˆุงุญุฏุŒ
108
+
109
+ 28
110
+ 00:02:28,030 --> 00:02:34,370
111
+ ู…ุงุดูŠุŸ ูู…ุซู„ุงุŒ ู„ูˆ ุฌูŠุชุŒ ู‚ูˆู„ุŒ ุจุฏูŠ ุฃุฎุฏูƒูŠ ุฃุฑุจุนุฉุŒ ุจุฏูŠ
112
+
113
+ 29
114
+ 00:02:34,370 --> 00:02:38,130
115
+ ุฃุฌูŠูƒูŠ ู†ุงุฌู„ุฉุŒ ุจุฃูƒู„ุŒ ูˆ ุฃุฒุŒ ุฅูŠู‡ ู„ูŠู„ูŠุง ู‚ูˆู… ุจุงู†ูŠุดูŠ ู…ู†
116
+
117
+ 30
118
+ 00:02:38,130 --> 00:02:43,430
119
+ ุงู„ุขุฎุฑูŠู†ุŒ ุจูŠุชุจู‚ู‰ ุงู„ู…ูุฑูˆุถุŒ ู„ุฐู„ูƒุŒ ุจุฏูŠ ุฃูุชุฑุถ ุฅู†ู‡ ุจุฏูŠ
120
+
121
+ 31
122
+ 00:02:43,430 --> 00:02:47,070
123
+ ุฑุงูƒุจู‡ ู„ูŠู„ูŠุง ู‚ูˆู… ุจุงู†ูŠุดูŠุŒ ุฏู„ูˆู‚ุช ู…ุด ุงูุชุฑุถ ูŠุตุฑุญ ูˆ ุงู„ู„ู‡
124
+
125
+ 32
126
+ 00:02:47,070 --> 00:02:51,790
127
+ ูŠุฑุญุจุงู„ุณุงุจู‚ ุฑุถู‘ู‰ ุตุญ ุจุตุจู† ุนู„ูŠู‡ ูˆุงู†ุช ุบู„ุท ุชุฌูŠุจ ูƒู„ุงู…ู†ุง
128
+
129
+ 33
130
+ 00:02:51,790 --> 00:02:55,110
131
+ ูˆูƒุชุจู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ ูƒู„ุงู…ู†ุง ูˆูƒุชุจู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ
132
+
133
+ 34
134
+ 00:02:55,110 --> 00:02:55,230
135
+ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ ูƒู„ุงู…ู†ุง
136
+
137
+ 35
138
+ 00:02:55,230 --> 00:02:58,830
139
+ ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆุงู†ุช
140
+
141
+ 36
142
+ 00:02:58,830 --> 00:03:02,630
143
+ ุชุฌูŠุจ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ
144
+
145
+ 37
146
+ 00:03:02,630 --> 00:03:04,190
147
+ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ ูƒู„ุงู…ู†ุง
148
+
149
+ 38
150
+ 00:03:04,190 --> 00:03:11,170
151
+ ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ
152
+
153
+ 39
154
+ 00:03:11,170 --> 00:03:17,190
155
+ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆุงู†ุช ุชุฌูŠุจ ูƒู„ุงู…ู†ุง ุบู„ุท ูˆ
156
+
157
+ 40
158
+ 00:03:20,950 --> 00:03:29,470
159
+ ูŠุฌุจ ุฃู† ู†ุนุฑู ุนู„ูŠู‡ ุชู‚ุฑูŠุจุง ุฃู†ุช K V1 ุฒูŠ B V2 ุฒูŠ C V3
160
+
161
+ 41
162
+ 00:03:29,470 --> 00:03:38,130
163
+ V7 ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ ูุฌู‡ุชู‡ ู…ู† V1 ููŠ A ูŠุจู‚ู‰ A ูˆ 2A ูˆ
164
+
165
+ 42
166
+ 00:03:38,130 --> 00:03:48,510
167
+ ู†ุงู‚ุต A ุฒูŠ ูƒู… ุฌู‡ุชู‡ ู…ู† VุŸ B ูˆ ู†ุงู‚ุต 2B ูˆ Vุฒุงุฆุฏ ุชู„ุงุชุฉ
168
+
169
+ 43
170
+ 00:03:48,510 --> 00:03:57,390
171
+ ุฏูˆู„ุฉ ุจู‚ูˆุฉ C ู†ุงู‚ุต ุชู„ุงุชุฉ C ุงุชู†ูŠู† C ูˆู†ุงู‚ุต C ูƒู„ู‡ ุจุฏู„
172
+
173
+ 44
174
+ 00:03:57,390 --> 00:04:03,410
175
+ ุดุงู…ูŠ ุจุฏู„ ุดุงู…ูŠ ุจูŠู‡ ุงุฑุจุนุฉ ู‡ูŠ ุงุฑุจุนุฉ ู„ูŠู‡ ู‡ูˆ ุงุชู†ูŠู† ูˆ
176
+
177
+ 45
178
+ 00:04:03,410 --> 00:04:09,730
179
+ ุงุชู†ูŠู† ูˆ ุงุชู†ูŠู† ุทูŠุจ ู‡ุฏูˆู„ ู„ูˆ ุงู†ุฌู…ุนุชู‡ู… ูŠุฏูุนูˆุง ุณูŠู†ุงูˆู„ู†ุง
180
+
181
+ 46
182
+ 00:04:09,730 --> 00:04:18,860
183
+ A ุฒุงุฆุฏ Bู†ู‚ุต ุซู„ุงุซุฉ C ูƒู…ูƒูˆู†ุฉ ุงู„ู„ุบุฉ ูƒู…ูƒูˆู†ุฉ ุงู„ุชุงู†ูŠุฉ 2A
184
+
185
+ 47
186
+ 00:04:18,860 --> 00:04:28,520
187
+ ู†ู‚ุต ุงุชู†ูŠู† B ุฒุงุฆุฏ ุงุชู†ูŠู† C ูƒู…ูƒูˆู†ุฉ ุงู„ุชุงู„ุชุฉ ู†ู‚ุต A ู†ู‚ุต
188
+
189
+ 48
190
+ 00:04:28,520 --> 00:04:37,780
191
+ A ุฒุงุฆุฏ B ู†ู‚ุต A ุฒุงุฆุฏ B ู†ู‚ุต C ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุชุณุงูˆูŠ
192
+
193
+ 49
194
+ 00:04:37,780 --> 00:04:45,000
195
+ ุงุชู†ูŠู† ูˆุฒูŠ ูˆุฒูŠู†ุนู…ู„ ู…ู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ linear system
196
+
197
+ 50
198
+ 00:04:45,000 --> 00:04:51,840
199
+ ุงู„ู€ linear system ุชุจุชุนุฏ A ุฒุงุฆุฏ B ู†ู‚ุต ุซู„ุงุซุฉ C ูŠุณุงูˆูŠ
200
+
201
+ 51
202
+ 00:04:51,840 --> 00:04:58,120
203
+ ุงุชู†ูŠู† ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู†ูŠุฉ ุงุชู†ูŠู† A ู†ู‚ุต ุงุชู†ูŠู† B ุฒูŠ
204
+
205
+ 52
206
+ 00:04:58,120 --> 00:05:06,140
207
+ ุงุชู†ูŠู† C ูŠุณุงูˆูŠ Zero ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู„ุชุฉ ู†ู‚ุต A ุฒุงุฆุฏ B
208
+
209
+ 53
210
+ 00:05:06,140 --> 00:05:13,520
211
+ ู†ู‚ุต C ูŠุณุงูˆูŠ ZeroูŠุจู‚ู‰ ู‡ุฐุง system ูˆ ุงู„ system ู‡ุฐุง
212
+
213
+ 54
214
+ 00:05:13,520 --> 00:05:18,900
215
+ ู…ุนู†ุงู‡ non-homogeneous ู…ุง ู‡ูˆุงุด homogeneous ูŠุจู‚ู‰
216
+
217
+ 55
218
+ 00:05:18,900 --> 00:05:25,260
219
+ ุจู†ุงุกู‹ ุนู„ูŠู‡ ุชุฑุฏุฏ ุฃุนูŠุฏ ุตูŠุงุบุฉ ุงู„ู…ุนุงุฏู„ุงุช ู‡ุฐู‡ ุจุงู„ุตูŠุงุบุฉ
220
+
221
+ 56
222
+ 00:05:25,260 --> 00:05:29,600
223
+ ุงู„ุชุงู„ูŠุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช
224
+
225
+ 57
226
+ 00:05:29,600 --> 00:05:31,800
227
+ ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช
228
+
229
+ 58
230
+ 00:05:31,800 --> 00:05:37,340
231
+ ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช
232
+
233
+ 59
234
+ 00:05:37,340 --> 00:05:39,020
235
+ ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช
236
+
237
+ 60
238
+ 00:05:39,020 --> 00:05:41,050
239
+ ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชุงู„ุชุฉ ุงุชุฑุจุช ุชูˆ
240
+
241
+ 61
242
+ 00:05:41,050 --> 00:05:51,950
243
+ ู‡ู†ุง a-b ุฒุงุฆุฏ z ูŠุณุงูˆูŠ zero ู‡ู†ุง a-a ุฒุงุฆุฏ b ุฒุงุฆุฏ z
244
+
245
+ 62
246
+ 00:05:51,950 --> 00:05:57,850
247
+ ูŠุณุงูˆูŠ zero ู‚ุถูŠุช ุจู‚ุฏุฑ ุงุฌุจุญุŸ ุงู‡ ู„ูˆ ุฌู…ุงู„ูƒ ู…ุด ุงู„ู„ูŠ
248
+
249
+ 63
250
+ 00:05:57,850 --> 00:06:04,070
251
+ ููŠุญุตู„ ุงุฏูˆู„ ู…ุน ุงู„ุณู†ุฉ ุงู‡ ูุงู„ุณุทุฑูŠู† ู…ุถู„ุด ุนู†ุฏู†ุง ุงู„ู„ูŠ
252
+
253
+ 64
254
+ 00:06:04,070 --> 00:06:13,360
255
+ ุจูŠู†ุง ุจู†ุงุช ุงู„ุง a ุฒุงุฆุฏ bู…ุนู‚ุต ุซู„ุงุซุฉ C ูŠุณุงูˆูŠ ุงุชู†ูŠู† ุฅุฐุง
256
+
257
+ 65
258
+ 00:06:13,360 --> 00:06:19,660
259
+ ู‡ุฐู‡ ู…ุนุงุฏู„ุฉ ูƒุงู†ุช ู…ุฌู‡ูˆู„ุฉ ููŠ ุซู„ุงุซุฉ ู…ุฌุงู„ูŠู† ู„ุง ูŠู…ูƒู†
260
+
261
+ 66
262
+ 00:06:19,660 --> 00:06:25,800
263
+ ู†ุชุฑูƒู‡ุง ููŠ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุฅู„ุง ุฅุฐุง ุญุตู„ุช ู„ู†ุง ู‚ูŠู…ุชูŠู† ู…ู†
264
+
265
+ 67
266
+ 00:06:25,800 --> 00:06:30,080
267
+ ุงู„ู…ุฌู‡ูˆู„ูŠู† ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆุฌุจู†ุง ู‚ูŠู…ุฉ ุงู„ู…ุฌู‡ูˆู„ ุงู„ุซุงู„ุซ ููŠ
268
+
269
+ 68
270
+ 00:06:30,080 --> 00:06:38,390
271
+ ุฏู„ุงู„ุช ู‡ุชูŠู† ุงู„ุชูŠุจุชูŠู† ูุจุนุฏูŠู† ุฃู‚ูˆู„ ู„ุบุงูŠุฉ ู„ูˆ ูƒุงู†ุงู„ A
272
+
273
+ 69
274
+ 00:06:38,390 --> 00:06:48,790
275
+ ู…ุซู„ุง ุจุฏูŠ ุณูˆู‰ K1 ูˆุงู„ .. ูˆุงู„ .. ูˆุงู„ C ุจุฏูŠ ุณูˆู‰ K2
276
+
277
+ 70
278
+ 00:06:48,790 --> 00:06:58,370
279
+ then ุจุตูŠุฑ ุนุดุงู† ูƒุฏู‡ K1 ุฒุงุฆุฏ B ู†ุงู‚ุต ุซู„ุงุซุฉ K2 ุจุฏูŠ ุณูˆู‰
280
+
281
+ 71
282
+ 00:06:58,370 --> 00:07:05,930
283
+ ู…ุงู†ุŸ ุจุฏูŠ ุณูˆู‰ ุซู„ุงุซ ูˆู…ู†ู‡ุง ุงู„ B ุงู„ู„ูŠ ุจุฏูŠู‡ุง ุงู„ู„ูŠ ู‡ูŠ K2
284
+
285
+ 72
286
+ 00:07:06,730 --> 00:07:16,750
287
+ ุฒุงุฆุฏ ุชู„ุงุชุฉ K2 ู…ุงู‚ุต K1 ูŠุจู‚ู‰ ุจุฏุงุก ุนู„ูŠูƒ ุชุฌุฏ ู‚ูŠู… ุงู„ A
288
+
289
+ 73
290
+ 00:07:16,750 --> 00:07:25,570
291
+ ูˆุงู„B ูˆุงู„C ู…ุด ูƒู„ู‡ู… ุฃุตูุฑ ูˆู…ุชุงู„ูŠู‡ ุฏูˆู„ linearly ูŠุจู‚ู‰
292
+
293
+ 74
294
+ 00:07:25,570 --> 00:07:37,570
295
+ ุจุฏุงุก ุนู„ู‰ ุงู„ A ูˆุงู„B and C are not zeroู…ุง ุฏุงู… not
296
+
297
+ 75
298
+ 00:07:37,570 --> 00:07:41,210
299
+ zero ุฅุฐุง ุงู„ vectors ู‡ุคู„ุงุก ู…ุง ู„ู‡ู… linearly
300
+
301
+ 76
302
+ 00:07:41,210 --> 00:07:54,330
303
+ dependent ูŠุจู‚ู‰ ู‡ู†ุง saw the vector ุงู„ู„ูŠ ู‡ูˆ v4 is a
304
+
305
+ 77
306
+ 00:07:54,330 --> 00:08:01,910
307
+ linear combination of
308
+
309
+ 78
310
+ 00:08:01,910 --> 00:08:05,330
311
+ v1 ูˆv2
312
+
313
+ 79
314
+ 00:08:17,290 --> 00:08:25,270
315
+ ุจุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ V1
316
+
317
+ 80
318
+ 00:08:25,270 --> 00:08:30,850
319
+ ูˆ V2 ูˆ V3 ูˆ V4
320
+
321
+ 81
322
+ 00:08:32,980 --> 00:08:41,400
323
+ linearly dependent ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ู‡ุฐุง ุงู„ู…ุซุงู„ ู…ุซุงู„
324
+
325
+ 82
326
+ 00:08:41,400 --> 00:08:48,060
327
+ ุซู„ุงุซุฉ ุงุนุทูŠ ู…ุซุงู„ ุซู„ุงุซุฉ
328
+
329
+ 83
330
+ 00:08:48,060 --> 00:08:52,780
331
+ ู‚ุจู„ ุงู† ู†ุจุฏุฃ ู‡ู„ ุชุณุชุทูŠุน ุงู† ุชุณุฃู„ ุงูŠ ุณุคุงู„ ู‡ู†ุงุŸ ู‡ู„
332
+
333
+ 84
334
+ 00:08:52,780 --> 00:08:56,540
335
+ ุชุณุชุทูŠุน ุงู† ุชุณุฃู„ ุงูŠ ุณุคุงู„ ููŠ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐุงุŸ
336
+
337
+ 85
338
+ 00:08:56,540 --> 00:09:05,830
339
+ ูˆุงุถุญ ูŠุนู†ูŠุŸ ุทุจ ุงู„ู…ุซุงู„ ุงู„ุซุงู„ุซุจู‚ูˆู„ ุงูุชุฑุถ ุงู† P1 as a
340
+
341
+ 86
342
+ 00:09:05,830 --> 00:09:13,190
343
+ function of F1 as a function of X ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ
344
+
345
+ 87
346
+ 00:09:13,190 --> 00:09:20,780
347
+ ุตุญูŠุญ ูˆุงู„ F2 as a function of X ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ Xูˆุงู„ู€
348
+
349
+ 88
350
+ 00:09:20,780 --> 00:09:29,160
351
+ F3 as a function of X ุจุฏู‡ ูŠุณุงูˆูŠ ุชู„ุงุชุฉ ู†ุงู‚ุต X ูˆูƒู„
352
+
353
+ 89
354
+ 00:09:29,160 --> 00:09:39,880
355
+ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ capital P1 of X where ุญูŠุซ ุงู„ P1 as a
356
+
357
+ 90
358
+ 00:09:39,880 --> 00:09:46,140
359
+ function of X ู‡ุฐู‡ is the set of all polynomials is
360
+
361
+ 91
362
+ 00:09:46,140 --> 00:09:55,960
363
+ the set ofall polynomials ูŠุจู‚ู‰ ู…ุฌู…ูˆุนุฉ ูƒุซูŠุฑุงุช
364
+
365
+ 92
366
+ 00:09:55,960 --> 00:10:05,700
367
+ ุงู„ุญุฏูˆุฏ of degree less than or equal to one less
368
+
369
+ 93
370
+ 00:10:05,700 --> 00:10:16,840
371
+ than or equal to one ุงู„ุณุคุงู„ ู‡ูˆ is
372
+
373
+ 94
374
+ 00:10:24,240 --> 00:10:36,380
375
+ ุงู„ุณุคุงู„ ู‡ูˆ is F1 ูˆ F2 and F3 are linearly dependent
376
+
377
+ 95
378
+ 00:10:36,380 --> 00:10:42,920
379
+ or linearly independent ู‡ุฐุง ู‡ูˆ ุงู„ุณุคุงู„ solution
380
+
381
+ 96
382
+ 00:10:50,190 --> 00:10:56,630
383
+ ูŠุจู‚ู‰ ูŠุนุทูŠู†ูŠ three functions ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู…ุฌู…ูˆุนุฉ ุฃูˆ
384
+
385
+ 97
386
+ 00:10:56,630 --> 00:11:03,530
387
+ ููŠ ุงู„ vector space P1 of X ู…ูŠู† P1 of X ูŠุจู‚ู‰ ู‡ูˆ ูƒู„
388
+
389
+ 98
390
+ 00:11:03,530 --> 00:11:10,010
391
+ ุงู„ polynomials of degree less than or equal to one
392
+
393
+ 99
394
+ 00:11:10,010 --> 00:11:14,510
395
+ ูŠุนู†ูŠ ู…ูŠู† ูŠุนู†ูŠ ูƒู„ ุงู„ functions ุงู„ู„ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ
396
+
397
+ 100
398
+ 00:11:14,510 --> 00:11:18,790
399
+ ุงู„ุฃูˆู„ู‰ ุจุฒูŠุฏุด ุนู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ุฏุฑุฌุฉ
400
+
401
+ 101
402
+ 00:11:18,790 --> 00:11:22,810
403
+ ุงู„ุตูุฑูŠุฉ ู…ุงุดูŠุฉ ูƒู„ ุงู„ู„ูŠ ู…ู†ู‡ ุชุญุชู‡ุง ูŠุนุชุจุฑ functionูŠุจู‚ู‰
404
+
405
+ 102
406
+ 00:11:22,810 --> 00:11:26,570
407
+ ูƒู„ real number ุงู„ู„ูŠ ุฎู„ู‚ู‡ู… ุฑุจู†ุง ุจู‚ุฏุฑ ุงุนุชุจุฑ ูƒู„ ูˆุงุญุฏุฉ
408
+
409
+ 103
410
+ 00:11:26,570 --> 00:11:31,170
411
+ ููŠู‡ู… functions ุงุฌู…ุน ููŠู‡ู… functions ุญุท x ู…ุนุงู‡ู…
412
+
413
+ 104
414
+ 00:11:31,170 --> 00:11:35,150
415
+ function ุงุถุฑุจ x ููŠ ู†ุต ููŠ ุชู„ุงุชุฉ ุงุฑุจุนุฉ ููŠ ุงุชู†ูŠู† ููŠ
416
+
417
+ 105
418
+ 00:11:35,150 --> 00:11:38,030
419
+ ุฎู…ุณูŠู† ููŠ ุนุดุฑูŠู† ููŠ ู†ุงู‚ุตุงู† ุงุฐุง ุงูŠู‡ ุงู„ู„ูŠ ุงุฎุฑูŠ ูŠุจู‚ู‰
420
+
421
+ 106
422
+ 00:11:38,030 --> 00:11:42,570
423
+ ู‡ุฐู‡ ูƒู„ู‡ุง functions ู…ุฎุชู„ูุฉ ู…ูˆุฌูˆุฏุฉ ูˆูŠู† ููŠ ุงู„ P1 of X
424
+
425
+ 107
426
+ 00:11:42,570 --> 00:11:48,890
427
+ ู…ู† ู‡ุฏูˆู„ ุฃุฎุฏุช ุชู„ุงุชุฉ ุงู„ุชู„ุงุชุฉ ู…ู† ุงู„ู„ูŠ ุงู„ F1 ูŠุณูˆู‰ ูˆุงุญุฏ
428
+
429
+ 108
430
+ 00:11:48,890 --> 00:11:49,470
431
+ ุตุญูŠุฉ
432
+
433
+ 109
434
+ 00:11:55,550 --> 00:12:01,980
435
+ ู‡ู„ ุงู„ุชู„ุงุชุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ P1are linearly dependent
436
+
437
+ 110
438
+ 00:12:01,980 --> 00:12:06,200
439
+ ูˆู„ุง linearly independent ุจู‚ูˆู„ู‡ ุจุณูŠุทุฉ ุฅุฐุง ุฌุฏุฑุช ุชูƒุชุจ
440
+
441
+ 111
442
+ 00:12:06,200 --> 00:12:11,140
443
+ ูˆุงุญุฏ ู…ู†ู‡ู… ุจุฏู„ุงู„ุฉ ุงู„ุฃุฎุฑูŠู† ูŠุจู‚ู‰ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ุจูŠูƒูˆู†ูˆุง
444
+
445
+ 112
446
+ 00:12:11,140 --> 00:12:14,820
447
+ ุงู„ุชู„ุงุชุฉ linearly dependent ุจู†ุต ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
448
+
449
+ 113
450
+ 00:12:14,820 --> 00:12:18,480
451
+ ุฏุฑุณู†ุงู‡ุง ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆ ุงู„ู„ูŠ ุฃุนุทูŠู†ุง ุนู„ูŠู‡ุง ู‡ู‰
452
+
453
+ 114
454
+ 00:12:18,480 --> 00:12:23,830
455
+ ุงู„ู…ุซุงู„ ุฑู‚ู… ุงุชู†ูŠู†ุจุนุฏูŠู† ุจู‚ูˆู„ ูƒูˆูŠุณ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุฌูŠ
456
+
457
+ 115
458
+ 00:12:23,830 --> 00:12:28,210
459
+ ู„ุฃูŠ vector ููŠู‡ู… ุฃุดูˆู ุจู‚ุฏุฑ ุฃูƒุชุจู‡ ุจุฏู„ุงู„ุฉ ุงู„ุขุฎุฑูŠู† ุฃู…
460
+
461
+ 116
462
+ 00:12:28,210 --> 00:12:31,570
463
+ ู„ุง ุฅุฐุง ูƒุฏุฑุช ูƒุฃู†ุง ุจูŠู‡ุง ู…ุงู‚ุฏุฑู†ุงุด ุจู‚ูˆู„ ูƒูู‰ ุงู„ู„ู‡
464
+
465
+ 117
466
+ 00:12:31,570 --> 00:12:35,740
467
+ ุงู„ู…ุคู…ู†ูŠู† ุงู„ู‚ุชุงู„ ูŠุจู‚ู‰ ู„ูŠุณ ูˆ ู„ูŠู† ูŠุฑุถูŠ ู…ู† ุฐู„ูƒูุจุฌูŠ
468
+
469
+ 118
470
+ 00:12:35,740 --> 00:12:40,260
471
+ ุจู‚ูˆู„ ู…ุงุชูŠ ู„ูˆ ุฑูˆุญุช ุฃุฎุฏุช ุงู„ F ุชู„ุงุชุฉ of X ูŠุง ุจู†ุงุช
472
+
473
+ 119
474
+ 00:12:40,260 --> 00:12:48,300
475
+ ูŠุจู‚ู‰ ุงู„ F ุชู„ุงุชุฉ of X ู‡ูŠ ู…ูŠู†ุŸ ุชู„ุงุชุฉ ู†ุงู‚ุต X ุงู„ุขู† ู‡ู„
476
+
477
+ 120
478
+ 00:12:48,300 --> 00:12:53,700
479
+ ุงู„ุชู„ุงุชุฉ ู†ุงู‚ุต X ุจู‚ุฏุฑ ุฃูƒุชุจู‡ู… ุจุฏู„ุงู„ุฉ ุงู„ two functions
480
+
481
+ 121
482
+ 00:12:53,700 --> 00:12:59,560
483
+ ู‡ุฏูˆู„ ุฃู… ู„ุงุŸ ุจู†ู‚ูˆู„ ุงู„ู„ู‡ ุฃุนู„ู… ุชุนุงู„ู‰ ู†ุดูˆู ูŠุจู‚ู‰ ู‡ุฐู‡
484
+
485
+ 122
486
+ 00:12:59,560 --> 00:13:04,220
487
+ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุชู„ุงุชุฉ ููŠ ู…ูŠู† ูŠุง ุจู†ุงุชุŸุชู„ุงุชุฉ ููŠ ูˆุงุญุฏ
488
+
489
+ 123
490
+ 00:13:04,220 --> 00:13:10,860
491
+ ุชู…ุงู… ุงู„ู„ูŠ ุจุนุฏ ู‡ุฐู‡ ุจู‚ุฏุฑ ุงูƒุชุจ ุฒุงุฆุฏ ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ุงู„ X
492
+
493
+ 124
494
+ 00:13:10,860 --> 00:13:17,920
495
+ ู…ุธุจูˆุทุŸ ุณูˆูŠู†ุงุด ุดูŠุกูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุงูŠ
496
+
497
+ 125
498
+ 00:13:17,920 --> 00:13:22,700
499
+ ุงู„ุชู„ุงุชุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ูˆุงุญุฏ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุนู† ุงู„ F1
500
+
501
+ 126
502
+ 00:13:22,700 --> 00:13:30,820
503
+ ูŠุจู‚ู‰ F1 of X ุฒุงุฆุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ X ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†
504
+
505
+ 127
506
+ 00:13:30,820 --> 00:13:38,500
507
+ ุนู† F2 of XูŠุจู‚ู‰ ู‚ุฏุฑุช ุงูƒุชุจ ุงู„ F3 as a linear
508
+
509
+ 128
510
+ 00:13:38,500 --> 00:13:48,940
511
+ combination ู…ู† F1 ูˆ F2 ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ F3 of X as a
512
+
513
+ 129
514
+ 00:13:48,940 --> 00:13:55,580
515
+ linear combination of
516
+
517
+ 130
518
+ 00:13:55,580 --> 00:14:00,840
519
+ the two vectors
520
+
521
+ 131
522
+ 00:14:03,230 --> 00:14:13,250
523
+ ุงู„ู„ูŠ ู‡ูˆ ุงู„ F1 of X and F2 of X by the previous
524
+
525
+ 132
526
+ 00:14:14,850 --> 00:14:24,670
527
+ Theorem ุจุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ุงู„ F1 of X ูˆุงู„ F2 of X
528
+
529
+ 133
530
+ 00:14:24,670 --> 00:14:33,490
531
+ ูˆุงู„ F3 of X are linearly dependent ูˆุงู†ุชู‡ูŠู†ุง ู…ู†
532
+
533
+ 134
534
+ 00:14:33,490 --> 00:14:34,590
535
+ ุงู„ู…ุซู„
536
+
537
+ 135
538
+ 00:14:53,780 --> 00:14:59,860
539
+ ู†ุนุทูŠ ูƒู…ุงู† ู…ุซุงู„ ู…ุซุงู„
540
+
541
+ 136
542
+ 00:14:59,860 --> 00:15:09,040
543
+ ุฃุฑุจุนุฉ ุจูŠู‚ูˆู„ ู„ู€ let ุงู„ F1 of X ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุฒุงุฆุฏ X
544
+
545
+ 137
546
+ 00:15:09,040 --> 00:15:20,260
547
+ ูˆุงู„ F2 of X ูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต X ุชุฑุจูŠุนูˆุง๏ฟฝ๏ฟฝ F ุชู„ุงุชุฉ of
548
+
549
+ 138
550
+ 00:15:20,260 --> 00:15:30,840
551
+ X ูŠุณูˆู‰ ุงู„ X ุชุฑุจูŠุฉ ูƒู„ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ P2 of X where
552
+
553
+ 139
554
+ 00:15:30,840 --> 00:15:39,500
555
+ ุญูŠุซ ุงู„ P2 of X is the
556
+
557
+ 140
558
+ 00:15:39,500 --> 00:15:44,200
559
+ set of all polynomials
560
+
561
+ 141
562
+ 00:16:01,000 --> 00:16:16,520
563
+ ุงู„ุณุคุงู„ ู‡ูˆ is theVectors ู‡ู„ ุงู„ vectors F1 ูˆ F2 ูˆ F3
564
+
565
+ 142
566
+ 00:16:16,520 --> 00:16:23,860
567
+ are linearly dependent or linearly independent ู‡ุฐุง
568
+
569
+ 143
570
+ 00:16:23,860 --> 00:16:26,720
571
+ ู‡ูˆ ุงู„ุณุคุงู„
572
+
573
+ 144
574
+ 00:16:40,110 --> 00:16:45,990
575
+ ู†ุฑุฌุน ู„ุณุคุงู„ู†ุง ู…ุฑุฉ ุซุงู†ูŠุฉ ู…ูŠุนุทูŠู†ูŠ ุชู„ุงุชุฉ vectors ุฃูˆ
576
+
577
+ 145
578
+ 00:16:45,990 --> 00:16:52,250
579
+ ุชู„ุงุชุฉ functions f1 of x ูŠุณุงูˆูŠ ูˆุงุญุฏ ุฒูŠุงุฏ x f2 of x
580
+
581
+ 146
582
+ 00:16:52,250 --> 00:16:58,350
583
+ ูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต x ุชุฑุจูŠุน f3 of x ูŠุณุงูˆูŠ x ุชุฑุจูŠุน ูƒู„ู‡ู…
584
+
585
+ 147
586
+ 00:16:58,350 --> 00:17:04,160
587
+ ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ P2 of xู…ู† ุงู„ P2 of X ูŠุจู‚ู‰ ูƒู„ ุงู„
588
+
589
+ 148
590
+ 00:17:04,160 --> 00:17:09,100
591
+ polynomials ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ุฃูˆ ุฃู‚ู„ ู…ู† ุงู„ุฏุฑุฌุฉ
592
+
593
+ 149
594
+ 00:17:09,100 --> 00:17:12,160
595
+ ุงู„ุซุงู†ูŠุฉ ูŠุนู†ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ู…ุงุดูŠ ู…ู† ุงู„ุฏุฑุฌุฉ
596
+
597
+ 150
598
+ 00:17:12,160 --> 00:17:17,040
599
+ ุงู„ุตูุฑูŠุฉ ู…ุงุดูŠ ู„ูƒู† ู…ุงูŠุฒูŠุฏ ุนู† ุงู„ุฏุฑุฌุฉ ูŠุนู†ูŠ ุจุฏูŠุด ุฃุดูˆู X
600
+
601
+ 151
602
+ 00:17:17,040 --> 00:17:21,880
603
+ ุชูƒุนูŠุจ ูู…ุง ููˆู‚ ู†ู‡ุงุฆูŠ ููŠ ุฃูŠ vector ู…ู† ู‡ุฐู‡ ุงู„ vector
604
+
605
+ 152
606
+ 00:17:21,880 --> 00:17:26,620
607
+ ูƒู„ู‡ X ุชุฑุจูŠุน ูˆูŠุฑุฌุน ู…ู…ูƒู† X ุชุฑุจูŠุน ู…ู…ูƒู† X ู…ู† ุงู„ุฏุฑุฌุฉ
608
+
609
+ 153
610
+ 00:17:26,620 --> 00:17:31,050
611
+ ุงู„ุฃูˆู„ู‰ ูˆู…ู…ูƒู† ุซุงุจุชูŠุจู‚ู‰ function ูŠุนุทูŠู†ูŠ ู‡ู†ุง ุชู„ุงุชุฉ
612
+
613
+ 154
614
+ 00:17:31,050 --> 00:17:36,410
615
+ vectors F1 ูˆ F2 ูˆ F3 ูˆ ุจูŠุณุฃู„ ู‡ู„ ุงู„ุชู„ุงุชุฉ ุฏูˆู„
616
+
617
+ 155
618
+ 00:17:36,410 --> 00:17:41,870
619
+ linearly dependent ูˆู„ุง linearly independent ุจู‚ูˆู„
620
+
621
+ 156
622
+ 00:17:41,870 --> 00:17:46,730
623
+ ูˆุงู„ู„ู‡ ูƒูˆูŠุณ ุฅุฐุง ุฌุฏุฑู†ุง ู†ูƒุชุจ ูˆุงุญุฏ ุจุฏู„ุงู„ุฉ ุงู„ุขุฎุฑูŠู†
624
+
625
+ 157
626
+ 00:17:46,730 --> 00:17:51,330
627
+ ุงู„ุฅุชู†ูŠู† ู…ุนู†ุงุชู‡ ุฏูˆู„ linearly dependentู…ุงู‚ุฏุฑู†ุง ูŠุจู‚ู‰
628
+
629
+ 158
630
+ 00:17:51,330 --> 00:17:56,370
631
+ linearly independent ุชุนุงู„ูˆุง ู†ุดูˆู ูŠุจู‚ู‰ ู†ูุณ ุงู„ููƒุฑุฉ
632
+
633
+ 159
634
+ 00:17:56,370 --> 00:18:02,490
635
+ ุชุจุน ุงู„ู…ุซุงู„ ุงู„ุณุงุจู‚ ู‚ุจู„ ู‚ู„ูŠู„ ุฅุฐุง ุจุฏูŠ ุฃูุชุฑุถ ุฃู†ูŠ ุจู‚ุฏุฑ
636
+
637
+ 160
638
+ 00:18:02,490 --> 00:18:09,050
639
+ ุฃูƒุชุจ ูˆุงุญุฏ ููŠู‡ู… ุจุฏู„ุงู„ุฉ ู…ู†ุŸ ุจุฏู„ุงู„ุฉ ุงู„ุขุฎุฑูŠู† ูŠุจู‚ู‰ ู‡ู†ุง
640
+
641
+ 161
642
+ 00:18:09,050 --> 00:18:11,730
643
+ ุญุงุฌุฉ ุฃู‚ูˆู„ู‡ ู‡ู†ุง assume
644
+
645
+ 162
646
+ 00:18:14,840 --> 00:18:23,320
647
+ ู…ุซู„ุง f3 of x ูŠุจุฏูˆ ูŠุณุงูˆูŠ x ุชุฑุจูŠุฉ is a linear
648
+
649
+ 163
650
+ 00:18:23,320 --> 00:18:26,520
651
+ combination
652
+
653
+ 164
654
+ 00:18:26,520 --> 00:18:31,880
655
+ of
656
+
657
+ 165
658
+ 00:18:31,880 --> 00:18:44,610
659
+ f1 of x and f2 of xThat is ุฃูŠ ุฃู† ู…ุซู„ู‹ุง A ููŠ ุงู„ F1
660
+
661
+ 166
662
+ 00:18:44,610 --> 00:18:52,130
663
+ of X ุฒุงุฆุฏ B ููŠ ุงู„ F2 of X ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ F ููŠ 3 of X
664
+
665
+ 167
666
+ 00:18:52,130 --> 00:18:57,510
667
+ ู…ุด ู‡ูŠูƒุŸ ู‡ุฐุง ู…ุนู†ู‰ ุฃู† F3 ู‡ูŠ linear combination ู…ู†
668
+
669
+ 168
670
+ 00:18:57,510 --> 00:19:05,400
671
+ ู…ู†ุŸ ู…ู† ุงุชู†ูŠู† ุงู„ุฃุฎุฑูŠู†ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู† ุงู„ A ููŠ ุงู„
672
+
673
+ 169
674
+ 00:19:05,400 --> 00:19:11,620
675
+ F1 ุงู„ู‰ ูŠุฌุฏุงุด ูŠุง ุจู†ุงุช ูˆุงุญุฏ ุฒุงุฆุฏ X ุฒุงุฆุฏ ุงู„ B ุงู„ F2
676
+
677
+ 170
678
+ 00:19:11,620 --> 00:19:17,780
679
+ ูˆุงุญุฏ ู†ุงู‚ุต X ุชุฑุจูŠุน ุจุฏูŠู‡ ูŠุณูˆู‰ ุงู„ F ุชู„ุงุชุฉ ุงู„ู‡ู…ูŠู† X
680
+
681
+ 171
682
+ 00:19:17,780 --> 00:19:26,440
683
+ ุชุฑุจูŠุนุจุฏุง ููƒ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุจู€ GA ุฒุงุฆุฏ AX ุฒุงุฆุฏ B ู†ุงู‚ุต
684
+
685
+ 172
686
+ 00:19:26,440 --> 00:19:33,010
687
+ B X ุชุฑุจูŠุฉ ูƒู„ู‡ ุจุฏู„ ุณูˆู‰ ู…ู† X ุชุฑุจูŠุฉุงู„ุงู† ุจุฏูŠ ุงุนู…ู„
688
+
689
+ 173
690
+ 00:19:33,010 --> 00:19:37,270
691
+ ู…ู‚ุงุฑู†ุฉ ุจูŠู† ุงู„ู…ุนุงุฏู„ุงุช ููŠ ุงู„ุทุฑููŠู† ูˆุงู„ู„ู‡ ู‚ุจู„ ุงุนู…ู„
692
+
693
+ 174
694
+ 00:19:37,270 --> 00:19:46,710
695
+ ู…ู‚ุงุฑู†ุฉ ุจุฏูŠ ุงุฌู…ุน ุงู„ุซูˆุงุจุช ู…ุน ุจุนุถ a ุฒุงุฆุฏ b ุงู„ a x
696
+
697
+ 175
698
+ 00:19:46,710 --> 00:19:52,790
699
+ ู„ุญุงู„ู‡ุง ู…ุงููŠุด ุบูŠุฑู‡ุง ุงู„ุณุงู„ุจ b x ุชุฑุจูŠู‡ ู„ุญุงู„ู‡ุง ู…ุงููŠุด
700
+
701
+ 176
702
+ 00:19:52,790 --> 00:19:58,950
703
+ ุบูŠุฑู‡ุง ุจุฏูŠ ุณุงูˆูŠ ุงู„ x ุชู…ุฑูŠ ุจุชุฑุจูŠู‡ูŠุจู‚ู‰ ุจุฏูŠ ุงู‚ุงุฑู†
704
+
705
+ 177
706
+ 00:19:58,950 --> 00:20:03,570
707
+ ุงู„ู…ุนุงู…ู„ุงุช ููŠ ุงู„ุทุฑููŠู† ูˆ comparing the coefficients
708
+
709
+ 178
710
+ 00:20:03,570 --> 00:20:08,970
711
+ in both sides of the equation we get ูŠุจู‚ู‰ ู„ูˆ ุฑูˆุญู†ุง
712
+
713
+ 179
714
+ 00:20:08,970 --> 00:20:15,870
715
+ ุงู‚ุงุฑู†ู‡ุง ุจู†ุญุตู„ ุนู„ู‰ ุงูŠุด ุนู„ู‰ a ุฒุงุฆุฏ b ุจุฏู‡ ูŠุณุงูˆูŠ zero
716
+
717
+ 180
718
+ 00:20:15,870 --> 00:20:21,850
719
+ ูˆ ุจุฏู†ุง ู†ุญุตู„ ุนู„ู‰ ุงู† ุงู„ a ุจุฏู‡ ูŠุณุงูˆูŠ zero ูˆ ุจุฏู†ุง ู†ุญุตู„
720
+
721
+ 181
722
+ 00:20:21,850 --> 00:20:28,600
723
+ ุนู„ู‰ ุงู† ุณุงู„ุจ b ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด ูˆุงุญุฏู…ู† ู‡ุฐู‡ ุจู‚ุฏุฑ ุงู‚ูˆู„
724
+
725
+ 182
726
+ 00:20:28,600 --> 00:20:33,900
727
+ ู…ุง ูŠุฃุชูŠ ุงู„ a ุฒุงุฆุฏ ุงู„ b ุจุฏู‡ ูŠุณุงูˆูŠ zero ูˆุงู„ a ุจุฏู‡
728
+
729
+ 183
730
+ 00:20:33,900 --> 00:20:42,060
731
+ ูŠุณุงูˆูŠ zero ูˆุงู„ b ุชุณุงูˆูŠ ู‚ุฏุงุด ุณุงู„ุจ ูˆุงุญุฏุทูŠุจ ุจุฏูŠ ุงุฎุฏ
732
+
733
+ 184
734
+ 00:20:42,060 --> 00:20:48,380
735
+ ู‡ุฌูŠุจ ู‚ูŠู…ุฉ A ูˆB ุจุฏูŠ ุงุดูˆู ู‡ู„ ูƒู„ุงู…ูŠ ู‡ุฐุง ุตุญูŠุญ ูˆู„ุง ๏ฟฝ๏ฟฝุฃ
736
+
737
+ 185
738
+ 00:20:48,380 --> 00:20:55,100
739
+ ูุจุฏูŠ ุงุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ููˆู‚ ุนู† ู‚ูŠู…ุฉ A ูˆB ูˆุงุดูˆู
740
+
741
+ 186
742
+ 00:20:55,100 --> 00:20:59,880
743
+ ุงุฐุง ูˆุงู„ู„ู‡ ุงู„ู†ุชุฌ ุทู„ุน ุจ zero ูŠุจู‚ู‰ ูƒู„ุงู…ู†ุง ุตุญูŠุญ ูˆุฏูˆู„
744
+
745
+ 187
746
+ 00:20:59,880 --> 00:21:05,250
747
+ linearly dependentูˆุงู†ุทู„ุน ูƒู„ุงู…ู†ุง ุบู„ุท ูŠุจู‚ู‰ ูุฑุถูŠ ุบู„ุท
748
+
749
+ 188
750
+ 00:21:05,250 --> 00:21:11,570
751
+ ูˆุนูƒุณู‡ ู‡ูˆ ุงู„ุตุญ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ุจุฏุงุดูŠ ุงู‚ูˆู„ ู‡ุฐู‡ ุจุฏู‡ ุชุนุทูŠู†ุง
752
+
753
+ 189
754
+ 00:21:11,570 --> 00:21:18,750
755
+ ุงู„ู…ุนุงุฏู„ุฉ ููˆู‚ ุง ุจุฒูŠุฑูˆ ูˆุงู„ ุจ ุจุฒุงุฆุฏ ู„ุณุงู„ุจ ูˆุงุญุฏ ุจุฏู‡
756
+
757
+ 190
758
+ 00:21:18,750 --> 00:21:24,370
759
+ ูŠุณูˆูŠ ู‚ุฏุงุดุŸ Zero ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุณุงู„ุจ ูˆุงุญุฏ ุจุฏู‡ ูŠุณูˆูŠ
760
+
761
+ 191
762
+ 00:21:24,370 --> 00:21:30,860
763
+ Zero ู…ูู‚ูŠู†ุŸูŠุจู‚ู‰ ูƒู„ุงู… ู…ุด ุตุญูŠุญ ูŠุจู‚ู‰ this is
764
+
765
+ 192
766
+ 00:21:30,860 --> 00:21:33,060
767
+ impossible
768
+
769
+ 193
770
+ 00:21:35,290 --> 00:21:39,250
771
+ Impossible ู„ุฃู† ู‡ุคู„ุงุก ู‡ู… ุงู„ู€Real Numbers ุนุงุฏูŠุฉ ู„ุง
772
+
773
+ 194
774
+ 00:21:39,250 --> 00:21:42,970
775
+ ูŠู…ูƒู† ุงู„ู€0 ููŠ ูŠูˆู… ู…ู† ุงู„ุฃูŠุงู… ูŠูƒูˆู† ู…ุณุงูˆูŠุง ู„ู„ูˆุงุญุฏุฉ
776
+
777
+ 195
778
+ 00:21:42,970 --> 00:21:46,850
779
+ ุงู„ุตุญูŠุญุฉ ู…ุฏุงู… ุงู„ู€Impossible ุดูˆ ูˆุตู„ู†ุง ู„ู‡ุฐู‡ ุงู„ุดุบู„ุฉ
780
+
781
+ 196
782
+ 00:21:46,850 --> 00:21:52,550
783
+ ุงู„ุบู„ุท ุงู„ูุฑุถ ุงู„ู„ูŠ ุงุญู†ุง ุบู„ุท ุงุฐุง ุงู„ู€F3 ุงู„ู„ูŠ ูŠู…ูƒู† ุงู†
784
+
785
+ 197
786
+ 00:21:52,550 --> 00:21:57,750
787
+ ุชูƒูˆู† Linear Combination ู…ู† ุงู„ู€F1 ูˆF2 ูŠุจู‚ู‰ ุงู„ุชู„ุงุชุฉ
788
+
789
+ 198
790
+ 00:21:57,750 --> 00:22:01,490
791
+ ู‡ุคู„ุงุก Linearly
792
+
793
+ 199
794
+ 00:22:01,490 --> 00:22:11,000
795
+ IndependentูŠุจู‚ู‰ ู‡ู†ุง ูู‚ุท ุงู„ู€ F ุชู„ุงุชุฉ is not a
796
+
797
+ 200
798
+ 00:22:11,000 --> 00:22:14,240
799
+ linear combination
800
+
801
+ 201
802
+ 00:22:17,920 --> 00:22:30,000
803
+ of ุงู„ F1 and ุงู„ F2 ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุงู† ุงู„ F1 ูˆ F2
804
+
805
+ 202
806
+ 00:22:30,000 --> 00:22:36,120
807
+ and ุงู„ F3 are linearly independent
808
+
809
+ 203
810
+ 00:22:38,720 --> 00:22:44,240
811
+ ุทูŠุจ ุฃู†ุง ุญู„ูŠุช ุงู„ุณุคุงู„ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ู†ุธุฑูŠุฉ ุตุญ ูˆู„ุง
812
+
813
+ 204
814
+ 00:22:44,240 --> 00:22:49,420
815
+ ู„ุงุŸ ู„ูˆ ุฃุญุฏ ุฃุฌูŠู‡ุง ุงู„ุณุคุงู„ ููŠ ุงู„ุงู…ุชุญุงู†ุฉ ูˆู†ุณูŠุช ุงู„ู†ุธุฑูŠุฉ
816
+
817
+ 205
818
+ 00:22:49,420 --> 00:22:54,980
819
+ ูˆุฑุงุญุช ู‚ุงู„ุช ุฃู†ุง ุจุฏูŠ ุฃูุชุฑุถ ุนู†ุฏูŠ ุซูˆุงุจุฉ A ูˆB ูˆC A ููŠ
820
+
821
+ 206
822
+ 00:22:54,980 --> 00:23:01,120
823
+ F1 ุฒุงุฆุฏ B ููŠ F2 ุฒุงุฆุฏ C ููŠ F3 ูˆุณุงูˆูŠ Zero ูˆุทู„ุนุช ุฃู†
824
+
825
+ 207
826
+ 00:23:01,120 --> 00:23:05,960
827
+ ุงู„ A ุชุณุงูˆูŠ ุงู„ B ุชุณุงูˆูŠ ุงู„ C ุชุณุงูˆูŠ ุงู„ Zero ูŠุจู‚ู‰ ุฏูˆุด
828
+
829
+ 208
830
+ 00:23:05,960 --> 00:23:12,190
831
+ ู…ุนู†ุงู‡ุฅู†ู‡ ุชู„ุงุชุฉ linearly independent ูŠุจู‚ู‰ ู‡ุฐุง good
832
+
833
+ 209
834
+ 00:23:12,190 --> 00:23:18,210
835
+ exercise ุฅู„ูŠูƒ ุฅู†ูƒ ุชุชุฃูƒุฏูŠ ุฅู†ู‡ ุงู„ุชู„ุงุชุฉ ู‡ุฐูˆู„ linearly
836
+
837
+ 210
838
+ 00:23:18,210 --> 00:23:26,670
839
+ independent ุจุทุฑูŠู‚ุชู†ุง ู…ูŠู† ุงู„ู‚ุฏูŠู… ู‡ูˆ ูƒุชุจ ุนู†ุฏูƒ ุญู„ ู‡ุฐุง
840
+
841
+ 211
842
+ 00:23:26,670 --> 00:23:33,690
843
+ ุงู„ุณุคุงู„ ุนู† ุทุฑูŠู‚ c1v1
844
+
845
+ 212
846
+ 00:23:34,460 --> 00:23:44,940
847
+ ุฒุงูŠุฏ C2V2 ูŠุนู†ูŠ C1F1 ุฒุงูŠุฏ C2F2 ุฒุงูŠุฏ C3F3 ูŠุณุงูˆูŠ Zero
848
+
849
+ 213
850
+ 00:23:44,940 --> 00:23:54,800
851
+ ูˆู…ู† ุซู… ุฃุซุจุชูŠู† ุงู† C1 ูŠุณุงูˆูŠ C2 ูŠุณุงูˆูŠ C3 ูŠุณุงูˆูŠ Zero
852
+
853
+ 214
854
+ 00:23:56,850 --> 00:24:01,210
855
+ ูŠุจู‚ู‰ ู‡ุฐุง good exercise ู„ูƒ ูˆุงู„ุฌูˆุงุจ ู‡ูŠูˆ ุนู†ุฏูƒ ู„ุฅู†
856
+
857
+ 215
858
+ 00:24:01,210 --> 00:24:04,770
859
+ ู‡ุฏูˆู„ ู…ุง ู„ู‡ู… ู„ุฅู† ูŠุนู…ู„ ุงู„ independent ูŠุนู†ูŠ ู„ุงุฒู… ุงู„ c
860
+
861
+ 216
862
+ 00:24:04,770 --> 00:24:09,830
863
+ hat ุงู„ุชู„ุงุชุฉ ูŠุทู„ุน ุนู†ุฏูƒ ุจุฃุตูุฑ ุชู…ุงู… ุชู…ุงู…
864
+
865
+ 217
866
+ 00:24:29,870 --> 00:24:40,710
867
+ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ููŠ RM ุจุชู‚ูˆู„
868
+
869
+ 218
870
+ 00:24:40,710 --> 00:24:54,690
871
+ ุงู„ V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ ุงู„ VN ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ RM ุงู„ู†ู‚ุทุฉ
872
+
873
+ 219
874
+ 00:24:54,690 --> 00:25:10,210
875
+ ุงู„ุฃูˆู„ู‰ Fุงู„ู€ N ุฃูƒุจุฑ ู…ู† ุงู„ู€ M then the elements V1 ูˆ
876
+
877
+ 220
878
+ 00:25:10,210 --> 00:25:19,250
879
+ V2 ูˆ ู„ุบุงูŠุฉ ุงู„ู€ N are linearly dependent ู†ู‚ุทุฉ ุซุงู†ูŠุฉ
880
+
881
+ 221
882
+ 00:25:19,250 --> 00:25:28,270
883
+ ู„ูˆ ุญุฏุซ ุฅู† ุงู„ู€ N ุณุงูˆุฉ ุงู„ู€ MูŠุจู‚ู‰ then the elements
884
+
885
+ 222
886
+ 00:25:28,270 --> 00:25:38,070
887
+ V1 ูˆ V2 ูˆ VN ู‡ุฏูˆู„ are linearly dependent if and
888
+
889
+ 223
890
+ 00:25:38,070 --> 00:25:47,770
891
+ only if ุงู„ determinant ู„ู…ูŠู†ุŸ ู„ู„ V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ ุงู„
892
+
893
+ 224
894
+ 00:25:47,770 --> 00:25:58,200
895
+ VN ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ูƒุงู† ูŠุณุงูˆูŠ Zeroูƒู…ุงู† ู…ู„ุงุญุธุฉ ุฃุฎุฑู‰ if
896
+
897
+ 225
898
+ 00:25:58,200 --> 00:26:09,540
899
+ ุงู„ determinant ู„ู…ู†ุŸ ู„ู„ V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ ุงู„ VN ู„ุง
900
+
901
+ 226
902
+ 00:26:09,540 --> 00:26:14,360
903
+ ูŠุณุงูˆูŠ zero then
904
+
905
+ 227
906
+ 00:26:14,360 --> 00:26:26,920
907
+ ุงู„ V1 ูˆ V2 ูˆ VN arelinearly independent ูƒู…ุงู† ู†ุธุฑูŠุฉ
908
+
909
+ 228
910
+ 00:26:26,920 --> 00:26:31,940
911
+ ุจูŠู‚ูˆู„
912
+
913
+ 229
914
+ 00:26:31,940 --> 00:26:41,520
915
+ let each element of
916
+
917
+ 230
918
+ 00:26:41,520 --> 00:26:49,580
919
+ v1 ูˆv2 ูˆvn of
920
+
921
+ 231
922
+ 00:26:50,620 --> 00:27:03,880
923
+ a vector a space capital V ุจ a linear combination
924
+
925
+ 232
926
+ 00:27:03,880 --> 00:27:08,060
927
+ linear
928
+
929
+ 233
930
+ 00:27:08,060 --> 00:27:16,420
931
+ combination of the vectors of the
932
+
933
+ 234
934
+ 00:27:16,420 --> 00:27:29,070
935
+ vectors U1 ูˆ U2ูˆู„ุบุงูŠุฉ U M ู„ุบุงูŠุฉ U M of ุงู„ vector
936
+
937
+ 235
938
+ 00:27:29,070 --> 00:27:41,570
939
+ space V itself ู„ูˆ ูƒุงู†ุช ุงู„ M ุฃู‚ู„ ู…ู† ุงู„ N then ุงู„ู„ูŠ
940
+
941
+ 236
942
+ 00:27:41,570 --> 00:27:51,590
943
+ ู‡ูˆ V 1 ูˆ V 2 ูˆ V N areLinearly Dependent
944
+
945
+ 237
946
+ 00:28:26,040 --> 00:28:32,920
947
+ ู†ุฑุฌุน ู„ู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ู†ู‚ุฑุฃ ู†ุธุฑูŠุฉ ูƒูˆูŠุณ ูˆ ู†ุฏุฌุฌ ููŠ ูƒู„
948
+
949
+ 238
950
+ 00:28:32,920 --> 00:28:39,040
951
+ ูƒู„ู…ุฉ ู…ูƒุชูˆุจุฉ ุญุชู‰ ู†ุณุชุทูŠุน ุฃู† ู†ูู‡ู…ู‡ุง ูˆ ุฑุจู…ุง ู†ุทุฑุญ ุจุนุถ
952
+
953
+ 239
954
+ 00:28:39,040 --> 00:28:44,480
955
+ ุงู„ุชุณุงุคู„ุงุช ุจุฏู†ุง ุงู„ุฅุฌุงุจุฉ ุนู„ูŠู‡ุง ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ูŠุงุฎุฏู„ูƒ
956
+
957
+ 240
958
+ 00:28:44,480 --> 00:28:49,340
959
+ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vector ู…ู† V1 ู„ุบุงูŠุฉ VN ูŠุจู‚ู‰ ุนุฏุฏู‡ู… ุฌุฏุงุด
960
+
961
+ 241
962
+ 00:28:49,340 --> 00:28:57,910
963
+ N ู…ู† ุงู„ vectors ู…ูˆุฌูˆุฏุงุช ููŠ ู…ู†ุŸูู‰ RM ู…ูŠู† ู‡ู‰ RMุŸ the
964
+
965
+ 242
966
+ 00:28:57,910 --> 00:29:03,530
967
+ set of all M tuples ูŠุนู†ูŠ ูƒู„ ุนู†ุตุฑ ู…ูƒูˆู‘ู† ู…ู† M ู…ู†
968
+
969
+ 243
970
+ 00:29:03,530 --> 00:29:09,510
971
+ ุงู„ู…ุฑูƒุจุงุช ูŠุจู‚ู‰ ุงู†ู‡ M ู…ู…ูƒู† ูŠุชุณุงูˆู‰ ูˆ ู…ู…ูƒู† ู…ูŠุชุณุงูˆูˆุด
972
+
973
+ 244
974
+ 00:29:09,510 --> 00:29:16,560
975
+ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุงู‡ ู„ุฃู†ู‡ ู‚ู„ุช ู‡ุฏูˆู„ ุงู†ู‡ ู‡ุฏูˆู„ M ุทูŠุจุจู‚ูˆู„
976
+
977
+ 245
978
+ 00:29:16,560 --> 00:29:22,320
979
+ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุฅุฐุง ูƒุงู† ุงู„ N ุฃูƒุจุฑ ู…ู† M ูŠุนู†ูŠ ุนุฏุฏ ุงู„
980
+
981
+ 246
982
+ 00:29:22,320 --> 00:29:27,380
983
+ vectors ุงู„ู„ูŠ ุฃุฎุฏุชู‡ู… ุฃู†ุง ุฃูƒุจุฑ ู…ู† ุนุฏุฏ ุงู„ู…ุฑูƒุจุงุช ููŠ ุงู„
984
+
985
+ 247
986
+ 00:29:27,380 --> 00:29:31,040
987
+ compound ุฃูƒุชุฑ ู…ู† ุนุฏุฏ ุงู„ู…ุฑูƒุจุงุช ููŠ ุงู„ุนู†ุตุฑ ุงู„ูˆุงุญุฏ
988
+
989
+ 248
990
+ 00:29:31,040 --> 00:29:35,360
991
+ ูŠุนู†ูŠ ุฃู†ุง ุฃุฎุฏุช ู…ุซู„ุง ุฒูŠ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ู‚ุจู„ ุงู„ุฃุฎุฑ ู‡ุฐุง
992
+
993
+ 249
994
+ 00:29:35,360 --> 00:29:42,840
995
+ ุฃุฎุฏุช ุฃุฑุจุน vectors ู…ูˆุฌูˆุฏุงุช ููŠ R3ู…ุธุจูˆุท ูŠุจู‚ู‰ ุงุฑุจุนุฉ ูƒู„
996
+
997
+ 250
998
+ 00:29:42,840 --> 00:29:46,220
999
+ vector ู…ู† ุชู„ุช ู…ุฑุงูƒุจุงุช ู…ูˆุฌูˆุฏุฉ ููŠ R3
1000
+
1001
+ 251
1002
+ 00:29:56,310 --> 00:29:59,950
1003
+ ุจู‚ูˆู„ ุฅู† ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุงู„ุนู†ุงุตุฑ ู‡ุฐู‡ linearly
1004
+
1005
+ 252
1006
+ 00:29:59,950 --> 00:30:04,670
1007
+ dependent ูŠุจู‚ู‰ ุงู„ู…ุซุงู„ ู‚ุจู„ ุงู„ุฃุฎุฑ ู…ุซุงู„ ูŠุง ุจู†ุงุช ุงู„ู„ูŠ
1008
+
1009
+ 253
1010
+ 00:30:04,670 --> 00:30:09,750
1011
+ ุฃุฎุฏู†ุงู‡ุง ููŠ R3 ุฃุซุจุช ุฃู† V1 ูˆ V2 ูˆ V3 ูˆ V4 ู‡ู…
1012
+
1013
+ 254
1014
+ 00:30:09,750 --> 00:30:14,150
1015
+ linearly dependent ู„ุฃู†ู‡ ุฃุฎุฏุช ูˆุงุญุฏ ู…ู†ู‡ู… ู„ุฌุชู‡ linear
1016
+
1017
+ 255
1018
+ 00:30:14,150 --> 00:30:19,070
1019
+ combination ู…ู† ุงู„ุฃุฎุฑูŠู† ุฅุฐุง ูƒุงู† ุจุฅู…ูƒุงู†ูŠ ุฃุญู„ ู‡ุฐุง
1020
+
1021
+ 256
1022
+ 00:30:19,070 --> 00:30:24,680
1023
+ ุงู„ุณุคุงู„ ูƒุฐู„ูƒ ุจู…ูŠู†ุŸุจุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุตุญูŠุญ ูˆู„ุง ู„ุฃ ูˆูƒุงู†
1024
+
1025
+ 257
1026
+ 00:30:24,680 --> 00:30:29,760
1027
+ ุจุฅู…ูƒุงู† ูŠุญู„ ู†ูุณ ุงู„ุณุคุงู„ ุจุฃูˆู„ ู…ุจุงุฏุฆ ุงู„ุชุนุฑูŠู ุชุจุน
1028
+
1029
+ 258
1030
+ 00:30:29,760 --> 00:30:33,500
1031
+ linearly dependent ูˆ linearly independent ูŠุจู‚ู‰
1032
+
1033
+ 259
1034
+ 00:30:33,500 --> 00:30:37,340
1035
+ ุงู„ุณุนุฑ ุนู†ุฏูŠ ุจุฏู„ ุงู„ุทุฑูŠู‚ุฉ ุชู„ุงุชุฉ ู„ุญู„ ุงู„ุณุคุงู„ ุจุณ ู„ู„ุฃุณู
1036
+
1037
+ 260
1038
+ 00:30:37,340 --> 00:30:42,560
1039
+ ุงู„ุดุฏูŠุฏ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุด ููŠ ุฃูŠ vector space ุจุณ ููŠ RM
1040
+
1041
+ 261
1042
+ 00:30:43,200 --> 00:30:48,040
1043
+ ูŠุนู†ูŠ ุงู„ู…ูƒูˆู‘ู† ู…ู† M ุชูŠูˆุจ ุงู„ู…ุฑูƒุจุชูŠู† ุชู„ุงุชุฉ ุงุฑุจุนุฉ ุฎู…ุณุฉ
1044
+
1045
+ 262
1046
+ 00:30:48,040 --> 00:30:52,600
1047
+ ุฒูŠ ู…ุง ุจุฏูƒ ู…ุด ุงูŠ vector ู‡ูŠุฌุงู„ูƒ ููŠ R M ูŠุจู‚ู‰ ุงุญู†ุง
1048
+
1049
+ 263
1050
+ 00:30:52,600 --> 00:30:57,480
1051
+ ุจู†ุดุชุบู„ ุฏุงุฎู„ ุงู„ vector space R M ูู‚ุท ุทูŠุจ ุฎู„ูŠู†ูŠ ุงุณุฃู„
1052
+
1053
+ 264
1054
+ 00:30:57,480 --> 00:31:03,320
1055
+ ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠ ุญุฏ ุจุชู‚ุฏุฑ ุชู‚ูˆู„ ู„ูŠู‡ ู„ูˆ ูƒุงู†ุช ุงู„ N ุฃูƒุจุฑ
1056
+
1057
+ 265
1058
+ 00:31:03,320 --> 00:31:07,800
1059
+ ู…ู† ุงู„ M ูŠุจู‚ู‰ ู‡ุฏูˆู„ linearly dependent ู…ุจุงุดุฑุฉ
1060
+
1061
+ 266
1062
+ 00:31:12,890 --> 00:31:18,710
1063
+ ุฎู„ู‘ูŠู†ูŠ ุฃุทุฑุญ ุงู„ุณุคุงู„ ุจุทุฑูŠู‚ุฉ ุชุงู†ูŠุฉ
1064
+
1065
+ 267
1066
+ 00:31:18,710 --> 00:31:26,040
1067
+ ุฎุฏูŠ ุฃู…ูŠ ุจุชู„ุงุชุฉูŠุจู‚ู‰ ูƒู„ ุนู†ุตุฑ ููŠ RM ู…ูƒูˆู‘ู† ู…ู† ูƒุฏู‡ุŸ ู…ู†
1068
+
1069
+ 268
1070
+ 00:31:26,040 --> 00:31:32,420
1071
+ three components ุชู…ุงู…ุŸ ุจุฏูŠ ุฃุฎุฏ ุฃุฑุจุนุฉ vectors ูŠุจู‚ู‰
1072
+
1073
+ 269
1074
+ 00:31:32,420 --> 00:31:39,200
1075
+ ุตุงุฑ ุนู†ุฏูŠ C1 ูˆC2 ูˆC3 ูˆC4 ู„ู…ุง ุฃุฌูŠ ุฃุนู…ู„ ู‡ุฏูˆู„ linear
1076
+
1077
+ 270
1078
+ 00:31:39,200 --> 00:31:45,390
1079
+ combination ู„ู‡ู… ุจุตูŠุฑ ุนู†ุฏูŠ ุนุฏุฏ ุงู„ู…ุนุงุฏู„ุงุชุฌุฏ ุนุฏุฏ
1080
+
1081
+ 271
1082
+ 00:31:45,390 --> 00:31:51,730
1083
+ ุงู„ู…ุฌุงู‡ูŠู„ ูˆุงู„ู„ู‡ ุฃูƒุจุฑ ูˆุงู„ู„ู‡ ุฃู‚ู„ ู…ูŠู†
1084
+
1085
+ 272
1086
+ 00:31:51,730 --> 00:31:56,620
1087
+ ุงู„ู„ูŠ ุฃูƒุจุฑุŸุนุฏุฏ ุงู„ู…ุฌุงู‡ูŠู„ ุฃูƒุจุฑ ู…ู† ุนุฏุฏ ุงู„ู…ุนุงุฏู„ุงุช ู…ุด
1088
+
1089
+ 273
1090
+ 00:31:56,620 --> 00:32:02,680
1091
+ ุนุฏุฏ ุงู„ู…ุนุงุฏู„ุงุช ุฃูƒุจุฑ ุฃู†ุง ุนู†ุฏูŠ C1 ูˆC2 ูˆC3 ูˆC4 ู„ูƒู†
1092
+
1093
+ 274
1094
+ 00:32:02,680 --> 00:32:09,260
1095
+ ู…ุงุนู†ุฏูŠุด ุฅู„ุง ุชู„ุงุช ู…ุนุงุฏู„ุงุช ุฅุฐุง ู„ุง ูŠู…ูƒู† ุญู„ ู‡ุฐุง ุงู„
1096
+
1097
+ 275
1098
+ 00:32:09,260 --> 00:32:13,800
1099
+ system ุฅู„ุง ุฅุฐุง ูุฑุท ู‚ูŠู…ุฉ ู…ู† ุนู†ุฏูŠ ูˆุจุงู„ุชุงู„ูŠ ู‡ุฏูˆู„
1100
+
1101
+ 276
1102
+ 00:32:13,800 --> 00:32:14,720
1103
+ ุจุตูŠุฑูˆุง ุฅูŠุด
1104
+
1105
+ 277
1106
+ 00:32:21,720 --> 00:32:26,620
1107
+ ุจุณ ู‡ู†ุง ุนู†ุฏูŠ ุนุฏุฏ ุงู„ู…ุฌุงู‡ู„ ุฃูƒุจุฑ ู…ู† ุนุฏุฏ ุงู„ู…ุนุงุฏู„ุงุช
1108
+
1109
+ 278
1110
+ 00:32:26,620 --> 00:32:32,420
1111
+ ูˆุจุงู„ุชุงู„ูŠ ู„ุง ูŠู…ูƒู† ุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุงุชุฅู„ุง ุฅุฐุง ุญุทูŠุช ู‚ูŠู…
1112
+
1113
+ 279
1114
+ 00:32:32,420 --> 00:32:38,520
1115
+ ู…ู† ุนู†ุฏู‰ ู„ู…ุฌู‡ูˆู„ ุฃูˆ ู„ู…ุฌู‡ูˆู„ูŠู† ุฃูˆ ู„ุซู„ุงุซุฉ ุญุณุจ ุทุจูŠุนุฉ ู…ู†
1116
+
1117
+ 280
1118
+ 00:32:38,520 --> 00:32:43,900
1119
+ ุญุณุจ ุทุจูŠุนุฉ ุงู„ู…ุณุฃู„ุฉ ูˆุจุงู„ุชุงู„ูŠ ู…ุงู‡ูŠุงุด ุฃุณูุงุฑ ุญุทูŠุช ู‚ูŠู…
1120
+
1121
+ 281
1122
+ 00:32:43,900 --> 00:32:48,520
1123
+ ู…ู† ุนู†ุฏู‰ ูˆู„ูŠุณ ุจุถุฑูˆุฑุฉ ุฃุณูุงุฑ ูˆุจุงู„ุชุงู„ูŠ ุตุงุฑ ุนู†ุฏู‰ ุนุฏุฏ
1124
+
1125
+ 282
1126
+ 00:32:48,520 --> 00:32:53,900
1127
+ ู„ุงู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ ู„ู„ homogeneous systemุฃู„ุง ุงู†ุฏูŠ
1128
+
1129
+ 283
1130
+ 00:32:53,900 --> 00:32:58,820
1131
+ ู„ุฃู† ุงู„ู‡ูˆู…ูˆุฌูŠู† ุงู„ุตุณู… ุนู„ู‰ ุงู„ุฃู‚ู„ ู„ู‡ ุญู„ ู‡ูˆ ู…ูŠู† ู‡ูˆ ุงู„ุญู„
1132
+
1133
+ 284
1134
+ 00:32:58,820 --> 00:33:04,060
1135
+ ุงู„ุตูุฑูŠ ุฅุฐุง ู‡ุฏูˆู„ linearly dependent ูŠุจู‚ู‰ ุนุงุฑู ู…ุง ู‡ูˆ
1136
+
1137
+ 285
1138
+ 00:33:04,060 --> 00:33:08,860
1139
+ ุงู„ุณุฑ ุทูŠุจ ุงูุชุฑุถ ุงู† ุนุฏุฏ ุงู„ู…ุนุงุฏู„ุงุช ูŠุณุงูˆูŠ ุนุฏุฏ
1140
+
1141
+ 286
1142
+ 00:33:08,860 --> 00:33:15,130
1143
+ ุงู„ู…ุนุงุฏู„ุงุช ูŠุนู†ูŠ ุงู„ N ุณุงูˆุฉ ุงู„ Mุฃู†ุง ุนู†ุฏูŠ R3 ุฃุฎุฏ ุซู„ุงุซุฉ
1144
+
1145
+ 287
1146
+ 00:33:15,130 --> 00:33:20,370
1147
+ vectorsุŒ ุนู†ุฏูŠ R4 ุฃุฎุฏ ุฃุฑุจุนุฉ vectorsุŒ R5 ุฃุฎุฏ ุฎู…ุณุฉ
1148
+
1149
+ 288
1150
+ 00:33:20,370 --> 00:33:25,470
1151
+ vectorsุŒ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู„ูˆ ุงู„ู€N ุณูˆู‰ ุงู„ู€MุŒ ูŠุจู‚ู‰ ู‡ุฏูˆู„
1152
+
1153
+ 289
1154
+ 00:33:25,470 --> 00:33:29,710
1155
+ ุจูŠูƒูˆู†ูˆุง linearly dependentุŒ if and only ููŠ
1156
+
1157
+ 290
1158
+ 00:33:29,710 --> 00:33:34,550
1159
+ ุงู„ุงุชุฌุงู‡ูŠู† ุตุญูŠุญุงู†ุŒ ุฅุฐุง ูƒุงู† ุงู„ู€determinant ู„ู‡ุฐู‡ ุงู„
1160
+
1161
+ 291
1162
+ 00:33:34,550 --> 00:33:39,320
1163
+ vector ูŠุณุงูˆูŠ 0ุŒ ูƒูŠูุŸ ูŠุนู†ูŠูŠุนู†ูŠ ุจุฏูŠ ุงุฌูŠ ุงู„ V1 ูˆ ุจุฏูŠ
1164
+
1165
+ 292
1166
+ 00:33:39,320 --> 00:33:45,560
1167
+ ุงุญุทู‡ ูƒุนู…ูˆุฏ ู‡ูˆ ู…ูˆุฌูˆุฏ ููŠ RM ูŠุจู‚ู‰ ุงู„ุฃูู‚ ูŠุจู‚ู‰ ุงู‚ุฏุฑ
1168
+
1169
+ 293
1170
+ 00:33:45,560 --> 00:33:48,780
1171
+ ุงูƒุชุจู‡ ุนู…ูˆุฏ ูˆุงุฎุฏู†ุง ู‡ุฐุง ููŠ ุงู„ chapter ุงู„ู…ุงุถูŠ ูŠุจู‚ู‰
1172
+
1173
+ 294
1174
+ 00:33:48,780 --> 00:33:51,460
1175
+ ุจุฏูŠ ุงูƒุชุจ ู‡ุฐุง ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุงู„ุชุงู†ูŠ
1176
+
1177
+ 295
1178
+ 00:33:51,460 --> 00:33:57,130
1179
+ ูˆุงุฎุฏ ุงู„ู…ุญุฏุฏ ู„ู‡ุฐู‡ ุงู„ู…ุตู…ู…ุฉ ู„ุงุฒู… ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ ู‚ุฏุฑุฅุฐุง
1180
+
1181
+ 296
1182
+ 00:33:57,130 --> 00:34:00,450
1183
+ ุงู„ู…ุญุฏุฏ ุณูˆู‰ Zero ูŠุจู‚ู‰ ู‡ุฏูˆู„ Linearly Dependent
1184
+
1185
+ 297
1186
+ 00:34:00,450 --> 00:34:03,810
1187
+ ูˆุงู„ุนูƒุณ ู„ูˆ ูƒุงู†ูˆุง Linearly Dependent ุฅูŠู‡ ุฌุจุงุฑูŠ
1188
+
1189
+ 298
1190
+ 00:34:03,810 --> 00:34:08,730
1191
+ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ุจุฏู‡ ูŠุณูˆู‰ ุฌุฏุงุด Zero ุทุจ ุฅูŠุด ุฑุฃูŠูƒ ุชุนุงู„ูŠ
1192
+
1193
+ 299
1194
+ 00:34:08,730 --> 00:34:16,270
1195
+ ู†ู†ูู„ ุนุจุงุฑุฉ ู‡ุฐู‡ ู†ู†ูู„ ุนุจุงุฑุฉ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู† ู‡ุฐุง ู„ุง ูŠุณูˆู‰
1196
+
1197
+ 300
1198
+ 00:34:16,270 --> 00:34:21,050
1199
+ Zeroูู‡ุฏูˆู„ ุฅูŠุด ุจุฏู‡ู… ูŠูƒูˆู†ูˆุงุŸ linearly independent
1200
+
1201
+ 301
1202
+ 00:34:21,050 --> 00:34:25,610
1203
+ ูŠุจู‚ู‰ ุงู„ู…ู„ุงุญุธุฉ ุจุชู‚ูˆู„ ู„ูˆ ูƒุงู†ุช ุฏูŠ determinant ู…ุงู‚ู„ุชุด
1204
+
1205
+ 302
1206
+ 00:34:25,610 --> 00:34:29,370
1207
+ if and ูˆุงู„ู„ูŠ ููŠ ูู‡ุฏ ู„ุจุงู„ูƒ ุงู‡ ู…ุงู‚ู„ุชุด ูŠุจู‚ู‰ ู†ููŠุชูŠ
1208
+
1209
+ 303
1210
+ 00:34:29,370 --> 00:34:35,030
1211
+ ุงุชุฌุงู‡ ูู‚ุท ูุจุงุฌูŠ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ู‡ุฐุง ู„ุง ูŠุณุงูˆูŠ zero ูŠุจู‚ู‰
1212
+
1213
+ 304
1214
+ 00:34:35,030 --> 00:34:40,210
1215
+ ู‡ุฏูˆู„ linearly independent ูˆุจุงู„ุชุงู„ูŠ ูƒุฃู†ู‡ ู‚ุงู„ ุงุชูุถู„
1216
+
1217
+ 305
1218
+ 00:34:40,210 --> 00:34:44,390
1219
+ ู‡ูŠ ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ู„ู„ุญูƒู… ุนู„ู‰ ุงู„ vectors ู‡ู„ ู‡ู… linearly
1220
+
1221
+ 306
1222
+ 00:34:44,390 --> 00:34:49,620
1223
+ dependentูˆุงู„ู„ู‡ linearly independent ุฅุฐุง ุจุงุฌูŠ ุนู„ู‰
1224
+
1225
+ 307
1226
+ 00:34:49,620 --> 00:34:53,300
1227
+ ุงู„ vectors ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆ ุจุนู…ู„ู‡ู… ูƒู…ุตููˆูุฉ ุจุงุฎุฏ ู„ู‡ุง
1228
+
1229
+ 308
1230
+ 00:34:53,300 --> 00:34:57,100
1231
+ ุงู„ู…ุญุฏุฏ ุทุงู„ุน ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ zero ุจุฌู‡ุชู‡ linearly
1232
+
1233
+ 309
1234
+ 00:34:57,100 --> 00:35:01,240
1235
+ dependent ุทุงู„ุน ุงู„ู…ุญุฏุฏ ู„ุง ูŠุณุงูˆูŠ zero ุจุฌู‡ุชู‡ linearly
1236
+
1237
+ 310
1238
+ 00:35:01,240 --> 00:35:05,800
1239
+ independent ูˆุงุถุญ ู‡ุฐู‡ ุทุจุนุง ู‡ุนุทูŠูƒูŠ ูƒุฐุง ู…ุซุงู„ ุนู„ูŠู‡ุง
1240
+
1241
+ 311
1242
+ 00:35:05,800 --> 00:35:10,820
1243
+ ุงู„ุขู†ุงู„ุงู† ุจู†ุฌูŠ ู„ู„ู†ุธุฑูŠุฉ ุงู„ุชุงู†ูŠุฉ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ูƒู„ ุนู†ุตุฑ
1244
+
1245
+ 312
1246
+ 00:35:10,820 --> 00:35:15,140
1247
+ ููŠ ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฏูˆู„ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ vector space B
1248
+
1249
+ 313
1250
+ 00:35:15,140 --> 00:35:22,180
1251
+ ูƒุชุจุชู‡ ูƒ linear combination ู…ู† vectors ุฃุฎุฑู‰ ููŠ V
1252
+
1253
+ 314
1254
+ 00:35:22,180 --> 00:35:30,000
1255
+ ู‡ุฏูˆู„ ุนุฏุฏู‡ู… N ูˆ ู‡ุฏูˆู„ ุนุฏุฏู‡ู… MูŠุจู‚ู‰ ุงู„ V ู‡ุงุช ุบูŠุฑ ุงู„ U
1256
+
1257
+ 315
1258
+ 00:35:30,000 --> 00:35:34,000
1259
+ ู‡ุงุช ุบูŠุฑู‡ู… ููŠ ุงู„ุดูƒู„ ูˆ ุบูŠุฑู‡ู… ููŠ ุงู„ุนุฏุฏ ูƒู…ุงู† ู…ุด ุฌุงุช
1260
+
1261
+ 316
1262
+ 00:35:34,000 --> 00:35:41,500
1263
+ ุจุนุถ ุงูŠุด ุจูŠู‚ูˆู„ูŠ ู„ูˆ ูƒุงู†ุช ุงู„ M ุฃู‚ู„ ู…ู† N ูŠุนู†ูŠ ุนุฏุฏ ุงู„
1264
+
1265
+ 317
1266
+ 00:35:41,500 --> 00:35:47,680
1267
+ vectors ู‡ุฐูˆู„ ุฃูƒุจุฑ ู…ู† ุนุฏุฏ ุงู„ vectors ู‡ุฐูˆู„ ุชู…ุงู…ุŸ ุฅู†
1268
+
1269
+ 318
1270
+ 00:35:47,680 --> 00:35:52,460
1271
+ ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ู‡ุฐูˆู„ ุงู„ุฃูˆู„ุงู†ูŠุงุช ุจูŠูƒูˆู†ูˆุง
1272
+
1273
+ 319
1274
+ 00:35:52,460 --> 00:35:57,770
1275
+ linearly dependentูˆุงู„ู„ู‡ ู‡ูŠ ูุฑุถู‡ ููƒุฑุฉ ูƒูˆูŠุณุฉ ูˆุญู†ุนุทูŠูƒ
1276
+
1277
+ 320
1278
+ 00:35:57,770 --> 00:36:02,690
1279
+ ุงู„ุฃู…ุซู„ุฉ ุนู„ูŠู‡ุง ุงู„ุขู† ูƒู…ุงู† ุชุจู‚ู‰ ูˆุญู†ุจุฏุฃ ู†ุนุทูŠ ุฃู…ุซู„ุฉ ุนู„ู‰
1280
+
1281
+ 321
1282
+ 00:36:02,690 --> 00:36:08,070
1283
+ ุงู„ู†ุธุฑูŠุชูŠู† ุงู„ุฃูˆู„ู‰ ูƒู†ุง ุจู†ุชุญุฏุซ ูŠุง ุจู†ุงุช ุจุณ ุนู„ู‰ ู…ูŠู† ุนู„ู‰
1284
+
1285
+ 322
1286
+ 00:36:08,070 --> 00:36:14,510
1287
+ RM ู‡ู†ุง ู…ูŠู† ู…ูƒุงู† ุงู„ vector ูŠูƒูˆู† ู…ุงุญุทูŠุชุด ู‚ูŠูˆุฏ ุนู„ูŠู‡
1288
+
1289
+ 323
1290
+ 00:36:14,510 --> 00:36:19,280
1291
+ ุงู„ vector space ุทู„ุนูŠ ู‡ู†ุง ู‚ู„ุช ู‡ุฏูˆู„ ูˆูŠู†ุŸููŠ RM ู‡ุฏูˆู„
1292
+
1293
+ 324
1294
+ 00:36:19,280 --> 00:36:23,840
1295
+ ู‚ู„ุช ูˆูŠู† ููŠ ุงู„ vector space ููŠ mean ู…ูƒุงู† ูŠูƒูˆู† ู„ูŠุณ
1296
+
1297
+ 325
1298
+ 00:36:23,840 --> 00:36:28,980
1299
+ ุจุงู„ุถุฑูˆุฑุฉ RM ูˆ ุงูŠู† ู…ุง ู…ู…ูƒู† ูŠูƒูˆู† any another vector
1300
+
1301
+ 326
1302
+ 00:36:28,980 --> 00:36:34,300
1303
+ space ุงูŠ vector space ุงุฎุฑ ู†ุจุฏุฃ ู†ุงุฎุฏ ุจุนุถ ุงู„ุฃู…ุซู„ุฉ
1304
+
1305
+ 327
1306
+ 00:36:34,300 --> 00:36:39,160
1307
+ ุนู„ู‰ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุงุญู†ุง ุจู†ู‚ูˆู„ ูŠุจู‚ู‰ ู†ุจุฏุฃ ู„ example one
1308
+
1309
+ 328
1310
+ 00:36:50,750 --> 00:36:56,910
1311
+ Determine whether the
1312
+
1313
+ 329
1314
+ 00:36:56,910 --> 00:37:02,430
1315
+ following vectors
1316
+
1317
+ 330
1318
+ 00:37:02,430 --> 00:37:07,170
1319
+ are
1320
+
1321
+ 331
1322
+ 00:37:07,170 --> 00:37:15,660
1323
+ linearly dependent or linearly independentู†ู…ุฑ ุงูŠู‡ุŸ
1324
+
1325
+ 332
1326
+ 00:37:15,660 --> 00:37:22,280
1327
+ ู‡ุฐุง ุงู„ุณุคุงู„ ุงู„ุฃูˆู„ ู…ู† ุงู„ูƒุชุงุจ ุฑู‚ู… C ู…ูˆุงุทูŠู†ูŠ V1 ูŠุณุงูˆูŠ
1328
+
1329
+ 333
1330
+ 00:37:22,280 --> 00:37:34,400
1331
+ 2 ูˆ 1 ูˆ V2 ูŠุณุงูˆูŠ 3 ูˆ 0 ูˆ V3 ูŠุณุงูˆูŠ 1 ูˆ 4
1332
+
1333
+ 334
1334
+ 00:37:38,410 --> 00:37:42,670
1335
+ ูŠุจู‚ู‰ ุณุคุงู„ ู‚ุงู„ ุญุฏุฏ ู„ูŠ ุงู„ vectors ุงู„ุชุงู„ูŠุฉ ู‡ู„
1336
+
1337
+ 335
1338
+ 00:37:42,670 --> 00:37:47,630
1339
+ linearly dependent ูˆู„ุง linearly independent ุจุณูŠุทุฉ
1340
+
1341
+ 336
1342
+ 00:37:47,630 --> 00:37:52,630
1343
+ ุฌุฏุง ุงู†ุง ุจูŠุนุทูŠู†ูŠ ุซู„ุงุซุฉ vectors ุทุจ ุงู„ุชู„ุงุชุฉ vectors
1344
+
1345
+ 337
1346
+ 00:37:52,630 --> 00:38:03,370
1347
+ ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ุชุฏุฑูŠุจุง ุชุงุฑ ุชูˆ ุชู…ุงู… ูŠุจู‚ู‰ solution ุงู„
1348
+
1349
+ 338
1350
+ 00:38:03,370 --> 00:38:12,340
1351
+ V1ูˆ ุงู„ V2 ูˆ ุงู„ V3 ุงู„ู„ูŠ ู…ูŠุนุทูŠู†ูŠู‡ู… ู…ูˆุฌูˆุฏุงุช ููŠ R2 ู„ูŠุด
1352
+
1353
+ 339
1354
+ 00:38:12,340 --> 00:38:18,280
1355
+ ุงู† ูƒู„ ูˆุงุญุฏ ู…ู†ู‡ู… ุนุจุงุฑุฉ ุนู† two components ุทูŠุจ ุนุฏุฏ ุงู„
1356
+
1357
+ 340
1358
+ 00:38:18,280 --> 00:38:24,920
1359
+ vector ุงู„ู„ูŠ ุฎุฏุชู‡ู… ูƒุฏู‡ุŸ ุชู„ุงุชุฉ ูˆ ุนู†ุฏู†ุง ู‡ู†ุง ูƒุฏู‡ุŸ ูŠุจู‚ู‰
1360
+
1361
+ 341
1362
+ 00:38:24,920 --> 00:38:33,170
1363
+ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ูŠ ุงู† N ุชุณูˆู‰ ุชู„ุงุชุฉ and MุชุณุงูˆูŠ ู‚ุฏุงุด
1364
+
1365
+ 342
1366
+ 00:38:33,170 --> 00:38:40,810
1367
+ ุงุชู†ูŠู† ูŠุจู‚ู‰ ู‡ู†ุง since ุจู…ุง ุงู† ุงู„ N ุชุณุงูˆูŠ ุชู„ุงุชุฉ ุงูƒุจุฑ
1368
+
1369
+ 343
1370
+ 00:38:40,810 --> 00:38:47,090
1371
+ ู…ู† ุงู„ M ุงู„ู„ูŠ ูŠุจุฏุฃ ุชุณุงูˆูŠ ุงุชู†ูŠู† ูุจุงุดูŠ ุจู‚ูˆู„ู‡ by the
1372
+
1373
+ 344
1374
+ 00:38:47,090 --> 00:38:53,390
1375
+ first theorem ู…ู†
1376
+
1377
+ 345
1378
+ 00:38:53,390 --> 00:39:02,210
1379
+ ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ V ูˆุงุญุฏ ูˆุงู„ V ุงุชู†ูŠู† andุงู„ู€
1380
+
1381
+ 346
1382
+ 00:39:02,210 --> 00:39:09,350
1383
+ v3 are linearly dependent ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุซู„ ุทูŠุจ
1384
+
1385
+ 347
1386
+ 00:39:09,350 --> 00:39:13,490
1387
+ ุงู†ุช ููŠ ุงู„ุงู…ุชุญุงู† ูˆุฌุงูƒูŠ ุณุคุงู„ ุฒูŠ ู‡ุฐุง ูˆู…ุงุฌุนุด ููŠ ุจุงู„ูƒ
1388
+
1389
+ 348
1390
+ 00:39:13,490 --> 00:39:17,370
1391
+ ู‡ุงู„ู†ุธุฑูŠุฉ ูƒูŠููŠูƒ ุชุณูˆูŠู‡ุง ุจู‚ูˆู„ constant ููŠ ุงู„ุฃูˆู„
1392
+
1393
+ 349
1394
+ 00:39:17,370 --> 00:39:20,570
1395
+ constant ููŠ ุงู„ุชุงู†ูŠ constant ููŠ ุงู„ุชุงู„ุช ูŠุณุงูˆูŠ zero
1396
+
1397
+ 350
1398
+ 00:39:20,570 --> 00:39:26,190
1399
+ ูˆุจุฑูˆุญ ุฃุฌูŠุจ ุงู„ c1 ูˆ ุงู„ c2 ูˆ ุงู„ c3 ุงู†ุทู„ุนูˆุง ุจุฃุณูุงุฑ ูˆ
1400
+
1401
+ 351
1402
+ 00:39:26,190 --> 00:39:30,640
1403
+ ู„ู† ูŠุทู„ุนูˆุง ุจุฃุณูุงุฑุจู‚ูˆู„ linearly independent ู„ูŠุด ู„ู†
1404
+
1405
+ 352
1406
+ 00:39:30,640 --> 00:39:34,060
1407
+ ูŠุทู„ุน ุนู„ูŠู‡ู… ู‡ูŠู‡ู… linearly dependent ู‡ู… ูŠุนู†ูŠ ู…ุฑุฉ
1408
+
1409
+ 353
1410
+ 00:39:34,060 --> 00:39:36,400
1411
+ ุจูŠุตูŠุฑูˆุง linearly independent ูˆู…ุฑุฉ linearly
1412
+
1413
+ 354
1414
+ 00:39:36,400 --> 00:39:39,880
1415
+ independent ู…ุงููŠุด independent ู…ุงููŠุด ุฅู…ูƒุงู†ูŠุฉ ูŠุง ูŠุง
1416
+
1417
+ 355
1418
+ 00:39:39,880 --> 00:39:43,820
1419
+ linearly independent ูŠุง linearly independent ู…ุงููŠุด
1420
+
1421
+ 356
1422
+ 00:39:43,820 --> 00:39:49,070
1423
+ ูุงุฏุฉุทูŠุจ ุฅุฐุง ุจู†ุงุกู†ุง ุนู„ูŠู‡ ู‡ูŠุทู„ุน ุนู†ุฏูƒ ุงู† C1 ูˆC2 ูˆC3
1424
+
1425
+ 357
1426
+ 00:39:49,070 --> 00:39:54,110
1427
+ not all zero ูŠุนู†ูŠ ู‡ุฐุง check ู„ูˆ ุจุฏูƒ ุชุชุฃูƒุฏ ุงู† ูƒู„ุงู…ู†ุง
1428
+
1429
+ 358
1430
+ 00:39:54,110 --> 00:39:58,130
1431
+ ู‡ุฐุง ุตุญ ูˆู„ุง ุบู„ุท ุญุงุจุจ good exercises ู„ูƒ ุญุงุจุจ ู…ุงุชูƒูŠุด
1432
+
1433
+ 359
1434
+ 00:39:58,130 --> 00:40:02,510
1435
+ ุจู„ุงุด ู…ุงููŠุด ุฅุฌุจุงุฑ ูŠุนู†ูŠ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ูŠุจู‚ู‰ ู…ุด ู‡ูŠุชุฃูƒุฏ
1436
+
1437
+ 360
1438
+ 00:40:02,510 --> 00:40:09,580
1439
+ ู‡ุฏูˆู„ nearly dependent ู†ูŠุฌูŠ ู†ู…ุฑ ุจูŠู‡ ู…ู† ุงู„ุณุคุงู„ู†ุจุฑู…ู‰
1440
+
1441
+ 361
1442
+ 00:40:09,580 --> 00:40:15,440
1443
+ ู…ู† ุงู„ุณุคุงู„ ุงู„ู„ู‰ ู‡ูˆ ุงู„ุณุคุงู„ ุงู„ุงูˆู„ ุฑู‚ู… G ุงู„ุณุคุงู„ ุงู„ุงูˆู„
1444
+
1445
+ 362
1446
+ 00:40:15,440 --> 00:40:27,570
1447
+ ุฑู‚ู… G ุจูŠู‚ูˆู„ V ูˆุงุญุฏ ูŠุณุงูˆูŠ ุงุชู†ูŠู† ูˆุณุงู„ุจ ูˆุงุญุฏ ูˆุงุญุฏูˆ V2
1448
+
1449
+ 363
1450
+ 00:40:27,570 --> 00:40:41,590
1451
+ ุจุฏู‡ ูŠุณุงูˆูŠ 2-3-2 ูˆ V3 ุจุฏู‡ ูŠุณุงูˆูŠ 2 3 7 ูˆ ู‡ุฏูˆู„ ูƒู„ู‡ู…
1452
+
1453
+ 364
1454
+ 00:40:41,590 --> 00:40:47,210
1455
+ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ููŠ R3 ุจุฏู‡ ุฃุดูˆู ู‡ู„ ู‡ุฏูˆู„ are linearly
1456
+
1457
+ 365
1458
+ 00:40:47,210 --> 00:40:51,930
1459
+ dependent ูˆู„ุง linearly independent ูƒุงู… vector
1460
+
1461
+ 366
1462
+ 00:40:51,930 --> 00:41:00,680
1463
+ ู‡ุฏูˆู„ุŸุงู„ู…ูˆุฌูˆุฏุงุช ู…ูŠู†ุŸ ูŠุจู‚ู‰ N ุชุณุงูˆูŠ M ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ู†ุง
1464
+
1465
+ 367
1466
+ 00:41:00,680 --> 00:41:07,500
1467
+ ุจู‚ูˆู„ู‡ solution ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ N ุชุณุงูˆูŠ ุงู„ M ุชุณุงูˆูŠ
1468
+
1469
+ 368
1470
+ 00:41:07,500 --> 00:41:13,220
1471
+ ุงู„ุชู„ุงุชุฉ ุจุฑุฌุน ู„ู„ู†ุธุฑูŠุฉ ุจูŠู‚ูˆู„ ุฅุฐุง ุนู†ุฏูƒ N ุชุณุงูˆูŠ M ุนุดุงู†
1472
+
1473
+ 369
1474
+ 00:41:13,220 --> 00:41:18,110
1475
+ ุชุญูƒู… linearly dependent ุจุฏูƒ ุชุฑูˆุญ ุชุงุฎุฏ ู…ูŠู†ุŸุงู„ู€
1476
+
1477
+ 370
1478
+ 00:41:18,110 --> 00:41:22,710
1479
+ Determinant ุชุจุน ุงู„ู€ V1 ูˆุงู„ู€ V2 ูˆุงู„ู€ V3 ูŠุจู‚ู‰ ุจู†ุงุกู‹
1480
+
1481
+ 371
1482
+ 00:41:22,710 --> 00:41:29,350
1483
+ ุนู„ูŠู‡ ุจุฏูŠ ุฃุฌูŠ ุฃุฎุฏ ุงู„ู€ Determinant ู„ู…ูŠู†ุŸ ู„ู„ู€ V1 ูˆุงู„ู€
1484
+
1485
+ 372
1486
+ 00:41:29,350 --> 00:41:35,830
1487
+ V2 ูˆุงู„ู€ V3 ูˆุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู…ุญุฏุฏ ุจุงุฌูŠ ู„ู€ V1 ูŠุง
1488
+
1489
+ 373
1490
+ 00:41:35,830 --> 00:41:42,720
1491
+ ู…ุงู†ุงุชู‡ ูˆ ุจูƒุชุจ ุฒูŠ ู…ุง ู‡ูˆ 2 ุณุงู„ุจ 1 1V2 ู‡ูˆ ุงู„ุนู…ูˆุฏ
1492
+
1493
+ 374
1494
+ 00:41:42,720 --> 00:41:49,580
1495
+ ุงู„ุชุงู†ูŠ ุงุชู†ูŠู† ุณุงู„ุจ ุชู„ุงุชุฉ ุณุงู„ุจ ุงุชู†ูŠู† V ุชู„ุงุชุฉ ุงุชู†ูŠู†
1496
+
1497
+ 375
1498
+ 00:41:49,580 --> 00:41:55,140
1499
+ ุชู„ุงุชุฉ ุณุจุนุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ูˆ Y ุจุงู„ุณุงูˆูŠุฉ ุจุฏุง ููƒ
1500
+
1501
+ 376
1502
+ 00:41:55,140 --> 00:42:01,140
1503
+ ุงู„ู…ุญุฏุฏ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงูŠ ุตูุฉ ุงูˆ ุงูŠ ุนู…ูˆุฏ ุนู†ุฏู†ุง
1504
+
1505
+ 377
1506
+ 00:42:01,140 --> 00:42:05,840
1507
+ ูู…ุซู„ุงู„ูˆ ุฌูŠุช ู‚ูˆู„ุช ุจุฏูŠ ุฃููƒู‡ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุตู
1508
+
1509
+ 378
1510
+ 00:42:05,840 --> 00:42:12,280
1511
+ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุฃูŠ ุงุชู†ูŠู† ููŠู‡ ู‚ุดุท ุจุตูู‡ ุนู…ูˆุฏู‡ ุจุตูŠุฑ ุณุงู„ุจ
1512
+
1513
+ 379
1514
+ 00:42:12,280 --> 00:42:19,400
1515
+ ูˆุงุญุฏ ูˆุนุดุฑูŠู† ุฒุงุฆุฏ ุณุชุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ูˆุนุดุฑูŠู† ุฒุงุฆุฏ
1516
+
1517
+ 380
1518
+ 00:42:19,400 --> 00:42:24,690
1519
+ ุณุชุฉู‡ูŠูˆ ุจุงู„ุณุงู„ุจ ูˆู‡ุฐุง ุจูŠุตูŠุฑ ุจุงู„ู…ูˆุฌุจ ุญุณุจ ู‚ุงุนุฏุฉ
1520
+
1521
+ 381
1522
+ 00:42:24,690 --> 00:42:30,650
1523
+ ุงู„ุฅุดุงุฑุงุช ุจุณุงู„ุจ ุงุชู†ูŠู† ููŠู‡ ุงุดุท ุจุตูู‡ ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ ู†ุงู‚ุต
1524
+
1525
+ 382
1526
+ 00:42:30,650 --> 00:42:37,110
1527
+ ุณุจุนุฉ ู†ุงู‚ุต ุชู„ุงุชุฉ ูŠุจู‚ู‰ ู†ุงู‚ุต ุณุจุนุฉ ู†ุงู‚ุต ุชู„ุงุชุฉ ุญุณุจ
1528
+
1529
+ 383
1530
+ 00:42:37,110 --> 00:42:42,150
1531
+ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช ุงุชู†ูŠู† ุจุงู„ู…ูˆุฌุจ ุงุดุท ุจุตูู‡ ุนู…ูˆุฏู‡ ูŠุจู‚ู‰
1532
+
1533
+ 384
1534
+ 00:42:42,150 --> 00:42:48,470
1535
+ ุงุชู†ูŠู† ุฒุงุฆุฏ ุชู„ุงุชุฉ ุงุชู†ูŠู† ุฒุงุฆุฏ ุชู„ุงุชุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡
1536
+
1537
+ 385
1538
+ 00:42:48,470 --> 00:42:53,090
1539
+ ูŠุณุงูˆูŠุณุชุฉ ุจุฏู‡ ุงุดูŠู„ ู…ู†ู‡ู… ุณุงู„ุจ ูˆุงุญุฏ ูˆุนุดุฑูŠู† ูˆูŠุธู„ ุณุงู„ุจ
1540
+
1541
+ 386
1542
+ 00:42:53,090 --> 00:42:59,770
1543
+ ุฎู…ุณุชุงุดุฑ ูู‰ ุงุชู†ูŠู† ุจุณุงู„ุจ ุชู„ุงุชูŠู† ู‡ุฐุง ุณุงู„ุจ ุนุดุฑุฉ ูู‰
1544
+
1545
+ 387
1546
+ 00:42:59,770 --> 00:43:06,490
1547
+ ุณุงู„ุจ ุงุชู†ูŠู† ุจุฒุงูŠุฏ ุนุดุฑูŠู† ู‡ุฐุง ุฎู…ุณุฉ ูู‰ ุงุชู†ูŠู† ุจุฒุงูŠุฏ
1548
+
1549
+ 388
1550
+ 00:43:06,490 --> 00:43:13,110
1551
+ ุนุดุฑุฉ ู‚ุฏุงุด ุงู„ู†ุงุชุฌ Zero ู…ู…ุชุงุฒ ุฌุฏุง ุฌุงู„ู‰ ุงุฐุง ุงู†ุชูˆุง
1552
+
1553
+ 389
1554
+ 00:43:13,110 --> 00:43:20,630
1555
+ ุณุงูˆูŠ ู… ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ Zero ูŠุจุฌู‰ ู‡ุฏูˆู„ ุจู‚ู‰ ู„ู‡ู…ูŠุจู‚ู‰ ู‡ู†ุง
1556
+
1557
+ 390
1558
+ 00:43:20,630 --> 00:43:31,070
1559
+ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ by the first theorem part
1560
+
1561
+ 391
1562
+ 00:43:31,070 --> 00:43:35,190
1563
+ ุงู„ูŠ ู‡ูˆ two ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ
1564
+
1565
+ 392
1566
+ 00:43:38,490 --> 00:43:47,990
1567
+ ุฅู† ุงู„ู€ V1 ูˆุงู„ู€ V2 ูˆุงู„ู€ V3 are linearly dependent
1568
+
1569
+ 393
1570
+ 00:43:47,990 --> 00:43:51,750
1571
+ ู‡ุฐู‡
1572
+
1573
+ 394
1574
+ 00:43:51,750 --> 00:43:56,030
1575
+ ู†ู…ุฑุฉ V ู…ู† ุงู„ุณุคุงู„ุŒ ู†ุฑูˆุญ ู„ู†ู…ุฑุฉ C
1576
+
1577
+ 395
1578
+ 00:44:10,930 --> 00:44:23,370
1579
+ ู†ู…ุฑู‰ C ุจูŠู‚ูˆู„ V1 ุชุณุงูˆูŠ ุชู„ุงุชุฉ ูˆุงุญุฏ ูˆุงุญุฏ ูˆ V2 ุชุณุงูˆูŠ
1580
+
1581
+ 396
1582
+ 00:44:23,370 --> 00:44:33,770
1583
+ ุงุชู†ูŠู† ูˆุณุงู„ุจ ูˆุงุญุฏ ูˆุฎู…ุณุฉ ูˆ V3 ูŠุณุงูˆูŠ ุงุฑุจุนุฉ ูˆุฒูŠุฑูˆ
1584
+
1585
+ 397
1586
+ 00:44:33,770 --> 00:44:42,420
1587
+ ูˆุณุงู„ุจ ุชู„ุงุชุฉูˆูƒู„ ู‡ุคู„ุงุก ู…ูˆุฌูˆุฏูŠู† ููŠ R3 ู†ุฑู‰ ู‡ู„ ู‡ุคู„ุงุก
1588
+
1589
+ 398
1590
+ 00:44:42,420 --> 00:44:47,420
1591
+ Linearly Dependent ุงูˆ Linearly Independent ุงุฐุง ู†ุญู†
1592
+
1593
+ 399
1594
+ 00:44:47,420 --> 00:44:50,760
1595
+ ู„ุง ู†ุชูƒู„ู… ุนู† ู†ุธุฑูŠุฉ ุซุงู†ูŠุฉ ู„ุงุฒู… ู†ูƒูˆู† ููŠ ู†ูุณ main
1596
+
1597
+ 400
1598
+ 00:44:50,760 --> 00:44:55,480
1599
+ ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ู„ูŠุดุŸ ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุนู„ู‰ R to the
1600
+
1601
+ 401
1602
+ 00:44:55,480 --> 00:45:02,460
1603
+ power M ุจู‚ูˆู„ ูƒูˆูŠุณ ูŠุจู‚ู‰ ุงู†ุง ุนู†ุฏ ุงู„ N ูŠุณูˆู‰ main ูŠุณูˆู‰
1604
+
1605
+ 402
1606
+ 00:45:02,460 --> 00:45:07,090
1607
+ ุงู„ Mู‚ุงู„ ู„ูŠ ู„ู…ุง ุงู„ N ูŠุณุงูˆูŠ N ุจุฏูƒ ุชุชูƒู„ู… ุนู† ุงู„ู…ุญุฏุฏ
1608
+
1609
+ 403
1610
+ 00:45:07,090 --> 00:45:11,610
1611
+ ุฅุฐุง ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ู‡ุฏูˆู„ Linearly Dependent
1612
+
1613
+ 404
1614
+ 00:45:11,610 --> 00:45:17,230
1615
+ ูˆุฅุฐุง ุงู„ู…ุญุฏุฏ ู„ุง ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ู‡ุฏูˆู„ Linearly
1616
+
1617
+ 405
1618
+ 00:45:17,230 --> 00:45:18,210
1619
+ Independent
1620
+
1621
+ 406
1622
+ 00:45:23,880 --> 00:45:27,780
1623
+ ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ู‡ู†ุง ุดูˆู ู‡ู„ ู‡ุฏูˆู„ linearly dependent ูˆ
1624
+
1625
+ 407
1626
+ 00:45:27,780 --> 00:45:32,460
1627
+ ุงู„ู„ู‡ linearly independent ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ูˆู„ู‡
1628
+
1629
+ 408
1630
+ 00:45:32,460 --> 00:45:39,520
1631
+ solution ุงุญู†ุง ุนู†ุฏู†ุง ุจู„ู‚ุช ู‡ู†ุง ุงู† ุงู„ N ุชุณุงูˆูŠ ุงู„ M
1632
+
1633
+ 409
1634
+ 00:45:39,520 --> 00:45:46,080
1635
+ ุชุณุงูˆูŠ 3 ุงุฐุง ุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ุงุฑูˆุญ ุงุฎุฏ ุงู„ determinant
1636
+
1637
+ 410
1638
+ 00:45:46,080 --> 00:45:54,910
1639
+ ู„ู„ V1 ูˆ V2 ูˆ V3 ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุฏุฏV1 ู‡ูˆ ุชู„ุงุชุฉ ูˆุงุญุฏ
1640
+
1641
+ 411
1642
+ 00:45:54,910 --> 00:46:03,050
1643
+ ูˆุงุญุฏ V2 ู‡ูˆ ุงุชู†ูŠู† ุงุชู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ ุฎู…ุณุฉ V3 ู‡ูˆ ุงุฑุจุน
1644
+
1645
+ 412
1646
+ 00:46:03,050 --> 00:46:11,990
1647
+ ุฒูŠุฑ ุณุงู„ุจ ุชู„ุงุชุฉูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูŠุงุจุฑูˆุญ ุฃููƒู‡ ุจุงุณุชุฎุฏุงู…
1648
+
1649
+ 413
1650
+ 00:46:11,990 --> 00:46:19,490
1651
+ ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุซุงู†ูŠ ุฃูˆ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู„ุซ ุณูŠุงุจ ูŠุจู‚ู‰ ู„ูˆ
1652
+
1653
+ 414
1654
+ 00:46:19,490 --> 00:46:24,930
1655
+ ุฌูŠุช ุฃููƒู‡ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู„ุช ู…ุซู„ุงูŠ๏ฟฝ๏ฟฝู‚ู‰ ู‡ุฐุง
1656
+
1657
+ 415
1658
+ 00:46:24,930 --> 00:46:30,450
1659
+ ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ููŠู‡ ุฃุดุท ุจุตูู‡ ุนู…ูˆุฏู‡ ุจูŠุตูŠุฑ
1660
+
1661
+ 416
1662
+ 00:46:30,450 --> 00:46:37,050
1663
+ ุฎู…ุณุฉ ุฒุงุฆุฏ ูˆุงุญุฏ ุฎู…ุณุฉ ุฒุงุฆุฏ ูˆุงุญุฏ ู†ูŠุฌูŠ ู„ุจุนุฏู‡ ู†ุงู‚ุต Zero
1664
+
1665
+ 417
1666
+ 00:46:37,050 --> 00:46:42,610
1667
+ ููŠ ู…ุญุฏุฏ Zero ู…ุน ุงู„ุณู„ุงู…ุฉ ุงู„ู„ูŠ ุจุนุฏู‡ ู†ุงู‚ุต ุชู„ุงุชุฉ ูƒู…ุง
1668
+
1669
+ 418
1670
+ 00:46:42,610 --> 00:46:47,490
1671
+ ู‡ูˆ ู„ุฅู† ุงู„ุดุฑุท ููŠ ุงู„ุฃุตู„ ู…ูˆุฌุจ ุฃุดุท ุจุตูู‡ ุนู…ูˆุฏู‡ ุจูŠุตูŠุฑ
1672
+
1673
+ 419
1674
+ 00:46:47,490 --> 00:46:56,360
1675
+ ุณุงู„ุจ ุชู„ุงุชุฉ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ุชู„ุงุชุฉ ุณุงู„ุจ ุงุชู†ูŠู†5 1 6 4
1676
+
1677
+ 420
1678
+ 00:46:56,360 --> 00:47:08,960
1679
+ 24 5 5 3 15 39
1680
+
1681
+ 421
1682
+ 00:47:08,960 --> 00:47:13,760
1683
+ 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
1684
+
1685
+ 422
1686
+ 00:47:13,760 --> 00:47:14,020
1687
+ 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
1688
+
1689
+ 423
1690
+ 00:47:14,020 --> 00:47:21,220
1691
+ 39 39 39 39 39 39 39
1692
+
1693
+ 424
1694
+ 00:47:21,220 --> 00:47:21,280
1695
+ 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
1696
+
1697
+ 425
1698
+ 00:47:21,280 --> 00:47:27,740
1699
+ 9 9 9 9 9 9 9 9ูŠุจู‚ู‰ ู‡ู†ุง ุตุญ V1 ูˆ V2 ูˆ V3 are
1700
+
1701
+ 426
1702
+ 00:47:27,740 --> 00:47:33,500
1703
+ linearly independent ูˆ ู„ูŠุณูˆุง linearly dependent
1704
+
1705
+ 427
1706
+ 00:47:33,500 --> 00:47:39,660
1707
+ ู‡ุฐุง ุทุจุนุง ู‡ูˆ ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ ุจุฏู†ุง ู†ุฑูˆุญ ุงู„ุขู† ู„ู„ู…ุซุงู„
1708
+
1709
+ 428
1710
+ 00:47:39,660 --> 00:47:44,360
1711
+ ุงู„ุซุงู†ูŠ ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ ุงู„ุญู‚ูŠู‚ูŠ ุจูŠุงุฎุฏ ูˆู‚ุช ูุฃู‚ุฑุง ุฃู†ู‡
1712
+
1713
+ 429
1714
+ 00:47:44,360 --> 00:47:48,760
1715
+ ุฃุฌูŠู„ู‡ ู„ู„ู…ุญุงุถุฑุฉ ุชุจุนุช ุจุนุฏ ุงู„ุธู‡ุฑ ุงู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰
1716
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/0Tykoh4qs08_raw.json ADDED
The diff for this file is too large to render. See raw diff
 
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/1KeNWDdy4kc_raw.json ADDED
The diff for this file is too large to render. See raw diff
 
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/2VZjLKgeRAs_raw.json ADDED
The diff for this file is too large to render. See raw diff
 
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/3eQp6W53jbo_postprocess.srt ADDED
@@ -0,0 +1,1848 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:00,000 --> 00:00:01,260
3
+ ู…ูˆุณูŠู‚ู‰
4
+
5
+ 2
6
+ 00:00:19,490 --> 00:00:23,670
7
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุนูˆุฏ ุงู„ุฃู† ู„ุฅูƒู…ุงู„ ู…ุง ุงุจุชุฏู†ุงู‡
8
+
9
+ 3
10
+ 00:00:23,670 --> 00:00:28,950
11
+ ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆู‡ูˆ section 5-7 ุงู„ุฐูŠ ูŠุชุญุฏุซ ุนู†
12
+
13
+ 4
14
+ 00:00:28,950 --> 00:00:32,350
15
+ ุงู„ undetermined coefficients ุงู„ู„ูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ
16
+
17
+ 5
18
+ 00:00:32,350 --> 00:00:38,110
19
+ ุงู„ู…ุนุงู…ู„ุงุช ุงู„ู…ุฌู‡ูˆู„ุฉ ู„ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉุจู†ุญู„ ุจู‡ุฐู‡
20
+
21
+ 6
22
+ 00:00:38,110 --> 00:00:42,370
23
+ ุงู„ุทุฑูŠู‚ุฉ ุฅุฐุง ุชุญู‚ู‚ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุฃู…ุฑุงู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„
24
+
25
+ 7
26
+ 00:00:42,370 --> 00:00:48,210
27
+ ูƒุงู†ุช ุงู„ู…ุนุงู…ู„ุงุช ูƒู„ู‡ุง ุซูˆุงุจุช ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ุฃู…ุฑ
28
+
29
+ 8
30
+ 00:00:48,210 --> 00:00:53,450
31
+ ุงู„ุซุงู†ูŠ ุดูƒู„ ุงู„ F of X ุชุจู‚ู‰ ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ู…ุง ู‡ูˆ ู‡ุฐุง
32
+
33
+ 9
34
+ 00:00:53,450 --> 00:00:57,810
35
+ ุดูƒู„ ุฃุญุฏ ุซู„ุงุซุฉ ุฃู…ูˆุฑ ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„ ุฃู† ูŠูƒูˆู† polynomial
36
+
37
+ 10
38
+ 00:00:57,810 --> 00:01:01,930
39
+ ุงู„ุฃู…ุฑ ุงู„ุซุงู†ูŠ polynomial ููŠ exponential ุงู„ุฃู…ุฑ
40
+
41
+ 11
42
+ 00:01:01,930 --> 00:01:07,170
43
+ ุงู„ุซุงู„ุซ polynomialููŠ exponential ููŠ sin x ุฃูˆ cos x
44
+
45
+ 12
46
+ 00:01:07,170 --> 00:01:12,390
47
+ ุฃูˆ ู…ุฌู…ูˆุนู‡ู…ุง ุฃูˆ ุงู„ูุฑู‚ ููŠู…ุง ุจูŠู†ู‡ู…ุง ูˆุนุทูŠู†ุง ุนู„ู‰ ุฐู„ูƒ ููŠ
48
+
49
+ 13
50
+ 00:01:12,390 --> 00:01:17,270
51
+ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู…ุซุงู„ูŠู† ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุฑู‚ู… ุชู„ุงุชุฉ ูŠุจู‚ู‰
52
+
53
+ 14
54
+ 00:01:17,270 --> 00:01:21,270
55
+ ุจุฏู†ุง ู†ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุฐูƒุฑู†ุง
56
+
57
+ 15
58
+ 00:01:21,270 --> 00:01:24,830
59
+ ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจู†ุฌุฒุฆู‡ุง ุฅู„ู‰ ุฌุฒุฆูŠู† ุจู†ุงุฎุฏ ุงู„
60
+
61
+ 16
62
+ 00:01:24,830 --> 00:01:28,730
63
+ homogeneous ูˆู…ู† ุซู… ุงู„ non homogeneous differential
64
+
65
+ 17
66
+ 00:01:28,730 --> 00:01:34,790
67
+ equationูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุงู‚ูˆู„ู‡ ุงูุชุฑุถ ุงู† Y ุชุณุงูˆูŠ E ุฃูุณ RX
68
+
69
+ 18
70
+ 00:01:34,790 --> 00:01:45,450
71
+ ุจูŠู‡ solution of the homogeneous differential
72
+
73
+ 19
74
+ 00:01:45,450 --> 00:01:51,890
75
+ equation ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู„ูŠุฉ Y W Prime ุฒุงุฆุฏ Y
76
+
77
+ 20
78
+ 00:01:51,890 --> 00:01:57,450
79
+ ูŠุณุงูˆูŠ Zero then the characteristic equation
80
+
81
+ 21
82
+ 00:02:12,070 --> 00:02:18,010
83
+ ุงู„ุญู„ ุงู„ู…ุชุฌุงู†ุณ ูŠุจู‚ู‰
84
+
85
+ 22
86
+ 00:02:22,280 --> 00:02:32,080
87
+ The Homogeneous Differential Equation is ูŠูุณุงูˆูŠ
88
+
89
+ 23
90
+ 00:02:32,080 --> 00:02:40,580
91
+ ูŠุงุณุงูˆูŠ ูŠุงุณุงูˆูŠ
92
+
93
+ 24
94
+ 00:02:40,580 --> 00:02:44,700
95
+ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
96
+
97
+ 25
98
+ 00:02:44,700 --> 00:02:45,880
99
+ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
100
+
101
+ 26
102
+ 00:02:45,880 --> 00:02:47,560
103
+ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
104
+
105
+ 27
106
+ 00:02:47,560 --> 00:02:47,620
107
+ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
108
+
109
+ 28
110
+ 00:02:47,620 --> 00:02:51,060
111
+ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
112
+
113
+ 29
114
+ 00:02:51,060 --> 00:02:56,550
115
+ ูŠุณุจุฏูŠ ุฃุฑูˆุญ ุฃุฏูˆุฑ ุนู„ู‰ particular solution ู„ุญู„
116
+
117
+ 30
118
+ 00:02:56,550 --> 00:03:01,730
119
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‡ูŠ non homogeneous ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ the
120
+
121
+ 31
122
+ 00:03:01,730 --> 00:03:07,970
123
+ particular solution
124
+
125
+ 32
126
+ 00:03:07,970 --> 00:03:17,010
127
+ of theDifferential equation start ูˆ ุจุฑูˆุญ ุงู„ู„ูŠ ููˆู‚
128
+
129
+ 33
130
+ 00:03:17,010 --> 00:03:24,150
131
+ ุงู„ุฃุณุงุณูŠุฉ ู‡ุฐูŠ ุจุณู…ูŠู‡ุง star S ู…ุฏูŠู„ู‡ ุงู„ุฑู…ุฒ YP ูˆ ุจุฏูŠ
132
+
133
+ 34
134
+ 00:03:24,150 --> 00:03:31,510
135
+ ุจู‚ูˆู„ ูƒุชุงู„ูŠ X to the power S VุจุฃุฌูŠ ุนู„ู‰ ุดูƒู„ ุงู„ู„ูŠ ู‡ูˆ
136
+
137
+ 35
138
+ 00:03:31,510 --> 00:03:35,650
139
+ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุฑู‚ู… ููŠ sign ูŠุนู†ูŠ polynomial
140
+
141
+ 36
142
+ 00:03:35,650 --> 00:03:39,790
143
+ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุตูุฑูŠุฉ ู…ุถุฑูˆุจุฉ ููŠ sign ุฅุฐุง ุจุฏูŠ ุฃูƒุชุจ
144
+
145
+ 37
146
+ 00:03:39,790 --> 00:03:43,630
147
+ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุตูุฑูŠุฉ ููŠ sign ุฒุงุฆุฏ
148
+
149
+ 38
150
+ 00:03:43,630 --> 00:03:49,090
151
+ polynomial ููŠ cosine ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† a
152
+
153
+ 39
154
+ 00:03:49,090 --> 00:03:55,610
155
+ ููŠ cosine ุงู„ x ุฒุงุฆุฏ b ููŠ sine ุงู„ x ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
156
+
157
+ 40
158
+ 00:03:55,610 --> 00:04:04,280
159
+ ุนู†ุฏู†ุง ู‡ุฐุงุนู†ุฏู…ุง ุฃุจุญุซ ุนู† ู‚ูŠู…ุฉ S ู‡ู„ ู‡ูŠ 0 ุงูˆ 1 ุงูˆ 2 ุงูˆ
160
+
161
+ 41
162
+ 00:04:04,280 --> 00:04:06,980
163
+ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
164
+
165
+ 42
166
+ 00:04:06,980 --> 00:04:10,500
167
+ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
168
+
169
+ 43
170
+ 00:04:10,500 --> 00:04:10,560
171
+ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
172
+
173
+ 44
174
+ 00:04:10,560 --> 00:04:10,600
175
+ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
176
+
177
+ 45
178
+ 00:04:10,600 --> 00:04:11,400
179
+ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
180
+
181
+ 46
182
+ 00:04:11,400 --> 00:04:11,720
183
+ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
184
+
185
+ 47
186
+ 00:04:11,720 --> 00:04:21,600
187
+ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ 3 ุงูˆ
188
+
189
+ 48
190
+ 00:04:24,720 --> 00:04:28,780
191
+ ุจูˆุงุญุฏ ูˆุดูˆู ู„ูˆ ุญุทูŠุชู‡ุง ุจูˆุงุญุฏ ุจูŠุธู„ ููŠู‡ ุชุดุจู‡ ูˆู„ุง ุจูŠูƒูˆู†
192
+
193
+ 49
194
+ 00:04:28,780 --> 00:04:34,980
195
+ ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ุชุดุจู‡ ุฅุฐุง ู„ูˆ ุญุทูŠุช S ุจูˆุงุญุฏ ุจูŠุตูŠุฑ AX Cos
196
+
197
+ 50
198
+ 00:04:34,980 --> 00:04:41,400
199
+ ูˆู‡ู†ุง BX Sin ู‡ู„ ููŠ ุฃูŠ term ู‡ู†ุง ูŠุดุจู‡ ุฃูŠ term ู‡ู†ุง
200
+
201
+ 51
202
+ 00:04:41,400 --> 00:04:48,920
203
+ ุทุจุนุง ู„ุฃ ูŠุจู‚ู‰ ู‡ู†ุง hereู‡ู†ุง ุงู„ S ุชุณุงูˆูŠ ูˆุงุญุฏ ู„ู…ุง ุญุท ุงู„
204
+
205
+ 52
206
+ 00:04:48,920 --> 00:04:53,740
207
+ S ุชุณุงูˆูŠ ูˆุงุญุฏ ุจูŠูƒูˆู† ุฃุฒู„ู†ุง ุงู„ุดุจู‡ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุชู…ุงู…ุง ู…ุง
208
+
209
+ 53
210
+ 00:04:53,740 --> 00:04:56,880
211
+ ุจูŠู† ุงู„ complementary solution ูˆ ุงู„ particular
212
+
213
+ 54
214
+ 00:04:56,880 --> 00:05:02,600
215
+ solution ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ูŠุตุจุญ YP ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
216
+
217
+ 55
218
+ 00:05:02,600 --> 00:05:12,510
219
+ AX ููŠ cosine X ุฒุงุฆุฏ BX ููŠ sine Xุงู„ุงู† ุจุฏู†ุง ู†ุญุฏุฏ
220
+
221
+ 56
222
+ 00:05:12,510 --> 00:05:19,010
223
+ ู‚ูŠู…ุชูŠู† ุซูˆุงุจุช ุงู„ A ูˆ ุงู„ B ู„ุฐู„ูƒ ุจุฏูŠ ุงุดุชู‚ ู…ุฑุฉ ูˆ ุงุชู†ูŠู†
224
+
225
+ 57
226
+ 00:05:19,010 --> 00:05:26,590
227
+ ูˆ ุงุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุงุฎุฏ Y P Prime
228
+
229
+ 58
230
+ 00:05:26,930 --> 00:05:34,310
231
+ ู‡ุฐู‡ ุงู„ู…ุดุชู‚ุฉ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ a ููŠ cos x ู†ุงู‚ุต ax
232
+
233
+ 59
234
+ 00:05:34,310 --> 00:05:41,070
235
+ ููŠ sin x ุฒุงุฆุฏ ูƒู…ุงู† ู‡ุฐู‡ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ b ููŠ
236
+
237
+ 60
238
+ 00:05:41,070 --> 00:05:50,100
239
+ sin x ุฒุงุฆุฏ bx ููŠ cos xูŠุจู‚ู‰ ุงุดุชู‚ู†ุง ูƒู„ู‡ ู…ู† X ูˆ Cos X
240
+
241
+ 61
242
+ 00:05:50,100 --> 00:05:56,040
243
+ ูˆ X ูˆ Sin X ูƒุญุงุตู„ ุถุฑุจ ุฏู„ุชูŠู… ู‡ุฐุง ุญุตู„ู†ุง ุนู„ู‰ Y' ุทุจุนุง
244
+
245
+ 62
246
+ 00:05:56,040 --> 00:06:00,020
247
+ ู…ุงููŠุด ูˆ ู„ุง term ุฒูŠ ุงู„ุชุงู†ูŠ ูŠุจู‚ู‰ ุจูŠุฎู„ูŠ ูƒู„ ุดูŠ ุฒูŠ ู…ุง
248
+
249
+ 63
250
+ 00:06:00,020 --> 00:06:06,500
251
+ ู‡ูˆ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ YPW' ูŠุจู‚ู‰ ุจุฏู†ุง ุงุดุชู‚ ู‡ุฐู‡ ุจุงู„ุณุงู„ุจ
252
+
253
+ 64
254
+ 00:06:06,500 --> 00:06:16,830
255
+ A Sin X ูˆู‡ุฐู‡ ุงู„ุณุงู„ุจ A Sin Xุจุนุฏ ุฐู„ูƒ ุงุชุณุงู„ุจ ax ููŠ
256
+
257
+ 65
258
+ 00:06:16,830 --> 00:06:23,190
259
+ cos x ุงุดุชู‚ุช ู‡ุฐู‡ ุญุตู„ ุถุฑุจ ุฏู„ุชูŠู† ุจู†ุงู†ูŠุฌ ุงู„ู„ูŠ ุจุนุฏู‡ุง
260
+
261
+ 66
262
+ 00:06:23,190 --> 00:06:29,610
263
+ ูŠุจู‚ู‰ ุฒุงุฆุฏ b ููŠ cos x ุฎู„ุตู†ุง ู…ู†ู‡ุง ุจุฏุฃุช ุงุดุชู‚ ู‡ุฐู‡ ุญุตู„
264
+
265
+ 67
266
+ 00:06:29,610 --> 00:06:38,190
267
+ ุถุฑุจ ุฏู„ุชูŠู† ูŠุจู‚ู‰ ุฒุงุฆุฏ b ููŠ cos x ู†ุงู‚ุต bx ููŠ sin x
268
+
269
+ 68
270
+ 00:06:38,620 --> 00:06:42,780
271
+ ูŠุจู‚ู‰ ุงุดุชู‚ู†ุงู‡ ุญุตู„ ุถุฑุจ ุฏู„ุชูŠู† ู‡ู†ุง ููŠ ุจุนุถ ุงู„ุนู†ุงุตุฑ
272
+
273
+ 69
274
+ 00:06:42,780 --> 00:06:50,640
275
+ ู…ุชุดุงุจู‡ุฉ ู‡ูŠ ุนู†ุฏ ู‡ู†ุง ุณุงู„ุจ ุงุชู†ูŠู† a ููŠ sine ุงู„ X ูˆุนู†ุฏูŠ
276
+
277
+ 70
278
+ 00:06:50,640 --> 00:06:56,880
279
+ ูƒู…ุงู† ุฒุงุฆุฏ ุงุชู†ูŠู† b ููŠ cosine ุงู„ X ู‡ุฏูˆู„ ุงุชู†ูŠู† ู…ุน ุจุนุถ
280
+
281
+ 71
282
+ 00:06:56,880 --> 00:07:03,720
283
+ ูˆ ู‡ุฏูˆู„ ุงุชู†ูŠู† ู…ุน ุจุนุถ ุจุงู‚ูŠ ุนู†ุฏูŠ ู†ุงู‚ุต ax ููŠ cosine ุงู„
284
+
285
+ 72
286
+ 00:07:03,720 --> 00:07:10,180
287
+ X ูˆู†ุงู‚ุต bx ููŠ sine ุงู„ Xุจุนุฏ ุฐู„ูƒ ุงุฎุฐ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู„ู‰
288
+
289
+ 73
290
+ 00:07:10,180 --> 00:07:15,040
291
+ ุญุตู„ุช ุนู„ูŠู‡ุง ูˆ ุงุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ star ูŠุจู‚ู‰ ู‡ู†ุง
292
+
293
+ 74
294
+ 00:07:15,040 --> 00:07:23,320
295
+ substitute in
296
+
297
+ 75
298
+ 00:07:23,320 --> 00:07:33,740
299
+ the differential equation star we get ุจู†ุญุตู„ ุนู„ู‰ ู…ุง
300
+
301
+ 76
302
+ 00:07:33,740 --> 00:07:34,200
303
+ ูŠุฃุชูŠ
304
+
305
+ 77
306
+ 00:07:40,110 --> 00:07:43,630
307
+ ูŠุฌุจ ุงู† ุงุฒุงู„ุฉ ูˆูŠ ุฏุงุจู„ูŠ ุจุฑุงูŠู… ูˆุงุญุท ู‚ูŠู…ุชู‡ุง ูˆูŠ ุฏุงุจู„ูŠ
308
+
309
+ 78
310
+ 00:07:43,630 --> 00:07:48,950
311
+ ุจุฑุงูŠู… ู‡ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุง ูŠุจู‚ู‰ ู†ุงู‚ุต ุงุชู†ูŠู† ุงู ุตูŠู†
312
+
313
+ 79
314
+ 00:07:48,950 --> 00:07:55,980
315
+ ุงู„ุฒุงูˆูŠุฉ ุซุชุง ุตูŠู† ุงู„ุฒุงูˆูŠุฉ Xุชู…ุงู…ุŸ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฒุงุฆุฏ
316
+
317
+ 80
318
+ 00:07:55,980 --> 00:08:04,340
319
+ ุงุชู†ูŠู† B ููŠ cosine ุงู„ X ุงู„ู„ูŠ ุจุนุฏู‡ุง ู†ุงู‚ุต ุงู„ AX ููŠ
320
+
321
+ 81
322
+ 00:08:04,340 --> 00:08:11,080
323
+ cosine ุงู„ X ู†ุงู‚ุต ุงู„ BX ููŠ sine ุงู„ X ู‡ุฐุง ูƒู„ู‡ ุงู„ู„ูŠ
324
+
325
+ 82
326
+ 00:08:11,080 --> 00:08:17,400
327
+ ุฃุฎุฏุชู‡ ู…ูŠู†ุŸ YW prime ุถุงูŠู‚ ู„ู†ุง ู…ูŠู†ุŸ Y ูˆูŠู† Y ู‡ุงูŠู‡ุงุŸ
328
+
329
+ 83
330
+ 00:08:17,400 --> 00:08:24,560
331
+ ุจุฏู‡ ุฃุฌู…ุนู‡ู… ู‡ุฏูˆู„ ูŠุจู‚ู‰ ุฒุงุฆุฏู‡ู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ax ููŠ cos
332
+
333
+ 84
334
+ 00:08:24,560 --> 00:08:33,520
335
+ x ูˆ ุจุนุฏ ู‡ูŠ ูƒุฏู‡ ุฒุงุฆุฏ bx ููŠ sin x ูƒู„ู‡ ุจูŠุณูˆูŠ ุงู„ุทุฑู
336
+
337
+ 85
338
+ 00:08:33,520 --> 00:08:40,300
339
+ ุงู„ู„ูŠ ูŠุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‡ูˆ 4 ููŠ sin xุจู†ุฌูŠ ู†ุฌู…ุน ุนู†ุง
340
+
341
+ 86
342
+ 00:08:40,300 --> 00:08:47,940
343
+ ax cos ุจุงู„ุณุงู„ุจ ูˆ ax cos ุจุงู„ู…ูˆุฌุจ ุนู†ุง bx sin ุจุงู„ุณุงู„ุจ
344
+
345
+ 87
346
+ 00:08:47,940 --> 00:08:53,220
347
+ ูˆ bx ุจูŠู…ูŠู† ุจุงู„ู…ูˆุฌุจ ูŠุจู‚ู‰ ุตูุฉ ุงู„ู…ุนุงุฏู„ุฉ ุนู„ู‰ ุงู„ุดูƒู„
348
+
349
+ 88
350
+ 00:08:53,220 --> 00:09:00,740
351
+ ุงู„ุชุงู„ูŠ ู†ุงู‚ุต ุงุชู†ูŠู† a sin x ุฒุงุฆุฏูŠ ุงุชู†ูŠู† b cos x ูƒู„ู‡
352
+
353
+ 89
354
+ 00:09:00,740 --> 00:09:07,540
355
+ ุจุฏู‡ ูŠุณูˆูŠ ุงุฑุจุน sin xุจุนุฏ ุฐู„ูƒ ู†ู‚ุฑุฑ ุงู„ู…ุนุงู…ู„ุงุช ููŠ
356
+
357
+ 90
358
+ 00:09:07,540 --> 00:09:13,340
359
+ ุงู„ุทุฑููŠู† ุฅุฐุง ู„ูˆ ู‚ุฑุฑู†ุง ุงู„ู…ุนุงู…ู„ุงุช ููŠ ุงู„ุทุฑููŠู† ุจุณู†ุง ู†ู‚ุต
360
+
361
+ 91
362
+ 00:09:13,340 --> 00:09:19,580
363
+ ุงุชู†ูŠู† a ุจุฏูŠ ุณุงูˆูŠ ู‚ุฏุงุด ุงุฑุจุนุฉ ูˆุนู†ุฏูƒ ุงุชู†ูŠู† b ุจุฏูŠ ุนู†ุฏูŠ
364
+
365
+ 92
366
+ 00:09:19,580 --> 00:09:26,520
367
+ cosine ู‡ู†ุง ู…ุงุนู†ุงุด ูŠุจู‚ู‰ ุจูŠู‡ zero ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ a
368
+
369
+ 93
370
+ 00:09:26,520 --> 00:09:33,330
371
+ ุชุณุงูˆูŠ ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุงู„ b ุชุณุงูˆูŠ zeroูŠุจู‚ู‰ ุฃุตุจุญ ุดูƒู„ ุงู„
372
+
373
+ 94
374
+ 00:09:33,330 --> 00:09:46,570
375
+ YP ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰
376
+
377
+ 95
378
+ 00:09:46,570 --> 00:09:50,570
379
+ ุฃุตุจุญ ู‡ุฐุง ุดูƒู„ ุงู„ YP
380
+
381
+ 96
382
+ 00:10:01,840 --> 00:10:11,150
383
+ Y ูŠุณุงูˆูŠ YC ุฒุงุฆุฏ YPูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ูŠุตุจุญ y ูŠุณูˆูŠ yc ู‡ูŠ
384
+
385
+ 97
386
+ 00:10:11,150 --> 00:10:20,070
387
+ ุงู„ู…ูˆุฌูˆุฏ ุนู†ุฏู‰ ูŠุจู‚ู‰ c1 cos x ุฒุงุฆุฏ c2 ููŠ sin x ูˆุฒุงุฆุฏ
388
+
389
+ 98
390
+ 00:10:20,070 --> 00:10:28,010
391
+ yp ู†ุงู‚ุต 2x ููŠ cos x ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุญู„ ุงู„ู†ู‡ุงุฆูŠ ุชุจุน ู…ู†ุŸ
392
+
393
+ 99
394
+ 00:10:28,010 --> 00:10:32,990
395
+ ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ู„ุงุญุธู‰ ูˆู„ุง term ู…ู† ุงู„ุชู„ุงุช termุงุช ุฒู‰
396
+
397
+ 100
398
+ 00:10:32,990 --> 00:10:38,240
399
+ ุงู„ุชุงู†ู‰ ู…ุงููŠุด ุชุดุงุจู‡ุจูŠู† ุฃูŠ term ูˆุงู„term ุงู„ุซุงู†ูŠ
400
+
401
+ 101
402
+ 00:10:38,240 --> 00:10:46,440
403
+ ุงู„ู…ุซุงู„ ุฑู‚ู… ุฃุฑุจุน ูŠุจู‚ู‰ example ุฃุฑุจุน
404
+
405
+ 102
406
+ 00:10:46,440 --> 00:10:50,720
407
+ ุจู‚ูˆู„
408
+
409
+ 103
410
+ 00:10:50,720 --> 00:10:56,260
411
+ ุฏูŠ term a suitable
412
+
413
+ 104
414
+ 00:10:56,260 --> 00:11:03,480
415
+ form ุดูƒู„
416
+
417
+ 105
418
+ 00:11:03,480 --> 00:11:09,990
419
+ ู…ู†ุงุณุจFor the
420
+
421
+ 106
422
+ 00:11:09,990 --> 00:11:19,330
423
+ particular solution
424
+
425
+ 107
426
+ 00:11:19,330 --> 00:11:23,490
427
+ of the
428
+
429
+ 108
430
+ 00:11:23,960 --> 00:11:32,520
431
+ Differential equation ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ YW' ู†ุงู‚ุต
432
+
433
+ 109
434
+ 00:11:32,520 --> 00:11:49,540
435
+ 4Y' ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ 2X ุชุฑุจูŠุน ุฒุงุฆุฏ 4X E ุฃุณ 2Xุฒุงุฆุฏ ุงูƒุณ
436
+
437
+ 110
438
+ 00:11:49,540 --> 00:11:55,100
439
+ ููŠ ุตูŠู† ุงุชู†ูŠู† ุงูƒุณ ูˆู‡ุฐู‡ ุจุฏูŠ ุงุณู…ูŠู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ู‡ูŠ ู…ู†
440
+
441
+ 111
442
+ 00:11:55,100 --> 00:12:00,960
443
+ ุงู„star ูˆุจูŠู† ุฌุณูŠู† don't
444
+
445
+ 112
446
+ 00:12:00,960 --> 00:12:07,800
447
+ don't evaluate the
448
+
449
+ 113
450
+ 00:12:07,800 --> 00:12:08,620
451
+ constants
452
+
453
+ 114
454
+ 00:12:38,460 --> 00:12:43,640
455
+ ู‚ุงู„ุจ ุงู„ูƒูˆูŠู†ุฉ ุชุงู†ูŠู†ู‚ุฑุฃ ุงู„ุณุคุงู„ ู…ุฑุฉ ุชุงู†ูŠุฉ ูˆู†ุดูˆู ุดูˆ
456
+
457
+ 115
458
+ 00:12:43,640 --> 00:12:51,120
459
+ ุงู„ู…ุทู„ูˆุจ ุจูŠู‚ูˆู„ู„ูŠ ุญุฏุฏ ุญู„ ููŠ ุดูƒู„ ู…ู†ุงุณุจ ู„ู„ particular
460
+
461
+ 116
462
+ 00:12:51,120 --> 00:12:54,400
463
+ solution y, z ุชุจุน ุงู„ differential equation ู‡ุฐุง
464
+
465
+ 117
466
+ 00:12:54,400 --> 00:12:57,020
467
+ ูŠุจู‚ู‰ ุงู„ู†ุงุณ ุจุชุญุฏุฏ ุดูƒู„ ุงู„ particular solution
468
+
469
+ 118
470
+ 00:12:57,020 --> 00:13:00,840
471
+ ูˆูŠู‚ูˆู„ู„ูŠ ู…ุง ุชุญุณุจุด ุงู„ุซูˆุงุจุช ุงุถุงูŠุน ุดูˆุงุฌุฏูƒ ูˆุงู†ุช ุจุชุฌูŠุจ
472
+
473
+ 119
474
+ 00:13:00,840 --> 00:13:04,120
475
+ ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ุชุงู†ูŠุฉ ูˆุงุชุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ูˆุงุชุฌูŠุจ
476
+
477
+ 120
478
+ 00:13:04,120 --> 00:13:07,940
479
+ ู„ูŠู‡ ุฌุฏูŠุด ู‚ูŠู…ุฉ a ูˆb ุงูˆ a ูˆb ูˆc ูˆู…ุง ุฅู„ุง ุจุชุฏูŠุด ู‚ูŠู…ุฉ
480
+
481
+ 121
482
+ 00:13:07,940 --> 00:13:11,650
483
+ ุซูˆุงุจุช ุจุณ ู‡ุชู„ูŠ ุดูƒู„ mainุงู„ู€ Particular solution ู„ูŠุณ
484
+
485
+ 122
486
+ 00:13:11,650 --> 00:13:15,790
487
+ ู„ุงุฒู… ูŠูƒูˆู† ู‚ูŠู…ุชู‡ ุซุงู…ุชู‡ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ูŠุจู‚ู‰ ูŠุญุชุงุฌ
488
+
489
+ 123
490
+ 00:13:15,790 --> 00:13:20,350
491
+ ู„ู„ู…ุนุงุฏู„ุฉ ูŠุญุชุงุฌ ุฃู† ูŠุฃุฎุฐ ุงู„ู€Homogeneous differential
492
+
493
+ 124
494
+ 00:13:20,350 --> 00:13:24,550
495
+ equation ูŠุจู‚ู‰ ูŠุจุฏุฃ ูƒู…ุง ุจุฏุฃุช ููŠ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ู‚ุจู„ู‡
496
+
497
+ 125
498
+ 00:13:24,550 --> 00:13:29,290
499
+ let Y ุชุณุงูˆูŠ E ุฃูุณ RX ุจุฅูŠู‡ุŸ
500
+
501
+ 126
502
+ 00:13:41,220 --> 00:13:50,680
503
+ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ the characteristicEquation is R
504
+
505
+ 127
506
+ 00:13:50,680 --> 00:13:56,060
507
+ ุชุฑุจูŠุน ู†ุงู‚ุต ุงุฑุจุนุฉ R ุฒุงุฆุฏ ุงุฑุจุนุฉ ูŠุณุงูˆูŠ Zero ุงูˆ ุงู†
508
+
509
+ 128
510
+ 00:13:56,060 --> 00:14:02,560
511
+ ุดุฆุชู… ูู‚ูˆู„ูˆุง R ู†ุงู‚ุต ุงุชู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุน ุชุณุงูˆูŠ Zero ุงูˆ
512
+
513
+ 129
514
+ 00:14:02,560 --> 00:14:09,370
515
+ ุงู„ R ุชุณุงูˆูŠ ุงุชู†ูŠู† ูˆุงู„ุญู„ ู‡ุฐุง ู…ูƒุจุฑ ูƒู… ู…ุฑุฉุŸูŠุจู‚ู‰ ู…ุฑุชูŠู†
516
+
517
+ 130
518
+ 00:14:09,370 --> 00:14:12,850
519
+ ูŠุจู‚ู‰ of multiplicity two
520
+
521
+ 131
522
+ 00:14:19,800 --> 00:14:25,640
523
+ 2 ูŠุนู†ูŠ ุงู„ุญู„ ู…ูƒุฑุฑ ู…ุฑุชูŠู† ุจู†ุงุก ุนู„ูŠู‡ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ู‡ู†ุง
524
+
525
+ 132
526
+ 00:14:25,640 --> 00:14:32,220
527
+ ูŠุจู‚ู‰ solution yc ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุญู„ real ูˆ ู…ูƒุฑุฑ ู…ุฑุชูŠู†
528
+
529
+ 133
530
+ 00:14:32,220 --> 00:14:38,680
531
+ ูŠุจู‚ู‰ c1 ุฒุงุฆุฏ c2x e ุงุต r
532
+
533
+ 134
534
+ 00:14:44,740 --> 00:14:49,820
535
+ ุจู†ุจุฑูˆุฒ ู‡ุฐุง ุงู„ุญู„ ูˆ ุจู†ุณูŠุจู‡ ูˆ ุจู†ุฑูˆุญ ู†ุฑุฌุนู„ู‡ ุจุนุฏ ู‚ู„ูŠู„
536
+
537
+ 135
538
+ 00:14:49,820 --> 00:14:52,800
539
+ ุงู„ุงู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ non homogeneous differential
540
+
541
+ 136
542
+ 00:14:52,800 --> 00:14:56,280
543
+ equation ุงู„ู„ูŠ ุงู„ star ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฏู†ุง ู†ุชุทู„ุน ุนู„ู‰
544
+
545
+ 137
546
+ 00:14:56,280 --> 00:15:00,240
547
+ ุดูƒู„ ุงู„ F of X ุงู„ู„ูŠ ู‡ูˆ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ู„ ู‡ูŠ
548
+
549
+ 138
550
+ 00:15:00,240 --> 00:15:05,740
551
+ polynomial ูู‚ุทุŸุฃูˆ polynomial ููŠ exponential ุฃูˆ
552
+
553
+ 139
554
+ 00:15:05,740 --> 00:15:09,360
555
+ polynomial ููŠ sin ุฃูˆ cos ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุญู…ุฏ ู„ู„ู‡ ุฌุงูŠุจุฉ
556
+
557
+ 140
558
+ 00:15:09,360 --> 00:15:13,720
559
+ ุงู„ุชู„ุช ุญุงู„ุงุช ูƒู„ู‡ู… ุจุณุคุงู„ ุงู†ูˆุงุนูŠ ู‡ูŠ polynomial ู…ู†
560
+
561
+ 141
562
+ 00:15:13,720 --> 00:15:17,180
563
+ ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ
564
+
565
+ 142
566
+ 00:15:17,180 --> 00:15:21,820
567
+ exponential polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ sin ุฅุฐุง
568
+
569
+ 143
570
+ 00:15:21,820 --> 00:15:27,630
571
+ ุฅูŠุด ู‡ุนู…ู„ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠุŸู‡ุฌุฒู‚ู‡ุง ุฅู„ู‰ ุซู„ุงุซ
572
+
573
+ 144
574
+ 00:15:27,630 --> 00:15:31,690
575
+ ู…ุนุงุฏู„ุงุช ุชู…ุงู…ุŸ ูˆ ุฃุญู„ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ูˆ ุฃุฌูŠุจ ุงู„
576
+
577
+ 145
578
+ 00:15:31,690 --> 00:15:35,390
579
+ particular solution ุชุจุนู‡ุง ูˆ ุฃุฌู…ุน ุงู„ุญู„ูˆู„ ุงู„ุชู„ุงุชุฉ
580
+
581
+ 146
582
+ 00:15:35,390 --> 00:15:38,810
583
+ ุจูŠุนุทูŠู†ูŠ ุงู„ particular solution ู„ู…ูŠู†ุŸ ู„ู„ู…ุนุงุฏู„ุงู†ุฉ
584
+
585
+ 147
586
+ 00:15:38,810 --> 00:15:43,970
587
+ ุทุจู‚ุง ู„ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุฃุนุทุงู†ูŠู‡ุง ู„ูƒู… ููŠ ุฃูˆู„ section ููŠ
588
+
589
+ 148
590
+ 00:15:43,970 --> 00:15:46,970
591
+ ุงู„ non homogeneous differential equation ู‚ูˆู„ู†ุงู„ูƒูˆุง
592
+
593
+ 149
594
+ 00:15:46,970 --> 00:15:53,150
595
+ ู‡ุฐุง ุจูŠู„ุฒู…ู†ุง ู„ู…ูŠู†ุŸ ู„ู„ sections ุงู„ู‚ุงุฏู…ุฉ ุชู…ุงู…ุŸ ูŠุจู‚ู‰
596
+
597
+ 150
598
+ 00:15:53,150 --> 00:16:01,260
599
+ ุจุฏุงุฌูŠ ุฃู‚ูˆู„ู‡ ู‡ู†ุงdifferential equation star is
600
+
601
+ 151
602
+ 00:16:01,260 --> 00:16:08,360
603
+ written as ูŠู…ูƒู†ู†ุง ุฃู† ู†ูƒุชุจู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู€ y
604
+
605
+ 152
606
+ 00:16:08,360 --> 00:16:14,460
607
+ double prime ู†ุงู‚ุต ุฃุฑุจุนุฉ y prime ุฒุงุฆุฏ ุฃุฑุจุนุฉ y ูŠุณูˆู‰
608
+
609
+ 153
610
+ 00:16:14,460 --> 00:16:20,580
611
+ ูƒู…ุŸ ูŠุณูˆู‰ ุงุชู†ูŠู† x ุชุฑุจูŠุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ
612
+
613
+ 154
614
+ 00:16:20,580 --> 00:16:33,690
615
+ ู…ูŠู†ุŸYW'-4Y'ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ 4XE2X
616
+
617
+ 155
618
+ 00:16:33,690 --> 00:16:45,370
619
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู„ุชุฉ YW'-4Y'ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ XSIN2X ูŠุณุงูˆูŠ
620
+
621
+ 156
622
+ 00:16:45,370 --> 00:16:50,350
623
+ X ููŠ SIN2X ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
624
+
625
+ 157
626
+ 00:16:58,280 --> 00:17:03,840
627
+ ุทูŠุจุŒ ุงู„ุขู† ูŠุนู†ูŠ ูƒุฃู†ู‡ ุตุงุฑ ุนู†ุฏูŠ ู…ุด ู…ุณุฃู„ุฉ ูˆุงุญุฏุฉุŒ ุซู„ุงุซ
628
+
629
+ 158
630
+ 00:17:03,840 --> 00:17:07,120
631
+ ู…ุณุงุฆู„ุŒ ุจุฏูŠ ุฃุญู„ ูƒู„ ูˆุงุญุฏ ุฃุฌูŠุจ ุงู„ particle solution
632
+
633
+ 159
634
+ 00:17:07,120 --> 00:17:12,980
635
+ ูƒุฃู†ู‡ ู„ุง ุนู„ุงู‚ุฉ ู„ู‡ุง ุจู…ูŠู† ุจุงู„ุงุฎุฑู‰ุŒ ูŠุจู‚ู‰ ู‡ู†ุง ุจุฏูŠ ุฃุฌูŠุจ
636
+
637
+ 160
638
+ 00:17:12,980 --> 00:17:20,180
639
+ ุงู„ YP1 ูŠุจู‚ู‰ YP1 ูŠุณุงูˆูŠ X to the power S ููŠู‡ุŒ ู‡ุฐู‡
640
+
641
+ 161
642
+ 00:17:20,180 --> 00:17:21,740
643
+ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ
644
+
645
+ 162
646
+ 00:17:34,810 --> 00:17:40,490
647
+ ู‡ู„ ุงูŠ term ู…ู† ู‡ู†ุง ูŠุดุจู‡
648
+
649
+ 163
650
+ 00:17:40,490 --> 00:17:42,250
651
+ ุงูŠ term ููˆู‚ุŸ
652
+
653
+ 164
654
+ 00:17:45,280 --> 00:17:52,060
655
+ ู…ุถุฑูˆูุฉ ูŠุนู†ูŠ ู‡ุฐุง C1 E2 X ูˆ C2 X E2 ููŠู‡ุŸ ู…ุงุนู†ุฏูŠุด
656
+
657
+ 165
658
+ 00:17:52,060 --> 00:17:56,020
659
+ exponential ู‡ู†ุงูƒ ุจู…ุงููŠุด ูŠุจุฌู‰ ู‡ู†ุง S ุจู‚ุฏุฑ ุงูŠู‡ุŸ ุจ
660
+
661
+ 166
662
+ 00:17:56,020 --> 00:18:03,680
663
+ Zero ูŠุจุฌู‰ here ุงู„ S ุชุณุงูˆูŠ Zero ูŠุจุฌู‰ ุฃุตุจุญ Y P1 ุจุฏู‡
664
+
665
+ 167
666
+ 00:18:03,680 --> 00:18:11,780
667
+ ูŠุณุงูˆูŠ A0 X ุชุฑุจูŠุน ุฒุงุฆุฏ A1 X ุฒุงุฆุฏ A2 ุณูŠุจูˆู†ุง ู…ู† ู‡ุฐุง
668
+
669
+ 168
670
+ 00:18:11,780 --> 00:18:20,370
671
+ ู†ู†ุชู‚ู„ ุนู„ู‰ ุงู„ู„ูŠ ุจุนุฏู‡ุงูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ ูŠุจู‚ู‰
672
+
673
+ 169
674
+ 00:18:20,370 --> 00:18:23,230
675
+ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€
676
+
677
+ 170
678
+ 00:18:23,230 --> 00:18:26,990
679
+ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ
680
+
681
+ 171
682
+ 00:18:26,990 --> 00:18:32,070
683
+ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial
684
+
685
+ 172
686
+ 00:18:32,070 --> 00:18:34,410
687
+ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ
688
+
689
+ 173
690
+ 00:18:34,410 --> 00:18:37,350
691
+ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential
692
+
693
+ 174
694
+ 00:18:37,350 --> 00:18:37,390
695
+ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ
696
+
697
+ 175
698
+ 00:18:37,390 --> 00:18:38,650
699
+ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial
700
+
701
+ 176
702
+ 00:18:38,650 --> 00:18:38,870
703
+ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ
704
+
705
+ 177
706
+ 00:18:38,870 --> 00:18:39,870
707
+ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential
708
+
709
+ 178
710
+ 00:18:39,870 --> 00:18:40,510
711
+ ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€
712
+
713
+ 179
714
+ 00:18:40,510 --> 00:18:42,530
715
+ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃ
716
+
717
+ 180
718
+ 00:18:42,560 --> 00:18:55,400
719
+ ู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X
720
+
721
+ 181
722
+ 00:18:55,400 --> 00:18:56,780
723
+ to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S
724
+
725
+ 182
726
+ 00:18:56,780 --> 00:18:58,460
727
+ ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X
728
+
729
+ 183
730
+ 00:18:58,460 --> 00:18:58,680
731
+ to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S
732
+
733
+ 184
734
+ 00:18:58,680 --> 00:18:59,380
735
+ ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X
736
+
737
+ 185
738
+ 00:18:59,380 --> 00:19:03,500
739
+ to the power S ูˆู‡ูˆ ูŠุฌุจ ุฃู† ุฃุบุทูŠ X to the powerุทุจ
740
+
741
+ 186
742
+ 00:19:03,500 --> 00:19:10,940
743
+ ุจุฏู‡ ุงุญุท S ุจู‚ุฏุงุดุŸ ุจูˆุงุญุฏ ู„ูˆ ุญุทูŠุช S ุจูˆุงุญุฏ ุจุตูŠุฑ B0 X
744
+
745
+ 187
746
+ 00:19:10,940 --> 00:19:15,420
747
+ ุชุฑุจูŠุฉ ููŠ ุงู„ exponential ููŠู‡ ููˆู‚ ุฒูŠู‡ุง ุทูŠุจ ู†ุดูˆู ู‡ุฐู‡
748
+
749
+ 188
750
+ 00:19:15,420 --> 00:19:21,930
751
+ B1 X ููŠ ุงู„ exponentialููŠ ุฒูŠู‡ุง ูŠุจู‚ู‰ S ุชุณุงูˆูŠ ูˆุงุญุฏ ู…ุด
752
+
753
+ 189
754
+ 00:19:21,930 --> 00:19:26,830
755
+ ุตุญูŠุญุฉ ูŠุจู‚ู‰ ุงุญุท S ุจู‚ุฏุฑุด ุฅุฐุง ู„ูˆ ุญุทูŠุช ุงู„ S ุจุงุชู†ูŠู†
756
+
757
+ 190
758
+ 00:19:26,830 --> 00:19:31,210
759
+ ุจูŠุถู„ ููŠ ุงู†ุฏูŠ ุชุดุงุจู‡ ูŠุจู‚ู‰ ุงุชู‚ุงู„ู„ู‡ ูŠุจู‚ู‰ ุจู‚ูˆู„ู‡ here
760
+
761
+ 191
762
+ 00:19:31,210 --> 00:19:39,310
763
+ ู‡ู†ุง ุงู„ S ุชุณุงูˆูŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงุตุจุญ Y P2 ุจุฏู„ ุณุงูˆูŠ P0 X
764
+
765
+ 192
766
+ 00:19:39,310 --> 00:19:47,370
767
+ ุชูƒูŠุจ ุฒูŠ P1 X ุชุฑุจูŠุน ูƒู„ู‡ ููŠ ุงู„ E ุฃุณ ุงุชู†ูŠู† XูŠุนู†ูŠ ุดูŠู„ุช
768
+
769
+ 193
770
+ 00:19:47,370 --> 00:19:51,030
771
+ ุงู„ S ูˆ ุญุทูŠุช ู…ูƒุงู† ุงุชู†ูŠู† ุตุงุฑุช X ุชุฑุจูŠุน ุถุฑุจุช ู‡ูˆูŠู† ููŠ
772
+
773
+ 194
774
+ 00:19:51,030 --> 00:19:55,090
775
+ ุงู„ู„ูŠ ุฌูˆุง ูุตุงุฑุช ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฏุงุฎู„ ุงู„ู…ุนุงุฏู„ุฉ
776
+
777
+ 195
778
+ 00:19:55,090 --> 00:20:08,900
779
+ ุงู„ุชุงู„ุชุฉุงู„ู€ YP3 ุจุฏูŠ ุฃูƒุชุจ
780
+
781
+ 196
782
+ 00:20:08,900 --> 00:20:12,180
783
+ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ cosine ุฒูŠ
784
+
785
+ 197
786
+ 00:20:12,180 --> 00:20:15,160
787
+ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ sine
788
+
789
+ 198
790
+ 00:20:18,960 --> 00:20:23,360
791
+ ูŠุจู‚ู‰ ุจุฏุฃ ูˆุงุฎุฏู†ุง ู‡ู†ุง ููŠ ุณูŠู‡ุงุช ูˆุงู„ุณูŠู‡ุงุช ู„ุฃ ูƒู…ุงู† ุจุฏูŠ
792
+
793
+ 199
794
+ 00:20:23,360 --> 00:20:28,860
795
+ ุงู‚ูˆู„ ุฏูŠ ุง ุจุฏูŠ ุงู‚ูˆู„ X to the power S ููŠ ุงู„ุฃูˆู„ X to
796
+
797
+ 200
798
+ 00:20:28,860 --> 00:20:34,700
799
+ the power S ููŠู‡ ุงู„ุขู† ุจุฏูŠ ุงู‚ูˆู„ ุฏูŠ ู†ุงุฏุฉ
800
+
801
+ 201
802
+ 00:20:37,040 --> 00:20:47,000
803
+ ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุถุฑูˆุจ ููŠ cosine 2x ุฒุงุฆุฏ e node x
804
+
805
+ 202
806
+ 00:20:47,000 --> 00:20:53,980
807
+ ุฒุงุฆุฏ e1 ูƒู„ู‡ ู…ุถุฑูˆุจ ููŠ sin 2x ูˆ exponential ู…ุงุนู†ุฏูŠุด
808
+
809
+ 203
810
+ 00:20:56,240 --> 00:21:03,100
811
+ ู‡ู„ ุงูŠ term ู…ู† ุงู„ู…ุณุชุทูŠู„ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุง ูŠุดุจู‡ ุฃูŠ term
812
+
813
+ 204
814
+ 00:21:03,100 --> 00:21:07,720
815
+ ู…ู† ุงู„ู…ุณุชุทูŠู„ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุงุŸ ู„ุฃ ูˆู„ุง ููŠู‡ sign ูˆู„ุง ูƒูˆ
816
+
817
+ 205
818
+ 00:21:07,720 --> 00:21:08,120
819
+ ุณุงูŠู†
820
+
821
+ 206
822
+ 00:21:13,370 --> 00:21:20,650
823
+ ุงู„ู€ S ุจุฏู‡ุง ุชุณุงูˆูŠ 0 ูŠุจู‚ู‰ ุฃุตุจุญ YP3 ุจุฏู‡ุง ุชุณุงูˆูŠ D node
824
+
825
+ 207
826
+ 00:21:20,650 --> 00:21:32,590
827
+ X ุฒุงุฆุฏ D1 ููŠ Cos 2X ุฒุงุฆุฏ E node X ุฒุงุฆุฏ E1 ููŠ Sin
828
+
829
+ 208
830
+ 00:21:32,590 --> 00:21:38,120
831
+ 2XูŠุจู‚ู‰ ุงู„ู€ Particular solution ุงู„ู„ูŠ ุจุฏู†ุง ูŠุง ุจู†ุงุช
832
+
833
+ 209
834
+ 00:21:38,120 --> 00:21:47,060
835
+ ูŠุจู‚ู‰ ูŠุณุงูˆูŠ YP1 ุฒุงุฆุฏ YP2 ุฒุงุฆุฏ YP3 ูŠุจู‚ู‰ ุฃุตุจุญ YP
836
+
837
+ 210
838
+ 00:21:47,060 --> 00:21:55,380
839
+ ูŠุณุงูˆูŠ YP1 ู‡ุงูŠ ูˆ ุจู†ุฒู„ู‡ ุฒูŠ ู…ุง ู‡ูˆ A0 X ุชุฑุจูŠุน A1X ุฒุงุฆุฏ
840
+
841
+ 211
842
+ 00:21:55,380 --> 00:21:57,580
843
+ A2 ุฒุงุฆุฏ
844
+
845
+ 212
846
+ 00:22:19,860 --> 00:22:21,260
847
+ YP2YP3YP4YP5YP6YP7
848
+
849
+ 213
850
+ 00:22:29,550 --> 00:22:36,330
851
+ ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ู‡ ูŠุนุชุจุฑ ู…ู† ุงู„ particular solution ุงู„ู„ูŠ
852
+
853
+ 214
854
+ 00:22:36,330 --> 00:22:41,990
855
+ ู…ุทู„ูˆุจ ุนู†ู‡ุง ุญุฏ ููŠูƒูˆุง ู„ุงูŠู‡ ุชุณุงุคู„ ู‡ู†ุง ููŠ ู‡ุฐุง ุงู„ุณุคุงู„ุŸ
856
+
857
+ 215
858
+ 00:22:41,990 --> 00:22:48,270
859
+ ููŠ ุงูŠ ุชุณุงุคู„ุŸุทูŠุจ ุนู„ู‰ ู‡ูŠูƒ ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ section ูˆุฅู„ู‰
860
+
861
+ 216
862
+ 00:22:48,270 --> 00:22:55,590
863
+ ูŠูƒูˆู† ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ ูŠุจู‚ู‰ exercises ุฎู…ุณุฉ ุณุจุนุฉ
864
+
865
+ 217
866
+ 00:22:55,590 --> 00:23:01,730
867
+ ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ ู…ู† ูˆุงุญุฏ ู„ุบุงูŠุฉ ุนุดุฑูŠู† ูˆู…ู† ุฎู…ุณุฉ
868
+
869
+ 218
870
+ 00:23:01,730 --> 00:23:08,730
871
+ ูˆุนุดุฑูŠู† ู„ุบุงูŠุฉ ุชู„ุงุชูŠู† ู…ุฑู†ูŠ
872
+
873
+ 219
874
+ 00:23:08,730 --> 00:23:13,530
875
+ ุฃุฏูŠูƒูŠ ู‚ุฏ ู…ุง ุชู‚ุฏุฑูŠ ุจุชุตูŠุฑ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุจุตูŠุฑ ุฌุฏุง
876
+
877
+ 220
878
+ 00:23:26,290 --> 00:23:49,450
879
+ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุง ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ ุงุธู† ุฎู„ุงุตุŸ
880
+
881
+ 221
882
+ 00:23:49,450 --> 00:23:55,440
883
+ ุทูŠุจู„ู…ุง ู†ู†ุชู‚ู„ ุฅู„ู‰ ุงู„ section ุงู„ุฃุฎูŠุฑ ู…ู† ู‡ุฐุง ุงู„
884
+
885
+ 222
886
+ 00:23:55,440 --> 00:24:00,320
887
+ chapter ูˆู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ุทุฑู‚ ุญู„ ุงู„ non
888
+
889
+ 223
890
+ 00:24:00,320 --> 00:24:03,800
891
+ homogeneous differential equation ูˆู‡ูŠ ุทุฑูŠู‚ุฉ ุงู„
892
+
893
+ 224
894
+ 00:24:03,800 --> 00:24:11,280
895
+ variation of parameters ุชุบูŠูŠุฑ ุงู„ูˆุณูŠุทุงุช ูŠุจู‚ู‰ 85 ุฃูˆ
896
+
897
+ 225
898
+ 00:24:11,280 --> 00:24:19,340
899
+ 58 ุงู„ู„ูŠ ู‡ูˆ variation of
900
+
901
+ 226
902
+ 00:24:20,530 --> 00:24:29,030
903
+ Parameters ู†ุณุชุฎุฏู…
904
+
905
+ 227
906
+ 00:24:29,030 --> 00:24:39,410
907
+ ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ to find a
908
+
909
+ 228
910
+ 00:24:39,410 --> 00:24:45,850
911
+ particular solution to find a particular
912
+
913
+ 229
914
+ 00:24:54,020 --> 00:24:58,120
915
+ YP ุงู„ุฑู…ุฒ ู„ู„ุฅูŠู‚ุงุน
916
+
917
+ 230
918
+ 00:25:01,140 --> 00:25:07,280
919
+ Differential equation ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ a0 as a
920
+
921
+ 231
922
+ 00:25:07,280 --> 00:25:14,040
923
+ function of x ุฒุงุฆุฏ ุงู„ a1 as a function of x ู„ู„
924
+
925
+ 232
926
+ 00:25:14,040 --> 00:25:21,470
927
+ derivative n minus l1ุฒุงุฆุฏ ู†ุจู‚ู‰ ู…ุงุดูŠ ู„ุบุงูŠุฉ a n
928
+
929
+ 233
930
+ 00:25:21,470 --> 00:25:27,750
931
+ minus one as a function of x y prime ุฒุงุฆุฏ a n as a
932
+
933
+ 234
934
+ 00:25:27,750 --> 00:25:33,130
935
+ function of x ููŠ ุงู„ y ุจุฏู‡ ูŠุณุงูˆูŠ capital F of x
936
+
937
+ 235
938
+ 00:25:33,130 --> 00:25:36,790
939
+ ูˆู‡ุฐู‡ ุงู„ู„ูŠ ูƒู†ุง ุจู†ุทู„ู‚ ุนู„ูŠู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ
940
+
941
+ 236
942
+ 00:25:36,790 --> 00:25:46,210
943
+ starwhere ุญูŠุซ ุงู„ a node of x ูˆ ุงู„ a one of x ูˆ
944
+
945
+ 237
946
+ 00:25:46,210 --> 00:25:54,330
947
+ ู„ุบุงูŠุฉ ุงู„ a n of x ู‡ุฏูˆู„ ูƒู„ู‡ู… need not need not
948
+
949
+ 238
950
+ 00:25:54,330 --> 00:26:00,510
951
+ constants need
952
+
953
+ 239
954
+ 00:26:00,510 --> 00:26:09,410
955
+ not constants and no restrictionู…ุงุนู†ุฏูŠุด ู‚ูŠูˆุฏ
956
+
957
+ 240
958
+ 00:26:09,410 --> 00:26:24,010
959
+ ู…ุงุนู†ุฏูŠุด
960
+
961
+ 241
962
+ 00:26:24,010 --> 00:26:24,850
963
+ ู‚ูŠูˆุฏ ุนู„ูŠู‡ุง
964
+
965
+ 242
966
+ 00:26:33,720 --> 00:26:46,600
967
+ YC ูŠุจุฏูˆ ูŠุณุงูˆูŠ C1Y1 ุฒุงุฆุฏ C2Y2 ุฒุงุฆุฏ CNYN Assume that
968
+
969
+ 243
970
+ 00:26:46,600 --> 00:26:57,440
971
+ is a solution of the homo
972
+
973
+ 244
974
+ 00:27:10,960 --> 00:27:16,840
975
+ ุฒุงูŠุฏ ุฒุงูŠุฏ a n minus 1 as a function of x ููŠ ุงู„ y
976
+
977
+ 245
978
+ 00:27:16,840 --> 00:27:23,680
979
+ prime ุฒุงูŠุฏ a n of x y ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ 0
980
+
981
+ 246
982
+ 00:27:29,020 --> 00:27:32,880
983
+ to get a
984
+
985
+ 247
986
+ 00:27:32,880 --> 00:27:37,540
987
+ particular solution
988
+
989
+ 248
990
+ 00:27:37,540 --> 00:27:46,180
991
+ to get a particular solution yp of the
992
+
993
+ 249
994
+ 00:27:46,180 --> 00:27:56,140
995
+ differential equation star by the method
996
+
997
+ 250
998
+ 00:27:59,990 --> 00:28:07,590
999
+ of variation of
1000
+
1001
+ 251
1002
+ 00:28:07,590 --> 00:28:20,570
1003
+ parameters replace
1004
+
1005
+ 252
1006
+ 00:28:20,570 --> 00:28:32,010
1007
+ ุงุณุชุจุฏู„ replace the above constantsabove constants
1008
+
1009
+ 253
1010
+ 00:28:32,010 --> 00:28:42,250
1011
+ in
1012
+
1013
+ 254
1014
+ 00:28:42,250 --> 00:28:48,930
1015
+ the solution yc
1016
+
1017
+ 255
1018
+ 00:28:48,930 --> 00:28:52,550
1019
+ by the functions
1020
+
1021
+ 256
1022
+ 00:28:55,020 --> 00:29:10,660
1023
+ The functions C1 of X C2 of X ูˆ ู„ุบุงูŠุฉ CN of X That
1024
+
1025
+ 257
1026
+ 00:29:10,660 --> 00:29:11,060
1027
+ is
1028
+
1029
+ 258
1030
+ 00:29:15,470 --> 00:29:25,490
1031
+ YP ูŠุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ C1 of XY1 C2 of XY2 ุฒุงุฆุฏ
1032
+
1033
+ 259
1034
+ 00:29:25,490 --> 00:29:29,470
1035
+ CN of XYN
1036
+
1037
+ 260
1038
+ 00:29:35,370 --> 00:29:44,010
1039
+ ุงู„ู€ CM as a function of X ูŠุณูˆูŠ ุชูƒุงู…ู„ ุงู„ูˆุฑู†ุณูƒูŠู† M
1040
+
1041
+ 261
1042
+ 00:29:44,010 --> 00:29:51,350
1043
+ as a function of X ููŠ capital F1 of X ุนู„ู‰
1044
+
1045
+ 262
1046
+ 00:29:51,350 --> 00:29:59,090
1047
+ ุงู„ูˆุฑู†ุณูƒูŠู† of X ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX ูˆุงู„ู€ M
1048
+
1049
+ 263
1050
+ 00:30:02,270 --> 00:30:09,990
1051
+ ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ
1052
+
1053
+ 264
1054
+ 00:30:09,990 --> 00:30:14,950
1055
+ ู„ุบุงูŠุฉ
1056
+
1057
+ 265
1058
+ 00:30:14,950 --> 00:30:21,750
1059
+ ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N
1060
+
1061
+ 266
1062
+ 00:30:28,070 --> 00:30:34,350
1063
+ is the determinant ุงู„ู…ุญุฏุฏ
1064
+
1065
+ 267
1066
+ 00:30:34,350 --> 00:30:41,370
1067
+ obtained from
1068
+
1069
+ 268
1070
+ 00:30:41,370 --> 00:30:46,810
1071
+ ุงู„ูˆุงู†ุณูƒูŠู†
1072
+
1073
+ 269
1074
+ 00:30:46,810 --> 00:30:52,130
1075
+ of X by replacing
1076
+
1077
+ 270
1078
+ 00:30:58,290 --> 00:31:15,810
1079
+ By replacing the M column By the column By
1080
+
1081
+ 271
1082
+ 00:31:15,810 --> 00:31:26,730
1083
+ the column Zero Zero ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ุงู„ูˆุงุญุฏ and
1084
+
1085
+ 272
1086
+ 00:31:30,230 --> 00:31:42,150
1087
+ ุงู„ู€ F1 of X ุชุณุงูˆูŠ ุงู„ู€ F of X ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ A0 of X
1088
+
1089
+ 273
1090
+ 00:31:42,150 --> 00:31:45,550
1091
+ Note
1092
+
1093
+ 274
1094
+ 00:31:45,550 --> 00:31:50,310
1095
+ When
1096
+
1097
+ 275
1098
+ 00:31:50,310 --> 00:32:00,490
1099
+ we use the method when weuse the method of
1100
+
1101
+ 276
1102
+ 00:32:00,490 --> 00:32:05,590
1103
+ variation
1104
+
1105
+ 277
1106
+ 00:32:05,590 --> 00:32:15,910
1107
+ of parameters ุนู†ุฏู…ุง
1108
+
1109
+ 278
1110
+ 00:32:15,910 --> 00:32:23,110
1111
+ ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ variation of parameters the
1112
+
1113
+ 279
1114
+ 00:32:23,110 --> 00:32:23,850
1115
+ coefficient
1116
+
1117
+ 280
1118
+ 00:32:33,870 --> 00:32:45,010
1119
+ ูŠุฌุจ ุงู† ูŠูƒูˆู† ูŠูˆู…ูŠ ูŠูˆู…ูŠ
1120
+
1121
+ 281
1122
+ 00:32:45,010 --> 00:32:47,290
1123
+ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ
1124
+
1125
+ 282
1126
+ 00:32:58,790 --> 00:33:11,670
1127
+ is of the second order
1128
+
1129
+ 283
1130
+ 00:33:11,670 --> 00:33:14,970
1131
+ that
1132
+
1133
+ 284
1134
+ 00:33:14,970 --> 00:33:18,690
1135
+ is
1136
+
1137
+ 285
1138
+ 00:33:20,880 --> 00:33:30,340
1139
+ ุงู„ู€ a0 of x yw prime a1 of x y prime a2 of x y
1140
+
1141
+ 286
1142
+ 00:33:30,340 --> 00:33:35,420
1143
+ ุจุฏู‡ุง ุชุณุงูˆูŠ f
1144
+
1145
+ 287
1146
+ 00:33:35,420 --> 00:33:50,710
1147
+ of x and f y1 and y2 are two solutionsare two
1148
+
1149
+ 288
1150
+ 00:33:50,710 --> 00:33:57,990
1151
+ solutions of
1152
+
1153
+ 289
1154
+ 00:33:57,990 --> 00:34:12,570
1155
+ the homogeneous equation a0 of x yw prime a1 of x
1156
+
1157
+ 290
1158
+ 00:34:12,570 --> 00:34:18,570
1159
+ y prime a2 of x y ุจุฏูˆ ูŠุณุงูˆูŠ zero then
1160
+
1161
+ 291
1162
+ 00:34:23,050 --> 00:34:33,070
1163
+ ุงู„ู€ C1 of X ู‡ูˆ ุชูƒุงู…ู„ ู„ู†ุงู‚ุต Y2 as a function of X
1164
+
1165
+ 292
1166
+ 00:34:33,070 --> 00:34:39,550
1167
+ ููŠ ุงู„ู€ F1 of X ุนู„ู‰ ุฑูˆู†ุณูƒูŠู† X DX
1168
+
1169
+ 293
1170
+ 00:34:43,770 --> 00:34:51,950
1171
+ ุงู„ู€ C2 as a function of X ุจุฏู‡ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ู„ู…ูŠู†ุŸ
1172
+
1173
+ 294
1174
+ 00:34:51,950 --> 00:34:58,690
1175
+ ุจุฏู‡ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ู„ู„ู€ Y1 as a function of X ููŠ ุงู„ู€
1176
+
1177
+ 295
1178
+ 00:34:58,690 --> 00:35:05,170
1179
+ F1 of X ูƒู„ู‡ ุนู„ู‰ ุงู„ู€ run skin of X ููŠ ุงู„ู€ DX
1180
+
1181
+ 296
1182
+ 00:35:05,170 --> 00:35:10,030
1183
+ example
1184
+
1185
+ 297
1186
+ 00:35:10,030 --> 00:35:10,490
1187
+ 1
1188
+
1189
+ 298
1190
+ 00:35:15,200 --> 00:35:26,200
1191
+ Find the general solution of
1192
+
1193
+ 299
1194
+ 00:35:26,200 --> 00:35:32,340
1195
+ the differential equation ู„ู„ู…ุนุงุฏู„ุฉ
1196
+
1197
+ 300
1198
+ 00:35:32,340 --> 00:35:38,340
1199
+ ุงู„ุชูุงุถู„ูŠุฉ YW'-2Y
1200
+
1201
+ 301
1202
+ 00:35:43,090 --> 00:35:51,990
1203
+ ู„ู„ู…ุนุงู…ู„ุฉ ุงู„ุชุญูˆูŠ ุนุถู„ูŠุฉ y
1204
+
1205
+ 302
1206
+ 00:35:51,990 --> 00:36:03,650
1207
+ triple prime ุฒุงุฆุฏ y prime ุจุฏูŠ ูŠุณุงูˆูŠ ุณูƒู„ x ุจูŠุณุงูˆูŠ
1208
+
1209
+ 303
1210
+ 00:36:03,650 --> 00:36:12,610
1211
+ ุณูƒู„ x ูˆู†ุงู‚ุต y ุนู„ู‰ 2 ุฃู‚ู„ ู…ู† x ุฃู‚ู„ ู…ู† y ุนู„ู‰ 2
1212
+
1213
+ 304
1214
+ 00:37:01,140 --> 00:37:06,600
1215
+ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุบูŠุฑ
1216
+
1217
+ 305
1218
+ 00:37:06,600 --> 00:37:11,260
1219
+ ุงู„ู…ุชุฌุงู†ุณุฉ ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุณู…ู†ู‡ุง ุงู„ variation of
1220
+
1221
+ 306
1222
+ 00:37:11,260 --> 00:37:14,940
1223
+ parameters ูŠุจู‚ู‰ ุฃูˆู„ ุทุฑูŠู‚ุฉ ุทุฑูŠู‚ุฉ ุงู„ undetermined
1224
+
1225
+ 307
1226
+ 00:37:14,940 --> 00:37:18,380
1227
+ coefficients ูˆุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ุชูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ ุงู„
1228
+
1229
+ 308
1230
+ 00:37:18,380 --> 00:37:23,200
1231
+ variation of parameters ุชุบูŠูŠุฑ ุงู„ูˆุณูŠุทุงุช ุชุชู„ุฎุต ู‡ุฐู‡
1232
+
1233
+ 309
1234
+ 00:37:23,200 --> 00:37:26,740
1235
+ ุงู„ุทุฑูŠู‚ุฉ ููŠู…ุง ูŠุฃุชูŠุทุจุนุง ุงู„ู€ Undetermined
1236
+
1237
+ 310
1238
+ 00:37:26,740 --> 00:37:30,880
1239
+ coefficients ู‚ู„ู†ุง ู…ุดุงู† ู†ุดุชุบู„ ุจู‡ุง ุจุฏู‘ูŠ ุดุฑุทูŠู† ุงู†
1240
+
1241
+ 311
1242
+ 00:37:30,880 --> 00:37:34,860
1243
+ ุงู„ู…ุนุงู…ู„ุฉ ุชุซูˆุงุจุช ูˆ ุงู„ F of X ุชุจู‚ู‰ ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ุญุณุจ
1244
+
1245
+ 312
1246
+ 00:37:34,860 --> 00:37:37,660
1247
+ ุงู„ุฌุฏูˆู„ ุงู„ู„ูŠ ุงุนุทุงู†ุงูƒูˆุง ูŠุนู†ู‰ุŒ ู…ุธุจูˆุทุŸ ู‡ู†ุง ุงู„
1248
+
1249
+ 313
1250
+ 00:37:37,660 --> 00:37:41,460
1251
+ variation ุจูŠู‚ูˆู„ูŠ ู„ุฃ ุงู„ู…ุนุงู…ู„ุฉ ุชุซูˆุงุจุช ูˆ ุงู„ู„ู‡ ู…ุชุบูŠุฑุฉ
1252
+
1253
+ 314
1254
+ 00:37:41,460 --> 00:37:45,660
1255
+ ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ุงู„ F of X ุงู„ู„ูŠ ููŠ ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ู‡ุฐู‡
1256
+
1257
+ 315
1258
+ 00:37:45,660 --> 00:37:49,180
1259
+ ุงู„ F of X ูƒุงู†ุช ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ูˆ ุงู„ู„ู‡ ุบูŠุฑ ุนู„ูŠู‡ุง ุดูƒู„
1260
+
1261
+ 316
1262
+ 00:37:49,180 --> 00:37:53,590
1263
+ ู…ุนูŠู† ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉูŠุนู†ูŠ ุฃูŠุด ู…ุง ูŠูƒูˆู† ุดูƒู„ ุงู„ F ูŠูƒูˆู† ูˆ
1264
+
1265
+ 317
1266
+ 00:37:53,590 --> 00:37:56,590
1267
+ ุฃูŠุด ู…ุง ูŠูƒูˆู† ุงู„ู…ุนุงู…ู„ุฉ ุซูˆุฉ ุจุทูˆู„ุฉ ู…ุชุบูŠุฑุงุช ู…ุงุนู†ุฏูŠุด
1268
+
1269
+ 318
1270
+ 00:37:56,590 --> 00:38:00,970
1271
+ ู…ุดูƒู„ุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุดูƒู„ ุงู„ุนุงู…ู„ ุงู„ู…ุนุงุฏู„ ุฃุณุทุงุฑ ุญูŠุซ ู‡ุฏูˆู„
1272
+
1273
+ 319
1274
+ 00:38:00,970 --> 00:38:05,350
1275
+ ุงู„ุฏูˆู„ ู†ูŠุฉ not ูƒู†ุตุฉ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ูŠูƒูˆู†ูˆุง ูƒู†ุตุฉ ูŠุนู†ูŠ
1276
+
1277
+ 320
1278
+ 00:38:05,350 --> 00:38:08,470
1279
+ ู…ู…ูƒู† ูŠูƒูˆู†ูˆุง ูƒู†ุตุฉ ูˆ ู…ู…ูƒู† ูŠูƒูˆู†ูˆุง ู…ุชุบูŠุฑุงุช ู…ุงุนู†ุฏูŠุด
1280
+
1281
+ 321
1282
+ 00:38:08,470 --> 00:38:12,070
1283
+ ู…ุดูƒู„ุฉ ููŠ ู‡ุฐู‡ ุงู„ุนุงู„ู… and
1284
+
1285
+ 322
1286
+ 00:38:13,430 --> 00:38:18,250
1287
+ and no restrictions
1288
+
1289
+ 323
1290
+ 00:38:18,250 --> 00:38:23,170
1291
+ ู…ุงุนู†ุฏูŠุด ู‚ูŠูˆุฏ ุนู„ู‰ ุดูƒู„ ุงู„ F of X ููŠ ุงู„ Undetermined
1292
+
1293
+ 324
1294
+ 00:38:23,170 --> 00:38:25,650
1295
+ ู‚ู„ุช ูŠุงุจูˆู„ูˆู†ูˆู…ูŠู„ ูŠุงุจูˆู„ูˆู†ูˆู…ูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด
1296
+
1297
+ 325
1298
+ 00:38:25,650 --> 00:38:28,830
1299
+ ูŠุงุจูˆู„ูˆู†ูˆู…ูŠู„ ููŠ ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
1300
+
1301
+ 326
1302
+ 00:38:28,830 --> 00:38:33,850
1303
+ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
1304
+
1305
+ 327
1306
+ 00:38:33,850 --> 00:38:35,710
1307
+ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
1308
+
1309
+ 328
1310
+ 00:38:35,710 --> 00:38:36,610
1311
+ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
1312
+
1313
+ 329
1314
+ 00:38:36,610 --> 00:38:37,770
1315
+ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
1316
+
1317
+ 330
1318
+ 00:38:37,770 --> 00:38:38,170
1319
+ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
1320
+
1321
+ 331
1322
+ 00:38:38,170 --> 00:38:40,250
1323
+ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ
1324
+
1325
+ 332
1326
+ 00:38:40,250 --> 00:38:45,310
1327
+ ุงู„ุงูƒุณุจูˆู†ูŠู†ุด ููŠ ุงู„ุงูƒุณู‡ุฐุง ุงู„ุดุบู„ ุงู„ูˆุญูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญู„
1328
+
1329
+ 333
1330
+ 00:38:45,310 --> 00:38:47,610
1331
+ ุงู„ู€Complementary Solution ุจุฏูŠ ุฃุฏูˆุฑ ุนู„ู‰ ุงู„ู€
1332
+
1333
+ 334
1334
+ 00:38:47,610 --> 00:38:51,270
1335
+ Particular Solution ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ู…ูŠู†ุŸ ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ
1336
+
1337
+ 335
1338
+ 00:38:51,270 --> 00:38:55,570
1339
+ Star ูุจุฌูŠ ุจู‚ูˆู„ ุจุฏูŠ ุฃูุชุฑุถ ุงู„ุญู„ ุจุทุฑูŠู‚ุฉ ุงู„ version of
1340
+
1341
+ 336
1342
+ 00:38:55,570 --> 00:38:59,870
1343
+ parameters ู‡ูˆ ู†ูุณ ุงู„ุญู„ ู‡ุฐุง ุจุณ ุจุฏูŠ ุฃุดูŠู„ู‡ ุซูˆุงุจุช ูˆ
1344
+
1345
+ 337
1346
+ 00:38:59,870 --> 00:39:04,230
1347
+ ุฃุถุน ุจุฏู„ู‡ู… ุฏูˆุงู„ ููŠ X ูŠุจู‚ู‰ Star ุดูƒู„ ุงู„ Particular
1348
+
1349
+ 338
1350
+ 00:39:04,230 --> 00:39:09,490
1351
+ Solution ู‡ูˆ C1 of X Y1 ุฒุงุฆุฏ C2 of X Y2 ุฒุงุฆุฏ ุฒุงุฆุฏ
1352
+
1353
+ 339
1354
+ 00:39:09,490 --> 00:39:14,560
1355
+ CN ูˆA of X YNุทูŠุจ ู…ูŠู† ู‡ูŠ ุงู„ู€C ู‡ุงุช ูƒูŠู ุจุฏู‰ ุฃุญุณุจู‡ุง
1356
+
1357
+ 340
1358
+ 00:39:14,560 --> 00:39:19,980
1359
+ ู‡ุฐู‡ุŸ ุจุนุฏ ุดูˆูŠุฉ ุญุณุงุจุงุช ู„ุฌูŠู†ุง ููŠ ู‚ุงุนุฏุฉ ุจูˆุงุณุทุชู‡ุง ุจุฌูŠุจ
1360
+
1361
+ 341
1362
+ 00:39:19,980 --> 00:39:25,320
1363
+ ูƒู„ ุฏุงู„ุฉ ู…ู† ู‡ุฐู‡ ุงู„ุฏูˆู„ุฉ ู…ูŠู† ู‡ูŠุŸ ู‚ุงุนุฏุฉ CM of XM ุทุจุนุง
1364
+
1365
+ 342
1366
+ 00:39:25,320 --> 00:39:29,500
1367
+ ุจูˆุงุญุฏ ูˆุงุซู†ูŠู† ู„ุบุงูŠุฉ ุงู„ N ูŠุนู†ูŠ ุจC ูˆุงุญุฏ ูˆC ุงุชู†ูŠู† ูˆC
1368
+
1369
+ 343
1370
+ 00:39:29,500 --> 00:39:34,890
1371
+ ุชู„ุงุชุฉ ูƒุฏู‡ ุงู„ุงุฎุฑูŠู†ูŠุณุงูˆูŠ ุงู„ู€ Ronschen M F1 of X ุนู„ู‰
1372
+
1373
+ 344
1374
+ 00:39:34,890 --> 00:39:38,530
1375
+ Ronschen of X DX ู†ุฌูŠ ุนู„ู‰ ุงู„ู€ Ronschen of X ุงู„ู€
1376
+
1377
+ 345
1378
+ 00:39:38,530 --> 00:39:42,330
1379
+ Ronschen ู‡ุฐุง ุงู„ุชุงุจุน ุงู„ุญู„ูˆู„ ุงู„ู„ูŠ ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰
1380
+
1381
+ 346
1382
+ 00:39:42,330 --> 00:39:46,190
1383
+ Y1 ูˆ Y2 ูˆ YN ุจุฌูŠุจ ุงู„ู„ูŠ ู‡ู… ุงู„ู€ Ronschen ุจูŠูƒูˆู† ู‡ุฐุง
1384
+
1385
+ 347
1386
+ 00:39:46,190 --> 00:39:50,140
1387
+ ู‡ูˆ ุงู„ู€ Ronschen ุชุจุน ุญุตูˆู ุนู„ู‰ ุดุฌุฑุฉุจุฏูŠ ุฑูˆู†ุณูƒูŠู† 1 ูˆ
1388
+
1389
+ 348
1390
+ 00:39:50,140 --> 00:39:54,760
1391
+ ุฑูˆู†ุณูƒูŠู† 2 ูˆ ุฑูˆู†ุณูƒูŠู† 3 ู„ุบุงูŠุฉ ุฑูˆู†ุณูƒูŠู† N ู…ูŠู† ู‡ูˆ ู‡ุฐุงุŸ
1392
+
1393
+ 349
1394
+ 00:39:54,760 --> 00:39:58,720
1395
+ ู‡ุฐุง ุงู„ ุฑูˆู†ุณูƒูŠู† 1 ุจุงุฌูŠ ุนู„ู‰ ุงู„ ุฑูˆู†ุณูƒูŠู† ู† ุฏูŠ ุจุดูŠู„
1396
+
1397
+ 350
1398
+ 00:39:58,720 --> 00:40:02,880
1399
+ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูˆ ุจุญุท ุจุฏุงู„ู‡ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ุจุญุณุจ ู‚ุฏุงุด
1400
+
1401
+ 351
1402
+ 00:40:02,880 --> 00:40:07,890
1403
+ ู‚ูŠู…ุฉ ุงู„ ุฑูˆู†ุณูƒูŠู† ุทุจ ุจุฏูŠ ุฑูˆู†ุณูƒูŠู† 2ุจุณูŠุจ ุงู„ุฑูˆู†ุณูƒูŠู† ู‡ุฐุง
1404
+
1405
+ 352
1406
+ 00:40:07,890 --> 00:40:13,670
1407
+ ุฒูŠ ู…ุง ู‡ูˆ ูˆ ุจุฌูŠ ุนู„ู‰ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุจุดูŠู„ู‡ ูƒู„ู‡ ูˆ ุจุญุท
1408
+
1409
+ 353
1410
+ 00:40:13,670 --> 00:40:16,810
1411
+ ุจุฏุงู„ู‡ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ู‡ูƒุฐุง ุงู„ุฑูˆู†ุณูƒูŠู† ุซู„ุงุซุฉ ุฑูˆู†ุณูƒูŠู†
1412
+
1413
+ 354
1414
+ 00:40:16,810 --> 00:40:21,210
1415
+ ู„ุบุงูŠุฉ ุจูƒู…ู„ู‡ู… ูƒู„ู‡ู… ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุฌุจุชู‡ุง ุทุจ ู…ูŠู†
1416
+
1417
+ 355
1418
+ 00:40:21,210 --> 00:40:25,850
1419
+ ู‡ูŠ ุงู„ F1 ู‡ุฐู‡ุŸ ุงู‡ ุงู„ F1 ู‡ุฐู‡ ู„ู…ุง ุชูŠุฌูŠ ุงู„ู…ุนุงุฏู„ุฉ ุจุฏ
1420
+
1421
+ 356
1422
+ 00:40:25,850 --> 00:40:30,310
1423
+ ุงู„ู…ุนุงุฏู„ุฉ ู‡ู†ุง ุงู„ู…ุนุงู…ู„ ุชุจุนูŠ ูŠูƒูˆู† ุฌุฏูŠุดู‡ุฐุง ูŠุนู†ูŠ ุฃู†ู†ูŠ
1424
+
1425
+ 357
1426
+ 00:40:30,310 --> 00:40:36,110
1427
+ ุฃุฌุณู… ุงู„ุทุฑููŠู† ุนู„ู‰ ู…ูŠู† ุนู„ู‰ a node of x ูŠุจู‚ู‰ ุงู„ F1 ู‡ูŠ
1428
+
1429
+ 358
1430
+ 00:40:36,110 --> 00:40:42,270
1431
+ ุนุจุงุฑุฉ ุนู† Fx ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ ุงู„ a node of x ูŠุจู‚ู‰ ุงู„ F1
1432
+
1433
+ 359
1434
+ 00:40:42,270 --> 00:40:47,270
1435
+ of x ู‡ูŠ ุงู„ F of x ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ a node of
1436
+
1437
+ 360
1438
+ 00:40:47,270 --> 00:40:52,490
1439
+ x ุฃุตู„ุง ูˆุงุถุญ ูƒู„ุงู… ู‡ุฐุง ุทูŠุจ ุงู„ุขู† ููŠ ู…ู„ุงุญุธุฉ ุจุฏู†ุง ู†ุดูŠุฑ
1440
+
1441
+ 361
1442
+ 00:40:52,490 --> 00:40:57,290
1443
+ ุฅู„ูŠู‡ุง ุงู„ู…ู„ุงุญุธุฉ ูƒุงู†ุช ุชุงู„ูŠุฉู‚ู„ุชู‡ุง ุจุณ ุจุฏู†ุง ู†ุนูŠุฏู‡ุง ู‡ูŠุง
1444
+
1445
+ 362
1446
+ 00:40:57,290 --> 00:41:00,590
1447
+ ุนู†ุฏู…ุง ู†ุณุชุฎุฏู… ุงู„ variation of parameters ู„ุงุฒู… ูŠูƒูˆู†
1448
+
1449
+ 363
1450
+ 00:41:00,590 --> 00:41:05,610
1451
+ ุงู„ู…ุนุงู…ู„ ุชุจุน Y ุงู† ู‡ูˆ ู…ูŠู† ูˆ ุงู†ุณูŠุช ูˆ ุญุทูŠุช ุงู„ F of X
1452
+
1453
+ 364
1454
+ 00:41:05,610 --> 00:41:11,110
1455
+ ู‡ุฐู‡ ุจุฏู„ ู‡ุฐู‡ ุจุตูŠูƒ ูƒู„ุงู…ูƒ ุบู„ุท ุจุตูŠูƒ ุชุญู‚ู‚ุด ูˆ ู…ุงุชู‚ุฏุฑุด
1456
+
1457
+ 365
1458
+ 00:41:11,110 --> 00:41:16,250
1459
+ ุชุชูƒุงู…ู„ูŠ ุชู…ุงู… ูŠุจู‚ู‰ ุชุชุฃูƒุฏูŠ ุนู†ุฏู…ุง ุจุฏูƒ ุชุณุชุฎุฏู… ุงู„ุชูƒุงู…ู„
1460
+
1461
+ 366
1462
+ 00:41:16,250 --> 00:41:20,390
1463
+ ุจุชุฎู„ูŠ ุงู„ู…ุนุงู…ู„ ุชุจุน Y to the derivative ุงู† ู‡ูˆ ูˆุงุญุฏ
1464
+
1465
+ 367
1466
+ 00:41:20,390 --> 00:41:24,610
1467
+ ุตุญูŠุญ ุชู…ุงู… ู‡ูŠ ู‚ุทุจุฉ ุงู„ุฃูˆู„ู‰ ุจุนุฏูŠู† ููŠู†ุง ู…ู„ุงุญุธุฉ ุชุงู†ูŠุฉ
1468
+
1469
+ 368
1470
+ 00:41:25,260 --> 00:41:28,720
1471
+ ุจูŠู‚ูˆู„ ุงู„ equation star ู‡ุฐู‡ ู„ูˆ ูƒุงู†ุช ู…ู† ุงู„ุฑุชุจุฉ
1472
+
1473
+ 369
1474
+ 00:41:28,720 --> 00:41:32,680
1475
+ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุฏู„ ุงู„ุฑูˆู†ุณูƒูŠู† 1 ูˆ ู†ุต ูƒู†ุชูˆุง ู…ุญุณุจุฉ ูˆ
1476
+
1477
+ 370
1478
+ 00:41:32,680 --> 00:41:38,320
1479
+ ุฎุงู„ุตุฉ ูˆ ุฌุงู‡ุฒุฉ ุงูŠุดูŠ ุจูŠู‚ูˆู„ ุงู„ C 1 of X ุจุชุญุท ู„ู„ุญู„
1480
+
1481
+ 371
1482
+ 00:41:38,320 --> 00:41:42,940
1483
+ ุงู„ุชุงู†ูŠ ุจุฅุดุงุฑุฉ ุณุงู„ุจ ููŠ ุงู„ F 1 of X ุนู„ู‰ ุงู„ุฑูˆู†ุณูƒูŠู† of
1484
+
1485
+ 372
1486
+ 00:41:42,940 --> 00:41:48,260
1487
+ X ุทูŠุจ ูˆ ุงู„ C2ุŸ ูˆ ุงู„ C2 ู‡ูŠ ุงู„ุญู„ ุงู„ุฃูˆู„ ููŠ ุงู„ 1 of X
1488
+
1489
+ 373
1490
+ 00:41:48,260 --> 00:41:51,850
1491
+ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ W of XูŠุจู‚ู‰ ูƒู…ุงู† ู„ุงุจุฏ ุชุญุณุจ
1492
+
1493
+ 374
1494
+ 00:41:51,850 --> 00:41:54,950
1495
+ ุงู„ู‡ูŠุฑูˆู†ูŠุณูƒูˆ ู„ุฃ ู‡ุฐุง ุฅู† ูƒุงู†ุช ู…ู† ุงู„ุฑุชุจุฉ ุงู„ุซุงู†ูŠุฉุŒ ู…ู†
1496
+
1497
+ 375
1498
+ 00:41:54,950 --> 00:41:59,930
1499
+ ุงู„ุฑุชุจุฉ ุงู„ุชุงู„ุชุฉุŒ ุจุฏูŠ ุฃุฑุฌุน ุนุงู„ู…ูŠุง ู„ู„ูƒู„ุงู… ุงู„ุฃูˆู„ุŒ ูˆุงุถุญ
1500
+
1501
+ 376
1502
+ 00:41:59,930 --> 00:42:03,590
1503
+ ูƒู„ุงู… ู‡ูŠูƒุŸ ุงู„ุฃู…ู† ุงู„ู„ูŠ ุญุทูˆู‡ ุนู„ู‰ ุฃุฑุถ ูˆุงู‚ุนุฉ ุฌุงู„ูŠ ูŠุญู„
1504
+
1505
+ 377
1506
+ 00:42:03,590 --> 00:42:08,430
1507
+ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ุจู‚ูˆู„ู‡ ุชู…ุงู… ูŠุจู‚ู‰ ุงู†ุง ุจุฏูŠ ุงุจุฏุง ุจุญู„ ุงู„
1508
+
1509
+ 378
1510
+ 00:42:08,430 --> 00:42:12,190
1511
+ homogenous differential equation ูƒู…ุง ูƒู†ุง ู…ู† ู‚ุจู„
1512
+
1513
+ 379
1514
+ 00:42:12,190 --> 00:42:19,470
1515
+ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง let Y ุชุณุงูˆูŠ E ุฃูุณ RX ุจูŠู‡
1516
+
1517
+ 380
1518
+ 00:42:19,470 --> 00:42:21,090
1519
+ solution
1520
+
1521
+ 381
1522
+ 00:42:27,760 --> 00:42:36,620
1523
+ ูŠุจู‚ู‰ ู‡ู†ุง the characteristic equation is R ุชูƒุนูŠุจ
1524
+
1525
+ 382
1526
+ 00:42:36,620 --> 00:42:42,820
1527
+ ุฒุงุฆุฏ R ูŠุณุงูˆูŠ 0ูŠุจู‚ู‰ R ููŠ R ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ุจุฏู‡
1528
+
1529
+ 383
1530
+ 00:42:42,820 --> 00:42:49,640
1531
+ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ R ุชุณุงูˆูŠ Zero ูˆR ุชุณุงูˆูŠ ุฒุงุฆุฏ ุงูˆ ู†ุงู‚ุต
1532
+
1533
+ 384
1534
+ 00:42:49,640 --> 00:42:54,680
1535
+ I ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ูˆู„ู‡ ุงู„ complementary solution
1536
+
1537
+ 385
1538
+ 00:42:54,680 --> 00:43:06,080
1539
+ YC ุจุฏู‡ ูŠุณุงูˆูŠ C ูˆุงุญุฏ ููŠ ุงู„ E ุงูˆ Zeroุฒุงุฆุฏ C2 Cos X
1540
+
1541
+ 386
1542
+ 00:43:06,080 --> 00:43:12,420
1543
+ ุฒุงุฆุฏ C3 Sin X ู„ุฃู†ู‡ ุฒุงุฏุฉ ูˆู†ู‚ุต I ุงู„ A ุจุงู„ุฒูŠุฑูˆ ูˆุงู„B
1544
+
1545
+ 387
1546
+ 00:43:12,420 --> 00:43:18,860
1547
+ ุจุงู„ู…ูŠู† ุจูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุดูƒู„ ุงู„ู…ุนุงุฏู„ุฉ
1548
+
1549
+ 388
1550
+ 00:43:18,860 --> 00:43:24,210
1551
+ ุงู„ุฃุตู„ูŠุฉ ุจู†ุงุชู‡ุง ุฏูŠ ุณู…ูŠู‡ุง ุงู„ starุงู„ุงู† ุงู†ุง ุจุฏูŠ ุงูƒุชุจ
1552
+
1553
+ 389
1554
+ 00:43:24,210 --> 00:43:30,330
1555
+ ุดูƒู„ ุงู„ particular solution ู„ู„ู…ุนุงุฏู„ุฉ star ูˆ ู„ุงุญุธูŠ
1556
+
1557
+ 390
1558
+ 00:43:30,330 --> 00:43:34,890
1559
+ ุงู† ุงู„ู…ุนุงู…ู„ ุชุจุน ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ู‡ูˆ ูˆุงุญุฏ ุตุญูŠุญ ุงู„ู…ุฑุฉ
1560
+
1561
+ 391
1562
+ 00:43:34,890 --> 00:43:39,210
1563
+ ู‡ุฐู‡ ูŠุนู†ูŠ ู„ุง ููŠ ู„ู ูˆู„ุง ุฏูˆุฑ ุนู† ุงู„ุดุบู„ ู…ุจุงุดุฑ ููŠ ู‡ุฐุง
1564
+
1565
+ 392
1566
+ 00:43:39,210 --> 00:43:47,730
1567
+ ุงู„ุณุคุงู„ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ the particular solution
1568
+
1569
+ 393
1570
+ 00:43:47,730 --> 00:43:50,430
1571
+ of
1572
+
1573
+ 394
1574
+ 00:44:02,410 --> 00:44:12,710
1575
+ ูŠุจู‚ู‰ C1 of X ุฒุงุฆุฏ C2 of X ููŠ Cos X ุฒุงุฆุฏ C3 of X ููŠ
1576
+
1577
+ 395
1578
+ 00:44:12,710 --> 00:44:20,090
1579
+ Sin Xุจุนุฏ ู‡ูŠูƒ ุจุชุฑูˆุญ ุงุฌูŠุจ ุงู„ุฑูˆู†ุณูƒูŠู† ูŠุจู‚ู‰ ู‡ุฐุง
1580
+
1581
+ 396
1582
+ 00:44:20,090 --> 00:44:25,810
1583
+ ุงู„ุฑูˆู†ุณูƒูŠู† as a function of x ู„ู…ูŠู† ุงู„ุฑูˆู†ุณูƒูŠู† ู„ู„ุญู„ูˆู„
1584
+
1585
+ 397
1586
+ 00:44:25,810 --> 00:44:31,670
1587
+ ุงู„ุชู„ุงุชุฉ ุงู„ุญู„ ุงู„ุฃูˆู„ ู‚ุฏุงุด ู‡ู†ุง ุจู†ุงุช ูˆุงุญุฏ ูˆุงู„ุญู„ ุงู„ุชุงู†ูŠ
1588
+
1589
+ 398
1590
+ 00:44:31,670 --> 00:44:36,690
1591
+ cosine ุงู„ X ูˆุงู„ุญู„ ุงู„ุชุงู„ุช sin X ูŠุจู‚ู‰ ู‡ูŠ ุซู„ุงุซุฉ ุญู„ูˆู„
1592
+
1593
+ 399
1594
+ 00:44:36,690 --> 00:44:43,960
1595
+ ูŠุจู‚ู‰ ู‡ูŠ ูˆุงุญุฏ ูˆุงู„ุชุงู†ูŠ cosine ุงู„ X ูˆุงู„ุชุงู„ุช sin XูŠุจู‚ู‰
1596
+
1597
+ 400
1598
+ 00:44:43,960 --> 00:44:50,280
1599
+ ุงู„ู…ุดุชู‚ุฉ Zero ุงู„ู…ุดุชู‚ุฉ ุณุงู„ุจ Sine X ุงู„ู…ุดุชู‚ุฉ Cos X
1600
+
1601
+ 401
1602
+ 00:44:50,280 --> 00:44:58,140
1603
+ ูƒู…ุงู† ู…ุฑุฉ Zero ู†ุงู‚ุต Cos X ู†ุงู‚ุต Sine X ุจุฏูŠ ุงููƒู‡
1604
+
1605
+ 402
1606
+ 00:44:58,140 --> 00:45:05,170
1607
+ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ูŠุจู‚ู‰ ูˆุงุญุฏ ููŠู‡ ู‚ุดุท ุจุตูู‡
1608
+
1609
+ 403
1610
+ 00:45:05,170 --> 00:45:11,630
1611
+ ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ sin ุชุฑุจูŠุน ุงู„ X ุฒุงุฆุฏ cosine ุชุฑุจูŠุน ุงู„ X
1612
+
1613
+ 404
1614
+ 00:45:11,630 --> 00:45:16,650
1615
+ ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุดุฑ ุงู„ูˆุงุญุฏ ุจุฏูŠ ุฃุฌูŠุจ ุงู„ุฑูˆู†ุณ ูƒูŠู† ูˆุงู† as a
1616
+
1617
+ 405
1618
+ 00:45:16,650 --> 00:45:20,810
1619
+ function of X ุจุฏูŠ ุฃุดูŠู„ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ุฃุณุชุจุฏู„ู‡
1620
+
1621
+ 406
1622
+ 00:45:20,810 --> 00:45:31,390
1623
+ ุจุงู„ุนู…ูˆุฏ 001ูˆุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุฒูŠ ู…ุง ู‡ู… cos x sin x-sin
1624
+
1625
+ 407
1626
+ 00:45:31,390 --> 00:45:41,050
1627
+ x cos x-cos x-sin x ูˆูŠุณุงูˆูŠุจูŠุฏููƒู‡ ุจุฑุถู‡ ุจุงุณุชุฎุฏุงู…
1628
+
1629
+ 408
1630
+ 00:45:41,050 --> 00:45:46,830
1631
+ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ zero ู†ุงู‚ุต zero ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ุฃุดุท
1632
+
1633
+ 409
1634
+ 00:45:46,830 --> 00:45:51,250
1635
+ ุจุตูู‡ ุนู…ูˆุฏู‡ cosine ุชุฑุจูŠู‡ ุฒุงุฆุฏ sine ุชุฑุจูŠู‡ cosine
1636
+
1637
+ 410
1638
+ 00:45:51,250 --> 00:45:57,430
1639
+ ุชุฑุจูŠู‡ ุงู„ X ุฒุงุฆุฏ sine ุชุฑุจูŠู‡ ุงู„ X ูƒู„ู‡ ุจู‚ุฏุงุด ุจูˆุงุญุฏ
1640
+
1641
+ 411
1642
+ 00:45:57,910 --> 00:46:02,810
1643
+ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ุงุฌูŠุจ ุงู„ุฑูˆู†ุณูƒู† ุงุชู†ูŠู† as a
1644
+
1645
+ 412
1646
+ 00:46:02,810 --> 00:46:05,910
1647
+ function of x ูŠุจู‚ู‰ ุงู„ุนู…ูˆุฏูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ ุงุฑุฌุน
1648
+
1649
+ 413
1650
+ 00:46:05,910 --> 00:46:09,970
1651
+ ูƒู…ุง ูƒุงู† ูŠุง ุจู†ุงุช ุงูŠ ูˆุงุญุฏ zero zero ุงู„ุนู…ูˆุฏูŠ ุงู„ุชุงู†ูŠ
1652
+
1653
+ 414
1654
+ 00:46:09,970 --> 00:46:13,550
1655
+ ู‡ูˆ ุงู„ู„ูŠ ุจุฏูŠ ุงุณุชุจุฏู„ู‡ ุจ zero zero ูˆุงุญุฏ ูˆุงู„ุนู…ูˆุฏูŠ
1656
+
1657
+ 415
1658
+ 00:46:13,550 --> 00:46:20,110
1659
+ ุงู„ุชุงู„ุช ูƒู…ุง ูƒุงู† sine ุงู„ X cosine ุงู„ X ู†ุงู‚ุต sine ุงู„
1660
+
1661
+ 416
1662
+ 00:46:20,110 --> 00:46:25,970
1663
+ XูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุจุฏุง ููƒู‡ ุจุงุณุชุฎุฏุงู…
1664
+
1665
+ 417
1666
+ 00:46:25,970 --> 00:46:31,590
1667
+ ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ูˆุดุท ุจุตูู‡ ูˆุนู…ูˆุฏู‡ zero ู†ุงู‚ุต
1668
+
1669
+ 418
1670
+ 00:46:31,590 --> 00:46:36,470
1671
+ cosine ุงู„ X ูŠุจู‚ู‰ ู†ุงู‚ุต cosine ุงู„ X ุฎู„ูŠู†ุง ู†ุฌูŠุจ
1672
+
1673
+ 419
1674
+ 00:46:36,470 --> 00:46:43,350
1675
+ ุงู„ุฑูˆู†ุณูƒู†ูŠ 3 as a function of X ูŠุณุงูˆูŠ 1 0 0 ุงู„ุนู…ูˆุฏ
1676
+
1677
+ 420
1678
+ 00:46:43,350 --> 00:46:50,590
1679
+ ุงู„ุชุงู†ูŠ ูƒู…ุง ู‡ูˆ cosine ุงู„ X ู†ุงู‚ุต sine ุงู„ Xูˆู‡ู†ุง ู†ุงู‚ุต
1680
+
1681
+ 421
1682
+ 00:46:50,590 --> 00:46:58,270
1683
+ cosine ุงู„ X ูˆู‡ู†ุง 001 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุงู‚ู†ุนู†ุงู‡ ุจุฏุง ุงููƒู‡
1684
+
1685
+ 422
1686
+ 00:46:58,270 --> 00:47:02,590
1687
+ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจุฌูˆุดุท ุจุตู ูˆ ุนู…ูˆุฏู‡ ู†ุงู‚ุต
1688
+
1689
+ 423
1690
+ 00:47:02,590 --> 00:47:11,780
1691
+ sin Xุฎู„ู‘ุตู†ุง ู…ู†ู‡ุŒ ุณุฃุญุตู„ ุนู„ู‰ ุงู„ู€ C1 as a function of
1692
+
1693
+ 424
1694
+ 00:47:11,780 --> 00:47:19,880
1695
+ X ุงู„ุชูƒุงู…ู„ ู…ู† ุฃูŠู†ุŸ ุงู„ุชูƒุงู…ู„ ู„ู„ู€ Ronskin 1 of X ููŠ
1696
+
1697
+ 425
1698
+ 00:47:19,880 --> 00:47:24,260
1699
+ ุงู„ู€ F of X ู„ุง ูŠูˆุฌุฏ ููŠู‡ุง ุชุบูŠูŠุฑ ูƒู…ุง ู‡ูŠ ุนู„ู‰ ุงู„ู€
1700
+
1701
+ 426
1702
+ 00:47:24,260 --> 00:47:30,180
1703
+ Ronskin of X ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX ูŠุณูˆู‰ ุชูƒุงู…ู„ Ronskin
1704
+
1705
+ 427
1706
+ 00:47:30,180 --> 00:47:35,670
1707
+ 1 ุทู„ุนู†ุงู‡ ุจู‚ุฏุฑุด ุจูˆุงุญุฏูŠุจู‚ู‰ ู‡ุฐุง ูˆุงุญุฏ ููŠู‡ ุงู„ F of X
1708
+
1709
+ 428
1710
+ 00:47:35,670 --> 00:47:41,410
1711
+ ุงู„ู„ูŠ ูŠุจู‚ู‰ ุฏู‡ุดุฉ ุจู†ุงุช ุณูƒ ุงู„ X ุงุฒุงูŠู† ุนู„ู‰ ุณูƒ ุงู„ X ุนู„ู‰
1712
+
1713
+ 429
1714
+ 00:47:41,410 --> 00:47:47,270
1715
+ ุงู„ุฑูˆู†ุณูƒูŠู† of X ุงู„ุฃูˆู„ ุจุฑุถู‡ ูˆุงุญุฏ ูƒู„ู‡ DX ูŠุจู‚ู‰ ุชูƒุงู…ู„
1716
+
1717
+ 430
1718
+ 00:47:47,270 --> 00:47:53,190
1719
+ ุงู„ุณูƒ ู„ูŠู† absolute value ู„ุณูƒ ุงู„ X ุฒุงุฆุฏ ุชุงู†ูŠ ุงู„ X
1720
+
1721
+ 431
1722
+ 00:47:53,190 --> 00:47:59,710
1723
+ ุจุฏู†ุง ู†ุฌูŠุจ C2 as a function of XูŠุจู‚ู‰ ุชูƒุงู…ู„ ุฑู†ุณูƒูŠู† 2
1724
+
1725
+ 432
1726
+ 00:47:59,710 --> 00:48:06,470
1727
+ of x ูู‰ f of x ุนู„ู‰ ุฑู†ุณูƒูŠู† of x dx ูŠุณูˆู‰ ุชูƒุงู…ู„
1728
+
1729
+ 433
1730
+ 00:48:06,470 --> 00:48:11,790
1731
+ ุฑู†ุณูƒูŠู† 2 ู‡ูˆ ุจู†ุงู‚ุต cos x
1732
+
1733
+ 434
1734
+ 00:48:22,510 --> 00:48:28,490
1735
+ ูŠุจู‚ู‰ ุชูƒุงู…ู„ ู„ู†ุงู‚ุต DX ูŠุจู‚ู‰ ุจู†ุงู‚ุต X ูˆ ู„ุง ุชูƒุชุจูŠ
1736
+
1737
+ 435
1738
+ 00:48:28,490 --> 00:48:33,650
1739
+ Constants ู„ุฃู† ูƒู„ ุตู„ุงุฉ ูˆ ูƒุชุงุจ ูŠุนู…ู„ูˆุง ู„ูŠู‡ ุชูƒุฑุงุฑ ูŠุจู‚ู‰
1740
+
1741
+ 436
1742
+ 00:48:33,650 --> 00:48:38,510
1743
+ ุณูŠุจูŠู† ู…ู† ุงู„ุชูƒุฑุงุฑ ูŠุจู‚ู‰ ุจูƒุชุจู‡ุง ูู‚ุท ุฒูŠ ู‡ูŠูƒ ุจุฏุฃ ูŠุงุฎุฏ
1744
+
1745
+ 437
1746
+ 00:48:38,510 --> 00:48:39,590
1747
+ C3
1748
+
1749
+ 438
1750
+ 00:48:46,760 --> 00:48:54,240
1751
+ ูŠุจู‚ู‰ ุจูŠุฏูŠ C3A of X ูŠุจู‚ู‰ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ุฑูˆู†ุณูƒูŠู† 3 of X
1752
+
1753
+ 439
1754
+ 00:48:54,240 --> 00:49:00,900
1755
+ ููŠ F of X ุนู„ู‰ ุฑูˆู†ุณูƒูŠู† of X DX Y ูŠุณุงูˆูŠ ุงู„ุฑูˆู†ุณูƒูŠู† 3
1756
+
1757
+ 440
1758
+ 00:49:00,900 --> 00:49:09,010
1759
+ ู„ู‡ ุณุงู„ุจ ุตูŠู† Xูˆุงู„ุฏุงู„ุฉ ุณูƒ ุงู„ X ูˆุงู„ุฑู…ุฒ ูƒุงู† ูˆุงุญุฏ DX
1760
+
1761
+ 441
1762
+ 00:49:09,010 --> 00:49:15,810
1763
+ ูŠุจู‚ู‰ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ุณุงู„ู sin X ุงู„ุณูƒ ู…ู‚ู„ุจ ุงู„ cos X DX
1764
+
1765
+ 442
1766
+ 00:49:15,810 --> 00:49:20,570
1767
+ ุงุธู† ุงู„ุจุณุทุฉ ูุงุถู„ ุงู„ู…ู‚ุงู… ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ู„ูŠู† absolute
1768
+
1769
+ 443
1770
+ 00:49:20,570 --> 00:49:28,570
1771
+ value ู„ cos X ูŠุจู‚ู‰ ุฌุจุช ุงู„ุณูŠู‡ุงุชูŠ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุณุงุฑ YP
1772
+
1773
+ 444
1774
+ 00:49:28,570 --> 00:49:33,720
1775
+ ูŠุณุงูˆูŠ ูˆูŠู† YP ูŠุง ุจู†ุงุชู‡ูŠู‡ุจุฏูŠ ุงุดูŠู„ ุงู„ู€ C1 ุงู„ู€ C1
1776
+
1777
+ 445
1778
+ 00:49:33,720 --> 00:49:38,720
1779
+ ุฌูŠุจู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ู‚ุฏุงุด ุงู„ู„ูŠ ู‡ูŠ ุงู„ N absolute value
1780
+
1781
+ 446
1782
+ 00:49:38,720 --> 00:49:47,480
1783
+ ู„ุณูƒ ุงู„ X ุฒุงุฆุฏ ุชุงู†ูŠ ุงู„ X ุฒุงุฆุฏ C2 ูˆูŠู† C2 ู‡ูŠูˆ ุฒุงุฆุฏ
1784
+
1785
+ 447
1786
+ 00:49:47,480 --> 00:49:52,280
1787
+ ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต X ููŠ ู…ูŠู†ุŸ ููŠ cosine ุงู„ X
1788
+
1789
+ 448
1790
+ 00:50:04,270 --> 00:50:12,930
1791
+ ูŠุจู‚ู‰ y ูŠุณูˆู‰ yc ู‡ูŠ
1792
+
1793
+ 449
1794
+ 00:50:12,930 --> 00:50:23,580
1795
+ ุชุญุช ูŠุจู‚ู‰ c ูˆุงุญุฏุฒุงุฆุฏ C2 Cos X ุฒุงุฆุฏ C3 Sin X ุฒุงุฆุฏ YP
1796
+
1797
+ 450
1798
+ 00:50:23,580 --> 00:50:28,540
1799
+ ู‡ุงูŠ ูˆ ุจุฏู‰ ู†ุฒู„ู‡ ุฒูŠ ู…ุง ู‡ูˆ ุจุณ ู„ูŠู‡ ุฎุงุทุฑ ุงุฑุชุจู‡ ูŠุจู‚ู‰ ู‡ุงูŠ
1800
+
1801
+ 451
1802
+ 00:50:28,540 --> 00:50:36,820
1803
+ Sin X ููŠ Lin absolute value ู„ Cos X ู†ุงู‚ุต X ููŠ Cos
1804
+
1805
+ 452
1806
+ 00:50:36,820 --> 00:50:45,600
1807
+ X ุฒุงุฆุฏ Lin absolute value ู„ุณูƒ Xุฒุงุฆุฏ ุชุงู† ุงู„ X ูˆูƒุงู†
1808
+
1809
+ 453
1810
+ 00:50:45,600 --> 00:50:50,160
1811
+ ุงู„ู„ู‡ ุจุงู„ุณุฑ ุนู„ูŠู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุญู„ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
1812
+
1813
+ 454
1814
+ 00:50:50,160 --> 00:50:54,780
1815
+ ุชู…ุงู… ูˆ ู‡ูƒุฐุง ูŠุนู†ูŠ ุงู„ุดุบู„ ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุทุจุนุง ู„ูˆ ุฌูŠุจู†ุงูƒ
1816
+
1817
+ 455
1818
+ 00:50:54,780 --> 00:50:58,200
1819
+ ุณุคุงู„ ููŠ ุงู„ุงู…ุชุญุงู† ู„ู† ูŠุฒูŠุฏ ุนู† ุงู„ุฑุชุจุฉ ุงู„ุชุงู„ุชุฉ ุงู†
1820
+
1821
+ 456
1822
+ 00:50:58,200 --> 00:51:01,780
1823
+ ุฏุฎู„ู†ุง ููŠ ุงู„ุฑุชุจุฉ ุงู„ุฑุงุจุนุฉุจุฏูƒ ู…ุญุฏุฏ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฑุงุจุนุฉ
1824
+
1825
+ 457
1826
+ 00:51:01,780 --> 00:51:05,760
1827
+ ุจูŠุงุฎุฏ ูˆู‚ุช ูƒุชูŠุฑ ูˆ ุงู†ุช ุชุญู„ ููŠู‡ ูŠุจู‚ู‰ ูู‚ุท ู…ู† ุงู„ุฏุฑุฌุฉ
1828
+
1829
+ 458
1830
+ 00:51:05,760 --> 00:51:11,260
1831
+ ุงู„ุซุงู„ุซุฉ ุงูˆ ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ู„ุงุฒู„ู†ุง ููŠ
1832
+
1833
+ 459
1834
+ 00:51:11,260 --> 00:51:15,600
1835
+ ู†ูุณ ุงู„ section ูˆ ู„ู…ุง ู†ู†ุชู‡ูŠ ุจุนุฏ ููŠ ุนู†ุฏู‰ ุจุนุถ ุงู„ุฃู…ุซู„ุฉ
1836
+
1837
+ 460
1838
+ 00:51:15,600 --> 00:51:20,060
1839
+ ุนู„ู‰ ู†ูุณ ุงู„ู…ูˆุถูˆุน ุจุงู„ุงุถุงูุฉ ุงู„ู‰ ุงุฎุฑ ุทุฑูŠู‚ุฉ ุงู„ู„ู‰ ู‡ูŠ
1840
+
1841
+ 461
1842
+ 00:51:20,060 --> 00:51:24,340
1843
+ ุทุฑูŠู‚ุฉ reduction of order ู„ุงุฎุชุฒุงู„ ุงู„ุฑุชุจุฉ ู„ู„ู…ุญุงุถุฑุฉ
1844
+
1845
+ 462
1846
+ 00:51:24,340 --> 00:51:26,760
1847
+ ุงู„ูŠูˆู… ุจุนุฏ ุงู„ุธู‡ุฑ ุงู† ุดุงุก ุงู„ู„ู‡ ูˆ ุชุนุงู„ู‰
1848
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/3zZhd_x-pt0_raw.json ADDED
The diff for this file is too large to render. See raw diff
 
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/6wYdmeO7zro.srt ADDED
@@ -0,0 +1,1301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:21,160 --> 00:00:26,220
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุนูˆุฏ ุงู„ุขู† ุฅู„ู‰ ู†ู‡ุงูŠุฉ
4
+
5
+ 2
6
+ 00:00:26,220 --> 00:00:29,920
7
+ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจุฏุฃู†ุง ุจู…ูˆุถูˆุน ุงู„
8
+
9
+ 3
10
+ 00:00:29,920 --> 00:00:37,240
11
+ diagonalization ูˆูƒูŠู ู†ุนู…ู„ ุงู„ู€ diagonalize ู„ู„ู…ุตููˆูุฉ
12
+
13
+ 4
14
+ 00:00:37,240 --> 00:00:41,780
15
+ ุจู…ุนู†ู‰ ุฎู„ูŠู‡ุง ู…ุตููˆูุฉ ู‚ุทุฑูŠุฉ ุงุจุชุฏุฃู†ุง ุจุชุนุฑูŠู ุงู„ู€ similar
16
+
17
+ 5
18
+ 00:00:41,780 --> 00:00:47,180
19
+ matrix ูู‚ู„ู†ุง ุฃู† ุงู„ู€ similar matrix ุจุฅุฐ ุฌุฏุฑุช ู„ุฃุฌูŠ
20
+
21
+ 6
22
+ 00:00:47,180 --> 00:00:53,710
23
+ ู…ุตููˆูุฉ ุซุงู†ูŠุฉ K ุจุญูŠุซ ุงู„ู€ K ู‡ุฐู‡ non zero matrix ูŠุนู†ูŠ ุฃูˆ
24
+
25
+ 7
26
+ 00:00:53,710 --> 00:00:57,610
27
+ non singular matrix ุงูŠุด ูŠุนู†ูŠุŸ ูŠุนู†ูŠ ุงู„ู…ุนูƒูˆุณ ุชุจุนู‡ุง
28
+
29
+ 8
30
+ 00:00:57,610 --> 00:01:02,470
31
+ ู…ูˆุฌูˆุฏ ุจุญูŠุซ ุงู„ู„ูŠ ุจูŠุจุฏุฃ ูŠุณูˆูŠ ุงู„ู€ K inverse ููŠ ุงู„ู€ A ููŠ
32
+
33
+ 9
34
+ 00:01:02,470 --> 00:01:06,750
35
+ ุงู„ู€ K ุชู…ุงู…ุŸ ูˆุฃุฎุฏู†ุง ุนู„ู‰ ุฐู„ูƒ ู…ุซุงู„ุง ูˆุงุญุฏุง ุจุนุฏ ู…ุง
36
+
37
+ 10
38
+ 00:01:06,750 --> 00:01:11,440
39
+ ุฃุซุจุชู†ุง ุฃู† ุฅุฐุง ูƒุงู†ุช ุงู„ู€ A similar ู„ู€ B ูุฅู† B similar ู„ู€
40
+
41
+ 11
42
+ 00:01:11,440 --> 00:01:14,940
43
+ A ูˆููŠ ู†ูุณ ุงู„ู„ุบุฉ ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช A is similar to
44
+
45
+ 12
46
+ 00:01:14,940 --> 00:01:18,580
47
+ itself ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆ
48
+
49
+ 13
50
+ 00:01:18,580 --> 00:01:23,160
51
+ ุงู„ุขู† ุจุฏู†ุง ู†ุถูŠู‚ .. ุฃุฎุฏู†ุง ุทุจุนุง ู…ุซุงู„ ูˆุงุญุฏ ู„ุณู‡ ูŠุงู…ุง
52
+
53
+ 14
54
+ 00:01:23,160 --> 00:01:27,500
55
+ ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ูุจุฏู†ุง ู†ุจุฏุฃ ู†ุญุท ุจุนุถ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู†ุธุฑูŠุฉ
56
+
57
+ 15
58
+ 00:01:27,500 --> 00:01:33,160
59
+ ุงู„ุฃุณุงุณูŠุฉ ุฃูˆ ุงู„ุนู…ูˆุฏ ุงู„ูู‚ุฑูŠ ููŠ ู‡ุฐุง ุงู„ู€ section ุจูŠู‚ูˆู„ ู„ูŠ
60
+
61
+ 16
62
+ 00:01:33,160 --> 00:01:37,540
63
+ to show that the given n by n matrix is a is
64
+
65
+ 17
66
+ 00:01:37,540 --> 00:01:41,120
67
+ similar to a diagonal matrix ูˆ ุงู„ู€ diagonal matrix
68
+
69
+ 18
70
+ 00:01:41,120 --> 00:01:44,180
71
+ ู‡ูŠ ุจูƒุชุจู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ู…ู† ุญุฏ ู…ุง ุชุดูˆููŠู‡ุง ุฏูŠ ูŠุนู†ูŠ
72
+
73
+ 19
74
+ 00:01:44,180 --> 00:01:49,800
75
+ ู…ุตููˆูุฉ ู‚ุทุฑูŠุฉ ุฌู…ูŠุน ุนู†ุงุตุฑู‡ุง ุฃุตูุงุฑ ู…ุนุงุฏุฉ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ
76
+
77
+ 20
78
+ 00:01:49,800 --> 00:01:57,540
79
+ ุงู„ุฑุฆูŠุณูŠ ู†ุฃุฎุฐ ุงู„ู†ุธุฑูŠุฉ ุงู„ุชุงู„ูŠุฉ ุทุจุนุง ู…ู† ุงู„ู„ู…ุฏุงุช ู‡ุฐูˆู„
80
+
81
+ 21
82
+ 00:01:57,540 --> 00:02:00,400
83
+ ุงู„ู„ู…ุฏุฉ ูˆุงุญุฏ ูˆุงู„ู„ู…ุฏุฉ ุงุซู†ูŠู† ูˆุงู„ู„ู…ุฏุฉ ุฅู† ู‡ูŠ ุงู„ู€ eigen
84
+
85
+ 22
86
+ 00:02:00,400 --> 00:02:07,440
87
+ values ู…ุด ุญูŠุงู„ู‡ ู…ุด ุฃูŠ ุฃุฑู‚ุงู… ูŠุจู‚ู‰ ุฃุฑู‚ุงู… ู…ุญุฏุฏุฉ ุทูŠุจ
88
+
89
+ 23
90
+ 00:02:07,440 --> 00:02:11,480
91
+ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ุงูŠู‡ุŸ the n by n matrix A is similar
92
+
93
+ 24
94
+ 00:02:11,480 --> 00:02:16,420
95
+ to a diagonal matrix ู…ู„ุงุญุธูŠ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุจุฏูŠู†ุง
96
+
97
+ 25
98
+ 00:02:16,420 --> 00:02:21,060
99
+ canvas A K ุทู„ุนุช ุนู†ุฏูŠ ู…ุตููˆูุฉ ู‚ุทุฑูŠุฉ ููŠ ุงู„ุขุฎุฑุŒ ู…ุตุจูˆุท
100
+
101
+ 26
102
+ 00:02:21,060 --> 00:02:24,920
103
+ ูˆู„ุง ู„ุฃุŸ ุงู„ู…ุตุฑูˆู ุงู„ู‚ุทุฑูŠุฉ ุงู„ุนู…ูˆุฏูŠ ุงู„ูู‚ุฑูŠ ู‚ูŠู…ุฉ ุงู„ู€ two
104
+
105
+ 27
106
+ 00:02:24,920 --> 00:02:28,870
107
+ landers ุงู„ู„ูŠ ุทู„ุนุช ุนู†ุฏูŠ ุจุงู„ุถุจุท ูŠุจู‚ู‰ ู‡ู†ุง ู„ู…ุง ุฃู‚ูˆู„ ุงู„ู€
108
+
109
+ 28
110
+ 00:02:28,870 --> 00:02:32,650
111
+ A is similar to a diagonal matrix if and only if
112
+
113
+ 29
114
+ 00:02:32,650 --> 00:02:36,350
115
+ it has a set of linearly independent eigenvectors
116
+
117
+ 30
118
+ 00:02:36,350 --> 00:02:43,250
119
+ K1 ูˆ K2 ู„ุบุงูŠุฉ Km ุงู„ูƒู„ุงู… ู‡ุฐุง ุจุฏูŠ ุฃุนูŠุฏ ุตูŠุงุบุชู‡ ู…ุฑุฉ
120
+
121
+ 31
122
+ 00:02:43,250 --> 00:02:48,750
123
+ ุซุงู†ูŠุฉ ุจุงุฌูŠ ุจู‚ูˆู„ that is ู„ูˆ ูƒุงู† ุนู†ุฏ ุงู„ู…ุตูˆูุฉ K ู‡ุฐู‡
124
+
125
+ 32
126
+ 00:02:48,750 --> 00:02:53,670
127
+ ู…ุตููˆูุฉ K K1 ู‡ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ K2 ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ Kn
128
+
129
+ 33
130
+ 00:02:53,670 --> 00:03:01,400
131
+ ุงู„ุนู…ูˆุฏ ุฑู‚ู… M ูˆูƒู„ eigen vector ู‡ุฐุง ู…ู†ุงุธุฑ ู„ู…ู†ุŸ ู…ู†ุงุธุฑ
132
+
133
+ 34
134
+ 00:03:01,400 --> 00:03:04,500
135
+ ู„ู„ู€ eigen value ุงู„ู„ูŠ ู‡ูŠ lambda ูˆุงุญุฏ ูˆุงู„ุซุงู†ูŠ lambda
136
+
137
+ 35
138
+ 00:03:04,500 --> 00:03:08,920
139
+ ุงุซู†ูŠู† ูˆุงู„ุซุงู„ุซ lambda ุซู„ุงุซุฉ ูˆุงู„ุขุฎุฑ lambda in them ุงู„ู€
140
+
141
+ 36
142
+ 00:03:08,920 --> 00:03:14,340
143
+ K inverse A ููŠ ุงู„ู€ K ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู‡ุง
144
+
145
+ 37
146
+ 00:03:14,340 --> 00:03:18,880
147
+ ุฏูŠ ูŠุนู†ูŠ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู…ุตููˆูุฉ ู„ุฌู…ูŠุน ุนู†ุงุตุฑู‡ุง ุฃุตูุงุฑ ู…ุง
148
+
149
+ 38
150
+ 00:03:18,880 --> 00:03:25,450
151
+ ุนุฏุง ุนู†ุงุตุฑ ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุจูŠูƒูˆู†ูˆุง ุนู„ู‰ ุฃุณุฑู‡ุง ู‡ูˆ ู…ู†ุŸ ู‡ุฐู‡
152
+
153
+ 39
154
+ 00:03:25,450 --> 00:03:29,090
155
+ ุงู„ู†ุธุฑูŠุฉ ุจุชุญูƒูŠ ุจุงู„ูƒุงุฑุดุงูƒู„ ุฃู†ู‡ุง ุฏูŠ ูŠุจู‚ู‰ ู„ูˆ ุฃุนุทุงู†ูŠ
156
+
157
+ 40
158
+ 00:03:29,090 --> 00:03:35,010
159
+ ู…ุตููˆูุฉ A ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ diagonal matrix ุจุชุงุนู‡ุง ุจุญูŠุซ
160
+
161
+ 41
162
+ 00:03:35,010 --> 00:03:40,090
163
+ ุงู„ุนู†ุงุตุฑ ุชุจุน ุงู„ู€ diagonal matrix ูŠูƒูˆู†ูˆุง ู‡ู… ุงู„ู€ eigen
164
+
165
+ 42
166
+ 00:03:40,090 --> 00:03:46,120
167
+ values ูŠุจู‚ู‰ ุจุฏูŠ ุฃุญุงูˆู„ ุฃุฌูŠุจ ุงู„ู€ Eigenvectors ุงู„ู„ูŠ
168
+
169
+ 43
170
+ 00:03:46,120 --> 00:03:50,260
171
+ ุนู†ุฏู†ุง ูˆุงู„ู€ Eigenvectors ุจุณ ุจูŠุดุฑู‘ู†ูˆุง ูƒู„ู‡ู… linearly
172
+
173
+ 44
174
+ 00:03:50,260 --> 00:03:54,260
175
+ independent ู„ุฃู† ุฌุงู„ูŠ linearly independent ูˆู„ูˆ
176
+
177
+ 45
178
+ 00:03:54,260 --> 00:03:58,420
179
+ ูˆุงุญุฏ ูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ุซุงู†ูŠ ูƒู„ู‡ู… ู…ุณุชู‚ู„ุงุช ุนู† ุจุนุถ ุชู…ุงู…
180
+
181
+ 46
182
+ 00:03:58,420 --> 00:04:02,220
183
+ ุงู„ุงุณุชู‚ู„ุงู„ ูŠุจู‚ู‰ ุจุญุตู„ ุงู„ุนุงู„ู…ูŠู† ุนู„ู‰ ุงู„ู€ diagonal matrix
184
+
185
+ 47
186
+ 00:04:03,840 --> 00:04:07,760
187
+ ุงู„ุขู† ุจุฏุง ุฃุฌูŠ ู„ู„ุนู†ูˆุงู† ุงู„ู„ูŠ ุฃู†ุง ุฑุงูุนู‡ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช
188
+
189
+ 48
190
+ 00:04:07,760 --> 00:04:11,780
191
+ ูƒู†ุง ุจู†ุชูƒู„ู… ุนู† ุงู„ู€ similar matrix ูู‚ุท ูˆู„ู… ู†ุชูƒู„ู… ุนู†
192
+
193
+ 49
194
+ 00:04:11,780 --> 00:04:15,460
195
+ ุงู„ู€ diagonalization ุชู…ุงู…ุŸ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุงุญู†ุง
196
+
197
+ 50
198
+ 00:04:15,460 --> 00:04:19,140
199
+ ุจู†ุญูƒูŠ ู‡ูˆ ุงู„ู€ diagonalization ูˆุงุญู†ุง ู…ุด ุฐุงุฑูŠู† ุทู„ุน
200
+
201
+ 51
202
+ 00:04:19,140 --> 00:04:20,120
203
+ ุงู„ุชุฑูŠูุด ุจู‚ูˆู„
204
+
205
+ 52
206
+ 00:04:24,300 --> 00:04:28,980
207
+ ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุฌุงุจู„ู‡ if a is a similar to a diagonal
208
+
209
+ 53
210
+ 00:04:28,980 --> 00:04:34,880
211
+ matrix ูŠุนู†ูŠ ู‡ุงู„ูƒู„ุงู… ู‡ุฐุง ุตุญูŠุญ then a is said to be
212
+
213
+ 54
214
+ 00:04:34,880 --> 00:04:40,130
215
+ diagonalizable ูŠุจู‚ู‰ ุงู„ู…ุตููˆูุฉ A ุจู†ู‚ุฏุฑ ู†ุนู…ู„ู‡ุง ุนู„ู‰
216
+
217
+ 55
218
+ 00:04:40,130 --> 00:04:46,770
219
+ ุดูƒู„ ู…ุตููˆูุฉ ู‚ุทุฑูŠุฉ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู†ุช ุงู„ู…ุตููˆูุฉ similar to a
220
+
221
+ 56
222
+ 00:04:46,770 --> 00:04:50,330
223
+ diagonal matrix automatically ุจู‚ูˆู„ ุฃู† ุงู„ู€ A ุฏูŠ
224
+
225
+ 57
226
+ 00:04:50,330 --> 00:04:55,180
227
+ diagonalizable ุทูŠุจ ุงู„ุชุนุฑูŠู ุงู„ุซุงู†ูŠ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู†ุช ุงู„ู€
228
+
229
+ 58
230
+ 00:04:55,180 --> 00:05:00,600
231
+ A diagonalizable matrix then it possesses ูŠุชูุชุฑุถ
232
+
233
+ 59
234
+ 00:05:00,600 --> 00:05:05,100
235
+ in linearly independent eigenvectors ูŠุจู‚ู‰ ุงู„ู€
236
+
237
+ 60
238
+ 00:05:05,100 --> 00:05:08,140
239
+ eigenvectors ุงู„ู„ูŠ ุนู†ุฏู†ุง ุนุฏุฏู‡ู… ูŠุณุงูˆูŠ n ุจุฏู‡ู… ูŠูƒูˆู†ูˆุง
240
+
241
+ 61
242
+ 00:05:08,140 --> 00:05:15,240
243
+ linearly independent ูˆู‡ุฐู‡ ุงู„ู€ set ู†ุณู…ูŠู‡ุง complete set
244
+
245
+ 62
246
+ 00:05:15,240 --> 00:05:20,380
247
+ of eigenvectors ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ูƒุงู…ู„ุฉ ู„ู…ูŠู†ุŸ ู„ู„ู€
248
+
249
+ 63
250
+ 00:05:20,380 --> 00:05:24,040
251
+ eigenvectors ุงู„ู„ูŠ ุนู†ุฏู†ุง ุนู„ู‰ ุฃูŠ ุญุงู„ ุงู„ุชุนุฑูŠู
252
+
253
+ 64
254
+ 00:05:24,040 --> 00:05:29,380
255
+ ุงู„ุฃูˆู„ุงู†ูŠ ุฏู‚ูŠู‚ ุฌุฏุง ู„ุฃู†ู‡ ู‡ูŠู‚ูˆู„ ู„ูƒ ูƒูŠู ุจุฏูƒ ุชุฎู„ูŠ ุงู„ู…ุตููˆูุฉ
256
+
257
+ 65
258
+ 00:05:29,380 --> 00:05:34,920
259
+ ุฏูŠ diagonal matrix ุตุญุŸ ุงู„ุณุคุงู„ ู…ู…ูƒู† ูŠุทู„ุน ู‡ู†ุง ู†ุทุฑุญ ุญุฏุซ
260
+
261
+ 66
262
+ 00:05:34,920 --> 00:05:39,440
263
+ ูˆู†ุญุงูˆู„ ุงู„ุฅุฌุงุจุฉ ุนู„ูŠู‡ ู†ู…ุดูŠ ุฎุทูˆุงุช ู…ุญุฏุฏุฉ ุงู„ุขู† ุจุนุฏ
264
+
265
+ 67
266
+ 00:05:39,440 --> 00:05:44,080
267
+ ู‚ู„ูŠู„ ูุชุฌูŠ ุชุฌูŠ ู…ุนุงูŠุง ุจู‚ูˆู„ how to diagonalize an n by
268
+
269
+ 68
270
+ 00:05:44,080 --> 00:05:48,180
271
+ n matrix ุฃู†ุง ุจุนุทูŠูƒ ู…ุตููˆูุฉ ู„ู…ุง ุฃุนุทูŠูƒ ู…ุตููˆูุฉ ูƒูŠู
272
+
273
+ 69
274
+ 00:05:48,180 --> 00:05:55,500
275
+ ุงู„ู…ุตููˆูุฉ ุฏูŠ ุจุชูƒุชุจ ุนู„ูŠู‡ุง ุนู„ู‰ ุดูƒู„ ู‚ุทุฑูŠ ูู‚ุท ูˆุจุญูŠุซ
276
+
277
+ 70
278
+ 00:05:55,500 --> 00:06:00,480
279
+ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู‡ู…ุง ุงู„ู€ Eigenvalues ูู‚ุท ู„ุง ุบูŠุฑ
280
+
281
+ 71
282
+ 00:06:00,480 --> 00:06:04,360
283
+ ุจู‚ูˆู„ ู„ู‡ุง ุจุฏูŠ ุฃู…ุดูŠ ุซู„ุงุซ ุฎุทูˆุงุช ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰
284
+
285
+ 72
286
+ 00:06:06,680 --> 00:06:10,320
287
+ Find n linearly independent eigenvectors of the
288
+
289
+ 73
290
+ 00:06:10,320 --> 00:06:15,720
291
+ matrix A, C, K1, K2 ู„ุบุงูŠุฉ Kn ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠุฌูŠ ุงุญู†ุง
292
+
293
+ 74
294
+ 00:06:15,720 --> 00:06:20,020
295
+ ุจู†ูˆุฌุฏู‡ ููŠ ุงู„ุฃู…ุซู„ุฉ ุงู„ุณุงุจู‚ุฉ ูƒู„ ุฃุฑุจุน section ูˆุงุญุฏ ูƒุงู†
296
+
297
+ 75
298
+ 00:06:20,020 --> 00:06:24,310
299
+ ุงู„ู€ eigenvalues ูˆ ุงู„ู€ eigenvectors ุฅุฐุง ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰
300
+
301
+ 76
302
+ 00:06:24,310 --> 00:06:30,090
303
+ ุชุญุตูŠู„ ุญุงุตู„ ููŠ ูƒู„ ุงู„ุฃู…ุซู„ุฉ ุงู„ู„ูŠ ูุงุชุช ุณูˆุงุก ูƒุงู†ุช
304
+
305
+ 77
306
+ 00:06:30,090 --> 00:06:33,530
307
+ complex ุงู„ู„ูŠ ุงู„ู„ูŠ ุนู†ู‡ุง ูƒุงู†ุช complex ุฃูˆ real ุตุญูŠุญ
308
+
309
+ 78
310
+ 00:06:33,530 --> 00:06:37,830
311
+ ูˆู„ุง ู„ุงุŸ ูŠุฌุจ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ู„ู… ู†ุฃุชูŠ ุจุฌุฏูŠุฏ ู†ุฌูŠ ุงู„ุฎุทูˆุฉ
312
+
313
+ 79
314
+ 00:06:37,830 --> 00:06:42,690
315
+ ุงู„ุซุงู†ูŠุฉ finally matrix K ุงู„ู„ูŠ ู‡ูŠ ุนู†ุงุตุฑู‡ุง ู‡ู… ุงู„ู„ูŠ ุนู…ูˆุฏ
316
+
317
+ 80
318
+ 00:06:42,690 --> 00:06:48,090
319
+ ุงู„ุฃูˆู„ K ูˆุงุญุฏ K ุงุซู†ูŠู† K ุงู… ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฑุถู‡ ูƒู†ุง ุจู†ูƒุชุจู‡ุง
320
+
321
+ 81
322
+ 00:06:48,090 --> 00:06:50,930
323
+ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุชุจุนุช ุงู„ู€
324
+
325
+ 82
326
+ 00:06:50,930 --> 00:06:54,870
327
+ eigenvectors ู„ู…ุง ู†ู‚ูˆู„ ุงู„ุณุช ู‡ุฐู‡ ุชุณู…ู‰ ุงู„ู€ bases ู„ู„ู€
328
+
329
+ 83
330
+ 00:06:54,870 --> 00:07:00,260
331
+ eigen spaces ุชู…ุงู…ุŸ ูŠุจู‚ู‰ุŒ ุงูŠู‡ ุงู„ู…ุตููˆูุฉ ููŠ ู‡ุฐู‡ุŸ Where
332
+
333
+ 84
334
+ 00:07:00,260 --> 00:07:04,840
335
+ ุงู„ุนู…ูˆุฏุงุช ู‡ุฐูˆู„ are called eigenvectors ูŠุจู‚ู‰ ุฌุจู†ุง ู„ู‡
336
+
337
+ 85
338
+ 00:07:04,840 --> 00:07:09,820
339
+ ุงู„ู…ุตููˆูุฉ ุชุญุตูŠู„ ุญุงุตู„ ูƒู…ุงู† ู‡ุฐู‡ ูŠุนู†ูŠ ุงู„ู€ eigenvectors
340
+
341
+ 86
342
+ 00:07:09,820 --> 00:07:13,560
343
+ ุงู„ู„ูŠ ุฌุจู†ุงู‡ู… ุจุฏูƒ ุชูƒุชุจู‡ู… ุจุณ ุนู„ู‰ ุดูƒู„ ุงู„ู…ุตููˆูุฉ ู‡ูŠ ุงู„ู„ูŠ
344
+
345
+ 87
346
+ 00:07:13,560 --> 00:07:17,900
347
+ ุจุชู‚ูˆู„ู‡ ู…ู†ู‡ู… ุงู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุจุฏูŠ
348
+
349
+ 88
350
+ 00:07:17,900 --> 00:07:21,100
351
+ ุฃุฌูŠุจ ุงู„ู€ eigenvalues ูˆ ุงู„ู€ eigenvectors ุงู„ุฎุทูˆุฉ
352
+
353
+ 89
354
+ 00:07:21,100 --> 00:07:24,660
355
+ ุงู„ุซุงู†ูŠุฉ ุจุฏูŠ ุฃูƒุชุจ ุงู„ู€ eigenvectors ุนู„ู‰ ุดูƒู„ ู…ุตููˆูุฉ
356
+
357
+ 90
358
+ 00:07:24,660 --> 00:07:30,820
359
+ ุงู„ุฎุทูˆุฉ ุงู„ุซุงู„ุซุฉ ุฏูŠ matrix ุงู„ู…ุตููˆูุฉ K ุฅู†ูุฑุณ A K ูˆุงู„ุจู€
360
+
361
+ 91
362
+ 00:07:30,820 --> 00:07:35,080
363
+ A ุฏูŠAGONAL matrix ุญุฏูŠู‡ุง ุงู„ุฑู…ุฒ D ูŠุจู‚ู‰ ุจุชุทู„ุน ุนู†ุฏูƒ
364
+
365
+ 92
366
+ 00:07:35,080 --> 00:07:39,180
367
+ ุงู„ู€ diagonal ูŠุนู†ูŠ ุจุฏูŠ ุฃุถุฑุจ ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ K ุงู„ู„ูŠ
368
+
369
+ 93
370
+ 00:07:39,180 --> 00:07:43,240
371
+ ุทู„ุนุช ู‡ู†ุง ู‡ู†ุง ููŠ ุงุซู†ูŠู† ููŠ ุงู„ู…ุตููˆูุฉ A ุงู„ุฃุตู„ูŠ ุงู„ู„ูŠ
372
+
373
+ 94
374
+ 00:07:43,240 --> 00:07:48,180
375
+ ุนู†ุฏูŠ ููŠ ุงู„ู…ุตููˆูุฉ K ุงู„ู†ุชุฌ ู„ุงุฒู… ูŠุทู„ุน ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ
376
+
377
+ 95
378
+ 00:07:48,180 --> 00:07:51,460
379
+ ุนู†ุฏู†ุง ู‡ุฐู‡ where lambda I the eigenvector the
380
+
381
+ 96
382
+ 00:07:51,460 --> 00:07:56,580
383
+ eigenvalue corresponding to Ki ูˆุงู„ู€ I ู…ู† ูˆุงุญุฏ ู„ุบุงูŠุฉ
384
+
385
+ 97
386
+ 00:07:56,580 --> 00:08:01,200
387
+ ู…ูŠู†ุŸ ู„ุบุงูŠุฉ ุงู„ู€ N ุทุจ ุญุฏ ููŠูƒู… ุจูŠุญุจ ูŠุณุฃู„ ุฃูŠ ุณุคุงู„ ููŠ
388
+
389
+ 98
390
+ 00:08:01,200 --> 00:08:05,120
391
+ ุงู„ูƒู„ู…ุชูŠู† ุฃู†ุง ุฃุถุบุทูŠูƒ ู‚ุจู„ ุฃู† ู†ุฐู‡ุจ ู„ู„ุชุทุจูŠู‚ ุงู„ุนู…ู„ูŠ
392
+
393
+ 99
394
+ 00:08:05,120 --> 00:08:11,690
395
+ ู„ู‡ุฐุง ุงู„ูƒู„ุงู… ุญุฏ ููŠูƒูˆุง ุจูŠุญุจ ูŠุณุฃู„ูˆุง ุฃูŠ ุณุคุงู„ุŸ ุฌุงู‡ุฒูŠู†ุŸ
396
+
397
+ 100
398
+ 00:08:11,690 --> 00:08:16,010
399
+ ุทูŠุจ ุทุจุนุง ุชุนุฑููˆุง ุงู„ุงู…ุชุญุงู† ูˆุฌู‡ ุงู„ูŠูˆู… 24 ุงู„ู„ูŠ ู‡ูˆ ูŠูˆู…
400
+
401
+ 101
402
+ 00:08:16,010 --> 00:08:20,750
403
+ ุงู„ุซู„ุงุซุงุก ู…ุด ุจูƒุฑุง ุงู„ุซู„ุงุซุงุก ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ุฃุฑุจุนุฉ ูˆู„ุง
404
+
405
+ 102
406
+ 00:08:20,750 --> 00:08:25,470
407
+ ุงู„ุซู„ุงุซุฉุŸ ุงู„ุฃุฑุจุนุฉ ุงู„ุฃุฑุจุนุฉ ู…ุง ููŠุด ู…ุดูƒู„ุฉ ุนุงุฏูŠ ุฌุฏุง ูŠุจู‚ู‰
408
+
409
+ 103
410
+ 00:08:25,470 --> 00:08:29,910
411
+ ุงู„ุงู…ุชุญุงู† ูŠูˆู… ุงู„ุฃุฑุจุนุงุก ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‚ุงุฏู… ุณุงุนุฉ ู‚ุฏ ุงูŠุดุŸ
412
+
413
+ 104
414
+ 00:08:29,910 --> 00:08:35,140
415
+ ุณุงุนุชูŠู† ุซุงู†ูŠุฉ ุจุนุฏ ู…ุง ู†ุฎู„ุต ุงู„ู…ุญุงุถุฑุฉ ุจุณ ุนู†ุฏ ุงู„ุทู„ุงุจ ู…ุด
416
+
417
+ 105
418
+ 00:08:35,140 --> 00:08:41,920
419
+ ุนู†ุฏูƒู…. ุทูŠุจ ุนู„ู‰ ุฃูŠ ุญุงู„ ู…ุง ุนู„ูŠู†ุง ูŠุจู‚ู‰ ุงู„ุงู…ุชุญุงู† ูƒู…ุง
420
+
421
+ 106
422
+ 00:08:41,920 --> 00:08:47,280
423
+ ู‡ูˆ ููŠ chapter 3 ูˆุจุงู‚ูŠ chapter 2 ู…ุด ู‡ู†ุถูŠู ุฒูŠุงุฏุฉ
424
+
425
+ 107
426
+ 00:08:47,280 --> 00:08:53,290
427
+ ู„ู„ุงู…ุชุญุงู† ุงู†ุทุจุน ุฌุงู‡ุฒ. ู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจูŠู‚ูˆู„
428
+
429
+ 108
430
+ 00:08:53,290 --> 00:08:57,430
431
+ ุฎุฐ ุงู„ู…ุตููˆูุฉ ู†ุธุงู…ู‡ุง ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ุฒูŠ ู…ุง ุฃู†ุช ุดุงูŠู
432
+
433
+ 109
434
+ 00:08:57,430 --> 00:09:01,190
435
+ ู‡ุงุช ุงู„ู€ eigen value ูˆ ุงู„ู€ eigen vectors ูŠุจู‚ู‰ ู‡ุฐุง
436
+
437
+ 110
438
+ 00:09:01,190 --> 00:09:04,070
439
+ ุงู„ู„ูŠ ูƒู†ุง ุจู†ุฌูŠุจู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ููŠ ุงู„ู€ section ุฃุฑุจุนุฉ
440
+
441
+ 111
442
+ 00:09:04,070 --> 00:09:08,510
443
+ ูˆุงุญุฏ ุจุนุฏูŠู† ุชุจูŠู† ุฅู† ุงู„ู€ A is diagonalizable ูŠุจู‚ู‰
444
+
445
+ 112
446
+ 00:09:08,510 --> 00:09:15,340
447
+ ุจุนุฏูŠู† ุชุจูŠู† ุฃู† ุงู„ู…ุตููˆูุฉ A ุจู‚ุฏุฑ ุฃุณุชุจุฏู„ู‡ุง ุจู…ุตููˆูุฉ
448
+
449
+ 113
450
+ 00:09:15,340 --> 00:09:21,180
451
+ ู‚ุทุฑูŠุฉ ุนู†ุงุตุฑู‡ุง ู‡ู…ุง ุนู†ุงุตุฑ ู…ู† ุงู„ู€ eigenvalues ุฅุฐุง ุจุฏูŠ
452
+
453
+ 114
454
+ 00:09:21,180 --> 00:09:28,300
455
+ ุฃุจุฏุฃ ุฒูŠ ู…ุง ูƒู†ุช ุจุจุฏุฃ ู‡ู†ุงูƒ ุจุฏูŠ ุขุฎุฐ lambda I ู†ุงู‚ุต
456
+
457
+ 115
458
+ 00:09:28,300 --> 00:09:36,080
459
+ ุงู„ู…ุตููˆูุฉ A ูˆุชุณุงูˆูŠ I lambda ูˆู‡ู†ุง Zero Zero lambda
460
+
461
+ 116
462
+ 00:09:36,080 --> 00:09:38,540
463
+ ู†ุงู‚ุต ุงู„ู…ุตููˆูุฉ A
464
+
465
+ 117
466
+ 00:09:41,740 --> 00:09:46,140
467
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ุฐูŠ ุจุชุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
468
+
469
+ 118
470
+ 00:09:46,140 --> 00:09:53,160
471
+ ู‡ู†ุง lambda ู…ุง ููŠุด ุบูŠุฑู‡ุง ูˆู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ูˆู‡ู†ุง ู†ุงู‚ุต
472
+
473
+ 119
474
+ 00:09:53,160 --> 00:09:59,820
475
+ ุงุซู†ูŠู† ูˆู‡ู†ุง lambda ู†ุงู‚ุต ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง
476
+
477
+ 120
478
+ 00:10:00,650 --> 00:10:04,650
479
+ ุจุนุฏ ุฐู„ูƒ ุณุฃุญุตู„ ุนู„ู‰ determinant ู…ู† ุฎู„ุงู„ ุงู„ู€
480
+
481
+ 121
482
+ 00:10:04,650 --> 00:10:08,250
483
+ determinant ุฃูˆ ุงู„ู…ุญุฏุฏ ุณุฃุญุตู„ ุนู„ู‰ ู‚ูŠู… ุงู„ู€
484
+
485
+ 122
486
+ 00:10:08,250 --> 00:10:14,090
487
+ eigenvalues ูŠุจู‚ู‰ ุณุฃุญุตู„ ุนู„ู‰ determinant ู„ู…ู†ุŸ ู„ู€
488
+
489
+ 123
490
+ 00:10:14,090 --> 00:10:20,330
491
+ lambda I ู†ุงู‚ุต ุงู„ู€ A ูˆุฃุณุงูˆูŠ ุจุงู„ุฒูŠุฑูˆ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡
492
+
493
+ 124
494
+ 00:10:20,330 --> 00:10:26,570
495
+ ุฃู† ุงู„ู…ุญุฏุฏ lambda ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุซู†ูŠู† lambda ุณุงู„ุจ
496
+
497
+ 125
498
+ 00:10:26,570 --> 00:10:33,390
499
+ ูˆุงุญุฏ ุณูŠุณุงูˆูŠ ุจุชููƒ ู‡ุฐุง ูŠุจู‚ู‰ lambda ููŠ lambda ู†ุงู‚ุต ูˆุงุญุฏ
500
+
501
+ 126
502
+ 00:10:33,390 --> 00:10:39,450
503
+ ู†ุงู‚ุต ุงุซู†ูŠู† ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุงู„ู…ุญุฏุฏ ู‡ุฐุง
504
+
505
+ 127
506
+ 00:10:39,450 --> 00:10:46,370
507
+ ููŠ lambda ุชุฑุจูŠุน ู†ุงู‚ุต lambda ู†ุงู‚ุต ุงุซู†ูŠู† ูŠุณุงูˆูŠ Zero
508
+
509
+ 128
510
+ 00:10:46,370 --> 00:10:52,770
511
+ ุจุฏูŠ ุฃุญู„ู„ ู‡ุฐุง ูƒุญุงุตู„ ุถุฑุจ ู‚ูˆุณูŠู† ูŠุจู‚ู‰ ุฃูˆ ุญุงุตู„ ุถุฑุจ ุนุงู…ู„ูŠู†
512
+
513
+ 129
514
+ 00:10:52,770 --> 00:11:00,050
515
+ ูŠุณุงูˆูŠ Zero ู‡ู†ุง lambda ู‡ู†ุง lambda ู‡ู†ุง ูˆุงุญุฏ ู‡ู†ุง ุงุซู†ูŠู†
516
+
517
+ 130
518
+ 00:11:00,050 --> 00:11:04,930
519
+ ู‡ู†ุง ู†ุงู‚ุต ู‡ู†ุง ุฒุงุฆุฏ ูŠุจู‚ู‰ ุฒุงุฆุฏ lambda ุฃูˆ ู†ุงู‚ุต ุงุซู†ูŠู†
520
+
521
+ 131
522
+ 00:11:04,930 --> 00:11:08,190
523
+ lambda ุจูŠุจู‚ู‰ ู†ุงู‚ุต lambda ูˆุงุญุฏุฉ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง
524
+
525
+ 132
526
+ 00:11:08,190 --> 00:11:13,730
527
+ ูŠุจู‚ู‰ ุชุญู„ูŠู„ู†ุง ุณู„ูŠู… ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ lambda ุชุณุงูˆูŠ ุณุงู„ุจ
528
+
529
+ 133
530
+ 00:11:13,730 --> 00:11:17,910
531
+ ูˆุงุญุฏ ูˆ lambda ุชุณุงูˆูŠ ุงุซู†ูŠู† ู…ู† ู‡ุฐูˆู„ ุงู„ุจู†ุงุช
532
+
533
+ 134
534
+ 00:11:21,730 --> 00:11:29,470
535
+ ูŠุจู‚ู‰ ู‡ุฐูˆู„ are the eigenvalues
536
+
537
+ 135
538
+ 00:11:29,470 --> 00:11:39,530
539
+ of the matrix A ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุงู„ู„ูŠ ู‡ู… ุงู„ู€ eigenvalues
540
+
541
+ 136
542
+ 00:11:57,290 --> 00:12:02,270
543
+ ุจุนุฏ ุฐู„ูƒ ู†ุฌูŠุจ ุงู„ู€ Eigenvectors ูŠุจู‚ู‰ ุงุญู†ุง ุญุชู‰ ุงู„ุขู† ููŠ
544
+
545
+ 137
546
+ 00:12:02,270 --> 00:12:06,390
547
+ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ู„ุณู‡ ุฌุจู†ุง ุงู„ู€ Eigenvalues ูˆุจุนุฏ ุฐู„ูƒ
548
+
549
+ 138
550
+ 00:12:06,390 --> 00:12:09,930
551
+ ู†ุฌูŠุจ ุงู„ู€ Eigenvectors
552
+
553
+ 139
554
+ 00:12:09,930 --> 00:12:16,490
555
+ ูŠุจู‚ู‰ ุจุงู„ุฏู‘ูŠ ุฏูŠ ู„ู„ู…ุตููˆูุฉ ุฃูˆ ู„ุญุงุตู„ ุงู„ุถุฑุจ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†
556
+
557
+ 140
558
+ 00:12:18,900 --> 00:12:22,260
559
+ ู‡ุฐุง ูƒู„ู‡ ู…ู† ุฃูˆู„ ูˆู…ุจุชุฏุฃ ุงู„ุญู„ู‚ุฉ ุชุนุชุจุฑ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
560
+
561
+ 141
562
+ 00:12:22,260 --> 00:12:29,560
563
+ ู†ู…ุฑุฉ a ุงุญู†ุง ุฃู†ู†ุง lambda I ู†ุงู‚ุต ุงู„ู€ a ููŠ ุงู„ู€ X ุจูŠุณุงูˆูŠ
564
+
565
+ 142
566
+ 00:12:29,560 --> 00:12:32,660
567
+ zero ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ุจู†ุดุชุบู„ ุนู„ูŠู‡ุง
568
+
569
+ 143
570
+ 00:12:32,660 --> 00:12:40,440
571
+ ุงุจุชุฏุงุฆู‡ุง ู…ู† section 4-1 ู‡ูŠ ู‡ูŠ ู…ุง ุบูŠุฑู†ุงุด ู‡ุฐุง ู…ุนู†ุงู‡
572
+
573
+ 144
574
+ 00:12:42,120 --> 00:12:47,200
575
+ lambda I ู†ุงู‚ุต ุงุซู†ูŠู† ู‡ูŠ ู‡ูŠ ุฌุงุฒุฉ ุงู„ู…ุตููˆูุฉ ู„ุฃู†ู‡ุง ู†ุงู‚ุต
576
+
577
+ 145
578
+ 00:12:47,200 --> 00:12:52,320
579
+ ูˆุงุญุฏ lambda I ู†ุงู‚ุต ุงุซู†ูŠู† lambda I ู†ุงู‚ุต ูˆุงุญุฏ lambda I
580
+
581
+ 146
582
+ 00:12:52,320 --> 00:12:54,480
583
+ ู†ุงู‚ุต ุงุซู†ูŠู† lambda I ู†ุงู‚ุต ุงุซู†ูŠู† lambda I ู†ุงู‚ุต ุงุซู†ูŠู†
584
+
585
+ 147
586
+ 00:12:54,480 --> 00:12:55,100
587
+ lambda I ู†ุงู‚ุต ุงุซู†ูŠู† lambda I ู†ุงู‚ุต ุงุซู†ูŠู† lambda I ู†ุงู‚ุต
588
+
589
+ 148
590
+ 00:12:55,100 --> 00:12:55,320
591
+ ุงุซู†ูŠู† lambda I ู†ุงู‚ุต ุงุซู†ูŠู† lambda I ู†ุงู‚ุต ุงุซู†ูŠู†
592
+
593
+ 149
594
+ 00:12:55,320 --> 00:12:55,620
595
+ lambda I ู†ุงู‚ุต ุงุซู†ูŠู† lambda I ู†ุงู‚ุต ุงุซู†ูŠู† lambda I ู†ุงู‚ุต
596
+
597
+ 150
598
+ 00:12:55,620 --> 00:12:59,240
599
+ ุงุซู†ูŠู† lambda I ู†ุงู‚ุต ุงุซู†ูŠู† lambda I ู†ุงู‚ุต ุงุซู†ูŠู†
600
+
601
+ 151
602
+ 00:12:59,350 --> 00:13:05,730
603
+ ุจุชุฃุฎุฐ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ ูƒุงู†ุช lambda ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ
604
+
605
+ 152
606
+ 00:13:05,730 --> 00:13:09,410
607
+ ู…ุง ููŠุด ุงู„ู„ูŠ ุจุฏู‡ ูŠุตูŠุฑ ูŠุจู‚ู‰ ุจุฏู‡ ุฃุดูŠู„ ูƒู„ lambda ูˆุฃุญุท
608
+
609
+ 153
610
+ 00:13:09,410 --> 00:13:14,570
611
+ ู…ูƒุงู†ู‡ุง ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุนู† ู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ
612
+
613
+ 154
614
+ 00:13:14,570 --> 00:13:22,530
615
+ ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ ุงุซู†ูŠู† ุณุงู„ุจ ุงุซู†ูŠู† ููŠ X ูˆุงุญุฏ X ุงุซู†ูŠู†
616
+
617
+ 155
618
+ 00:13:22,530 --> 00:13:27,650
619
+ ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† Zero ูˆ Zero ู‡ุฐุง ุงู„ู…ุนุงุฏู„ ูŠุฌุจ ุฃู†
620
+
621
+ 156
622
+ 00:13:27,650 --> 00:13:32,270
623
+ ุฃููƒุฑ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ูˆุฃุญูˆู„ู‡ุง ุฅู„ู‰ ู…ุนุงุฏู„ุงุช ูŠุนู†ูŠ
624
+
625
+ 157
626
+ 00:13:32,270 --> 00:13:35,070
627
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุตููˆููŠุฉ ูŠุฌุจ ุฃู† ุฃุถุฑุจู‡ุง ูˆุฃุญูˆู„ู‡ุง ุฅู„ู‰
628
+
629
+ 158
630
+ 00:13:35,070 --> 00:13:41,890
631
+ ู…ุนุงุฏู„ุชูŠู† ูุฃู‚ูˆู„ ู„ู‡ ู†ุงู‚ุต X1 ู†ุงู‚ุต X2 ุณูŠูƒูˆู† Zero ูˆู‡ู†ุง
632
+
633
+ 159
634
+ 00:13:41,890 --> 00:13:49,210
635
+ ู†ุงู‚ุต 2 X1 ู†ุงู‚ุต 2 X2 ุณูŠูƒูˆู† Zero ู‡ุฐู‡ ูƒุงู†ุช ู…ุนุงุฏู„ุฉ ูŠุง
636
+
637
+ 160
638
+ 00:13:49,210 --> 00:13:54,000
639
+ ุจู†ุงุช ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ุชู†ุชู‡ูŠ ู„ูƒ ููŠ ุงู„ุญู‚ูŠู‚ุฉ ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ
640
+
641
+ 161
642
+ 00:13:54,000 --> 00:14:00,860
643
+ ุฅุฐุง ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ูˆุงุญุฏุฉ X1 ุฒุงุฆุฏ X2 ุจุฏู‡ ูŠุณุงูˆูŠ Zero
644
+
645
+ 162
646
+ 00:14:00,860 --> 00:14:08,820
647
+ ูˆู…ู†ู‡ุง X1 ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† ุณุงู„ุจ X2 ุฃูˆ X2 ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ
648
+
649
+ 163
650
+ 00:14:08,820 --> 00:14:17,060
651
+ X1 ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู€ X2 ุจุฏูŠ ุฃุณุงูˆูŠู‡ุง A then X1
652
+
653
+ 164
654
+ 00:14:17,060 --> 00:14:25,760
655
+ ุจุฏูŠ ู…ูŠู†ุŸ ุณุงู„ุจ A ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ูŠ the eigen vectors
656
+
657
+ 165
658
+ 00:14:26,750 --> 00:14:37,190
659
+ are in the form ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู„ูŠ ู‡ู…ุง ู…ู† X1 X2
660
+
661
+ 166
662
+ 00:14:37,190 --> 00:14:47,310
663
+ ุจุฏู‡ ูŠุณุงูˆูŠ X1 ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต A ูˆ X2 ุงู„ู„ูŠ ู‡ูŠ A ุจุงู„ุดูƒู„
664
+
665
+ 167
666
+ 00:14:47,310 --> 00:14:51,590
667
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฃูˆ A ููŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงุญุฏ
668
+
669
+ 168
670
+ 00:14:54,310 --> 00:15:00,330
671
+ ูŠุจู‚ู‰ ุทุงู„ุน ุนู†ุฏูŠ ู‡ุฐุง ู‡ูˆ ูŠู…ุซู„ mean bases ู„ู„ู€ eigen
672
+
673
+ 169
674
+ 00:15:00,330 --> 00:15:06,510
675
+ vector space ุงู„ู…ู†ุงุธุฑ ู„ู„ู€ eigen value ู„ู…ู†ุŸ lambda
676
+
677
+ 170
678
+ 00:15:06,510 --> 00:15:08,590
679
+ ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ
680
+
681
+ 171
682
+ 00:15:17,540 --> 00:15:22,440
683
+ ุงู„ุขู† ุจุฏู†ุง ู†ุฌูŠ ู„ู…ูŠู†ุŸ ู†ุฃุฎุฐ lambda ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ
684
+
685
+ 172
686
+ 00:15:22,440 --> 00:15:29,200
687
+ ุจู‚ูˆู„ ู„ู‡ ู‡ู†ุง F lambda ุงู„ุซุงู†ูŠุฉ ุทู„ุนุช ู…ุนุงู†ุง ุงุซู†ูŠู†
688
+
689
+ 173
690
+ 00:15:29,200 --> 00:15:34,970
691
+ ูŠุจู‚ู‰ then ู„ู…ุง ุทู„ุนุช lambda ุชุณุงูˆูŠ ุงุซู†ูŠู† ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ
692
+
693
+ 174
694
+ 00:15:34,970 --> 00:15:39,390
695
+ ุงู„ู…ุตููˆููŠุฉ ู‡ุชูƒูˆู† ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ู‡ุดูŠู„ ูƒู„ lambda ูˆุฃุญุท
696
+
697
+ 1
698
+
699
+ 201
700
+ 00:18:34,060 --> 00:18:40,500
701
+ ุงู„ุฎุทูˆุฉ ุงู„ุซุงู„ุซุฉ ู‡ูŠ ุงู„ู…ุทู„ูˆุจ ุฃู† ู†ู…ุฑ ุจู‡ ู…ู† ุงู„ู…ุณุฃู„ุฉ ุงู„ุชูŠ
702
+
703
+ 202
704
+ 00:18:40,500 --> 00:18:44,960
705
+ ุฃู† a is diagonalizable ูŠุนู†ูŠ ุงุญู†ุง ุญุชู‰ ุงู„ู„ูŠ ู‡ู† ุฌุจู†ุงู‡
706
+
707
+ 203
708
+ 00:18:44,960 --> 00:18:48,640
709
+ ุงู„ eigenvalues ูˆุงู„ eigenvectors ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆ
710
+
711
+ 204
712
+ 00:18:48,640 --> 00:18:54,840
713
+ ุญุทู†ุงู‡ู… ุนู„ู‰ ุดูƒู„ ู…ุตููˆูุฉ ุฅุฐุง ุจูŠุฏุงุฌูŠ ู„ู†ู…ุฑ ุจู‡ ู…ู†
714
+
715
+ 205
716
+ 00:18:54,840 --> 00:19:00,110
717
+ ุงู„ุณุคุงู„ ู…ุด ู‡ู† ุฌุจ ู†ู…ุฑุฉ ุจู‡ ุจุฏูŠ ุฃุฌูŠ ู„ู„ู…ุตููˆูุฉ K ูˆ ุฃุฌูŠุจ
718
+
719
+ 206
720
+ 00:19:00,110 --> 00:19:05,170
721
+ ู…ู† ุงู„ู…ุนูƒูˆุณ ุณุจุนู‡ุง ู…ุด ู‡ู† ุฌุจ ุงู„ู…ุนูƒูˆุณ ุณุจุนู‡ุง ุจุฏูŠ ุฃุนุฑู
722
+
723
+ 207
724
+ 00:19:05,170 --> 00:19:11,510
725
+ ู‚ุฏุงุด ุงู„ determinant ู„ู„ K ุชู…ุงู… ูŠุจู‚ู‰ ุงู„ู…ุญุฏุฏ ุณุงู„ุจ
726
+
727
+ 208
728
+ 00:19:11,510 --> 00:19:18,910
729
+ ูˆุงุญุฏ ูˆุงุญุฏ ุงุซู†ูŠู† ูˆูŠุณุงูˆูŠ ุณุงู„ุจ ุงุซู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ูˆูŠุณุงูˆูŠ
730
+
731
+ 209
732
+ 00:19:18,910 --> 00:19:24,870
733
+ ู‚ุฏุงุด ุณุงู„ุจ ุซู„ุงุซุฉ ูˆุฒูŠ ู…ุง ุฃู†ุชู… ุดุงูŠููŠู† ู„ุง ูŠุณุงูˆูŠ zero
734
+
735
+ 210
736
+ 00:19:24,870 --> 00:19:31,350
737
+ ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ non singular matrix ูŠุจู‚ู‰ ู‡ุฐุง
738
+
739
+ 211
740
+ 00:19:31,350 --> 00:19:40,570
741
+ ู…ุนู†ุงู‡ ุฃู† k is a non singular matrix
742
+
743
+ 212
744
+ 00:19:41,270 --> 00:19:46,830
745
+ ู…ุง ุฏุงู… non singular matrix ุฅุฐุง ุฅูŠู‡ ุงู„ู„ูŠ ู‡ูŠ ู…ุนูƒูˆุณ
746
+
747
+ 213
748
+ 00:19:46,830 --> 00:19:52,310
749
+ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ ุงู„ู…ุนูƒูˆุณ ุชุจุน ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ูˆู†ุถุฑุจู‡ ููŠ
750
+
751
+ 214
752
+ 00:19:52,310 --> 00:19:59,650
753
+ ุงู„ู…ุตููˆูุฉ A ูˆูƒุฐู„ูƒ ููŠ ุงู„ู…ุตููˆูุฉ K ุชุณู„ู… ูŠุจู‚ู‰ ุงู„ุขู† K
754
+
755
+ 215
756
+ 00:19:59,650 --> 00:20:05,730
757
+ inverse AK ุฅูŠุด ุจุฏู‡ุง ุชุนู…ู„ ุฅูŠุด ุงู„ู†ุงุชุฌ ูŠุง ุจู†ุงุช ุญุชู‰
758
+
759
+ 216
760
+ 00:20:05,730 --> 00:20:07,450
761
+ ุจุชุฌุฑูŠ ุชู‚ูˆู„ูŠ ู‚ุฏ ุงูŠุด ุงู„ู†ุงุชุฌ
762
+
763
+ 217
764
+ 00:20:09,990 --> 00:20:15,550
765
+ ู‡ู…ุง ุงู„ู…ุตููˆูุฉ ู†ุธุงู… ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ุจุญูŠุซ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ
766
+
767
+ 218
768
+ 00:20:15,550 --> 00:20:19,910
769
+ ู‡ูˆ ู†ุงู‚ุต ูˆุงุญุฏ ูˆุงุซู†ูŠู† ูˆุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุงู„ุซุงู†ูˆูŠ ูŠุจู‚ู‰
770
+
771
+ 219
772
+ 00:20:19,910 --> 00:20:24,270
773
+ ุฃุตูุงุฑ ูŠุนู†ูŠ ุฌุงุจ ุงู„ู…ุจุฏุฃ ู„ุฃู† ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ู‡ูŠ ุงู„ู„ูŠ
774
+
775
+ 220
776
+ 00:20:24,270 --> 00:20:28,830
777
+ ุจุชุนู…ู„ูŠ ุงู„ diagonalization ู„ู„ู…ูŠู… ู„ู„ู…ุตููˆูุฉ A ูˆุจุงู„ุชุงู„ูŠ
778
+
779
+ 221
780
+ 00:20:28,830 --> 00:20:34,850
781
+ ุจู‚ูˆู„ ุงู„ A is diagonalizable ุทูŠุจ ู‡ุฐุง ู…ุนู†ุงู‡ ุทุจุนุงู‹
782
+
783
+ 222
784
+ 00:20:34,850 --> 00:20:39,970
785
+ ู‡ุชุนุฑููŠุด ู…ูŠู† ูŠุง ุจู†ุงุชุŸ ุงู„ู†ุงุชุฌ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุจุชุทู„ุน ู„ูƒู
786
+
787
+ 223
788
+ 00:20:39,970 --> 00:20:44,610
789
+ ุจู‚ูˆู„ ุนู„ูŠู‡ุง similar to a ู…ุด ู‡ุชุนุฑู ุงู„ similar ูˆูƒุฃู†ู‡
790
+
791
+ 224
792
+ 00:20:44,610 --> 00:20:48,850
793
+ ุงู„ similar ู‡ูŠ ู…ู†ุŸ ู‡ูŠ ุงู„ diagonalization ู‡ูŠ ู†ูุณ
794
+
795
+ 225
796
+ 00:20:48,850 --> 00:20:53,350
797
+ ุงู„ุนู…ู„ูŠุฉ ุจุณ ู‡ู†ุง ุญุทู†ุง ู„ู‡ุง ุดุบู„ ูˆูƒุฏู‡ ู‡ู†ุงูƒ ู…ุง ูƒู†ุงุด
798
+
799
+ 226
800
+ 00:20:53,350 --> 00:20:57,190
801
+ ุจู†ุนุฑู ู‡ุฐุง ุงู„ูƒู„ุงู… ููŠ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุทุฑุญู†ุงู‡ ุงู„ู…ุญุงุถุฑุฉ
802
+
803
+ 227
804
+ 00:20:57,190 --> 00:21:02,010
805
+ ุงู„ู…ุงุถูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุจุงู„ุฏุงุฎู„ ู„ู…ุนูƒูˆุณ
806
+
807
+ 228
808
+ 00:21:02,010 --> 00:21:08,010
809
+ ุงู„ู…ุตููˆูุฉ K ุจู†ุจุฏู„ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู…ูƒุงู† ุจุนุถ
810
+
811
+ 229
812
+ 00:21:08,010 --> 00:21:14,130
813
+ ูˆุจู†ุบูŠุฑ ุฅุดุงุฑุงุช ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ูˆุจู†ุฌุณู… ุนู„ู‰ ู…ุญุฏุฏ
814
+
815
+ 230
816
+ 00:21:14,130 --> 00:21:19,730
817
+ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ูƒุฏู‡ุŸ ุณุงู„ุจ ุซู„ุงุซุฉ ูŠุจู‚ู‰ ู‡ุงูŠ
818
+
819
+ 231
820
+ 00:21:19,730 --> 00:21:26,640
821
+ ูˆุงุญุฏ ุนู„ู‰ ุณุงู„ุจ ุซู„ุงุซุฉ ุจุชุฏุฌูŠ ู‡ู†ุง ู‡ุฐุง ุงุซู†ูŠู† ูˆู‡ู†ุง ุณุงู„ุจ
822
+
823
+ 232
824
+ 00:21:26,640 --> 00:21:32,020
825
+ ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ุบูŠุฑุช ุฅุดุงุฑุงุช
826
+
827
+ 233
828
+ 00:21:32,020 --> 00:21:36,060
829
+ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ูˆุจุฏู„ุช ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู…ูƒุงู†
830
+
831
+ 234
832
+ 00:21:36,060 --> 00:21:43,500
833
+ ุจุนุถ ุงู„ a ุจุงุฌูŠ ุจู†ุฒู„ู‡ุง ูƒู…ุง ูƒุงู†ุช ู„ู‡ุง zero ูˆุงุญุฏ ุงุซู†ูŠู†
834
+
835
+ 235
836
+ 00:21:43,500 --> 00:21:52,120
837
+ ูˆุงุญุฏ ู…ุตููˆูุฉ K ูƒู…ุง ู‡ูŠ ูˆุงุญุฏ ุงุซู†ูŠู† ูˆูŠุณุงูˆูŠ ุณุงู„ุจ ุชู„ุช
838
+
839
+ 236
840
+ 00:21:52,120 --> 00:21:57,980
841
+ ุฎู„ูŠูƒ ุจุฑุง ุชู…ุงู…ุŸ ุจูŠุถู„ ู„ุฃู† ู‡ู†ุง ุจุฏูŠ ุฃุถุฑุจ ุงู„ู…ุตููˆูุชูŠู†
842
+
843
+ 237
844
+ 00:21:57,980 --> 00:22:04,800
845
+ ู…ุซู„ุงู‹ ู‡ุฐุง ุงุซู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ููŠู‡
846
+
847
+ 238
848
+ 00:22:04,800 --> 00:22:09,880
849
+ ุจุฏูŠ ุฃุถุฑุจ ู‡ุฏูˆู„ ุงู„ู…ุตููˆูุชูŠู† ููŠ ุจุนุถ ูŠุจู‚ู‰ Zero ูˆุงุญุฏ ุงู„ู„ูŠ
850
+
851
+ 239
852
+ 00:22:09,880 --> 00:22:15,740
853
+ ู‡ูˆ ุจูˆุงุญุฏ ูŠุจู‚ู‰ Zero ูˆุงุซู†ูŠู† ูŠุจู‚ู‰ ููŠ ุงุซู†ูŠู† ูŠุจู‚ู‰ ุณุงู„ุจ
854
+
855
+ 240
856
+ 00:22:15,740 --> 00:22:21,440
857
+ ุงุซู†ูŠู† ูˆ ูˆุงุญุฏ ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ุงุซู†ูŠู† ูˆ ุงุซู†ูŠู† ูŠุจู‚ู‰ ูƒุฏู‡
858
+
859
+ 241
860
+ 00:22:21,440 --> 00:22:26,040
861
+ ุฅูŠุดุŸ ุฃุฑุจุนุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
862
+
863
+ 242
864
+ 00:22:26,040 --> 00:22:32,080
865
+ ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ ุทูˆู„ ููŠู‡ ู†ุถุฑุจ ุงู„ู…ุตููˆูุชูŠู† ู‡ุฏูˆู„ ููŠ ุจุนุถ
866
+
867
+ 243
868
+ 00:22:32,080 --> 00:22:39,630
869
+ ูŠุจู‚ู‰ ู‡ู†ุง ุงุซู†ูŠู† ูˆู‡ู†ุง ูˆุงุญุฏ ูŠุจู‚ู‰ ุซู„ุงุซุฉ ู‡ู†ุง ุฃุฑุจุนุฉ
870
+
871
+ 244
872
+ 00:22:39,630 --> 00:22:46,750
873
+ ูˆู†ุงู‚ุต ุฃุฑุจุนุฉ ูŠุจู‚ู‰ Zero ุชู…ุงู… ู‡ู†ุง ุตู ุซุงู†ูŠ ุณุงู„ุจ ูˆุงุญุฏ
874
+
875
+ 245
876
+ 00:22:46,750 --> 00:22:51,510
877
+ ูˆู…ูˆุฌุจ ูˆุงุญุฏ ูŠุจู‚ู‰ Zero ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ
878
+
879
+ 246
880
+ 00:22:51,510 --> 00:22:57,610
881
+ ุณุงู„ุจ ุงุซู†ูŠู† ูˆุณุงู„ุจ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุณุชุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
882
+
883
+ 247
884
+ 00:22:57,610 --> 00:23:03,690
885
+ ุนู†ุฏู†ุง ุฏู‡ ุจุฏูŠ ุฃุถุฑุจ ูƒู„ ุงู„ุนู†ุงุตุฑ ููŠ ุณุงู„ุจ ุทูˆู„ ูŠุจู‚ู‰ ู‡ุฐุง
886
+
887
+ 248
888
+ 00:23:03,690 --> 00:23:08,970
889
+ ุจูŠุนุทูŠูƒูˆุง ู‚ุฏ ุงูŠุดุŸ ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง Zero ูˆู‡ู†ุง Zero ุณุงู„ุจ
890
+
891
+ 249
892
+ 00:23:08,970 --> 00:23:14,230
893
+ ู…ุน ุณุงู„ุจ ู…ูˆุฌุจ ูˆู‡ู†ุง ุจุงุซู†ูŠู† ุงุทู„ุน ู„ูŠ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ
894
+
895
+ 250
896
+ 00:23:14,230 --> 00:23:18,810
897
+ ุงู„ุฑุฆูŠุณูŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงุซู†ูŠู† ู‡ูŠ ู‚ูŠู… main ุงู„ eigen value
898
+
899
+ 251
900
+ 00:23:18,810 --> 00:23:23,970
901
+ ุงู„ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุงู„ a is diagonalizable ูŠุจู‚ู‰
902
+
903
+ 252
904
+ 00:23:23,970 --> 00:23:31,720
905
+ ู‡ู†ุง ุงู„ู€ A is diagonalizable
906
+
907
+ 253
908
+ 00:23:31,720 --> 00:23:34,040
909
+ ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ
910
+
911
+ 254
912
+ 00:24:01,920 --> 00:24:11,060
913
+ ู†ุฃุฎุฐ ุงู„ู…ู„ุงุญุธุฉ ู‡ุฐู‡ remark it
914
+
915
+ 255
916
+ 00:24:11,060 --> 00:24:22,540
917
+ should be noted that it should be noted that ูŠุฌุจ
918
+
919
+ 256
920
+ 00:24:22,540 --> 00:24:29,060
921
+ ู…ู„ุงุญุธุฉ ุฃู† not every square matrix not every
922
+
923
+ 257
924
+ 00:24:32,360 --> 00:24:45,100
925
+ square matrix ู…ุด ูƒู„ ู…ุตููˆูุฉ ู…ุฑุจุนุฉ is similar to
926
+
927
+ 258
928
+ 00:24:45,100 --> 00:24:51,880
929
+ a diagonal matrix
930
+
931
+ 259
932
+ 00:24:51,880 --> 00:24:58,860
933
+ because ุงู„ุณุจุจ
934
+
935
+ 260
936
+ 00:25:01,690 --> 00:25:11,770
937
+ ุจุณุจุจ ุฃู† ู„ูŠุณ ูƒู„ ู…ู‚ุงุทุน ูƒู„ ู…ุฌู…ูˆุนุฉ
938
+
939
+ 261
940
+ 00:25:11,770 --> 00:25:19,870
941
+ ู„ุฏูŠู‡ุง
942
+
943
+ 262
944
+ 00:25:19,870 --> 00:25:26,650
945
+ ู…ุฌู…ูˆุนุฉ ูƒุงู…ู„ุฉ ูƒู…ุฌู…ูˆุนุฉ
946
+
947
+ 263
948
+ 00:25:31,150 --> 00:25:38,230
949
+ complete set of eigenvectors
950
+
951
+ 264
952
+ 00:25:38,230 --> 00:25:41,450
953
+ example
954
+
955
+ 265
956
+ 00:25:41,450 --> 00:25:48,430
957
+ is
958
+
959
+ 266
960
+ 00:25:48,430 --> 00:25:57,750
961
+ the matrix A ุชุณุงูˆูŠ
962
+
963
+ 267
964
+ 00:25:58,890 --> 00:26:07,490
965
+ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุตูุฑ ุงุซู†ูŠู† Similar to
966
+
967
+ 268
968
+ 00:26:07,490 --> 00:26:10,890
969
+ a diagonal matrix
970
+
971
+ 269
972
+ 00:26:36,780 --> 00:27:04,360
973
+ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ู„ุงุฒู… ุฎู„ุงุต ุฎู„ูŠ
974
+
975
+ 270
976
+ 00:27:04,360 --> 00:27:10,490
977
+ ุจุงู„ูƒู… ุงู„ู…ู„ุงุญุธุฉ ุงู„ู„ูŠ ูƒุชุจู†ุงู‡ุง ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุฌุงุจ ู„ูˆ ูƒุงู†
978
+
979
+ 271
980
+ 00:27:10,490 --> 00:27:13,810
981
+ ู‡ู†ุง ู…ุตููˆูุฉ ู…ุฑุจุนุฉ ู†ุธุงู… ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ู„ู‚ูŠู†ุงู‡ุง
982
+
983
+ 272
984
+ 00:27:13,810 --> 00:27:18,010
985
+ diagonalizable ู„ู…ุง ู†ุณุฃู„ ู‡ู„ ุงู„ู…ุตููˆูุฉ ุฏูŠ
986
+
987
+ 273
988
+ 00:27:18,010 --> 00:27:22,370
989
+ diagonalizable ูˆู„ุง ู„ุง ุฃู†ุง ุจูู‡ู… ู…ู†ู‡ุง ุดุบู„ุชูŠู† ุงู„ุดุบู„
990
+
991
+ 274
992
+ 00:27:22,370 --> 00:27:26,130
993
+ ุงู„ุฃูˆู„ู‰ ู‚ุฏ ุชูƒูˆู† diagonalizable ูˆู‚ุฏ ู„ุง ุชูƒูˆู†
994
+
995
+ 275
996
+ 00:27:26,130 --> 00:27:31,060
997
+ diagonalizable ุฅุฐุง ู…ุง ุจู†ู‚ุฏุฑ ู†ู‚ูˆู„ ู…ุด ูƒู„ ู…ุตููˆูุฉ
998
+
999
+ 276
1000
+ 00:27:31,060 --> 00:27:36,100
1001
+ similar to ุฃูŠ ู…ุตููˆูุฉ ุฃุฎุฑู‰ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃูˆ ุจู…ุนู†ู‰
1002
+
1003
+ 277
1004
+ 00:27:36,100 --> 00:27:41,760
1005
+ ุขุฎุฑ ู…ุด ูƒู„ ู…ุตููˆูุฉ ุจุชูƒูˆู† diagonalizable ุทูŠุจ ูƒูŠู ุจุฏู†ุง
1006
+
1007
+ 278
1008
+ 00:27:41,760 --> 00:27:46,300
1009
+ ู†ุซุจุช ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃูˆ ูƒูŠู ุจุฏู†ุง ู†ุจูŠู† ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ
1010
+
1011
+ 279
1012
+ 00:27:46,300 --> 00:27:49,120
1013
+ ุฅูŠุด ุจู‚ูˆู„ ู„ูŠ ู‡ู†ุง ููŠ ุงู„ู…ู„ุงุญุธุฉ ุฏูŠุŸ
1014
+
1015
+ 280
1016
+ 00:27:57,900 --> 00:28:07,700
1017
+ ู…ุด ูƒู„ ู…ุตููˆูุฉ ู…ุฑุจุนุฉ ู…ุดูƒู„ุฉ ู…ุด ูƒู„ ู…ุตููˆูุฉ
1018
+
1019
+ 281
1020
+ 00:28:07,700 --> 00:28:11,600
1021
+ ู…ุฑุจุนุฉ ู…ุดูƒู„ุฉ
1022
+
1023
+ 282
1024
+ 00:28:11,600 --> 00:28:12,280
1025
+ ู…ุด ูƒู„
1026
+
1027
+ 283
1028
+ 00:28:14,720 --> 00:28:18,640
1029
+ square matrix ุงู„ู…ุตููˆูุฉ ุงู„ู…ุฑุจุนุฉ ูˆ complete set of
1030
+
1031
+ 284
1032
+ 00:28:18,640 --> 00:28:24,120
1033
+ eigenvalues ุชุนุงู„ูŽ ู†ุชุฑุฌู… ู‡ุฐุง ุงู„ูƒู„ุงู… ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน
1034
+
1035
+ 285
1036
+ 00:28:24,120 --> 00:28:27,100
1037
+ ุงู„ู…ุนุทูŠู†ูŠ ุงู„ู…ุตููˆูุฉ ูˆุฌุงู„ูŠ ูŠุดูˆู ู„ูŠ ู‡ู„ ู‡ุฐู‡
1038
+
1039
+ 286
1040
+ 00:28:27,100 --> 00:28:32,180
1041
+ diagonalizable ูˆู„ุง not diagonalizable ุฅุฐุง ุจุฏูŠ ุฃู…ุดูŠ
1042
+
1043
+ 287
1044
+ 00:28:32,180 --> 00:28:35,940
1045
+ ู…ุซู„ ู…ุง ู…ุดูŠุช ููŠ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุทูˆู‰ ุดูˆู ุญุงู„ูŠ ุฅู„ู‰ ูˆูŠู†
1046
+
1047
+ 288
1048
+ 00:28:35,940 --> 00:28:41,280
1049
+ ุจุฏูŠ ุฃูˆุตู„ ู‡ู„ ุจู‚ุฏุฑ ุฃูƒู…ู„ ูˆู„ุง ุจู‚ุฏุฑุด ุฃูƒู…ู„ ุฅุฐุง ู…ุง ู‚ุฏุฑุด
1050
+
1051
+ 289
1052
+ 00:28:41,280 --> 00:28:45,360
1053
+ ุฃูƒู…ู„ ุฅูŠุด ุงู„ุดูŠุก ุงู„ู„ูŠ ุฎู„ุงู†ูŠ ู…ุง ู‚ุฏุฑุด ุฃูƒู…ู„ ุงู„ุญูƒูŠ ุชุจุนูŠ
1054
+
1055
+ 290
1056
+ 00:28:45,360 --> 00:28:52,280
1057
+ ุจู‚ูˆู„ ู„ู‡ ุจุณูŠุทุฉ ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุฃุจุฏุฃ ุจ lambda I ู†ุงู‚ุต ุงู„ a
1058
+
1059
+ 291
1060
+ 00:28:52,280 --> 00:29:02,480
1061
+ ูŠุจู‚ู‰ ุงู„ู„ูŠ ู‡ูŠ mean lambda 00 lambda ู†ุงู‚ุต ุงู„ a 2302
1062
+
1063
+ 292
1064
+ 00:29:02,480 --> 00:29:10,830
1065
+ ูˆูŠุณุงูˆูŠ ู‡ู†ุง lambda ู†ุงู‚ุต ุงุซู†ูŠู† ูˆู‡ู†ุง ู†ุงู‚ุต ุซู„ุงุซุฉ ูˆ Zero
1066
+
1067
+ 293
1068
+ 00:29:10,830 --> 00:29:16,590
1069
+ ูƒุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ู†ุง lambda ู†ุงู‚ุต ุงุซู†ูŠู† ุจุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
1070
+
1071
+ 294
1072
+ 00:29:16,590 --> 00:29:25,080
1073
+ ู‡ุฐุง ุจุฏูŠ ุขุฎุฐ ุงู„ู…ุญุฏุฏ ูŠุจู‚ู‰ determinant ู„ู€ lambda I ู†ุงู‚ุต
1074
+
1075
+ 295
1076
+ 00:29:25,080 --> 00:29:32,580
1077
+ ุงู„ a ูˆูŠุณุงูˆูŠ ุงู„ู…ุญุฏุฏ lambda ู†ุงู‚ุต ุงุซู†ูŠู† ู†ุงู‚ุต ุซู„ุงุซุฉ Zero
1078
+
1079
+ 296
1080
+ 00:29:32,580 --> 00:29:39,270
1081
+ lambda ู†ุงู‚ุต ุงุซู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐุง lambda ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„
1082
+
1083
+ 297
1084
+ 00:29:39,270 --> 00:29:45,470
1085
+ ุชุฑุจูŠุน ู†ุงู‚ุต ุงู„ Zero ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‘ู‡ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰
1086
+
1087
+ 298
1088
+ 00:29:45,470 --> 00:29:51,210
1089
+ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ lambda ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุน ูŠุณุงูˆูŠ
1090
+
1091
+ 299
1092
+ 00:29:51,210 --> 00:29:56,410
1093
+ Zero ู‡ุฐู‡ ู…ุนุงุฏู„ุฉ ู…ู† ุฃูŠ ุฏุฑุฌุฉุŸ ู…ู† ุฏุฑุฌุฉ ุงุซู†ูŠู† ูŠุจู‚ู‰ ู„ู‡ุง ูƒู…
1094
+
1095
+ 300
1096
+ 00:29:56,410 --> 00:30:00,890
1097
+ ุญู„ุŸ ุญู„ูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู„ู‡ุง ุญู„ูŠู†
1098
+
1099
+ 301
1100
+ 00:30:05,540 --> 00:30:12,540
1101
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจู†ุงุก ุนู„ูŠู‡ ุฃู† lambda ูˆุงุญุฏ ุชุณุงูˆูŠ
1102
+
1103
+ 302
1104
+ 00:30:12,540 --> 00:30:19,850
1105
+ lambda ุงุซู†ูŠู† ุชุณุงูˆูŠ ุงุซู†ูŠู† ุจู†ุงุก ุนู„ูŠู‡ ุณุฃุญุตู„ ุนู„ู‰
1106
+
1107
+ 303
1108
+ 00:30:19,850 --> 00:30:27,190
1109
+ ุงู„ eigenvectors ุงู„ู…ู†ุงุธุฑุฉ ู„ู…ู†ุŸ ู„ู€ lambda ุชุณุงูˆูŠ ุงุซู†ูŠู†
1110
+
1111
+ 304
1112
+ 00:30:27,190 --> 00:30:32,930
1113
+ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง ู„ูˆ ุฃุฎุฐู†ุง lambda ูˆุงุญุฏ ุชุณุงูˆูŠ ุงุซู†ูŠู†
1114
+
1115
+ 305
1116
+ 00:30:32,930 --> 00:30:40,090
1117
+ ุชู…ุงู…ุŸ ุจุฏูŠ ุฃุฑูˆุญ ุขุฎุฐ ู…ู†ุŸ lambda I ู†ุงู‚ุต ุงู„ู€ A ููŠ ุงู„ู€ X
1118
+
1119
+ 306
1120
+ 00:30:40,090 --> 00:30:47,130
1121
+ ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‘ู‡ ูŠุณุงูˆูŠ Zero ู‡ุฐุง ุจุฏู‘ู‡ ูŠุนุทูŠู†ูŠ lambda
1122
+
1123
+ 307
1124
+ 00:30:47,130 --> 00:30:52,150
1125
+ ุงูŠ ู†ุงู‚ุต ู„ู‡ุง ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ู‡ุดูŠู„ lambda ู‡ุฐู‡ ูˆุฃูƒุชุจ
1126
+
1127
+ 308
1128
+ 00:30:52,150 --> 00:30:58,540
1129
+ ู…ูƒุงู†ู‡ุง ู‚ุฏ ุงูŠุดุŸ ูˆุฃูƒุชุจ ู…ูƒุงู†ู‡ุง ุงุซู†ูŠู† ุจูŠุตูŠุฑ ู‡ุงูŠู‡ุง ู‡ุงูŠ
1130
+
1131
+ 309
1132
+ 00:30:58,540 --> 00:31:02,240
1133
+ lambda ู†ุงู‚ุต ุงุซู†ูŠู† ูˆู„ุง ุดูŠุก ุชู‚ูˆู„ูŠ ู…ู† ูˆูŠู† ุงุฌุช ูˆู‡ู†ุง
1134
+
1135
+ 310
1136
+ 00:31:02,240 --> 00:31:10,760
1137
+ ู†ุงู‚ุต ุซู„ุงุซุฉ ูˆู‡ู†ุง Zero ูˆู‡ู†ุง lambda ู†ุงู‚ุต ุงุซู†ูŠู† ูˆู‡ุงุฏ
1138
+
1139
+ 311
1140
+ 00:31:10,760 --> 00:31:16,820
1141
+ ุงู„ X ูˆุงุญุฏ X ุงุซู†ูŠู† ุจุฏู‡ุง ุชุณุงูˆูŠ Zero ูˆ Zero ุจุงู„ุดูƒู„
1142
+
1143
+ 312
1144
+ 00:31:16,820 --> 00:31:21,810
1145
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ู„ู…ุง lambda ุชุณุงูˆูŠ ุงุซู†ูŠู† ุจูŠุตูŠุฑ
1146
+
1147
+ 313
1148
+ 00:31:21,810 --> 00:31:26,970
1149
+ ุงู„ู…ุตููˆูุฉ ู„ุฃู†ู‡ุง ุชุจู‚ู‰ ูƒู…ุŸ Zero ูˆู‡ุฐู‡ ุณุงู„ุจ ุซู„ุงุซุฉ ูˆู‡ุฐู‡
1150
+
1151
+ 314
1152
+ 00:31:26,970 --> 00:31:33,690
1153
+ Zero ูˆู‡ุฐู‡ Zero ููŠ X ูˆุงุญุฏ X ุงุซู†ูŠู† ุจุฏู‡ุง ุชุณุงูˆูŠ Zero ูˆ
1154
+
1155
+ 315
1156
+ 00:31:33,690 --> 00:31:39,730
1157
+ Zero ูŠุจู‚ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจูŠุนุทูŠู†ุง ู…ูŠู†ุŸ
1158
+
1159
+ 316
1160
+ 00:31:39,730 --> 00:31:45,130
1161
+ ุจูŠุนุทูŠู†ุง ุณุงู„ุจ ุซู„ุงุซุฉ X ุงุซู†ูŠู† ูŠุณุงูˆูŠ Zero ููŠ ุบูŠุฑ ู‡ูŠ
1162
+
1163
+ 317
1164
+ 00:31:45,130 --> 00:31:51,940
1165
+ ูƒุฏู‡ุŸ ู…ุง ุฃุนุทุงู†ูŠุด ุฅู„ุง ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ุจู…ุฌู‡ูˆู„ ูˆุงุญุฏ ูƒู„
1166
+
1167
+ 318
1168
+ 00:31:51,940 --> 00:31:57,060
1169
+ ุงู„ู„ูŠ ุจู‚ุฏุฑ ุฃู‚ูˆู„ู‡ ู…ู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุฃู† ุงู„ X2 ุจุฏู‡ุง ุชุณุงูˆูŠ
1170
+
1171
+ 319
1172
+ 00:31:57,060 --> 00:32:05,550
1173
+ ู‚ุฏ ุงูŠุดุŸ ุทุจ ูˆุงู„ X1 ุฃูŠ ุฑู‚ู…ุŸ ู…ูŠู† ู…ูƒุงู† ูŠูƒูˆู† ูŠุจู‚ู‰ ุจุงุฌูŠ
1174
+
1175
+ 320
1176
+ 00:32:05,550 --> 00:32:14,170
1177
+ ุจู‚ูˆู„ ู„ู‡ and X ุงุซู†ูŠู† ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ A say ู…ุซู„ุงู‹ ูŠุนู†ูŠ ุงู‡
1178
+
1179
+ 321
1180
+ 00:32:14,170 --> 00:32:17,270
1181
+ ูˆู‚ุน ูƒูŠูุŸ ุจุณู…ุน
1182
+
1183
+ 322
1184
+ 00:32:19,810 --> 00:32:31,730
1185
+ ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1
1186
+
1187
+ 323
1188
+ 00:32:31,730 --> 00:32:40,890
1189
+ ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰ X1
1190
+
1191
+ 324
1192
+ 00:32:40,890 --> 00:32:43,450
1193
+ ูŠุจู‚ู‰ X1 ูŠุจู‚ู‰
1194
+
1195
+ 325
1196
+ 00:32:46,580 --> 00:32:55,980
1197
+ ุชูˆ lambda ูˆุงุญุฏ ุชุณุงูˆูŠ ุงุซู†ูŠู† are in the form ุนู„ู‰
1198
+
1199
+ 326
1200
+ 00:32:55,980 --> 00:33:04,040
1201
+ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ X ูˆุงุญุฏ X ุงุซู†ูŠู† ูŠุณุงูˆูŠ X ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุจู€
1202
+
1203
+ 327
1204
+ 00:33:04,040 --> 00:33:09,700
1205
+ A ูˆ X ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุจู‚ุฏ ุงูŠุดุŸ ุจ Zero ุงู„ู„ูŠ ูŠุณุงูˆูŠ A ููŠ
1206
+
1207
+ 328
1208
+ 00:33:09,700 --> 00:33:14,260
1209
+ ูˆุงุญุฏ Zero ุทุจ
1210
+
1211
+ 329
1212
+ 00:33:14,260 --> 00:33:21,480
1213
+ lambda ู…ูƒุฑุฑุฉ ูŠุจู‚ู‰ ุงู„ุซุงู†ูŠุฉ ุฒูŠู‡ุง ุตุญ ูˆู„ุง ู„ุฃุŸ ูŠุจู‚ู‰ also
1214
+
1215
+ 330
1216
+ 00:33:21,480 --> 00:33:28,240
1217
+ the eigenvectors
1218
+
1219
+ 331
1220
+ 00:33:28,240 --> 00:33:35,900
1221
+ corresponding to
1222
+
1223
+ 332
1224
+ 00:33:35,900 --> 00:33:45,480
1225
+ lambda ุงุซู†ูŠู† ุชุณุงูˆูŠ ุงุซู†ูŠู† are in the four
1226
+
1227
+ 333
1228
+ 00:33:47,770 --> 00:33:54,870
1229
+ ูŠุจู‚ู‰ ุฃุตุจุญุช ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจูŠ ู…ุซู„ุงู‹ ู„ูƒู† ู‡ูŠ
1230
+
1231
+ 334
1232
+ 00:33:54,870 --> 00:34:00,370
1233
+ ู‡ูŠ ู†ูุณู‡ุง ู…ุง ุชุบูŠุฑุชุด ูŠุจู‚ู‰ ู„ูŠุณ ุจูŠ ูˆุฅู†ู…ุง ุฅูŠู‡ุŸ ููŠ ูˆุงุญุฏ
1234
+
1235
+ 335
1236
+ 00:34:00,370 --> 00:34:01,070
1237
+ ุตูุฑ
1238
+
1239
+ 336
1240
+ 00:34:04,190 --> 00:34:09,650
1241
+ ุทูŠุจ ุชุนุงู„ูŽ ู†ุดูˆู ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุดูˆ ุดูƒู„ ุงู„ู…ุตููˆูุฉ K
1242
+
1243
+ 337
1244
+ 00:34:09,650 --> 00:34:14,310
1245
+ ุงู„ู…ุตููˆูุฉ K ุจุญุท ููŠู‡ุง ุงู„ Eigen vectors ู…ุธุจูˆุทุฉ ูˆู„ุง ู„ุฃุŸ
1246
+
1247
+ 338
1248
+ 00:34:14,310 --> 00:34:24,210
1249
+ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู…ุตููˆูุฉ K ุจุฏู‡ุง ุชุณุงูˆูŠ 1 0 1 0
1250
+
1251
+ 339
1252
+ 00:34:24,210 --> 00:34:26,070
1253
+ ุชู…ุงู…
1254
+
1255
+ 340
1256
+ 00:34:28,060 --> 00:34:32,700
1257
+ ู„ูˆ ุฑุฌุนู†ุง ู„ู€ a similar to b ูŠู‚ูˆู„ ู„ู†ุง if there exists a
1258
+
1259
+ 341
1260
+ 00:34:32,700 --> 00:34:38,620
1261
+ non singular matrix K such that ุชู…ุงู…ุŸ ุจุฏู†ุง ู†ุดูˆู ู‡ู„
1262
+
1263
+ 342
1264
+ 00:34:38,620 --> 00:34:42,220
1265
+ ู‡ุฐู‡ singular ูˆู„ุง non singular
1266
+
1267
+ 343
1268
+ 00:34:44,480 --> 00:34:49,600
1269
+ ูŠุจู‚ู‰ ุงุญู†ุง ุจู†ุงุช ู‡ู†ุง ุทู„ุนู†ุง ุงู„ู…ุตููˆูุฉ K ุชุจุนุช ุงู„
1270
+
1271
+ 344
1272
+ 00:34:49,600 --> 00:34:54,480
1273
+ eigenvectors ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุฌูŠู†ุง ุฃุฎุฐู†ุง
1274
+
1275
+ 345
1276
+ 00:34:54,480 --> 00:34:59,300
1277
+ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ู„ู‡ุง ูˆุฌูŠู†ุง ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ Zero
1278
+
1279
+ 346
1280
+ 00:34:59,300 --> 00:35:03,780
1281
+ ู…ุฏุงู… ุงู„ู…ุญุฏุฏ Zero ูŠุนู†ูŠ ุงู„ K inverse does not exist
1282
+
1283
+ 347
1284
+ 00:35:03,780 --> 00:35:09,760
1285
+ ู„ุฃู† ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู„ู‡ุง ู…ุนูƒูˆุณ ู‡ูŠ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู…ุญุฏุฏู‡ุง
1286
+
1287
+ 348
1288
+ 00:35:09,760 --> 00:35:15,700
1289
+ ู„ุง ูŠุณุงูˆูŠ Zero ุชู…ุงู…ุŸ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูŠุจู‚ู‰ ุฌู‡ุฏูŠ ู…ุด ู…ูˆุฌูˆุฏุฉุŒ
1290
+
1291
+ 349
1292
+ 00:35:15,700 --> 00:35:20,980
1293
+ ู…ุฏู† ู…ุด ู…ูˆุฌูˆุฏุฉุŒ ุฅุฐุง ู„ุง ูŠู…ูƒู† ุชุจู‚ู‰ ุงู„ู…ุตููˆูุฉ similar to
1294
+
1295
+ 350
1296
+ 00:35:20,980 --> 00:35:24,560
1297
+ a diagonal matrix ุฃูˆ ุงู„ู…ุตููˆูุฉ ุจู‚ูˆู„ ุนู†ู‡ุง ู‡ูŠ
1298
+
1299
+ 351
1300
+ 00:35:24,560 --> 00:35:29,160
1301
+ diagonalizable ูŠุนุทูŠูƒู… ุงู„ุนุงููŠุฉ
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/9ztjtNMsYXg.srt ADDED
@@ -0,0 +1,1628 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:19,760 --> 00:00:25,200
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ู†ุชู‚ู„ ุงู„ุขู† ุฅู„ู‰ ุดุจุชุฑ ุชุณุนุฉ
4
+
5
+ 2
6
+ 00:00:25,200 --> 00:00:31,020
7
+ ุดุจุชุฑ ุชุณุนุฉ ูŠุชุญุฏุซ ุนู† ู„ุงุจู„ุงุณ transforms ุชุญูˆูŠู„ุงุช
8
+
9
+ 3
10
+ 00:00:31,020 --> 00:00:36,440
11
+ ู„ุงุจู„ุงุณ ุงู„ุชุญูˆูŠู„ุงุช ู‡ุฐู‡ุŸ ู‡ุฐู‡ ุฃุญูŠุงู†ู‹ุง ุจูŠูƒูˆู† ุงู„ุฏุงู„ุฉ
12
+
13
+ 4
14
+ 00:00:36,440 --> 00:00:41,860
15
+ ุตุนุจุฉ ุงู„ุชุนุงู…ู„ ู…ุนู‡ุง ูู†ุญูˆู„ู‡ุง ุฅู„ู‰ ุตูˆุฑุฉ ู…ูƒุงูุฆุฉ ู„ู‡ุง
16
+
17
+ 5
18
+ 00:00:41,860 --> 00:00:46,520
19
+ ุณู‡ู„ ุงู„ุชุนุงู…ู„ ู…ุนู‡ุง ู‡ุฐู‡ ุงู„ุชุญูˆูŠู„ุฉ ู†ุณู…ูŠู‡ุง ุชุญูˆูŠู„ุฉ
20
+
21
+ 6
22
+ 00:00:46,520 --> 00:00:51,580
23
+ Laplace ู„ุฃู† ู‡ูˆ ุงู„ุฐูŠ ุงูƒุชุดู ุงู„ุดุบู„ ู‡ุฐู‡. ู†ุฃุฎุฐ ุฃูˆู„
24
+
25
+ 7
26
+ 00:00:51,580 --> 00:00:55,340
27
+ section ููŠ ู‡ุฐุง ุงู„ุดุจุชุฑ ุงู„ู„ูŠ ู‡ูˆ the Laplace transform
28
+
29
+ 8
30
+ 00:00:55,340 --> 00:01:00,700
31
+ ุณู†ุนุทูŠ ุชุนุฑูŠู ูˆู…ู† ุซู… ู†ุฃุฎุฐ ุฃู…ุซู„ุฉ ู…ุฎุชู„ูุฉ ุนู„ู‰ ูƒูŠููŠุฉ
32
+
33
+ 9
34
+ 00:01:00,700 --> 00:01:07,060
35
+ ุญุณุงุจ the Laplace transform ู„ู„ุฏูˆุงู„ ุงู„ู…ุฎุชู„ูุฉ. ูŠู‚ูˆู„
36
+
37
+ 10
38
+ 00:01:07,060 --> 00:01:11,000
39
+ ุงูุชุฑุถ ุฃู† ุงู„ู€ f of t ู‡ูŠ function ู…ุนุฑูุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ
40
+
41
+ 11
42
+ 00:01:11,000 --> 00:01:15,830
43
+ ู…ู† zero ุฅู„ู‰ infinity. Laplace transform the function f
44
+
45
+ 12
46
+ 00:01:15,830 --> 00:01:20,670
47
+ of t denoted by ูŠุจู‚ู‰ Laplace transform ู„ุฏุงู„ุฉ f of
48
+
49
+ 13
50
+ 00:01:20,670 --> 00:01:26,870
51
+ t ู†ุนุทูŠู‡ ุฑู…ุฒ L of f of t ูŠุนู†ูŠ Laplace ู„ู€ F of T
52
+
53
+ 14
54
+ 00:01:26,870 --> 00:01:32,330
55
+ ุงู„ู€ L ู‡ุฐู‡ ุงู„ุญุฑู ุงู„ุฃูˆู„ ู„ูƒู„ู…ุฉ Laplace ุฃูˆ capital F
56
+
57
+ 15
58
+ 00:01:32,330 --> 00:01:36,650
59
+ of S ูŠุนู†ูŠ ู†ุนุชุจุฑู‡ function ููŠ ู…ู†ุŸ function ููŠ S
60
+
61
+ 16
62
+ 00:01:36,650 --> 00:01:41,010
63
+ ู„ู…ุงุฐุง function ููŠ SุŸ ู‡ุฐุง ู…ุซู„ู‹ุง ู†ุฌูŠุจ ุนู„ูŠู‡ ุจุนุฏ ู‚ู„ูŠู„
64
+
65
+ 17
66
+ 00:01:41,580 --> 00:01:45,760
67
+ ูŠู‚ูˆู„ ู„ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ุงู„ู€ F of T ุฃูˆ ุงู„ู€ F of S is
68
+
69
+ 18
70
+ 00:01:45,760 --> 00:01:52,680
71
+ defined by ูƒุงุจูŠุชุงู„ F of S ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ู…ู† 0 ุฅู„ู‰ ุฅู†ููŠู†ูŠุชูŠ
72
+
73
+ 19
74
+ 00:01:52,680 --> 00:01:58,620
75
+ ู„ู„ู€ E ู†ุงู‚ุต ST ู„ู„ู€ F of T ุฏูŠ T ุญูŠุซ S parameter ุฃูˆ any
76
+
77
+ 20
78
+ 00:01:58,620 --> 00:02:03,100
79
+ real number. ู‡ุฐุง ุงู„ุขู† ูˆุงุถุญ ุฃู†ู‡ improper integral
80
+
81
+ 21
82
+ 00:02:03,100 --> 00:02:04,340
83
+ ุจุณุจุจ ูˆุฌูˆุฏ man
84
+
85
+ 22
86
+ 00:02:12,050 --> 00:02:16,210
87
+ ุนู† ุทุฑูŠู‚ ุงู„ู€ Limit ุจูŠุจุฏุฃ ุชุฐู‡ุจ ุฅู„ู‰ ุงู„ู€ Infinity ู„ู…ู†ุŸ
88
+
89
+ 23
90
+ 00:02:16,210 --> 00:02:17,850
91
+ ู„ุชูƒุงู…ู„ ู…ู† Zero ุฅู„ู‰ B
92
+
93
+ 24
94
+ 00:02:21,360 --> 00:02:26,240
95
+ ู†ูุฎู„ูŠ P ุชุฑูˆุญ ู„ู€ Infinity ูˆุจุงู„ุชุงู„ูŠ ุฃูˆุฌุฏู†ุง ู„ู€ Laplace
96
+
97
+ 25
98
+ 00:02:26,240 --> 00:02:31,460
99
+ transform. ู†ุชูŠุฌุชูŠ ุงู„ุชูƒุงู…ู„ ู„ุงุฒู… ุชุทู„ุน function ููŠ S
100
+
101
+ 26
102
+ 00:02:31,460 --> 00:02:37,320
103
+ ูˆู…ู† ู‡ู†ุง ู‚ูˆู„ู†ุง F of S ุถุฑูˆุฑูŠ ุฌุฏุง ู„ุงุฒู… ุชุทู„ุน function
104
+
105
+ 27
106
+ 00:02:37,320 --> 00:02:41,650
107
+ ููŠ S ุฒูŠ ู…ุง ู‡ู†ุดูˆู ุงู„ุขู†. ุฃูˆู„ ู…ุซุงู„ ู‚ุงู„ ู„ูŠ ุฎุฐ ู„ู„ู€ F of T
108
+
109
+ 28
110
+ 00:02:41,650 --> 00:02:45,450
111
+ ูˆ ุณูˆ E ุฃุณ AT ูˆ T greater than or equal to zero
112
+
113
+ 29
114
+ 00:02:45,450 --> 00:02:49,770
115
+ ู‚ุงู„ ู„ูŠ ู‡ุงุชูŠ ู„ุงุจู„ุงุณ ู„ู„ู€ E ุฃุณ AT ุทุจุนู‹ุง ุงู„ู€ area number
116
+
117
+ 30
118
+ 00:02:49,770 --> 00:02:54,470
119
+ ูˆ ู‡ุงุชูŠ ู„ุงุจู„ุงุณ ู„ู„ูˆุงุญุฏ ูˆ ู„ุงุจู„ุงุณ ู„ู€ E ุฃุณ ู†ุงู‚ุต AT ูˆ
120
+
121
+ 31
122
+ 00:02:54,470 --> 00:02:58,630
123
+ ู„ุงุจู„ุงุณ ู„ู€ E ุฃุณ ู†ุงู‚ุต ุฎู…ุณุฉ T. ูŠุนู†ูŠ ุชุทุจูŠู‚ ู…ุจุงุดุฑ ุฏูŠ
124
+
125
+ 32
126
+ 00:02:58,630 --> 00:03:05,000
127
+ ุชุทุจูŠู‚ ู…ุจุงุดุฑ ุนู„ู‰ C. ุฅุฐุง ุจุฏุฃู†ุง ู†ุญุณุจ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
128
+
129
+ 33
130
+ 00:03:05,000 --> 00:03:11,760
131
+ ู„ู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ู‡ุฐุง ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ู€ E ุฃูุณ AT
132
+
133
+ 34
134
+ 00:03:11,760 --> 00:03:16,520
135
+ ุจุฏูŠ ุฃุฑุฌุน ู„ู„ุชุนุฑูŠู ูŠุจู‚ู‰ ู‡ูˆ ุชูƒุงู…ู„ ู…ู† Zero ุฅู„ู‰
136
+
137
+ 35
138
+ 00:03:16,520 --> 00:03:23,180
139
+ Infinity ู„ู„ู€ E ุฃูุณ ู†ุงู‚ุต ST ุงู„ู€ F of T ุฃู†ุง ู…ุงุฎุฐู‡ุง E
140
+
141
+ 36
142
+ 00:03:23,180 --> 00:03:26,340
143
+ ุฃูุณ AT ูƒู„ู‡ ููŠ DT
144
+
145
+ 37
146
+ 00:03:34,330 --> 00:03:40,950
147
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ limit ูˆู‡ูŠ ุชูƒุงู…ู„ ู…ู† zero
148
+
149
+ 38
150
+ 00:03:40,950 --> 00:03:49,630
151
+ ุฅู„ู‰ B ู„ู…ุง B tends to infinity ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต S ู†ุงู‚ุต
152
+
153
+ 39
154
+ 00:03:49,630 --> 00:03:57,170
155
+ A ูƒู„ู‡ ููŠ T dt. ูŠุจู‚ู‰ ูƒุชุงุจุฉ ู‡ุฐุง ุงู„ุชูƒุงู…ู„ ุนู„ู‰ ุดูƒู„ limit
156
+
157
+ 40
158
+ 00:03:57,170 --> 00:04:02,750
159
+ ูŠุนู†ูŠ ุจุฏูŠ ุฃูƒุงู…ู„ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุซู… ุฃุฑูˆุญ ุขุฎุฐ ู„ู‡ุง ุงู„ู€ limit
160
+
161
+ 41
162
+ 00:04:02,750 --> 00:04:10,770
163
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ. ูŠุจู‚ู‰ ู„ุงุจู„ุงุณ ู„ู„ู€ E ุฃูุณ AT ุจุฏู‡
164
+
165
+ 42
166
+ 00:04:10,770 --> 00:04:15,490
167
+ ูŠุณุงูˆูŠ ู‡ูŠ ุงู„ู€ limit ูˆู‡ุฐุง ุงู„ู€ B ุจุฏู‡ุง ุชุฑูˆุญ ู„ู„ู€ infinity
168
+
169
+ 43
170
+ 00:04:16,130 --> 00:04:20,470
171
+ ุฃุธู† ูŠุง ุจู†ุงุช ุชูƒุงู…ู„ ุงู„ู€ exponential ุจู†ูุณ ุงู„ู€
172
+
173
+ 44
174
+ 00:04:20,470 --> 00:04:26,830
175
+ exponential itself ู…ู‚ุณูˆู…ุง ุนู„ู‰ ุชูุงุถู„ S ุฅู† ูƒุงู†ุช ุงู„ู€S
176
+
177
+ 45
178
+ 00:04:26,830 --> 00:04:30,710
179
+ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ูˆุฒูŠ ู…ุง ุฃู†ุชู… ุดุงูŠููŠู† ู‡ูˆ ู…ู† ุงู„ุฏุฑุฌุฉ
180
+
181
+ 46
182
+ 00:04:30,710 --> 00:04:37,230
183
+ ุงู„ุฃูˆู„ู‰ ููŠ T ูŠุจู‚ู‰ ู…ู‚ุณูˆู…ุง ุนู„ู‰ ู†ุงู‚ุต ุงู„ู€ S ู†ุงู‚ุต ุงู„ู€ A
184
+
185
+ 47
186
+ 00:04:37,230 --> 00:04:43,240
187
+ ูˆุงู„ุญูƒูŠ ู‡ุฐุง ูƒู„ู‡ ู…ู† Zero ู„ูˆูŠู†ุŸ ู…ู† Zero ู„ุบุงูŠุฉ B. ุฅุฐุง
188
+
189
+ 48
190
+ 00:04:43,240 --> 00:04:48,160
191
+ ุจุฏู†ุง ู†ุนูˆุถ ุจุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ
192
+
193
+ 49
194
+ 00:04:48,160 --> 00:04:54,100
195
+ ุงู„ู€ limit ู„ู…ุง B tends to infinity ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต S
196
+
197
+ 50
198
+ 00:04:54,100 --> 00:05:01,260
199
+ ู†ุงู‚ุต ุงู„ู€ A ููŠ B ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ู†ุงู‚ุต ุงู„ู€ S ู†ุงู‚ุต ุงู„ู€ A
200
+
201
+ 51
202
+ 00:05:01,260 --> 00:05:06,850
203
+ ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฆุฏ. ุจุฏูŠ ุฃุดูŠู„ ุงู„ู€ T ูˆุฃุถุน
204
+
205
+ 52
206
+ 00:05:06,850 --> 00:05:10,950
207
+ ู…ูƒุงู†ู‡ุง Zero ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ Laplace ูŠุตุจุญ E ูˆ ุงู„ู€ Zero
208
+
209
+ 53
210
+ 00:05:10,950 --> 00:05:19,350
211
+ ูŠุจู‚ู‰ ุฏุงุดุฑ ุจูˆุงุญุฏ ูŠุจู‚ู‰ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ S ู†ุงู‚ุต ุงู„ู€ A
212
+
213
+ 54
214
+ 00:05:19,350 --> 00:05:24,630
215
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง. ูŠุจู‚ู‰ ุฃุตุจุญ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
216
+
217
+ 55
218
+ 00:05:24,630 --> 00:05:32,370
219
+ ู„ู„ุฏุงู„ุฉ E ุฃุณ A T ุจุฏูŠ ุฃุณุงูˆูŠ ุทุจุนู‹ุง ู‡ุฐุง ุงู„ู€ O ุงู„ุณุงู„ุจ ู…ู…ูƒู†
220
+
221
+ 56
222
+ 00:05:32,370 --> 00:05:37,110
223
+ ุฃู†ุฒู„ู‘ู‡ ุชุญุช ุฅูŠุด ุจูŠุตูŠุฑุŸ ุจูŠุตูŠุฑ ู…ูˆุฌุจ. ูŠุจู‚ู‰ ุจูŠุตูŠุฑ limit
224
+
225
+ 57
226
+ 00:05:37,110 --> 00:05:45,870
227
+ ู„ู…ุง B tends to infinity ู„ูˆุงุญุฏ ุนู„ู‰ ู†ุงู‚ุต ุงู„ู€ S ู†ุงู‚ุต
228
+
229
+ 58
230
+ 00:05:45,870 --> 00:05:55,990
231
+ ุงู„ู€ A ููŠ E ุฃุณ S ู†ุงู‚ุต ุงู„ู€ A ูƒู„ู‡ ููŠ B ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ S
232
+
233
+ 59
234
+ 00:05:55,990 --> 00:06:01,940
235
+ ู†ุงู‚ุต ุงู„ู€ A. ุงู„ุญูŠู† ู„ู…ุง ุจูŠุจุฏุฃ ุชุฑูˆุญ ู„ู€ zero ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
236
+
237
+ 60
238
+ 00:06:01,940 --> 00:06:09,220
239
+ ูƒู„ู‡ ุจู‚ุฏุงุดุŸ ู„ู…ุง ุชุฑูˆุญ ู„ู…ุงู„ู‡ุง ู†ู‡ุงูŠุฉ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูƒู„ู‡
240
+
241
+ 61
242
+ 00:06:09,220 --> 00:06:10,940
243
+ ู…ุงู„ู‡ุง ู†ู‡ุงูŠุฉ ููŠ ุฑู‚ู…
244
+
245
+ 62
246
+ 00:06:14,430 --> 00:06:19,930
247
+ ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ู‡ ุฑุงุญ ุจุฒูŠุฑูˆ ูŠุจู‚ู‰ ุถู„ู‘ุช ุงู„ู†ุชูŠุฌุฉ ูˆุงุญุฏ ุนู„ู‰ S
248
+
249
+ 63
250
+ 00:06:19,930 --> 00:06:25,550
251
+ ู†ุงู‚ุต ุงู„ู€ A ุจุดุฑุท ุฃู† ุงู„ู€ S is greater than A ูŠุจู‚ู‰ ุจู†ุงุก
252
+
253
+ 64
254
+ 00:06:25,550 --> 00:06:29,510
255
+ ุนู„ูŠู‡ ู…ู† ุงู„ุขู† ูุตุงุนุฏู‹ุง Laplace transform ู„ู„ู€
256
+
257
+ 65
258
+ 00:06:29,510 --> 00:06:34,490
259
+ exponential function E ุฃุณ AT ู‡ูˆ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰
260
+
261
+ 66
262
+ 00:06:34,490 --> 00:06:39,880
263
+ S ู†ุงู‚ุต ุงู„ู€ A. ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ุง. ุทูŠุจ ุฃู† ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„
264
+
265
+ 67
266
+ 00:06:39,880 --> 00:06:45,820
267
+ ุจูŠุฏู‘ุงุฌูŠ ู„ู„ู…ุทู„ูˆุจ ุงู„ุซุงู†ูŠ. ู†ู…ุฑุง ุจูŠุŒ ู†ู…ุฑุง ุจูŠ ุฃูŠูˆุฉุŒ ุขุฎุฑ ุดุฑุท
268
+
269
+ 68
270
+ 00:06:45,820 --> 00:06:49,820
271
+ ู†ู‚ุตู†ุง ุฃูƒุซุฑ ู…ู† ุฅูŠู‡ุŸ ุจุฏูŠ ู…ุดุงู† ุฃุถู…ู† ุฃู†ู‡ ู…ุง ุตู„ู‘ุชุด ุณุงู„ุจุฉ
272
+
273
+ 69
274
+ 00:06:49,820 --> 00:06:54,880
275
+ ุฏุงุฆู…ู‹ุง ุฃู†ุง ุจุฏูŠ S ุฌุฑูŠุชุฑ ุฏู‡ ู†ู‚ุตู‡ุง. ุทูŠุจ ุงู„ุขู† ุจูŠุฏู‘ุงุฌูŠ
276
+
277
+ 70
278
+ 00:06:54,880 --> 00:07:00,180
279
+ ู„ู†ู…ุฑุง ุจูŠุŒ ู†ู…ุฑุง ุจูŠ. ุจุฏูŠ ู„ุงุจู„ุงุณ ู„ู„ู€ one. ู‡ู„ ุจู‚ุฏุฑ ุฃุฌุฑุจ ุฃู†
280
+
281
+ 71
282
+ 00:07:00,180 --> 00:07:07,320
283
+ ุฃูุฌูŠุจ ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ู…ู† ุงู„ู€ E ุฃุณ ET ู‡ุฐูŠ
284
+
285
+ 72
286
+ 00:07:07,320 --> 00:07:13,490
287
+ ู†ู‚ุฏุฑุŸ ู„ูˆ ุญุทูŠู†ุง ุงู„ู€ a ุจู‚ุฏ ุฅูŠุดุŸ Zero. ูŠุจู‚ู‰ ุจุฃุฌูŠ ุจู‚ูˆู„ ู„ู‡ ู‡ู†ุง
288
+
289
+ 73
290
+ 00:07:13,490 --> 00:07:22,130
291
+ F ุงู„ู€ a ุชุณุงูˆูŠ zero then Laplace transform ู„ู„ู€ e ุฃูˆ
292
+
293
+ 74
294
+ 00:07:22,130 --> 00:07:27,850
295
+ ุงู„ู€ zero ู‡ูˆ Laplace transform ู„ู…ู†ุŸ ู„ู„ูˆุงุญุฏ. ูŠุนู†ูŠ ู‡ู†ุง
296
+
297
+ 75
298
+ 00:07:27,850 --> 00:07:33,830
299
+ ู‡ุดูŠู„ ุงู„ู€ a ูˆุฃุญุท ู…ูƒุงู†ู‡ุง zero ูŠุจู‚ู‰ ูˆุงุญุฏ ุนู„ู‰ s ู†ุงู‚ุต
300
+
301
+ 76
302
+ 00:07:33,830 --> 00:07:40,620
303
+ ุงู„ู€ zero ูŠุจู‚ู‰ ุจู‡ูˆู„ุฉ ุจู‚ุฏุฑ 1 ุนู„ู‰ S. ุฅุฐุง ู…ู† ุงู„ุขู† ูุตุงุนุฏู‹ุง
304
+
305
+ 77
306
+ 00:07:40,620 --> 00:07:48,480
307
+ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ู‡ูŠ 1 ุนู„ู‰ S. ุทูŠุจ ู†ู…ุฑุง
308
+
309
+ 78
310
+ 00:07:48,480 --> 00:07:57,560
311
+ C ุฌุงู„ูŠ ุจุฏู‘ู‡ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต AT ู‡ุฐู‡
312
+
313
+ 79
314
+ 00:07:57,560 --> 00:08:03,340
315
+ ู†ู…ุฑุง C ุดูˆ ุจุชูุฑุฌ ุนู† ุงู„ู€ AุŸ ุจุณ ุงู„ู€ A ุจุงู„ุณุงู„ุจ. ุฅุฐุง ุจุฏูŠ
316
+
317
+ 80
318
+ 00:08:03,340 --> 00:08:06,620
319
+ ุขุฎุฐ ุงู„ุฅุฌุงุจุฉ ุงู„ู„ูŠ ุญุตู„ุช ุนู„ูŠู‡ุง ููˆู‚ ูˆุฃุญุท ุงู„ู€ A
320
+
321
+ 81
322
+ 00:08:06,620 --> 00:08:12,860
323
+ ุจุงู„ุณุงู„ุจ. ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฏูŠ ุณูˆุงุก 1 ุนู„ู‰ S ู†ุงู‚ุต ุจุฏู„
324
+
325
+ 82
326
+ 00:08:12,860 --> 00:08:20,310
327
+ ุงู„ู€ A ุฃุฌุงู†ูุจ ู†ุงู‚ุต A ูŠุจู‚ู‰ 1 ุนู„ู‰ S ุฒุงุฆุฏ ุงู„ู€ A. ู†ู…ุฑุง ุฏูŠ
328
+
329
+ 83
330
+ 00:08:20,310 --> 00:08:27,310
331
+ ุฌุงู„ูŠ ู‡ุชู„ูŠ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู€ E ุฃุณ ู†ุงู‚ุต ุฎู…ุณุฉ T ูŠุจู‚ู‰
332
+
333
+ 84
334
+ 00:08:27,310 --> 00:08:33,330
335
+ ูˆุงุญุฏ ุนู„ู‰ S ุฒุงุฆุฏ ุฎู…ุณุฉ ู„ุฃู† ู‡ุฐุง ู‡ูˆ ุญุงู„ุฉ ุฎุงุตุฉ ู„ู„ูŠ
336
+
337
+ 85
338
+ 00:08:33,330 --> 00:08:39,110
339
+ ุนู†ุฏู†ุง. ู‡ุฐุง ุฅูŠู‡ุŸ ุจู‡ูŠ ุญุณุจู†ุง ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ุฏูˆุงู„ูŠู†
340
+
341
+ 86
342
+ 00:08:39,110 --> 00:08:41,670
343
+ ู…ุฎุชู„ูุฉ. example two
344
+
345
+ 87
346
+ 00:08:51,800 --> 00:08:57,540
347
+ ุจู‚ูˆู„ find ู†ู…ุฑุง
348
+
349
+ 88
350
+ 00:08:57,540 --> 00:09:10,360
351
+ A ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู€ sin AT ู†ู…ุฑุง B ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
352
+
353
+ 89
354
+ 00:09:10,360 --> 00:09:24,710
355
+ ู„ู€ cos AT. ู†ู…ุฑุง ุงู„ู€ c ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู€ cos cos 5t
356
+
357
+ 90
358
+ 00:09:24,710 --> 00:09:35,410
359
+ ุฎู„ูŠ
360
+
361
+ 91
362
+ 00:09:35,410 --> 00:09:43,800
363
+ ุจุฑูƒุชูŠ. ุจุฏู‘ูŠ ุขุฎุฐ ู†ู…ุฑุง ุฅูŠู‡ุŸ ุจุฏูŠ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู€ sin A
364
+
365
+ 92
366
+ 00:09:43,800 --> 00:09:48,580
367
+ ุชูŠ. ุจุฏูŠ ุฃุฑุฌุน ู„ู„ุชุนุฑูŠู ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู‡ูˆ ุชูƒุงู…ู„ ู…ู†
368
+
369
+ 93
370
+ 00:09:48,580 --> 00:09:58,520
371
+ zero ุฅู„ู‰ infinity ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต ST ู„ู€ sin A ุชูŠ ุฏูŠ ุชูŠ
372
+
373
+ 94
374
+ 00:09:58,520 --> 00:10:06,480
375
+ ุทุจุนู‹ุง ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุนุจุงุฑุฉ ุนู† limit ู„ู…ุง B
376
+
377
+ 95
378
+ 00:10:06,480 --> 00:10:13,320
379
+ tends to infinity ู„ุชูƒุงู…ู„ ู…ู† zero ู„ู€ B ู„ู€ E ุฃุณ ู†ุงู‚ุต ST
380
+
381
+ 96
382
+ 00:10:13,320 --> 00:10:24,340
383
+ cosine AT sin AT DT sin AT DT
384
+
385
+ 97
386
+ 00:10:24,340 --> 00:10:28,380
387
+ ุทุจ
388
+
389
+ 98
390
+ 00:10:28,380 --> 00:10:34,340
391
+ ูƒูŠู ุจู†ูƒู…ู„ ู‡ุฐุง ูŠุง ู…ู†ุงุณูŠุŸ ุดูˆ ุงู„ุทุฑูŠู‚ุฉุŸ ุจู† calculate B
392
+
393
+ 99
394
+ 00:10:36,410 --> 00:10:39,210
395
+ ุจุฏูŠ ูˆุงุญุฏุฉ ุชุญูƒูŠ ุฃู†ุง ู…ุง ุฃุฏู‘ูŠุด ุงู„ู‡ู…ู‘ุงู…ุงุช. ุจุฏูŠ ูˆุงุญุฏุฉ ุชุฑูุน
396
+
397
+ 100
398
+ 00:10:39,210 --> 00:10:41,950
399
+ ุฅูŠุฏูŠู‡ุง ูˆุชุญูƒูŠ ุขู‡ integration by parts integration
400
+
401
+ 101
402
+ 00:10:41,950 --> 00:10:45,370
403
+ by parts. ุชู…ุงู…ุŸ ูˆู‡ู†ุง ุฒูŠ ู…ุง ูŠู‚ูˆู„ูˆุง ุถุฑุจ ุงู„ุนู…ูŠุงู†
404
+
405
+ 102
406
+ 00:10:45,370 --> 00:10:49,110
407
+ ุงู„ุตูŠู ุฅูŠุด ู…ุง ุชุฃุฎุฐ ุตุญ ุฅู† ุฃุฎุฐุช ุงู„ู€ U ุชุณุงูˆูŠ ุงู„ู€
408
+
409
+ 103
410
+ 00:10:49,110 --> 00:10:53,150
411
+ exponential ูˆุงู„ู€ DV ุชุณุงูˆูŠ ุงู„ู€ cosine. ู…ุงุดูŠุŸ ุฅู† ุนู…ู„ุช
412
+
413
+ 104
414
+ 00:10:53,150 --> 00:10:58,270
415
+ ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ุฃุฎุฐุช ุงู„ู€ U ู‡ูŠ ุงู„ู€ sine ูˆุงู„ู€ DV ู‡ูŠ ุงู„ู€
416
+
417
+ 105
418
+ 00:10:58,270 --> 00:11:02,600
419
+ exponential ู…ุงุนู†ุฏู†ุงุด ู…ุดูƒู„ุฉ. ูŠุจู‚ู‰ ูƒู„ ู…ุง ุชุฃุฎุฐ ุงู„ุงุชู†ูŠู†
420
+
421
+ 106
422
+ 00:11:02,600 --> 00:11:10,140
423
+ ุตุญูŠุญ. ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุขุฎุฐ ุงู„ู€ U ุชุณุงูˆูŠ E ุฃุณ ู†ุงู‚ุต ST ูˆ
424
+
425
+ 107
426
+ 00:11:10,140 --> 00:11:19,820
427
+ ุจุฏูŠ ุขุฎุฐ ุงู„ู€ DV Sin AT. ุจุฏูŠ ุงู„ู€ DU ูŠุจู‚ู‰ ู†ุงู‚ุต S E ุฃุณ
428
+
429
+ 108
430
+ 00:11:19,820 --> 00:11:32,010
431
+ ู†ุงู‚ุต ST DT. ุจุฏูŠ ุงู„ู€ V ู†ุงู‚ุต Cos AT ุนู„ู‰ A. ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ
432
+
433
+ 109
434
+ 00:11:32,010 --> 00:11:39,290
435
+ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ limit ู„ู…ุง B tends to infinity ู„ู…ู†ุŸ
436
+
437
+ 110
438
+ 00:11:39,290 --> 00:11:44,510
439
+ ู„ู€ ุงู„ู€ U ููŠ ุงู„ู€ V ูŠุจู‚ู‰ ู‡ูŠ ุงู„ู€ U ูˆุงู„ู€ V ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต
440
+
441
+ 111
442
+ 00:11:44,510 --> 00:11:56,510
443
+ ูˆุงุญุฏ ุนู„ู‰ A ููŠ E ุฃุณ ู†ุงู‚ุต ST ููŠ cosine AT. ู‡ุฐุง ุงู„ู€ U
444
+
445
+ 112
446
+ 00:11:56,510 --> 00:12:06,050
447
+ ููŠ ุงู„ู€ V. ู†ุงู‚ุต ุชูƒุงู…ู„ V ุฏู‡. UV ู†ุงู‚ุต cosine AT ุนู„ู‰ A
448
+
449
+ 113
450
+ 00:12:06,050 --> 00:12:16,750
451
+ ุฏุงู„ุฉ ู†ุงู‚ุต S E ุฃูุณ ู†ุงู‚ุต ST ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DT. ุทุจุนู‹ุง
452
+
453
+ 114
454
+ 00:12:16,750 --> 00:12:21,910
455
+ ูƒูˆู†ูŠ ูƒุงู…ู„ ุชุจู‚ู‰ ุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ ู‡ุฐู‡ ู‡ุชุจู‚ู‰ ู…ู† ูˆูŠู† ู„ูˆูŠู†ุŸ
456
+
457
+ 115
458
+ 00:12:21,910 --> 00:12:30,010
459
+ ู…ู† zero ู„ุบุงูŠุฉ B ูˆู‡ุฐุง ูƒู…ุงู† ุชูƒุงู…ู„ ู…ู† zero ู„ุบุงูŠุฉ B ูˆ
460
+
461
+ 116
462
+ 00:12:30,010 --> 00:12:34,570
463
+ limit ู„ู„ูƒู„ ู…ู† ู‡ู†ุง ู„ู…ุง ู†ูƒู…ู„ ู…ู† ู‡ู†ุง
464
+
465
+ 117
466
+ 00:12:42,160 --> 00:12:47,560
467
+ ุจุชุนูˆุถ ุจุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ููˆู‚ ู†ุงู‚ุต ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ุชุญุชู‡ุง. ูŠุจู‚ู‰
468
+
469
+ 118
470
+ 00:12:47,560 --> 00:12:59,450
471
+ ู‡ู†ุง ู†ุงู‚ุต cosine AB ุนู„ู‰ A ููŠ E ุฃุณ SB. ู†ุฒู„ุช ุงู„ู€
472
+
473
+ 119
474
+ 00:12:59,450 --> 00:13:03,910
475
+ exponential ุชุญุช ุจุฅุดุงุฑุฉ ู…ูˆุฌุจุฉ. ู‡ุฐุง ุงู„ุชุนูˆูŠุถ ุงู„ุฃูˆู„
476
+
477
+ 120
478
+ 00:13:03,910 --> 00:13:11,630
479
+ ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฆุฏ. ูƒูˆุณุงูŠู† ุตูุฑ ุจูˆุงุญุฏ ูˆ E of zero
480
+
481
+ 121
482
+ 00:13:11,630 --> 00:13:19,020
483
+ ุจูˆุงุญุฏ ุจุธู„ ุนู†ุฏูŠ ู‡ู†ุง ุจุณ ูƒุฏู‡ุด ูˆุงุญุฏ ุนู„ู‰ ุฅูŠู‡. ูˆ ุฃูŠ limit
484
+
485
+ 122
486
+ 00:13:19,020 --> 00:13:24,280
487
+ ู„ู„ูƒู„. ู†ุฌูŠ ู„ู„ูŠ ุจุนุฏ ู‡ุฐู‡. ุนู†ุฏูƒ ู‡ู†ุง ู†ุงู‚ุต ูˆู‡ู†ุง ู†ุงู‚ุต ูˆ
488
+
489
+ 123
490
+ 00:13:24,280 --> 00:13:31,160
491
+ ู‡ู†ุง ู†ุงู‚ุต ูŠุจู‚ู‰ ุซู„ุงุซุฉ ุจุงู„ู†ุงู‚ุต ุนู†ุฏูƒ S ูˆู‡ู†ุง A ู…ู‚ุงุฏูŠุฑ
492
+
493
+ 124
494
+ 00:13:31,160 --> 00:13:36,540
495
+ ุซุงุจุชุฉ ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุขุฎุฐู‡ุง ุจุฑุฉ ุงู„ุชูƒุงู…ู„ ูˆุจุตูŠุฑ ุชูƒุงู…ู„ ู…ู†
496
+
497
+ 125
498
+ 00:13:36,540 --> 00:13:44,920
499
+ zero ุฅู„ู‰ B ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต ST ู„ู€ cosine ATDT
500
+
501
+ 126
502
+ 00:13:47,530 --> 00:13:50,510
503
+ ุฎู„ู‘ูŠ ุจุงู„ูƒ ู‡ู†ุง ุทุจุนู‹ุง ู‡ุฐุง ุญุงู„ู†ุง ููŠ ุชูƒุงู…ู„ ูƒู„ุงุตูŠ ุจุณ ุฃู†ุง
504
+
505
+ 127
506
+ 00:13:50,510 --> 00:13:55,190
507
+ ุจุฐูƒุฑ ุชุฐูƒูŠุฑ ูŠุจู‚ู‰ ุฃู†ุง ุฃุฎุฐุช ุงู„ู€ U ู‡ู†ุง ุจุงู„ู€ exponential
508
+
509
+ 128
510
+ 00:13:55,190 --> 00:14:02,450
511
+ ูˆุฃุฎุฐุช ุงู„ู€ DV ุจู€ sin 80 ุงุดุชู‚ุช ูˆู‡ู†ุง ูƒุงู…ู„ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€
512
+
513
+ 129
514
+ 00:14:02,450 --> 00:14:10,330
515
+ U ููŠ ุงู„ู€ V ู…ุง ู†ู‚ุต ุชูƒุงู…ู„ Vุฏุงู„ู‘ุฉ. ุจุฏูŠ ุฃุนูŠุฏ ุงู„ุชุฑุชูŠุจ ูˆุฃ
516
+
517
+ 130
518
+ 00:14:10,330 --> 00:14:13,530
519
+ ุนูˆุถ ุจุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ููˆู‚ ู†ุงู‚ุต ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡
520
+
521
+ 131
522
+ 00:14:13,530 --> 00:14:18,410
523
+ ุงู„ุณู‡ู„ุฉ ุงู„ู„ูŠ ุจุฏูŠ ุฃู†ุฒู„ู‡ุง ุชุญุช ุจุตูŠุฑ ู…ุฌุจุฑุฉ ุจูŠุจู‚ู‰ Cos AB
524
+
525
+ 132
526
+ 00:14:18,410 --> 00:14:24,540
527
+ ุนู„ู‰ A ููŠ S ู‡ู†ุง ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุฒุงุฆุฏ. ุจุฏูŠ ุฃุดูŠู„ ุงู„ู€ T ูˆ
528
+
529
+ 133
530
+ 00:14:24,540 --> 00:14:27,900
531
+ ุฃุถุน ู…ูƒุงู†ู‡ุง Zero ูˆุงู„ู€ cosine ุตูุฑ ุจูˆุงุญุฏ. E ูˆ ุงู„ู€ Zero
532
+
533
+ 134
534
+ 00:14:27,900 --> 00:14:33,380
535
+ ุจูˆุงุญุฏ ุจูŠุถู„ ุจุณ ูƒุฏู‡ุด ูˆุงุญุฏ ุนู„ู‰ A ู‡ู†ุง ุนู†ุฏู†ุง S ุนู„ู‰ A
536
+
537
+ 135
538
+ 00:14:33,380 --> 00:14:38,780
539
+ ุจุฑู‡ ุนู†ุฏูƒ ู†ุงู‚ุต ู†ุงู‚ุต ู†ุงู‚ุต ูŠุจู‚ู‰ ุซู„ุงุซุฉ ุจุงู„ู†ุงู‚ุต ุจูŠุตูŠุฑ
540
+
541
+ 136
542
+ 00:14:38,780 --> 00:14:43,500
543
+ ุนู†ุฏู†ุง ู†ุงู‚ุต S ุนู„ู‰ A ุชูƒุงู…ู„ ู…ู† Zero ู„ู€ B ู„ู„ู€ E ูˆู†ุงู‚ุต ุงู„ู€
544
+
545
+ 137
546
+ 00:14:43,500 --> 00:14:48,840
547
+ T cosine ATDT. ุชุนุงู„ ู†ุญุณุจ ุงู„ุญุณุจุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡. ู‡ุฐุง
548
+
549
+ 138
550
+ 00:14:48,840 --> 00:14:53,740
551
+ ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ู„ูˆ ุฃุฎุฐุช limit ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูŠุง ุจู†ุงุช
552
+
553
+ 139
554
+ 00:14:53,740 --> 00:15:00,060
555
+ ูƒุฏู‡ุด ุจุทู„ุน ูŠู„ุง ุฅูŠู‡ ุฃุดูˆู ุนู„ู‰ ุงู„ุณุฑูŠุน ูƒุฏู‡ุด ูˆุงุญุฏ ุนู„ู‰
556
+
557
+ 140
558
+ 00:15:00,060 --> 00:15:07,480
559
+ ุฅูŠู‡ ู‡ุฐุง ุงู„ู€ term ุงู„ุฃูˆู„. term ุงู„ุฃูˆู„ ูƒูˆุณุงูŠู† ู…ุญุตูˆุฑ ู…ู† ูˆุงุญุฏ
560
+
561
+ 141
562
+ 00:15:07,480 --> 00:15:12,510
563
+ ูˆุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ุฐุง ุจูŠู† ุจูŠุฑูˆุญ. ู…ุง ู„ุง ู„ุง ูŠุจู‚ู‰ ุนู„ู‰ ุฌุฏ
564
+
565
+ 142
566
+ 00:15:12,510 --> 00:15:16,030
567
+ ูŠุง ุดู ุฒูŠุฑูˆ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ุฃูˆ ุจุชู‚ูˆู„ูˆุง ู„ูŠู‡ cos AB
568
+
569
+ 143
570
+ 00:15:16,030 --> 00:15:19,590
571
+ ู…ุญุตูˆุฑ ู…ู† ูˆุงุญุฏ ูˆุณุงู„ุจ ูˆุงุญุฏ ูˆุจุฏูŠ ุฃุถุฑุจ ุงู„ุทุฑููŠู† ููŠ
572
+
573
+ 144
574
+ 00:15:19,590 --> 00:15:24,410
575
+ ูˆุงุญุฏ ุนู„ู‰ A ููŠ E ุฃุณ S AB ูˆุฃุฎุฐ ุงู„ู„ูŠ ู…ุง ุจุตูŠุฑ ู‡ู†ุง
576
+
577
+ 145
578
+ 00:15:24,410 --> 00:15:27,110
579
+ ุฒูŠุฑูˆ ู‡ู†ุง ุฒูŠุฑูˆ ูˆุจูŠุฌูŠุจ ุณุงู†ุฏูˆุดุชูŠู† ูˆุงู„ู„ูŠ ููŠ ุงู„ู†ุต
580
+
581
+ 146
582
+ 00:15:27,110 --> 00:15:32,130
583
+ ุจูŠุฒูŠุฑูˆ. ุฅุฐุง ู‡ุฐุง ุงู„ู€ limit ุงู„ู„ูŠ ู‡ูˆ ูƒู„ู‡ ุจู€0. ูˆุงุญุฏ ุนู„ู‰
584
+
585
+ 147
586
+ 00:15:32,130 --> 00:15:36,250
587
+ ุฅูŠู‡ุŸ ู…ู‚ุฏุงุฑ ุซุงุจุชุŒ ู…ุง ู„ู‡ ุฏุนูˆุฉ ุจุงู„ู€ limit ุชู…ุงู…ุŒ ูˆุฃู†ู‘ู‡ูŠุช
588
+
589
+ 148
590
+ 00:15:36,250 --> 00:15:40,230
591
+ ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช ุจุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช itself ูŠุจู‚ู‰ ูˆุงุญุฏ
592
+
593
+ 149
594
+ 00:15:40,230 --> 00:15:46,450
595
+ ุนู„ู‰ ุฅูŠู‡ุŸ ู†ุงู‚ุต S ุนู„ู‰ ุฅูŠู‡ุŸ ููŠ limit ู„ู…ุง B tends to
596
+
597
+ 150
598
+ 00:15:46,450 --> 00:15:52,970
599
+ infinity ู„ุชูƒุงู…ู„ ู…ู† zero ุฅู„ู‰ B ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต ST
600
+
601
+ 151
602
+ 00:15:52,970 --> 00:15:56,190
603
+ cosine ATDT
604
+
605
+ 152
606
+ 00:16:12,880 --> 00:16:18,440
607
+ ุงู„ุขู† ุจุฑุถู‡ ุจู†ุนู…ู„ ู‡ุฐู‡ integration by parts. ุชู…ุงู…ุŸ
608
+
609
+ 153
610
+ 00:16:18,440 --> 00:16:21,940
611
+ ุจุฑุถู‡ ู†ูุณ ุงู„ุชุนูˆูŠุถ ุงู„ู„ูŠ ุฃุฎุฐุช U ู‡ู†ุง ุจุฏูŠ ุขุฎุฐู‡ุง U ู‡ู†ุง
612
+
613
+ 154
614
+ 00:16:21,940 --> 00:16:25,760
615
+ ุจุงู„ุถุจุท ู„ุฅู† ู„ูˆ ุนู…ู„ุช ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ู…ุง ุนุฑูุด ุงู„ู„ูŠ
616
+
617
+ 155
618
+ 00:16:25,760 --> 00:16:29,100
619
+ ุงุดุชุบู„ุช ูˆุฎุฑุจุช ูˆุฑุฌุนุช ูˆู…ุง ุณูˆูŠุช ุดูŠุก ุดูŠุก. ูŠุจู‚ู‰ ุจุถู„ู‘
620
+
621
+ 156
622
+ 00:16:29,100 --> 00:16:35,180
623
+ ุงู„ู…ุงุดูŠ ุจู†ูุณ ุงู„ุงุชุฌุงู‡. ุฅุฐุง ุจุฏูŠ ุขุฎุฐ ุงู„ู€ U ุชุณุงูˆูŠ E ุฃุณ
624
+
625
+ 157
626
+ 00:16:35,180 --> 00:16:47,130
627
+ ู†ุงู‚ุต ST ูˆ DV ู„ูŠู‡ cosine ATDT. ูŠุจู‚ู‰ ุงู„ู€ DU ูŠูƒูˆู† ู†ุงู‚ุต
628
+
629
+ 158
630
+ 00:16:47,130 --> 00:16:56,610
631
+ SE ุฃูุณ ู†ุงู‚ุต ST ููŠ DT ูˆุงู„ู€ V ุจู€ Sin AT ุนู„ู‰ A. ูŠุจู‚ู‰
632
+
633
+ 159
634
+ 00:16:56,610 --> 00:17:01,630
635
+ ุฃุตุจุญ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ู† ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ุงู„ู„ูŠ ู‡ูŠ
636
+
637
+ 160
638
+ 00:17:01,630 --> 00:17:07,330
639
+ ุงู„ู€ Sin AT ุจุฏูŠ ุณูˆู‘ูŠุฉ ูˆุงุญุฏ ุนู„ู‰ A ุงู„ุซุงุจุช ุงู„ู„ูŠ ุนู†ุฏู†ุง
640
+
641
+ 161
642
+ 00:17:07,330 --> 00:17:16,080
643
+ ู†ุงู‚ุต S ุนู„ู‰ A ููŠ ุงู„ู€ limit ู„ู…ุง B tends to infinity ูˆ
644
+
645
+ 162
646
+ 00:17:16,080 --> 00:17:21,480
647
+ ู‡ุฐุง ุงู„ู€ cos ุงู„ู„ูŠ ุนู†ุฏู†ุง. ุจู†ุฑูˆุญ ู†ูƒุชุจ U ููŠ V ู‡ุฐุง ุงู„ู€
648
+
649
+ 163
650
+ 00:17:21,480 --> 00:17:29,680
651
+ U ูˆู‡ุฐุง ุงู„ู€ V ูŠุจู‚ู‰ E ุฃุณ ู†ุงู‚ุต ST ููŠ Sin AT ูƒู„ู‡ ุนู„ู‰
652
+
653
+ 164
654
+ 00:17:29,680 --> 00:17:40,940
655
+ ู‚ุฏ ุฅูŠุดุŸ ุนู„ู‰ A. ู†ุงู‚ุต ุชูƒุงู…ู„ V ุงู„ุชูŠ ู‡ูŠ ุงู„ู€ Sin AT ุนู„ู‰ A W
656
+
657
+ 165
658
+ 00:17:40,940 --> 00:17:50,160
659
+ ุงู„ุชูŠ ู‡ูŠ ู†ุงู‚ุต SE ุฃูุณ ู†ุงู‚ุต ST ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุงู„ู†ุณุจุฉ
660
+
661
+ 166
662
+ 00:17:50,160 --> 00:17:57,360
663
+ ุฅู„ู‰ ู…ูŠู†ุŸ ุฅู„ู‰ DT. ูˆู‡ูŠูŠุฌูู„ู†ุง ุงู„ุฌูˆุฒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง. ู‡ุฐุง
664
+
665
+ 167
666
+ 00:17:57,360 --> 00:18:02,800
667
+ ุงู„ูƒู„ุงู… ูŠุจุฏูˆ ูŠุณุงูˆูŠ 1 ุนู„ู‰ A ู†ุฒู„ู†ุงู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ู†ุงู‚ุต S
668
+
669
+ 1
670
+
671
+ 201
672
+ 00:21:44,690 --> 00:21:51,110
673
+ ุจุฏู‡ุง ุชุณุฃู„ุŸ ุงู‡ ุฃูŠูˆุฉ ู„ู…ุงุฐุงุŸ
674
+
675
+ 202
676
+ 00:21:51,110 --> 00:21:55,170
677
+ ุทุจ ุฃู†ุง ุจุฌูˆุฒ ูˆ ู„ุณู‡ ุจุชู†ุงู‚ุด ุฃู†ุง ูˆุฅูŠุงูƒ ูˆุฃู†ุง ุจุงุดุฑุญ
678
+
679
+ 203
680
+ 00:21:55,170 --> 00:22:01,800
681
+ ุงู„ุชูƒุงู…ู„ ู‡ุฐุง ุชูƒุงู…ู„ ู‡ุฐุง ูƒุงู„ูƒู„ู‘ ุตุนุจูŠุฉ ุจู†ุช ุงู„ุญู„ุงู„ ูˆุฃุตูˆู„ูƒ
682
+
683
+ 204
684
+ 00:22:01,800 --> 00:22:05,940
685
+ ุชุจู‚ู‰ ุนุฑูุงุชู‡ ูˆุฃุตูˆู„ ุญูุธูƒ ุงู„ู†ุชูŠุฌุฉ ูˆุงู…ุดูŠ ู„ูƒู† ุฃู†ุง ุจุญุตู„ูƒ
686
+
687
+ 205
688
+ 00:22:05,940 --> 00:22:09,280
689
+ ุชูุตูŠู„ ูˆุจุฐูƒุฑ ุชุฐูƒูŠุฑ ู„ุฃู† ุงู„ุนู‚ู„ ู…ุด ุฏุงูŠู…ู‹ุง ู…ูˆุฌูˆุฏ
690
+
691
+ 206
692
+ 00:22:09,280 --> 00:22:17,330
693
+ ุนุจุฏุงู„ู„ู‡ ุจูŠุฌูŠ ุจูŠุนุฏู‘ ุทูŠุจ ูŠุจู‚ู‰ ู…ุฑุฉ ุซุงู†ูŠุฉ ุจู‚ูˆู„ ุงุญู†ุง
694
+
695
+ 207
696
+ 00:22:17,330 --> 00:22:21,650
697
+ ุฎู„ุตู†ุง ุงู„ุญู„ ุดูˆ ุงู„ู„ูŠ ุนู…ู„ู†ุงู‡ ูˆุฃูŠู† ุชูˆุตู„ู†ุง ุงุญู†ุง ุจุฏู†ุง
698
+
699
+ 208
700
+ 00:22:21,650 --> 00:22:26,450
701
+ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ู€ Sin AT ุฃู†ุง ู…ุง ุนู†ุฏูŠุด ุฅู„ุง ุงู„ุชุนุฑูŠู
702
+
703
+ 209
704
+ 00:22:26,450 --> 00:22:31,410
705
+ ูŠุจู‚ู‰ ุจุฏูŠ ุงุถุฑุจ ููŠ ุงู„ู€ E ุฃุณ ุณุงู„ุจ ST ูˆุงู„ู€ Sin ST ูˆูƒู…ู„ ู…ู† Zero ุฅู„ู‰
706
+
707
+ 210
708
+ 00:22:31,410 --> 00:22:35,580
709
+ Infinity ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ุขู† ู‡ุฐุง ุงู„ู€ improper
710
+
711
+ 211
712
+ 00:22:35,580 --> 00:22:39,540
713
+ integral ูŠุจู‚ู‰ ุฎุงุชู„ ูˆ limit integration by parts
714
+
715
+ 212
716
+ 00:22:39,540 --> 00:22:44,480
717
+ ุจุฏูŠ ุฃุนู…ู„ู‡ุง ู…ุฑุชูŠู† ุฅุฐุง ุนู…ู„ุชู‡ุง ู…ุฑุชูŠู† ุจุชุจู‚ู‰ ู…ุณุฃู„ุฉ T
718
+
719
+ 213
720
+ 00:22:44,480 --> 00:22:49,580
721
+ ุฎู„ุตุช ูˆู‡ุฐุง ูƒุงู† ู…ุนู†ุง ุณุคุงู„ ููŠ Calculus B ุฅุฐุง ู…ุฐุงูƒุฑูŠู†
722
+
723
+ 214
724
+ 00:22:49,580 --> 00:22:53,380
725
+ ู…ูˆุฌูˆุฏ ูƒุงู† ู…ุนู†ุง ููŠ Calculus B ููŠ ุงู„ integration by
726
+
727
+ 215
728
+ 00:22:53,380 --> 00:22:56,920
729
+ parts ุจุณ ุฏู‡ ู…ุฌู†ูˆู† integration by parts ู…ุน ุงู„
730
+
731
+ 216
732
+ 00:22:56,920 --> 00:23:02,640
733
+ improper integral ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุชูƒุงู…ู„ ุจุฏูŠ ุฃุฎุฏ ู‡ุฐู‡ U ูˆู‡ุฐู‡
734
+
735
+ 217
736
+ 00:23:02,640 --> 00:23:08,940
737
+ DV ูˆุจุงู„ุชุงู„ูŠ ุณู„ู…ุช U ููŠ V ู†ุงู‚ุต ุชูƒุงู…ู„ V ุฏุงู„ U
738
+
739
+ 218
740
+ 00:23:08,940 --> 00:23:14,500
741
+ ุงู„ุขู† ุจุฏูŠ ุฃุนูŠุฏ ุงู„ุชุฑุชูŠุจ ู‡ุฐู‡ ุจุฏูŠ ุฃุนูˆุถ ุจุงู„ู‚ูŠู… ุงู„ู„ูŠ ููˆู‚
742
+
743
+ 219
744
+ 00:23:14,500 --> 00:23:18,480
745
+ ู†ุงู‚ุต ุงู„ู„ูŠ ุชุญุชูŠ ุจุฏูŠ ุฃุดูŠู„ ูƒู„ T ูˆุฃุญุท ู…ูƒุงู†ู‡ุง
746
+
747
+ 220
748
+ 00:23:25,040 --> 00:23:31,240
749
+ ู†ุงู‚ุต ู†ู‚ุต ู†ู‚ุต ูŠุจู‚ู‰ ุซู„ุงุซุฉ ุจุงู„ุณุงู„ุจ ุจุตูŠุฑ ุนู†ุฏู†ุง ุณุงู„ุจ S
750
+
751
+ 221
752
+ 00:23:31,240 --> 00:23:35,860
753
+ ุนู„ู‰ A ุซุงุจุช ุจุฏูŠ ุฃุฎุฏู‡ ุจุฑุฉ ุจุถุฑุจ ุชูƒุงู…ู„ ู…ู† Zero ุฅู„ู‰ B
754
+
755
+ 222
756
+ 00:23:35,860 --> 00:23:42,890
757
+ ู„ุฅูŠู‡ุŸ ูˆุฅุฐุง ู†ุงู‚ุต ST Cos ATDT ุจุนุฏ ุฐู„ูƒ ุจุฏูŠ ุฃู†ุฒู„ ู‡ุฐู‡ ุฒูŠ
758
+
759
+ 223
760
+ 00:23:42,890 --> 00:23:47,610
761
+ ู…ุง ู‡ูŠ ู‡ุฐู‡ ุฒูŠ ู…ุง ู‡ูŠ ูˆู‡ูŠ ุงู„ limit ุงู„ู€ Exponential
762
+
763
+ 224
764
+ 00:23:47,610 --> 00:23:53,150
765
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุนู†ูŠ ุงู†ุชู‚ู„ู†ุง ู…ู† E ุฃุณ ุณุงู„ุจ ST ู„ู€ Sin AT
766
+
767
+ 225
768
+ 00:23:53,150 --> 00:23:59,550
769
+ ุฅู„ู‰ ุชูƒุงู…ู„ ู„ู„ู€ E ุฃุณ ุณุงู„ุจ ST Cos AT ูŠุจู‚ู‰ ู„ูˆ ูƒู…ู„ุช
770
+
771
+ 226
772
+ 00:23:59,550 --> 00:24:04,250
773
+ ูƒู…ุงู† ู…ุฑุฉ ุจุฑุฌุน ู„ุฑุฃุณูŠ ุงู„ู…ุณุฃู„ุฉ ุงู„ู„ูŠ ููˆู‚ ุฅุฐุง ุจุฏูŠ ุฃุฑูˆุญ
774
+
775
+ 227
776
+ 00:24:04,250 --> 00:24:08,330
777
+ ูƒุงู…ู„ ูƒู…ุงู† ู…ุฑุฉ ุจุฏูŠ ุฃุฎุฏ ู‡ุฐู‡ U ูˆู‡ุฐู‡ DV
778
+
779
+ 228
780
+ 00:24:15,840 --> 00:24:22,700
781
+ ู‡ุฐู‡ ุชูƒุงู…ู„ู‡ุง ุจู€ Sin AT ุนู„ูŠู‡ุง ุจู†ู‚ุณู… ุนู„ู‰ ุชูุงุถู„ ุงู„ุฒุงูˆูŠุฉ
782
+
783
+ 229
784
+ 00:24:22,700 --> 00:24:28,810
785
+ ุฅู† ูƒุงู†ุช ุงู„ุฒุงูˆูŠุฉ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ุทูŠุจ ุจุฏู†ุง ู†ุจุฏุฃ ู†ุนูˆู‘ุถ
786
+
787
+ 230
788
+ 00:24:28,810 --> 00:24:34,090
789
+ ูŠุจู‚ู‰ 1 ุนู„ู‰ A ู†ุงู‚ุต S ุนู„ู‰ A ููŠ Limit ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ
790
+
791
+ 231
792
+ 00:24:34,090 --> 00:24:39,670
793
+ ุนู†ุฏู†ุง ู‡ู†ุง ุจุงู„ุถุจุท ุชู…ุงู…ู‹ุง ุงู„ุขู† ุจุฏู‘ูŠ ุฃุฌูŠ ุฃู‚ูˆู„ ู„ู‡ ุงู„ U ููŠ ุงู„ู€
794
+
795
+ 232
796
+ 00:24:39,670 --> 00:24:46,290
797
+ V ุฃูŠู‡ุง ู…ู† A ู…ู† Zero ู„ู€ B ู†ุงู‚ุต ุชูƒุงู…ู„ ู…ู† Zero ู„ู€ B ู„ู„ู€ V
798
+
799
+ 233
800
+ 00:24:46,290 --> 00:24:52,090
801
+ ุฏู‡ ุงู„ U ู‡ุฐุง ุงู„ V ูˆู‡ุฐู‡ ุฏู‡ ุงู„ U ูƒุชุจุชู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ุทูŠุจ 1
802
+
803
+ 234
804
+ 00:24:52,090 --> 00:24:56,930
805
+ ุนู„ู‰ A ู†ุฒู„ุช ุณุงู„ุจ S A ุนู„ู‰ A ู†ุฒู„ุช ุงู„ู€ Limit ูƒู…ุง ู‡ูŠ ู‡ุฐู‡
806
+
807
+ 235
808
+ 00:24:56,930 --> 00:25:01,890
809
+ ู„ู…ุง ุชู†ุฒู„ ุจูŠ ุชุญุช ุจุตูŠุฑ Sin AB ุนู„ู‰ A ููŠ ุงู„ู€ SB
810
+
811
+ 236
812
+ 00:25:01,890 --> 00:25:05,730
813
+ ุทุจุนู‹ุง ู‡ุฐู‡ ุงู„ู€ Limit ุงู„ู„ูŠ ู‡ุชุจู‚ู‰ ุฒูŠุฑูˆ ูˆุฅู†ู…ุง ุจูŠ ุชุฑูˆุญ ู„ู…ุง ู„ุง
814
+
815
+ 237
816
+ 00:25:05,730 --> 00:25:09,790
817
+ ู†ู‡ุงูŠุฉ ู„ูŠุด ุฅู†ูˆ ุงู„ู€ Sin AB ู…ุญุตูˆุฑ ู…ู† ูˆุงุญุฏ ูˆุณุงู„ุจ ูˆุงุญุฏ
818
+
819
+ 238
820
+ 00:25:09,790 --> 00:25:13,910
821
+ ุถุฑุจู†ุง ููŠ ูˆุงุญุฏ ุนู„ู‰ ุงู„ู€ Exponential ูˆุฎู„ุช ุจูŠ ุชุฑูˆุญ ู„ู…ุง
822
+
823
+ 239
824
+ 00:25:13,910 --> 00:25:19,550
825
+ ู„ุง ู†ู‡ุงูŠุฉ ุจุตูŠุฑ ุนุฏุฏ ุนู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ู‡ ูˆู‡ูˆ ุฒูŠุฑูˆ ูŠุจู‚ู‰
826
+
827
+ 240
828
+ 00:25:19,550 --> 00:25:25,410
829
+ ู‡ุฐู‡ ุฒูŠุฑูˆ ุฏุงุฆู…ู‹ุง ูˆุฃุจุฏู‹ุง ุงู„ุขู† ู†ุงู‚ุต ุจุฏูŠ ุฃุถุน ู‡ู†ุง ุฒูŠุฑูˆ
830
+
831
+ 241
832
+ 00:25:25,410 --> 00:25:31,210
833
+ ูˆู‡ู†ุง ุฒูŠุฑูˆ ู‡ุฐู‡ ูˆุงุญุฏ ูˆู‡ุฐู‡ ุฒูŠุฑูˆ ุนู„ู‰ ุฃูŠ ุนุฏุฏ ุจู‚ุฏุฑ ุจุฒูŠุฑูˆ
834
+
835
+ 242
836
+ 00:25:31,210 --> 00:25:37,330
837
+ ูˆุตู„ู†ุง ู„ู‡ุฐู‡ ุงู„ู€ S ุนู„ู‰ A ุจุฑุฉ ูˆู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฆุฏ
838
+
839
+ 243
840
+ 00:25:37,330 --> 00:25:45,330
841
+ ูˆุงู„ู€ E ุฃุณ ุณุงู„ุจ ST Sin ATDT ู‡ูŠ ูƒู…ุง ู‡ูŠ ุฅุฐุง ุงู†ู‚ู„ุจุช ุงู„ู…ุณุฃู„ุฉ
842
+
843
+ 244
844
+ 00:25:45,330 --> 00:25:50,690
845
+ ุงู„ุชูƒุงู…ู„ ุงู„ุฃุณุงุณูŠ ุงู„ู€ Elemental ูˆุงู„ู€ Sin AT ู‡ุฐุง ุจุฏูŠ ุฃุณุงูˆูŠ
846
+
847
+ 245
848
+ 00:25:50,690 --> 00:25:54,430
849
+ ู…ูŠู†ุŸ ุจุฏูŠ ุฃุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ุฅูŠู‡ุŸ ู†ุงู‚ุต ูุนู†ุฏูƒ ู‡ู†ุง S
850
+
851
+ 246
852
+ 00:25:54,430 --> 00:25:59,090
853
+ ุนู„ูŠู‡ ูˆู‡ู†ุง S ุนู„ู‰ ุฅูŠู‡ุŸ S ุชุฑุจูŠุน ุนู„ู‰ A ุชุฑุจูŠุน Limit ู„ู…ุง
854
+
855
+ 247
856
+ 00:25:59,090 --> 00:26:04,030
857
+ ุงู„ู€ P ุจุฏุฃุช ุชุฑูˆุญ ู„ู„ู€ Infinity ู„ู„ุชูƒุงู…ู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
858
+
859
+ 248
860
+ 00:26:04,340 --> 00:26:09,480
861
+ ุงู„ุชูƒุงู…ู„ ู„ุฃู† ู‡ุฐุง ู‡ูˆ ู†ูุณ ุงู„ุชูƒุงู…ู„ ู‡ุฐุง ุชู…ุงู… ุจุณ ุจุฏู‘ู‡
862
+
863
+ 249
864
+ 00:26:09,480 --> 00:26:13,700
865
+ ุฃุฑุฌุน ู‡ุฐุง ุฅู„ู‰ ุฃุตู„ู‡ ู‚ุจู„ ุงู„ู€ Limit ูŠุจู‚ู‰ ุฑุฌุนุชู‡ ุฅู„ู‰ ุฃุตู„ู‡
866
+
867
+ 250
868
+ 00:26:13,700 --> 00:26:17,340
869
+ ุจุฏู„ ู…ุง ู‡ูˆ Limit ุดูŠู„ุชู‡ ูˆูƒุชุจุช ุชูƒุงู…ู„ ู…ู† Zero ุฅู„ู‰
870
+
871
+ 251
872
+ 00:26:17,340 --> 00:26:23,420
873
+ Infinity ู„ู„ู€ E ุฃุณ ุณุงู„ุจ STDT ู‡ุฐุง ู‡ูˆ ุงู„ุทุฑู ุงู„ุดู…ุงู„ ูŠุจู‚ู‰
874
+
875
+ 252
876
+ 00:26:23,420 --> 00:26:27,640
877
+ ุจุฏู‘ู‡ ุฃุฏู‘ูŠู‡ ุนู†ุฏู‘ู‡ ูˆุฃุฌู…ุน ุจุฏู„ ู…ุง ูƒุงู†ุช ุดุฑุทุฉ ุณุงู„ุจุฉ ุจุตูŠุฑ
878
+
879
+ 253
880
+ 00:26:27,640 --> 00:26:33,560
881
+ ุดุฑุทุฉ ู…ูˆุฌุจุฉ ูŠุจู‚ู‰ ุจุธู„ ู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ุจูŠุธู„ S ุชุฑุจูŠุน ุนู„ู‰
882
+
883
+ 254
884
+ 00:26:33,560 --> 00:26:36,820
885
+ A ุชุฑุจูŠุน ูƒู„ู‡ ููŠ ุงู„ุชูƒุงู…ู„ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ Laplace
886
+
887
+ 255
888
+ 00:26:36,820 --> 00:26:41,240
889
+ transform ู„ู€ Sin AT ุจูŠุธู„ ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ูู‚ุท ุงู„ู„ูŠ ู‡ูˆ
890
+
891
+ 256
892
+ 00:26:41,240 --> 00:26:47,500
893
+ ุฌุฏู‘ู‹ุง 1 ุนู„ู‰ A ุงู„ุขู† ูˆุญุฏู†ุง ุงู„ู…ู‚ุงู…ุงุช ู„ู‡ุฐู‡ ุตูˆุฑุฉ A ุชุฑุจูŠุน
894
+
895
+ 257
896
+ 00:26:47,500 --> 00:26:52,780
897
+ ุฒุงุฆุฏ S ุชุฑุจูŠุน ุนู„ู‰ A ุชุฑุจูŠุน ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ A ุงู„ุขู†
898
+
899
+ 258
900
+ 00:26:52,780 --> 00:26:59,260
901
+ ุจุฏู†ุง ู†ุฌุณู… ุนู„ู‰ ู‡ุฐูŠ ุจูŠุตูŠุฑ A ุชุฑุจูŠุน ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ A
902
+
903
+ 259
904
+ 00:26:59,260 --> 00:27:04,260
905
+ ุชุฑุจูŠุน ููŠ A ุชุฑุจูŠุน ุจุชุฑูˆุญ ุงู„ A ู…ุน ุงู„ A ุจูŠุธู‡ุฑ ุฃู† A ููŠ
906
+
907
+ 260
908
+ 00:27:04,260 --> 00:27:09,960
909
+ S ุชุฑุจูŠุน ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ A ุชุฑุจูŠุน ู‡ุฐุง ู„ู€ Laplace Transform ู„
910
+
911
+ 261
912
+ 00:27:09,960 --> 00:27:16,650
913
+ Sin AT ู„ุฐู„ูƒ ูƒู…ู„ู†ุง ู…ุฑุชูŠู† ูˆูˆุตู„ู†ุง ุฅู„ู‰ ู†ุชูŠุฌุฉ ุงู„ุชูƒุงู…ู„ ูˆู‚ุจู„
914
+
915
+ 262
916
+ 00:27:16,650 --> 00:27:19,750
917
+ ุดูˆูŠุฉ ู„ู…ุง ุฏูŠ ุฃู†ุง ุฃุนุทูŠู†ุง ุชุนุฑูŠู ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
918
+
919
+ 263
920
+ 00:27:19,750 --> 00:27:25,690
921
+ ุฃู‚ูˆู„ ู„ูƒ ูŠุง ุจู‚ูˆู„ L of F of T ูŠุง ุฅู…ุง F of S ู„ุญุธุฉ ู…ู†
922
+
923
+ 264
924
+ 00:27:25,690 --> 00:27:30,750
925
+ ุญุฏ ู…ุง ุฅู†ูƒู…ู„ ุจุทู„ุน ุนู†ุฏูŠ ุฏุงู„ุฉ ููŠ ู…ูŠู†ุŸ ุฏุงู„ุฉ ููŠ S ูˆู‡ู†ุง
926
+
927
+ 265
928
+ 00:27:30,750 --> 00:27:34,250
929
+ ุฏุงู„ุฉ ููŠ S ูˆู‡ู†ุง ุฏุงู„ุฉ ููŠ S ูˆู‡ู†ุง ุฏุงู„ุฉ ููŠ S ูˆูƒู„ู‡
930
+
931
+ 266
932
+ 00:27:34,250 --> 00:27:39,090
933
+ ุฏุงู„ุฉ ููŠ S ูˆุณุฃู„ุชูƒ ู‡ุฐุง ุงู„ุณุคุงู„ ู„ูŠุด ุงู„ F of S ูŠุจู‚ู‰
934
+
935
+ 267
936
+ 00:27:39,090 --> 00:27:43,030
937
+ ุงู„ู†ุชูŠุฌุฉ ุจุนุฏ ู…ุง ู†ูƒู…ู„ ูˆู†ุนูˆุถ ูƒู„ู‡ุง ุจุชุทู„ุน Function ููŠ
938
+
939
+ 268
940
+ 00:27:43,030 --> 00:27:48,170
941
+ S ูู‚ุท ู…ุง ุถู„ู‘ ุนู†ุฏู†ุง ู…ู† T ูˆุจุงู„ุชุงู„ูŠ ุฌูŠุจ ุฏุงู„ุฉ ูƒุงูุฉ ู…ู†
942
+
943
+ 269
944
+ 00:27:48,170 --> 00:27:52,330
945
+ ุงู„ุฏุงู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุทุจ ุงุญู†ุง ุงู„ุขู† ุฌุจู†ุง
946
+
947
+ 270
948
+ 00:27:59,930 --> 00:28:04,430
949
+ ุจุชุนู…ู„ูŠ ุงู„ุฎุทูˆุงุช ุงู„ู„ูŠ ุนู…ู„ุชู‡ุง ุจุณ ุจุฏู„ ุงู„ู€ Sin ุจุชุญุทูŠ ู…ุนู‡ุง
950
+
951
+ 271
952
+ 00:28:04,430 --> 00:28:05,530
953
+ ูƒู€ Cosine
954
+
955
+ 272
956
+ 00:28:11,800 --> 00:28:18,920
957
+ ู‡ุฐู‡ ู†ู…ุฑู‘ ุจูŠู‡ Similarly ุงู„ู„ูŠ ู‡ูˆ Laplace Transform La
958
+
959
+ 273
960
+ 00:28:18,920 --> 00:28:27,400
961
+ Cosine AT ุจุฏูŠู‡ ุณุงูˆูŠ ุจู†ุงุช S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ A
962
+
963
+ 274
964
+ 00:28:27,400 --> 00:28:33,190
965
+ ุชุฑุจูŠุน ู‡ุฐู‡ ุงู„ู€ Sin ุจุฏู„ ุงู„ู€ Constant ุจูŠุฌูŠู†ูŠ S ูˆู„ูŠุณ
966
+
967
+ 275
968
+ 00:28:33,190 --> 00:28:37,470
969
+ Constant ุจุณ ู‡ู†ุง ูƒุงู†ุช ุฅุนุงุฏุฉ ุงู„ู€ Sin Constant ูˆู‡ู†ุง S
970
+
971
+ 276
972
+ 00:28:37,470 --> 00:28:44,050
973
+ ูˆู‡ุฐู‡ ุชุดูŠูƒ ุจุฑุงุญุชูƒ ุฑูˆุญ ุฃุนู…ู„ู‡ุง ููŠ ุงู„ุฏุงุฑ ุดูŠูƒ ุนู„ูŠู‡ุง ุทูŠุจ
974
+
975
+ 277
976
+ 00:28:44,050 --> 00:28:49,850
977
+ ู…ู† B ุจุฏู‡ ุฃุฑูˆุญ ุฃุฌูŠุจ C ูŠุจู‚ู‰ ุจุฏูŠ C ุจุฏูŠ ู„ู€ Laplace
978
+
979
+ 278
980
+ 00:28:49,850 --> 00:28:58,630
981
+ Transform ู„ู€ Cosine 5T ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† S ุนู„ู‰ S ุชุฑุจูŠุน
982
+
983
+ 279
984
+ 00:28:58,630 --> 00:29:07,570
985
+ ุฒุงุฆุฏ ุฎู…ุณุฉ ู„ูƒู„ ุชุฑุจูŠุน ูŠุนู†ูŠ S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ 25
986
+
987
+ 280
988
+ 00:29:07,570 --> 00:29:16,620
989
+ ูˆ25 ุญุฏ ููŠูƒู… ุจุชุญุจ ุชุณุฃู„ ุฃุณุฆู„ุฉ ู‡ู†ุงุŸ ุฎู„ุงุตุŸ ู‡ุง ูŠุง ุจู†ุช
990
+
991
+ 281
992
+ 00:29:16,620 --> 00:29:21,540
993
+ ุงู„ุญู„ุงู„ ุฃู†ุช ู„ุนุจุชูŠ ุชู‚ุตู‘ุจูŠ ูˆู„ุง ู„ุงุŸ ุฎู„ุงุต ูŠุนู†ูŠุŸ ูุฑุฌุช
994
+
995
+ 282
996
+ 00:29:21,540 --> 00:29:23,640
997
+ ูˆูƒุงู†ุช ูˆู‚ู†ู‘ูˆู‡ุง ุชูุฑุฌูˆุงุŸ
998
+
999
+ 283
1000
+ 00:29:42,720 --> 00:29:48,600
1001
+ ู…ุง ุจุนุฏ ุงู„ุถูŠู‚ุฉ ุจู†ุงุช ุฅู„ุง ุงู„ูˆุณุนุฉ ูˆู…ุง ุจุนุฏ ุงู„ุนุณุฑ ุฅู„ุง
1002
+
1003
+ 284
1004
+ 00:29:48,600 --> 00:29:55,240
1005
+ ุงู„ูŠุณุฑ ูˆู„ู‡ุฐุง ู‚ุงู„ ุงู„ู„ู‡ ุชุนุงู„ู‰ ูุฅู† ู…ุน ุงู„ุนุณุฑ ูŠุณุฑุง ูˆุฅู†
1006
+
1007
+ 285
1008
+ 00:29:55,240 --> 00:29:59,660
1009
+ ู…ุน ุงู„ุนุณุฑ ูŠุณุฑุง ูˆู„ู† ูŠุบู„ุจ ุนุณุฑุง ูŠุณุฑูŠู† ุฃูˆ ูƒู…ุง ู‚ุงู„ ุตู„ู‰
1010
+
1011
+ 286
1012
+ 00:29:59,660 --> 00:30:03,470
1013
+ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู… ูŠุนู†ูŠ ู‚ุฏู‘ูŠุด ุจุชุฏุงูŠู‚ ููŠ ู„ุญุธุฉ ุชู…ุงู… ูˆุจุนุฏ
1014
+
1015
+ 287
1016
+ 00:30:03,470 --> 00:30:07,830
1017
+ ุดูˆูŠุฉ ุจุชุชูˆุณู‘ุน ูˆู‡ุฐู‡ ุทุจูŠุนุฉ ุงู„ุฏู†ูŠุง ุจุถู„ู‘ุด ุงู„ูˆุงุญุฏ ุนู†ุฏู‡
1018
+
1019
+ 288
1020
+ 00:30:07,830 --> 00:30:13,030
1021
+ ุนุณุฑ ุนู„ู‰ ุทูˆู„ ูˆู„ุง ุจุถู„ ุนู†ุฏู‡ ุงู†ูุฑุงุฌุฉ ุนู„ู‰ ุทูˆู„ ุงู„ู„ู‡ ูŠุฎูุถ
1022
+
1023
+ 289
1024
+ 00:30:13,030 --> 00:30:18,670
1025
+ ุงู„ู‚ุตุฉ ูˆูŠุฑูุนู‡ุง ูˆู‡ุฐู‡ ุทุจุนู‹ุง ู…ู† ุจุฏูŠู‡ูŠุงุช ุงู„ู„ูŠ ู‡ูˆ ุนู…ู„
1026
+
1027
+ 290
1028
+ 00:30:18,670 --> 00:30:26,550
1029
+ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ุทูŠุจ ู†ุฑุฌุน ุงู„ุขู† ูˆู†ูƒู…ู„ ููŠ ุนู†ุฏู†ุง
1030
+
1031
+ 291
1032
+ 00:30:26,550 --> 00:30:30,170
1033
+ ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ Theorem
1034
+
1035
+ 292
1036
+ 00:30:34,330 --> 00:30:44,450
1037
+ ู„ุงุจู„ุงุณ ุชุญูˆูŠู„ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
1038
+
1039
+ 293
1040
+ 00:30:44,450 --> 00:30:53,230
1041
+ ู„ุงุจู„ุงุณ
1042
+
1043
+ 294
1044
+ 00:30:53,230 --> 00:30:53,550
1045
+ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
1046
+
1047
+ 295
1048
+ 00:30:53,550 --> 00:30:53,930
1049
+ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
1050
+
1051
+ 296
1052
+ 00:30:53,930 --> 00:30:54,070
1053
+ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
1054
+
1055
+ 297
1056
+ 00:30:54,070 --> 00:30:54,690
1057
+ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
1058
+
1059
+ 298
1060
+ 00:31:04,380 --> 00:31:14,120
1061
+ ู„ูˆ Laplace Transform ู„ู„ู€ F1 ูˆLaplace Transform ู„ู„ู€
1062
+
1063
+ 299
1064
+ 00:31:14,120 --> 00:31:27,260
1065
+ F2 are both exist ู„ูˆ ูƒุงู†ูˆุง Exist for ู„ู„ู€ S ุงู„ู„ูŠ
1066
+
1067
+ 300
1068
+ 00:31:27,260 --> 00:31:30,320
1069
+ ุฃูƒุจุฑ ู…ู† S node then
1070
+
1071
+ 301
1072
+ 00:31:52,040 --> 00:31:59,900
1073
+ ุฃูˆ ุจู‚ุฏุฑ ุฃู‚ูˆู„ C1 F1
1074
+
1075
+ 302
1076
+ 00:31:59,900 --> 00:32:16,940
1077
+ of S ุฒุงุฆุฏ C2 Capital F2 of S example ู†ู…ุฑุฉ
1078
+
1079
+ 303
1080
+ 00:32:16,940 --> 00:32:30,900
1081
+ A find Laplace Transform ู„ู€ 8 ู‡ุฐุง ู†ู…ุฑุฉ A ู†ู…ุฑุฉ
1082
+
1083
+ 304
1084
+ 00:32:30,900 --> 00:32:45,060
1085
+ B ู†ุจุฏุฃ ุจุงู„ู€ Laplace Transform ู„ู€ 3 Cos 2T 3 Cos 2T
1086
+
1087
+ 305
1088
+ 00:32:45,060 --> 00:32:59,120
1089
+ ู†ุงู‚ุต 5 E ุฃุณ ุณุงู„ุจ 3T ู†ู…ุฑุฉ C Find
1090
+
1091
+ 306
1092
+ 00:33:01,390 --> 00:33:12,550
1093
+ Laplace Transform La Cosine ุชุฑุจูŠุน AT Cosine ุชุฑุจูŠุน
1094
+
1095
+ 307
1096
+ 00:33:12,550 --> 00:33:26,770
1097
+ 2T ู†ู…ุฑุฉ D find Laplace Transform ู„ู€ Cosh AT
1098
+
1099
+ 308
1100
+ 00:33:39,130 --> 00:33:45,090
1101
+ ุฎู„ู‘ูŠ ุจุงู„ูƒ ู‡ู†ุง ุงู„ู„ูŠ ุจุชุญูƒูŠ ู‡ู†ุงูƒ ุฎู„ู‘ูŠ ุจุงู„ูƒ ู‡ู†ุง ูŠุจู‚ู‰
1102
+
1103
+ 309
1104
+ 00:33:45,090 --> 00:33:51,050
1105
+ ุจุงุฌูŠ ูˆุจู‚ูˆู„ ุจุฏู†ุง ุงู„ุขู† ู†ุฌู„ู‘ุน ู†ุธุฑูŠุฉ ู‡ุฐู‡ ูˆู†ุญุงูˆู„ ู†ุทุจู‘ู‚
1106
+
1107
+ 310
1108
+ 00:33:51,050 --> 00:33:54,930
1109
+ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู„ูŠ ุฃู† ุงู„ู€ Laplace
1110
+
1111
+ 311
1112
+ 00:33:54,930 --> 00:34:00,430
1113
+ Transform ุนุจุงุฑุฉ ุนู† ู…ุคุซู‘ุฑ ุฎุทู‘ูŠ ุดูˆ ูŠุนู†ูŠ ู…ุคุซู‘ุฑ ุฎุทู‘ูŠุŸ ู‡ุฐุง
1114
+
1115
+ 312
1116
+ 00:34:00,430 --> 00:34:05,200
1117
+ ุงู„ู„ูŠ ุจุฏู†ุง ู†ุนุฑูู‡ ุจูŠู‚ูˆู„ ู‡ู†ุง ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… is a
1118
+
1119
+ 313
1120
+ 00:34:05,200 --> 00:34:11,000
1121
+ linear operator ู…ุคุซู‘ุฑ ุฎุทู‘ูŠ ุฐุงุชูŠ an ู„ูˆ ูƒุงู† ู„ุงุจู„ุงุณ
1122
+
1123
+ 314
1124
+ 00:34:11,000 --> 00:34:15,640
1125
+ ุชุฑุงู†ุณููˆุฑู… ู„ุฏุงู„ุฉ F1 ูˆู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ุฏุงู„ุฉ F2
1126
+
1127
+ 315
1128
+ 00:34:15,640 --> 00:34:21,920
1129
+ ุงุซู†ุชูŠู† ู…ุนุฑููŠู† ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจุฏูŠ ู„ุงุจู„ุงุณ ู„ู€ C1 F1
1130
+
1131
+ 316
1132
+ 00:34:21,920 --> 00:34:28,660
1133
+ ุฒุงุฆุฏ C2 F2 ู„ู…ุง ุฃู‚ูˆู„ ู…ุคุซู‘ุฑ ุฎุทู‘ูŠ ู…ุนู†ุงุชู‡ ู„ุงุจู„ุงุณ ุจุฏูŠ ูŠุฏุฎู„
1134
+
1135
+ 317
1136
+ 00:34:28,660 --> 00:34:33,120
1137
+ ุนู„ู‰ ูƒู„ Term ู…ู† ู‡ุฐูŠู† ุงู„ู€ TermูŠู† ูŠุจู‚ู‰ ุจุตูŠุฑ Laplace
1138
+
1139
+ 318
1140
+ 00:34:33,120 --> 00:34:37,960
1141
+ ู„ู„ุฃูˆู„ ุฒูŠ Laplace ู„ู„ุซุงู†ูŠ ุงู„ู€ Constant ุจู†ู‚ุฏุฑ ู†ุทู„ุนู‡
1142
+
1143
+ 319
1144
+ 00:34:37,960 --> 00:34:43,600
1145
+ ุจุฑู‡ Laplace ูŠุจู‚ู‰ C1 Laplace ู„ู„ู€ F1 ุฒูŠ C2 Laplace ู„ู„ู€
1146
+
1147
+ 320
1148
+ 00:34:43,600 --> 00:34:48,880
1149
+ F2 Laplace ู„ู„ู€ F1 ู„ูˆ ุนุฏู‘ูŠุชู‡ุง ุฑู…ุฒ Capital F1 of S
1150
+
1151
+ 321
1152
+ 00:34:48,880 --> 00:34:56,310
1153
+ ูŠุจู‚ู‰ ุจุตูŠุฑ C1 F1 of S ูˆุงู„ุซุงู†ูŠุฉ C2 F2 of S ุจู†ุฑูˆุญ
1154
+
1155
+ 322
1156
+ 00:34:56,310 --> 00:35:00,030
1157
+ ู†ุณุชุฎุฏู… ู‡ุฐุง ุงู„ูƒู„ุงู… ููŠ ุฅูŠุฌุงุฏ Laplace Transform
1158
+
1159
+ 323
1160
+ 00:35:00,030 --> 00:35:07,190
1161
+ ู„ู„ุฏูˆุงู„ ุงู„ู…ุฎุชู„ูุฉ ูˆูƒุฐู„ูƒ ุจุงุณุชุฎุฏุงู… ุงู„ู…ุซุงู„ูŠู† ุงู„ุณุงุจู‚ูŠู†
1162
+
1163
+ 324
1164
+ 00:35:07,190 --> 00:35:14,310
1165
+ ุงู„ู„ูŠ ุฃุฎุฐู†ุงู‡ู… ู‚ุจู„ ู‚ู„ูŠู„ ูŠุจู‚ู‰ ุจุฏู‘ูŠ ุฃุฌูŠ ู„ู†ู…ุฑุฉ A ุจูŠู‚ูˆู„
1166
+
1167
+ 325
1168
+ 00:35:14,310 --> 00:35:19,110
1169
+ ู„ู‡ุง Laplace ู„ู€ 8 ุจู‚ูˆู„ ู…ุง ุจุนุฑูู†ูŠ Laplace ุฃู†ุง
1170
+
1171
+ 326
1172
+ 00:35:19,110 --> 00:35:24,730
1173
+ ุจุนุฑู Laplace ู„ู„ูˆุงุญุฏ ุตุญ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ Laplace
1174
+
1175
+ 327
1176
+ 00:35:24,730 --> 00:35:32,400
1177
+ ู„ู€ 8 ููŠ 1 ู…ุธุจูˆุท ุงู„ู€ 8 ู‡ูŠ ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช
1178
+
1179
+ 328
1180
+ 00:35:32,400 --> 00:35:38,100
1181
+ ุจู‚ุฏุฑ ุฃุทู„ุนู‡ ุจุฑุฉ ูŠุง ุด ุจุฑุฉ Laplace ูŠุจู‚ู‰ ู‡ุฐู‡ 8 ููŠ
1182
+
1183
+ 329
1184
+ 00:35:38,100 --> 00:35:44,440
1185
+ Laplace ู„ู„ูˆุงุญุฏ 8 ู‚ุฏู‘ูŠุด Laplace ู„ู„ูˆุงุญุฏ 1 ุนู„ู‰
1186
+
1187
+ 330
1188
+ 00:35:44,440 --> 00:35:52,260
1189
+ S ูู‚ุท ู„ุบูŠุฑ ูŠุจู‚ู‰ 8 ุนู„ู‰ S ู‡ุฐุง Laplace ู„ู„ู€ 8
1190
+
1191
+ 331
1192
+ 00:35:52,260 --> 00:35:57,080
1193
+ ุทุจ Laplace Laplace ู„ู€ 100 ู„ู…ูŠุฉ ู…ู†ู‡ู… 100 ู„ูŠุณ ุญุทู‘ ุงู„ุฑู‚ู… ุงู„ู„ูŠ
1194
+
1195
+ 332
1196
+ 00:35:57,080 --> 00:36:00,560
1197
+ ุจุฏู‘ูƒ ุงูŠุงู‡ ุจุณ ุฃู†ุง ูƒู†ุช ุจุฃุนู„ู‰ ุงุณู…ูƒ ูˆุฌุจุช Laplace ุฅูŠู‡
1198
+
1199
+ 333
1200
+ 00:36:00,560 --> 00:36:04,740
1201
+ ุงู„ู„ูŠุŸ ู‡ุฐุง ุจุงู„ู†ุณุจุงู„ูŠ ุฅูŠู‡ุŸ ุจุฏู†ุง ู†ู…ุฑู‘ ุจูŠู‡ ู†ู…ุฑู‘ ุจูŠู‡
1202
+
1203
+ 334
1204
+ 00:36:04,740 --> 00:36:10,680
1205
+ ู‚ู„ู‘ูŠ Laplace ุฃูŠูˆุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ Laplace ู„ู…ูŠู†ุŸ ุงู„ู„ูŠ
1206
+
1207
+ 335
1208
+ 00:36:10,680 --> 00:36:18,140
1209
+ 3 Cos 2T ู†ุงู‚ุต 5 E ุฃุณ ุณุงู„ุจ 3T
1210
+
1211
+ 336
1212
+ 00:36:18,140 --> 00:36:26,670
1213
+ ูˆุชุณุงูˆูŠ ู‡ุฐู‡ ู‡ูŠ ู‡ุฐู‡ ุจุงู„ุถุจุท ุตุญุŸ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุจุฏู‘ุง ุฃู‚ูˆู„
1214
+
1215
+ 337
1216
+ 00:36:26,670 --> 00:36:29,690
1217
+ ุงู„ู€ Constant ููŠ Laplace ู„ู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ ู†ุงู‚ุต
1218
+
1219
+ 338
1220
+ 00:36:29,690 --> 00:36:33,310
1221
+ ุงู„ู€ Constant ููŠ Laplace ู„ู„ุฏุงู„ุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง
1222
+
1223
+ 339
1224
+ 00:36:33,310 --> 00:36:42,950
1225
+ ุนุจุงุฑุฉ ุนู† 3 Laplace ู„ู…ูŠู†ุŸ ู„ูŠู‡ุŸ Cos 2T ู†ุงู‚ุต 5
1226
+
1227
+ 340
1228
+ 00:36:42,950 --> 00:36:49,600
1229
+ ููŠ Laplace ู„ู„ู€ E ุฃุณ ุณุงู„ุจ 3T ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ
1230
+
1231
+ 341
1232
+ 00:36:49,600 --> 00:36:55,320
1233
+ 3 ููŠู‡ ุจุฏูŠ Laplace ู„ู€ Cos 2T ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ
1234
+
1235
+ 342
1236
+ 00:36:55,320 --> 00:37:04,940
1237
+ ุนู† S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ ูƒู…ุŸ 2 ุชุฑุจูŠุน ุญ๏ฟฝ๏ฟฝุจู†ุงู‡ุง ู‚ุจู„
1238
+
1239
+ 343
1240
+ 00:37:04,940 --> 00:37:11,210
1241
+ ู‚ู„ูŠู„ ู…ุธุจูˆุทุŸ ูˆู‚ู„ู†ุง ู„ูƒ ุชุดูŠูƒู‡ุง ูŠุนู†ูŠ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุดูŠู„ู†ุง
1242
+
1243
+ 344
1244
+ 00:37:11,210 --> 00:37:15,050
1245
+ ุงู„ู€ A ูˆุญุทูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฑู‚ู… ุงู„ู„ูŠ ู…ุถุฑูˆุจ ููŠ ุงู„ุฒุงูˆูŠุฉ
1246
+
1247
+ 345
1248
+ 00:37:15,050 --> 00:37:20,910
1249
+ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ 2 ู‡ุฐู‡ ุงู„ุฃูˆู„ู‰ ุงู„ุซุงู†ูŠุฉ ู†ุงู‚ุต 5 ููŠ
1250
+
1251
+ 346
1252
+ 00:37:20,910 --> 00:37:30,430
1253
+ ู†ูŠุฌูŠ ู„ู‡ุฐู‡ ุงู„ู€ Exponential ุงู„ู„ูŠ ู‡ูˆ 1 ุนู„ู‰ S ุฒุงุฆุฏ
1254
+
1255
+ 347
1256
+ 00:37:30,430 --> 00:37:38,350
1257
+ 3 ุตุงุฑุช ุงู„ู…ุณุฃู„ุฉ ู‡ูŠ 3S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ 4
1258
+
1259
+ 348
1260
+ 00:37:38,350 --> 00:37:46,270
1261
+ ู†ุงู‚ุต 5 ุนู„ู‰ S ุฒุงุฆุฏ 3 ุฃุธู† ุฃู† ู‡ุฐุง ู‡ูˆ ุงู„ู…ุถุงุนู
1262
+
1263
+ 349
1264
+ 00:37:46,270 --> 00:37:54,610
1265
+ ุงู„ู…ุดุชุฑูƒ ูƒู„ู‡ S ุชุฑุจูŠุน ุฒุงุฆุฏ 4 ููŠ S ุฒุงุฆุฏ 3 ู‡ุฐูŠ
1266
+
1267
+ 350
1268
+ 00:37:54,610 --> 00:38:05,470
1269
+ ุจูŠุตูŠุฑ 3S ููŠ S ุฒุงุฆุฏ 3 ู†ุงู‚ุต 5 ููŠ S ุชุฑุจูŠุน
1270
+
1271
+ 351
1272
+ 00:38:05,470 --> 00:38:13,940
1273
+ ุฒุงุฆุฏ 4 ุงู„ู†ุชูŠุฌุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุชุณุงูˆูŠ ู‡ุฐู‡ 3
1274
+
1275
+ 352
1276
+ 00:38:13,940 --> 00:38:23,180
1277
+ S ุชุฑุจูŠุน ุฒุงุฆุฏ 9S ุงู„ู€ Term ุงู„ุซุงู†ูŠ ู†ุงู‚ุต 5
1278
+
1279
+ 353
1280
+ 00:38:23,180 --> 00:38:31,260
1281
+ S ุชุฑุจูŠุน ู†ุงู‚ุต 20 ูƒู„ู‡ ุนู„ู‰ ุงู„ู…ู‚ุงู… ุงู„ู„ูŠ ู‡ูˆ S ุชุฑุจูŠุน
1282
+
1283
+ 354
1284
+ 00:38:31,260 --> 00:38:38,340
1285
+ ุฒุงุฆุฏ 4 ููŠ S ุฒุงุฆุฏ 3 ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุนู„ู‰ ุงู„ูˆุฌู‡
1286
+
1287
+ 355
1288
+ 00:38:38,340 --> 00:38:47,870
1289
+ ุงู„ุชุงู„ูŠ ู†ุงู‚ุต 2S ุชุฑุจูŠุน ูˆู‡ู†ุง ุฒุงุฆุฏ 9S ูˆู‡ู†ุง
1290
+
1291
+ 356
1292
+ 00:38:47,870 --> 00:38:57,130
1293
+ ู†ุงู‚ุต 20 ูƒู„ู‡ ู…ู‚ุณูˆู…ู‹ุง ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ 4 ููŠ ู…ูŠู†
1294
+
1295
+ 357
1296
+ 00:38:57,130 --> 00:39:03,770
1297
+ ููŠ S ุฒุงุฆุฏ 3 ูŠุจู‚ู‰ ู‡ุฐุง ู„ู€ Laplace Transform ู„ู„ุฏุงู„ุฉ
1298
+
1299
+ 358
1300
+ 00:39:03,770 --> 00:39:08,370
1301
+ ู‡ุฐู‡ ุทุจ ู‡ุฐู‡ ูŠุง ุจู†ุงุช ู„ูˆ ุนู…ู„ุชู„ู‡ุง Partial Fraction
1302
+
1303
+ 359
1304
+ 00:39:08,370 --> 00:39:16,730
1305
+ ูƒุณูˆุฑ ุฌุฒุฆูŠุฉ ุจุทู„ุน ุจุทู„ุน ู‡ุฐุง ุตุญุŸ ู…ุด ู‡ุฐุง ูˆุญุฏู†ุง
1306
+
1307
+ 360
1308
+ 00:39:16,730 --> 00:39:20,510
1309
+ ุงู„ู…ู‚ุงู…ุงุช ูŠุจู‚ู‰ ู„ูˆ ุจุฏู‘ุง ุฃุนู…ู„ ูƒุณูˆุฑ ุจุชูƒูˆู† ุนู†ุฏูŠ ู‡ุฐู‡
1310
+
1311
+ 361
1312
+ 00:39:20,510 --> 00:39:24,650
1313
+ ุจุงู„ุฏุฑุฌุฉ ุนู„ู‰ ุงู„ุฃุตู„ ุชุจุนู‡ุง ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุงู„ุฃุตู„ ุชุจุนู‡ุง
1314
+
1315
+ 362
1316
+ 00:39:24,650 --> 00:39:30,130
1317
+ ุทุจุนู‹ุง ู„ูŠุด ู‡ูˆ ุจูŠู‚ูˆู„ูƒ ูƒุฏู‡ ุงู„ูƒู„ุงู… ุฅู†ู‡ ุณูŠู„ุฒู…ู†ุง ุจุนุฏ ุดูˆูŠุฉ
1318
+
1319
+ 363
1320
+ 00:39:30,130 --> 00:39:35,350
1321
+ ุฅู† ุดุงุก ุงู„ู„ู‡ ู†ุถุทุฑ ู†ุนู…ู„ ูƒุณูˆุฑ ุฌุฒุฆูŠุฉ ู„ู…ู‚ุฏุงุฑ ู…ุซู„ ู‡ุฐุง
1322
+
1323
+ 364
1324
+ 00:39:35,350 --> 00:39:40,310
1325
+ ุงู„ู…ู‚ุฏุงุฑ ู…ุง ู‡ู†ู‚ุฏุฑุด ู†ูˆุฌุฏ Laplace Transform ู„ู‡ ุฃูˆ ู†ูˆุฌุฏ
1326
+
1327
+ 365
1328
+ 00:39:40,310 --> 00:39:42,710
1329
+ ู…ุนูƒูˆุณ Laplace Transform
1330
+
1331
+ 366
1332
+ 00:39:55,960 --> 00:40:03,920
1333
+ ู‡ุฐุง ู†ู…ุฑุฉ B ูŠุจุฏุฃ ูŠุฌูŠ ู„ู†ู…ุฑุฉ C ู†ู…ุฑุฉ C ุจูŠู‚ูˆู„ ุงู„ู„ูŠ ุจุฏู‘ู‡
1334
+
1335
+ 367
1336
+ 00:40:03,920 --> 00:40:10,760
1337
+ Laplace Transform ูˆูŠุฑุงุถูŠู‡ C Laplace ู„ู€ Cosine ุชุฑุจูŠุน ุจุฏู†ุง Laplace
1338
+
1339
+ 368
1340
+ 0
1341
+
1342
+ 401
1343
+ 00:44:36,470 --> 00:44:45,150
1344
+ ูƒูˆุณุงูŠู† ุจุณ ุงู„ุฅุดุงุฑุฉ ููŠ ุงู„ู…ู‚ุงู… ุจุงู„ุณุงู„ุจ ูˆู„ูŠุณ ุจุงู„ู…ูˆุฌุจ
1345
+
1346
+ 402
1347
+ 00:44:45,150 --> 00:44:49,790
1348
+ ูƒูŠู
1349
+
1350
+ 403
1351
+ 00:44:49,790 --> 00:44:50,390
1352
+ ูƒูŠูุŸ
1353
+
1354
+ 404
1355
+ 00:44:53,080 --> 00:44:58,040
1356
+ ู„ุง ุชุญูุธูŠู‡ุงุŒ ูˆู‡ู†ุตูˆุฑู‡ุง ู„ูƒ ุฅู† ุดุงุก ุงู„ู„ู‡ ูƒู„ ุงู„ Laplace transform
1357
+
1358
+ 405
1359
+ 00:44:58,040 --> 00:45:02,880
1360
+ ุจุฏู„ ุงู„ุฏุงู„ุฉ ุงู„ุนุดุฑูŠู† ุฏุงู„ุฉ ูˆู†ุนุทูŠูƒ ูŠุง ููŠู„ู…
1361
+
1362
+ 406
1363
+ 00:45:02,880 --> 00:45:08,460
1364
+ ุชุนุงู„ูŠ ุชูุถู„ูŠ ู‡ูŠู‡ุง ู…ุนูƒู ุงุณุชุฎุฏู…ูŠู‡ุง ู…ุชู‰ ู…ุง ู„ุงุฒู… ุงู„ุฃู…ุฑ
1365
+
1366
+ 407
1367
+ 00:45:08,460 --> 00:45:13,220
1368
+ ูŠุนู†ูŠ ุงู„ุตูุญุฉ ุงู„ุฃุฎูŠุฑุฉ ููŠ ูˆุฑู‚ุฉ ุงู„ุฃุณุฆู„ุฉ ุจุชูƒูˆู† ุงู„
1369
+
1370
+ 408
1371
+ 00:45:13,220 --> 00:45:17,220
1372
+ Laplace transform ู„ู„ุฏูˆุงู„ ูƒู„ู‡ุง ุงู„ู„ูŠ ุจุชู„ุฒู…ูƒ ูˆุฒูŠุงุฏุฉ
1373
+
1374
+ 409
1375
+ 00:45:17,220 --> 00:45:23,250
1376
+ ุดูˆูŠุฉ ุจุณ ุจุฏูŠ ุชุนุฑููŠ ู„ูˆ ู‚ู„ุช ู„ูƒ use the definition to
1377
+
1378
+ 410
1379
+ 00:45:23,250 --> 00:45:26,850
1380
+ find Laplace transform ู„ุฏุงู„ุฉ ูู„ุงู†ูŠุฉ ูˆุฃุนุทูŠุชูƒ ุฏุงู„ุฉ
1381
+
1382
+ 411
1383
+ 00:45:26,850 --> 00:45:32,990
1384
+ ูŠุจู‚ู‰ ุจุฏูƒ ุชุฑูˆุญูŠ ุชุดุชุบู„ูŠ ุงู„ุดุบู„ ู‡ุฐุงุŒ ุชู…ุงู…ุŸ ู„ูƒู† ุฅุฐุง ู…ุง
1385
+
1386
+ 412
1387
+ 00:45:32,990 --> 00:45:36,850
1388
+ ู‚ู„ุชู ู‡ุฐุง ุงู„ูƒู„ุงู… ูˆู„ุฒู…ุช Laplace ู„ุฃูŠ ุฏุงู„ุฉ ุจุฌูŠุจู‡ุง ู…ู†
1389
+
1390
+ 413
1391
+ 00:45:36,850 --> 00:45:40,990
1392
+ ุงู„ุฌุฏูˆู„ ุฏูˆุฑูŠุŒ ุงู„ุฌุฏูˆู„ ู‡ุฐุง ู‡ู†ุนุทูŠูƒู… ุฅูŠุงู‡ ูŠูˆู… ุฐู„ูƒ ุงู„ู…ุฑุฉ
1393
+
1394
+ 414
1395
+ 00:45:40,990 --> 00:45:44,270
1396
+ ุงู„ู‚ุงุฏู…ุฉุŒ ุฏุง ู…ู† ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฏูŠ ูƒู„ ูˆุงุญุฏ ููŠูƒู… ูŠูƒูˆู†
1397
+
1398
+ 415
1399
+ 00:45:44,270 --> 00:45:47,570
1400
+ ูŠูƒุชุจู‡ุง ู…ุนุงู‡ุง ู„ุฅู†ู‡ ููŠ ุฌุฏูˆู„ ุจุฏูŠ ุฃู‚ูˆู„ ู„ูƒ ูŠุงู„ุง ุนุดุงู†
1401
+
1402
+ 416
1403
+ 00:45:47,570 --> 00:45:52,390
1404
+ ุชุชุนูˆุฏูŠ ุชูุชุดูŠ ูˆุชุนุฑููŠ ูƒูŠู ุชู‚ูˆู„ูŠ ู…ู† ุงู„ุฌุฏูˆู„ Laplace
1405
+
1406
+ 417
1407
+ 00:45:52,390 --> 00:45:56,510
1408
+ transform ู„ุฏุงู„ุฉ ู…ุง ูƒู„ ูˆุงุญุฏ ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ูŠูƒูˆู†
1409
+
1410
+ 418
1411
+ 00:45:56,510 --> 00:45:57,810
1412
+ ูŠูƒุชุจู‡ุง ู…ุนุงู‡ุง ุฏูŠ ุฑุจุงู„ูƒู…
1413
+
1414
+ 419
1415
+ 00:46:01,630 --> 00:46:06,770
1416
+ ุทูŠุจ ููŠู†ุง ูƒู…ุงู† ู†ุธุฑูŠุฉ ุจู†ุงุช ุจุชุฌูŠุจ Laplace transform
1417
+
1418
+ 420
1419
+ 00:46:06,770 --> 00:46:12,390
1420
+ ู„ู„ู…ุดุชู‚ุงุช ูŠุนู†ูŠ ู„ูˆ ุงุดุชู‚ูŠู†ุงุŒ ุฏู‡ ุงู„ู„ูŠ ุจุฏูŠ Laplace ู„ู„ู…ุดุช๏ฟฝ๏ฟฝุฉ
1421
+
1422
+ 421
1423
+ 00:46:12,390 --> 00:46:16,150
1424
+ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุชู†ุต ุนู„ู‰ ู…ุง ูŠู„ูŠ
1425
+
1426
+ 422
1427
+ 00:46:19,780 --> 00:46:24,840
1428
+ ุทุจ ู„ูŠุด ุจุฏู†ุง Laplace transform ู„ู‡ุฐู‡ ุงู„ู…ุดุชู‚ุฉุŸ ู„ุฃู†
1429
+
1430
+ 423
1431
+ 00:46:24,840 --> 00:46:29,940
1432
+ ู…ูˆุถูˆุนู†ุง ู…ูˆุถูˆุน ู…ุนุงุฏู„ุงุช ุชูุงุถู„ูŠุฉ ุจุฏู†ุง ู†ุฌูŠุจ ุญู„
1433
+
1434
+ 424
1435
+ 00:46:29,940 --> 00:46:36,120
1436
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุจุงุณุชุฎุฏุงู… Laplace transform ูŠุจู‚ู‰
1437
+
1438
+ 425
1439
+ 00:46:36,120 --> 00:46:43,560
1440
+ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ Theorem:
1441
+
1442
+ 426
1443
+ 00:46:43,560 --> 00:47:00,950
1444
+ f of t is a function such that ุจุญูŠุซ ุฃู† both Laplace
1445
+
1446
+ 427
1447
+ 00:47:00,950 --> 00:47:12,190
1448
+ transform of both Laplace transform ู„ู„ู€ F of T and
1449
+
1450
+ 428
1451
+ 00:47:12,190 --> 00:47:27,640
1452
+ Laplace transform ู„ู„ู€ F' of T exists then
1453
+
1454
+ 429
1455
+ 00:47:27,640 --> 00:47:31,240
1456
+ ุจุฏู†ุง
1457
+
1458
+ 430
1459
+ 00:47:31,240 --> 00:47:40,380
1460
+ Laplace transform ู„ู„ู€ F' of T ุจู†ุนุฑู ุนู„ูŠู‡ุง ุฅู†ู‡ุง S ููŠ
1461
+
1462
+ 431
1463
+ 00:47:40,380 --> 00:47:52,260
1464
+ Laplace transform ู„ู„ู€ F of T ู†ุงู‚ุต ุงู„ู€ F of Zero ู‡ุฐู‡
1465
+
1466
+ 432
1467
+ 00:47:52,260 --> 00:47:59,940
1468
+ ู„ู‡ุง ุตูŠุบุฉ ุซุงู†ูŠุฉ ูƒู…ุงู† ูˆู‡ูŠ S ููŠ ู…ูŠู†ุŸ ููŠ Capital X as
1469
+
1470
+ 433
1471
+ 00:47:59,940 --> 00:48:07,640
1472
+ a function of S ู†ุงู‚ุต ุงู„ู€ F of Zero ู‡ุฐู‡ ู„ูˆ ูƒุงู†ุช
1473
+
1474
+ 434
1475
+ 00:48:07,640 --> 00:48:13,320
1476
+ ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ ุฌูŠู†ุง ู„ู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ Similarly
1477
+
1478
+ 435
1479
+ 00:48:15,900 --> 00:48:22,260
1480
+ Laplace transform ู„ู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ as a function of T
1481
+
1482
+ 436
1483
+ 00:48:22,260 --> 00:48:34,360
1484
+ ุจุฏูŠ ุฃุณุงูˆูŠ S squared Laplace ู„ู„ู€ F of T ู†ุงู‚ุต ุงู„ู€ S ููŠ ุงู„ู€
1485
+
1486
+ 437
1487
+ 00:48:34,360 --> 00:48:42,800
1488
+ F of Zero ู†ุงู‚ุต ุงู„ู€ F prime of Zero in general
1489
+
1490
+ 438
1491
+ 00:48:46,850 --> 00:48:53,970
1492
+ ุนู„ู‰ ูˆุฌู‡ ุงู„ุนู…ูˆู… Laplace transform ู„ู„ุชูุงุถู„ ุงู„ู†ูˆู†ูŠ as
1493
+
1494
+ 439
1495
+ 00:48:53,970 --> 00:48:55,690
1496
+ a function of T
1497
+
1498
+ 440
1499
+ 00:49:02,760 --> 00:49:13,960
1500
+ ู†ุงู‚ุต S<sup>n</sup> ู†ุงู‚ุต 1 ููŠ ุงู„ู€ F of Zero ู†ุงู‚ุต S<sup>n</sup> ู†ุงู‚ุต
1501
+
1502
+ 441
1503
+ 00:49:13,960 --> 00:49:23,220
1504
+ 2 ููŠ ุงู„ู€ F prime of Zero ู†ุงู‚ุต ... ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ S
1505
+
1506
+ 442
1507
+ 00:49:24,240 --> 00:49:30,300
1508
+ ููŠ ุงู„ู€ F to the derivative of N minus 2 ุนู†ุฏ ุงู„
1509
+
1510
+ 443
1511
+ 00:49:30,300 --> 00:49:37,560
1512
+ Zero ู†ุงู‚ุต F to the derivative of N minus 1 ุนู†ุฏ
1513
+
1514
+ 444
1515
+ 00:49:37,560 --> 00:49:38,160
1516
+ ุงู„ Zero
1517
+
1518
+ 445
1519
+ 00:49:57,000 --> 00:50:02,900
1520
+ ุงู„ุญุณุงุจุงุช ุงู„ู„ูŠ ูุงุชุช ูƒุงู†ุช ูƒู„ู‡ุง ุญุณุงุจุงุช Laplace ู„ู„ุฏูˆุงู„
1521
+
1522
+ 446
1523
+ 00:50:02,900 --> 00:50:09,080
1524
+ ู„ูƒู† ู‡ู†ุง ุจูŠุฌูŠ ุญุณุงุจุงุช Laplace ู„ู…ุดุชู‚ุงุช ุงู„ุฏูˆุงู„ ู‡ู†ุงุฎุฏ
1525
+
1526
+ 447
1527
+ 00:50:09,080 --> 00:50:12,820
1528
+ Laplace ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ Laplace ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ูˆู…ู† ุซู…
1529
+
1530
+ 448
1531
+ 00:50:12,820 --> 00:50:18,280
1532
+ ู†ุนู…ู… Laplace ุงู„ู…ุดุชู‚ุฉ ุงู„ู†ูˆู†ูŠุฉ ู„ูˆ ุฌูŠู†ุง ู„ู„ุฌุฏูˆู„ ู‡ุฐุง
1533
+
1534
+ 449
1535
+ 00:50:18,280 --> 00:50:24,200
1536
+ ูุชุญุช ููŠู‡ ููŠ ุงู„ูƒุชุงุจ ุจุชู„ุงู‚ูŠ ู‡ุฐู‡ ู‡ูŠ ุขุฎุฑ Laplace ููŠ
1537
+
1538
+ 450
1539
+ 00:50:24,200 --> 00:50:30,760
1540
+ ุงู„ุฌุฏูˆู„ ุฃุณูู„ู‡ ุขุฎุฑ ูˆุงุญุฏุฉ ุฅูŠุด ุจูŠู‚ูˆู„ ุงู„ู†ุธุฑูŠุฉุŸ ุจูŠู‚ูˆู„ ู„ูŠ
1541
+
1542
+ 451
1543
+ 00:50:30,760 --> 00:50:36,020
1544
+ ู…ุง ูŠุฃุชูŠ f of t ู‡ูŠ ุงู„ function ุจุญูŠุซ Laplace ู„ู€ f of t
1545
+
1546
+ 452
1547
+ 00:50:36,020 --> 00:50:41,340
1548
+ ูˆู„aplace ู„ู„ู…ุดุชู‚ุฉ exist ุฅู† ุญุฏุซ ุฐู„ูƒ ูŠุนู†ูŠ ุฅูŠู‡ุŸ ุจู‚ุฏุฑ
1549
+
1550
+ 453
1551
+ 00:50:41,340 --> 00:50:45,640
1552
+ ุฃุฌูŠุจ Laplace ู„ู„ู…ุดุชู‚ุฉ ุจุฏู„ุงู„ุฉ Laplace ู„ู„ุฏุงู„ุฉ ูƒูŠูุŸ
1553
+
1554
+ 454
1555
+ 00:50:45,640 --> 00:50:51,000
1556
+ ูƒุงู„ุชุงู„ูŠ ุจู‚ูˆู„ S ููŠ Laplace ู„ู€ f of t ู†ุงู‚ุต ุงู„ู€ f of
1557
+
1558
+ 455
1559
+ 00:50:51,000 --> 00:50:56,270
1560
+ Zero ุฃูˆ ุงู„ู€ F of T ู„ู€ Laplace ุงู„ู„ูŠ ู‡ุจู‚ู‰ ุนุจู‘ุฑู‡ ุนู†ู‡ ุจุตูŠุบุฉ
1561
+
1562
+ 456
1563
+ 00:50:56,270 --> 00:51:02,430
1564
+ X of S ูŠุนู†ูŠ ู‡ุฐู‡ ุฃู…ุงู†ุงุช function ูƒู„ู‡ุง ููŠ S capital
1565
+
1566
+ 457
1567
+ 00:51:02,430 --> 00:51:08,190
1568
+ X of S ูˆู‡ู†ุง ู†ุงู‚ุต ุงู„ู€ F of Zero ู„ูˆ ุนู†ุฏูŠ ุงู„ู…ุดุชู‚ุฉ
1569
+
1570
+ 458
1571
+ 00:51:08,190 --> 00:51:12,350
1572
+ ุงู„ุซุงู†ูŠุฉ ูˆุจุฏูŠ ุฃุฌูŠุจู„ู‡ุง Laplace ูŠุจู‚ู‰ ุจุฃุจุฏุฃ ุงู„ู€ S ุงู„ุฃุณ
1573
+
1574
+ 459
1575
+ 00:51:12,350 --> 00:51:17,940
1576
+ ุงู„ุชุงุจุน ู‡ู†ุง ูƒุฏู‡ ูƒุงู† ู„ุฃู† ุงู„ู…ุดุชู‚ุฉ 1 ู‡ู†ุง ู…ุดุชู‚ุฉ ุซุงู†ูŠุฉ
1577
+
1578
+ 460
1579
+ 00:51:17,940 --> 00:51:22,640
1580
+ ุจุฏุฃุช ุจู€ S ุชุฑุจูŠุน S ุจุนุฏู‡ุง ุชุนุฏู‰ ู…ู† ุงู„ู€ S ุจุตูŠุฑ S of Zero
1581
+
1582
+ 461
1583
+ 00:51:22,640 --> 00:51:27,660
1584
+ ูŠุจู‚ู‰ S ุชุฑุจูŠุน Laplace F of T ู†ุงู‚ุต ุงู„ู€ S ููŠ F of Zero
1585
+
1586
+ 462
1587
+ 00:51:27,660 --> 00:51:34,380
1588
+ ู†ุงู‚ุต F prime of Zero ูˆู‡ูƒุฐุง ุงู„ุขู† ู„ูˆ ุฌูŠู†ุง ู†ุนู…ู…ู‡ุง ูŠุจู‚ู‰
1589
+
1590
+ 463
1591
+ 00:51:34,380 --> 00:51:40,300
1592
+ ุงู„ู€ Laplace ุงู„ู…ุดุชู‚ ู‚ุงู†ูˆู†ูŠุฉ ู„ู€ F ู‡ูˆ S to the power N ู‡ุฐุง
1593
+
1594
+ 464
1595
+ 00:51:40,300 --> 00:51:44,620
1596
+ derivative ูˆู‡ุฐุง ุฃุณ ููŠ X to the power S ูƒู€ function
1597
+
1598
+ 465
1599
+ 00:51:44,620 --> 00:51:49,700
1600
+ ู†ุงู‚ุต ุงู„ู€ S ุจุฏู‡ ูŠู†ู‚ุต ุงู„ุฃุณ ุชุจุนู‡ุง 1 ููŠ ุงู„ู€ F of Zero
1601
+
1602
+ 466
1603
+ 00:51:49,700 --> 00:51:54,300
1604
+ ู†ุงู‚ุต ุงู„ู€ S ุงู„ู€ N ุจุฏู‡ ูŠู†ู‚ุต 1 ู‡ู†ุง ุนู† ุงู„ู„ูŠ ู‚ุจู„ู‡ ููŠ
1605
+
1606
+ 467
1607
+ 00:51:54,300 --> 00:51:58,800
1608
+ ุงู„ู€ F prime of 0 ู†ุธู„ ู…ุงุดูŠ ู„ุบุงูŠุฉ ู…ุง ู†ูˆุตู„ S ูˆ S 1
1609
+
1610
+ 468
1611
+ 00:51:58,800 --> 00:52:05,600
1612
+ ุงู„ู…ุดุชู‚ุฉ N ู†ู‚๏ฟฝ๏ฟฝ 2 ู†ู‚ุต ุงู„ู€ F N minus ุงู„ู€ 1 ุนู†ุฏ Z
1613
+
1614
+ 469
1615
+ 00:52:05,600 --> 00:52:10,340
1616
+ ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ุจุฏู†ุง ู†ุฃุฎุฐ ุฃู…ุซู„ุฉ ุนู„ู‰ ูƒูŠู
1617
+
1618
+ 470
1619
+ 00:52:10,340 --> 00:52:15,540
1620
+ ู†ุญูŠู„ ู…ุนุงุฏู„ุฉ ุชูุงุถู„ูŠุฉ ุจูˆุงุณุทุฉ Laplace transform
1621
+
1622
+ 471
1623
+ 00:52:15,540 --> 00:52:20,360
1624
+ ูˆุจุงุณุชุฎุฏุงู… ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ุฃุนุทูŠูƒู…
1625
+
1626
+ 472
1627
+ 00:52:20,360 --> 00:52:20,580
1628
+ ุงู„ุนููˆ
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/BZBTTMoYXDc_raw.srt ADDED
@@ -0,0 +1,1980 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,890 --> 00:00:25,630
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุนูˆุฏ ุนู„ู‰ ุจุฏุก ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช
4
+
5
+ 2
6
+ 00:00:25,630 --> 00:00:29,790
7
+ ุจุฏุฃู†ุง ุจุงู„ linear transformation ูˆ ุจุนุฏ ุฐู„ูƒ ุฃุฎุฏู†ุง
8
+
9
+ 3
10
+ 00:00:29,790 --> 00:00:34,910
11
+ ุนุฏุฉ ุชู…ุซูŠู„ ุนู„ูŠู‡ุง ุซู… ุฃุฎุฏู†ุง ุจุนุถ ุงู„ู†ุธุฑูŠุงุช ุฃุซุจุชู†ุง ุฃู† ุงู„
12
+
13
+ 4
14
+ 00:00:34,910 --> 00:00:39,010
15
+ kernel linear transformation is a subspace ูˆ
16
+
17
+ 5
18
+ 00:00:39,010 --> 00:00:43,330
19
+ ุฃุซุจุชู†ุง ุฃู† ุงู„ range ู„ู„ linear transformation is a
20
+
21
+ 6
22
+ 00:00:43,330 --> 00:00:49,020
23
+ subspace ูˆ ุฃุฎุฏู†ุง ุนู„ู‰ ุฐู„ูƒ ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ุทุจุนุง ุงุนุทูŠู†ุง
24
+
25
+ 7
26
+ 00:00:49,020 --> 00:00:54,920
27
+ function ู…ุนุฑูุฉ ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ T of A ุจุชุณูˆูŠ A ุฒุงุฆุฏ A
28
+
29
+ 8
30
+ 00:00:54,920 --> 00:01:00,840
31
+ Transpose ุชู…ุงู…ุŸ ูˆ ู‚ูˆู„ู†ุง ู‡ุงุชูŠู†ุง ุงู„ range ุชุจุน ู…ู† ุงู„
32
+
33
+ 9
34
+ 00:01:00,840 --> 00:01:05,380
35
+ T ุงู„ kernel ุทุจุนุง ูˆุฌุฏู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ูˆ ู‚ูˆู„ู†ุง
36
+
37
+ 10
38
+ 00:01:05,380 --> 00:01:10,820
39
+ the set of all skew symmetric matrices ู‡ุฐุง ุงุฎุฑ ู…ุง
40
+
41
+ 11
42
+ 00:01:10,820 --> 00:01:15,280
43
+ ุงุฎุฏู†ุงู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ุชู…ุงู…ุŸ ุฅุฐุง ู†ูู†ูŠ ุฌูŠุจ ู†ูƒู…ู„
44
+
45
+ 12
46
+ 00:01:15,280 --> 00:01:19,750
47
+ ุญุฏูŠุซู†ุงูˆ ุจุฏู†ุง ู†ูˆุฌุฏ ู…ู† ุงู„ R of T
48
+
49
+ 13
50
+ 00:01:24,660 --> 00:01:31,440
51
+ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ูƒู„ ุงู„ุนู†ุงุตุฑ Y ุงูˆ ุงุญู†ุง ูƒุงู†ุช T
52
+
53
+ 14
54
+ 00:01:31,440 --> 00:01:40,880
55
+ ู…ู† ูƒู„ ุงู„ุนู†ุงุตุฑ ุงูŠุด ุจุฌูŠู†ุง ู†ู‚ูˆู„ ู‡ูŠ T ู…ู† A ุงู„ู‰ ุงูˆ T
56
+
57
+ 15
58
+ 00:01:40,880 --> 00:01:45,660
59
+ ูƒุงู†ุช ู…ู† ูˆูŠู† ุงู„ู‰ ูˆูŠู† ู…ู† ู…ุตู…ู…ุฉ M22 ุงู„ู‰ M22 ู…ุด ู‡ูŠูƒุŸ
60
+
61
+ 16
62
+ 00:01:45,660 --> 00:01:54,760
63
+ ู…ู† M22 ู„ู„ M22ุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ูƒู„ ุงู„ู…ุตูุงุช ุจูŠ ุงู„ู„ูŠ
64
+
65
+ 17
66
+ 00:01:54,760 --> 00:02:04,580
67
+ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ M22 such that ุงู„ B ุชุณุงูˆูŠ T of A for
68
+
69
+ 18
70
+ 00:02:04,580 --> 00:02:09,200
71
+ some A
72
+
73
+ 19
74
+ 00:02:09,200 --> 00:02:16,080
75
+ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ M22 ู…ุด ุดูƒุช ุนุงุฑู ุงู„ rangeุŸูŠุจู‚ู‰ ูƒู„
76
+
77
+ 20
78
+ 00:02:16,080 --> 00:02:21,260
79
+ ุงู„ู…ุตููˆูุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ู…ุฌู…ูˆุนุฉ ุงู„ู…ุตููˆูุงุช M22
80
+
81
+ 21
82
+ 00:02:21,260 --> 00:02:27,120
83
+ ูˆุงู„ู„ูŠ ุตูˆุฑุชู‡ุง ุชูƒูˆู† main T of A ุจุญูŠุซ ุงู„ู€A some
84
+
85
+ 22
86
+ 00:02:27,120 --> 00:02:32,980
87
+ element ู…ูˆุฌูˆุฏ ููŠ M22 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุชุนุฑูŠู ุงู„ุนุงู… ู„ู…ูŠู†ุŸ
88
+
89
+ 23
90
+ 00:02:32,980 --> 00:02:37,200
91
+ ู„ู„ range ุชุจุนุชูŠ ุจุฏู†ุง ู†ูŠุฌูŠ ู†ุทุจู‚ ู‡ุฐุง ุงู„ุชุนุฑูŠู ูˆ ู†ุดูˆู
92
+
93
+ 24
94
+ 00:02:37,200 --> 00:02:42,000
95
+ ุจุฏูŠ ูˆุตู„ู†ูŠ ุฅู„ู‰ ูˆูŠู†ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู„
96
+
97
+ 25
98
+ 00:02:42,000 --> 00:02:48,420
99
+ ุงู„ู…ุตูุงุช B ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ M22 such that ุงู† ุงู„ B
100
+
101
+ 26
102
+ 00:02:48,420 --> 00:02:55,380
103
+ ุชุณุงูˆูŠ T of A ุญุณุจ ุงู„ุชุนุฑูŠู ู‡ูŠู‡ุง ููˆู‚ ุงู„ู„ูŠ ู‡ูˆ A ุฒุงุฆุฏ A
104
+
105
+ 27
106
+ 00:02:55,380 --> 00:03:02,720
107
+ transpose for some A ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ M22
108
+
109
+ 28
110
+ 00:03:04,900 --> 00:03:10,560
111
+ ุทูŠุจ ุจุฏูŠ ุฃุนุฑู ู…ูŠู† ู‡ูŠ ุงู„ B ู‡ุฐู‡ ุทูŠุจ
112
+
113
+ 29
114
+ 00:03:10,560 --> 00:03:15,800
115
+ ุฅูŠุด ุฑุงูŠูƒ ู„ูˆ ุฃุฎุฏุช transpose ู„ู„ุทุฑููŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏุฃุช
116
+
117
+ 30
118
+ 00:03:15,800 --> 00:03:21,200
119
+ ุณุงูˆูŠ ูƒู„ ุงู„ู…ุตููˆูุงุช B ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ M22 such
120
+
121
+ 31
122
+ 00:03:21,200 --> 00:03:28,420
123
+ that B transpose ุจุฏู‡ ูŠุณุงูˆูŠ A ุฒุงุฆุฏ A transpose ู„ูƒู„
124
+
125
+ 32
126
+ 00:03:28,420 --> 00:03:34,320
127
+ ุงู„ transpose ูŠุจู‚ู‰ for some A ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ B22
128
+
129
+ 33
130
+ 00:03:34,980 --> 00:03:39,520
131
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู„ ุงู„ู…ุตููุงุช ุจูŠู‡ ุงู„ู„ูŠ
132
+
133
+ 34
134
+ 00:03:39,520 --> 00:03:46,400
135
+ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ M22 such that ุงู„ BT ุชุณุงูˆูŠ ู„ุชุฑุงู†ุณุจูˆุฒ
136
+
137
+ 35
138
+ 00:03:46,400 --> 00:03:50,900
139
+ ุจุชุฌูŠ ุชุฑุงู†ุณุจูˆุฒ ุนู„ู‰ ุงู„ุฃูˆู„ู‰ ุฒุงุฆุฏ ุชุฑุงู†ุณุจูˆุฒ ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰
140
+
141
+ 36
142
+ 00:03:50,900 --> 00:03:57,060
143
+ ุงู„ุชุงู†ูŠุฉ ูŠุจู‚ู‰ ุงู„ A transpose ุฒุงุฆุฏู‡ุฐู‡ a ุชุฑุงู†ุณุจูˆุฒ
144
+
145
+ 37
146
+ 00:03:57,060 --> 00:04:01,560
147
+ ุชุฑุงู†ุณุจูˆุฒ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุงู„ a itself ูŠุจู‚ู‰ ุงู„
148
+
149
+ 38
150
+ 00:04:01,560 --> 00:04:07,940
151
+ a itself ุทูŠุจ ู‡ุฐู‡ ุงู„ a ุฒูŠ a ุชุฑุงู†ุณุจูˆุฒ ู…ุด ู‡ูŠ ู‡ุฐู‡ ุงู„ู„ูŠ
152
+
153
+ 39
154
+ 00:04:07,940 --> 00:04:14,050
155
+ ููˆู‚ูŠุจู‚ู‰ ูƒุฃู†ู‡ ุจูŠ ุชุฑุงู†ุณููˆุณ ุจุฏูŠ ุชุณูˆูŠ ู…ู† ุจูŠ ูŠุจู‚ู‰
156
+
157
+ 40
158
+ 00:04:14,050 --> 00:04:19,130
159
+ ู…ุนู†ุงุชู‡ ูƒู„ ู…ุฌู…ูˆุนุฉ ุงู„ symmetric matrices ูŠุจู‚ู‰ ุงู„
160
+
161
+ 41
162
+ 00:04:19,130 --> 00:04:24,250
163
+ kernel ู‡ูˆ ุงู„ skew ุงู„ symmetric matrices ูˆ ุงู„ range
164
+
165
+ 42
166
+ 00:04:24,250 --> 00:04:29,610
167
+ ู‡ูˆ ุงู„ symmetric matrices ูŠุจู‚ู‰ for some a ุงู„ู„ูŠ
168
+
169
+ 43
170
+ 00:04:29,610 --> 00:04:37,240
171
+ ู…ูˆุฌูˆุฏุฉ ููŠ b22 ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ ูŠุณูˆูŠ the setof all
172
+
173
+ 44
174
+ 00:04:37,240 --> 00:04:41,740
175
+ symmetric
176
+
177
+ 45
178
+ 00:04:41,740 --> 00:04:53,260
179
+ matrices in M22 ูŠุจู‚ู‰ ู…ุฌู…ูˆุนุฉ ุงู„ู€ symmetric matrices
180
+
181
+ 46
182
+ 00:04:53,260 --> 00:04:58,460
183
+ ููŠ M22 ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ ุจุฏู†ุง ู†ุฑูˆุญ ุงู„ุขู†
184
+
185
+ 47
186
+ 00:04:58,460 --> 00:05:03,140
187
+ ู„ู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ุจุง๏ฟฝ๏ฟฝุฏุงุฌู„ example 2
188
+
189
+ 48
190
+ 00:05:07,440 --> 00:05:19,080
191
+ ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ ุจูŠู‚ูˆู„ let ุงู„ a ุจูŠ an m ููŠ n matrix
192
+
193
+ 49
194
+ 00:05:19,080 --> 00:05:23,040
195
+ define
196
+
197
+ 50
198
+ 00:05:23,040 --> 00:05:32,300
199
+ ุนุฑููˆู†ุง ุงูŠู‡ mapping define
200
+
201
+ 51
202
+ 00:05:32,300 --> 00:05:33,280
203
+ ุงูŠู‡ mapping
204
+
205
+ 52
206
+ 00:05:36,620 --> 00:05:46,920
207
+ ู…ู† RN ุฅู„ู‰ RM by T
208
+
209
+ 53
210
+ 00:05:46,920 --> 00:05:57,420
211
+ of X ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ AX where ุงู„ X ุงู„ู„ูŠ ู‡ูˆ ุงู„
212
+
213
+ 54
214
+ 00:05:57,420 --> 00:06:05,400
215
+ call matrix X1 X2 ูˆุงู†ุถู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ุงู„ XN
216
+
217
+ 55
218
+ 00:06:07,700 --> 00:06:20,100
219
+ is a calm vector ุงู„ู…ุทู„ูˆุจ
220
+
221
+ 56
222
+ 00:06:20,100 --> 00:06:31,360
223
+ ู†ู…ุฑุฃ a show that ุจูŠู†ูˆู† ุงู† ุงู„ T is a linear
224
+
225
+ 57
226
+ 00:06:31,360 --> 00:06:45,120
227
+ transformation ู†ู…ุฑุฃ ุจูŠู‡Find ุงู„ู€ kernel ู„ู„ู€ T ู†ู…ุฑุฉ
228
+
229
+ 58
230
+ 00:06:45,120 --> 00:06:50,620
231
+ C Find
232
+
233
+ 59
234
+ 00:06:50,620 --> 00:06:54,240
235
+ the
236
+
237
+ 60
238
+ 00:06:54,240 --> 00:07:06,000
239
+ range of T ุงู„ู„ูŠ ู‡ูˆ R of T ู†ู…ุฑุฉ
240
+
241
+ 61
242
+ 00:07:06,000 --> 00:07:15,580
243
+ Dshow that ุงู†
244
+
245
+ 62
246
+ 00:07:15,580 --> 00:07:23,860
247
+ ุงู„ู€ T of X ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ A X ูˆ
248
+
249
+ 63
250
+ 00:07:23,860 --> 00:07:35,620
251
+ ุงู„ู„ู‡ define a linear transformation from R
252
+
253
+ 64
254
+ 00:07:35,620 --> 00:07:36,200
255
+ N
256
+
257
+ 65
258
+ 00:08:01,390 --> 00:08:10,350
259
+ RM ุณุคุงู„ ู…ุฑุฉ ุชุงู†ูŠุฉุจู†ู‚ูˆู„ ุงูุชุฑุถ ุงู† T ู…ู† Rn ุฅู„ู‰ Rm
260
+
261
+ 66
262
+ 00:08:10,350 --> 00:08:16,350
263
+ ุนุฑูู†ุงู‡ุง ุงูˆู„ุช ุงู„ A ุจ M by N matrix ูŠุจู‚ู‰ ุงุฎุฏู†ุง ู…ุตูˆูุฉ
264
+
265
+ 67
266
+ 00:08:16,350 --> 00:08:22,490
267
+ ู†ุธุงู…ู‡ุง M ููŠ N define a mapping ุนุฑูู†ุง function ู…ู†
268
+
269
+ 68
270
+ 00:08:22,490 --> 00:08:27,970
271
+ ุงู„ vector space Rn ุฅู„ู‰ ุงู„ vector space Rm by T of
272
+
273
+ 69
274
+ 00:08:27,970 --> 00:08:33,970
275
+ capital X ุจุฏูˆ ูŠุณุงูˆูŠ Ax ุงู„ุดูƒู„ ู‡ู†ุง ูŠุนู†ูŠ ุญุงุตู„ ุถุฑุจ
276
+
277
+ 70
278
+ 00:08:34,480 --> 00:08:39,860
279
+ ุงู„ู…ุตูˆูุฉ ุงู„ู„ู‰ ู†ุถุงู…ู‡ุง M ูู‰ N ูู‰ ุงู„ู…ุตูˆูุฉ ุงู„ุนู…ูˆุฏูŠุฉ
280
+
281
+ 71
282
+ 00:08:39,860 --> 00:08:45,060
283
+ ุงู„ู„ู‰ ู‡ู‰ X ู…ู‰ ุงู„ู…ุตูˆูุฉ ุงู„ุนู…ูˆุฏูŠุฉ ู…ุตูˆูุฉ ู…ูƒูˆู†ุฉ ู…ู† N ู…ู†
284
+
285
+ 72
286
+ 00:08:45,060 --> 00:08:50,340
287
+ ุงู„ุตููˆู ูˆุนู…ูˆุฏ ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ู†ุง ู‚ูˆู„ู†ุง ุงู„ X ุฏู‰ is a
288
+
289
+ 73
290
+ 00:08:50,340 --> 00:08:55,080
291
+ column vector ูŠุจู‚ู‰ ู…ุชุฌู‡ ุนู…ูˆุฏูŠ ูŠุนู†ู‰ ู…ุตูˆูุฉ ู…ูƒูˆู†ุฉ ู…ู†
292
+
293
+ 74
294
+ 00:08:55,080 --> 00:09:00,230
295
+ ุนู…ูˆุฏ ูˆุงุญุฏ ู„ูƒู†ู‡ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุตููˆูุจู†ุงุก ุนู„ู‰ ู‡ุฐุง
296
+
297
+ 75
298
+ 00:09:00,230 --> 00:09:03,790
299
+ ุงู„ุชุนุฑูŠู ุจุฏูŠ ุฃุซุจุช ุฃู† T ู‡ูŠ linear transformation
300
+
301
+ 76
302
+ 00:09:03,790 --> 00:09:08,270
303
+ ูŠุนู†ูŠ ุฅูŠุด ุจุฏูŠ ุฃุญู‚ู‚ุŸ ุงู„ุดุฑุทูŠู† ุชุจุนุงุช ุงู„ linear
304
+
305
+ 77
306
+ 00:09:08,270 --> 00:09:12,530
307
+ transformation ุฃู…ุฑ ุชุงู†ูŠ ุจุฏูŠ ุฃุฌูŠุจู‡ุง ู„ู„ kernel ุจุฏูŠ
308
+
309
+ 78
310
+ 00:09:12,530 --> 00:09:16,770
311
+ ุฃุนุฑู ู‚ุฏุงุด ุงู„ุฃู…ุฑ ุงู„ุชุงู„ู ุจุฏูŠ ุฃุนุฑู ู‚ุฏุงุด ุงู„ range ุชุจุน
312
+
313
+ 79
314
+ 00:09:16,770 --> 00:09:22,260
315
+ T ุงู„ู„ูŠ ุจุฌูŠ ู†ุฑุจุฒู„ู‡ R of T ุชู„ุงุชุฉุจุชุจูŠู† Any Linear
316
+
317
+ 80
318
+ 00:09:22,260 --> 00:09:29,000
319
+ Transformation ู…ู† ุงู„ู€ RN ุฅู„ู‰ ุงู„ RM ู…ู† ุงู„ RN ุฅู„ู‰ ุงู„
320
+
321
+ 81
322
+ 00:09:29,000 --> 00:09:34,100
323
+ RM ู‡ูŠ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฏุงุฆู…ุง ุงูˆ ุจุฏุง T of X ุจุฏูŠ
324
+
325
+ 82
326
+ 00:09:34,100 --> 00:09:40,700
327
+ ุณูˆู‰ ุญุตู„ ุถุฑุจ ุงู„ู…ุตูˆูุฉ A ููŠ ุงู„ู…ุตูˆูุฉ ุงู„ุนู…ูˆุฏูŠุฉ X ูŠุจู‚ู‰
328
+
329
+ 83
330
+ 00:09:40,700 --> 00:09:44,820
331
+ ุนู†ุฏู†ุง ุฃุฑุจุนุฉ ู…ุทุงู„ูŠุจ ุจุฏู†ุง ู†ุจุฏุฃ ู†ุญุณุจ ูƒู„ ู…ุทู„ูˆุจ ู…ู† ู‡ุฐู‡
332
+
333
+ 84
334
+ 00:09:44,820 --> 00:09:51,110
335
+ ุงู„ู…ุทุงู„ูŠุจ ุงู„ุฃุฑุจุนุฉุจู†ุฌูŠ ู„ู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ
336
+
337
+ 85
338
+ 00:09:51,110 --> 00:09:56,430
339
+ ุฃุซุจุช ุฃู† T ุนุจุงุฑุฉ ุนู† Linear Transformation
340
+
341
+ 86
342
+ 00:10:05,420 --> 00:10:08,340
343
+ ูŠุจู‚ู‰ ุจุฏู‰ ุงุซุจุช ุงูˆู„ ุดู‰ุก ุงู† ู‡ุงุฏ ุงู„ู€ T Linear
344
+
345
+ 87
346
+ 00:10:08,340 --> 00:10:12,340
347
+ Transformation ูŠุจู‚ู‰ ุจุฏู‰ ุงุฎุฏ element ู…ู† ุงู„ set of
348
+
349
+ 88
350
+ 00:10:12,340 --> 00:10:15,980
351
+ real numbers ุงู„ู€ scalar ูŠุนู†ูŠ ูˆ element ู…ู† ุงู„
352
+
353
+ 89
354
+ 00:10:15,980 --> 00:10:21,680
355
+ vector ุงู„ู„ูŠ ู‡ูˆ main RN ูˆ ุงุดูˆู ุญุตู„ ุถุฑุจู‡ ู…ุนุงู‡ ูˆูŠู†
356
+
357
+ 90
358
+ 00:10:21,680 --> 00:10:29,040
359
+ ุจุฏู‰ ูŠูˆุฏูŠู†ูŠ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง Fุงู„ู€ C ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€
360
+
361
+ 91
362
+ 00:10:29,040 --> 00:10:39,260
363
+ R and ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ ุงู„ู€ X ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RNุงู„ู€ X
364
+
365
+ 92
366
+ 00:10:39,260 --> 00:10:48,280
367
+ ู‡ุฐุง ุจู‚ุฏุฑ ุงูƒุชุจู‡ ุนู„ู‰ ุดูƒู„ X1 ูˆ X2 ูˆ ู„ุบุงูŠุฉ XN ุงูˆ ุจู‚ุฏุฑ
368
+
369
+ 93
370
+ 00:10:48,280 --> 00:10:56,000
371
+ ุงูƒุชุจู‡ ุนู„ู‰ ุดูƒู„ ู…ุตููˆูุฉ ุนู…ูˆุฏูŠุฉ X1 X2 ู„ุบุงูŠุฉ XN ุจุงู„ุดูƒู„
372
+
373
+ 94
374
+ 00:10:56,000 --> 00:11:05,790
375
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงุทูŠุจ ุงู†ุง ุจุฏูŠ ุงุฎุฏ T of CX ุจุฏูŠ ุงุญุงูˆู„
376
+
377
+ 95
378
+ 00:11:05,790 --> 00:11:13,010
379
+ ุงุซุจุช ุงู† ู‡ุฐุง ุจุฏูŠ ูŠุณูˆู‰ C ููŠ T of X ุจุฑุฌุน ู„ู„ุชุนุฑูŠู ุงู„ู„ูŠ
380
+
381
+ 96
382
+ 00:11:13,010 --> 00:11:17,850
383
+ ุงู†ุง ู‚ุงูŠู„ู‡ ูŠุจู‚ู‰ ุทุจู‚ุง ู„ู‡ุฐุง ุงู„ุชุนุฑูŠู ู‡ุฐุง ุจุฏูŠ ูŠุณูˆู‰
384
+
385
+ 97
386
+ 00:11:17,850 --> 00:11:26,600
387
+ ุงู„ู…ุตูˆูุฉ A ููŠ C of Xู„ุฃู† C ู‡ุฐุง scalar ุฅุฐุง ุจู‚ุฏุฑ ุฃุทู„ุนู‡
388
+
389
+ 98
390
+ 00:11:26,600 --> 00:11:32,980
391
+ ุจุฑุง ุงู„ T ุฃูˆ ุจู‚ุฏุฑ ุฃุทู„ุนู‡ ุจุฑุง ๏ฟฝ๏ฟฝุตู„ ุถุฑุจ ุงู„ู…ุตูˆููŠู† ูŠุจู‚ู‰
392
+
393
+ 99
394
+ 00:11:32,980 --> 00:11:39,290
395
+ ู‡ุฐุง C ููŠ ุงู„ AX ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงูŠุจู‚ู‰ ู‡ุฐุง
396
+
397
+ 100
398
+ 00:11:39,290 --> 00:11:44,390
399
+ ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณุงูˆูŠ C ุงู„ AX ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุญุณุจ ุงู„
400
+
401
+ 101
402
+ 00:11:44,390 --> 00:11:50,290
403
+ definition ุงู„ู„ูŠ ุนู†ุฏู„ูŠ T of X ูŠุจู‚ู‰ C ููŠ T of X
404
+
405
+ 102
406
+ 00:11:54,650 --> 00:11:59,950
407
+ ูŠุจู‚ู‰ T of X ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ T ููŠ C of X ูŠุณุงูˆูŠ
408
+
409
+ 103
410
+ 00:11:59,950 --> 00:12:03,910
411
+ C ููŠ T of X ุฅุฐุง ุงู†ุชุญู‚ู‚ ุงู„ condition ุงู„ุฃูˆู„ ุฃูˆ
412
+
413
+ 104
414
+ 00:12:03,910 --> 00:12:08,090
415
+ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ู…ู† ุฎุงุตุฉ Linear Transformation ูŠุจู‚ู‰
416
+
417
+ 105
418
+ 00:12:08,090 --> 00:12:12,350
419
+ ู‡ุฐู‡ ู…ู† ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ุจุฏุฃุฌูŠ ู„ู„ุฎุงุตูŠุฉ ุงู„ุซุงู†ูŠุฉ
420
+
421
+ 106
422
+ 00:12:12,350 --> 00:12:17,630
423
+ ุจุฏุฃ ุฃุฎุฏ two vectors ูŠุจู‚ู‰ ุจุฏุฃุฌูŠ ุฃู‚ูˆู„ู‡ let X ูˆY
424
+
425
+ 107
426
+ 00:12:17,630 --> 00:12:23,830
427
+ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ vector space RN
428
+
429
+ 108
430
+ 00:12:25,570 --> 00:12:32,460
431
+ ุจุชุงุฎุฏ T of X ุฒุงุฆุฏ Y ูŠุณุงูˆูŠุจู†ุงุก ุนู„ู‰ ุงู„ู€ definition
432
+
433
+ 109
434
+ 00:12:32,460 --> 00:12:37,080
435
+ ุชุงุจุนู†ุงู‡ุง ู‡ุฐุง ุจูŠูƒูˆู† ุงู„ู…ุตููˆูุฉ a ููŠ ุงู„ vector x ุฒุงุฆุฏ
436
+
437
+ 110
438
+ 00:12:37,080 --> 00:12:45,220
439
+ y ูŠุจู‚ู‰ a ููŠ ุงู„ vector x ุฒุงุฆุฏ y ู‡ุฐุง ุญุณุจ ุฎูˆุงุต ุนู…ู„ูŠุฉ
440
+
441
+ 111
442
+ 00:12:45,220 --> 00:12:52,720
443
+ ุงู„ุชูˆุฒูŠุน ุนู„ู‰ ุงู„ู…ุตููˆูุงุช ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠูƒูˆู† ax ุฒุงุฆุฏ ay
444
+
445
+ 112
446
+ 00:12:52,720 --> 00:13:00,820
447
+ ู‡ุฐุง ุชุนุฑูŠู ู…ู† ุงู„ T of x ูˆู‡ุฐุง ุชุนุฑูŠู ุงู„ T of yูŠุจู‚ู‰
448
+
449
+ 113
450
+ 00:13:00,820 --> 00:13:05,420
451
+ ุชุญู‚ู‚ ุงู„ condition ุงู„ุซุงู†ูŠ ูˆู„ุง ู„ุง ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ so
452
+
453
+ 114
454
+ 00:13:05,420 --> 00:13:12,940
455
+ T is a linear transformationุฅุฐุง ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุทู„ูˆุจ
456
+
457
+ 115
458
+ 00:13:12,940 --> 00:13:17,780
459
+ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ู†ู…ุฑุง A ู†ู…ุฑุง B ู‚ุงู„ ู‡ุงุชู„ ุงู„ kernel
460
+
461
+ 116
462
+ 00:13:17,780 --> 00:13:24,300
463
+ ุงู„ุชูŠ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู„ kernel ุงู„ุชูŠ ุญุณุจ ุงู„ definition
464
+
465
+ 117
466
+ 00:13:24,300 --> 00:13:30,020
467
+ ู‡ูˆ ู…ูŠู†ุŸ ู‡ูˆ ูƒู„ ุงู„ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ vector space
468
+
469
+ 118
470
+ 00:13:30,020 --> 00:13:37,820
471
+ RN ุจุญูŠุซ ุฃู† T of X ุจุฏูŠ ุชุณุงูˆูŠ 100 ุงู„ 0ุŒ 0 ุชุจุน ู…ูŠู†ุŸ
472
+
473
+ 119
474
+ 00:13:39,260 --> 00:13:45,800
475
+ ุชุจุน RM ู…ุด ู‡ูŠูƒ ุนุฑูู†ุง ุงู„ kernel ูƒู„ ุงู„ vectors ุงู„ู„ูŠ
476
+
477
+ 120
478
+ 00:13:45,800 --> 00:13:49,240
479
+ ููŠ ุงู„ vector space ุงู„ุฃูˆู„ ูˆ ุงู„ู„ูŠ ุตูˆุฑุชู‡ู… ุจูŠูƒูˆู† ุงู„
480
+
481
+ 121
482
+ 00:13:49,240 --> 00:13:54,920
483
+ zero ุชุจุน ุงู„ vector space ุงู„ุซุงู†ูŠ ุชู…ุงู… ูŠุจู‚ู‰ ู‡ู†ุง ูƒู„
484
+
485
+ 122
486
+ 00:13:54,920 --> 00:13:59,940
487
+ ุงู„ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ RN ุจุญูŠุซ ุงู† T of X ุจุฏู‡ ูŠุณุงูˆูŠ
488
+
489
+ 123
490
+ 00:13:59,940 --> 00:14:05,510
491
+ zeroูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‰ ูŠุณุงูˆูŠ ูƒู„ ุงู„ X ุงู„ู„ู‰ ู…ูˆุฌูˆุฏุฉ ููŠ RN
492
+
493
+ 124
494
+ 00:14:05,510 --> 00:14:09,730
495
+ such that
496
+
497
+ 125
498
+ 00:14:09,730 --> 00:14:15,570
499
+ ุงู„ T of X ุญุณุจ ุงู„ definition ู…ูŠู† ุงู„ A X ุจุฏู‰ ูŠุณุงูˆูŠ
500
+
501
+ 126
502
+ 00:14:15,570 --> 00:14:19,570
503
+ Zero ุจุงู„ุดูƒู„ ุงู„ู„ู‰ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู‡ุฐุง ุงูŠุด ู…ุนู†ุงู‡ ูŠุง
504
+
505
+ 127
506
+ 00:14:19,570 --> 00:14:29,800
507
+ ุจู†ุงุช ูƒู„ ุงู„ Xู‡ู‡ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ RN ูŠุนู†ูŠ call vectors
508
+
509
+ 128
510
+ 00:14:29,800 --> 00:14:34,740
511
+ ู…ุง ู„ู‡ู… ุจุญูŠุซ ุงู„ X ูŠุณุงูˆูŠ Zero ูŠุนู†ูŠ ู‡ุฐุง ุจูŠุนุทูŠู†ุง ู…ูŠู†
512
+
513
+ 129
514
+ 00:14:34,740 --> 00:14:41,020
515
+ ู…ุฌู…ูˆุนุฉ ุงู„ุญู„ูˆู„ ุงู„ homogenous system ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ุฐุง
516
+
517
+ 130
518
+ 00:14:41,020 --> 00:14:52,500
519
+ ู…ุนู†ุงู‡ ุงู„ู„ูŠ ู‡ูˆ the set of all solutions of the
520
+
521
+ 131
522
+ 00:14:54,210 --> 00:15:04,170
523
+ ู‡ูˆู…ูˆุฌูŠู†ูŠุง ุณูŠุณุชู… ุงู„ู‡ูˆ ax ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† ุฒุฑุน ุดูˆ ุดูƒู„ู‡ู…
524
+
525
+ 132
526
+ 00:15:04,170 --> 00:15:09,510
527
+ ุงุด ู…ุง ูŠูƒูˆู† ูŠูƒูˆู† ูŠุจู‚ู‰ ู…ู„ู…ูˆุนุฉ ูƒู„ ุงู„ุญู„ูˆู„ ู„ู„ู‡ูˆู…ูˆุฌูŠู†ูŠุง
528
+
529
+ 133
530
+ 00:15:09,510 --> 00:15:15,170
531
+ ุณูŠุณุชู… ุงูƒู… ุญู„ู„ู‡ ุงู„ู‡ูˆู…ูˆุฌูŠู†ูŠุง ุณูŠุณุชู…ุฃู…ุง ุญู„ ูˆุงุญุฏ ู‡ูˆ
532
+
533
+ 134
534
+ 00:15:15,170 --> 00:15:20,370
535
+ ุงู„ุญู„ ุงู„ุตูุฑูŠ ุฃูˆ ุนุฏุฏ ู„ุงู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ ูˆู‡ุฐุง ุงู„ุนุฏุฏ
536
+
537
+ 135
538
+ 00:15:20,370 --> 00:15:24,550
539
+ ุงู„ู†ู‡ุงุฆูŠ ูŠุฌุชู…ุน ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ุญู„ ุงู„ุตูุฑูŠ ู†ูุณู‡ ุทูŠุจ ู…ุง
540
+
541
+ 136
542
+ 00:15:24,550 --> 00:15:29,470
543
+ ุนู„ูŠู†ุง ูŠุจู‚ู‰ ุญุณุจู†ุง ู„ู‡ ูƒูŠุฑู†ู„ ูŠุจู‚ู‰ ูƒูŠุฑู†ู„ ุชุจุน ู‡ุฐู‡ ุงู„
544
+
545
+ 137
546
+ 00:15:29,470 --> 00:15:35,710
547
+ function ู‡ูˆ ูƒู„ ุงู„ุญู„ูˆู„ ู„ู„ homogenous system X ุจุฏู‡
548
+
549
+ 138
550
+ 00:15:35,710 --> 00:15:42,480
551
+ ูŠุณุงูˆูŠ ู…ุงู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุทูŠุจ ู†ู…ุฑู‰ ุงู„ Cู†ู…ุฑุง ุณูŠุฌุง
552
+
553
+ 139
554
+ 00:15:42,480 --> 00:15:46,460
555
+ ุงู„ู„ูŠ ู‡ุชู„ ุงู„ range ุชุจุน ุงู„ T ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ ุงู„ range
556
+
557
+ 140
558
+ 00:15:46,460 --> 00:15:55,530
559
+ ุชุจุน ุงู„ T ู‡ูˆ ู…ูŠู†ุŸูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RM
560
+
561
+ 141
562
+ 00:15:55,530 --> 00:16:02,990
563
+ ูŠุจู‚ู‰ ูƒู„ ุงู„ vectors Y ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RM ุจุญูŠุซ ุงู†
564
+
565
+ 142
566
+ 00:16:02,990 --> 00:16:12,250
567
+ ุงู„ู€ Y ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ T of X for some X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
568
+
569
+ 143
570
+ 00:16:12,250 --> 00:16:19,660
571
+ ููŠ ุงู„ู€ RN ู…ุด ู‡ูŠูƒ ุชุนุฑูŠู ุงู„ rangeู…ุธุจูˆุท ูƒู„ ุงู„ุนู†ุงุตุฑ
572
+
573
+ 144
574
+ 00:16:19,660 --> 00:16:27,220
575
+ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ domain RM ูˆ ุงู„ู„ูŠ ุฅู„ู‡ุง ุฃุตู„ ููŠ ุงู„
576
+
577
+ 145
578
+ 00:16:27,220 --> 00:16:33,980
579
+ domain RM ุทูŠุจ ุชู…ุงู… ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุฐูŠ ุจุฏู‡ ุฃุนูŠุฏ ุตูŠุงุบุชู‡ุง
580
+
581
+ 146
582
+ 00:16:33,980 --> 00:16:40,080
583
+ ู…ุฑุฉ ุชุงู†ูŠุฉ ูุจู‚ูˆู„ ูƒู„ ุงู„ Y ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ RM such
584
+
585
+ 147
586
+ 00:16:40,080 --> 00:16:44,680
587
+ that ุงู„ Y ุจุฏู‡ ูŠุณุงูˆูŠ T of X ุญุณุจ ุงู„ definition ุจุฏู‡
588
+
589
+ 148
590
+ 00:16:44,680 --> 00:16:55,850
591
+ ูŠุณุงูˆูŠ ู…ูŠู†ุŸุงู„ู€ AX ู‡ูŠ
592
+
593
+ 149
594
+ 00:16:55,850 --> 00:17:03,470
595
+ ู†ูƒู…ู„ for some X
596
+
597
+ 150
598
+ 00:17:03,470 --> 00:17:10,830
599
+ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RNุฅุฐุงู‹ ูƒู„ ุงู„ Y ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ
600
+
601
+ 151
602
+ 00:17:10,830 --> 00:17:16,610
603
+ ุงู„ RM ุจุญูŠุซ ุงู„ Y ุนู„ู‰ ุงู„ุดูƒู„ A of X for some X ุงู„ู„ูŠ
604
+
605
+ 152
606
+ 00:17:16,610 --> 00:17:23,220
607
+ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ RN ูŠุนู†ูŠ ุฅูŠุด ู‚ุตุฏุง ู†ู‚ูˆู„ุŸูŠุจู‚ู‰ ูƒู„ ุงู„ู‚ูŠู…
608
+
609
+ 153
610
+ 00:17:23,220 --> 00:17:28,840
611
+ ุงู„ู„ูŠ ู‡ูŠ Y ุจุญูŠุซ ุงู„ู€ non homogeneous system has a
612
+
613
+ 154
614
+ 00:17:28,840 --> 00:17:35,440
615
+ solution ู…ุงู‚ู„ุชุด ุญู„ูˆู„ ู‡ุฐุง ุงู„ system ู„ุฃ ูŠุจู‚ู‰ ุจุงุฌูŠ
616
+
617
+ 155
618
+ 00:17:35,440 --> 00:17:43,740
619
+ ุจู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ the set of all elements
620
+
621
+ 156
622
+ 00:17:45,790 --> 00:17:58,650
623
+ Y ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RM such that ุจุญูŠุซ ุงู† ุงู„ system
624
+
625
+ 157
626
+ 00:17:58,650 --> 00:18:05,290
627
+ X ูŠุณุงูˆูŠ Y has a solution
628
+
629
+ 158
630
+ 00:18:12,620 --> 00:18:17,080
631
+ ูŠุนู†ูŠ ุงู„ู…ู‚ุตูˆุฏ ุจู‡ุฐุง ุงู„ุญู„ ุงู„ู€ Y's ูˆ ู„ุง ุงู„ู€ X's
632
+
633
+ 159
634
+ 00:18:17,080 --> 00:18:23,820
635
+ ุงู„ุฅุฌุงุจุฉ ุงู„ู€ Y's ู„ุฃู† ู‡ุฐุง ุงู„ู€ non homogeneous system
636
+
637
+ 160
638
+ 00:18:23,820 --> 00:18:27,720
639
+ ู‚ุฏ ูŠูƒูˆู† ู„ู‡ ุญู„ ูˆ ู‚ุฏ ู„ุง ูŠูƒูˆู† ู„ู‡ ุญู„ ู…ุด ู‡ูŠูƒ ุฏู‡ ุงู„ู„ูŠ
640
+
641
+ 161
642
+ 00:18:27,720 --> 00:18:31,320
643
+ ุฃุฎุฏู†ุงู‡ ู‚ุจู„ูƒ ุงู† ุงู„ู€ non homogeneous system ู…ู…ูƒู†
644
+
645
+ 162
646
+ 00:18:31,320 --> 00:18:36,320
647
+ ูŠูƒูˆู† ู…ุงู„ูˆุด ุญู„ูˆู„ ูˆ ู…ู…ูƒู† ูŠูƒูˆู† ุญู„ ูˆุญูŠุฏ ูˆ ู…ู…ูƒู† ูŠูƒูˆู†
648
+
649
+ 163
650
+ 00:18:36,320 --> 00:18:41,770
651
+ ุนุฏุฏ ู„ุง ู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ู‡ุฐุง ู…ุง ุชู‚ูˆู„ู‡ุŸ ูƒู„ ุงู„ุนู†ุงุตุฑ Y
652
+
653
+ 164
654
+ 00:18:41,770 --> 00:18:45,670
655
+ ุจุญูŠุซ ุงู„ system ู‡ุฐุง ู„ู‡ ุญู„ูˆู„ ูŠุจู‚ู‰ ู„ูˆ ู…ุงู„ู‡ูˆุด ุญู„ูˆู„
656
+
657
+ 165
658
+ 00:18:45,670 --> 00:18:51,910
659
+ ู…ุงู„ู‡ู… ู…ุณุชุจุนุฏุฉ ูƒู„ูŠุง ูŠุจู‚ู‰ ุณูˆุงุก ูƒุงู† ุญู„ ูˆุงุญุฏ ุฃูˆ ุนุฏุฏ
660
+
661
+ 166
662
+ 00:18:51,910 --> 00:18:55,510
663
+ ู„ู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ ุนู„ู‰ ูƒู„ ุงู„ุฃู…ุฑูŠู† ุงู„ุฃู…ุฑ ุงู„ุฌูˆุงุจูŠ ู„ุฃู†
664
+
665
+ 167
666
+ 00:18:55,510 --> 00:19:02,630
667
+ ู‡ุฐุง ู…ุงู„ู‡ ุฌูˆุงุจ ุตุญูŠุญ ุฅุฐุง ุทู„ุน ุงู„ูุฑุฌ ู…ุง ุจูŠู† A ูˆB ุงู„ B
668
+
669
+ 168
670
+ 00:19:02,630 --> 00:19:10,830
671
+ ูŠุง ุชุฑู‰ ุตุจุตุช ู…ู† RN ูˆ ู„ุง RMู…ู† ู…ูŠู†ุŸ ู…ู† RN ู‡ุฐุง ุงู„
672
+
673
+ 169
674
+ 00:19:10,830 --> 00:19:16,530
675
+ kernel ุทูŠุจ ุงู„ range subset ู…ู† ู…ูŠู†ุŸ ู…ู† RM ู„ุฃู† ุงู„
676
+
677
+ 170
678
+ 00:19:16,530 --> 00:19:22,110
679
+ range ุงู„ู…ุฏู‰ ุงู„ุตูˆุฑ ุชุจุนุช ุงู„ุนู†ุงุตุฑ ูŠุจู‚ู‰ ููŠ ุงู„ุญู„ู‚ุฉ ูƒู„
680
+
681
+ 171
682
+ 00:19:22,110 --> 00:19:25,910
683
+ ุงู„ solutions ุชุจุน ุงู„ homogeneous system ุงู„ solution
684
+
685
+ 172
686
+ 00:19:25,910 --> 00:19:30,750
687
+ ูŠุนู†ูŠ ู‚ูŠู… X ูˆุงู„ X ู‚ูˆู„ู†ุง ูˆูŠู† ู…ูˆุฌูˆุฏุฉุจุงู„ู†ุณุจุฉ ู„ู„ู€ RM
688
+
689
+ 173
690
+ 00:19:30,750 --> 00:19:34,810
691
+ ูŠุจู‚ู‰ ู‡ุฐุง ูŠุชูู‚ ูˆูƒู„ู…ู†ุง ุชู…ุงู…ุง ุงู„ู€ range ู‚ูˆู„ู†ุง ู‡ูˆ ุฌุฒุก
692
+
693
+ 174
694
+ 00:19:34,810 --> 00:19:38,490
695
+ ู…ู† ุงู„ู€ RM ู„ุฐู„ูƒ ู‚ูˆู„ู†ุง ุงู„ู€ range ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
696
+
697
+ 175
698
+ 00:19:38,490 --> 00:19:43,690
699
+ ู…ูˆุฌูˆุฏุฉ ููŠ RM ูŠุจู‚ู‰ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ RM
700
+
701
+ 176
702
+ 00:19:43,690 --> 00:19:48,330
703
+ ุจุญูŠุซ ุงู„ู€ non homogeneous system ู‡ุฐุง ู„ู‡ solution
704
+
705
+ 177
706
+ 00:19:48,330 --> 00:19:55,480
707
+ ูŠุจู‚ู‰ ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู†ู‚ุทุฉ C ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู†ู‚ุทุฉ ุฏูŠุงู„ู†ู‚ุทุฉ
708
+
709
+ 178
710
+ 00:19:55,480 --> 00:20:00,140
711
+ ุฏูŠ ุจูŠู‚ูˆู„ู„ูŠ ุงุซุจุชู„ูŠ ุงู† ุงู„ T of X ุณูˆู‰ X defined a
712
+
713
+ 179
714
+ 00:20:00,140 --> 00:20:03,720
715
+ Linear Transformation ูŠุนู†ูŠ Linear Transformation
716
+
717
+ 180
718
+ 00:20:03,720 --> 00:20:08,540
719
+ ู…ู† ุงู„ RN ู„ู„RM ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุชุงุฎุฏ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
720
+
721
+ 181
722
+ 00:20:08,540 --> 00:20:14,240
723
+ ู‡ุฐุง ุจู‚ูˆู„ูƒ ูƒูˆูŠุณ ุงุฐุง ุจุฏู†ุง ู†ุจุฏุฃ ุงู„ุญู„ ูƒุชุงู„ูŠ ุจุฏู‡ ุงุฌูŠ
724
+
725
+ 182
726
+ 00:20:14,240 --> 00:20:19,760
727
+ ุนู„ู…ูŠู† ุนู„ู‰ ุงู„ RN ูˆ ุงุฑูˆุญ ุงุฎุฏ ุงู„ basis ุชุจุนู‡ ูˆ ู†ุชูู‡ู…
728
+
729
+ 183
730
+ 00:20:19,760 --> 00:20:26,220
731
+ ุนู„ูŠู‡ ุจุนุฏ ู‡ูŠูƒูŠุจู‚ู‰ ู‡ู†ุง ุจุฌูŠ ุจู‚ูˆู„ ู„ู‡ let E1 ูŠุจู‚ู‰ ูŠุณุงูˆูŠ
732
+
733
+ 184
734
+ 00:20:26,220 --> 00:20:36,640
735
+ 1 ูˆ 0 ูˆ 0 ูˆ ู„ุบุงูŠุฉ 0 ูˆ E2 ูŠุณุงูˆูŠ 0 ูˆ 1 ูˆ 0 ู„ุบุงูŠุฉ 0 ูˆ
736
+
737
+ 185
738
+ 00:20:36,640 --> 00:20:43,880
739
+ ู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ู…ุง ู†ุตู„ ุงู„ู‰ EN 001
740
+
741
+ 186
742
+ 00:20:43,880 --> 00:20:50,500
743
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงูŠุจู‚ู‰ ุฎุฏุช ู‡ุฏูˆู„ ู…ูŠู† ู‡ุฏูˆู„ ุงู„
744
+
745
+ 187
746
+ 00:20:50,500 --> 00:20:56,880
747
+ bases ุชุจุนุงุช ู…ูŠู† ุชุจุนุงุช ุงู„ุนู†ุงุตุฑ ุงู„ bases ุชุจุนุงุช ุงู„ RN
748
+
749
+ 188
750
+ 00:20:56,880 --> 00:21:09,740
751
+ ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงู„ุนู†ุงุตุฑ ู„ุช ุจูŠ the standard bases
752
+
753
+ 189
754
+ 00:21:09,740 --> 00:21:13,780
755
+ for RN
756
+
757
+ 190
758
+ 00:21:15,360 --> 00:21:31,020
759
+ ูŠุจู‚ู‰ ุฏูˆู„ ุนู†ุงุตุฑ ุงู„ standard basis ู„ู…ู†ุŸ ู„ู„ RN ูƒูˆูŠุณ
760
+
761
+ 191
762
+ 00:21:31,020 --> 00:21:42,660
763
+ ุจุฏุง ุฃูุชุฑุถ ุจุฑุถู‡ suppose that ุงูุชุฑุถ ุงู† ุงู„ T of E1
764
+
765
+ 192
766
+ 00:21:42,660 --> 00:21:54,590
767
+ ุจุฏู‡ ูŠุณูˆูŠ E1ูˆ T of E2 ู‡ูˆ A2 ูˆุงู†ุธุฑ ู„ุบุงูŠุฉ T of EN ู‡ูˆ
768
+
769
+ 193
770
+ 00:21:54,590 --> 00:21:59,330
771
+ AN ุฎู„ูŠู†ูŠ
772
+
773
+ 194
774
+ 00:21:59,330 --> 00:22:04,890
775
+ ุฃุณุฃู„ูƒู… ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠ ุงู„ A1 ูˆ ุงู„ A2 ูˆ ุงู„ A3 ูˆ ุงู„ AN
776
+
777
+ 195
778
+ 00:22:04,890 --> 00:22:11,540
779
+ ุดู… ู‡ุฏูˆู„ุŸูŠุนู†ูŠ answer real number ูˆุงู„ู„ู‡ vector ูŠุนู†ูŠ
780
+
781
+ 196
782
+ 00:22:11,540 --> 00:22:18,600
783
+ ู…ุตููˆูุฉ ูˆุงู„ู„ู‡ ุงูŠู‡ ุดูˆ a1 ู‡ุฐุงุŸ vector ู„ูŠุดุŸ ู„ุฃู† T of
784
+
785
+ 197
786
+ 00:22:18,600 --> 00:22:24,540
787
+ E1 E1 ู…ูˆุฌูˆุฏ ููŠ ุงู„ R in ุตูˆุฑุฉ ูˆูŠู†ุŸ ููŠ ุงู„ R M ูŠุจู‚ู‰
788
+
789
+ 198
790
+ 00:22:24,540 --> 00:22:28,360
791
+ ู‡ุฐุง vector ูˆ ุงู„ vector ุนู„ูŠู‡ุง ุดูƒู„ ู…ุตููˆูุฉ ุนู…ูˆุฏูŠุฉ
792
+
793
+ 199
794
+ 00:22:28,360 --> 00:22:35,620
795
+ ููŠู‡ุง M ู…ู† ุงู„ุตููˆู ูˆ ุนู…ูˆุฏ ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ู†ุง where
796
+
797
+ 200
798
+ 00:22:38,960 --> 00:22:52,300
799
+ ุญูŠุซ ุงู„ A1 ูˆ ุงู„ A2 ูˆ ู„ุบุงูŠุฉ ุงู„ AM RM ููŠ one matrices
800
+
801
+ 201
802
+ 00:22:52,300 --> 00:22:59,260
803
+ ูŠุนู†ูŠ ูˆูŠู† ู…ูˆุฌูˆุฏ ูƒู„ ูˆุงุญุฏ ููŠู‡ู…ุŸูู‰ ุงู„ R M ูŠุนู†ูŠ ูƒุฃู†ู‡
804
+
805
+ 202
806
+ 00:22:59,260 --> 00:23:05,500
807
+ ุงูŠุด A1 ูˆ A2 ู…ุฌุตุฏูŠ ุงู„ A1 ุจุฏู‡ ูŠุณุงูˆูŠ X1 ูˆ X2 ู„ุบุงูŠุฉ X
808
+
809
+ 203
810
+ 00:23:05,500 --> 00:23:11,640
811
+ M ุชู…ุงู… ูŠุนู†ูŠ ู…ูˆุฌูˆุฏ ูู‰ ุงู„ R M ุชู…ุงู… ุงู„ุชู…ุงู… ุทูŠุจ ูƒูˆูŠุณ
812
+
813
+ 204
814
+ 00:23:11,640 --> 00:23:17,420
815
+ ุงุญู†ุง ุนุงูŠุฒุง ุงู„ุงู† ูƒูŠู ANA ู…ุด ุณุงู…ุน ู„ูŠู‡ ุญุทุช ู‡ู†ุง AN ู…ุด
816
+
817
+ 205
818
+ 00:23:17,420 --> 00:23:24,320
819
+ Mู… ููŠ ูˆุงุญุฏ ู„ู…ุงุฐุง ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุงุฑ ุงู… ูƒู„ element
820
+
821
+ 206
822
+ 00:23:24,320 --> 00:23:30,000
823
+ ู…ูƒูˆู† ู…ู† ุงู… ู…ู† ุงู„ุนู†ุงุตุฑ ุจุฏู„ ู…ุง ู‡ูˆ ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ูุงุตู„
824
+
825
+ 207
826
+ 00:23:30,000 --> 00:23:34,060
827
+ ุงู„ุฑู‚ู… ุงู„ู„ูŠ ูƒุชุจุชู‡ ุนู„ู‰ ุดูƒู„ ุนู…ูˆุฏ ู…ูƒูˆู† ู…ู† ุงู… ู…ู† ุงู„ุตููˆู
828
+
829
+ 208
830
+ 00:23:34,060 --> 00:23:43,060
831
+ ูˆ ุนู…ูˆุฏ ูˆุงุญุฏ ูู‚ุท ูŠุจู‚ู‰ ุงู‚ูˆู„ ุงู† ูƒู„ ุงู„ุงู† ุงู† ูƒู„ู‡ู… ุงุฑ ุงู…
832
+
833
+ 209
834
+ 00:23:43,060 --> 00:23:44,800
835
+ ููŠ one matrices
836
+
837
+ 210
838
+ 00:23:50,880 --> 00:23:57,880
839
+ belongs to RM ูŠุจู‚ู‰ ูƒู„ู‡ุง ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ RM ุจุงู„ุดูƒู„
840
+
841
+ 211
842
+ 00:23:57,880 --> 00:24:04,180
843
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงุฃูŠุด ุจู‚ูˆู„ูŠ ุจู‚ูˆู„ูŠ ู‡ุฐู‡ ุงู„ T ุงู„ู„ูŠ ุฃู†ุช
844
+
845
+ 212
846
+ 00:24:04,180 --> 00:24:09,300
847
+ ุฃุฎุฏุชู‡ุง ู…ู† ุงู„ RN ู„ู„ RM ุจุฏูŠ ุฃุซุจุช ุฅู†ู‡ ุฏุงูŠู…ุง ูˆ ุฃุจุฏุง
848
+
849
+ 213
850
+ 00:24:09,300 --> 00:24:12,440
851
+ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
852
+
853
+ 214
854
+ 00:24:12,440 --> 00:24:18,120
855
+ ูŠู…ูƒู†ู†ูŠ ุฃู† ุฃุฑูˆุญ ุฃุฎุฏ element X ู…ูˆุฌูˆุฏ ููŠ RN ูˆ ุฃุดูˆู ุดูˆ
856
+
857
+ 215
858
+ 00:24:18,120 --> 00:24:23,600
859
+ ุจุฏูŠ ุฃุณุงูˆูŠ ุฃู†ุง ุฅุฐุง ู„ูˆ ุฌูŠุช ู‚ู„ุช ุฎุฏู„ูŠ ุงู„ X ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ
860
+
861
+ 216
862
+ 00:24:23,600 --> 00:24:31,340
863
+ ุฃุณุงูˆูŠ ู…ู† X1 ูˆ X2 ูˆ ู„ุบุงูŠุฉ XMุงู„ุฅู†ุณุงู† ู…ูˆุฌูˆุฏ ููŠ ูƒู„
864
+
865
+ 217
866
+ 00:24:31,340 --> 00:24:38,430
867
+ ู…ูƒุงู†ุจุงู„ู€ RN ูŠุนู†ูŠ T ุจูŠู‚ุฏุฑ ูŠุคุซุฑ ุนู„ูŠู‡ ุญุชู‰ ุฃู‚ูˆู„ T of X
868
+
869
+ 218
870
+ 00:24:38,430 --> 00:24:44,210
871
+ ุจุฏูŠ ุฃุซุจุช ุฃู†ู‡ ุจุฏูŠ ูŠุณูˆู‰ main X ุทูŠุจ ู‡ุฐุง ู…ุด ูŠุณูˆู‰
872
+
873
+ 219
874
+ 00:24:44,210 --> 00:24:52,030
875
+ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vector X 1 ูˆ 0 ูˆ 0 ู„ุบุงูŠุฉ ุงู„ู€ 0 ุฒุงุฆุฏ 0
876
+
877
+ 220
878
+ 00:24:52,030 --> 00:24:59,490
879
+ ูˆ X 2 ูˆ 0 ูˆ 0 ุฒุงุฆุฏ ูˆ ุชุจู‚ู‰ ู…ุงุดูŠุฉ ู„ุบุงูŠุฉ ู…ุง ุชูˆุตู„ ุฅู„ู‰
880
+
881
+ 221
882
+ 00:24:59,490 --> 00:25:07,910
883
+ 0ูˆ 0 ูˆ XN ูˆู„ุง ู„ุฃูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุนู†ุตุฑ ูƒุชุจุชู‡ ุนู„ู‰ ุดูƒู„
884
+
885
+ 222
886
+ 00:25:07,910 --> 00:25:13,970
887
+ ู…ุฌู…ูˆุนุฉ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ุนู†ุงุตุฑ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ุงุฎุฏุช x1 ุนุงู…ู„
888
+
889
+ 223
890
+ 00:25:13,970 --> 00:25:24,070
891
+ ู…ุดุชุฑูƒ ุจูŠุธู„ ูƒุฏู‡ุŸ 100 ุฒูŠุฏ x2 0 ูˆ 1 ูˆ 0 ูˆ 0 ุฒูŠุฏ ุงู†
892
+
893
+ 224
894
+ 00:25:24,070 --> 00:25:32,910
895
+ ุจูŠุธู„ ู…ุงุดูŠูŠู† xn 0 ูˆ 0 ูˆ 1 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงูŠุจู‚ู‰
896
+
897
+ 225
898
+ 00:25:32,910 --> 00:25:38,350
899
+ ูˆุงุญุฏ ูˆู‡ูŠุฌูู„ู†ุง ู…ูŠู†ุŸ ุงู„ุฌูˆุฒ ู„ุนู„ูƒูˆุง ุงู„ุขู† ุฃุฏุฑูƒุชูˆุง ู…ุง ู‡ูˆ
900
+
901
+ 226
902
+ 00:25:38,350 --> 00:25:43,410
903
+ ุงู„ุณุฑ ุงู„ู„ูŠ ุฎู„ุงู†ูŠ ุฃุจุฏุฃ ุจู…ูŠู† ุจุงู„ูุฑุถูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡
904
+
905
+ 227
906
+ 00:25:43,410 --> 00:25:50,630
907
+ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ ูƒุฅู†ู‡ ุฅูŠู‡ ูŠุง ุดุจู†ุงุชุŸ ูƒุฅู†ู‡ X1E1 ูˆู‡ุฐู‡
908
+
909
+ 228
910
+ 00:25:50,630 --> 00:26:00,820
911
+ X2E2 ูˆุถู„ุช ู…ุงุดูŠ ุฅู„ู‰ ุบุงูŠุฉ XNEN ู‡ุฐุง ู…ูŠู†ุŸุงู„ู€ X ูŠุจู‚ู‰
912
+
913
+ 229
914
+ 00:26:00,820 --> 00:26:06,600
915
+ ุงู„ู€ X ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐุง ูƒุชุจุชู‡ ุนู„ู‰ ุดูƒู„ linear
916
+
917
+ 230
918
+ 00:26:06,600 --> 00:26:12,100
919
+ combination ู…ู† ุนู†ุงุตุฑ ุงู„ bases ุชู…ุงู… ุงู„ุงู† T linear
920
+
921
+ 231
922
+ 00:26:12,100 --> 00:26:17,560
923
+ transformation ุจุฏูŠ ุฃุฎู„ูŠู‡ุง ุชุฃุซุฑ ุนู„ู‰ ู…ูŠู†ุŸุนู„ู‰ X ูŠุจู‚ู‰
924
+
925
+ 232
926
+ 00:26:17,560 --> 00:26:22,800
927
+ ุจุงู„ุฏุงุฌูŠ ู‡ุงุฎุฏู„ู‡ T of X ุงู„ู„ูŠ ุฃู†ุง ุจุฏูˆุฑ ุนู„ูŠู‡ุง ูŠุจู‚ู‰
928
+
929
+ 233
930
+ 00:26:22,800 --> 00:26:28,780
931
+ ุจุชุซูˆูŠ T ู„ู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ูƒู„ู‡ ูˆู†ุธุฑุง ู„ุฃู†ู‡ุง T Linear
932
+
933
+ 234
934
+ 00:26:28,780 --> 00:26:36,600
935
+ Transformation ูŠุจู‚ู‰ ุจุชุตูŠุฑ T of X1 E1 ุฒุงุฆุฏ T of X2
936
+
937
+ 235
938
+ 00:26:36,600 --> 00:26:46,120
939
+ E2 ุฒุงุฆุฏ ุฒุงุฆุฏT of X N E N ู„ูŠุด ุงู„ูƒู„ุงู… ู‡ุฐุง since ู„ุฃู†
940
+
941
+ 236
942
+ 00:26:46,120 --> 00:26:54,420
943
+ T is a linear transformation ุทูŠุจ ู…ู† ุฎูˆุงุตุฉ ุงู„
944
+
945
+ 237
946
+ 00:26:54,420 --> 00:26:59,240
947
+ linear transformation ุงู„ุฃู† ุงู„ E1 vector ุทุจ ูˆ ุงู„ X1
948
+
949
+ 238
950
+ 00:26:59,240 --> 00:27:14,240
951
+ vector ูˆู„ุง scalarุฃูˆู„ ุฎุงุตูŠุฉ ูŠุจู‚ู‰ ู‡ู†ุง X1 ููŠ T of E1
952
+
953
+ 239
954
+ 00:27:14,240 --> 00:27:25,130
955
+ ุฒุงุฆุฏ X2 ููŠ T of E2 ุฒุงุฆุฏ ุฒุงุฆุฏ XN ููŠ T of ENูŠุจู‚ู‰ ู‡ุฐุง
956
+
957
+ 240
958
+ 00:27:25,130 --> 00:27:33,850
959
+ ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณุงูˆูŠ X1A1 ุฒูŠ ุงู„ X2A2 ุฒูŠ ุงู„ XNAN ุญุณุจ ู…ุง
960
+
961
+ 241
962
+ 00:27:33,850 --> 00:27:39,110
963
+ ู†ูุฑุถ ููˆู‚ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุทูŠุจ ูˆู‚ูˆู„ู†ุง ุงู„ ุงู‡ุงุช ู…ุงู„ู‡ู…
964
+
965
+ 242
966
+ 00:27:39,110 --> 00:27:46,790
967
+ ู‡ุฏูˆู„ุŸ ู…ุตููˆูุงุช ูŠุจู‚ู‰ ู‡ุฏูˆู„ ู…ุงู„ู‡ ู…ุตููˆูุงุช ุทูŠุจ ุณุคุงู„ ุฃู„ูŠุณ
968
+
969
+ 243
970
+ 00:27:46,790 --> 00:27:55,080
971
+ ู‡ุฐุง ู‡ูˆ ุญุงุตู„ ุงู„ุถุฑุจ AXุŸุตุญ ูˆู„ุง ู„ุฃุŸ ู„ุฃู† ู‡ุฐู‡ ุงู„ู€A
972
+
973
+ 244
974
+ 00:27:55,080 --> 00:28:00,860
975
+ ู…ุตูˆูุงุช ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุชู…ุงู…ุŸ ูƒุฃู†ู‡ ุงูŠุดุŸ ูƒุฃู† ุงู„ู€E1
976
+
977
+ 245
978
+ 00:28:00,860 --> 00:28:04,740
979
+ ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A2 ู…ุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A3 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ
980
+
981
+ 246
982
+ 00:28:04,740 --> 00:28:05,160
983
+ ุงู„ู€A4 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A5 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A6 ู…ุงุตูˆูุฉ
984
+
985
+ 247
986
+ 00:28:05,160 --> 00:28:05,180
987
+ ุนู…ูˆุฏ ุงู„ู€A7 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A8 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A9
988
+
989
+ 248
990
+ 00:28:05,180 --> 00:28:06,220
991
+ ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A9 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A9 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ
992
+
993
+ 249
994
+ 00:28:06,220 --> 00:28:06,480
995
+ ุงู„ู€A9 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A9 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A9 ู…ุงุตูˆูุฉ
996
+
997
+ 250
998
+ 00:28:06,480 --> 00:28:09,080
999
+ ุนู…ูˆุฏ ุงู„ู€A9 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A9 ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A9
1000
+
1001
+ 251
1002
+ 00:28:09,080 --> 00:28:17,640
1003
+ ู…ุงุตูˆูุฉ ุนู…ูˆุฏ ุงู„ู€A9ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ ax where ุญูŠุซ ุงู„
1004
+
1005
+ 252
1006
+ 00:28:17,640 --> 00:28:25,440
1007
+ a ู‡ูŠ ุงู„ู…ุตุญูˆูุฉ ู„ุนู…ูˆุฏูŠ a1 ูˆ a2 ูˆ ู„ุบุงูŠุฉ an ุจุงู„ุดูƒู„
1008
+
1009
+ 253
1010
+ 00:28:25,440 --> 00:28:31,230
1011
+ ุงู„ู„ูŠ ุนู†ุฏู†ุงูŠุนู†ูŠ ูƒู„ ูˆุงุญุฏ ู…ู† A1 ูˆ A2 ูˆ AN ู‡ูˆ ุนู…ูˆุฏ
1012
+
1013
+ 254
1014
+ 00:28:31,230 --> 00:28:37,530
1015
+ ู„ู…ู†ุŸ ู„ู„ู…ุตูˆูุฉ A ูŠุจู‚ู‰ ู…ู† ุงู„ุฃู†ูุง ุณุงุนุฏุง ุฃูŠ linear
1016
+
1017
+ 255
1018
+ 00:28:37,530 --> 00:28:41,930
1019
+ transformation ู…ู† ุงู„ RN ุฅู„ู‰ ุงู„ RM ุชูƒูˆู† ุฏุงุฆู…ุง ูˆ
1020
+
1021
+ 256
1022
+ 00:28:41,930 --> 00:28:48,150
1023
+ ุฃุจุฏุง ุนู„ู‰ ุงู„ุดูƒู„ T of X ุจูŠุณุงูˆูŠ 100 ูŠุณุงูˆูŠ AX ูˆ ู‡ูƒุฐุง
1024
+
1025
+ 257
1026
+ 00:28:48,150 --> 00:28:54,340
1027
+ ุญุฏ ููŠูƒู… ุจุชุญุจ ุชุณุฃู„ ุฃูŠ ุณุคุงู„ ู‡ู†ุงุŸุทูŠุจ ุงู†ุชู‡ูŠู†ุง ู…ู†
1028
+
1029
+ 258
1030
+ 00:28:54,340 --> 00:28:59,160
1031
+ ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู…ุซุงู„ ุงู„ุซุงู„ุซ
1032
+
1033
+ 259
1034
+ 00:29:31,620 --> 00:29:39,580
1035
+ Example 3 ุจูŠู‚ูˆู„
1036
+
1037
+ 260
1038
+ 00:29:39,580 --> 00:29:52,620
1039
+ LED T ู…ู† R3 ู„ุบุงูŠุฉ R3 ุจู€ A linear transformation
1040
+
1041
+ 261
1042
+ 00:29:52,620 --> 00:30:05,450
1043
+ defined by ู…ุนุฑูุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠูู‰ ofX ู‡ูˆ ุนุจุงุฑุฉ
1044
+
1045
+ 262
1046
+ 00:30:05,450 --> 00:30:16,090
1047
+ ุนู† TR X1 ูˆ X2 ูˆ X3 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ
1048
+
1049
+ 263
1050
+ 00:30:16,090 --> 00:30:25,630
1051
+ ุญุตู„ ุถุฑุจ 101 112213
1052
+
1053
+ 264
1054
+ 00:30:25,630 --> 00:30:36,400
1055
+ ููŠ X1 X2 X3ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ู†ู…ุฑ
1056
+
1057
+ 265
1058
+ 00:30:36,400 --> 00:30:49,960
1059
+ ุงูŠู‡ find ุงู„ kernel ุงู„ุชูŠ and ุงู„ dimension ู„ู„ kernel
1060
+
1061
+ 266
1062
+ 00:30:49,960 --> 00:31:01,420
1063
+ ุงู„ุชูŠ ู†ู…ุฑ ุจูŠู‡ find a bases
1064
+
1065
+ 267
1066
+ 00:31:07,180 --> 00:31:20,940
1067
+ Find a basis for R of T and ุงู„ู€ dimension ู„ู„ู€ R of
1068
+
1069
+ 268
1070
+ 00:31:20,940 --> 00:31:24,660
1071
+ T ู†ู…ุฑู‡
1072
+
1073
+ 269
1074
+ 00:31:24,660 --> 00:31:37,560
1075
+ C Find T of ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ู†ู…ุฑู‡ Dis the
1076
+
1077
+ 270
1078
+ 00:31:37,560 --> 00:31:44,220
1079
+ element
1080
+
1081
+ 271
1082
+ 00:31:44,220 --> 00:31:53,860
1083
+ ุงุชู†ูŠู† ูˆุฎู…ุณุฉ ูˆุณุจุนุฉ ู…ูˆุฌูˆุฏ ููŠ ุงู„ R of T ุงู… ู„ุงุŸ
1084
+
1085
+ 272
1086
+ 00:32:14,190 --> 00:32:19,150
1087
+ ุณุคุงู„ ู…ุฑุฉ ุชุงู†ูŠุฉุทุจุนุง ุฒูŠ ู…ุง ุงู†ุช ุดุงูŠููŠู† ู…ู† ุณุคุงู„ ุฅู„ู‰
1088
+
1089
+ 273
1090
+ 00:32:19,150 --> 00:32:25,570
1091
+ ุณุคุงู„ ุจุชุฎุชู„ู ุงู„ููƒุฑุฉ ุดูˆูŠุฉ ุจูŠู‚ูˆู„ ุงูุชุฑุถ T ู…ู† R3 ุฅู„ู‰ R3
1092
+
1093
+ 274
1094
+ 00:32:25,570 --> 00:32:31,130
1095
+ ุจูŠู‡ Linear Transformation ูˆุงุถุญ ู…ู† RN ุฅู„ู‰ RM ุงูŠุด
1096
+
1097
+ 275
1098
+ 00:32:31,130 --> 00:32:35,970
1099
+ ุงุชูุงุฌู†ุง ุงู„ู†ุตูŠู‚ู‡ ุฏุงูŠู…ุง ู…ู† T of X ุจุฏูŠู‡ ุณูˆู‰ ู…ู†ุŸ ุจุฏูŠู‡
1100
+
1101
+ 276
1102
+ 00:32:35,970 --> 00:32:40,310
1103
+ ุณูˆู‰ X ู…ู† ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุฌุงุจู„ู‡ ูŠุนู†ูŠ ูƒุฃู†ู‡ ุณุคุงู„ู†ุง ู‡ุฐุง ู‡ูˆ
1104
+
1105
+ 277
1106
+ 00:32:40,310 --> 00:32:45,150
1107
+ ุชุทุจูŠู‚ ุนู…ู„ูŠ ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุฌุงุจู„ู‡ุŒ ู…ุธุจูˆุทุŸ
1108
+
1109
+ 278
1110
+ 00:32:45,410 --> 00:32:49,930
1111
+ ูŠุจู‚ู‰ ูƒุฃู† ุงุญู†ุง ุจู†ุงุทู„ ุฃู† ู…ุซุงู„ ุนุฏุฏูŠ ุชุทุจูŠู‚ ุนู„ู‰ ุงู„ู…ุซุงู„
1112
+
1113
+ 279
1114
+ 00:32:49,930 --> 00:32:55,350
1115
+ ุงู„ู†ุธุฑูŠ ุงู„ู„ูŠ ุฌุงุจู„ู‡ ูŠุจู‚ู‰ ู…ุนุฑูุฉ ูƒุงู„ุชุงู„ูŠ T of X ุงู„ู€ X
1116
+
1117
+ 280
1118
+ 00:32:55,350 --> 00:32:59,390
1119
+ ู‡ูˆ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ R3 ูŠุนู†ูŠ T of X ูˆุงุญุฏ ูˆ X ุงุชู†ูŠู† ูˆ X
1120
+
1121
+ 281
1122
+ 00:32:59,390 --> 00:33:04,230
1123
+ ุชู„ุงุชุฉ ุจุชูƒุชุจู‡ู… ุนู„ู‰ ุดูƒู„ ุนู…ูˆุฏ ูŠุจู‚ู‰ ูŠู‚ูˆู„ T of X ูˆุงุญุฏ X
1124
+
1125
+ 282
1126
+ 00:33:04,230 --> 00:33:10,470
1127
+ ุงุชู†ูŠู† X ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุญุงุตู„ ุถุฑุจ ุงู„ู…ุตูˆูุฉ A ุฃุฎุฏู†ุงู‡ุง
1128
+
1129
+ 283
1130
+ 00:33:10,470 --> 00:33:14,430
1131
+ ุจุงู„ุดูƒู„ ู‡ุฐุง ููŠ X ุงู„ู„ูŠ ู‡ูˆ X ูˆุงุญุฏ ูˆ X ุงุชู†ูŠู† ูˆ X ุชู„ุงุชุฉ
1132
+
1133
+ 284
1134
+ 00:33:14,640 --> 00:33:17,780
1135
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€ Linear Transformation ุงู„ู„ูŠ ุนู†ุฏู†ุง
1136
+
1137
+ 285
1138
+ 00:33:17,780 --> 00:33:21,580
1139
+ ู…ุทู„ูˆุจ ู…ู† ู‡ุฐู‡ ุงู„ู€ Linear Transformation ู‡ูŠ ุชุจุฏุฃ ุงู„ู€
1140
+
1141
+ 286
1142
+ 00:33:21,580 --> 00:33:25,730
1143
+ Kernelูˆ ุจุฏูŠ ุงู„ dimension ู„ู„ูƒูŠุฑู†ู„ ู„ุงู† ูƒูŠุฑู†ู„ ู…ุงู„ู‡
1144
+
1145
+ 287
1146
+ 00:33:25,730 --> 00:33:31,790
1147
+ sub space ูŠุนู†ูŠ space ุจุฏูŠ ุงู„ dimension ู„ู‡ ุฌุฏุงุด ุชู†ูŠู†
1148
+
1149
+ 288
1150
+ 00:33:31,790 --> 00:33:38,350
1151
+ ุจุฏูŠ basis ู„ู„ range ุจุฏูŠ ุงู„ vectors ุงู„ู„ูŠ ุจูˆุงู„ุฏูˆู„ูŠ ุงู„
1152
+
1153
+ 289
1154
+ 00:33:38,350 --> 00:33:42,650
1155
+ range ุชุจุน ู…ู† ุงู„ subspace R of T ูˆ ุจุนุฏ ู‡ูŠูƒ ุจุฏูŠ ุงู„
1156
+
1157
+ 290
1158
+ 00:33:42,650 --> 00:33:47,570
1159
+ dimension ูƒู…ุงู† ู„ู„ R of T ูŠุนู†ูŠ ูƒู„ ู†ู‚ุทุฉ ุฒูŠ ู…ุง ุชู„ุงุญุธุช
1160
+
1161
+ 291
1162
+ 00:33:47,570 --> 00:33:50,730
1163
+ ุจ main ุจู…ุทู„ุจูŠู† ู„ูƒู† ุฅุฐุง ุฌุจุช ุงู„ู…ุทู„ุจ ุงู„ุฃูˆู„ ุจุตูŠุฑ
1164
+
1165
+ 292
1166
+ 00:33:50,730 --> 00:33:55,160
1167
+ ุงู„ู…ุทู„ุจ ุงู„ุชุงู†ูŠ ุงู„ุณู‡ู„ ุชุญุตูŠู„ ุญุตู„ุงู„ู…ุทู„ูˆุจ ู†ู…ุฑู‰ C ุจูŠู‚ูˆู„
1168
+
1169
+ 293
1170
+ 00:33:55,160 --> 00:33:58,840
1171
+ ู„ูŠ ู‡ุงุชู„ูŠ T of ูˆุงุญุฏ ูˆุงุซู†ูŠู† ูˆุซู„ุงุซ ุจุชุนุฑู ู‚ุฏุงุด ุตูˆุฑุฉ
1172
+
1173
+ 294
1174
+ 00:33:58,840 --> 00:34:03,340
1175
+ ูˆุงุญุฏ ูˆุงุซู†ูŠู† ูˆุซู„ุงุซ ุดูˆ ุจุชุนุทูŠู†ูŠ ุงู„ุฃู…ุฑ ุงู„ุฑุงุจุน ุจูŠู‚ูˆู„ ู„ูŠ
1176
+
1177
+ 295
1178
+ 00:34:03,340 --> 00:34:08,100
1179
+ ู‡ู„ ุงู„ุนู†ุตุฑ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ range ุฃู… ู„ุงุŸ ุจูŠู‚ูˆู„ ู„ู‡
1180
+
1181
+ 296
1182
+ 00:34:08,100 --> 00:34:13,400
1183
+ ุงู„ู„ู‡ ุฃุนู„ู… ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ A ู‚ุงู„
1184
+
1185
+ 297
1186
+ 00:34:13,400 --> 00:34:18,280
1187
+ ู„ูŠ ู‡ุงุชู„ูŠ ุงู„ kernelุจู‚ูˆู„ ู„ู‡ ู‚ุจู„ ุงู„ kernel ุฎู„ู‘ูŠู†ูŠ ุฃุญุท
1188
+
1189
+ 298
1190
+ 00:34:18,280 --> 00:34:24,740
1191
+ ู‡ุฐู‡ ููŠ ุดูƒู„ ุฃู„ุทู ู…ู† ู‡ูŠูƒ ุดูˆูŠุฉ ุจู‚ูˆู„ู‡ ูƒูŠู ุจู‚ูˆู„ู‡ ู‡ูŠุชูŠ
1192
+
1193
+ 299
1194
+ 00:34:24,740 --> 00:34:35,180
1195
+ of X1 X2 X3 ูƒู…ุตููˆูุฉ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุชู…ุงู…ุŸ ุจุฏู‡
1196
+
1197
+ 300
1198
+ 00:34:35,180 --> 00:34:41,490
1199
+ ูŠุณุงูˆูŠ ุญุงุตู„ ุถุฑุจ ู‡ุฏูˆู„ ุทุจ ู…ุถุฑุจู‡ู… ููŠ ุจุนุถู…ุงุดูŠ ูŠุจู‚ู‰ ู„ูˆ
1200
+
1201
+ 301
1202
+ 00:34:41,490 --> 00:34:45,690
1203
+ ุฑูˆุญุช ุถุฑุจุชู… ููŠ ุจุนุถ ุจูŠู‚ูˆู„ ู„ู…ูŠู† ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ
1204
+
1205
+ 302
1206
+ 00:34:45,690 --> 00:34:54,690
1207
+ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ x1 ุฒุงุฆุฏ x3 ุงู„ุตู ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ x1 ุฒุงุฆุฏ x2
1208
+
1209
+ 303
1210
+ 00:34:54,690 --> 00:35:08,130
1211
+ ุฒุงุฆุฏ 2x3 ุงู„ุตู ุงู„ุชุงู„ุช 2x1 ุฒุงุฆุฏ x2 ุฒุงุฆุฏ 3x3 ู‡ุงูŠ
1212
+
1213
+ 304
1214
+ 00:35:08,130 --> 00:35:13,070
1215
+ ุถุฑุจู†ุงูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€linear transformation ุงู„ู…ุนุฑูุฉ ุนู†ู‡
1216
+
1217
+ 305
1218
+ 00:35:13,070 --> 00:35:21,360
1219
+ ุฌุงู„ูŠ ู‡ุงุชู„ ุงู„ูƒูŠุฑู†ู„ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู‡ ุงู„ูƒูŠุฑู†ู„ุงู„ุชูŠ ู‡ูˆ ูƒู„
1220
+
1221
+ 306
1222
+ 00:35:21,360 --> 00:35:26,880
1223
+ ุงู„ X's ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ R3 ุงู„ู„ูŠ ุนู†ุฏู‡ุง ูˆ ุงู„ู„ูŠ
1224
+
1225
+ 307
1226
+ 00:35:26,880 --> 00:35:33,580
1227
+ ุตูˆุฑุชู‡ุง T of X ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰
1228
+
1229
+ 308
1230
+ 00:35:33,580 --> 00:35:39,660
1231
+ ู‡ุฐู‡ ูƒู„ ุงู„ X's ุงู„ X ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ X ูˆุงุญุฏ ูˆ X
1232
+
1233
+ 309
1234
+ 00:35:39,660 --> 00:35:45,650
1235
+ ุงุชู†ูŠู† ูˆ X ุชู„ุงุชุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ R3 ุตุชุด ุฏู‡ู„ู…ุง
1236
+
1237
+ 310
1238
+ 00:35:45,650 --> 00:35:49,810
1239
+ ุฃู‚ูˆู„ ู‡ุฐุง ุงู„ู€T of X ุณุงูˆูŠ 0ุŒ ุงู„ู€T of X ุณุงูˆูŠ ู…ูŠู†ุŸ
1240
+
1241
+ 311
1242
+ 00:35:49,810 --> 00:35:54,170
1243
+ ูŠุณุงูˆูŠ ู‡ุฐุง ูƒู„ู‡ุŒ ู…ุนู†ุงุชู‡ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ุง
1244
+
1245
+ 312
1246
+ 00:35:54,170 --> 00:36:00,630
1247
+ ุชุณุงูˆูŠ ุงู„ู…ุตูˆูุฉ ุงู„ุตูุฑูŠุฉ ูŠุจู‚ู‰ ุฏู‡ such that ุงู„ู…ุตูˆูุฉ ุฏูŠ
1248
+
1249
+ 313
1250
+ 00:36:00,630 --> 00:36:12,850
1251
+ X1 ุฒุงุฆุฏ X3ูˆู‡ู†ุง X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 2 X3 ูˆู‡ู†ุง 2 X1 ุฒุงุฆุฏ
1252
+
1253
+ 314
1254
+ 00:36:12,850 --> 00:36:20,570
1255
+ X2 ุซู„ุงุซุฉ X3 ูƒู„ู‡ ุจูŠุณุงูˆูŠ ุงู„ู…ุตููˆูุฉ ุงู„ุตูุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง
1256
+
1257
+ 315
1258
+ 00:36:20,570 --> 00:36:27,790
1259
+ ุจุงู„ุดูƒู„ ู‡ุฐุง ุชู…ุงู…ุŸ ุงุฐุง ุงู†ุง ุทุจู‚ุช ุญุชู‰ ุงู„ุงู† ุชุนุฑูŠู ู…ู† ุงู„
1260
+
1261
+ 316
1262
+ 00:36:27,790 --> 00:36:33,830
1263
+ kernel ู‡ุฐุง ูŠุง ุจู†ุงุช ุจูŠู‚ูˆุฏู†ุง ุงู„ู‰ ูƒุงู… ู…ุนุงุฏู„ุฉุŸูŠุนู†ูŠ ู‡ูˆ
1264
+
1265
+ 317
1266
+ 00:36:33,830 --> 00:36:38,630
1267
+ homogeneous system ุตุญ ูˆู„ุง ู„ุฃุŸ ูŠุจู‚ู‰ ู‡ุฐุง ูŠู‚ูˆุฏู†ุง ุฅู„ู‰
1268
+
1269
+ 318
1270
+ 00:36:38,630 --> 00:36:48,330
1271
+ ู…ุง ูŠุฃุชูŠ ุงู† X1 ุฒุงุฆุฏ X3 ูŠุณูˆู‰ 0 ูˆ X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 2
1272
+
1273
+ 319
1274
+ 00:36:48,330 --> 00:36:58,590
1275
+ X3 ูŠุณูˆู‰ 0 ูˆ 2X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 3X3 ูŠุณูˆู‰ 0 ู‡ุฐุง ุนุจุงุฑุฉ
1276
+
1277
+ 320
1278
+ 00:36:58,590 --> 00:37:03,230
1279
+ ุนู† ู…ุงุฐุงุŸHomogeneous System ุจุญุงูˆู„ ู†ุญู„ ุงู„ู€
1280
+
1281
+ 321
1282
+ 00:37:03,230 --> 00:37:07,270
1283
+ Homogeneous System ุจุฃูŠ ุทุฑูŠู‚ุฉ ู…ู† ุงู„ุทุฑู‚ ุงู„ุชูŠ ุณุจู‚ุช
1284
+
1285
+ 322
1286
+ 00:37:07,270 --> 00:37:11,870
1287
+ ุฏุฑุงุณุชู‡ุง ุทุจุนุง ุงู„ู€ Homogeneous ุฃุณู‡ู„ ู…ู† ุงู„ู€ Non
1288
+
1289
+ 323
1290
+ 00:37:11,870 --> 00:37:14,890
1291
+ -Homogeneous ููŠ ุงู„ุญู„ ูˆุจุงู„ุชุงู„ูŠ ู…ู…ูƒู† ู†ุฌูŠุจ ุงู„ุญู„
1292
+
1293
+ 324
1294
+ 00:37:14,890 --> 00:37:19,930
1295
+ ุจุณู‡ูˆู„ุฉ ุจุฏูˆู† ู…ู„ุฌุฃ ู„ู€ Gaussian ูˆู„ุง ู„ู€ Rho Epsilon
1296
+
1297
+ 325
1298
+ 00:37:19,930 --> 00:37:24,790
1299
+ Form ุฅู„ู‰ ุขุฎุฑู‰ ูู…ุซู„ุง ู„ูˆ ุฌูŠุช ู‚ู„ุช ู‡ู†ุง X ูˆุงุญุฏ ุชุชุณุงูˆูŠ
1300
+
1301
+ 326
1302
+ 00:37:24,790 --> 00:37:32,000
1303
+ ู…ูŠู† ูŠุง ุจู†ุงุชุŸุจุฏูŠ ูŠุณุงูˆูŠ ุณุงู„ุจ X3 ู…ุธุจูˆุท ุทูŠุจ ุฅุฐุง ู„ูˆ ุฌูŠุช
1304
+
1305
+ 327
1306
+ 00:37:32,000 --> 00:37:38,640
1307
+ ุนู„ู‰ ุงู„ู…ุนุฏู„ ุงู„ุชุงู†ูŠ ู‡ุฐุง ุฅูŠุด ุจูŠุตูŠุฑ ุณุงู„ุจ X3 ุฒุงุฆุฏ X2
1308
+
1309
+ 328
1310
+ 00:37:38,640 --> 00:37:48,770
1311
+ ุฒุงุฆุฏ 2 X3 ุจุฏูŠ ูŠุณุงูˆูŠ Zero ูˆู‡ู†ุง ุณุงู„ุจ 2 X3ุฒุงุฆุฏ X2
1312
+
1313
+ 329
1314
+ 00:37:48,770 --> 00:37:51,710
1315
+ ุฒุงุฆุฏ X3 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X3 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
1316
+
1317
+ 330
1318
+ 00:37:51,710 --> 00:37:52,070
1319
+ ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
1320
+
1321
+ 331
1322
+ 00:37:52,070 --> 00:37:55,290
1323
+ ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
1324
+
1325
+ 332
1326
+ 00:37:55,290 --> 00:37:58,550
1327
+ ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
1328
+
1329
+ 333
1330
+ 00:37:58,550 --> 00:37:58,550
1331
+ ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
1332
+
1333
+ 334
1334
+ 00:37:58,550 --> 00:37:58,550
1335
+ ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
1336
+
1337
+ 335
1338
+ 00:37:58,550 --> 00:38:01,530
1339
+ ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X2
1340
+
1341
+ 336
1342
+ 00:38:01,530 --> 00:38:11,710
1343
+ ุฒุงุฆุฏ X2 ุฒุงุฆุฏ X
1344
+
1345
+ 337
1346
+ 00:38:11,740 --> 00:38:21,720
1347
+ ุจุชุจู‚ู‰ x2 ุฒุงุฆุฏ x3 ูŠุณุงูˆูŠ 0 ูˆ ู‡ุฐู‡ ุจุชุนุทูŠู†ูŠ x2 ุฒุงุฆุฏ x3
1348
+
1349
+ 338
1350
+ 00:38:21,720 --> 00:38:28,280
1351
+ ูŠุณุงูˆูŠ 0 ูŠุนู†ูŠ ุจุชุนุทูŠู†ูŠ ู…ูŠู†ุŸ ู†ูุณ ุงู„ู…ุนุงุฏู„ุฉ ุฅุฐุง ู…ู†
1352
+
1353
+ 339
1354
+ 00:38:28,280 --> 00:38:36,720
1355
+ ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุงู† x2 ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ x3ูŠุจู‚ู‰
1356
+
1357
+ 340
1358
+ 00:38:36,720 --> 00:38:44,160
1359
+ ุจู†ุงุก ุนู„ูŠู‡ ู„ูˆ ูƒุงู†ุช x ุชู„ุงุชุฉ ุชุณุงูˆูŠ a then x ูˆุงุญุฏ ูƒุฏู‡
1360
+
1361
+ 341
1362
+ 00:38:44,160 --> 00:38:52,920
1363
+ ุจุฏู‡ ูŠุณุงูˆูŠูˆ X2 ุจุฏู‡ ูŠุณูˆูŠ ูƒุฏู‡ุŸ ุณุงู„ุจ A ูŠุจู‚ู‰ ุฃุตุจุญ ุงู„ู€
1364
+
1365
+ 342
1366
+ 00:38:52,920 --> 00:38:59,340
1367
+ Kernel ู„ู…ู†ุŸ ู„ู€ Linear Transformation T ู‡ูˆ ุนุจุงุฑุฉ ุนู†
1368
+
1369
+ 343
1370
+ 00:38:59,340 --> 00:39:05,920
1371
+ ู…ู†ุŸ The set of all elements X1 ุงู„ู„ูŠ ูŠุจู‚ู‰ ูƒุฏู‡ุŸ ุณุงู„ุจ
1372
+
1373
+ 344
1374
+ 00:39:05,920 --> 00:39:15,850
1375
+ A ูˆ X2 ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ A ูˆ X3 ุงูˆู‡ุฐุง ุงู„ู„ูŠ ุจู‚ุฏุฑ ุงูƒุชุจ
1376
+
1377
+ 345
1378
+ 00:39:15,850 --> 00:39:21,690
1379
+ ุนู„ูŠู‡ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูƒู„ ุงู„ู…ุตูˆู ุงู„ู„ูŠ ุน ุดูƒู„ ู†ุงู‚ุต ุงูŠู‡
1380
+
1381
+ 346
1382
+ 00:39:21,690 --> 00:39:27,870
1383
+ ู†ุงู‚ุต ุงูŠู‡ ูˆ ุงูŠู‡ such that ุงูˆ ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู‡ ูŠุณุงูˆูŠ
1384
+
1385
+ 347
1386
+ 00:39:27,870 --> 00:39:33,910
1387
+ ูƒู…ุงู† ุงูŠู‡ ู„ูˆ ุฃุฎุฏุช ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุฏู‡ ูŠูƒูˆู† ู…ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ
1388
+
1389
+ 348
1390
+ 00:39:33,910 --> 00:39:39,570
1391
+ ู†ุงู‚ุต ูˆุงุญุฏ ูˆุงุญุฏ such that ุงู„ a ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ set of
1392
+
1393
+ 349
1394
+ 00:39:39,570 --> 00:39:44,330
1395
+ real numbersูŠุนู†ูŠ ู…ุงุญุทูŠุชุด ุนู„ูŠู‡ุง ุฃูŠ ู‚ูŠูˆุฏ ู„ุฃูŠ ุนุฏุฏ
1396
+
1397
+ 350
1398
+ 00:39:44,330 --> 00:39:52,070
1399
+ ุญู‚ูŠู‚ูŠ ู…ู† ู…ูƒุงู† ูŠูƒูˆู† ุชู…ุงู…ุŸ ุฅุฐุง ุฃุตุจุญ ุงู„ kernel ู…ู† ู‡ูˆุŸ
1400
+
1401
+ 351
1402
+ 00:39:52,070 --> 00:39:58,590
1403
+ ู‡ูˆ ูƒู„ ุงู„ vectors ุงู„ู„ูŠ ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ุชุณุงูˆูŠ ุงู„ู…ุฑูƒุจุฉ
1404
+
1405
+ 352
1406
+ 00:39:58,590 --> 00:40:03,070
1407
+ ุงู„ุซุงู†ูŠุฉ ูˆ ุงู„ู…ุฑูƒุจุฉ ุงู„ุชุงู„ุชุฉ ุจุงุณ ุชุณุงูˆูŠู‡ู… ู„ูƒู†ู‡ุง ุชุฎู„ูู‡ู…
1408
+
1409
+ 353
1410
+ 00:40:03,070 --> 00:40:07,990
1411
+ ููŠ ู…ู†ุŸ ุงู„ุฅุดุงุฑุฉ ูŠุจู‚ู‰ ุงู„ vector ู‡ุฐุง ู…ู†ุงุช ุฅูŠุด ุนู„ุงู‚ุชู‡
1412
+
1413
+ 354
1414
+ 00:40:07,990 --> 00:40:17,040
1415
+ ุจุงู„ kernelุŸุจุฌูŠุจ ุจุนุถ ุนู†ุงุตุฑ ุงู„ูƒุฑู†ู† ูˆู„ุง ูƒู„ู‡ู…ุŸ ูŠุนู†ูŠ
1416
+
1417
+ 355
1418
+ 00:40:17,040 --> 00:40:23,300
1419
+ ุฅูŠุด ุจูŠู†ูุน ูŠูƒูˆู†ุŸbases ู„ุฃู†ู‡ ู…ุณุชู‚ู„ ุญุงู„ู‡ ู„ูŠู†ูŠุงุฑูŠ ู…ุด
1420
+
1421
+ 356
1422
+ 00:40:23,300 --> 00:40:28,720
1423
+ ู…ุนุชู…ุฏ ุนู„ู‰ ุบูŠุฑู‡ ูŠุจู‚ู‰ ู‡ุฐุง ู„ูŠู†ูŠุงุฑูŠ independent ุงุซู†ูŠู†
1424
+
1425
+ 357
1426
+ 00:40:28,720 --> 00:40:33,780
1427
+ ูƒู„ ุฃู†ุตุฑ ููŠ ุงู„ kernel ุจู‚ุฏุฑ ุงูƒุชุจ ุฏู„ุชู‡ ุญุทูŠุช ู‚ูŠูˆุฏ ุนู„ู‰
1428
+
1429
+ 358
1430
+ 00:40:33,780 --> 00:40:39,340
1431
+ ุงูŠู‡ ู„ุฃ ูŠุจู‚ู‰ ุญุท ุงู„ุฑู‚ู… ุงู„ู„ูŠ ูŠุฌุจูƒ ูˆู‡ุฐุง ุซุงุจุช ูŠุจู‚ู‰ ู‡ุฐุง
1432
+
1433
+ 359
1434
+ 00:40:39,340 --> 00:40:43,800
1435
+ ู…ุนู†ุงุชู‡ ุงู„ bases ู„ู„ูƒูŠุฑู†ู„ ู‡ูˆ ู…ูŠู† ุงู„ vector ุงู„ู„ูŠ
1436
+
1437
+ 360
1438
+ 00:40:43,800 --> 00:40:53,340
1439
+ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงูŠุด ู…ุนู†ุงู‡ ุฐุงVector ู„ุญุงู„ู‡
1440
+
1441
+ 361
1442
+ 00:40:53,340 --> 00:41:01,200
1443
+ ุฃูˆ the set ู‡ุฐุง ู…ุนู†ุงุชู‡ ุงู„ vector
1444
+
1445
+ 362
1446
+ 00:41:01,200 --> 00:41:08,220
1447
+ ุนู„ู‰ ุงู„ุดูƒู„ ู‡ุฐุง ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ู‡ุฐุง is a basis
1448
+
1449
+ 363
1450
+ 00:41:08,220 --> 00:41:24,320
1451
+ for ุงู„ kernel ุงู„ุชูŠู‡ุฐุง ู…ุนู†ุงุชู‡ ุงู† ุงู„ dimension ู„ู„
1452
+
1453
+ 364
1454
+ 00:41:24,320 --> 00:41:29,660
1455
+ kernel of T ูŠุณุงูˆูŠ ุฌุฏุงุด ูŠุง ุจู†ุงุช ุฎู„ุตู†ุง ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„
1456
+
1457
+ 365
1458
+ 00:41:30,630 --> 00:41:33,890
1459
+ ู‚ุงู„ ู„ูŠ ู‡ุชู„ ุงู„ kernel ูˆ ููŠ ู†ูุณ ุงู„ูˆู‚ุช ู‡ุชู„ ุงู„
1460
+
1461
+ 366
1462
+ 00:41:33,890 --> 00:41:40,770
1463
+ dimension ุชู…ุงู…ุŸ ุฅุฐุง ู‡ูŠุฌุจ ู†ุงู„ู‡ ุงู„ kernel ู…ู† ู‡ูˆ ูƒู„
1464
+
1465
+ 367
1466
+ 00:41:40,770 --> 00:41:45,050
1467
+ ุงู„ vectors ุงู„ู„ูŠ ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ุชุณุงูˆูŠ ุงู„ู…ุฑูƒุจุฉ
1468
+
1469
+ 368
1470
+ 00:41:45,050 --> 00:41:50,010
1471
+ ุงู„ุชุงู†ูŠุฉ ุชุณุงูˆูŠ ุงู„ู…ุฑูƒุจุฉ ุงู„ุชุงู„ุชุฉ ุจุฅุดุงุฑุฉ ู…ุฎุงู„ูุฉ ูŠุจู‚ู‰
1472
+
1473
+ 369
1474
+ 00:41:50,010 --> 00:41:55,010
1475
+ ู‡ุฐุง ูƒู„ ุงู„ kernel ุฅุฐุง ุจู‚ุฏุฑ ุฃุญุฏุฏ ู…ู†ู‡ู…ุง ูƒู… vector
1476
+
1477
+ 370
1478
+ 00:41:55,010 --> 00:42:03,880
1479
+ ู‡ุฏูˆู„ ูŠุง ุจู†ุงุชุŸ2 3 4 10 100 ุนุฏุฏ ู„ุง ู†ู‡ุงุฆูŠ ู„ุฃู† ุงู„ู€ a
1480
+
1481
+ 371
1482
+ 00:42:03,880 --> 00:42:11,100
1483
+ ู‡ูˆ ุนุฏุฏ ู„ุง ู†ู‡ุงุฆูŠ ู…ู† ุงู„ู€ vector ุชู…ุงู… ุฅุฐุง ุฌู„ุจู†ุง ุงู„ู€
1484
+
1485
+ 372
1486
+ 00:42:11,100 --> 00:42:14,940
1487
+ main ุฌู„ุจู†ุง ุงู„ basis ุงู„ู„ูŠ ู‡ูˆ ุจุงู„ุชุงู„ูŠ ุฌู„ุจู†ุง ุงู„
1488
+
1489
+ 373
1490
+ 00:42:14,940 --> 00:42:19,540
1491
+ dimension ู„ู€ main ู„ู„ kernel ุจุงู„ู…ุซู„ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌู„ุจ
1492
+
1493
+ 374
1494
+ 00:42:19,540 --> 00:42:23,540
1495
+ mainุงู„ู…ุทู„ุจ ุงู„ุซุงู†ูŠ ุงู„ู…ุทู„ุจ ุงู„ุซุงู†ูŠ ุจุงู„ domain ุงู„
1496
+
1497
+ 375
1498
+ 00:42:23,540 --> 00:42:29,280
1499
+ bases ู„ู„ range ุชู…ุงู…ุŸ ุฅุฐุง ุจุฑูˆุญ ุฃุฌูŠุจ ู„ู‡ ุงู„ bases ู„ู„
1500
+
1501
+ 376
1502
+ 00:42:29,280 --> 00:42:34,720
1503
+ range ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ element ู…ูˆุฌูˆุฏ ููŠ ุงู„ range ูˆู„ุง
1504
+
1505
+ 377
1506
+ 00:42:34,720 --> 00:42:41,320
1507
+ ู„ุงุŸ ุตุญ ูˆู„ุง ู„ุงุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ element ู…ูˆุฌูˆุฏ ููŠ ุงู„
1508
+
1509
+ 378
1510
+ 00:42:41,320 --> 00:42:47,720
1511
+ range ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง ู‡ุฐุง ู†ู…ุฑุง a ู†ู…ุฑุง b the b
1512
+
1513
+ 379
1514
+ 00:42:47,720 --> 00:42:48,980
1515
+ ุฃูˆ the element
1516
+
1517
+ 380
1518
+ 00:42:51,600 --> 00:43:00,500
1519
+ ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ X1 ุฒุงุฆุฏ X3 ูˆ X1 ุฒุงุฆุฏ X2
1520
+
1521
+ 381
1522
+ 00:43:00,500 --> 00:43:14,940
1523
+ ุฒุงุฆุฏ 2 X3 ูˆ 2 X1 ุฒุงุฆุฏ X2 ุฒุงุฆุฏ 3 X3 ู…ูˆุฌูˆุฏ ููŠ R of D
1524
+
1525
+ 382
1526
+ 00:43:14,940 --> 00:43:20,220
1527
+ ุทุจ ุจุฏู‰ ุฃุดูˆู ุงู„ element ู‡ุฐุง ุฅูŠุด ุจู‚ุฏุฑ ุฃุนู…ู„ ู…ู†ู‡
1528
+
1529
+ 383
1530
+ 00:43:33,550 --> 00:43:36,010
1531
+ ุชุนุงู„ู‰ ู†ุดูˆู ุงู„ element ู‡ุฐุง ุงู„ู„ู‰ ู…ูˆุฌูˆุฏ ูู‰ ุงู„ range
1532
+
1533
+ 384
1534
+ 00:43:36,010 --> 00:43:43,650
1535
+ ุดูˆ ุดูƒู„ู‡ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ู… ุงู„ element ู‡ุฐุง x1 ุฒุงุฆุฏ x3
1536
+
1537
+ 385
1538
+ 00:43:43,650 --> 00:43:57,150
1539
+ ุงู„ู„ู‰ ุจุนุฏู‡ x1 ุฒุงุฆุฏ x2 ุฒุงุฆุฏ 2x3 2x1 ุฒุงุฆุฏ x2 ุฒุงุฆุฏ 3x3
1540
+
1541
+ 386
1542
+ 00:43:57,150 --> 00:44:03,470
1543
+ ูˆูŠุณูˆู‰ู‡ุฐุง ุงู„ element ุฃุฎุฏุชู‡ ู…ู† ุงู„ R of T ูŠุนู†ูŠ ู…ู† ุงู„
1544
+
1545
+ 387
1546
+ 00:44:03,470 --> 00:44:07,490
1547
+ range ุทุจุนุง ู‡ูŠุด ู‚ุงู„ู„ูŠ ู…ุงุฌู„ู„ูŠุด ู‡ุงุชุฑูŠู† ู‚ุงู„ู„ูŠ ู‡ุงุชู„ูŠ
1548
+
1549
+ 388
1550
+ 00:44:07,490 --> 00:44:13,170
1551
+ basis ู„ู„ range ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ุทูŠุจ ู‡ุฐุง ูŠุง ุจู†ุงุช ุจู‚ุฏุฑ
1552
+
1553
+ 389
1554
+ 00:44:13,170 --> 00:44:20,770
1555
+ ุฃูƒุชุจู‡ ุนู„ู‰ ุดูƒู„ ู…ุฌู…ูˆุน ุชู„ุงุชุฉ vectorsุฃู‡ ุจู†ู‚ุฏุฑุŒ ูƒูŠู ูƒุงู†
1556
+
1557
+ 390
1558
+ 00:44:20,770 --> 00:44:31,360
1559
+ ุงู„ุชุงู„ูŠุŸ ุจุฏุงุฎู„ ู‡ู†ุง x1 ูˆู‡ู†ุง x1 ูˆู‡ู†ุง 2x1ู‡ูˆ ุงุฌูŠ ุงู‚ูˆู„
1560
+
1561
+ 391
1562
+ 00:44:31,360 --> 00:44:36,320
1563
+ ุฒุงุฏ ุงู„ู…ุตููˆู ุงู„ุชุงู†ูŠ ุงูƒุณ ุงุชู†ูŠู† ู…ุงุนู†ุฏูŠุด ูŠุจู‚ู‰ ุจุฒูŠุฑูˆ
1564
+
1565
+ 392
1566
+ 00:44:36,320 --> 00:44:43,140
1567
+ ูˆู‡ูŠ ุงูƒุณ ุงุชู†ูŠู† ูˆู‡ูŠ ุงูƒุณ ุงุชู†ูŠู† ุฒุงุฏ ุจุฏู‡ุงุฌูŠ ู„ู…ูŠู† ู„ู„ูŠ
1568
+
1569
+ 393
1570
+ 00:44:43,140 --> 00:44:50,220
1571
+ ุจุนุฏู‡ ุงูƒุณ ุชู„ุงุชุฉ ุงุชู†ูŠู† ุงูƒุณ ุชู„ุงุชุฉ ุชู„ุงุชุฉ ุงูƒุณ ุชู„ุงุชุฉ
1572
+
1573
+ 394
1574
+ 00:44:50,220 --> 00:44:57,420
1575
+ ู…ุธุจูˆุท ู‡ูŠูƒุŸุทูŠุจ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูˆ ุงุฎุฏุช x ูˆุงุญุฏ
1576
+
1577
+ 395
1578
+ 00:44:57,420 --> 00:45:04,220
1579
+ ุจุตูŠุฑ ูˆุงุญุฏ ูˆุงุญุฏ ุงุชู†ูŠู† ุฒุงุฆุฏ zero ูˆุงุญุฏ ูˆุงุญุฏ ูˆ ู‡ู†ุง x
1580
+
1581
+ 396
1582
+ 00:45:04,220 --> 00:45:10,660
1583
+ ุงุชู†ูŠู† ุฒุงุฆุฏ x ุงุชู†ูŠู† ูˆ ุฌูŠู†ุง ุงู„ู„ูŠ ุจุนุฏู‡ ุฒุงุฆุฏ x ุชู„ุงุชุฉ
1584
+
1585
+ 397
1586
+ 00:45:10,660 --> 00:45:17,230
1587
+ ููŠ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงูŠุจู‚ู‰ ุงู„
1588
+
1589
+ 398
1590
+ 00:45:17,230 --> 00:45:21,070
1591
+ element ุงู„ู„ู‰ ู…ูˆุฌูˆุฏ ูู‰ ุงู„ range ุญุทูŠุชู‡ ุนู„ู‰ ุตูŠุบุฉ
1592
+
1593
+ 399
1594
+ 00:45:21,070 --> 00:45:27,950
1595
+ linear combination ู…ู† ู…ู† ุงู„ vectors ุงู„ุชู„ุงุชุฉ ุงู„ู„ู‰
1596
+
1597
+ 400
1598
+ 00:45:27,950 --> 00:45:32,790
1599
+ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุฃูŠ element ูู‰ ุงู„ range ูƒุชุจุชู‡ ุนู„ู‰ ุตูŠุบุฉ
1600
+
1601
+ 401
1602
+ 00:45:32,790 --> 00:45:36,970
1603
+ linear combination ู…ู† three vectors x1 ูู‰ ุงู„
1604
+
1605
+ 402
1606
+ 00:45:36,970 --> 00:45:41,010
1607
+ vector ุฒุงุฏ x2 ูู‰ ุงู„ vector ุฒุงุฏ x3 ูู‰ ุงู„ vector
1608
+
1609
+ 403
1610
+ 00:45:41,010 --> 00:45:47,950
1611
+ ุงู„ุชุงู„ู‰ู„ูˆ ุทู„ุนูˆุง ู‡ุฏูˆู„ linearly independent ุจูŠุตูŠุฑ ู‡ู…
1612
+
1613
+ 404
1614
+ 00:45:47,950 --> 00:45:53,610
1615
+ ุงู„ bases ุทุจ ู„ูˆ ุทู„ุนูˆุง linearly dependent ุจุฏูƒ ุชุฏูˆุฑ
1616
+
1617
+ 405
1618
+ 00:45:53,610 --> 00:46:00,010
1619
+ ุนู„ู‰ ุงู„ bases ุชุนุงู„ูˆุง ู†ุทู„ุน ู‡ูƒ ู†ุฏุฌุฌ ุงู„ู†ุธุฑ ู„ูˆ ุฌู…ุนุช ุงู„
1620
+
1621
+ 406
1622
+ 00:46:00,010 --> 00:46:07,150
1623
+ two vectors ู‡ุฏูˆู„ ู‚ุฏุด ุจูŠุนุทูŠู†ูŠ ุงูŠู‡ ุงู„ุชุงู„ุช ุจูŠุนุทูŠู†ูŠ
1624
+
1625
+ 407
1626
+ 00:46:07,150 --> 00:46:13,280
1627
+ ุงู„ุชุงู„ุชูˆ 1 ุฒูŠ 0 ุจ1 ูˆ 1 ุจ1 ุจ2 ุจ2 ุจ1 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3
1628
+
1629
+ 408
1630
+ 00:46:13,280 --> 00:46:13,760
1631
+ ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3
1632
+
1633
+ 409
1634
+ 00:46:13,760 --> 00:46:14,000
1635
+ ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3
1636
+
1637
+ 410
1638
+ 00:46:14,000 --> 00:46:16,760
1639
+ ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3
1640
+
1641
+ 411
1642
+ 00:46:16,760 --> 00:46:17,760
1643
+ ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3
1644
+
1645
+ 412
1646
+ 00:46:17,760 --> 00:46:17,760
1647
+ ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3
1648
+
1649
+ 413
1650
+ 00:46:17,760 --> 00:46:26,640
1651
+ ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3 ุจ3
1652
+
1653
+ 414
1654
+ 00:46:26,640 --> 00:46:33,340
1655
+ ุจูˆุจุงู„ุชุงู„๏ฟฝ๏ฟฝ ุงู„ุงุชู†ูŠู† ู‡ุฐูˆู„ ุจูŠูˆุถูˆู„ ุจูŠูˆุถูˆู„ูŠ ุฌู…ูŠุน ุฃู†ุงุตุฑ
1656
+
1657
+ 415
1658
+ 00:46:33,340 --> 00:46:37,740
1659
+ ุงู„ vector of space ุฃูˆ ุงู„ subspace R of T ุทุจ ูˆ
1660
+
1661
+ 416
1662
+ 00:46:37,740 --> 00:46:40,480
1663
+ ุงู„ุชู„ุช ู…ุด ุฌุฒุก ูˆ ุงู„ุชู„ุช ู…ุง ู‡ูˆ linear combination ู…ู†
1664
+
1665
+ 417
1666
+ 00:46:40,480 --> 00:46:44,100
1667
+ ุงู„ุงุชู†ูŠู† ุตุญูŠุญ ูˆู„ุง ูŠุนู†ูŠ ุงูŠู‡ ุจู‚ุฏุฑ ุงุฎู„ูŠ ู‡ุฐุง ููŠ ุดุฌุฉ ูˆ
1668
+
1669
+ 418
1670
+ 00:46:44,100 --> 00:46:46,660
1671
+ ุงุฏู‰ ู‡ุฐูˆู„ ุนู„ู‰ ุดุฌุฉ ุชุงู†ูŠุฉ ุณุงูˆุฉ ุฒูŠุฑุฉ ูˆ ุงุฎู„ูŠู‡ุง ุณุงู„ุจ
1672
+
1673
+ 419
1674
+ 00:46:46,660 --> 00:46:49,240
1675
+ ุณุงู„ุจ ูˆ ุงู†ุช ุงูŠู‡ ุฑุฃูŠ ู…ู†ู‡ู… ูŠุจู‚ู‰ ุฏู‡ ุงุณู… linearly
1676
+
1677
+ 420
1678
+ 00:46:49,240 --> 00:46:55,200
1679
+ dependent ู„ูƒู† ุงุชู†ูŠู† ู‡ุฐูˆู„ linearly independent ูŠุจู‚ู‰
1680
+
1681
+ 421
1682
+ 00:46:55,200 --> 00:47:04,320
1683
+ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุงุงู„ุงู† ุงู„ูˆุงุญุฏ ูˆุงู„ูˆุงุญุฏ ูˆุงุซู†ูŠู† ุฒุงุฆุฏ ุฒูŠุฑูˆ
1684
+
1685
+ 422
1686
+ 00:47:04,320 --> 00:47:11,940
1687
+ ูˆุงุญุฏ ูˆุงุญุฏ ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุงุฐุง ู„ุง ูŠู…ูƒู†
1688
+
1689
+ 423
1690
+ 00:47:11,940 --> 00:47:17,460
1691
+ ุงู‚ูˆู„ ุงู† ุงู„ุชู„ุงุชุฉ ุฏูˆู„ linearly independent ู„ูƒู† ูŠุง
1692
+
1693
+ 424
1694
+ 00:47:17,460 --> 00:47:25,480
1695
+ ุจู†ุงุช ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ู†ุง the vectorsv1 ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ูŠุณุงูˆูŠ
1696
+
1697
+ 425
1698
+ 00:47:25,480 --> 00:47:33,560
1699
+ 11e2 ูˆv2 ุจุฏู‡ ูŠุณุงูˆูŠ 011r
1700
+
1701
+ 426
1702
+ 00:47:33,560 --> 00:47:44,700
1703
+ ู…ุงู„ู‡ linearly independent ุงู„ุณุจุจ because anyone of
1704
+
1705
+ 427
1706
+ 00:47:44,700 --> 00:47:59,140
1707
+ v1 and v2 is notmultiple of the other ูˆู„ุง ูˆุงุญุฏ
1708
+
1709
+ 428
1710
+ 00:47:59,140 --> 00:48:04,660
1711
+ ููŠู‡ู… ู…ุถุงุนูุงุช ุงู„ุชุงู†ูŠุฉ ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุฅูŠุด ุจูŠุดูƒู„ูˆู„ูŠุŸ
1712
+
1713
+ 429
1714
+ 00:48:04,660 --> 00:48:09,660
1715
+ ุจุงู„ู†ุณุจุฉ ู„ R2 ุจูŠุจู‚ู‰ ู‡ู†ุง ุณุงุนุฉ
1716
+
1717
+ 430
1718
+ 00:48:17,300 --> 00:48:34,460
1719
+ V1 V2 V3
1720
+
1721
+ 431
1722
+ 00:48:34,460 --> 00:48:34,620
1723
+ V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V12 V13 V12 V12
1724
+
1725
+ 432
1726
+ 00:48:34,620 --> 00:48:34,620
1727
+ V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12
1728
+
1729
+ 433
1730
+ 00:48:34,620 --> 00:48:35,020
1731
+ V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12
1732
+
1733
+ 434
1734
+ 00:48:35,020 --> 00:48:35,080
1735
+ V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12
1736
+
1737
+ 435
1738
+ 00:48:35,080 --> 00:48:35,180
1739
+ V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12
1740
+
1741
+ 436
1742
+ 00:48:35,180 --> 00:48:35,180
1743
+ V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12
1744
+
1745
+ 437
1746
+ 00:48:35,180 --> 00:48:35,180
1747
+ V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12
1748
+
1749
+ 438
1750
+ 00:48:35,180 --> 00:48:35,180
1751
+ V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V12
1752
+
1753
+ 439
1754
+ 00:48:35,180 --> 00:48:39,590
1755
+ V12 V12 V12 V12 V12 V12 V12 V12 V12 V12 V122 ุนุฏุฏ
1756
+
1757
+ 440
1758
+ 00:48:39,590 --> 00:48:44,570
1759
+ ุงู„ุนู†ุงุตุฑ ููŠ ุงู„ู€ Basel ุฅุฐุง ุฎู„ุตู†ุง ู…ู† ุงู„ู…ุทู„ูˆุจ ุงู„ุซุงู†ูŠ
1760
+
1761
+ 441
1762
+ 00:48:44,570 --> 00:48:50,270
1763
+ ู‚ุงู„ ู„ูŠ ู‡ุงุชู„ูŠ Basel ู„ู„ R of T of 2 of T ุฌูŠุจู†ุงู„ู‡ ูˆ
1764
+
1765
+ 442
1766
+ 00:48:50,270 --> 00:48:53,130
1767
+ ู‚ุงู„ู„ูŠ ู‡ุงุชู„ูŠ ุงู„ dimension ุฌูŠุจู†ุงู„ู‡ ุงู„ dimension
1768
+
1769
+ 443
1770
+ 00:48:53,130 --> 00:48:58,810
1771
+ ู‚ุงู„ู„ูŠ ุจุนุฏูŠู† ู‡ุงุชู„ูŠ ุตูˆุฑุฉ ุงู„ุนู†ุตุฑ T of 1 ูˆ 2 ูˆ 3 ุฅุฐุง
1772
+
1773
+ 444
1774
+ 00:48:58,810 --> 00:49:02,850
1775
+ ุจูŠุฏุงุฌูŠ ู„ู„ู…ุทู„ูˆุจ ุงู„ุชุงู„ุฏ
1776
+
1777
+ 445
1778
+ 00:49:15,200 --> 00:49:21,440
1779
+ ุฅุฐุง ุงู„ู…ุทู„ูˆุจ ุงู„ุชุงู„ุช ู†ู…ุฑู‰ ุงู„ู€C ุจุฏู†ุง T of ูˆุงุญุฏ ูˆุงุชู†ูŠู†
1780
+
1781
+ 446
1782
+ 00:49:21,440 --> 00:49:29,300
1783
+ ูˆุชู„ุงุชุฉ ู…ู† ูˆูŠู† ุจุฏู‡ ุฃุฌูŠุจ ู„ู‡ ู‡ุฐุงุŸ
1784
+
1785
+ 447
1786
+ 00:49:29,300 --> 00:49:38,550
1787
+ ู…ู† ูˆูŠู† ุจุฏู‡ ุฃุฌูŠุจ ู„ู‡ุŸ ูˆูŠู† ู‡ูŠุŸ ู…ุด ู‡ุฐู‡ุŸู…ุด T of element
1788
+
1789
+ 448
1790
+ 00:49:38,550 --> 00:49:42,250
1791
+ ูŠุณุงูˆูŠ ุฃูŠ ุนู†ุตุฑ ููŠ ุงู„ range ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
1792
+
1793
+ 449
1794
+ 00:49:42,250 --> 00:49:47,550
1795
+ ูŠุจู‚ู‰ ุฏู‡ ูŠู‚ูˆู„ X1 ุฒูŠ X3 ูƒุฐุง ูŠุจู‚ู‰ ุจู†ุงุก ุงู† ุนู„ูŠู‡ ู‡ุฐุง
1796
+
1797
+ 450
1798
+ 00:49:47,550 --> 00:49:54,210
1799
+ ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† X1 ุฒูŠ X3 ูŠุจู‚ู‰ 1 ุฒูŠ 3
1800
+
1801
+ 451
1802
+ 00:49:56,030 --> 00:50:05,930
1803
+ ุงู„ุนู†ุตุฑ ุงู„ุชุงู†ูŠ X1 ุฒูŠ X2 ุฒูŠ 2X3 ูŠุจู‚ู‰ 1 ุฒูŠ 2 ุฒูŠ 3
1804
+
1805
+ 452
1806
+ 00:50:11,050 --> 00:50:21,370
1807
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุนู†ุตุฑ ุงู„ุชุงู„ุช 2x1 ูŠุจู‚ู‰ 2 ููŠ 1 ุฒุงุฆุฏ 2 ุฒุงุฆุฏ
1808
+
1809
+ 453
1810
+ 00:50:21,370 --> 00:50:28,010
1811
+ 3 ููŠ 3 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุชู…ุงู… ูˆุงุญุฏ ุฒูŠ ุงู„ุชู„ุงุชุฉ
1812
+
1813
+ 454
1814
+ 00:50:28,010 --> 00:50:33,010
1815
+ ูƒุฏุงุด ุงุฑุจุนุฉ ู‡ู†ุง ุงุชู†ูŠู† ููŠ ุงู„ุชู„ุงุชุฉ ุจุณุชุฉ ูˆ ุชู„ุงุชุฉ ุชุณุนุฉ
1816
+
1817
+ 455
1818
+ 00:50:33,010 --> 00:50:38,850
1819
+ ุชุณุนุฉ ูˆ ุงุชู†ูŠู† ุงุญุฏุงุด ูˆ ุงุชู†ูŠู† ุชู„ุชุงุด ุงุฐุง ุตูˆุฑุฉ ุงู„ุนู†ุตุฑ
1820
+
1821
+ 456
1822
+ 00:50:38,850 --> 00:50:44,370
1823
+ ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ู‡ูŠ ุงุฑุจุนุฉ ูˆ ุชุณุนุฉ ูˆ ุชู„ุชุงุด ุงุธู†
1824
+
1825
+ 457
1826
+ 00:50:44,370 --> 00:50:48,210
1827
+ ูˆุงุถุญ ุงุฏู‰ ูƒูŠู ุฌูŠุจู†ุงู‡ุง ุฌูŠุจู†ุงู‡ุง ู…ู† ุฎู„ุงู„ ุงู„ุชุนุฑูŠู ู„ู…ุง
1828
+
1829
+ 458
1830
+ 00:50:48,210 --> 00:50:51,430
1831
+ ู‚ู„ู†ุง T of X ูˆุงุญุฏ ูˆ X ุงุชู†ูŠู† ู„ู…ุง ุถุฑุจู†ุง ุงู„ู…ุตููˆู T
1832
+
1833
+ 459
1834
+ 00:50:51,430 --> 00:50:56,330
1835
+ ุงู„ุงุชู†ูŠู† ู‡ุงุฏูˆู„ ุทู„ุนุช ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ู‰ ู‚ุฏุงู…ู†ุง ู‡ุฐุงุทูŠุจ
1836
+
1837
+ 460
1838
+ 00:50:56,330 --> 00:51:00,550
1839
+ ุจุณุฃู„ ูƒู…ุงู† ุณุคุงู„ ุจู‚ูˆู„ ู„ูŠ ู‡ู„ ุงู„ุนู†ุตุฑ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„
1840
+
1841
+ 461
1842
+ 00:51:00,550 --> 00:51:05,450
1843
+ range ุฃู… ู„ุงุŸ ุจู‚ูˆู„ ู„ู‡ ุงู„ู„ู‡ ุฃุนู„ู… ุชุนุงู„ู‰ ู†ุดูˆู ูŠุนู†ูŠ ู‡ู„
1844
+
1845
+ 462
1846
+ 00:51:05,450 --> 00:51:09,970
1847
+ ุงู„ุนู†ุตุฑ ุงุชู†ูŠู† ูˆ ุฎู…ุณุฉ ูˆ ุณุจุนุฉ ู…ูˆุฌูˆุฏ ููŠ ุงู„ range ุชุจุน
1848
+
1849
+ 463
1850
+ 00:51:09,970 --> 00:51:16,130
1851
+ ุงู„ T ุจุงุฌูŠ ุจุณุฃู„ ู…ูŠู† ู‡ูˆ ุงู„ business ุชุจุน ุงู„ TุŸุฅุฐุง
1852
+
1853
+ 464
1854
+ 00:51:16,130 --> 00:51:20,610
1855
+ ู‚ุฏุฑู†ุง ู†ูƒุชุจ ุงู„ุนู†ุตุฑ ู‡ุฐุง ุนู„ู‰ ุตูˆุฑุฉ linear combination
1856
+
1857
+ 465
1858
+ 00:51:20,610 --> 00:51:25,050
1859
+ ู…ู† ุงู„ุงุชู†ูŠู† ู‡ุฐูˆู„ ุจุตูŠุฑ ู…ูˆุฌูˆุฏ ููŠ ุงู„ range ุตุญ ูˆู„ุง ู„ุฃ
1860
+
1861
+ 466
1862
+ 00:51:25,050 --> 00:51:30,580
1863
+ ูˆุฅุฐุง ู…ุงู‚ุฏุฑู†ุงุด ูŠุจู‚ู‰ ู…ูƒูˆู† ุจุฑุง ุงู„ rangeุทุจุนุง ุฅุฐุง ุจุฏุงุฌูŠ
1864
+
1865
+ 467
1866
+ 00:51:30,580 --> 00:51:35,540
1867
+ ู„ู…ู†ุŸ ู„ู†ู…ุฑุฏูŠ ุจุฏุงุฌูŠ ุฃุฎุฏ ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† ูˆุฎู…ุณุฉ
1868
+
1869
+ 468
1870
+ 00:51:35,540 --> 00:51:41,680
1871
+ ูˆุณุจุนุฉ ูŠุจู‚ู‰ ุงุชู†ูŠู† ูˆุฎู…ุณุฉ ูˆุณุจุนุฉ ุจู‚ุฏุฑ ุงูƒุชุจู‡ ุนู„ู‰ ุดูƒู„
1872
+
1873
+ 469
1874
+ 00:51:41,680 --> 00:51:48,080
1875
+ ู…ุตูˆู ุงุชู†ูŠู† ุฎู…ุณุฉ ุณุจุนุฉ ู…ุด ู‡ูŠูƒ ู‚ูˆู„ู†ุง ู‡ุฐุง if and ู‚ูˆู„ูŠ
1876
+
1877
+ 470
1878
+ 00:51:48,080 --> 00:51:55,390
1879
+ if ูˆ ุจู‚ุฏุฑ ุงูƒุชุจู‡ ููˆู‚ูŠ ูƒู…ุงู† ุทุจ ุฅูŠุด ุฑุฃูŠูƒุŸุฃู†ุง ุจุฏูŠ ุฃูƒุชุจ
1880
+
1881
+ 471
1882
+ 00:51:55,390 --> 00:51:59,970
1883
+ ุนู„ูŠู‡ ุดูƒู„ู‹ุง ูŠุนู†ูŠ ุจุฏูŠ ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ุฌุฏ ุงู„ุฑู‚ู… ุงู„ุซุงู†ูŠ
1884
+
1885
+ 472
1886
+ 00:51:59,970 --> 00:52:06,010
1887
+ ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ุนู†ุฏูŠ ู…ู‚ุฏุงุด ุงุชู†ูŠู† ูˆุงู„ุฑู‚ู… ุงู„ุซุงู†ูŠ ุจุฏูŠ
1888
+
1889
+ 473
1890
+ 00:52:06,010 --> 00:52:13,250
1891
+ ูŠูƒูˆู† ุฒูŠู‡ ุงุชู†ูŠู† ูˆุงู„ุฑู‚ู… ุงู„ุชุงู„ุช ุจุงุชู†ูŠู† ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ
1892
+
1893
+ 474
1894
+ 00:52:13,250 --> 00:52:16,170
1895
+ ุฃุฑุจุนุฉ ุฒุงุฏ
1896
+
1897
+ 475
1898
+ 00:52:17,970 --> 00:52:22,250
1899
+ ุฃูŠุด ุจูŠุธู„ ุนู†ุฏูŠุŸ ุจุฏูŠ ุฃูƒุชุจู‡ ุงู„ุญูŠู† ู…ู† ุงุชู†ูŠู† ุฃุฎุฏุช ุงุชู†ูŠู†
1900
+
1901
+ 476
1902
+ 00:52:22,250 --> 00:52:26,910
1903
+ ุจูŠุธู„ ูƒุฏู‡ุŸ Zero ู…ู† ุงู„ุฎู…ุณุฉ ุฃุฎุฏุช ุงุชู†ูŠู† ุจูŠุธู„ ูƒุฏู‡ุŸ
1904
+
1905
+ 477
1906
+ 00:52:26,910 --> 00:52:32,170
1907
+ ุชู„ุงุชุฉ ู…ู† ุงู„ุณุจุนุฉ ุฃุฎุฏุช ุฃุฑุจุนุฉ ุจูŠุธู„ ูƒุฏู‡ุŸ ุชู„ุงุชุฉ ูŠุจู‚ู‰
1908
+
1909
+ 478
1910
+ 00:52:32,170 --> 00:52:36,670
1911
+ ู‡ุฐุง ุงู„ูƒู„ุงู… .. ุจู‚ุฏุฑ ุฃุฎุฏูŠ ุงุชู†ูŠู† ุนุงู…ู„ ู…ุดุชุฑูƒ ุฃูŠุด ุจูŠุธู„
1912
+
1913
+ 479
1914
+ 00:52:36,670 --> 00:52:41,890
1915
+ ุนู†ุฏูŠุŸ ูˆุงุญุฏ ูˆุงุญุฏ ุงุชู†ูŠู† ุจู‚ุฏุฑ ุฃุฎุฏ ุชู„ุงุชุฉ ุนุงู…ู„ ู…ุดุชุฑูƒ
1916
+
1917
+ 480
1918
+ 00:52:41,890 --> 00:52:46,910
1919
+ Zero ูˆุงุญุฏ ูˆุงุญุฏ linear combination ู…ู† ุงู„ุงุชู†ูŠู†ุŸูŠุจู‚ู‰
1920
+
1921
+ 481
1922
+ 00:52:46,910 --> 00:52:50,950
1923
+ ู…ูˆุฌูˆุฏ ููŠ ุงู„ range ูˆู„ุง ู„ุง ู„ุฅู†ู‡ ูŠุจู‚ู‰ ูƒุชุจุช ู‡ุฐุง ุงู„
1924
+
1925
+ 482
1926
+ 00:52:50,950 --> 00:52:56,390
1927
+ element ุจูˆุงุณุท ุนู†ุงุตุฑ ุงู„ุจุฐู„ ู„ูˆ ู…ุง ุฌุฏุฑุชุด ูŠุจู‚ู‰ ุจู†ู‚ูˆู„
1928
+
1929
+ 483
1930
+ 00:52:56,390 --> 00:53:00,930
1931
+ ู…ุด ู…ูˆุฌูˆุฏ ุทุจุนุง ู‡ุฐู‡ ุทุฑูŠู‚ุฉ ุณู‡ู„ุฉ ุฌุฏุง ุจู…ุฌุฑุฏ ุงู„ู†ุธุฑ ู„ูƒู†
1932
+
1933
+ 484
1934
+ 00:53:00,930 --> 00:53:04,590
1935
+ ุงู„ุฃุตู„ ุงู† ุงู‚ูˆู„ ุงุชู†ูŠู† ูˆุฎู…ุณุฉ ูˆุณุจุนุฉ ูŠุณุงูˆูŠ ูŠูƒูˆู† ุงุตู„ุง ููŠ
1936
+
1937
+ 485
1938
+ 00:53:04,590 --> 00:53:07,470
1939
+ ุงู„ุฃูˆู„ ูˆูŠูƒูˆู† ุงุตู„ุง ููŠ ุงู„ุชุงู†ูŠ ูˆุงุฑูˆุญ ุงุญู„ ุงู„ non
1940
+
1941
+ 486
1942
+ 00:53:07,470 --> 00:53:15,710
1943
+ homogeneous system ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ู‡ุฐุง ูŠุจู‚ู‰
1944
+
1945
+ 487
1946
+ 00:53:16,490 --> 00:53:26,090
1947
+ ุฅุชู†ูŠู† ูˆุฎู…ุณุฉ ูˆุณุจุนุฉ is a linear combination of the
1948
+
1949
+ 488
1950
+ 00:53:26,090 --> 00:53:41,660
1951
+ elements of the basesof R of T Thus ูˆ ู‡ูƒุฐุง ุงุชู†ูŠู†
1952
+
1953
+ 489
1954
+ 00:53:41,660 --> 00:53:53,540
1955
+ ุฎู…ุณุฉ ุณุจุนุฉ ูˆ ุนู†ุตุฑ ู…ูˆุฌูˆุฏ ููŠ R of T ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุญุฏ
1956
+
1957
+ 490
1958
+ 00:53:53,540 --> 00:53:58,980
1959
+ ููŠูƒู… ุจุชุญุจ ุชุณุฃู„ ุงูŠ ุณุคุงู„ ู‡ู†ุง ูŠุง ู…ุงู†ุงู„ุŸ ุงูŠ ุณุคุงู„ุŸุทุจ
1960
+
1961
+ 491
1962
+ 00:53:58,980 --> 00:54:03,480
1963
+ ู„ุงุฒู„ู†ุง ููŠ ู†ูุณ ุงู„ section ูˆ ู‡ู†ุงูƒ ุจุฏู„ ุงู„ู…ุซุงู„ ุงุชู†ูŠู†
1964
+
1965
+ 492
1966
+ 00:54:03,480 --> 00:54:07,880
1967
+ ู„ุณู‡ ูƒู…ุงู† ู„ุฅู† ุงู„ู…ูˆุถูˆุน ู‡ุฐุง ู‚ู„ุชู„ูƒูˆุง ู‡ุฐุง ุงู„ section
1968
+
1969
+ 493
1970
+ 00:54:07,880 --> 00:54:13,000
1971
+ ุจุงู„ุฐุงุช very important ูˆ ู„ุงุฒู… ูŠูŠุฌูŠ ุนู„ูŠู‡ ุณุคุงู„ ููŠ
1972
+
1973
+ 494
1974
+ 00:54:13,000 --> 00:54:17,720
1975
+ ุงู…ุชุญุงู† ุฃุนู…ุงู„ ุงู„ูุตู„ ูˆ ูƒุฐู„ูƒ ุงู„ู†ู‡ุงูŠุฉ ูˆุถุน ุทุจูŠุนูŠ ู„ุงุฒู…
1976
+
1977
+ 495
1978
+ 00:54:17,720 --> 00:54:19,620
1979
+ ูŠูƒูˆู† ู‡ุฐุง ูŠุนุทูŠูƒูˆุง ุงู„ุนููˆ
1980
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/E3_JyQeSPp8_postprocess.srt ADDED
@@ -0,0 +1,1836 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,740 --> 00:00:25,580
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุนูˆุฏุง ุนู„ู‰ ุจุฏุฃ ุจุฌูŠู†ุง ู†ุชุญุฏุซ
4
+
5
+ 2
6
+ 00:00:25,580 --> 00:00:29,820
7
+ ุงู„ู…ุฑุฉ ุงู„ู„ู‰ ูุงุชุช ุนู† ุงู„ diagonalization ู„ matrix
8
+
9
+ 3
10
+ 00:00:29,820 --> 00:00:34,300
11
+ ูˆุงุฎุฏู†ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฃู…ุซู„ุฉ ุจุฏู„ ุงู„ู…ุซุงู„ ุชู„ุงุชุฉ ุจุฌูŠู†ุง
12
+
13
+ 4
14
+ 00:00:34,300 --> 00:00:38,400
15
+ ู†ุฌูŠุจ ุงู„ eigen values ูˆ ุงู„ eigen vectors ูˆ ู†ุซุจุช ู‡ู„
16
+
17
+ 5
18
+ 00:00:38,400 --> 00:00:42,040
19
+ ุงู„ู…ุตููˆูุฉ ุงู„ู„ู‰ ุนู†ุฏู‰ diagonalizable ูˆู„ุง ู„ุฃ ุทุจุนุง
20
+
21
+ 6
22
+ 00:00:42,040 --> 00:00:46,280
23
+ ุนุฑูู†ุง ุงู†ู‡ ู…ุนู†ุงู‡ ุงูŠู‡ similar to B ู…ุนู†ุงุชู‡ ุงู†ู‡ ููŠ
24
+
25
+ 7
26
+ 00:00:46,280 --> 00:00:51,970
27
+ diagonalization ู„ู…ู† ู„ู„ู…ุตููˆูุฉ Aุงู„ู…ุซุงู„ ุงู„ุฑุงุจุน ุจูŠู‚ูˆู„
28
+
29
+ 8
30
+ 00:00:51,970 --> 00:00:56,110
31
+ ุงูุชุฑุถ ุงู„ู…ุตููˆูุฉ a ู‡ูŠ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐุง
32
+
33
+ 9
34
+ 00:00:56,110 --> 00:01:00,090
35
+ ุจุทุงู„ุจ ุชู„ุช ู…ุทุงู„ูŠุจ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ู‚ุงู„ ู„ูŠ ู‡ุงุชู„ ุงู„
36
+
37
+ 10
38
+ 00:01:00,090 --> 00:01:05,850
39
+ eigenvectors ุดุบู„ุฉ ุฑูˆุชูŠู†ูŠุฉ ูŠุง ู…ุง ุฃูˆุฌุฏู†ุงู‡ุง ููŠ
40
+
41
+ 11
42
+ 00:01:05,850 --> 00:01:09,370
43
+ ุงู„ุณูŠูƒุดู† ู‡ุฐุง ุฃูˆ ุงู„ุณูŠูƒุดู† ุงู„ู„ูŠ ุฌุงุจู„ู‡ ุฃุฑุจุนุฉ ูˆุงุญุฏ
44
+
45
+ 12
46
+ 00:01:09,370 --> 00:01:13,230
47
+ ุงู„ู…ุทู„ูˆุจ ุงู„ุชุงู†ูŠ ุจูŠู‚ูˆู„ find a the dimension of the
48
+
49
+ 13
50
+ 00:01:13,230 --> 00:01:18,070
51
+ eigenvector space ูˆุจุฑุถู‡ ุฃูˆุฌุฏู†ุงู‡ุง ู‚ุจู„ ุฐู„ูƒุงู„ุฃู…ุฑ
52
+
53
+ 14
54
+ 00:01:18,070 --> 00:01:21,230
55
+ ุงู„ุซุงู„ุซ ุจูŠู‚ูˆู„ ู„ูŠ ู‡ู„ ุงู„ matrix is similar to a
56
+
57
+ 15
58
+ 00:01:21,230 --> 00:01:25,390
59
+ diagonal matrix ูˆู„ุง ู„ุฃุŸ ูŠุนู†ูŠ ุงูŠุด ู‚ุตุฏ ูŠู‚ูˆู„ ู„ูŠู‡ุŸ ู‚ุงู„
60
+
61
+ 16
62
+ 00:01:25,390 --> 00:01:29,750
63
+ ู„ูŠ ู‡ู„ ุงู„ู…ุญุตูˆูุฉ is diagonalizable ูˆู„ุง ู„ุฃุŸ ู‡ูŠ ุงู„ุณุคุงู„
64
+
65
+ 17
66
+ 00:01:29,750 --> 00:01:35,710
67
+ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ู‚ุงู„ ู„ูŠ ุดูˆู ู„ูŠ ู‡ู„ ุงู„ a is similar to a
68
+
69
+ 18
70
+ 00:01:35,710 --> 00:01:39,430
71
+ diagonal matrix ูŠุนู†ูŠ ูƒุงู†ูˆุง ุจูŠุณุฃู„ ู„ูŠู‡ ู‡ู„ ุงู„ู…ุญุตูˆูุฉ
72
+
73
+ 19
74
+ 00:01:39,430 --> 00:01:44,620
75
+ is diagonalizable ูˆู„ุง ู„ุฃุŸุจู‚ูˆู„ ูŠูุณู‡ ุฅู† ูƒุงู† ุงู„ุฃู…ุฑ
76
+
77
+ 20
78
+ 00:01:44,620 --> 00:01:49,760
79
+ ูƒุฐู„ูƒ find a matrix K ู…ู† ุงู„ matrix K and diagonal
80
+
81
+ 21
82
+ 00:01:49,760 --> 00:01:54,040
83
+ ุงู„ matrix D ุจุญูŠุซ ุฃู† ุงู„ K inverse A K ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู†ุŸ
84
+
85
+ 22
86
+ 00:01:54,040 --> 00:01:58,340
87
+ ุจุฏู‡ ูŠุณุงูˆูŠ ุฏูŠ ู…ุด ู‡ุชุนุฑูŠู ุงู„ similar ูŠุจู‚ู‰ similar
88
+
89
+ 23
90
+ 00:01:58,340 --> 00:02:01,380
91
+ ูˆุงู„ู„ู‡ ุฏูŠagonalizeู‡ู… ุงู„ุฅุชู†ูŠู† are the same ู†ูุณ
92
+
93
+ 24
94
+ 00:02:01,380 --> 00:02:05,660
95
+ ุงู„ู…ูู‡ูˆู… ุจุงู„ุถุจุท ุชู…ุงู…ุงุทูŠุจ ู†ุฌูŠ ู†ุญู„ ู‡ุฐุง ุงู„ุณุคุงู„ ูŠุจู‚ู‰
96
+
97
+ 25
98
+ 00:02:05,660 --> 00:02:09,940
99
+ ุฃูˆู„ ู†ู‚ุทุฉ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฌูŠุจ main ุงู„ eigen ุงู„ eigen
100
+
101
+ 26
102
+ 00:02:09,940 --> 00:02:13,740
103
+ values ู„ู…ูŠู† ู„ู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงูŠู‡ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุจุฏุฃ
104
+
105
+ 27
106
+ 00:02:13,740 --> 00:02:19,680
107
+ ุจู…ูŠู† ุจุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุณุงุณูŠุฉ ุงู„ู„ูŠ ู‡ูŠ lambda I ู†ุงู‚ุต A
108
+
109
+ 28
110
+ 00:02:19,680 --> 00:02:27,580
111
+ ุชุณุงูˆูŠ I lambda 00 lambda 00 lambda ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
112
+
113
+ 29
114
+ 00:02:27,580 --> 00:02:34,270
115
+ ุนู†ุฏู†ุง ู‡ุฐุง ุชู…ุงู…ุŸููŠ ู†ุงู‚ุต ุงู„ู…ุตููˆูุฉ ุงูŠู‡ ุจู†ุฒู„ ุงู„ู…ุตููˆูุฉ
116
+
117
+ 30
118
+ 00:02:34,270 --> 00:02:41,370
119
+ ูƒู…ุง ู‡ูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุณุงู„ุจ ูˆุงุญุฏ ุงุฑุจุนุฉ ุชู„ุงุชุฉ ูˆุงุญุฏ
120
+
121
+ 31
122
+ 00:02:41,370 --> 00:02:48,050
123
+ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู…
124
+
125
+ 32
126
+ 00:02:48,050 --> 00:02:54,910
127
+ ุจุฏู‡ ูŠุณุงูˆูŠ ู„ู†ุฏู† ู†ุงู‚ุต ูˆุงุญุฏู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู†
128
+
129
+ 33
130
+ 00:02:54,910 --> 00:03:03,070
131
+ ู†ุงู‚ุต ุชู„ุงุชุฉ ู‡ู†ุง ูˆุงุญุฏ ู‡ู†ุง ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุฑุจุน ูˆู‡ู†ุง ู†ุงู‚ุต
132
+
133
+ 34
134
+ 00:03:03,070 --> 00:03:10,790
135
+ ุชู„ุงุชุฉ ูˆู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ูˆู‡ู†ุง ุงุชู†ูŠู† ูˆู‡ู†ุง ู„ุงู†ุฏุง ุฒุงุฆุฏ
136
+
137
+ 35
138
+ 00:03:10,790 --> 00:03:15,290
139
+ ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุจุนุฏ ุฐู„ูƒ ู„ูƒูŠ ุงุญุตู„ ุนู„ู‰ ุงู„ู€
140
+
141
+ 36
142
+ 00:03:15,290 --> 00:03:20,930
143
+ eigenvalues ุงู†ุง ุจุงุฎุฏ ุงู„ู…ุญุฏุฏ ู„ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงุฐุง ุงู†ุง
144
+
145
+ 37
146
+ 00:03:20,930 --> 00:03:28,550
147
+ ุจุงุฎุฏ ุงู„ determinant ู„ู…ูŠู† ู„ู„ุงู†ุฏุง I ู†ุงู‚ุต ุงู„ A ูˆู‡ูˆ
148
+
149
+ 38
150
+ 00:03:28,550 --> 00:03:35,530
151
+ ุงู„ู…ุญุฏุฏ ู„ุงู†ุฏุง minus one ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ุซู„ุงุซ ูˆู‡ู†ุง
152
+
153
+ 39
154
+ 00:03:35,530 --> 00:03:40,650
155
+ one ูˆู‡ู†ุง ู„ุงู†ุฏุง minus four ูˆู‡ู†ุง minus three minus
156
+
157
+ 40
158
+ 00:03:40,650 --> 00:03:49,350
159
+ oneto lambda plus one ู‡ุฐุง ุงู„ู…ุญุฏุฏ ุจุฏูŠ ุงุญุณุจ ู‚ูŠู…ุฉ ู‡ุฐุง
160
+
161
+ 41
162
+ 00:03:49,350 --> 00:03:53,950
163
+ ุงู„ู…ุญุฏุฏ ูŠุจู‚ู‰ ุจุฏูŠ ุงููƒ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุงุณุชุฎุฏุงู…
164
+
165
+ 42
166
+ 00:03:53,950 --> 00:03:59,890
167
+ ู…ุซู„ุง ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู…
168
+
169
+ 43
170
+ 00:03:59,890 --> 00:04:07,040
171
+ ุจุฏูŠ ูŠุณูˆู‰ lambda minus oneูŠุจู‚ู‰ ู„ุงู†ุฏุง minus one ููŠ
172
+
173
+ 44
174
+ 00:04:07,040 --> 00:04:14,200
175
+ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุงู„ู…ู†ุงุธุฑ ู„ู‡ ุงู„ู„ุงู†ุฏุง minus four ู…ุถุฑูˆุจุฉ
176
+
177
+ 45
178
+ 00:04:14,200 --> 00:04:20,400
179
+ ููŠ ู„ุงู†ุฏุง plus one minus ู…ุน minus ุจุตูŠุฑ ุฒุงุฆุฏ ุณุชุฉ
180
+
181
+ 46
182
+ 00:04:21,170 --> 00:04:25,650
183
+ ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ ู‚ุทุน ุงู„ุฅุดุงุฑุงุช ุดุฑุทู‡ ู…ูˆุฌุจุฉ ูŠุจู‚ู‰
184
+
185
+ 47
186
+ 00:04:25,650 --> 00:04:32,590
187
+ ุฒุงุฆุฏ ุงุชู†ูŠู† ููŠ ู†ุดุทู‡ ุจุตูู‡ ูˆ ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ ู„ุงู†ุฏุง plus
188
+
189
+ 48
190
+ 00:04:32,590 --> 00:04:38,910
191
+ one minus three ูŠุจู‚ู‰ ู„ุงู†ุฏุง plus one minus three
192
+
193
+ 49
194
+ 00:04:38,910 --> 00:04:44,830
195
+ ุงู„ู„ูŠ ุจุนุฏู‡ minus three ููŠู‡ ู†ุดุทู‡ ุจุตูู‡ ูˆ ุนู…ูˆุฏู‡ ูŠุจู‚ู‰
196
+
197
+ 50
198
+ 00:04:44,830 --> 00:04:50,590
199
+ ุงุชู†ูŠู† minus ู…ุน minus ุจุตูŠุฑ ุฒุงุฆุฏ ู„ุงู†ุฏุง minus four
200
+
201
+ 51
202
+ 00:04:50,920 --> 00:04:56,460
203
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู‡ุฐุง ู„ูˆ ุฌูŠุชู‡ ุงุฎุชุตุฑุชู‡ ุจุฏู‡
204
+
205
+ 52
206
+ 00:04:56,460 --> 00:05:01,520
207
+ ูŠุตูŠุฑ ูƒุชุงู„ูŠ ู„ุงู†ุฏุง minus one ู‡ุฐุง ุจุฏู‡ ูŠููƒู‡ ูŠุง ุจู†ุงุชูŠ
208
+
209
+ 53
210
+ 00:05:01,520 --> 00:05:09,300
211
+ ูŠุจู‚ู‰ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ุงู‚ุต ุชู„ุงุชุฉ ู„ุงู†ุฏุง ูˆู‡ู†ุง ุฒุงุฆุฏ ุงุชู†ูŠู†
212
+
213
+ 54
214
+ 00:05:09,940 --> 00:05:15,480
215
+ ุงู„ู„ูŠ ุจุนุฏู‡ ุฒุงุฆุฏ ุงุชู†ูŠู† ููŠ ู„ุงู†ุฏุง ู…ุงูŠู†ูˆุณ ุงุชู†ูŠู† ุงู„ู„ูŠ
216
+
217
+ 55
218
+ 00:05:15,480 --> 00:05:20,360
219
+ ุจุนุฏู‡ ู†ุงู‚ุต ุซู„ุงุซุฉ ููŠ ู„ุงู†ุฏุง ู…ุงูŠู†ูˆุณ ุงุชู†ูŠู† ูƒู„ ู‡ุฐุง
220
+
221
+ 56
222
+ 00:05:20,360 --> 00:05:25,460
223
+ ุงู„ูƒู„ุงู… ุจุฏู‰ ูŠุณุงูˆูŠ ุฌุฏุงุด ุจุฏู‰ ูŠุณุงูˆูŠ Zero ุงูˆ ู…ู…ูƒู† ุงู‚ูˆู„
224
+
225
+ 57
226
+ 00:05:25,460 --> 00:05:30,410
227
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ุงู†ุฏุง ู…ุงูŠู†ูˆุณ ุงู„ oneู‡ุฐู‡ ุงู„ู…ู†ุงุทู‚ ุจู‚ุฏุฑ
228
+
229
+ 58
230
+ 00:05:30,410 --> 00:05:37,330
231
+ ุฃุญู„ู„ู‡ุงุŒ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ ู„ุงู†ุฏุง ุฌูˆุฒ ูˆ ุฌูˆุฒ ุชุงู†ูŠ ู„ุงู†ุฏุง
232
+
233
+ 59
234
+ 00:05:37,330 --> 00:05:42,570
235
+ ูˆู‡ูŠ ุงู„ุฌูˆุฒุŒ ู‡ู†ุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ ูˆุงุญุฏ ูˆ ู‡ู†ุง ุจู‚ุฏุฑ ุฃู‚ูˆู„
236
+
237
+ 60
238
+ 00:05:42,570 --> 00:05:49,530
239
+ ุงุชู†ูŠู†ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุงู„ู†ุงู‚ุต ูˆู‡ุฐู‡ ุจุงู„ู†ู‚ุต ู‡ุฐุง ุงู„ term
240
+
241
+ 61
242
+ 00:05:49,530 --> 00:05:54,370
243
+ ุงู„ุฃูˆู„ ุทู„ุนูŠู„ูŠ ู„ู„ term ู‡ุฐุง ู‡ุฐุง ุงู„ term ุงุชู†ูŠู† ุจุงู„ู…ูˆุฌุจ
244
+
245
+ 62
246
+ 00:05:54,370 --> 00:05:58,910
247
+ ูˆ ุชู„ุงุชุฉ ุจุงู„ุณู„ุจ ู„ู†ูุณ ุงู„ู…ู‚ุฏุงุฑ ูŠุจู‚ู‰ ูˆูุถู„ term ูˆุงุญุฏ
248
+
249
+ 63
250
+ 00:05:58,910 --> 00:06:06,150
251
+ ุจู…ูŠู† ุจุงู„ู…ูˆุฌุจ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฒุงุฆุฏ lambda minus
252
+
253
+ 64
254
+ 00:06:06,150 --> 00:06:12,210
255
+ ุงุชู†ูŠู† ูู‚ุท ู„ุง ุบูŠุฑ ู†ุงู‚ุต lambda ู†ุงู‚ุต ุงุชู†ูŠู† ูˆูŠู† ู‡ู†ุงุŸ
256
+
257
+ 65
258
+ 00:06:13,530 --> 00:06:23,490
259
+ ู‡ุฐู‡ ู†ู‚ุต
260
+
261
+ 66
262
+ 00:06:23,490 --> 00:06:29,830
263
+ ูˆุงุญุฏ ูŠุนู†ูŠ ูˆุงุญุฏ ุงู‡ ุญุงุทูŠู† ุณุงู„ุจ ุงู‡ ู‡ุฐู‡ ุจุงู„ุณุงู„ุจ ุงู„ุตุญูŠุฉ
264
+
265
+ 67
266
+ 00:06:30,540 --> 00:06:36,220
267
+ 100% ุฃุตุงุจุฉ ุงู…ุฑุฃุฉ ูˆุฃุฎุชู‡ุง ุนู…ุฑ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจุฏูˆ ูŠุณุงูˆูŠ
268
+
269
+ 68
270
+ 00:06:36,220 --> 00:06:43,160
271
+ ุงู„ู„ูŠ ู‡ูˆ ู„ุงู†ุฏุง minus two ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ุงู„ูƒู„ ุจูŠุธู„
272
+
273
+ 69
274
+ 00:06:43,160 --> 00:06:50,900
275
+ ู…ูŠู† ู‡ู†ุง ู‡ู†ุง ุจูŠุธู„ ู„ุงู†ุฏุง ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ูƒู„ ุชุงุฑุจูŠุนู†ู‚ุต
276
+
277
+ 70
278
+ 00:06:50,900 --> 00:06:55,860
279
+ ูˆุงุญุฏ ุจุงู„ุดูƒู„ ู„ุฃู† ู‡ุฐุง ุจุฏูŠ ุณุงูˆูŠ 100 ุจุฏูŠ ุณุงูˆูŠ 0 ุงูˆ
280
+
281
+ 71
282
+ 00:06:55,860 --> 00:07:01,140
283
+ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู„ุงู†ุฏุง ู…ุงูŠู†ูˆุณ ุชูˆ ููŠู‡ ุจุฏูŠ ุงููƒ ุงู„ุฌุซุฉ ุฏุงูŠู…ุง
284
+
285
+ 72
286
+ 00:07:01,140 --> 00:07:07,420
287
+ ุจุตูŠุฑ ู„ุงู†ุฏุง ุชุฑุจูŠุน ู†ู‚ุต ุงุชู†ูŠู† ู„ุงู†ุฏุง ูˆุฒุงูŠุฏ ูˆุงุญุฏ ูˆู†ู‚ุต
288
+
289
+ 73
290
+ 00:07:07,420 --> 00:07:13,280
291
+ ูˆุงุญุฏ ู…ุน ุงู„ุณู„ุงู…ุฉุฅุฐุง ู…ู…ูƒู† ุฃุฎุฏ ู„ุงู†ุฏุง ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู†
292
+
293
+ 74
294
+ 00:07:13,280 --> 00:07:20,540
295
+ ู‡ุฐุง ุงู„ุฌูˆุณ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ู„ุงู†ุฏุง minus two ููŠ ู„ุงู†ุฏุง ููŠ
296
+
297
+ 75
298
+ 00:07:20,540 --> 00:07:26,080
299
+ ู„ุงู†ุฏุง minus two ุจุฏู‡ ูŠุณุงูˆูŠ zero ูŠุจู‚ู‰ ู„ุงู†ุฏุง ููŠ ู„ุงู†ุฏุง
300
+
301
+ 76
302
+ 00:07:26,080 --> 00:07:30,780
303
+ minus two ู„ูƒู„ ุชุฑุจูŠุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุฌุฏุงุด ุจุฏู‡ ูŠุณุงูˆูŠ zero
304
+
305
+ 77
306
+ 00:07:31,450 --> 00:07:37,290
307
+ ุฅุฐุง ุทู„ุน ุนู†ุฏูŠ ู‚ูŠู…ุชูŠู† ูู‚ุท ู„ู„ุงู†ุฏุง ูˆู„ูŠุณ ุซู„ุงุซ ู‚ูŠู… ูˆุทู„ุน
308
+
309
+ 78
310
+ 00:07:37,290 --> 00:07:44,110
311
+ ุงู„ู‚ูŠู…ุชูŠู† ูˆุงู„ู‚ูŠู…ุชูŠู† ู…ุชุณุงูˆูŠุงุช ุฃูˆ ุงู„ู„ุงู†ุฏุง ุทู„ุนุช ู…ูƒุฑุฑุฉ
312
+
313
+ 79
314
+ 00:07:44,110 --> 00:07:52,010
315
+ ูŠุจู‚ู‰ ุจู†ุงุก ุงู† ุนู„ูŠ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ู‡ู†ุง the eigenvalues
316
+
317
+ 80
318
+ 00:07:52,010 --> 00:07:59,880
319
+ areุงู„ู„ูŠ ู‡ูˆ lambda ุชุณุงูˆูŠ zero ูˆ lambda ุชุณุงูˆูŠ ุงุชู†ูŠู†
320
+
321
+ 81
322
+ 00:07:59,880 --> 00:08:06,300
323
+ ูู‚ุท ู„ุง ุบูŠุฑ ูˆ ู‡ุฐู‡ ุงู„ lambda ู…ูƒุฑุฑุฉ ูƒุฏู‡ุด ู…ุฑุชูŠู† ูŠุจู‚ู‰ ูˆ
324
+
325
+ 82
326
+ 00:08:06,300 --> 00:08:11,980
327
+ ุจู‚ูˆู„ of multiplicity two ูŠุนู†ูŠ ู…ูƒุฑุฑุฉ ู…ุฑุชูŠู† ุงูˆ ุจู‚ุฏุฑ
328
+
329
+ 83
330
+ 00:08:11,980 --> 00:08:16,220
331
+ ุงู‚ูˆู„ lambda ุงุชู†ูŠู† ุชุณุงูˆูŠ ุงุชู†ูŠู† ูˆ lambda ุชู„ุงุชุฉ ุชุณุงูˆูŠ
332
+
333
+ 84
334
+ 00:08:16,220 --> 00:08:23,140
335
+ ุงุชู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ lambda ุชุณุงูˆูŠ ุงุชู†ูŠู† is of multi
336
+
337
+ 85
338
+ 00:08:28,120 --> 00:08:32,700
339
+ Lambda ุชุณุงูˆูŠ ุงุชู†ูŠู† ู…ูƒุฑุฑุฉ ู…ุฑุชูŠู† ุฅุฐุง ุงู†ุชู‡ูŠู†ุง ู…ู†
340
+
341
+ 86
342
+ 00:08:32,700 --> 00:08:36,480
343
+ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‚ุงู„ ู„ูŠ ุนู†ู‡ ู…ู† ุนู†ุฏ ู…ุง ุจุฏุฃู†ุง ู‡ู†ุง
344
+
345
+ 87
346
+ 00:08:36,480 --> 00:08:40,140
347
+ ูˆ ูƒู„ ูˆ ุงุญู†ุง ุจู†ุญุงูˆู„ ู†ุญุตู„ ุนู„ู‰ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ
348
+
349
+ 88
350
+ 00:08:40,140 --> 00:08:44,320
351
+ ุงู„ eigen values ู‚ุงู„ ู„ูŠ ุจุนุฏ ู‡ูŠูƒ ุงุชู‡ุชู„ูŠ ุงู„ dimension
352
+
353
+ 89
354
+ 00:08:44,320 --> 00:08:49,900
355
+ ู„ู…ู†ุŸ ู„ ุงู„ eigen vector spaces ูŠุจู‚ู‰ ุจุฏุฃ ุฃุฎุฏ lambda
356
+
357
+ 90
358
+ 00:08:49,900 --> 00:08:52,660
359
+ ุชุณุงูˆูŠ ุฒูŠุฑูˆ ุจุนุฏ ู‡ูŠูƒ lambda ุชุณุงูˆูŠ ุงุชู†ูŠู† ูˆ ุฃุดูˆู ุฅูŠุด
360
+
361
+ 91
362
+ 00:08:52,660 --> 00:08:59,700
363
+ ุงู„ู„ูŠ ุจูŠุญุตู„ ู…ุนุงู†ุงูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง if ู„ุงู†ุฏุง ุชุณุงูˆูŠ
364
+
365
+ 92
366
+ 00:08:59,700 --> 00:09:05,160
367
+ zero then ุจุฏูŠ ุฃุฎุฏ ู„ุงู†ุฏุง ุงู„ุฃูˆู„ู‰ ุจุฏูŠ ุฃุฑุฌุน ู„ู…ูŠู†
368
+
369
+ 93
370
+ 00:09:05,160 --> 00:09:10,440
371
+ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุชู…ุงู… ูˆ ุจุฏูŠ ุฃุฎุฏ
372
+
373
+ 94
374
+ 00:09:10,440 --> 00:09:17,120
375
+ ุงู„ู…ุนุงุฏู„ุฉ ูƒุซูŠุฑุฉ then ู„ุงู†ุฏุง I ู†ู‚ุต ุงู„ A ููŠ ุงู„ X ูŠุณุงูˆูŠ
376
+
377
+ 95
378
+ 00:09:17,120 --> 00:09:22,020
379
+ Zero implies ู‡ูŠ ุงู„ู…ุตู…ู…ุฉ ุจุฏูŠ ุฃุดูŠู„ ู„ุงู†ุฏุง ูˆ ุฃุญุท
380
+
381
+ 96
382
+ 00:09:22,020 --> 00:09:28,070
383
+ ู…ูƒุงู†ู‡ุง Zeroุจุธู„ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุซู„ุงุซุฉ
384
+
385
+ 97
386
+ 00:09:28,070 --> 00:09:34,850
387
+ ูˆุงุญุฏ ู†ุงู‚ุต ุงุฑุจุนุฉ ูˆู‡ู†ุง ู†ุงู‚ุต ุซู„ุงุซุฉ ูˆู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ
388
+
389
+ 98
390
+ 00:09:34,850 --> 00:09:40,730
391
+ ุงุชู†ูŠู† ูˆู‡ู†ุง ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง X ูˆุงุญุฏ X
392
+
393
+ 99
394
+ 00:09:40,730 --> 00:09:46,610
395
+ ุงุชู†ูŠู† X ุชู„ุงุชุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆ Zero ูˆ
396
+
397
+ 100
398
+ 00:09:46,610 --> 00:09:52,780
399
+ Zeroุฅุฐุง ุชุฑุฌู…ุชูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุนุงู…ู„ูŠุง
400
+
401
+ 101
402
+ 00:09:52,780 --> 00:09:58,140
403
+ ุจุงู„ู‚ูŠู… ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง ู†ุญุงูˆู„ ู†ุฌูŠุจ ู‚ูŠู… ูƒู„ู‡ุง ู…ู† X1
404
+
405
+ 102
406
+ 00:09:58,140 --> 00:10:04,980
407
+ ูˆ X2 ูˆ X3 ู„ุฅู† ู‡ุฐู‡ ุงู„ X ุจุชุฌูŠุจ ู„ู…ูŠู† ุงู„ Eigen vectors
408
+
409
+ 103
410
+ 00:10:05,520 --> 00:10:10,720
411
+ ุฅุฐุง ุจุฏูŠ ุฃุฌู‡ุฒูŠ ูˆ ุฃู‚ูˆู„ ุจุฏูŠ ุฃุนุทูŠ ุงู„ู…ุนุงุฏู„ุฉ ุฏูุบุฑูŠ ูŠุจู‚ุงุด
412
+
413
+ 104
414
+ 00:10:10,720 --> 00:10:19,060
415
+ ุจุตูŠุฑ ุงู†ุง ู„ุงุจู†ุช ู‡ู†ุง ู†ุงู‚ุต X1 ู†ุงู‚ุต 2 X2 ู†ุงู‚ุต 3 X3 ุจุฏู‡
416
+
417
+ 105
418
+ 00:10:19,060 --> 00:10:29,280
419
+ ูŠุณุงูˆูŠ 0 ูˆู‡ู†ุง X1 ู†ุงู‚ุต 4 X2 ู†ุงู‚ุต 3 X3 ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู…ุงู†
420
+
421
+ 106
422
+ 00:10:29,280 --> 00:10:37,590
423
+ 100 ุจุฏู‡ ูŠุณุงูˆูŠ 0 ู†ุงู‚ุต X1ูˆู‡ู†ุง ุฒุงุฆุฏ ุงุชู†ูŠู† X2 ูˆู‡ู†ุง
424
+
425
+ 107
426
+ 00:10:37,590 --> 00:10:42,830
427
+ ุฒุงุฆุฏ X3 ูŠุณูˆู‰ Zero ูŠุจู‚ู‰ ุญุตู„ู†ุง ุนู„ู‰ ุงู„ homogenous
428
+
429
+ 108
430
+ 00:10:42,830 --> 00:10:46,870
431
+ system ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจู†ุญุงูˆู„ ู†ุญู„ ุงู„ homogenous system
432
+
433
+ 109
434
+ 00:10:46,870 --> 00:10:52,870
435
+ ุจุฃูŠ ุทุฑูŠู‚ุฉ ู…ู† ุงู„ุทุฑู‚ ุงู„ุชูŠ ุณุจู‚ุช ุฏุฑุงุณุชู‡ุงูู…ุซู„ู‹ุง ู„ูˆ ุฌูŠุช
436
+
437
+ 110
438
+ 00:10:52,870 --> 00:10:57,370
439
+ ุฃุฎุฏุช ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ุชุงู†ูŠุฉ ู‡ุฐู‡ ูŠุง ุจู†ุงุช ูˆุฌูŠุช
440
+
441
+ 111
442
+ 00:10:57,370 --> 00:11:02,750
443
+ ุฌู…ุงุนุฉ ุทุจุนู‹ุง ู‡ุชุฑูˆุญ ู‡ุฐู‡ ู…ุน ู‡ุฐู‡ ู…ุธุจูˆุทุŸ ุจุถุน ุฃู†ู†ุง ู†ุงู‚ุต
444
+
445
+ 112
446
+ 00:11:02,750 --> 00:11:11,540
447
+ 6x2 ูˆู†ุงู‚ุต 6x3 ุจุฏู„ ุณูˆู‰ ู‚ุฏุงุดุŸ Zeroุฃูˆ ู„ูˆ ุฌุณู…ุช ุนู„ู‰
448
+
449
+ 113
450
+ 00:11:11,540 --> 00:11:18,080
451
+ ุณุงู„ุจ ุณุชุฉ ุจุตูŠุฑ X2 ุฒุงุฆุฏ X3 ูŠุณุงูˆูŠ Zero ุฃูˆ ุจู‚ุฏุฑ ุฃู‚ูˆู„
452
+
453
+ 114
454
+ 00:11:18,080 --> 00:11:25,540
455
+ ุงู† X2 ูŠุณุงูˆูŠ ุณุงู„ุจ X3 ู‡ุฐุง ู„ู…ุง ุฃุฎุฏ ุงู„ุฃูˆู„ู‰ ู…ุน ู…ูŠู†ุŸ ู…ุน
456
+
457
+ 115
458
+ 00:11:25,540 --> 00:11:32,230
459
+ ุงู„ุซุงู†ูŠุฉ ุทุจ ู„ูˆ ุฃุฎุฏุช ุงู„ุชุงู†ูŠุฉ ู…ุน ู…ูŠู†ุŸ ู…ุน ุงู„ุชุงู„ุชุฉู‡ุฐู‡
460
+
461
+ 116
462
+ 00:11:32,230 --> 00:11:37,830
463
+ ุฎุฏ ู…ุน ู‡ุฐู‡ ุฃูˆ ุฃุฎุฏ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุชุงู„ุชุฉ ู…ุซู„ุง ู„ูˆ ุฃุฎุฏุช
464
+
465
+ 117
466
+ 00:11:37,830 --> 00:11:43,170
467
+ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุชุงู„ุชุฉ ูŠุจู‚ู‰ ุงู„ุฃูˆู„ู‰ ู†ุงู‚ุต x ูˆุงุญุฏ ู†ุงู‚ุต
468
+
469
+ 118
470
+ 00:11:43,170 --> 00:11:48,470
471
+ ุงุชู†ูŠู† x ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ x ุชู„ุงุชุฉ ุจุฏู‰ ูŠุณุงูˆูŠ zero
472
+
473
+ 119
474
+ 00:11:48,470 --> 00:11:55,370
475
+ ูˆู‡ู†ุง ุณุงู„ุจ x ูˆุงุญุฏ ุงุชู†ูŠู† x ุงุชู†ูŠู† ุฒุงุฆุฏ x ุชู„ุงุชุฉ ุจุฏู‰
476
+
477
+ 120
478
+ 00:11:55,370 --> 00:12:00,490
479
+ ูŠุณุงูˆูŠ zero ุทุจุนุง ู‡ุฐู‡ ู‡ุชุฑูˆุญ ู…ุน ู‡ุฐู‡ ุจุธู„ ู‡ู†ุง mainุงู„ู„ูŠ
480
+
481
+ 121
482
+ 00:12:00,490 --> 00:12:08,410
483
+ ู‡ูˆ ู…ู† ุณุงู„ุจ ุงุชู†ูŠู† X1 ูˆ ู‡ู†ุง ุณุงู„ุจ ุงุชู†ูŠู† X3 ุจุฏู‡ ูŠุณูˆูŠ
484
+
485
+ 122
486
+ 00:12:08,410 --> 00:12:15,650
487
+ Zero ูŠุจู‚ู‰ X1 ุฒุงุฆุฏ X3 ุจุฏู‡ ูŠุณูˆูŠ Zero ูŠุจู‚ู‰ X1 ูŠุณูˆูŠ
488
+
489
+ 123
490
+ 00:12:15,650 --> 00:12:23,510
491
+ ุณุงู„ุจ X3 ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ุนู†ุฏูŠ X1 ุจุฏู‡ ูŠุณูˆูŠ X2
492
+
493
+ 124
494
+ 00:12:23,510 --> 00:12:34,890
495
+ ุจุฏู‡ ูŠุณูˆูŠ X3 ุฅุฐุง ู„ูˆ ุฃุฎุฏุชุฅู† ุงู„ X3 ุจุฏู‡ุง ุชุณุงูˆูŠ .. ู„ูˆ
496
+
497
+ 125
498
+ 00:12:34,890 --> 00:12:46,170
499
+ ุฃุฎุฏุช ุงู„ X3 ู…ุซู„ุง ุชุณุงูˆูŠ A ุฃูˆ ุฃุฎุฏุช X1 ุชุณุงูˆูŠ X2 ุชุณุงูˆูŠ
500
+
501
+ 126
502
+ 00:12:46,170 --> 00:12:46,670
503
+ A
504
+
505
+ 127
506
+ 00:12:50,670 --> 00:12:56,790
507
+ ุซู… ุณุงู„ุจ ุงูƒุณ ุซุฑูŠ ุชุณุงูˆูŠ ุงูŠู‡ุŸ ู‡ุฐุง ูŠุนุทูŠูƒ ุงู† ุงูƒุณ ุซุฑูŠ
508
+
509
+ 128
510
+ 00:12:56,790 --> 00:13:03,570
511
+ ูŠุณุงูˆูŠ ู‚ุฏุงุด ุณุงู„ุจ ุงูŠู‡ุŸ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ the eigen
512
+
513
+ 129
514
+ 00:13:03,570 --> 00:13:14,010
515
+ vectors corresponding to
516
+
517
+ 130
518
+ 00:13:14,010 --> 00:13:22,650
519
+ the lambda ุชุณุงูˆูŠ zero are inThe form ุนู„ู‰ ุงู„ุดูƒู„
520
+
521
+ 131
522
+ 00:13:22,650 --> 00:13:28,490
523
+ ุงู„ุชุงู„ูŠ X1
524
+
525
+ 132
526
+ 00:13:28,490 --> 00:13:38,950
527
+ X2 X3 X1
528
+
529
+ 133
530
+ 00:13:38,950 --> 00:13:41,850
531
+ X2 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3
532
+
533
+ 134
534
+ 00:13:41,850 --> 00:13:45,530
535
+ X3 X3 X3 X3 X3 X3 X3ุทุจ ุงูŠุด ุจูŠู‚ูˆู„ู„ูŠ ู‚ุงู„ู„ูŠ ู‡ุชู„ุช
536
+
537
+ 135
538
+ 00:13:45,530 --> 00:13:51,890
539
+ dimension ู„ู„ eigen vector space ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ vector
540
+
541
+ 136
542
+ 00:13:51,890 --> 00:13:54,990
543
+ ุงู„ู„ูŠ
544
+
545
+ 137
546
+ 00:13:54,990 --> 00:14:05,670
547
+ ู‡ูˆ ู…ู† ูˆุงุญุฏ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ is a basis for the eigen
548
+
549
+ 138
550
+ 00:14:05,670 --> 00:14:10,310
551
+ vector space
552
+
553
+ 139
554
+ 00:14:11,660 --> 00:14:19,860
555
+ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‘ูŠ ูŠุนุทูŠู†ุง ู…ูŠู†ุŸ ุงู†ู‡ its dimension ุงู„ู„ูŠ
556
+
557
+ 140
558
+ 00:14:19,860 --> 00:14:23,020
559
+ ุจุฏู‘ูˆูŠุง ูƒุฏู‡ุŸ ูˆุงุญุฏุฉ
560
+
561
+ 141
562
+ 00:14:26,410 --> 00:14:31,950
563
+ ูŠุจู‚ู‰ ุฃู†ุง ุฌุจุช ู„ู‡ ุงู„ A ูˆ ุงู„ B ู…ุฑุฉ ูˆุงุญุฏุฉ ุชู…ุงู… ุทูŠุจ ู‚ุงู„
564
+
565
+ 142
566
+ 00:14:31,950 --> 00:14:35,850
567
+ ู„ูŠ is the matrix A similar ูŠุจู‚ู‰ ุงุณุชู†ู‰ ุดูˆูŠุฉ ู„ุจุณู‡ุง
568
+
569
+ 143
570
+ 00:14:35,850 --> 00:14:39,330
571
+ ุณูŠู‡ ููŠู‡ุง ูƒู„ุงู… ุชุงู†ูŠ ุจุนุฏ ู‡ูŠูƒ ุจุฏู‰ ุฃุฑูˆุญ ุฃุฌูŠุจ ู„ุงู†ุฏุง
572
+
573
+ 144
574
+ 00:14:39,330 --> 00:14:49,070
575
+ ุชุณุงูˆูŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ F ู„ุงู†ุฏุง ุชุณุงูˆูŠ ุงุชู†ูŠู† then ู„ุงู†ุฏุง I
576
+
577
+ 145
578
+ 00:14:49,070 --> 00:14:56,540
579
+ ู†ุงู‚ุต A ููŠ ุงู„ X ุจุฏู‡ุง ุชุณุงูˆูŠ Zero impliesุนู† ุทุฑูŠู‚
580
+
581
+ 146
582
+ 00:14:56,540 --> 00:15:00,260
583
+ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุจุฏูŠ ุงุดูŠู„ ูƒู„ุงู† ุฏู‡ ูˆ ุงุญุท ู…ูƒุงู†
584
+
585
+ 147
586
+ 00:15:00,260 --> 00:15:05,940
587
+ ุงู‚ุฏุฑ ุงุด ุงุชู†ูŠู† ุงุชู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ ุจุฏู„ ุงู† ุงู‚ุฏุฑ ุงุด ูˆุงุญุฏ
588
+
589
+ 148
590
+ 00:15:05,940 --> 00:15:12,880
591
+ ูˆุนู†ุฏู†ุง ู‡ู†ุง ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ ุงู„ุตู ุงู„ุชุงู†ูŠ ูˆุงุญุฏ
592
+
593
+ 149
594
+ 00:15:12,880 --> 00:15:19,620
595
+ ูˆ ู‡ู†ุง ู†ุงู‚ุต ุงุชู†ูŠู† ูˆ ู‡ู†ุง ู†ุงู‚ุต ุชู„ุงุชุฉุตูุฉ ุชุงู„ุช ู†ุงู‚ุต
596
+
597
+ 150
598
+ 00:15:19,620 --> 00:15:26,460
599
+ ูˆุงุญุฏ ุงุชู†ูŠู† ูˆู‡ู†ุง ุจุฏู†ุง ู†ุญุท ุงุชู†ูŠู† ุจูŠุตูŠุฑ ุชู„ุงุชุฉ ููŠ X
600
+
601
+ 151
602
+ 00:15:26,460 --> 00:15:33,640
603
+ ูˆุงุญุฏ X ุงุชู†ูŠู† X ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆ Zero ูˆ Zero
604
+
605
+ 152
606
+ 00:15:35,940 --> 00:15:41,500
607
+ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุชุฌูŠุจ ู„ูŠ ุซู„ุงุซ ู…ุนุงุฏู„ุงุช ู„ูƒู† ููŠ ุงู„ุญู‚ูŠู‚ุฉ
608
+
609
+ 153
610
+ 00:15:41,500 --> 00:15:47,620
611
+ ู‡ู…ุง ุซู„ุงุซ ู…ุนุงุฏู„ุงุช ูˆู„ุง ุชู†ุชูŠู† ูˆู„ุง ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰
612
+
613
+ 154
614
+ 00:15:47,620 --> 00:15:53,240
615
+ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ูู‚ุท ู„ุง ุบูŠุฑุงู„ุตู ู‡ุฐุง ู„ูˆ ุถุฑุจุช ููŠ
616
+
617
+ 155
618
+ 00:15:53,240 --> 00:15:57,980
619
+ ุณุงู„ุจ ูˆุงุญุฏ ุจูŠุทู„ุน ุงู„ุตููŠู† ุงู„ู„ูŠ ููˆู‚ ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุด
620
+
621
+ 156
622
+ 00:15:57,980 --> 00:16:02,280
623
+ ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ูˆุงู†ู…ุง ุงูˆ ุงู„ุซู„ุงุซ ู…ุนุงุฏู„ุงุช ุนุจุงุฑุฉ ุนู†
624
+
625
+ 157
626
+ 00:16:02,280 --> 00:16:07,680
627
+ ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ูู‚ุท ู„ุง ุบูŠุฑ ูŠุจู‚ู‰ ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู† X
628
+
629
+ 158
630
+ 00:16:07,680 --> 00:16:14,000
631
+ ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† X ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ X ุชู„ุงุชุฉ ุจูŠุณุงูˆูŠ
632
+
633
+ 159
634
+ 00:16:14,000 --> 00:16:22,030
635
+ ู‚ุฏุฑ Zero ุงูˆ ุงู† ุดุฆุชู… ูู‚ูˆู„ูˆุง ุงู† X ูˆุงุญุฏูŠุณุงูˆูŠ 2 X2
636
+
637
+ 160
638
+ 00:16:22,030 --> 00:16:29,970
639
+ ุฒุงุฆุฏ 3 X3 ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู…ุฌู‡ูˆู„ุฉ ุจุซู„ุงุซุฉ ู…ุฌู‡ูˆู„
640
+
641
+ 161
642
+ 00:16:29,970 --> 00:16:35,710
643
+ ุฅุฐุง ู„ุง ูŠู…ูƒู† ุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุฅู„ุง ุฅุฐุง ุฃุนุทูŠู†ุง ู‚ูŠู…ุชูŠู†
644
+
645
+ 162
646
+ 00:16:35,710 --> 00:16:45,690
647
+ ู„ู…ุฌู‡ูˆู„ูŠู† ูŠุจู‚ู‰ ู…ู…ูƒู† ุฃุญุท ู…ุซู„ุง X2 ุจA ูˆ X3 ุจB ูˆุจุงู„ุชุงู„ูŠ
648
+
649
+ 163
650
+ 00:16:45,690 --> 00:16:53,400
651
+ ุจุฌูŠุจ X1ุจุชู„ุงุช X2 ูˆ X3 ูŠุจู‚ู‰ if ุงู„ X2 ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ A
652
+
653
+ 164
654
+ 00:16:53,400 --> 00:17:03,580
655
+ and X3 ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ B then ุงู„ X1 ุจุฏู‡ ูŠุณุงูˆูŠ 2A ุฒุงุฆุฏ
656
+
657
+ 165
658
+ 00:17:03,580 --> 00:17:09,080
659
+ 3B ุฃุธู† ู‡ุฐุง ูƒู„ู‡ ู…ุงู„ุด ู„ุฒูˆู…ุฉ ุงู„ุญูŠู†
660
+
661
+ 166
662
+ 00:17:25,020 --> 00:17:34,100
663
+ ุทูŠุจ ุจู†ูˆุงุตู„ ุงู„ุญู„ู„ุŒ ุงู„ุขู† ุจุงุฌูŠ ุจู‚ูˆู„ the eigenvectors
664
+
665
+ 167
666
+ 00:17:34,100 --> 00:17:40,500
667
+ corresponding to
668
+
669
+ 168
670
+ 00:17:40,500 --> 00:17:51,440
671
+ land ุชุณุงูˆูŠ ุงุชู†ูŠู† are in the form ููŠ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
672
+
673
+ 169
674
+ 00:17:55,340 --> 00:18:04,820
675
+ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
676
+
677
+ 170
678
+ 00:18:04,820 --> 00:18:05,960
679
+ X11 X12 X13 X12 X13 X12 X12 X12 X12 X12 X12 X12
680
+
681
+ 171
682
+ 00:18:05,960 --> 00:18:06,060
683
+ X12 X12 X12 X12 X12 X12 X12 X12 X12 X12 X12 X12
684
+
685
+ 172
686
+ 00:18:06,060 --> 00:18:06,100
687
+ X12 X12 X12 X12 X12 X12 X12 X12 X12 X12 X12 X12
688
+
689
+ 173
690
+ 00:18:06,100 --> 00:18:06,140
691
+ X12 X12 X12 X12 X12 X12 X12 X12 X12 X12 X12 X12
692
+
693
+ 174
694
+ 00:18:06,140 --> 00:18:06,160
695
+ X12 X12 X12 X12 X12 X12 X12 X12 X12 X12 X12 X12
696
+
697
+ 175
698
+ 00:18:06,160 --> 00:18:06,180
699
+ X12 X12 X12 X12 X12 X12 X12 X12 X12 X12 X12 X12
700
+
701
+ 176
702
+ 00:18:06,180 --> 00:18:07,880
703
+ X12 X12 X12 X12 X12 X12
704
+
705
+ 177
706
+ 00:18:11,270 --> 00:18:16,110
707
+ ุจู‚ุฏุฑ ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ูŠุง ุจู†ุงุช ุงู‚ุณู…ู‡ุง ุงู„ู‰ ู…ุฌู…ูˆุนุฉ ู…ุตูููŠู†
708
+
709
+ 178
710
+ 00:18:16,110 --> 00:18:23,190
711
+ ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุงุชู†ูŠู† A A Zero
712
+
713
+ 179
714
+ 00:18:23,190 --> 00:18:31,910
715
+ ุฒุงุฆุฏ ุชู„ุงุชุฉ B Zero B ุงูˆ ุงู† ุดุฆุชู… ูู‚ูˆู„ูˆุง ู‡ูŠ ุงู„ A ุจุฑุง
716
+
717
+ 180
718
+ 00:18:31,910 --> 00:18:40,510
719
+ ูˆ ู‡ู†ุง ุงุชู†ูŠู† ูˆุงุญุฏ Zero ุฒุงุฆุฏ B ููŠ ุชู„ุงุชุฉ Zero ูˆุงุญุฏ
720
+
721
+ 181
722
+ 00:18:43,330 --> 00:18:48,050
723
+ ุฃุฑูŠุฏ ุฃู† ุฃุฑู‰ ู‚ูŠู…ุฉ ุงู„ู€Bases ู„ู„ู€Vector Space ุงู„ู…ูˆู„ุฏ
724
+
725
+ 182
726
+ 00:18:48,050 --> 00:18:51,850
727
+ ุจุงู„ู€Two Vectors ุจุฅุฐู† ุงู„ู„ู‡ ุฃุฎุฑุฌ ููŠ ุงู„ุงุชู†ูŠู† ู‡ู„ ู‡ู…ุง
728
+
729
+ 183
730
+ 00:18:51,850 --> 00:18:56,470
731
+ Linearly Dependent ูˆ ู„ุง Linearly Independent ุฅุฐุง
732
+
733
+ 184
734
+ 00:18:56,470 --> 00:19:00,910
735
+ ูƒุงู†ูˆุง Linearly Dependent ูŠูƒููŠ ูˆุงุญุฏ ู…ู†ู‡ู… ูˆุฅุฐุง ูƒุงู†ูˆุง
736
+
737
+ 185
738
+ 00:19:00,910 --> 00:19:05,770
739
+ ุงุชู†ูŠู† Linearly Independent ูŠุจู‚ู‰ ุจุตูŠุฑ ุงู„ู€Bases ููŠ
740
+
741
+ 186
742
+ 00:19:05,770 --> 00:19:11,230
743
+ ุนู†ุตุฑูŠู† ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€Dimension ูŠุณุงูˆูŠ ุงุชู†ูŠู† ุฃุฎุฑุฌู†ูŠ ููŠ
744
+
745
+ 187
746
+ 00:19:11,230 --> 00:19:16,500
747
+ ุงู„ุงุชู†ูŠู† ู‡ุคู„ุงุกุนู…ุฑ ูˆุงุญุฏ ููŠู‡ู… ุจูŠุตูŠุฑ ู…ุถุงุนูุงุช ุงู„ุขุฎุฑ
748
+
749
+ 188
750
+ 00:19:16,500 --> 00:19:24,280
751
+ ู…ุงููŠุด ุฅู…ูƒุงู†ูŠุฉ ุนู„ู‰ ุงู„ุฅุทู„ุงู‚ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ since the
752
+
753
+ 189
754
+ 00:19:24,280 --> 00:19:36,660
755
+ two vectors ุงู„ู„ูŠ ู‡ู… ุงุชู†ูŠู† ูˆุงุญุฏ ุฒูŠุฑูˆ ูˆุชู„ุงุชุฉ
756
+
757
+ 190
758
+ 00:19:36,660 --> 00:19:46,740
759
+ ุฒูŠุฑูˆ ูˆุงุญุฏ are linearly independentbecause anyone
760
+
761
+ 191
762
+ 00:19:46,740 --> 00:20:06,640
763
+ is not multiple of the other we have ุงู†ู‡ ุฏู‡ set
764
+
765
+ 192
766
+ 00:20:06,640 --> 00:20:16,380
767
+ ุงู„ู„ูŠ ู‡ูŠ mainุงุชู†ูŠู† ูˆุงุญุฏ ูˆุฒูŠุฑูˆ ูˆุงู„ุนู†ุตุฑ ุงู„ุชุงู†ูŠ ุชู„ุงุชุฉ
768
+
769
+ 193
770
+ 00:20:16,380 --> 00:20:35,940
771
+ ุฒูŠุฑูˆ ูˆุงุญุฏ is a basis for the eigen vector space
772
+
773
+ 194
774
+ 00:20:35,940 --> 00:20:38,360
775
+ corresponding
776
+
777
+ 195
778
+ 00:20:43,870 --> 00:20:53,750
779
+ ุชูˆ ู„ุงู†ุฏุง ุชูˆ ุณุงูˆุฉ ุงุชู†ูŠู† ุงุฐุง ุงู†ุชู‡ูŠู†ุง ู…ู† ู†ู…ุฑ ุจูŠ ูˆ ู„ุง
780
+
781
+ 196
782
+ 00:20:53,750 --> 00:21:01,290
783
+ ู…ุงู†ุชู‡ูŠู†ุงุด ุจุฏู†ุง ุงู„ dimension ูŠุจู‚ู‰ ู‡ู†ุง ู‡ุฏูˆู„ ูŠุจู‚ู‰ as
784
+
785
+ 197
786
+ 00:21:01,290 --> 00:21:07,450
787
+ a basis for the corresponding to ู„ุงู†ุฏุง ุชูˆ and its
788
+
789
+ 198
790
+ 00:21:07,450 --> 00:21:09,390
791
+ dimension
792
+
793
+ 199
794
+ 00:21:13,670 --> 00:21:20,990
795
+ is two ูŠุจู‚ู‰ ุงู„ dimension ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ูŠุณุงูˆูŠ ุงุชู†ูŠู†
796
+
797
+ 200
798
+ 00:21:20,990 --> 00:21:26,410
799
+ ูŠุจู‚ู‰ ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุทู„ูˆุจ A ูˆB ุถุงูŠู„ ุนู†ุฏู†ุง ู…ูŠู†ุŸ ุถุงูŠู„
800
+
801
+ 201
802
+ 00:21:26,410 --> 00:21:31,910
803
+ ุนู†ุฏู†ุง C C ุจูŠู‚ูˆู„ ู…ุงู†ูˆุŸ ุจูŠู‚ูˆู„ ู‡ู„ ุงู„ matrix A similar
804
+
805
+ 202
806
+ 00:21:31,910 --> 00:21:37,350
807
+ to A diagonal matrix ุงู… ู„ุงุŸ ุจู…ุนู†ู‰ ุงุฎุฑ ู‡ู„ ุงู„ A
808
+
809
+ 203
810
+ 00:21:37,350 --> 00:21:43,570
811
+ ุฏูŠุงุฌูˆู†ุงู„ูŠ Z ุจุงู„ูˆ ูˆู„ุง ู„ุงุŸ ุดููˆูŠ ุจู…ุฌุฑุฏ ุงู„ู†ุธุฑุงู„ุญูŠู†
812
+
813
+ 204
814
+ 00:21:43,570 --> 00:21:48,090
815
+ ุทู„ุนู†ุง ู…ูŠู†ุŸ ู‚ุฏุงุด ุงู„ู€ linearly independent element
816
+
817
+ 205
818
+ 00:21:48,090 --> 00:21:54,490
819
+ ุทูŠุจ ุงู‡ ุงุณุชู†ู‰ ุดูˆูŠุฉ ุทู„ุนูŠู„ูŠ ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ูˆุงุทู„ุนูŠู„ูŠ
820
+
821
+ 206
822
+ 00:21:54,490 --> 00:22:00,650
823
+ ู„ู…ูŠู†ุŸ ู„ู„ุชุงู„ุช ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ู„ ุงู„ุชู„ุงุชุฉ ู‡ุฏูˆู„ are
824
+
825
+ 207
826
+ 00:22:00,650 --> 00:22:03,590
827
+ linearly dependent ูˆู„ุง linearly independentุŸ
828
+
829
+ 208
830
+ 00:22:03,590 --> 00:22:09,010
831
+ ุจุชุนู…ู„ูŠู„ู‡ู… ุงู„ check ูŠุจู‚ู‰ ู‡ู†ุง ุจุฏูƒ ุชู‚ูˆู„ูŠู„ูŠ ู…ุง ูŠุฃุชูŠ
832
+
833
+ 209
834
+ 00:22:09,010 --> 00:22:12,570
835
+ ุจุฏูƒ ุชุนู…ู„ูŠู„ูŠ ุงู„ check ุงู„ุชุงู„ูŠ
836
+
837
+ 210
838
+ 00:22:23,900 --> 00:22:31,240
839
+ check that vectors
840
+
841
+ 211
842
+ 00:22:31,240 --> 00:22:39,170
843
+ ุงู„ู„ูŠ ู‡ู… ู…ูŠู† ุงู„ vector ุงู„ุฃูˆู„ ูŠุนู†ูŠุงู„ุชูŠ ู‡ูˆ ูˆุงุญุฏ ูˆุงุญุฏ
844
+
845
+ 212
846
+ 00:22:39,170 --> 00:22:44,630
847
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงู„ุชุงู†ูŠ ุงู„ู„ูŠ ุทุงู„ุน ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู†
848
+
849
+ 213
850
+ 00:22:44,630 --> 00:22:54,190
851
+ ูˆุงุญุฏ ุฒูŠุฑูˆ ูˆุงู„ุชุงู„ุช ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุชู„ุงุชุฉ ุฒูŠุฑูˆ ูˆุงุญุฏ are
852
+
853
+ 214
854
+ 00:22:54,190 --> 00:23:00,150
855
+ linearly independent ูƒูŠู
856
+
857
+ 215
858
+ 00:23:00,150 --> 00:23:04,940
859
+ ุจุฏูŠ ุฃุณูˆูŠู‡ู… linearly independentูƒูŠู ุจุฏูŠ ุฃุนู…ู„ู‡ู… ุจู‚ู‰ุŸ
860
+
861
+ 216
862
+ 00:23:04,940 --> 00:23:10,480
863
+ ูˆูƒูŠู ุจุฏูŠ ุฃุซุจุช ุงู†ู‡ู… linearly independentุŸ ู†ูุฑุถ C1
864
+
865
+ 217
866
+ 00:23:10,480 --> 00:23:15,900
867
+ ูˆC2 ูˆC3 ุชูƒูˆู† ุฃุตู„ุงู‹ C ููŠ ุงู„ุฃูˆู„ ุฒูŠ C ููŠ ุงู„ุชุงู†ูŠ ุฒูŠ C
868
+
869
+ 218
870
+ 00:23:15,900 --> 00:23:20,520
871
+ ููŠ ุงู„ุชุงู„ูŠ ูŠุณุงูˆูŠ Zero ูˆุฃุซุจุช ุงู† C1 ูŠุณุงูˆูŠ C2 ูŠุณุงูˆูŠ C3
872
+
873
+ 219
874
+ 00:23:20,520 --> 00:23:25,700
875
+ ูŠุณุงูˆูŠ Zero ู‡ุฐู‡ ุฅุญุฏู‰ ุงู„ุทุฑู‚ ุงู„ุทูˆูŠู„ุฉ ููŠ ุฃูƒุซุฑ ู…ู†ู‡ุง ุงูŠุด
876
+
877
+ 220
878
+ 00:23:25,700 --> 00:23:32,810
879
+ ุงู„ู„ูŠ ุฃูƒุซุฑ ู…ู†ู‡ุงุŸู†ุนู…ู„ ู…ุญุฏุฏ ูˆู„ูŠุณุช ู…ุตููˆุฑุฉ ู†ุนู…ู„ ู…ุญุฏุฏ
880
+
881
+ 221
882
+ 00:23:32,810 --> 00:23:38,970
883
+ ูˆู†ุซุจุช ุฃู† ุงู„ู…ุญุฏุฏ ู„ุง ูŠุณุงูˆูŠ zero ุงู†ุทู„ุน ุฐู„ูƒ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ
884
+
885
+ 222
886
+ 00:23:38,970 --> 00:23:42,790
887
+ ุนู†ุฏูŠ linearly independent ูŠุจู‚ู‰ ุชุจุนุช ุงู„ู…ุญุฏุฏ ุฃุณู‡ู„ ู…ู†
888
+
889
+ 223
890
+ 00:23:42,790 --> 00:23:46,290
891
+ ุงู„ุฃูˆู„ูŠู† ุงู„ุฃูˆู„ูŠู† ุจุฏู‡ุง ุดุบู„ ุดูˆูŠุฉ ู„ุฅู† ุจุฏูŠ ุฃุนู…ู„ system
892
+
893
+ 224
894
+ 00:23:46,290 --> 00:23:49,610
895
+ ูˆ ุงู„ system ุจุชุฑูˆุญ ุนู„ู‘ู‡ ุจุณ ุงู„ determinant ุฏู‡ ุณู‡ู„
896
+
897
+ 225
898
+ 00:23:49,610 --> 00:23:54,130
899
+ ุฌุฏุง ูŠุนู†ูŠ ููŠ ุฎุทูˆุฉ ูˆุงุญุฏุฉ ุจูƒูˆู† ุฌูŠุจูŠู†ุฌุจุช ุงู„ุญู„ู‚ุฉ ูˆ
900
+
901
+ 226
902
+ 00:23:54,130 --> 00:23:59,010
903
+ ุฃุซุจุชุช ุฅู† ู‡ุฏูˆู„ linearly independent ุทูŠุจ ู…ุนู†ุงุชู‡
904
+
905
+ 227
906
+ 00:23:59,010 --> 00:24:04,710
907
+ ุงู„ุชู„ุงุชุฉ ู‡ุฏูˆู„ ุจูŠูƒู…ู„ูˆู„ูŠ ู…ู† the complete set of
908
+
909
+ 228
910
+ 00:24:04,710 --> 00:24:08,690
911
+ linearly independent elements ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ูŠุนู†ูŠ ููŠ
912
+
913
+ 229
914
+ 00:24:08,690 --> 00:24:14,810
915
+ ุบูŠุฑู‡ู…ุŸ ู…ุงููŠุด ุนู†ุฏูŠ ุบูŠุฑู‡ู…ุŒ ู‚ุฏุงุด ุนุฏุฏู‡ู…ุŸ ู‚ุฏุงุด ู†ุธุงู…
916
+
917
+ 230
918
+ 00:24:14,810 --> 00:24:20,800
919
+ ุงู„ูˆุตูˆูุฉุŸูŠุจู‚ู‰ ูŠุงุด ุงู„ู…ุตุญูˆูุฉ diagonalizable ุงุตู„ุง ุนู†
920
+
921
+ 231
922
+ 00:24:20,800 --> 00:24:25,780
923
+ ุงู„ู„ูŠ ู…ุฑุถู‰ ุงูˆ similar to a diagonal matrix ุงู„ุตูŠุบุฉ
924
+
925
+ 232
926
+ 00:24:25,780 --> 00:24:29,540
927
+ ู‡ุฐู‡ ูˆุงู„ุตูŠุบุฉ ู‡ุฐู‡ ุงู„ุงุชู†ูŠู† are the same ูŠุจู‚ู‰ ุจุงุฌูŠ
928
+
929
+ 233
930
+ 00:24:29,540 --> 00:24:34,860
931
+ ุจู‚ูˆู„ ู‡ุฏูˆู„ ูƒูˆู„ูˆู†ูŠ linearly independent element this
932
+
933
+ 234
934
+ 00:24:34,860 --> 00:24:46,690
935
+ means that the setุงู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ ูˆุงุญุฏ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ
936
+
937
+ 235
938
+ 00:24:46,690 --> 00:24:57,570
939
+ ุงุชู†ูŠู† ูˆุงุญุฏ ุฒูŠุฑูˆ ุชู„ุงุชุฉ ุฒูŠุฑูˆ ูˆุงุญุฏ is the complete
940
+
941
+ 236
942
+ 00:24:57,570 --> 00:25:05,050
943
+ set of eigen vectors
944
+
945
+ 237
946
+ 00:25:11,120 --> 00:25:18,700
947
+ ูŠุจู‚ู‰ sense ุจู…ุง ุงู† number of
948
+
949
+ 238
950
+ 00:25:18,700 --> 00:25:37,640
951
+ these vectors is three and the degree of the
952
+
953
+ 239
954
+ 00:25:38,390 --> 00:25:52,170
955
+ ู…ุงุชุฑูŠูƒุณ a is a3 ุงู„ a is diagonalizable
956
+
957
+ 240
958
+ 00:25:52,170 --> 00:25:58,430
959
+ ุงูŠุด ูŠุนู†ูŠ diagonalizable ูŠุนู†ูŠ ุงู„ a is similar to a
960
+
961
+ 241
962
+ 00:25:58,430 --> 00:26:04,190
963
+ diagonal ู‡ุฐุง ู…ุนู†ุงุชู‡ ุงู† ุงู„ a is similar
964
+
965
+ 242
966
+ 00:26:27,350 --> 00:26:35,370
967
+ ู…ุด ู‡ุฐุง ู…ุนู†ุงู‡ ูŠุง ุจู†ุงุชุŸุทูŠุจุŒ ุจุฏู†ุง ู†ุฌูŠ ู†ุดูˆู ู‡ุงู„ูƒู„ุงู…
968
+
969
+ 243
970
+ 00:26:35,370 --> 00:26:41,480
971
+ ู‡ุฐุง ุงู„ู„ูŠ ุงุญู†ุง ุจู†ู‚ูˆู„ู‡ ู‡ุฐุงู…ุงุฐุง ู‚ุงู„ู‡ุŸ ู‚ุงู„ ูŠูุณู‡ ุฅู† ูƒุงู†
972
+
973
+ 244
974
+ 00:26:41,480 --> 00:26:45,420
975
+ ุงู„ุฃู…ุฑ ูƒุฐุง ู„ูƒ ู‡ุงุชู„ ุงู„ matrix K and ุฅุฐุง ูŠุฌูˆู† ุงู„
976
+
977
+ 245
978
+ 00:26:45,420 --> 00:26:50,620
979
+ matrix ุฏูŠ ูู‡ูŠ ุชุจู‚ู‰ ุงู„ุนู„ุงู‚ุฉ ู‡ุฐู‡ ู…ุงู„ู‡ุง ุตุญูŠุญุฉ ูŠุจู‚ู‰
980
+
981
+ 246
982
+ 00:26:50,620 --> 00:26:54,760
983
+ ุงุญู†ุง ุจุฏู†ุง ู†ุฌูŠุจู„ู‡ K ูˆู†ุฌูŠุจ ุงู„ K and ุจุณ ุงู„ุญูŠู†
984
+
985
+ 247
986
+ 00:26:54,760 --> 00:27:01,020
987
+ ุงู„ูƒูŠุงุจุงู†ุงุช ู‡ูŠ ู…ู†ุŸ ู‡ูŠ ุงู„ู…ุตููˆูุฉ ุงู„ุนู†ุงุตุฑู‡ุง ู…ู†ุŸ ุนู†ุงุตุฑ
988
+
989
+ 248
990
+ 00:27:01,020 --> 00:27:08,470
991
+ ุงู„ eigenvectors ูŠุจู‚ู‰ ูˆุงุญุฏ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏุงุชู†ูŠู† ูˆุงุญุฏ
992
+
993
+ 249
994
+ 00:27:08,470 --> 00:27:16,030
995
+ ุฒูŠุฑูˆ ุชู„ุงุชุฉ ุฒูŠุฑูˆ ูˆุงุญุฏ ุจุฏู†ุง ู†ุฌูŠุจ ุงู„ู…ุนูƒูˆุณ ุชุจุนู‡ุง ู…ุดุงู†
996
+
997
+ 250
998
+ 00:27:16,030 --> 00:27:21,630
999
+ ู†ุฌูŠุจ ุงู„ู…ุนูƒูˆุณ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ ู…ูŠู† ุงู„ู…ุญุฏุฏ ูŠุจู‚ู‰ ู‡ุฐุง
1000
+
1001
+ 251
1002
+ 00:27:21,630 --> 00:27:29,360
1003
+ ุจุฏู‡ ูŠุนุทูŠู†ุง ุงู„ู…ุญุฏุฏ ุชุจุน ุงู„ู…ุตูˆูุฉ ูƒุฐุง ุจุฏู‡ ูŠุณุงูˆูŠุงู„ู„ูŠ ู‡ูˆ
1004
+
1005
+ 252
1006
+ 00:27:29,360 --> 00:27:35,380
1007
+ main ุงู„ู…ุญุฏุฏ ุชุจุน ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ ูˆุงุญุฏ ุฒูŠุฑูˆ
1008
+
1009
+ 253
1010
+ 00:27:35,380 --> 00:27:40,380
1011
+ ุณุงู„ุจ ูˆุงุญุฏ ุฒูŠุฑ ูˆุงุญุฏ ูˆูŠุณุงูˆูŠ
1012
+
1013
+ 254
1014
+ 00:27:42,730 --> 00:27:47,770
1015
+ ุจุชููƒุฑ ุงูŠุด ุฑุฃูŠูƒูˆุง ุจุงู„ุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุซุงู†ูŠ ุงูˆ
1016
+
1017
+ 255
1018
+ 00:27:47,770 --> 00:27:51,550
1019
+ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู„ุช ุงูˆ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุณูŠุงุฏ ู†ุงุฎุฏ ุงู„ุนู…ูˆุฏ
1020
+
1021
+ 256
1022
+ 00:27:51,550 --> 00:27:58,930
1023
+ ุงู„ุชุงู„ุช ูŠุจู‚ู‰ ู‡ุงูŠ ุชู„ุงุชุฉ ููŠู‡ ู†ุดุทุฉ ุจุตูู‡ ูˆ ุนู…ูˆุฏู‡ ุชู…ุงู…
1024
+
1025
+ 257
1026
+ 00:27:58,930 --> 00:28:04,950
1027
+ ุจุตูŠุฑ ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† ุงู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฉ ุงู„ุฅุดุงุฑุงุช
1028
+
1029
+ 258
1030
+ 00:28:04,950 --> 00:28:09,370
1031
+ ุจุฒูŠุฑู‡ ููŠ ู‚ุฏ ู…ุง ูŠูƒูˆู† ูŠูƒูˆู† ู…ุด ู…ุดูƒู„ุฉ ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ
1032
+
1033
+ 259
1034
+ 00:28:09,370 --> 00:28:18,160
1035
+ ู‚ุดุทุฉ ุจุตูู‡ู„ุฃ ุงุณุชู†ู‰ ุดูˆูŠุฉ ุณุทุจู†ุง ุตูู‡ ูˆ ุนู…ุถู‡ ุตูู‡ ูˆ ุนู…ุถู‡
1036
+
1037
+ 260
1038
+ 00:28:18,160 --> 00:28:20,460
1039
+ ูŠุฌูŠู‡ ุจุฌู‡ุฉ zero ุฒูŠุงุฏ ูˆุงุญุฏ
1040
+
1041
+ 261
1042
+ 00:28:22,770 --> 00:28:28,250
1043
+ ุฒุงุฆุฏ ูˆุงุญุฏ ุงู„ู„ูŠ ุจุนุฏ ูˆุงุญุฏ ู†ุดุทุจ ุตู ูˆุนู…ูˆุฏ ู„ูˆุงุญุฏ ู†ุงู‚ุต
1044
+
1045
+ 262
1046
+ 00:28:28,250 --> 00:28:36,110
1047
+ ุงุชู†ูŠู† ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุชู„ุงุชุฉ ูˆู‡ู†ุง ู†ุงู‚ุต
1048
+
1049
+ 263
1050
+ 00:28:36,110 --> 00:28:43,810
1051
+ ูˆุงุญุฏ ูˆูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ูˆูŠุณุงูˆูŠ ุงุชู†ูŠู† ุชู…ุงู…ุจุฏูŠ ุฃุฌูŠุจ ู„ู‡ ุงู„ู€K
1052
+
1053
+ 264
1054
+ 00:28:43,810 --> 00:28:50,450
1055
+ inverse ูŠุจู‚ู‰ ุงู„ู€K inverse ูˆูŠูˆ ุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ
1056
+
1057
+ 265
1058
+ 00:28:50,450 --> 00:28:58,630
1059
+ ุนู„ู‰ ุงู„ู…ุญุฏุฏ ูุงู‡ู…ูŠู†ุŸ ููŠู‡ ุจุฏูŠ ุฃุณุชุจุฏู„ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ูƒู„
1060
+
1061
+ 266
1062
+ 00:28:58,630 --> 00:29:04,650
1063
+ ุนู†ุตุฑ ููŠู‡ุง ุจุงู„ cofactor ุชุจุนู‡ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠุจ
1064
+
1065
+ 267
1066
+ 00:29:04,650 --> 00:29:09,810
1067
+ ู„ู„ูˆุงุญุฏุจุฏูŠ ุฃุดูŠู„ ุตูู‡ ูˆ ุนู…ูˆุฏู‡ุŒ ุจูŠุธู„ ูˆุงุญุฏ ู†ุฎุฒู†ู‡ ูƒู„ู‡
1068
+
1069
+ 268
1070
+ 00:29:09,810 --> 00:29:16,310
1071
+ ุจูˆุงุญุฏ ูˆ ุญุณุจ ู‚ุงุนุฉ ุงู„ุฅุดุงุฑุงุช ุดุฑุทู‡ ุจุงู„ู…ูˆุฌุฉ ู†ุฌูŠ ู„ุจุนุฏู‡ุŒ
1072
+
1073
+ 269
1074
+ 00:29:16,310 --> 00:29:21,370
1075
+ ู„ุฅุชู†ูŠู† ุญุณุจ ู‚ุงุนุฉ ุงู„ุฅุดุงุฑุงุช ุดุฑุทู‡ ุจู…ูŠู†ุŸ ุจุงู„ุณุงู„ู ู†ุดุทุจ
1076
+
1077
+ 270
1078
+ 00:29:21,370 --> 00:29:29,780
1079
+ ุตูู‡ ูˆ ุนู…ูˆุฏู‡ุŒ ุจูŠุตูŠุฑ ูˆุงุญุฏ ูู‚ุท ูƒุฐู„ูƒู†ุฌูŠ ู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ
1080
+
1081
+ 271
1082
+ 00:29:29,780 --> 00:29:35,800
1083
+ ู‚ุงุนุฏุฉ ุดุฑุนุชูŠ ุดุฑุทู‡ ุจุงู„ู…ูˆุฌุฉ ู†ุดุทู‡ ุจุตูู‡ ูˆ ุนู…ูˆุฏู‡ ุจูŠุตูŠุฑ
1084
+
1085
+ 272
1086
+ 00:29:35,800 --> 00:29:42,380
1087
+ zero ุฒูŠุฏ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุจูˆุงุญุฏ ุจุนุฏ ู‡ูŠูƒ ู†ุฌูŠ ู„ุตูู‡
1088
+
1089
+ 273
1090
+ 00:29:42,380 --> 00:29:49,040
1091
+ ุงู„ุซุงู†ูŠ ุจุฏูŠ ุฃุดูŠู„ ุงู„ู„ูŠ ุตูู‡ ูˆ ุนู…ูˆุฏู‡ ุจูŠุตูŠุฑ ุงุชู†ูŠู† ู†ุงู‚ุต
1092
+
1093
+ 274
1094
+ 00:29:49,040 --> 00:29:55,720
1095
+ ุชู„ุงุชุฉ ุจู‚ุฏุฑุด ุจุงุชู†ูŠู† ุจุฏูŠ ุฃุฌูŠ ู„ุนู†ุตุฑ ุงู„ู„ูŠ ุจุนุฏู‡ุทุจุนุง ู‡ุฐุง
1096
+
1097
+ 275
1098
+ 00:29:55,720 --> 00:30:00,160
1099
+ ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุฉ ุงู„ุดุฑุท ุงู„ุณุงู„ูŠ ุจูŠุจู†ู‰ ุชู…ุงู… ุงู„ู„ูŠ ุจู‚ู‰
1100
+
1101
+ 276
1102
+ 00:30:00,160 --> 00:30:04,820
1103
+ ุฏู‡ ุงู„ุดุฑุท ู…ูˆุฌุจู‡ ูŠุจู‚ู‰ ุฏู‡ ุดูŠู„ ุตูู‡ ูˆ ุนู…ูˆุฏู‡ ุจุตูŠุฑ ูˆุงุญุฏ
1104
+
1105
+ 277
1106
+ 00:30:04,820 --> 00:30:12,370
1107
+ ู†ุงู‚ุต ุซู„ุงุซุฉ ูŠุนู†ูŠ ุฒุงุฆุฏ ุชู„ุงุชุฉ ุงู„ู„ูŠ ุจู‚ู‰ ูƒุฏู‡ุด ู‚ู„ู†ุงุนุดุงู†
1108
+
1109
+ 278
1110
+ 00:30:12,370 --> 00:30:17,670
1111
+ ู†ุดูŠู„ ู‡ุฐุง ูŠุจู‚ู‰ ุงุดูŠู„ู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ูˆุงุญุฏ ุฒุงุฆุฏ ุชู„ุงุชุฉ ุงู„ู„ูŠ
1112
+
1113
+ 279
1114
+ 00:30:17,670 --> 00:30:22,130
1115
+ ู‡ูˆ ุจู‚ุฏุงุด ุงุฑุจุนุฉ ู‡ุฐุง ุญุณุจ ู‚ุงุนุฏ ุงู„ุฅุดุงุฑุงุช ุดุฑุท ุจูŠู†
1116
+
1117
+ 280
1118
+ 00:30:22,130 --> 00:30:28,810
1119
+ ุจุงู„ุณุงู„ู… ู†ุดุท ุจุตูู‡ ูˆ ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ zero ุฒุงุฆุฏูŠ ุงุชู†ูŠู†
1120
+
1121
+ 281
1122
+ 00:30:28,810 --> 00:30:32,950
1123
+ ุงู„ู„ูŠ ู‡ูˆ ุจู‚ุฏุงุด ุจู†ุงู‚ุต ุงุชู†ูŠู† ู†ุฌูŠ ู„ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฏ
1124
+
1125
+ 282
1126
+ 00:30:32,950 --> 00:30:38,050
1127
+ ุงู„ุฅุดุงุฑุงุช ุดุฑุท ุจุงู„ู…ูˆุฌุฉ ุงุดุท ุจุตูู‡ ูˆ ุนู…ูˆุฏู‡ zero ู†ุงู‚ุต
1128
+
1129
+ 283
1130
+ 00:30:38,050 --> 00:30:45,400
1131
+ ุชู„ุงุชุฉ ู†ุฌูŠ ู„ู„ูŠ ุจุนุฏู‡ุงู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช
1132
+
1133
+ 284
1134
+ 00:30:45,400 --> 00:30:51,680
1135
+ ุดุฑุทู‡ ุณุงู„ุจ ูŠุจู‚ู‰ ูŠุณุงู„ุจ ู†ุดุท ุจุตูู‡ ูˆ ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ zero
1136
+
1137
+ 285
1138
+ 00:30:51,680 --> 00:30:57,420
1139
+ ู†ุงู‚ุต ุชู„ุงุชุฉ ุจุงู„ุตูŠุฑ ุฒุงุฆุฏ ุชู„ุงุชุฉ ุงู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฏุฉ
1140
+
1141
+ 286
1142
+ 00:30:57,420 --> 00:31:01,840
1143
+ ุงู„ุฅุดุงุฑุงุช ุดุฑุทู‡ ู…ูˆุฌุจุฉ ู†ุดุท ุจุตูู‡ ูˆ ุนู…ูˆุฏู‡ ุจุตูŠุฑ ูˆุงุญุฏ
1144
+
1145
+ 287
1146
+ 00:31:01,840 --> 00:31:06,300
1147
+ ู†ุงู‚ุต ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุดุฑ ุจู†ุงู‚ุต ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
1148
+
1149
+ 288
1150
+ 00:31:06,300 --> 00:31:15,580
1151
+ ุนู†ุฏู†ุง ุฃู†ุง ุจุฏูŠ ุฃุฌูŠุจ ู„ู‡ D ูŠุจู‚ู‰ Dุจุฏุง ุชุณุงูˆูŠ K inverse
1152
+
1153
+ 289
1154
+ 00:31:15,580 --> 00:31:22,780
1155
+ ุงูŠ K ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู†ุต ูˆ ู‡ู†ุง
1156
+
1157
+ 290
1158
+ 00:31:22,780 --> 00:31:28,040
1159
+ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ุงุฑุจุนุฉ ุณุงู„ุจ ุงุชู†ูŠู†
1160
+
1161
+ 291
1162
+ 00:31:28,040 --> 00:31:33,480
1163
+ ุณุงู„ุจ ุชู„ุงุชุฉ ุชู„ุงุชุฉ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ู…ูŠู†ุŸ ููŠ ุงูŠู‡ุŸ ุฑุงุณ
1164
+
1165
+ 292
1166
+ 00:31:33,480 --> 00:31:39,440
1167
+ ุงู„ู…ุณุฃู„ุฉ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆ ู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ุงุฑุจุนุฉ
1168
+
1169
+ 293
1170
+ 00:31:39,700 --> 00:31:47,760
1171
+ ุชู„ุงุชุฉ ูˆ ู‡ู†ุง ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ููŠ ู…ูŠู† ููŠ ุงู„
1172
+
1173
+ 294
1174
+ 00:31:47,760 --> 00:31:54,820
1175
+ K ุงู„ K ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ ูˆุงุญุฏ ุฒูŠุฑูˆ
1176
+
1177
+ 295
1178
+ 00:31:54,820 --> 00:32:01,570
1179
+ ุณุงู„ุจ ูˆุงุญุฏ ุฒูŠุฑูˆ ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงูƒุฏุงุด
1180
+
1181
+ 296
1182
+ 00:32:01,570 --> 00:32:09,730
1183
+ ุชุชูˆู‚ุน ูŠูƒูˆู† ุงู„ู†ุชูŠุฌุฉุŸ Zero ุงุชู†ูŠู† ุงุชู†ูŠู† ูˆ ุงู„ุจุงู‚ูŠ ูŠุจู‚ู‰
1184
+
1185
+ 297
1186
+ 00:32:09,730 --> 00:32:16,050
1187
+ ุฃุณูู„ ูŠุจู‚ู‰ ู‡ุฐุง ูŠูƒูˆู† ุงู„ู…ุตูˆูุฉ ุงู„ู‚ุทุฑูŠุฉ ุงู„ุชุงู„ูŠุฉ Zero ูˆ
1188
+
1189
+ 298
1190
+ 00:32:16,050 --> 00:32:24,330
1191
+ ู‡ู†ุง Zero Zero Zero ุงุชู†ูŠู† Zero Zero ุงุชู†ูŠู†ู„ูŠุณ ู„ุงู†ุฏุง
1192
+
1193
+ 299
1194
+ 00:32:24,330 --> 00:32:27,670
1195
+ ุทู„ุนุช ู‡ู†ุฏู… Zero ูˆ ู„ุงู†ุฏุง ุทู„ุนุช ู‡ู†ุฏู… ุงุชู†ูŠู† ูˆ ุงุชู†ูŠู†
1196
+
1197
+ 300
1198
+ 00:32:27,670 --> 00:32:32,350
1199
+ ูŠุจู‚ู‰ ู‡ุงูŠ ุนู†ุงุตุฑ ู‚ุท ุฑุฆูŠุณูŠ ุงู„ diagonal matrix ุงู„ู„ูŠ
1200
+
1201
+ 301
1202
+ 00:32:32,350 --> 00:32:36,310
1203
+ ูŠู‚ูˆู„ู†ุง ุนู„ูŠู‡ุง ุงู„ diagonal ุฏูŠ ูŠุจู‚ู‰ ุจุฑุงุญุชูƒ ุชุฑูˆุญ ุชุถุฑุจ
1204
+
1205
+ 302
1206
+ 00:32:36,310 --> 00:32:40,730
1207
+ ู‡ุฏูˆู„ ู…ุตููุงุช ููŠ ุจุนุถ ููŠ ุจูŠุชูƒ ูˆ ุงู„ู†ุงุชุฌ ู‡ูŠ ู…ุงุนุทูŠู†ูƒ
1208
+
1209
+ 303
1210
+ 00:32:40,730 --> 00:32:44,410
1211
+ ุฅูŠุงู‡ ุฅุฐุง ุทู„ุน ุบู„ุท ูŠุจู‚ู‰ ุบู„ุท ุนู„ูŠู†ุง ู…ุด ุนู„ูŠูƒ ุฃูˆ ุนู„ูŠูƒ
1212
+
1213
+ 304
1214
+ 00:32:44,410 --> 00:32:48,630
1215
+ ุฅุฐุง ุจุชุถุฑุจ ุบู„ุท ู„ูƒู† ุนู†ุฏู†ุง ุงุญู†ุง ู…ุงุนุทูŠู†ูƒ ุงู„ุฌูˆุงุจ ุจุฏูƒ
1216
+
1217
+ 305
1218
+ 00:32:48,630 --> 00:32:52,270
1219
+ ุชุถุฑุจู‡ ูˆ ุงู„ู†ุงุชุฌ ู‡ูŠู‡ ุนู†ุฏูƒ ููŠ ูˆุงุญุฏุฉ ุฃุจู†ุงุก ู…ุงุณุฌู„ุชุด
1220
+
1221
+ 306
1222
+ 00:32:52,270 --> 00:32:52,930
1223
+ ุงุณู…ู‡ุง ู‡ู†ุง
1224
+
1225
+ 307
1226
+ 00:32:56,050 --> 00:33:04,170
1227
+ ุทูŠุจ ู†ู†ุชู‚ู„ ุฅู„ู‰ ู…ุซุงู„ ูŠุฎุชู„ู ุนู† ู‡ุฐุง ู†ูˆุนุง ู…ุง ู„ูƒู†ู‡ ู…ุฑุชุจุท
1228
+
1229
+ 308
1230
+ 00:33:04,170 --> 00:33:11,030
1231
+ ู…ุนู‡ ุงุฑุชุจุงุทุง ู‡ุฐุง ุงู„ู…ุซุงู„ ุฌุจุชู‡ ู†ุธุฑูŠ ู…ู† ุฎู„ุงู„ ุฃุณุฆู„ุฉ
1232
+
1233
+ 309
1234
+ 00:33:11,030 --> 00:33:18,830
1235
+ ุงู„ุชู…ุฑูŠู† ูˆู‡ูˆ ุณุคุงู„ 16 ููŠ ุงู„ุชู…ุฑูŠู† ุชุจุน ุงู„ section 4-3
1236
+
1237
+ 310
1238
+ 00:33:18,830 --> 00:33:21,310
1239
+ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ
1240
+
1241
+ 311
1242
+ 00:33:30,400 --> 00:33:39,760
1243
+ ูŠุจู‚ู‰ example ุฎู…ุณุฉ ู„ู‡ ุณุคุงู„ ุณุชุฉ ุนุดุฑ ู…ู† ุงู„ูƒุชุงุจ ุจูŠู‚ูˆู„
1244
+
1245
+ 312
1246
+ 00:33:39,760 --> 00:33:53,260
1247
+ if ุงู„ A and ุงู„ B are similar matrices
1248
+
1249
+ 313
1250
+ 00:33:53,260 --> 00:34:11,520
1251
+ matrices so thatุจุญูŠุซ ุงู† ุงู„ B ุชุณุงูˆูŠ ุงู„ K inverse ุงูƒ
1252
+
1253
+ 314
1254
+ 00:34:11,520 --> 00:34:16,420
1255
+ show
1256
+
1257
+ 315
1258
+ 00:34:16,420 --> 00:34:20,720
1259
+ that ุจูŠู‘ู„ูŠ
1260
+
1261
+ 316
1262
+ 00:34:20,720 --> 00:34:35,330
1263
+ ุงู† ุงู„ X is Ais an eigen vector
1264
+
1265
+ 317
1266
+ 00:34:35,330 --> 00:34:51,530
1267
+ of a if and only if ุงู„ K inverse X is an eigen
1268
+
1269
+ 318
1270
+ 00:34:51,530 --> 00:34:54,730
1271
+ vector
1272
+
1273
+ 319
1274
+ 00:34:56,190 --> 00:35:02,050
1275
+ ู‡ูˆ ุงูŠุฌู† ููŠูƒุชุฑ ุจูŠ
1276
+
1277
+ 320
1278
+ 00:35:41,120 --> 00:35:47,340
1279
+ ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู†ุช ุงู„ A ูˆ ุงู„ B
1280
+
1281
+ 321
1282
+ 00:35:47,340 --> 00:35:52,440
1283
+ are similar matrices ุทุจุนุง ุงุญู†ุง ุฃุฎุฏู†ุง ุนู„ุงู‚ุฉ ุงู„ู…ุฑุฉ
1284
+
1285
+ 322
1286
+ 00:35:52,440 --> 00:35:57,020
1287
+ ู‚ุจู„ ุงู„ู…ุงุถูŠ ู„ูˆ ูƒุงู† A similar to B ูŠุจู‚ู‰ B similar to
1288
+
1289
+ 323
1290
+ 00:35:57,020 --> 00:36:00,980
1291
+ A ูˆ ุฃุซุจุชู†ุงู‡ุง ู…ุธุจูˆุท ูŠุจู‚ู‰ ุงู„ุฃู† ุฌู„ุฏุชูŠู† ู‡ุฏูˆู„ are
1292
+
1293
+ 324
1294
+ 00:36:00,980 --> 00:36:08,170
1295
+ similarูŠุนู†ูŠ ุงูŠู‡ุŸ ูŠุนู†ูŠ ุงู† ุงู„ู€P ุจุฏู‰ ูŠุณูˆูŠ K inverse
1296
+
1297
+ 325
1298
+ 00:36:08,170 --> 00:36:14,750
1299
+ AK ุทูŠุจ ุฃุตุจุญุช ู‡ุฐู‡ ู…ุนู„ูˆู…ุฉ ุนู†ุฏู†ุง ุจูŠู‚ูˆู„ ุดูˆูŠุฉ ุจูŠู‡ ู„ุฅู†
1300
+
1301
+ 326
1302
+ 00:36:14,750 --> 00:36:19,790
1303
+ ุงู„ X is an eigen value ู„ A ุฅูŠู‡ ูู†ุฏู‚ูˆู„ ุฅุฐุง K
1304
+
1305
+ 327
1306
+ 00:36:19,790 --> 00:36:25,730
1307
+ inverse X is an eigen vector ู„ A ุฅูŠู‡ ูู†ุฏู‚ูˆู„ ุฅุฐุง K
1308
+
1309
+ 328
1310
+ 00:36:25,730 --> 00:36:30,450
1311
+ inverse X is an eigen vector ู„ู…ูŠู† ู„ุจูŠู† ูŠุจู‚ู‰ ู‡ุฐุง
1312
+
1313
+ 329
1314
+ 00:36:30,450 --> 00:36:34,960
1315
+ ุณุคุงู„ ูˆุงู„ู„ู‡ ุณุคุงู„ูŠู†ุณุคุงู„ูŠู† ุจุฏู‰ ุงู…ุดูƒ ูˆุงุญุฏ ูˆุงุตู„ู‡ ู„ู…ูŠู†
1316
+
1317
+ 330
1318
+ 00:36:34,960 --> 00:36:39,240
1319
+ ู„ู„ุซุงู†ู‰ ูˆ ุจุนุฏูŠู† ุงู…ุดูƒ ุงู„ุซุงู†ู‰ ูˆุงุตู„ู‡ ู„ู…ูŠู† ู„ู„ุฃูˆู„ ุงู„ุณุจุจ
1320
+
1321
+ 331
1322
+ 00:36:39,240 --> 00:36:44,560
1323
+ ูƒู„ู…ุฉ if and only if ุฏู‡ ูŠุจู‚ู‰ ุงู„ุขู† ุจุฏุงุฌูŠ ุจุงู„ุฎุทูˆุฉ
1324
+
1325
+ 332
1326
+ 00:36:44,560 --> 00:36:58,390
1327
+ ุงู„ุฃูˆู„ู‰ let ุงู„ a be similar to b thenThere exists a
1328
+
1329
+ 333
1330
+ 00:36:58,390 --> 00:37:11,750
1331
+ non-zero matrix K such that ุจุญูŠุซ ุฃู† ุงู„ู€ B ุจุฏู‡
1332
+
1333
+ 334
1334
+ 00:37:11,750 --> 00:37:20,410
1335
+ ูŠุณุงูˆูŠ ุงู„ู€ K inverse AK ุงู„ู…ุนุทู‰ูŠุจู‚ู‰ ุญุชู‰ ู„ุงู† ุงู†ุง ุจุณ
1336
+
1337
+ 335
1338
+ 00:37:20,410 --> 00:37:27,450
1339
+ ุงุชุฌู…ุฏ ุงู„ุดูŠ ุงู„ู…ู‚ุทุน ุนู†ุฏูŠ ุฎุทูˆุฉ ุชุงู†ูŠุฉ ุจุฏูŠ ุงูุชุฑุถ ุงู† X
1340
+
1341
+ 336
1342
+ 00:37:27,450 --> 00:37:33,910
1343
+ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุนู† Eigen vector ู„ู…ู† ู„ู„ู…ุตููˆู A ูŠุจู‚ู‰ ุง
1344
+
1345
+ 337
1346
+ 00:37:33,910 --> 00:37:43,590
1347
+ assume that ุงู† X is an Eigen vector
1348
+
1349
+ 338
1350
+ 00:37:47,640 --> 00:38:00,920
1351
+ for the matrix for the matrix A then ุงูŠุด ูุฑุถู†ุง ุงู†
1352
+
1353
+ 339
1354
+ 00:38:00,920 --> 00:38:08,220
1355
+ ุงู„ X ู‡ูŠ eigen vector ู„ู…ูŠู† ู„ู‡ุฐู‡ ุงูŠุด ูŠุนู†ูŠ ู…ุนู†ุงู‡ุง ุงูŠุด
1356
+
1357
+ 340
1358
+ 00:38:08,220 --> 00:38:12,800
1359
+ ูŠุนู†ูŠ ู…ุนู†ุงู‡ุง ุงู† ุงู„ X ู‡ูŠ eigen vector ู„ A ูŠุนู†ูŠ ู„ูˆ
1360
+
1361
+ 341
1362
+ 00:38:12,800 --> 00:38:15,240
1363
+ ุถุฑุจุช ุงู„ A ููŠ ุงู„ X ุงูŠุด ุจุฏูŠ ูŠุทู„ุน ู„ูŠู‡
1364
+
1365
+ 342
1366
+ 00:38:19,660 --> 00:38:24,580
1367
+ ุชุนุฑูŠู ุงู„ู€ eigen vector ูˆ ุงู„ eigen value ุดุจุชุฑ
1368
+
1369
+ 343
1370
+ 00:38:24,580 --> 00:38:32,700
1371
+ section 4-1 ุฃูˆู„ ุชุนุฑูŠู ุฃุฎุฏู†ุงู‡ ุฅูŠุด ูŠุนู†ูŠุŸ ูŠุนู†ูŠ ู‡ู„ุงุฌูŠ
1372
+
1373
+ 344
1374
+ 00:38:32,700 --> 00:38:38,360
1375
+ ุนุฏุฏ ุงู„ู€ scalar ู„ุฃู† ุฏู‡ ู…ุถุฑูˆู x ุจุฏูŠ ูŠุณูˆูŠ x ุงู„ุดุฑูƒุฉ
1376
+
1377
+ 345
1378
+ 00:38:38,360 --> 00:38:43,690
1379
+ ุฃุฎุฏู†ุง ุงู„ุชุนุฑูŠูุŸูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ x is an eigen value
1380
+
1381
+ 346
1382
+ 00:38:43,690 --> 00:38:56,190
1383
+ then ุงู„ ax ุจุฏู‡ ุณุงูˆูŠ lambda x for some real lambda
1384
+
1385
+ 347
1386
+ 00:38:56,190 --> 00:38:58,770
1387
+ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ 6 real number
1388
+
1389
+ 348
1390
+ 00:39:01,740 --> 00:39:05,920
1391
+ ูŠุจู‚ู‰ ู‡ู„ุงู‚ูŠ ู…ุงุฏุงู… ู‡ุฐุง eigenvector ู‡ูˆ ุจูŠุฌูŠุด ุงู„
1392
+
1393
+ 349
1394
+ 00:39:05,920 --> 00:39:09,340
1395
+ eigenvector ุฅู„ุง ุฅุฐุง ูƒุงู† ุนู†ุฏูŠ eigenvalue ุตุญูŠุญ ูˆู„ุง
1396
+
1397
+ 350
1398
+ 00:39:09,340 --> 00:39:12,800
1399
+ ู„ุฃ ุทูŠุจ ู…ุงุฏุงู… ุนู†ุฏูŠ eigenvalue ู…ุงุฏุงู… ุนู†ุฏูŠ
1400
+
1401
+ 351
1402
+ 00:39:12,800 --> 00:39:15,380
1403
+ eigenvector ุฅูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ุงุตู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ eigenvalue
1404
+
1405
+ 352
1406
+ 00:39:15,380 --> 00:39:22,120
1407
+ ุงู„ู„ูŠ ู‡ูˆ lambda X ู…ุด lambda I lambda X ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
1408
+
1409
+ 353
1410
+ 00:39:22,120 --> 00:39:26,460
1411
+ ุนู†ุฏู†ุงูŠุจู‚ู‰ ุงู„ AX ุจุฏูŠู‡ ูŠุณูˆูŠ ู…ูŠู†ุŸ ุจุฏูŠู‡ ูŠุณูˆูŠ ู„ุงู†ุฏุง X
1412
+
1413
+ 354
1414
+ 00:39:26,460 --> 00:39:32,880
1415
+ for some real ุงู„ู„ูŠ ู‡ูˆ ู„ุงู†ุฏุง ุฃูˆ for some ุจู„ุงุด ูƒู„ู…ุฉ
1416
+
1417
+ 355
1418
+ 00:39:32,880 --> 00:39:38,540
1419
+ real ู„ุฃู†ู‡ู… ูƒุฑุฑูˆุง ู…ุฑุชูŠู† ุจุงู„ุตุฑูŠุญุฉ X for some ู„ุงู†ุฏุง
1420
+
1421
+ 356
1422
+ 00:39:38,540 --> 00:39:44,280
1423
+ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ set of real numbersูŠุจู‚ู‰ ู‡ุฐู‡
1424
+
1425
+ 357
1426
+ 00:39:44,280 --> 00:39:49,460
1427
+ ุงู„ู…ุนู„ูˆู…ุฉ ุฃุฎุฏุชู‡ุง ู…ู† ุงู„ูุฑุถ ุทุจ ุจุฏูŠ ุฃุดูˆู ุฅูŠุด ุงู„ู„ูŠ ุจุฏูŠ
1428
+
1429
+ 358
1430
+ 00:39:49,460 --> 00:39:54,140
1431
+ ุฅูŠุงู‡ ุฅูŠุด ุจูŠู‚ูˆู„ู„ูŠ ุจูŠู‚ูˆู„ู„ูŠ ุฃุซุจุชู„ูŠ ุฅู† ู‡ุฐุง ู‡ูˆ
1432
+
1433
+ 359
1434
+ 00:39:54,140 --> 00:40:00,760
1435
+ eigenvector ู„ู…ุงู… ู„ B ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช ุฅู† ุญุตู„ ุถุฑุจ ู‡ุฐุง
1436
+
1437
+ 360
1438
+ 00:40:00,760 --> 00:40:07,540
1439
+ ููŠ B ุจุฏูŠ ุฃุณุงูˆูŠ scalar ููŠ ุงู„ X ุตุญูŠุญ ูˆู„ุง ู„ุฃ ุทูŠุจ
1440
+
1441
+ 361
1442
+ 00:40:07,540 --> 00:40:09,880
1443
+ ุจุฏุงุฌูŠ ุฃู‚ูˆู„ู‡ ุงู„ุขู† consider
1444
+
1445
+ 362
1446
+ 00:40:13,970 --> 00:40:19,370
1447
+ ุฎูุฏ ู„ูŠ ุจุฏูŠ ุฃุซุจุช ุฅู† ู‡ุฐุง is an eigenvector ูŠุจู‚ู‰ ุจุฏูŠ
1448
+
1449
+ 363
1450
+ 00:40:19,370 --> 00:40:25,110
1451
+ ุฃุฎุฏ ู„ู…ูŠู† ู„ูŠ ุจูŠู‡ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎุฏ ุจูŠู‡ ููŠ ู…ูŠู† ููŠ ุงู„ K
1452
+
1453
+ 364
1454
+ 00:40:25,110 --> 00:40:26,670
1455
+ inverse X
1456
+
1457
+ 365
1458
+ 00:40:30,270 --> 00:40:36,190
1459
+ ู‡ู‡ ู…ุด ู‡ุฐู‡ ู‡ู†ุง ax ุจุฏูŠ ุงุซุจุช ุงู† ๏ฟฝ๏ฟฝู„ b ููŠ ุงู„ k inverse
1460
+
1461
+ 366
1462
+ 00:40:36,190 --> 00:40:42,510
1463
+ x ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุฑู‚ู… ู…ุถุฑูˆุจ ููŠ x ุงู†ุทู„ุน ู‡ุฐุง ุงู„ุฑู‚ู… ุจุตูŠุฑ
1464
+
1465
+ 367
1466
+ 00:40:42,510 --> 00:40:47,750
1467
+ ู‡ุฐุง ู‡ูˆ eigen vector ุตุญูŠุญ ูˆู„ุง ู„ุฃ ุทูŠุจ ู…ุงุดูŠ ุงู„ุญุงู„
1468
+
1469
+ 368
1470
+ 00:40:47,750 --> 00:40:53,970
1471
+ ูŠุจู‚ู‰ ุจุงุฌูŠ ุงู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุทู„ุนูŠู„ูŠ ู‡ู†ุง ู‡ุฐู‡
1472
+
1473
+ 369
1474
+ 00:40:55,360 --> 00:41:01,500
1475
+ ุฃู†ุง ุนู†ุฏ ู…ูŠู†ุŸ ุนู†ุฏ ุจูŠ ุจุฏู‡ ุชุณุงูˆูŠ K inverse AK ุฅุฐุง
1476
+
1477
+ 370
1478
+ 00:41:01,500 --> 00:41:08,500
1479
+ ุจู‚ุฏุฑ ุฃุดูŠู„ ุงู„ B ูˆ ุฃูƒุชุจ ุจุฏู„ู‡ุง K inverse AK ูŠุจู‚ู‰ ุจู‚ุฏุฑ
1480
+
1481
+ 371
1482
+ 00:41:08,500 --> 00:41:17,360
1483
+ ุฃู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ K inverse AK ุงู„ุดูƒู„ ุงู„ู„ูŠ
1484
+
1485
+ 372
1486
+ 00:41:17,360 --> 00:41:22,480
1487
+ ุนู†ุฏู†ุง ู‡ู†ุง ูƒู„ู‡ ู…ุถุฑูˆุจ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ K inverse X
1488
+
1489
+ 373
1490
+ 00:41:22,480 --> 00:41:28,940
1491
+ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงุฎุงุตูŠุฉ ุงู„ associative ุตุญูŠุญุฉ ุนู„ู‰
1492
+
1493
+ 374
1494
+ 00:41:28,940 --> 00:41:35,300
1495
+ ู…ู†ุŸ ุนู„ู‰ ุงู„ู…ุตููˆูุงุช ูˆ ุฏูˆู„ ูƒู„ู‡ู… ู…ุตููˆูุงุช ุงู„ X ูˆ ุงู„ A ูˆ
1496
+
1497
+ 375
1498
+ 00:41:35,300 --> 00:41:39,980
1499
+ ุงู„ K ูˆ ุงู„ K inverse ูƒู„ู‡ู… ู…ุตููˆูุงุช ุงุฐุง ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ุฐุง
1500
+
1501
+ 376
1502
+ 00:41:39,980 --> 00:41:49,460
1503
+ ุงู„ูƒู„ุงู… K inverse A ูˆ ู‡ู†ุง K ููŠ ุงู„ K inverse ููŠ ู…ูŠู†ุŸ
1504
+
1505
+ 377
1506
+ 00:41:49,460 --> 00:41:57,970
1507
+ ููŠ ุงู„ XูƒูŠู ุงู„ูƒูŠ ุงู†ูุฑุณ ุจู…ูŠู†ุŸ ุจุงู„ identity ุงู„
1508
+
1509
+ 378
1510
+ 00:41:57,970 --> 00:42:05,330
1511
+ identity matrix ู†ูุณ ุงู„ matrix ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง
1512
+
1513
+ 379
1514
+ 00:42:05,330 --> 00:42:14,090
1515
+ ุงู† ูƒ ุงู†ูุฑุณ ุงูƒุณ ูƒูŠูุŸ
1516
+
1517
+ 380
1518
+ 00:42:15,500 --> 00:42:20,800
1519
+ ู‡ุงู„ุญูŠู† ุจุฏู‡ ุงุฌูŠู„ ุงู„ AX ุงู„ AX ู‡ูŠ ู‡ู… ุงุนุทุงู‡ุง ุจู‚ุฏุฑ
1520
+
1521
+ 381
1522
+ 00:42:20,800 --> 00:42:25,700
1523
+ ุงุดูŠู„ู‡ุง ูˆ ุงุญุท ู…ูƒุงู†ู‡ุง ู…ุงู„ู‡ุง ู„ุงู†ุฏุง X ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
1524
+
1525
+ 382
1526
+ 00:42:25,700 --> 00:42:31,000
1527
+ ุจุฏู‡ ูŠุณุงูˆูŠ AX
1528
+
1529
+ 383
1530
+ 00:42:31,000 --> 00:42:36,640
1531
+ ุจุฏู‡ ูŠุณุงูˆูŠ K inverse ุฒูŠ ู…ุง ู‡ูŠ ูˆู‡ุฐู‡ ุจุฏู‡ ุงุดูŠู„ู‡ุง ูˆ
1532
+
1533
+ 384
1534
+ 00:42:36,640 --> 00:42:44,400
1535
+ ุงูƒุชุจ ุจุฏุงู„ู‡ุง ู„ุงู†ุฏุง X ู„ุงู†ุฏุง scalar ูˆุงู„ู„ู‡ matrixูŠุจู‚ู‰
1536
+
1537
+ 385
1538
+ 00:42:44,400 --> 00:42:48,220
1539
+ ุจู‚ุฏุฑ ุฃุทู„ุนู‡ ุจุฑุงุŒ ู…ุงู„ู‡ูˆุด ุฏุนูˆุฉุŒ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุฅุฐุง ู‡ุฐุง
1540
+
1541
+ 386
1542
+ 00:42:48,220 --> 00:42:56,190
1543
+ ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ lambda ุจุฑุง ููŠ K inverse Xุทู„ุนู„ูŠ
1544
+
1545
+ 387
1546
+ 00:42:56,190 --> 00:43:01,730
1547
+ ุจูŠุด ุจุฏุฃุช ุจุฏุฃุช ุจู…ุตููˆูุฉ ููŠ ู…ุตููˆูุฉ ุชุงู†ูŠุฉ ู„ุฌูŠุชู‡ุง
1548
+
1549
+ 388
1550
+ 00:43:01,730 --> 00:43:06,330
1551
+ scalar ููŠ ู†ูุณ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงูŠุด ู…ุนู†ุงู‡ ู…ุด
1552
+
1553
+ 389
1554
+ 00:43:06,330 --> 00:43:11,190
1555
+ ู‡ูŠ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฒูŠ ู‡ุฐู‡ ุจุงู„ุถุจุท ุชู…ุงู…ุง
1556
+
1557
+ 390
1558
+ 00:43:11,190 --> 00:43:16,790
1559
+ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงุชู‡ ุงูŠู‡ ุงูŠุด ุงู†ู‡ k inverse x is an
1560
+
1561
+ 391
1562
+ 00:43:16,790 --> 00:43:22,280
1563
+ eigen vector ุงูŠุด ู‡ูˆ ู‚ุงู„ ุงู„ู„ูŠ ู‡ู†ุงู‡ุฐุง ู‡ูˆ eigenvector
1564
+
1565
+ 392
1566
+ 00:43:22,280 --> 00:43:32,220
1567
+ ู„ู…ู†ุŸ ู„ B ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ K inverse X is an
1568
+
1569
+ 393
1570
+ 00:43:32,220 --> 00:43:37,480
1571
+ eigenvector
1572
+
1573
+ 394
1574
+ 00:43:37,480 --> 00:43:50,210
1575
+ for the matrix Bุฎู„ุตู†ุง ู„ุงุชุฌุงู‡ ุงู„ุฃูˆู„ ู„ุงุชุฌุงู‡
1576
+
1577
+ 395
1578
+ 00:43:50,210 --> 00:43:55,730
1579
+ ุงู„ุซุงู†ูŠ ุงู„ู…ุนุงูƒุณ conversely
1580
+
1581
+ 396
1582
+ 00:43:55,730 --> 00:44:02,590
1583
+ ุงูŠุด ูŠุนู†ูŠ conversely assume that
1584
+
1585
+ 397
1586
+ 00:44:02,590 --> 00:44:13,490
1587
+ ุงูุฑุถ ุงู† ุงู„ K inverse X is an eigen value
1588
+
1589
+ 398
1590
+ 00:44:14,320 --> 00:44:23,160
1591
+ for the matrix B
1592
+
1593
+ 399
1594
+ 00:44:23,160 --> 00:44:39,120
1595
+ ุจุฏุง ุงุชุฑุฌู… ู‡ุฐุง ุนู…ู„ูŠุง then there exist a number ุณู…ูŠู‡
1596
+
1597
+ 400
1598
+ 00:44:39,120 --> 00:44:45,140
1599
+ ู„ู†ุฏู† ูˆุงู† ุนู„ุดุงู† ู†ู…ูŠุฒู‡ ุนู„ู‰ ุงู„ุงูˆู„ ู„ู†ุฏู† ูˆุงู† ู…ุซู„ุงุงู„ุฑู‚ู…
1600
+
1601
+ 401
1602
+ 00:44:45,140 --> 00:44:48,780
1603
+ ุงู„ู„ูŠ ุจุฏูƒูŠู‡ ูŠุณู…ู‰ alpha ุฃูŠ ุฑู‚ู… ุงู„ู„ูŠ ุจุฏูƒูŠู‡ ูŠุณู…ู‰
1604
+
1605
+ 402
1606
+ 00:44:48,780 --> 00:44:51,780
1607
+ ุงู„ู†ุงู…ุจุฑ ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ
1608
+
1609
+ 403
1610
+ 00:44:51,780 --> 00:44:52,760
1611
+ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
1612
+
1613
+ 404
1614
+ 00:44:52,760 --> 00:44:53,860
1615
+ ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
1616
+
1617
+ 405
1618
+ 00:44:53,860 --> 00:44:57,280
1619
+ ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
1620
+
1621
+ 406
1622
+ 00:44:57,280 --> 00:44:58,160
1623
+ ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
1624
+
1625
+ 407
1626
+ 00:44:58,160 --> 00:44:58,180
1627
+ ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
1628
+
1629
+ 408
1630
+ 00:44:58,180 --> 00:44:58,600
1631
+ ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
1632
+
1633
+ 409
1634
+ 00:44:58,600 --> 00:45:01,940
1635
+ ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช
1636
+
1637
+ 410
1638
+ 00:45:01,940 --> 00:45:13,000
1639
+ ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุช ุงู„ูˆุงุญุฏ ููŠ ุงู„ุณุชููŠ ุงู„ K inverse X ุจุฏู‡
1640
+
1641
+ 411
1642
+ 00:45:13,000 --> 00:45:21,490
1643
+ ูŠุณุงูˆูŠ Lambda 1 ุจุงู„ X ู‡ุงูŠ ุทุจู‚ุช ุงู„ุชุนุฑูŠูุงู„ู„ูŠ ุฃู†ุง ุฅูŠุด
1644
+
1645
+ 412
1646
+ 00:45:21,490 --> 00:45:27,710
1647
+ ุจู‚ูˆู„ู‡ ู‡ูˆ ุจู‚ูˆู„ูŠ ุฃุซุจุช ุฅู†ู‡ X ู‡ูˆ Eigen vector ู„ู…ู†ุŸ
1648
+
1649
+ 413
1650
+ 00:45:27,710 --> 00:45:34,330
1651
+ ู„ู„ู…ุตูˆูุฉ A ูŠุนู†ูŠ ุจุฏู‡ ุฃุฑูˆุญ ุฃุซุจุช ุฅู†ู‡ AX ุจุฏู‡ ูŠุณุงูˆูŠ
1652
+
1653
+ 414
1654
+ 00:45:34,330 --> 00:45:41,390
1655
+ scalar ููŠ ู…ู†ุŸ ููŠ X ุฅุฐุง ู…ุฏุงุฌูŠ ุฃู‚ูˆู„ู‡ consider ุฎุฏู„ูŠ
1656
+
1657
+ 415
1658
+ 00:45:41,390 --> 00:45:47,250
1659
+ ุงู„ A ููŠ ุงู„ X ุทูŠุจ
1660
+
1661
+ 416
1662
+ 00:45:48,040 --> 00:45:52,180
1663
+ ุจุฏุฃ ุฃุฌูŠ ู„ู…ู†ุŸ ู„ูŠ ู…ุนู„ูˆู…ุฉ ุนู†ุฏูŠุŒ ู‡ูŠ ุงู„ู…ุนู„ูˆู…ุฉ ุนู†ุฏูŠ ู‡ูŠ
1664
+
1665
+ 417
1666
+ 00:45:52,180 --> 00:45:59,620
1667
+ ู‡ุฐู‡ ุฃูˆ ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃุฌูŠุจ ุงู„ a ุจุฏู„ุงู„ุฉ ุงู„ b ูˆ ุงู„ k ูˆ ุงู„
1668
+
1669
+ 418
1670
+ 00:45:59,620 --> 00:46:11,240
1671
+ k inverse ุจู‚ูˆู„ู‡ ุฎู„ูŠู„ูŠ ู‡ุฐู‡ since ุจู…ุง ุฃู† ุงู„ b ุจุฏู‡
1672
+
1673
+ 419
1674
+ 00:46:11,240 --> 00:46:20,220
1675
+ ุชุณุงูˆูŠ ุงู„ k inverse a k we haveุจุชุฎู„ู‘ูŠ A ู„ุญุงู„ู‡ุง ูŠุง
1676
+
1677
+ 420
1678
+ 00:46:20,220 --> 00:46:26,100
1679
+ ุจู†ุงุช ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑู… ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ููŠ ู…ูŠู†ุŸ ููŠ K ูˆู‡ู†ุง
1680
+
1681
+ 421
1682
+ 00:46:26,100 --> 00:46:31,720
1683
+ ุจูŠู‡ ูˆู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ K inverse ุจุฏูŠ
1684
+
1685
+ 422
1686
+ 00:46:31,720 --> 00:46:39,880
1687
+ ุฃุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏูŠ ุฃุณุงูˆูŠ ุงู„ู…ุตููˆูุฉ A ูƒูˆูŠุณ then ุจุฏูŠ ุฃุฎุฏ
1688
+
1689
+ 423
1690
+ 00:46:39,880 --> 00:46:49,800
1691
+ ุงู„ X ูŠุณุงูˆูŠ ุงู„ A ุจุฏูŠ ุฃุดูŠู„ู‡ุง ูˆ ุฃูƒุชุจ ุจุฏุงู„ู‡ุง Kุจูƒ ุงู†ูุฑุณ
1692
+
1693
+ 424
1694
+ 00:46:49,800 --> 00:46:58,230
1695
+ ูˆู‡ู†ุง ู‡ูŠ ุงู„ Xู‡ูŠ ุงุฎุฏุชู‡ ุดูŠู„ุช ุงู„ a ูˆ ุญุทูŠุช ู‚ูŠู…ุชู‡ุง ุชู…ุงู…
1696
+
1697
+ 425
1698
+ 00:46:58,230 --> 00:47:05,390
1699
+ ุทูŠุจ ุงู†ุง ุนู†ุฏูŠ ุจูŠ ูƒูŠ ุงู†ูุฑุณ ุงูƒุณ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ุจู‚ุฏุฑ
1700
+
1701
+ 426
1702
+ 00:47:05,390 --> 00:47:09,870
1703
+ ุงุดูŠู„ู‡ุง ูˆ ุงูƒุชุจู‡ุง ู„ู‚ุฏุงุด ู„ุงู†ุฏุง ูˆุงู† ุงูƒุณ ูŠุจู‚ู‰ ู‡ุฐุง
1704
+
1705
+ 427
1706
+ 00:47:09,870 --> 00:47:17,870
1707
+ ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ูƒูŠ ู„ุญุงู„ู‡ุง ูˆ ู‡ู†ุง ุจูŠ ูƒูŠ ุงู†ูุฑุณ ุงูƒุณ ูˆ
1708
+
1709
+ 428
1710
+ 00:47:17,870 --> 00:47:25,270
1711
+ ูŠุณุงูˆูŠ ูƒูŠ ููŠุงู„ู€ BK inverse X ุจุฏูŠ ุงุดูŠู„ ูˆ ุงูƒุชุจ ุจุฏุงู„ู‡ุง
1712
+
1713
+ 429
1714
+ 00:47:25,270 --> 00:47:27,510
1715
+ Landau 1 X
1716
+
1717
+ 430
1718
+ 00:47:30,890 --> 00:47:37,090
1719
+ ุทูŠุจ ู„ู† ุฏุง ูˆู† ู‡ุฐุง ุจู‚ุฏุฑ ุงุทู„ุน ูˆูŠู†ุŸ ุงุทู„ุน ุจุฑุง ุฅุฐุง ู‡ุฐุง
1720
+
1721
+ 431
1722
+ 00:47:37,090 --> 00:47:43,410
1723
+ ุงู„ูƒู„ุงู… ู„ุฃ ุจูŠ ุงู‡ ู„ู† ุฏุง ูˆู† ุงูƒุณ ุจูŠ ูƒ ุงู†ูุฑุณุชูƒุณ ูƒุชุจ ู„ู‡ุง
1724
+
1725
+ 432
1726
+ 00:47:43,410 --> 00:47:51,630
1727
+ ู„ู† ุฏุง ูˆู† ุงูƒุณ ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุทูŠุจ ุงู†ุง ูุงุฑุถ
1728
+
1729
+ 433
1730
+ 00:47:52,970 --> 00:48:00,990
1731
+ ุงุณุชู†ู‰ ุดูˆูŠุฉ ู‡ู‰ ax ุดูŠู„ุช ุงู„ a ุญุงุทุจู‡ุง ูƒ ุจูƒ inverse x
1732
+
1733
+ 434
1734
+ 00:48:00,990 --> 00:48:11,130
1735
+ ู…ุธุจูˆุท ูˆุฌูŠุช ุนู„ู‰ ู‡ุฐู‡ ูƒุชุจุช ูƒ ุจุฑุง ูˆ ุจูƒ inverse x ู…ุธุจูˆุท
1736
+
1737
+ 435
1738
+ 00:48:11,130 --> 00:48:18,170
1739
+ ุจูƒ inverse x ู‡ูŠ lambda one x ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡
1740
+
1741
+ 436
1742
+ 00:48:18,170 --> 00:48:33,230
1743
+ ูŠุณุงูˆูŠู„ู† ุฏุง ูˆู† ุจุฑุง ููŠ ู…ูŠู†ุŸ ููŠ ูƒูŠ ุงูƒุณ ุชู…ุงู…ุŸ ุงูŠูˆุฉ ุนู„ูŠ
1744
+
1745
+ 437
1746
+ 00:48:33,230 --> 00:48:37,450
1747
+ ุตูˆุชูƒ ุดูˆูŠุฉ ู‡ุงุฏูŠ
1748
+
1749
+ 438
1750
+ 00:48:37,450 --> 00:48:38,230
1751
+ ุจูŠุจู‚ู‰ ุณุงูˆูŠ
1752
+
1753
+ 439
1754
+ 00:48:44,890 --> 00:48:52,330
1755
+ ู„ุฃ ุงู‡ ุจุฏู‡ ุชุณุงูˆูŠ ุงู„ุฑู‚ู… ููŠ K ุงู‡ ุจุฏู‡ ุชุณุงูˆูŠ ุงู„ุฑู‚ู… ููŠ K
1756
+
1757
+ 440
1758
+ 00:48:52,330 --> 00:48:57,410
1759
+ inverse X ุตุญูŠุญ ู‡ุฐู‡ ุงู„ุฎุทุฃ ู‡ู†ุง ุตุญูŠุญ ู‡ุฐู‡ ูŠุง ุจู†ุงุช
1760
+
1761
+ 441
1762
+ 00:48:57,410 --> 00:49:07,420
1763
+ ุงู„ูŠูˆู„ุงู†ุฏุฉ ููŠ K inverse X ู…ุธุจูˆุท ุดูˆ ุงุณู…ูƒ ุงู†ุชุŸุณู…ุญ
1764
+
1765
+ 442
1766
+ 00:49:07,420 --> 00:49:12,380
1767
+ ุฃุตุงุจุฉ ุงู…ุฑุฃุฉ ูˆุฃุฎุชู‡ุง ุนู…ุฑ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ูŠุจู‚ู‰ ู‡ุฐู‡ ู„ุงู†ุฏุง
1768
+
1769
+ 443
1770
+ 00:49:12,380 --> 00:49:19,240
1771
+ in verse 6 ุฅุฐุง ุจุฏูŠ ุฃุดูŠู„ ู‡ุฐู‡ ูŠุง ุจู†ุงุช ูƒุงู„ุชุงู„ูŠ ูˆ ุฃูƒุชุจ
1772
+
1773
+ 444
1774
+ 00:49:19,240 --> 00:49:24,840
1775
+ ุจุฏุงู„ู‡ุง ู…ุง ูŠุงุชูŠ ูŠุจู‚ู‰ ู‡ุงูŠ ุนู…ู„ุช ุงู„ associativity ุชุจุน
1776
+
1777
+ 445
1778
+ 00:49:24,840 --> 00:49:32,720
1779
+ ุงู„ู…ุตููุงุช ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ุฃุณุงูˆูŠ ูƒุงููŠุจูƒ ุงู†ูุฑุณุช ุงูƒุณ
1780
+
1781
+ 446
1782
+ 00:49:32,720 --> 00:49:42,030
1783
+ ุจุฏูŠ ุงุดูŠู„ู‡ ูˆ ุงูƒุชุจ ุจุฏุงู„ู‡ ู„ุงู†ุฏุงูˆู† ูƒ ุงู†ูุฑุณุช ุงูƒุณู„ุฃู†
1784
+
1785
+ 447
1786
+ 00:49:42,030 --> 00:49:46,970
1787
+ ู„ุงู†ุฏุง ูˆุงู† ูƒูˆู†ุณุชุงู†ุช ุจู‚ุฏุฑ ุฃู‚ูˆู„ู‡ ุดุฑูู†ุง ุจุฑุง ูŠุจู‚ู‰ ู‡ุงูŠ
1788
+
1789
+ 448
1790
+ 00:49:46,970 --> 00:49:54,070
1791
+ ู„ุงู†ุฏุง ูˆุงู† ุจุฑุง ุตุงุฑ ูƒ ููŠ ูƒ inverse ููŠ ู…ู†ุŸ ููŠ ุงู„ X
1792
+
1793
+ 449
1794
+ 00:49:54,070 --> 00:50:00,690
1795
+ ูŠุจู‚ู‰ ู‡ุฐุง ู„ุงู†ุฏุง ูˆุงู† ู‡ุฐู‡ ู…ุตููˆูุฉ ู…ู†ุŸ ุงู„ูˆุญุฏุฉ ููŠ ุฃูŠ
1796
+
1797
+ 450
1798
+ 00:50:00,690 --> 00:50:06,980
1799
+ ู…ุตููˆูุฉ ุชุนุทูŠู†ูŠ ู†ูุณ ุงู„ู…ุตููˆูุฉูŠุจู‚ู‰ ุตุงุฑ ุนู†ุฏ ู‡ู†ุง ู…ูŠู†
1800
+
1801
+ 451
1802
+ 00:50:06,980 --> 00:50:13,420
1803
+ ุงุจู†ุช ุงู† ุงู„ ax ูŠุณูˆู‰ ู„ุงู†ุฏุง ูˆุงู† x ุงูŠุด ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
1804
+
1805
+ 452
1806
+ 00:50:13,420 --> 00:50:20,500
1807
+ ู…ุนู†ุงู‡ ุงู† ุงู„ x ุนุจุงุฑุฉ ุนู† eigen vector ู„ู…ู† ู„ู„ู…ุตููˆูุฉ a
1808
+
1809
+ 453
1810
+ 00:50:20,500 --> 00:50:32,760
1811
+ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ x is an eigen vector for the
1812
+
1813
+ 454
1814
+ 00:50:39,610 --> 00:50:45,990
1815
+ ู„ุญุฏ ู‡ู†ุง stop ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ section ูˆุฅู„ู‰ ูŠูƒูˆู† ุฃุฑู‚ุงู…
1816
+
1817
+ 455
1818
+ 00:50:45,990 --> 00:50:53,090
1819
+ ุงู„ู…ุณุงุฆู„ ูŠุจู‚ู‰ exercises ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ
1820
+
1821
+ 456
1822
+ 00:50:53,090 --> 00:51:02,570
1823
+ ู…ู† ูˆุงุญุฏ ุฅู„ู‰ ุนุดุฑุฉูˆ๏ฟฝ๏ฟฝู† ุชู„ุชุงุด ู„ุบุงูŠุฉ ุณุชุงุด ุงู„ุดูƒู„ ุงู„ู„ูŠ
1824
+
1825
+ 457
1826
+ 00:51:02,570 --> 00:51:05,810
1827
+ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ู…ุฑุฉ ุฌุงุก ุงู† ุดุงุก ุงู„ู„ู‡ ุจู†ุจุฏุฃ ููŠ ุงู„ู…ุนุงุฏู„ุงุช
1828
+
1829
+ 458
1830
+ 00:51:05,810 --> 00:51:10,470
1831
+ ุงู„ุชูุงุถู„ูŠุฉ ุฎู„ุตู†ุง ุงู„ุฌุจุฑ ุงู„ุฎุท ุงู„ุขู† ุจู†ุฑุฌุน ุถุงูŠู„ ุนู„ูŠู†ุง
1832
+
1833
+ 459
1834
+ 00:51:10,470 --> 00:51:13,630
1835
+ two chapters ููŠ ุงู„ ordinary differential
1836
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/HH8I6sciKRM_postprocess.srt ADDED
@@ -0,0 +1,1280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,690 --> 00:00:25,470
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุงุจุชุฏุฃู†ุง ุจ
4
+
5
+ 2
6
+ 00:00:25,470 --> 00:00:30,090
7
+ section ุงู„ homogeneous systems ูˆุฃุฎุฏู†ุง ุนู„ู‰ ุฐู„ูƒ
8
+
9
+ 3
10
+ 00:00:30,090 --> 00:00:37,110
11
+ ู…ุซุงู„ูŠู† ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุฑู‚ู… ุชู„ุงุชุฉ ูŠุนู†ูŠ
12
+
13
+ 4
14
+ 00:00:37,110 --> 00:00:40,450
15
+ ุงู„ู„ูŠ ู‚ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุงู„ homogeneous system ูŠุง
16
+
17
+ 5
18
+ 00:00:40,450 --> 00:00:44,810
19
+ ุฅู…ุง ุฅู„ู‡ ู„ trivial solutionูŠุง ุฅู…ุง ุฅู„ู‡ ุงู„ู€ Non
20
+
21
+ 6
22
+ 00:00:44,810 --> 00:00:48,270
23
+ -homogeneous solutions ูˆู‡ุฐู‡ ุงู„ู€ Non-homogeneous
24
+
25
+ 7
26
+ 00:00:48,270 --> 00:00:52,170
27
+ solutions ุชุญุชูˆูŠ ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ู€ homogeneous
28
+
29
+ 8
30
+ 00:00:52,170 --> 00:00:56,570
31
+ solution ุฃู…ุง ุญูƒุงูŠุฉ ุฅู†ู‡ ู…ุงููŠุด solution ูู‡ุฐุง ู…ุณุชุจุนุฏ
32
+
33
+ 9
34
+ 00:00:56,570 --> 00:01:01,850
35
+ ุชู…ุงู…ุง ุฃุฎุฐู†ุง ู…ุซุงู„ูŠู† ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุงู„ุฑู‚ู… ุชู„ุงุชุฉ
36
+
37
+ 10
38
+ 00:01:02,300 --> 00:01:06,620
39
+ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ู„ูŠ for what values of A ู…ุง ู‡ูŠ ุงู„ู‚ูŠู…
40
+
41
+ 11
42
+ 00:01:06,620 --> 00:01:11,360
43
+ ุงู„ู„ูŠ ุจูŠุงุฎุฏู‡ุง ุซุงุจุช A ุจุญูŠุซ ุงู† ุงู„ system ุงู„ู„ูŠ ุนู†ุฏ ู‡ุฐุง
44
+
45
+ 12
46
+ 00:01:11,360 --> 00:01:17,280
47
+ ู„ู‡ non trivial solution ูŠุนู†ูŠ ู„ู‡ ุญู„ ุบูŠุฑ ุงู„ุญู„ ุงู„ุตูุฑูŠ
48
+
49
+ 13
50
+ 00:01:17,820 --> 00:01:21,620
51
+ ุทุจ ู†ุฌูŠุจ ู†ู‚ูˆู„ู‡ ุงู„ tactic ู†ูุณ ุงู„ู‚ุตุฉ ุชุงุจุนุฉ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ
52
+
53
+ 14
54
+ 00:01:21,620 --> 00:01:26,420
55
+ ูุงุชุช ุจุงู„ู†ุณุจุฉ ู„ู„ู…ุซุงู„ูŠู† ุงู„ุณุงุจู‚ูŠู† ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุจุฏุฃ
56
+
57
+ 15
58
+ 00:01:26,420 --> 00:01:31,460
59
+ ุจุงู„ู…ุตููˆูุฉ ุงู„ู…ูˆุณุนุฉ ูˆ ู†ุดุบู„ ุนู…ู„ูŠุงุช ุงู„ุตูู‚ุฉ ุงู„ุจุณูŠุทุฉ
60
+
61
+ 16
62
+ 00:01:31,460 --> 00:01:35,240
63
+ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ู„ู„ู…ุตููˆูุฉ ุงู„ู…ูˆุณุนุฉ ู‡ุชูƒูˆู† ุนู„ู‰ ุงู„ุดูƒู„
64
+
65
+ 17
66
+ 00:01:35,240 --> 00:01:42,480
67
+ ุงู„ุชุงู„ูŠ ูˆุงุญุฏุฃู†ุงู‚ุต ุงุชู†ูŠู† ุฒูŠุฑูˆ ุตู ุงู„ุชุงู†ูŠ ุงุชู†ูŠู† ู†ุงู‚ุต
68
+
69
+ 18
70
+ 00:01:42,480 --> 00:01:48,280
71
+ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุฒูŠุฑูˆ ุตู ุงู„ุชุงู„ุช ู†ุงู‚ุต ู†ุงู‚ุต ูˆุงุญุฏ ูˆู‡ู†ุง
72
+
73
+ 19
74
+ 00:01:48,280 --> 00:01:54,120
75
+ ูˆุงุญุฏ ูˆู‡ู†ุง ุฒูŠุฑูˆ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ู…ุตุฑูˆู ุงู„ู„ูŠ
76
+
77
+ 20
78
+ 00:01:54,120 --> 00:01:59,440
79
+ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจุฏุฃ ุญุงูˆู„ ุงู„ู„ูŠ ุทุจุนุง ูˆุงุถุญ ุงู† ุงู„ุนู…ูˆู‚ ุงู„ุตู
80
+
81
+ 21
82
+ 00:01:59,440 --> 00:02:03,740
83
+ ุงู„ุงู†ุตุฑ ุงู„ุฃูˆู„ ู‡ู†ุง ุงู„ leading ู‡ูˆ ูˆุงุญุฏ ูŠุจู‚ู‰ ุฌุงู‡ุฒ ู„ูƒู†
84
+
85
+ 22
86
+ 00:02:03,740 --> 00:02:09,330
87
+ ุงู„ุนูŠุงู…ูŠู† ู…ูŠู…ุฅูŠู‡ ู„ูˆ ุจุฏู†ุง ู†ุถุฑุจ ูˆ ู†ุถูŠู ุจุชุชุนุฌุฏ ุดูˆูŠุฉ
88
+
89
+ 23
90
+ 00:02:09,330 --> 00:02:14,930
91
+ ูุฅู„ุง ุฎุงุทุฑ ุฃุจุฏู„ ุงู„ุตู ุงู„ุฃูˆู„ ู…ุน ุงู„ุตู ุงู„ุชุงู„ุช ู…ุน ุถุฑุจ
92
+
93
+ 24
94
+ 00:02:14,930 --> 00:02:20,410
95
+ ุงู„ุตู ุงู„ุชุงู„ุช ููŠ ุฅุดุงุฑุฉ ุณุงู„ุจ ู…ุฑุฉ ูˆุงุญุฏุฉ ูˆุจุงู„ุชุงู„ูŠ ุจุฎู„ูŠ
96
+
97
+ 25
98
+ 00:02:20,410 --> 00:02:25,690
99
+ ุงู„ a ุชุญุช ูˆุจุงู„ุชุงู„ูŠ ุจุตูŠุฑ ุฃุณู‡ู„ู†ุง ุดูˆูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุนู…ู„
100
+
101
+ 26
102
+ 00:02:25,690 --> 00:02:30,750
103
+ ู…ุง ูŠุฃุชูŠ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุณู‡ู… ูŠุจู‚ู‰ ุจุงู„ุฏู‡ุฌุฉ ุฃู‚ูˆู„ู‡ replace
104
+
105
+ 27
106
+ 00:02:32,410 --> 00:02:41,890
107
+ ุงุณุชุจุฏู„ ุณุงู„ุจ R3 and R1 ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠ ุนู„ู‰ ุงู„ุตู ุงู„ุฃูˆู„
108
+
109
+ 28
110
+ 00:02:41,890 --> 00:02:45,830
111
+ ูˆุงู„ุตู ุงู„ุชุงู„ุช ู‡ุฐู‡ ู…ุนู†ุงุชู‡ ุจุฏูŠ ุฃุนู…ู„ ุนู…ู„ูŠุชูŠู† ู…ุน ุจุนุถ ููŠ
112
+
113
+ 29
114
+ 00:02:45,830 --> 00:02:50,690
115
+ ุงู†ุง ูˆุงุญุฏ ุจุฏูŠ ุฃุถุฑุจ ุงู„ุตู ุงู„ุชุงู„ุช ููŠ ุฅุดุงุฑุฉ ุณุงู„ุจ ููŠ
116
+
117
+ 30
118
+ 00:02:50,690 --> 00:02:55,910
119
+ ุฅุดุงุฑุฉ ุณุงู„ุจ ูˆุงุญุฏ ูˆู…ู† ุซู… ุฃุจุฏู„ ู…ุน ู…ูŠู† ู…ุน ุงู„ุตู ุงู„ุฃูˆู„
120
+
121
+ 31
122
+ 00:02:55,910 --> 00:03:00,470
123
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจูŠุตูŠุฑ ุงู„ู…ุตูˆูุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูˆุงุญุฏ
124
+
125
+ 32
126
+ 00:03:03,420 --> 00:03:11,280
127
+ ุตู ุงู„ุซุงู†ูŠ ูƒู…ุง ู‡ูˆ ู…ุงุนู…ู„ู†ุงู‡ุด ู„ู‡ ุญุงุฌุฉ ุงู„ุตู ุงู„ุฃูˆู„
128
+
129
+ 33
130
+ 00:03:11,280 --> 00:03:17,720
131
+ ุจูŠุตูŠุฑ ุงู„ุตู ุงู„ุชุงู„ุช ุงู„ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† ุฒูŠุฑูˆ ุจุงู„ุดูƒู„
132
+
133
+ 34
134
+ 00:03:17,720 --> 00:03:24,760
135
+ ุงู„ู„ูŠ ุนู†ุฏู†ุงุงู„ุงู† ุจุฏูŠ ุงุฎู„ ู‡ุฐุง zero ุจุฏู„ ุงุชู†ูŠู† ูˆ ู‡ุฐุง
136
+
137
+ 35
138
+ 00:03:24,760 --> 00:03:29,920
139
+ zero ูŠุจู‚ู‰ ุจุฏูŠ ุงุนู…ู„ ุนู…ู„ูŠุชูŠู† ููŠ ุงู†ุง ูˆุงุญุฏ ุนู„ู‰ ุงู„ุดูƒู„
140
+
141
+ 36
142
+ 00:03:29,920 --> 00:03:35,500
143
+ ุงู„ุชุงู„ู ุจุฏูŠ ุงุฏุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุงุถูŠูู‡
144
+
145
+ 37
146
+ 00:03:35,500 --> 00:03:42,650
147
+ ู„ู„ุตู ุงู„ุซุงู†ูŠูŠุจู‚ู‰ ุจุงู„ุฏุฑุฌุฉ ูŠู‚ูˆู„ ุณุงู„ุจ ุงุชู†ูŠู† R1 to R2
148
+
149
+ 38
150
+ 00:03:42,650 --> 00:03:51,750
151
+ ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุณุงู„ุจ R1 to R3 ู…ุฑุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ุจู†ุญุตู„
152
+
153
+ 39
154
+ 00:03:51,750 --> 00:03:57,880
155
+ ุนู„ู‰ ุงู„ุตู ุงู„ุชุงู„ูŠ ุงู„ุตู ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ูƒู…ุง ู‡ูˆูŠุจู‚ู‰ ู‡ู†ุง ู‡ูŠ
156
+
157
+ 40
158
+ 00:03:57,880 --> 00:04:03,820
159
+ ูˆุงุญุฏ ูˆู‡ู†ุง ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ุฒูŠุฑูˆ ูˆู‡ูŠ ู‚ูู„ู†ุง ุงู„ู…ุตูˆูุฉ
160
+
161
+ 41
162
+ 00:04:03,820 --> 00:04:10,100
163
+ ู‡ู†ุง ุจุฏู‰ ูŠุตูŠุฑ ุนู†ุฏู‰ ุฒูŠุฑูˆ ุณุงู„ุจ ุงุชู†ูŠู† ูˆุณุงู„ุจ ูˆุงุญุฏ ุจูŠุตูŠุฑ
164
+
165
+ 42
166
+ 00:04:10,100 --> 00:04:17,160
167
+ ุณุงู„ุจ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุชู„ุงุชุฉ ู…ูˆุฌุฉ ุจูˆุงุญุฏ ู„ุฅู† ู…ู‚ูู„
168
+
169
+ 43
170
+ 00:04:17,160 --> 00:04:22,020
171
+ ุถุฑุจู†ุง ููŠ ุณุงู„ุจ ุงุช๏ฟฝ๏ฟฝูŠู† ุจูŠุตูŠุฑ ู‡ู†ุง ู…ูˆุฌุฉ ุจุงุชู†ูŠู† ูˆู†ุงุฎุต
172
+
173
+ 44
174
+ 00:04:22,020 --> 00:04:27,300
175
+ ูˆุงุญุฏ ุจูŠุตูŠุฑ ุนู†ุฏู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ุฒูŠุฑูˆู‡ู†ุง ุถุฑุจู†ุง ููŠ ุณุงู„ุจ
176
+
177
+ 45
178
+ 00:04:27,300 --> 00:04:33,800
179
+ ูˆุงุญุฏ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ zero ูˆู‡ู†ุง a ู†ุงู‚ุต ุงู„ูˆุงุญุฏ ูˆู‡ู†ุง ุจูŠุตูŠุฑ
180
+
181
+ 46
182
+ 00:04:33,800 --> 00:04:39,980
183
+ ู…ูˆุฌุฉ ุจูˆุงุญุฏ ูˆุณุงู„ุจ ุงุชู†ูŠู† ุจุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง zero ูƒู…ุง ู‡ูŠ
184
+
185
+ 47
186
+ 00:04:40,830 --> 00:04:45,050
187
+ ู…ุฑุฉ ุชุงู†ูŠุฉ ูŠุง ุจู†ุงุฏุฑ ูŠุจู‚ู‰ ุถุฑุจุช ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุณู„ุจ
188
+
189
+ 48
190
+ 00:04:45,050 --> 00:04:48,870
191
+ ุงุชู†ูŠู† ูˆุงุถูุชู‡ ู„ุงุชู†ูŠู† ุจูŠุตูŠุฑ zero ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุณุงู„ุจ
192
+
193
+ 49
194
+ 00:04:48,870 --> 00:04:52,330
195
+ ูˆุงุญุฏ ุจูŠุตูŠุฑ ุณุงู„ุจ ุชู„ุงุชุฉ ู…ูˆุฌุฉ ุจุงุชู†ูŠู† ูˆ ุณุงู„ุจ ูˆุงุญุฏ
196
+
197
+ 50
198
+ 00:04:52,330 --> 00:04:56,970
199
+ ุจูŠุตูŠุฑ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ูˆุงุญุฏ zero ุณุงู„ุจ ูˆุงุญุฏ ูˆ a
200
+
201
+ 51
202
+ 00:04:56,970 --> 00:05:00,790
203
+ ุจูŠุตูŠุฑ a ุณุงู„ุจ ูˆุงุญุฏ ู…ูˆุฌุฉ ุจูˆุงุญุฏ ูˆ ุณุงู„ุจ ุงุชู†ูŠู† ุจูŠุตูŠุฑ
204
+
205
+ 52
206
+ 00:05:00,790 --> 00:05:07,310
207
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงู„ุจุงู‚ูŠ ุจ zeroู†ุฃุชูŠ ู„ู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ุฎุทูˆุฉ
208
+
209
+ 53
210
+ 00:05:07,310 --> 00:05:12,690
211
+ ุงู„ุชุงู„ูŠุฉ ุณุชุฌุนู„ ู‡ุฐุง ู‚ุฏุงุด ูˆุงุญุฏ ุตุญูŠุญ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑุจ ููŠ
212
+
213
+ 54
214
+ 00:05:12,690 --> 00:05:19,790
215
+ ุณุงู„ุจ ุชู„ุช R2 ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ุฐุง ุณู‡ู… ูˆู‡ุฐุง ุณุงู„ุจ ุชู„ุช
216
+
217
+ 55
218
+ 00:05:19,790 --> 00:05:27,470
219
+ R2 ู†ุญุตู„ ุนู„ู‰ ุงู„ู…ุตูˆูุฉ ุงู„ุชุงู„ูŠุฉูˆุงุญุฏ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ
220
+
221
+ 56
222
+ 00:05:27,470 --> 00:05:37,190
223
+ Zero Zero ูˆุงุญุฏ ุณุงู„ุจ ุชู„ุช ูˆ ู‡ู†ุง Zero A ู†ุงู‚ุต ูˆุงุญุฏ ูˆ
224
+
225
+ 57
226
+ 00:05:37,190 --> 00:05:45,290
227
+ ู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ูˆ ู‡ู†ุง Zero Zero ูƒูˆูŠุณูŠุจู‚ู‰ ุงู„ุฃู†
228
+
229
+ 58
230
+ 00:05:45,290 --> 00:05:51,830
231
+ ุจุงู„ุฏุงุฌูŠ ู„ู„ุตู ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ุตู ุงู„ุซุงู†ูŠ ุจุฏูŠ ุฃุฎู„ูŠ
232
+
233
+ 59
234
+ 00:05:51,830 --> 00:05:57,790
235
+ ุงู„ู„ูŠ ููˆู‚ zero ูˆ ุงู„ู„ูŠ ุชุญุช ุจุฏูŠ ุฃุญุงูˆู„ ุฃุฎู„ูŠู‡ุง zero ุจุณ
236
+
237
+ 60
238
+ 00:05:57,790 --> 00:06:05,150
239
+ ู‚ุจู„ู‡ุง ู„ูˆ ุฃุถูุช ุงู„ุตู ุงู„ุซุงู†ูŠ ุฅู„ู‰ ุงู„ุตู ุงู„ุชุงู„ุฏูŠุจู‚ู‰
240
+
241
+ 61
242
+ 00:06:05,150 --> 00:06:11,930
243
+ ูƒุฎุทูˆุฉ ุชุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุนู…ู„ ู…ุง ูŠุฃุชูŠ ุจุฏุงุฌูŠ ุฃุฎุฏ ุงู„ู„ูŠ
244
+
245
+ 62
246
+ 00:06:11,930 --> 00:06:20,270
247
+ ู‡ูˆ R2 to R3 ู†ุญุตู„ ุนู„ู‰ ู…ุง ูŠุฃุชูŠ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุตูŠุฑ ุนู†ู‡ู†ุงุด
248
+
249
+ 63
250
+ 00:06:20,270 --> 00:06:32,360
251
+ ูˆ ูƒุฐู„ูƒ R2 to R3 ูˆ ุณุงู„ุจ R2 to R1 ู…ุฑุฉ ูˆุงุญุฏุฉูŠุจู‚ู‰ ู‡ู†ุง
252
+
253
+ 64
254
+ 00:06:32,360 --> 00:06:42,420
255
+ 1 ูˆ ู‡ู†ุง 0 ุณุงู„ุจ ูŠุตุจุญ ู…ูˆุฌุฉ ุจุชู„ุช ูŠุจู‚ู‰ ู‡ู†ุง ุณุงู„ุจ ุชู„ุชูŠู†
256
+
257
+ 65
258
+ 00:06:42,420 --> 00:06:51,100
259
+ ูŠุจู‚ู‰ ู‡ู†ุง ุณุงู„ุจ ุชู„ุชูŠู† ูˆ ู‡ู†ุง 0ุงู„ุตู ู‡ุฐุง ูŠุจู‚ู‰ ูƒู…ุง ู‡ูˆ
260
+
261
+ 66
262
+ 00:06:51,100 --> 00:06:59,680
263
+ Zero ูˆุงุญุฏ ุณุงู„ุจ ุทูˆู„ ู‡ู†ุง Zero ูˆ ู‡ู†ุง ุฃุถูู†ุง ู‡ู†ุง ูŠุจู‚ู‰
264
+
265
+ 67
266
+ 00:06:59,680 --> 00:07:07,600
267
+ ุจุตูŠุฑ ุนู†ุฏู†ุง ู‡ู†ุง A ูู‚ุท ู„ุง ุบูŠุฑ ูˆ ู‡ู†ุง ู‡ุฐุง ู„ู…ุง ุฃุถูู†ุงู‡
268
+
269
+ 68
270
+ 00:07:07,600 --> 00:07:13,380
271
+ ุจุตูŠุฑ ุณุงู„ุจ ุฃุฑุจุนุฉ ุนู„ู‰ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุฃุฑุจุนุฉ ุนู„ู‰
272
+
273
+ 69
274
+ 00:07:13,380 --> 00:07:19,810
275
+ ุชู„ุงุชุฉ ู‚ูู„ู†ุง ู‡ุงูŠ Zero ูˆ Zero ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงุงู„ุงู†
276
+
277
+ 70
278
+ 00:07:19,810 --> 00:07:25,050
279
+ ู‡ุฐุง ุงู„ุนู…ูˆุฏ ุงู„ุนู†ุตุฑ ู‡ุฐุง ุงู„ู€ 0 ุงู„ู„ูŠ ููˆู‚ ู„ูƒู† ู„ุชุญุช ุงูŠุดุŸ
280
+
281
+ 71
282
+ 00:07:25,050 --> 00:07:31,350
283
+ A ุจุฏูŠ ุงุชุฎู„ุต ู…ู† ุงู„ู€ A ูŠุจู‚ู‰ ุจุฏูŠ ุงุถุฑุจ ุงู„ุตู ุงู„ุชุงู†ูŠ ููŠ
284
+
285
+ 72
286
+ 00:07:31,350 --> 00:07:38,770
287
+ ุณุงู„ุจ A ูˆุงุถูŠูู‡ ู„ู…ูŠู†ุŸ ู„ู„ุตู ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ู‡ุฐุง ุณู‡ู… ูŠุจู‚ู‰
288
+
289
+ 73
290
+ 00:07:38,770 --> 00:07:48,090
291
+ ุณุงู„ุจ AR2 to R3 ู‡ู†ุดูˆู ุดูˆ ุงู„ู„ูŠ ุจุฏูŠ ูŠุญุตู„ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡
292
+
293
+ 74
294
+ 00:07:48,090 --> 00:07:53,570
295
+ ุงู„ุญุงู„ุฉ ุจูŠุตูŠุฑ ุงู„ู…ุตูˆูุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ุตู ุงู„ุฃูˆู„
296
+
297
+ 75
298
+ 00:07:53,570 --> 00:08:01,310
299
+ ุฒูŠ ู…ุง ู‡ูˆ one zero ุณุงู„ุจ ุชู„ุชูŠู† zero ุงู„ุตู ุงู„ุซุงู†ูŠ ูƒู…ุง
300
+
301
+ 76
302
+ 00:08:01,310 --> 00:08:09,150
303
+ ู‡ูˆ zero ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ ุชู„ุชูˆู‡ู†ุง Zero ูˆ ู‡ู†ุง Zero
304
+
305
+ 77
306
+ 00:08:09,150 --> 00:08:17,190
307
+ ู†ุถุฑุจ ุณุงู„ุจ A ู‡ู†ุง ุจุตูŠุฑ ู…ูˆุฌุฉ ุจ A ุนู„ู‰ ุชู„ุงุชุฉ ูŠุจู‚ู‰ A ุนู„ู‰
308
+
309
+ 78
310
+ 00:08:17,190 --> 00:08:22,890
311
+ ุชู„ุงุชุฉ ู†ุงู‚ุต ุฃุฑุจุน ุนู„ู‰ ุชู„ุงุชุฉ ูˆ ู‡ู†ุง Zero Zero
312
+
313
+ 79
314
+ 00:08:26,370 --> 00:08:32,250
315
+ ุฃุธู† ุฃูƒุชุฑ ู…ู† ู‡ูŠูƒ ู…ุง ุฃู‚ุฏุฑุด ุฃุจุตุฑ ู†ุฑุฌุน ู„ู„ุณุคุงู„ ุงู„ุณุคุงู„
316
+
317
+ 80
318
+ 00:08:32,250 --> 00:08:37,490
319
+ ุจูŠู‚ูˆู„ ุณุคุงู„ ุจูŠู‚ูˆู„ ู‡ุงุช ู„ู‚ูŠู…ุฉ ุฅูŠู‡ ุจุญูŠุซ ู‡ุฐุง ุงู„ system
320
+
321
+ 81
322
+ 00:08:37,490 --> 00:08:44,170
323
+ ู„ู‡ูˆ have a non trivial solution ูŠุนู†ูŠ ุญู„ ุบูŠุฑ ุงู„ุญู„
324
+
325
+ 82
326
+ 00:08:44,170 --> 00:08:48,490
327
+ ุงู„ุตูุฑูŠ ุฅุฐุง ุฃู†ุง ู„ูˆ ุจุฏูŠ ุฃูƒุชุจ ุงู„ system ุงู„ู…ูƒุงูุฆ ู„ู„
328
+
329
+ 83
330
+ 00:08:48,490 --> 00:08:53,770
331
+ system ุงู„ุฃุตู„ูŠ ุจุฏูŠ ุฃู‚ูˆู„ X ูˆุงุญุฏ ู†ุงู‚ุต ุชู„ุชูŠู† X ุชู„ุงุชุฉ
332
+
333
+ 84
334
+ 00:08:53,770 --> 00:08:54,650
335
+ ุจุฏู‡ ูŠุณุงูˆูŠ zero
336
+
337
+ 85
338
+ 00:09:04,310 --> 00:09:12,030
339
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุนุทูŠู†ุง ุง ุนู„ู‰ ุชู„ุงุชุฉ ู†ุงู‚ุต ุงุฑุจุน ุนู„ู‰
340
+
341
+ 86
342
+ 00:09:12,030 --> 00:09:18,740
343
+ ุชู„ุงุชุฉ ๏ฟฝ๏ฟฝูƒุณ ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด ุจุฏู‡ ูŠุณุงูˆูŠ ุฒูŠุฑูˆูŠุจู‚ู‰
344
+
345
+ 87
346
+ 00:09:18,740 --> 00:09:22,540
347
+ ุงู†ุง ุงุฎุฏุช ู‡ุฐุง ุงู„ุฌุฒุก ูˆุงุณุจุช ุงู„ุงูˆู„ ู„ู„ุฃูˆู„ ู…ุด ู„ุงุฒู…ู„ูŠ ุงู†ุง
348
+
349
+ 88
350
+ 00:09:22,540 --> 00:09:27,300
351
+ ุจุฏูˆุฑ ุนู„ู‰ ู‚ูŠู…ุฉ ุงูŠู‡ ู‚ุงู„ ุงู„ system ู‡ุฐุง ู„ู‡ non trivial
352
+
353
+ 89
354
+ 00:09:27,300 --> 00:09:32,880
355
+ solution ุญู„ ุบูŠุฑ ุงู„ุญู„ ุงู„ุตูุฑูŠ ู…ุฏุงู† ููŠ ุญู„ ุบูŠุฑ ุงู„ุญู„
356
+
357
+ 90
358
+ 00:09:32,880 --> 00:09:39,580
359
+ ุงู„ุตูุฑูŠ ู‡ู„ ูŠู…ูƒู† ู„ x ุชู„ุงุชุฉ ุงู†ู‡ุง ุชุจู‚ู‰ zero ู„ูŠุณ ู…ู…ูƒู†ูŠุฉ
360
+
361
+ 91
362
+ 00:09:39,580 --> 00:09:47,580
363
+ ูŠุจู‚ู‰ since ุจู…ุง ุงู† the system have
364
+
365
+ 92
366
+ 00:10:11,030 --> 00:10:18,250
367
+ X3 ู„ุง ูŠู…ูƒู† ุฃู† ุชุณุงูˆูŠ 0ู…ุง ุฏุงู… X ุชู„ุงุชุฉ ู„ุง ูŠู…ูƒู† ุฃู†
368
+
369
+ 93
370
+ 00:10:18,250 --> 00:10:22,130
371
+ ุชุณุงูˆูŠ Zero ุญุงุตู„ ุถุฑุจ ุงู„ุงุชู†ูŠู† ูŠุณุงูˆูŠ Zero ุฅุฐุง ุงู„ term
372
+
373
+ 94
374
+ 00:10:22,130 --> 00:10:27,290
375
+ ุงู„ุชุงู†ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจ Zero ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุฃู† A ุนู„ู‰
376
+
377
+ 95
378
+ 00:10:27,290 --> 00:10:32,670
379
+ ุชู„ุงุชุฉ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ู‡ูŠ ุงู„ุชูŠ ุชุณุงูˆูŠ Zeroุฃุธู† ู„ูˆ
380
+
381
+ 96
382
+ 00:10:32,670 --> 00:10:36,470
383
+ ุถุฑุจุช ููŠ ุชู„ุงุชุฉ ุจูŠุตูŠุฑ ุงู„ a ู†ุงู‚ุต ุฃุฑุจุนุฉ ูŠุณุงูˆูŠ zero
384
+
385
+ 97
386
+ 00:10:36,470 --> 00:10:42,430
387
+ ูŠุจู‚ู‰ ุงู„ a ุชุณุงูˆูŠ ู‚ุฏุงุด ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู†ุช a ุจุงุฑุจุนุฉ
388
+
389
+ 98
390
+ 00:10:42,430 --> 00:10:48,150
391
+ ุจูŠุตูŠุฑ ุนู†ุฏ ุง ุจูŠุตูŠุฑ ุนู†ุฏ ุงู„ system ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู„ู‡
392
+
393
+ 99
394
+ 00:10:48,150 --> 00:10:54,370
395
+ ุญู„ ุบูŠุฑ ุงู„ุญู„ ุงู„ุตูุฑูŠ ูˆุงุถุญ ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ ุญุฏุง ููŠูƒู… ุงู„ู„ูŠ
396
+
397
+ 100
398
+ 00:10:54,370 --> 00:11:00,640
399
+ ู‡ูŠุชุณุงุกู„ุŸุทุจ ุงู„ุขู† ุงู†ุชู‡ู‰ ุงู„ section ูˆู„ูŠูƒู† ุฃุฑู‚ุงู…
400
+
401
+ 101
402
+ 00:11:00,640 --> 00:11:07,680
403
+ ุงู„ู…ุณุงุฆู„ ุชุชู…ุฑู† ุนู„ูŠู‡ุง ูŠุจู‚ู‰ ุจุงุฌู„ุฉ exercises ุงุชู†ูŠู†
404
+
405
+ 102
406
+ 00:11:07,680 --> 00:11:14,780
407
+ ุงุชู†ูŠู† ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ ุชู„ุงุชุฉ ูˆุฎู…ุณุฉ ูˆุณุจุนุฉ ูˆุชุณุนุฉ
408
+
409
+ 103
410
+ 00:11:14,780 --> 00:11:23,320
411
+ ูˆุญุฏุงุดุฑ ูˆุงุทู†ุงุด ูˆุชู„ุชุงุดุฑ ุงูŠู‡ุŸุชู„ุงุชุงุดุฑ ุจูŠู‡ุง ูŠุญู„ู†ุง ูˆู‡ุฐุง
412
+
413
+ 104
414
+ 00:11:23,320 --> 00:11:43,280
415
+ ุชู„ุงุชุงุดุฑ ุง ู…ุงุฑู†ูˆุง ูŠุฏูŠูƒูˆุง ููŠู‡ ู‡ูŠ ุชุณุงูˆู„ุŸ ุฎุทูˆุฉ
416
+
417
+ 105
418
+ 00:11:43,280 --> 00:11:49,170
419
+ ู‡ุฐู‡ ู‚ุตุฏูƒุŸุถุฑุจ ุชุงุฑ ุงุชู†ูŠู† ููŠ ุณุงู„ุจ A ู…ุธุจูˆุท ูŠุจู‚ู‰ ุจูŠุตูŠุฑ
420
+
421
+ 106
422
+ 00:11:49,170 --> 00:11:55,230
423
+ ุณุงู„ุจ A ูˆ A ุจ Zero ุณุงู„ุจ A ูˆ ุณุงู„ุจ ุชู„ุช ุจ A ุนู„ู‰ ุชู„ุงุชุฉ
424
+
425
+ 107
426
+ 00:11:55,230 --> 00:12:00,750
427
+ ู‡ูŠู‡ุง A ุนู„ู‰ ุชู„ุงุชุฉ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ุทู„ุน A ุนู„ู‰ ุชู„ุงุชุฉ
428
+
429
+ 108
430
+ 00:12:00,750 --> 00:12:04,290
431
+ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ุงู„ูƒู„ุงู… ุณู„ูŠู… ู…ุงุฆุฉ ุจุงู„ู…ุงุฆุฉ ู„ุง ูŠูˆุฌุฏ
432
+
433
+ 109
434
+ 00:12:04,290 --> 00:12:05,610
435
+ ุฃูŠ ุฎุทุฃ
436
+
437
+ 110
438
+ 00:12:24,050 --> 00:12:32,750
439
+ ู†ู†ุชู‚ู„ ุงู„ุงู† ุงู„ู‰ section 2-4 ุจุนุฏ ู…ุง ู†ุดุท ุจ2-3 ูŠุจู‚ู‰
440
+
441
+ 111
442
+ 00:12:32,750 --> 00:12:38,630
443
+ ุจู†ุฑูˆุญ ู„ section 2-4 2
444
+
445
+ 112
446
+ 00:12:38,630 --> 00:12:46,830
447
+ -4 ุงู„ู„ูŠ ู‡ูˆ matrices and
448
+
449
+ 113
450
+ 00:12:46,830 --> 00:12:48,970
451
+ vectors
452
+
453
+ 114
454
+ 00:12:54,430 --> 00:12:59,970
455
+ ุงู„ุชุญุฏูŠุซ ู‡ูˆ ุฅุฐุง
456
+
457
+ 115
458
+ 00:12:59,970 --> 00:13:11,010
459
+ ูƒุงู† ู„ุฏูŠู†ุง ู†ุธุงู… ุนุถูˆ ุนุถูˆ ู…ู† ุงู„ู‡ูˆุงุชู
460
+
461
+ 116
462
+ 00:13:11,010 --> 00:13:14,950
463
+ A11X1
464
+
465
+ 117
466
+ 00:13:19,910 --> 00:13:27,350
467
+ A12X2 A1NXN B1 A21X1
468
+
469
+ 118
470
+ 00:13:27,350 --> 00:13:33,430
471
+ A22X2 A2NXN
472
+
473
+ 119
474
+ 00:13:33,430 --> 00:13:38,190
475
+ B2 A
476
+
477
+ 120
478
+ 00:13:38,190 --> 00:13:57,690
479
+ M1X1 A M2X2 ุฒุงุฆุฏ A M N X N ุจุฏู‡ ุณุงูˆูŠ ุจูŠ M ู‡ุฐุง ุงู„
480
+
481
+ 121
482
+ 00:13:57,690 --> 00:14:04,430
483
+ system then then
484
+
485
+ 122
486
+ 00:14:04,430 --> 00:14:10,850
487
+ the matrix ุงู„ู…ุตูˆูุฉ
488
+
489
+ 123
490
+ 00:14:13,270 --> 00:14:26,830
491
+ ุงู„ุนู†ุงุตุฑู‡ุง a11, a12, a1n, a21, a22, a2n ู†ูุถ
492
+
493
+ 124
494
+ 00:14:26,830 --> 00:14:39,330
495
+ ุงู„ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ a m1, a m2, a mn it is called
496
+
497
+ 125
498
+ 00:14:42,480 --> 00:14:55,040
499
+ The coefficient matrix of
500
+
501
+ 126
502
+ 00:14:55,040 --> 00:15:00,220
503
+ size M in
504
+
505
+ 127
506
+ 00:15:17,780 --> 00:15:30,040
507
+ ุงู„ูˆุถุน AIG ู‡ูˆ ุงู„ู…ุฏุฎู„ ุงู„ู…ุฏุฎู„
508
+
509
+ 128
510
+ 00:15:30,040 --> 00:15:35,060
511
+ ููŠ ุนุตุฑ ุงู„ุนูŠู† ููŠ
512
+
513
+ 129
514
+ 00:15:35,060 --> 00:15:39,500
515
+ ุนุตุฑ
516
+
517
+ 130
518
+ 00:15:39,500 --> 00:15:40,240
519
+ ุงู„ุนูŠู† ูˆ
520
+
521
+ 131
522
+ 00:15:50,760 --> 00:15:52,160
523
+ definition
524
+
525
+ 132
526
+ 00:15:56,660 --> 00:15:59,760
527
+ ูŠุจู‚ู‰ ุจุฏุฑุฌุฉ ุนู„ู‰ ุงู„ุฎุงุตูŠุฉ ุฏู‡ ู‚ุจู„ ุฃู† ุฃู†ุชู‚ู„ ู„ุฎุงุตูŠุฉ
528
+
529
+ 133
530
+ 00:15:59,760 --> 00:16:04,900
531
+ ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุงู„ุจู„ุฏ ู‡ูŠูƒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฅูŠุด ู„ูˆ ุถุฑุจุช ุนุฏุฏ ููŠ
532
+
533
+ 134
534
+ 00:16:04,900 --> 00:16:09,360
535
+ ู…ุตูˆูุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑุจ ููŠ ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ู…ุตูˆูุฉ ุจู„ุง
536
+
537
+ 135
538
+ 00:16:09,360 --> 00:16:13,560
539
+ ุฅุณุชุซู†ุงุก ูŠุจู‚ู‰ ู‡ุงูŠ ุงู„ู…ู‚ุตูˆุฏ ุทุจ ุฃุถุฑุจ ู…ู† ุงู„ูŠู…ูŠู† ุงู„ุนู†ุตุฑ
540
+
541
+ 136
542
+ 00:16:13,560 --> 00:16:16,400
543
+ ูˆู„ุง ู…ู† ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ ู…ู† ุฃูŠู†ู…ุง ุจุฏูƒ ุชุถุฑุจ ุฃุถุฑุจ ู…ุง ุฏู‡
544
+
545
+ 137
546
+ 00:16:16,400 --> 00:16:20,610
547
+ ู…ุฑุงู‚ู…ุจุชุถุฑุจ ุงู„ู…ุตูˆูุฉ ุชุถุฑุจ ู…ู† ุงู„ูŠู…ูŠู† ูˆุชุถุฑุจ ู…ู† ุงู„ุดู…ุงู„
548
+
549
+ 138
550
+ 00:16:20,610 --> 00:16:24,870
551
+ ู„ุชู†ูŠู† are the same ูˆุจุงู„ุชุงู„ูŠ ุจู†ุถุฑุจ ู‡ุฐุง ุงู„ุฑู‚ู… ููŠ ูƒู„
552
+
553
+ 139
554
+ 00:16:24,870 --> 00:16:29,250
555
+ ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ ุงู„ู…ุตูˆูุฉ ูู…ุซู„ุง ู„ูˆ ูƒุงู† ุนู†ุตุฑ ุงู„ู…ุตูˆูุฉ A
556
+
557
+ 140
558
+ 00:16:29,250 --> 00:16:33,090
559
+ ุจู‚ู‰ ุจุฏูŠ ุชู„ุงุชุฉ A ุจุฑูˆุญ ุจุฏุฑุจ ุชู„ุงุชุฉ ููŠ ูƒู„ ุนู†ุตุฑ ู…ู† ุนู†ุตุฑ
560
+
561
+ 141
562
+ 00:16:33,090 --> 00:16:40,560
563
+ ุงู„ู…ุตูˆูุฉุงู„ู„ูŠ ููŠ ุงู„ุฏุงุฎู„ ูุจุตูŠุฑ 690-3-690315
564
+
565
+ 142
566
+ 00:16:40,560 --> 00:16:46,400
567
+ ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ู…ุนู†ู‰ ุถุฑุจ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุตุฑ ุฃูˆ ุถุฑุจ ุฑู‚ู… ููŠ
568
+
569
+ 143
570
+ 00:16:46,400 --> 00:16:52,520
571
+ ู…ุตููˆูุฉ ู†ุฌุฏ ุงู„ุฎุงุตูŠุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ู‡ุฐู‡ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ
572
+
573
+ 144
574
+ 00:16:52,520 --> 00:16:57,560
575
+ ุจุชู‚ูˆู„ ู„ูŠ ู…ุง ูŠุฃุชูŠ if
576
+
577
+ 145
578
+ 00:16:57,560 --> 00:17:02,940
579
+ ุงู„ A and ุงู„ B are
580
+
581
+ 146
582
+ 00:17:23,790 --> 00:17:34,150
583
+ ู…ุซู„ู‹ุง M ููŠ N ุซู…
584
+
585
+ 147
586
+ 00:17:36,220 --> 00:17:47,340
587
+ ุงู„ู€ A ุฒูŠ ุฏูŠ ุงู„ B ุงู„ู€ A matrix is a matrix of the
588
+
589
+ 148
590
+ 00:17:47,340 --> 00:17:54,780
591
+ same size of the
592
+
593
+ 149
594
+ 00:17:54,780 --> 00:18:05,000
595
+ same size M ููŠ N ู…ุงุฏูŠุด
596
+
597
+ 150
598
+ 00:18:05,000 --> 00:18:05,620
599
+ ุตูˆุช ุจุงู„ู…ุฑุฉ
600
+
601
+ 151
602
+ 00:18:23,830 --> 00:18:28,890
603
+ ูŠุจู‚ู‰ ู‡ุฐุง ุจุชูƒู„ู… ุนู„ู‰ ุฌู…ุน ู…ุตูููŠู† ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู† ุนู†ุฏ A
604
+
605
+ 152
606
+ 00:18:28,890 --> 00:18:34,910
607
+ ูˆB ู…ุตูููŠู† ู„ู‡ู… ู†ูุณ ุงู„ size ุงู„ู„ูŠ ู‡ูˆ M ููŠ N ู…ุซู„ุง ูŠุจู‚ู‰
608
+
609
+ 153
610
+ 00:18:34,910 --> 00:18:39,710
611
+ ุงู„ู…ุฌู…ูˆุน ุชุจุนู‡ู… ุจูŠุฏูŠู‡ูˆู„ู‡ ู†ูุณ ุงู„ size ุงู„ู„ูŠ ู‡ูˆ M ููŠ M
612
+
613
+ 154
614
+ 00:18:39,710 --> 00:18:47,250
615
+ ู†ุนุทูŠ ู…ุซุงู„ ุชุนูˆุถูŠู‡ุง for example F
616
+
617
+ 155
618
+ 00:18:48,620 --> 00:18:57,900
619
+ ุงู„ู€ A ุชุณุงูˆูŠ ู…ุซู„ุง ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ Zero ุฃุฑุจุนุฉ Zero
620
+
621
+ 156
622
+ 00:18:57,900 --> 00:19:08,300
623
+ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ุชู„ุงุชุฉ and ุงู„ B ุชุณุงูˆูŠุทุจุนุง
624
+
625
+ 157
626
+ 00:19:08,300 --> 00:19:14,280
627
+ ูˆุงุถุญ ุงู† ู‡ุฐุง ุงู„ู†ุธุงู… ู…ุง ุฌุฏูŠุด ู„ู‡ 2 ููŠ 4 ูŠุจู‚ู‰ ู…ุดุงู† ูŠุชู…
628
+
629
+ 158
630
+ 00:19:14,280 --> 00:19:18,680
631
+ ุฌู…ุน ู…ุน ู…ุตูˆูุฉ ุชุงู†ูŠุฉ ุจูŠู‡ ุจุฏูŠ ูŠูƒูˆู† ู†ุธุงู… ูƒุฐู„ูƒ ุงุชู†ูŠู†
632
+
633
+ 159
634
+ 00:19:18,680 --> 00:19:20,440
635
+ ูƒุฏู‡
636
+
637
+ 160
638
+ 00:19:26,850 --> 00:19:31,890
639
+ ุฃุชู†ูŠู† ููŠ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุจุงู„ุถุจุท ุชู…ุงู… ูŠูƒูˆู† ู‡ู†ุง ุงุชู†ูŠู†
640
+
641
+ 161
642
+ 00:19:31,890 --> 00:19:39,350
643
+ ููŠ ุฃุฑุจุนุฉ and ุงู„ B ูŠุณุงูˆูŠ Zero ุชู„ุงุชุฉ ู†ุงู‚ุต ูˆุงุญุฏ ุงุชู†ูŠู†
644
+
645
+ 162
646
+ 00:19:39,350 --> 00:19:45,590
647
+ ูˆ ู‡ู†ุง ูˆุงุญุฏ ุชู„ุงุชุฉ ุงุชู†ูŠู† ุฎู…ุณุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
648
+
649
+ 163
650
+ 00:19:45,590 --> 00:19:54,310
651
+ then ู„ูˆ ุจุฏุงุฌูŠ ุฃุฎุฏ ุงู„ A ุฒุงุฆุฏ ุงู„ BูŠุจู‚ู‰ ุจูŠู‚ูˆู„ ุงู„ุฌู…ุน
652
+
653
+ 164
654
+ 00:19:54,310 --> 00:19:59,230
655
+ ุจู†ุฌู…ุน ุงู„ุนู†ุงุตุฑ ุงู„ู…ุชู†ุงุถุฑุฉ ู…ุน ุจุนุถู‡ุง ูƒูŠูุŸ ูƒุงู„ุชุงู„ูŠ
656
+
657
+ 165
658
+ 00:19:59,230 --> 00:20:03,810
659
+ ูุจุงุฌูŠ ุจู‚ูˆู„ ุงู„ุงุชู†ูŠู† ู…ุน ุฒูŠุฑูˆ ุงู„ู„ูŠ ู‡ูŠ ุจุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆ
660
+
661
+ 166
662
+ 00:20:03,810 --> 00:20:09,310
663
+ ุชู„ุงุชุฉ ุจุณุชุฉ ูˆุงุญุฏ ูˆ ู†ุงู‚ุต ูˆุงุญุฏ ุจุฒูŠุฑูˆ ุงุฑุจุนุฉ ูˆ ุงุชู†ูŠู†
664
+
665
+ 167
666
+ 00:20:09,310 --> 00:20:15,750
667
+ ูƒุฐู„ูƒ ุจุณุชุฉ ุฒูŠุฑูˆ ูˆุงุญุฏ ุจูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุชู„ุงุชุฉ ุจุงุชู†ูŠู†
668
+
669
+ 168
670
+ 00:20:15,870 --> 00:20:21,070
671
+ ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุงุชู†ูŠู† ุงู ุฒูŠุฑูˆ ุณุงู„ุจ ุชู„ุงุชุฉ ูˆ ุฎู…ุณุฉ ุงู„ู„ูŠ
672
+
673
+ 169
674
+ 00:20:21,070 --> 00:20:29,620
675
+ ู‡ูˆ ุจู‚ุฏุงุด ุจุงุชู†ูŠู† ู„ูƒู† ู„ูˆ ุฌูŠุช ู‚ู„ุช ุงู„ A ู†ุงู‚ุต ุงู„ Bู…ุนู†ู‰
676
+
677
+ 170
678
+ 00:20:29,620 --> 00:20:37,960
679
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู† ู‡ุฐู‡ a ุฒุงุฆุฏ ู†ุงู‚ุต ูˆุงุญุฏ ููŠ b ูŠุจู‚ู‰ ูƒุฃู†ู‡
680
+
681
+ 171
682
+ 00:20:37,960 --> 00:20:42,680
683
+ ุงู†ุง ุจุฏู‡ ุงุถุฑุจ ุงู„ b ููŠ ู‚ุฏุงุด ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง
684
+
685
+ 172
686
+ 00:20:42,680 --> 00:20:48,280
687
+ ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณูˆูŠ ุงู„ a ุฒูŠ ู…ุง ู‡ูŠ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ
688
+
689
+ 173
690
+ 00:20:48,280 --> 00:20:54,540
691
+ ุงุฑุจุนุฉ Zero ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ุชู„ุงุชุฉ ุณุงู„ุจ
692
+
693
+ 174
694
+ 00:20:54,540 --> 00:20:59,180
695
+ ุชู„ุงุชุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุฒุงุฆุฏุจุฏุง ุงุฌูŠ ุนู„ู‰ P
696
+
697
+ 175
698
+ 00:20:59,180 --> 00:21:04,060
699
+ ูˆุงุถุฑุจู‡ุง ูƒู„ู‡ุง ููŠ ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ Zero ุณุงู„ุจ ุชู„ุงุชุฉ
700
+
701
+ 176
702
+ 00:21:04,060 --> 00:21:08,680
703
+ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุชู„ุงุชุฉ ุณุงู„ุจ ุงุชู†ูŠู†
704
+
705
+ 177
706
+ 00:21:08,680 --> 00:21:16,170
707
+ ุณุงู„ุจ ุฎู…ุณุฉ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠูŠุจู‚ู‰ ู‡ูŠ ุงุชู†ูŠู†
708
+
709
+ 178
710
+ 00:21:16,170 --> 00:21:23,110
711
+ ูˆู‡ูŠ zero ูˆู‡ูŠ ูƒู…ุงู† ุงุชู†ูŠู† ูˆู‡ู†ุง ูƒู…ุงู† ุงุชู†ูŠู† ุงู„ุตูุฑ
712
+
713
+ 179
714
+ 00:21:23,110 --> 00:21:31,290
715
+ ุงู„ุชุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ ุงุฑุจุนุฉ ูˆู‡ู†ุง ูƒู…ุงู†
716
+
717
+ 180
718
+ 00:21:31,290 --> 00:21:38,810
719
+ ุณุงู„ุจ ุงุฑุจุนุฉูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุฌุฏ ูŠุงุด ุจูŠุธู„ ุณุงู„ุจ ุชู…ุงู†ูŠุฉ
720
+
721
+ 181
722
+ 00:21:38,810 --> 00:21:43,650
723
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู‡ุง ุฏู‡ ูŠุจู‚ู‰ ู‡ุงูŠ ุฌุงู…ุนุฉ ูˆุงุทุงุฑุญ ู…ุตูุชูŠู†
724
+
725
+ 182
726
+ 00:21:43,650 --> 00:21:47,770
727
+ ุงู„ุฌุงู…ุนุฉ ุงู„ุนู†ุงุต ุงู„ู…ุชู†ุงุถุฑุฉ ู…ุน ุจุนุถู‡ุง ูˆุงุทุงุฑุญ ูƒุฐู„ูƒ
728
+
729
+ 183
730
+ 00:21:47,770 --> 00:21:52,170
731
+ ุงู„ุนู†ุงุต ุงู„ู…ุชู†ุงุถุฑุฉ ู…ุน ุจุนุถู‡ุง ูˆูŠุฌุจ ุฃู† ุชูƒูˆู† ุงู„ู…ุตูุชูŠู† ู…ู†
732
+
733
+ 184
734
+ 00:21:52,170 --> 00:21:57,860
735
+ ู†ูุณ ุงู„ู†ุธุงู…ู„ูƒู† ู„ูˆ ุฃุฌู…ุน ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
736
+
737
+ 185
738
+ 00:21:57,860 --> 00:21:58,840
739
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
740
+
741
+ 186
742
+ 00:21:58,840 --> 00:22:05,320
743
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
744
+
745
+ 187
746
+ 00:22:05,320 --> 00:22:06,900
747
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
748
+
749
+ 188
750
+ 00:22:06,900 --> 00:22:08,000
751
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
752
+
753
+ 189
754
+ 00:22:08,000 --> 00:22:11,980
755
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
756
+
757
+ 190
758
+ 00:22:11,980 --> 00:22:22,120
759
+ ู†ุธุงู… ูˆ
760
+
761
+ 191
762
+ 00:22:25,850 --> 00:22:36,410
763
+ ู…ุซู„ุซุงุช ู…ุซู„ุซุงุช ู…ุซู„ุซุงุช ู…ุซู„ุซุงุช ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
764
+
765
+ 192
766
+ 00:22:36,410 --> 00:22:38,330
767
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
768
+
769
+ 193
770
+ 00:22:38,330 --> 00:22:41,710
771
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
772
+
773
+ 194
774
+ 00:22:41,710 --> 00:22:41,870
775
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
776
+
777
+ 195
778
+ 00:22:41,870 --> 00:22:41,890
779
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
780
+
781
+ 196
782
+ 00:22:41,890 --> 00:22:41,930
783
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
784
+
785
+ 197
786
+ 00:22:41,930 --> 00:22:47,250
787
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
788
+
789
+ 198
790
+ 00:22:47,250 --> 00:22:50,830
791
+ ู…ุซู„ุซุฉ
792
+
793
+ 199
794
+ 00:22:51,360 --> 00:22:58,560
795
+ real numbers then
796
+
797
+ 200
798
+ 00:22:58,560 --> 00:23:10,820
799
+ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ a ุฒุงุฆุฏ ุงู„ b ูŠุณุงูˆูŠ ุงู„ b ุฒุงุฆุฏ ุงู„ a
800
+
801
+ 201
802
+ 00:23:10,820 --> 00:23:22,120
803
+ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ aุฒุงุฆุฏ ุงู„ B ุฒุงุฆุฏ ุงู„ C ุจุฏู‡ุง ุชุณุงูˆูŠ
804
+
805
+ 202
806
+ 00:23:22,120 --> 00:23:32,120
807
+ ุงู„ A ุฒุงุฆุฏ ุงู„ B ุฒุงุฆุฏ ุงู„ C ู…ู‚ุทุฉ
808
+
809
+ 203
810
+ 00:23:32,120 --> 00:23:40,660
811
+ ุชุงู„ุชุฉ ุงู„ A ููŠ ุงู„ B ููŠ ุงู„ A ุจุฏู‡ ูŠุณุงูˆูŠ A
812
+
813
+ 204
814
+ 00:23:56,380 --> 00:23:59,020
815
+ ุงู„ู†ู‚ุทุฉ ุงู„ุฑุงุจุนุฉ
816
+
817
+ 205
818
+ 00:24:02,840 --> 00:24:12,980
819
+ ุฒุงุฆุฏ ุงู„ู€ B ููŠ ุงู„ู…ุตุญูˆู A ุจูŠุณุงูˆูŠ AA ุฒุงุฆุฏ BA ู†ู‚ุทุฉ
820
+
821
+ 206
822
+ 00:24:12,980 --> 00:24:21,480
823
+ ุงู„ุฎุงู…ุณุฉ ุงู„ู€ C ููŠ ุงู„ู€ A ุฒุงุฆุฏ ุงู„ู€ B ุณุงูˆูŠ C ููŠ A ุฒุงุฆุฏ
824
+
825
+ 207
826
+ 00:24:21,480 --> 00:24:22,800
827
+ C ููŠ B
828
+
829
+ 208
830
+ 00:24:58,940 --> 00:25:04,660
831
+ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ู‰ ุจูŠู† ุฃุฏูŠู†ุง ู‡ุฐู‡ ุจุชุชูƒู„ู… ุนู† ุฌู…ุน ุงู„ู…ุตูˆูุงุช
832
+
833
+ 209
834
+ 00:25:04,660 --> 00:25:10,080
835
+ ู…ุน ุจุนุถู‡ุง ุงู„ุจุนุถ ุฃูˆ ุถุฑุจ ู…ู‚ุฏุงุฑ ุซุงุจุช ููŠู‡ ู…ุตูˆูุฉ ูˆ ุฌู…ุนู‡
836
+
837
+ 210
838
+ 00:25:10,080 --> 00:25:15,380
839
+ ู…ุน ู…ูŠู† ู…ุน ู…ุตูˆูุฉ ุฃุฎุฑู‰ ูุจู‚ูˆู„ ู„ูˆ ุนู†ุฏูŠ ุชู„ุช ู…ุตูˆูุงุช
840
+
841
+ 211
842
+ 00:25:15,380 --> 00:25:19,860
843
+ ุฏูŠุฑูˆุง ุจุงู„ูƒูˆุง ุงู„ุฑู…ุฒ ุงู„ูƒุจูŠุฑ ู‡ุฐุง ุงู„ู…ู…ุตุจ ู„ู„ู…ุตูˆูุฉ ุงู„ุฑู…ุฒ
844
+
845
+ 212
846
+ 00:25:19,860 --> 00:25:24,420
847
+ ุงู„ุตุบูŠุฑ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ู„ู„ real numberูุจุนุฏูŠู† ุจู‚ูˆู„ ู„ูˆ
848
+
849
+ 213
850
+ 00:25:24,420 --> 00:25:30,800
851
+ ุนู†ุฏูŠ ุชู„ุงุช ู…ุตููุงุช A ูˆB ูˆC ุงู„ุชู„ุงุชุฉ ู„ู‡ู… ู†ูุณ ุงู„ุญุฌู…
852
+
853
+ 214
854
+ 00:25:30,800 --> 00:25:34,080
855
+ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ูƒู„ู‡ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ุชู„ุงุชุฉ ููŠ
856
+
857
+ 215
858
+ 00:25:34,080 --> 00:25:39,190
859
+ ุชู„ุงุชุฉ ุฎู…ุณุฉ ููŠ ุนุดุฑุฉ ูƒู„ู‡ ุฎู…ุณุฉ ููŠ ุนุดุฑุฉุจูŠู‚ูˆู„ ูƒุงู† ุงู„ู€ A
860
+
861
+ 216
862
+ 00:25:39,190 --> 00:25:43,810
863
+ ูˆุงู„ู€ B ูˆุงู„ู€ C are real numbers ูŠุจู‚ู‰ ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉ
864
+
865
+ 217
866
+ 00:25:43,810 --> 00:25:49,510
867
+ ุฐู†ุจ ุงู„ู€ A ุฒุงุฆุฏ ุงู„ู€ B ุจุฏูŠู‡ ุณุงูˆูŠ B ุฒุงุฆุฏ ุงู„ู€ A ุดูˆ
868
+
869
+ 218
870
+ 00:25:49,510 --> 00:25:53,590
871
+ ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ุจู†ุณู…ูŠู‡ุง ููŠ ุฑู‚ู… ุงู„ุฑูŠุงุถูŠุงุชุŸ ุฎุงุตูŠุฉ
872
+
873
+ 219
874
+ 00:25:53,590 --> 00:25:58,630
875
+ ุงู„ุฅุจุฏุงู„ ูŠุจู‚ู‰ ุงู„ู…ู‚ุตูˆุฏ ููŠ ุฐู„ูƒ ุฃู† ุนู…ู„ูŠุฉ ุฌู…ุน ุงู„ู…ุตุญูุงุช
876
+
877
+ 220
878
+ 00:25:58,630 --> 00:26:05,350
879
+ ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ A ุฒุงุฆุฏ ุงู„ู€ B ุจุฏูŠู‡ ุณุงูˆูŠ B ุฒุงุฆุฏ ุงู„ู€ A
880
+
881
+ 221
882
+ 00:26:05,860 --> 00:26:10,820
883
+ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ a ุฒุงุฆุฏ ุงู„ b ุฒุงุฆุฏ ุงู„ c ู‡ุง ุจุฏูŠ ุฃุฌู…ุน a
884
+
885
+ 222
886
+ 00:26:10,820 --> 00:26:15,680
887
+ ูˆ b ููŠ ุงู„ุฃูˆู„ ุซู… ุฃุฌู…ุน ุงู„ู†ุชุฌ ุฅู„ู‰ c ุฃูˆ ุงู„ุนูƒุณ ุฃุฌู…ุน b ูˆ
888
+
889
+ 223
890
+ 00:26:15,680 --> 00:26:20,280
891
+ c ููŠ ุงู„ุฃูˆู„ ุซู… ุฃุฌู…ุน ู„ู‡ู…ูŠู† ุงู„ู…ุตูˆููŠู† ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุฌูŠู†ุง
892
+
893
+ 224
894
+ 00:26:20,280 --> 00:26:27,400
895
+ ู†ุณู…ูŠู‡ุง ุฎุงุตูŠุฉ ุงู„ุชุฌู…ูŠุน ุฃูˆ ุฎุงุตูŠุฉ ุงู„ุฏู…ุฌ ุฅุฐู† ุนู…ู„ูŠุฉ ุฌู…ุน
896
+
897
+ 225
898
+ 00:26:27,400 --> 00:26:33,120
899
+ ุงู„ู…ุตูˆุงุช ุนู…ู„ูŠุฉ ุฅุฏู…ุงุฌูŠุฉ ุจูŠุฌูŠู†ุง ู†ุณู…ูŠู‡ุง associative
900
+
901
+ 226
902
+ 00:26:33,120 --> 00:26:39,960
903
+ lawCommutative ู„ุง ู‚ุงู†ูˆู† ุงู„ุฅุจุฏุงู„ Associative ู„ุง
904
+
905
+ 227
906
+ 00:26:39,960 --> 00:26:46,280
907
+ ู‚ุงู†ูˆู† ุงู„ุฏู…ุฌ ุฃูˆ ู‚ุงู†ูˆู† ุงู„ุชุฌู…ูŠู„ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ ุงู„ู€ a ูˆ
908
+
909
+ 228
910
+ 00:26:46,280 --> 00:26:50,540
911
+ ุงู„ b are real numbers ุจูŠู‚ูˆู„ู‘ูŠ ู„ูˆ ุฌูŠุช ุนู„ู‰ ุงู„ู…ุตูˆู a
912
+
913
+ 229
914
+ 00:26:50,540 --> 00:26:55,440
915
+ ุถุฑุจุช ููŠ ุงู„ real number b ูˆ ุงู„ู„ูŠ ู†ุชุฌ ุถุฑุจุช ููŠู‡ ุงู„
916
+
917
+ 230
918
+ 00:26:55,440 --> 00:27:00,160
919
+ real number a ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุถุฑุจุช ุงู„ a ูˆ ุงู„ b as
920
+
921
+ 231
922
+ 00:27:00,160 --> 00:27:03,820
923
+ real numbers ููŠ ุจุนุถ ู‡ูŠุทู„ุน real number ุฌุฏูŠุฏ ูˆ ู„ูˆ
924
+
925
+ 232
926
+ 00:27:03,820 --> 00:27:08,950
927
+ ุทู„ุจู‡ ููŠ ุงู„ู…ุตูˆู a ุจุชุทู„ุน ู†ูุณ ุงู„ู†ุชุฌ ู‡ุฐุง ุฃูˆู„ูˆ ุจุฏู„ุช
928
+
929
+ 233
930
+ 00:27:08,950 --> 00:27:13,730
931
+ ู…ูƒุงู† a b equals b a ูู‡ูŠ ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ real numbers
932
+
933
+ 234
934
+ 00:27:13,730 --> 00:27:18,610
935
+ ุนู…ู„ูŠุฉ ุฎู…ุณุฉ ููŠ ุณุชุฉ ู‡ูŠ ุณุชุฉ ููŠ ุฎู…ุณุฉ ู…ุธุจูˆุท ู‡ุฐู‡ ุฃุนุฏุงุฏ
936
+
937
+ 235
938
+ 00:27:18,610 --> 00:27:23,810
939
+ ุญู‚ูŠู‚ูŠุฉ ุฅุฐุง ู‡ุฐู‡ ุนู…ู„ูŠุฉ ุงู„ุฅูุฏุงู„ ุนู„ูŠู‡ุง ุตุญูŠุญุฉูˆุจุงู„ุชุงู„ูŠ
940
+
941
+ 236
942
+ 00:27:23,810 --> 00:27:27,970
943
+ ู…ู…ูƒู† ุงุฑุฌุน ุชุงู†ูŠุฉ ูˆ ุงู‚ูˆู„ ุจูŠ ู„ุญุงู„ู‡ุง ูˆุจุนุฏูŠู† ุงุถุฑุจ ุง ููŠ
944
+
945
+ 237
946
+ 00:27:27,970 --> 00:27:33,950
947
+ ุง ูˆุงู„ู†ุชุฌ ุงุถุฑุจู‡ ููŠ ู…ูŠู† ููŠ ุจูŠ ู…ุงููŠุด ู…ุดูƒู„ุฉ ููŠ ุญุงู„ุฉ
948
+
949
+ 238
950
+ 00:27:33,950 --> 00:27:39,190
951
+ ุถุฑุจ ุงูŠ ุฑู‚ู… ุงูˆ ุฑู‚ู…ูŠู† ุงู† ุดุงุก ุงู„ู„ู‡ ุนุดุฑูŠู† ุฑู‚ู… ููŠ ู…ุตูˆุฑ
952
+
953
+ 239
954
+ 00:27:39,190 --> 00:27:44,100
955
+ ุชุถุฑุจ ู…ูŠู† ููŠ ุงู„ุงูˆู„ ู…ุงุนู†ุงู‡ ู…ุดูƒู„ุฉุจู†ุฌูŠ ุงู„ู„ูŠ ู‡ู†ุง ุงุณู…ู‡ุง
956
+
957
+ 240
958
+ 00:27:44,100 --> 00:27:50,200
959
+ distributive law ุฎุงุตูŠุฉ ุงู„ุชูˆุฒูŠุน ู„ูˆ ุนู†ุฏูŠ two real
960
+
961
+ 241
962
+ 00:27:50,200 --> 00:27:54,720
963
+ numbers ูˆ ุฌู…ุนุชู‡ู… ูˆ ุจุฏูŠ ุงุถุฑุจู‡ู… ููŠ ู…ูŠู† ููŠ ู…ุตูˆูุฉ ุงูŠู‡
964
+
965
+ 242
966
+ 00:27:54,720 --> 00:27:58,960
967
+ ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุถุฑุจุช ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ููŠ ุงูŠู‡ ูˆ ุงู„ุฑู‚ู…
968
+
969
+ 243
970
+ 00:27:58,960 --> 00:28:05,130
971
+ ุงู„ุชุงู†ูŠ ููŠ ุงูŠู‡ ูˆ ุซู… ุฌู…ุนุช ุงู„ู†ุชูŠุฌุฉูŠุจู‚ู‰ a ุฒุงุฆุฏ b ููŠ
972
+
973
+ 244
974
+ 00:28:05,130 --> 00:28:10,830
975
+ ุงู„ู…ุตูˆูุฉ a ู‡ูˆ a ููŠ a ุฒุงุฆุฏ b ููŠ ุงุชู†ูŠู† ู†ูุณ ุงู„ุนู…ู„ูŠุฉ
976
+
977
+ 245
978
+ 00:28:10,830 --> 00:28:15,130
979
+ ู‡ุฐุง ูƒู…ุงู† ุงู„ associatively constant ุงูˆ real number
980
+
981
+ 246
982
+ 00:28:15,130 --> 00:28:20,490
983
+ ุนู„ู‰ ู…ุฌู…ูˆุน two matrices ูŠุจู‚ู‰ c ููŠ a ุฒุงุฆุฏ b ูŠุณุงูˆูŠ c
984
+
985
+ 247
986
+ 00:28:20,490 --> 00:28:26,870
987
+ ููŠ a ุฒุงุฆุฏ c ููŠ bู‡ุฐู‡ ู…ุนู„ูˆู…ุงุช ุฃูˆู„ูŠุฉ ุนู† ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน
988
+
989
+ 248
990
+ 00:28:26,870 --> 00:28:31,690
991
+ ูˆุงู„ุทุฑุญ ุนู„ู‰ ุงู„ู…ุตููˆูุฉ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ู‡ูŠ ุนู…ู„ูŠุฉ ุงู„ุทุฑุญ
992
+
993
+ 249
994
+ 00:28:31,690 --> 00:28:37,150
995
+ ุจุงู„ุถุจุท ุชู…ุงู…ุง ูˆูƒุฃู†ู‡ ู†ูุณ ุงู„ุนู…ู„ูŠุฉ ุจุณ ุงู„ุทุฑุญ ุจูŠุฎู„ูŠู‡ุง
996
+
997
+ 250
998
+ 00:28:37,150 --> 00:28:41,230
999
+ ุฌู…ุน ูˆุจู‚ูˆู„ ูƒุฃู† ุงู„ู…ุตููˆูุฉ ุจุณ ู…ุถุฑูˆุจุฉ ููŠ ู…ู†ุŸ ููŠ ุณุงู„ุจ
1000
+
1001
+ 251
1002
+ 00:28:41,230 --> 00:28:46,010
1003
+ ูˆุงุญุฏ ุงุญู†ุง ูƒู†ุง ุฑูุนูŠู† ุนู†ูˆุงู† ุงู„ุนู†ูˆุงู† ู‡ุฐุง ุจู‚ูŠู† ุงู‚ูˆู„
1004
+
1005
+ 252
1006
+ 00:28:46,010 --> 00:28:51,150
1007
+ matrices andVectors ูŠุจู‚ู‰ ุงู„ุฃู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ vectors
1008
+
1009
+ 253
1010
+ 00:28:51,150 --> 00:28:56,670
1011
+ ู†ุนุฑู ู…ุง ู‡ูˆ ุงู„ู…ู‚ุตูˆุฏ ุจุงู„ vectors ุทุจุนุง ูŠุจู‚ู‰ ุจุฏู†ุง ู†ูŠุฌูŠ
1012
+
1013
+ 254
1014
+ 00:28:56,670 --> 00:29:09,870
1015
+ ู„ุนู†ูˆุงู† ุฌุงู†ุจ ู‡ูŠูƒ ุจุฏู†ุง ู†ู‚ูˆู„ raw and columns vectors
1016
+
1017
+ 255
1018
+ 00:29:18,270 --> 00:29:23,950
1019
+ ุชุจู‚ู‰ ุงู„ู…ุชุฌู‡ุงุช ุงู„ู…ุชุฌู‡ุงุช
1020
+
1021
+ 256
1022
+ 00:29:23,950 --> 00:29:31,010
1023
+ ุงู„ุตููˆู ูˆู…ุชุฌู‡ุงุช ุงู„ุฃุนู…ุฏุฉ definition ุชุนุฑูŠู ุงู„ุฃูˆู„ a
1024
+
1025
+ 257
1026
+ 00:29:31,010 --> 00:29:36,250
1027
+ matrix with
1028
+
1029
+ 258
1030
+ 00:29:36,250 --> 00:29:39,430
1031
+ with
1032
+
1033
+ 259
1034
+ 00:29:39,430 --> 00:29:42,530
1035
+ one call and
1036
+
1037
+ 260
1038
+ 00:29:48,970 --> 00:29:54,150
1039
+ in rows ุนู…ูˆุฏ
1040
+
1041
+ 261
1042
+ 00:29:54,150 --> 00:30:05,430
1043
+ ูˆุงุญุฏ ูˆ in ู…ู† ุงู„ุตููˆู of the form ุนู„ู‰ ุงู„ุดูƒู„ x ูˆุงุญุฏ ูˆ
1044
+
1045
+ 262
1046
+ 00:30:05,430 --> 00:30:11,450
1047
+ x ุงุชู†ูŠู† ูˆ ู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ x in ุจู‡ุฐุง ุงู„ุดูƒู„ is
1048
+
1049
+ 263
1050
+ 00:30:11,450 --> 00:30:12,310
1051
+ called
1052
+
1053
+ 264
1054
+ 00:30:18,200 --> 00:30:24,520
1055
+ and in dimensional
1056
+
1057
+ 265
1058
+ 00:30:24,520 --> 00:30:32,900
1059
+ convector
1060
+
1061
+ 266
1062
+ 00:30:32,900 --> 00:30:36,120
1063
+ ู…ุงุญุฏุด
1064
+
1065
+ 267
1066
+ 00:30:36,120 --> 00:30:46,060
1067
+ ุฃุญุณู† ู…ู† ุญุฏ ู†ุฏู‰ a matrix with
1068
+
1069
+ 268
1070
+ 00:30:53,740 --> 00:31:17,260
1071
+ ู…ุน ุดูƒู„ Y1
1072
+
1073
+ 269
1074
+ 00:31:17,260 --> 00:31:39,500
1075
+ ูˆ Y2ูˆ ู„ุบุงูŠุฉ yn is called ุจุฑูˆุญ ู†ุณู…ูŠู‡ indimensional
1076
+
1077
+ 270
1078
+ 00:31:39,500 --> 00:31:42,240
1079
+ raw vector
1080
+
1081
+ 271
1082
+ 00:31:51,570 --> 00:32:11,330
1083
+ for example ูƒู…ุซุงู„ ุนู„ู‰ ุฐู„ูƒ ุงู„ matrix ุงู„
1084
+
1085
+ 272
1086
+ 00:32:11,330 --> 00:32:36,770
1087
+ matrix A ุชุณุงูˆูŠ A11 A12A1N A21 A22 A2N AM1 AM2 AMN
1088
+
1089
+ 273
1090
+ 00:32:36,770 --> 00:32:47,530
1091
+ ุดูƒู„ ุงู† ู‡ุฐุง ุงู„ู„ูŠ ุณู…ูŠู‡ุง ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ star with size
1092
+
1093
+ 274
1094
+ 00:32:50,360 --> 00:32:57,120
1095
+ m ููŠ n has
1096
+
1097
+ 275
1098
+ 00:32:57,120 --> 00:33:03,100
1099
+ columns
1100
+
1101
+ 276
1102
+ 00:33:03,100 --> 00:33:15,020
1103
+ columns vectors columns vectors u1 ุจุฏู‡ ูŠุณุงูˆูŠ a11
1104
+
1105
+ 277
1106
+ 00:33:15,020 --> 00:33:17,620
1107
+ a21
1108
+
1109
+ 278
1110
+ 00:33:19,280 --> 00:33:36,220
1111
+ ูˆ ู„ุบุงูŠุฉ am1 ูˆ ุงู„ U2 ุจุฏู‡ ูŠุณุงูˆูŠ a12 a22 am2
1112
+
1113
+ 279
1114
+ 00:33:36,220 --> 00:33:49,990
1115
+ ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ un ุงู„ู„ูŠ ู‡ูŠ a1n a2nุฃู†
1116
+
1117
+ 280
1118
+ 00:34:19,440 --> 00:34:26,320
1119
+ ุนู†ุฏ ู‡ุฐู‡ ุงู„ูˆุตูุงุช ุงู„ูˆุงุญุฏุฉ ุงู„ูˆุงุญุฏุฉ
1120
+
1121
+ 281
1122
+ 00:34:26,320 --> 00:34:30,200
1123
+ ุงู„ูˆุงุญุฏุฉ ุงู„ูˆุงุญุฏุฉ ุงู„ูˆุงุญุฏุฉ ุงู„ูˆุงุญุฏุฉ
1124
+
1125
+ 282
1126
+ 00:34:39,070 --> 00:34:47,050
1127
+ A12 A1N V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
1128
+
1129
+ 283
1130
+ 00:34:47,050 --> 00:34:50,770
1131
+ V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
1132
+
1133
+ 284
1134
+ 00:34:50,770 --> 00:34:50,990
1135
+ V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
1136
+
1137
+ 285
1138
+ 00:34:50,990 --> 00:34:51,050
1139
+ V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
1140
+
1141
+ 286
1142
+ 00:34:51,050 --> 00:34:55,330
1143
+ V2 V2 V2 V2 V2 V2 V2 V2 V2
1144
+
1145
+ 287
1146
+ 00:34:55,330 --> 00:35:01,870
1147
+ V2 V
1148
+
1149
+ 288
1150
+ 00:35:07,990 --> 00:35:30,810
1151
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ุฑูˆุญ
1152
+
1153
+ 289
1154
+ 00:35:30,810 --> 00:35:42,180
1155
+ ู†ูƒุชุจ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠA ุชุณุงูˆูŠ U1 U2 ูˆ ู„ุบุงูŠุฉ UN
1156
+
1157
+ 290
1158
+ 00:35:42,180 --> 00:35:48,120
1159
+ where each
1160
+
1161
+ 291
1162
+ 00:35:48,120 --> 00:36:02,560
1163
+ of U1 ูˆ U2 ูˆ ู„ุบุงูŠุฉ UN is M dimensionalู…
1164
+
1165
+ 292
1166
+ 00:36:02,560 --> 00:36:05,600
1167
+ ุฏุงูŠู…ูŠู†ุดูŠู†ุงู„
1168
+
1169
+ 293
1170
+ 00:36:05,600 --> 00:36:19,940
1171
+ ู… ุฏุงูŠู…ูŠู†ุดูŠู†ุงู„ ูƒู„ู… vectors ูˆูƒุฐู„ูƒ
1172
+
1173
+ 294
1174
+ 00:36:19,940 --> 00:36:42,270
1175
+ ุงู„ A ุชุณุงูˆูŠ V1 V2 ู„ุบุงูŠุฉ VmWhere each of V1 ูˆ V2 ูˆ
1176
+
1177
+ 295
1178
+ 00:36:42,270 --> 00:36:50,490
1179
+ ู„ุบุงูŠุฉ VM is an N-dimensional
1180
+
1181
+ 296
1182
+ 00:37:01,910 --> 00:37:06,290
1183
+ ุงู† ุฏุงูŠู…ู†ุดูŠู†ุงู„ ุฑุง ููƒุชุฑ
1184
+
1185
+ 297
1186
+ 00:37:47,410 --> 00:37:52,870
1187
+ ุงู„ุงู† ู†ุนูˆุฏ ู„ุจุนุถ ุงู„ุชุนุฑูŠูุงุช ุงู„ุชูŠ ุชุดุงู‡ุฏูˆู†ู‡ุง ุงู„ุชุนุฑูŠู
1188
+
1189
+ 298
1190
+ 00:37:52,870 --> 00:37:58,750
1191
+ ุงู„ุฃูˆู„ ู‡ูˆ matrix with one column and n rows ุนู…ูˆุฏ
1192
+
1193
+ 299
1194
+ 00:37:58,750 --> 00:38:03,530
1195
+ ูˆุงุญุฏ ูˆู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุตููˆุฑุฉ ู‡ุฐุง ู„ูŠุณ ู…ุตุทููˆุด ูู‚ุท ุนู…ูˆุฏ
1196
+
1197
+ 300
1198
+ 00:38:03,530 --> 00:38:07,590
1199
+ ูˆุงุญุฏ ูˆุตูุฑ ุงุชู†ูŠู† ูˆุชู„ุงุชุฉ ู…ู† ุงู„ุตููˆุฑุฉ ุงู† ู…ู† ุงู„ุตููˆุฑุฉ ููŠ
1200
+
1201
+ 301
1202
+ 00:38:07,590 --> 00:38:12,310
1203
+ ุงู„ุดูƒู„ ู„ุฃู† ู‡ุฐุง ุจู†ุณู…ูŠู‡ุง n-dimensional column vector
1204
+
1205
+ 302
1206
+ 00:38:12,310 --> 00:38:20,880
1207
+ ูŠุจู‚ู‰ู…ุชุฌู‡ ุนู…ูˆุฏูŠ ู„ู‡ N ู…ู† ุงู„ุฅุญุฏุงุซูŠุงุช M dimensional
1208
+
1209
+ 303
1210
+ 00:38:20,880 --> 00:38:26,580
1211
+ ูŠุนู†ูŠ ูƒุงู† ููŠู‡ N ู…ู† ุงู„ุนู†ุงุตุฑ ุชู…ุงู… ุงู„ู„ูŠ ุจุนุฏ Matrix
1212
+
1213
+ 304
1214
+ 00:38:26,580 --> 00:38:33,540
1215
+ with one row ุตู ูˆุงุญุฏ ู„ูƒู† M ู…ู† ุงู„ุฃุนู…ุฏุฉูŠุจู‚ู‰ ุตู ูˆุงุญุฏ
1216
+
1217
+ 305
1218
+ 00:38:33,540 --> 00:38:39,140
1219
+ ูˆ N ู…ู† ุงู„ุฃุนู…ุฏุฉ of the form Y1 Y2 ูŠุจู‚ู‰ ุตู ูˆุงุญุฏ
1220
+
1221
+ 306
1222
+ 00:38:39,140 --> 00:38:45,960
1223
+ ูˆุนู…ูˆุฏูŠ 2 3 4 N ูŠุจู‚ู‰ ุจุณู…ูŠู‡ N dimensional row vector
1224
+
1225
+ 307
1226
+ 00:38:49,140 --> 00:38:55,740
1227
+ N dimensional call vector ู…ุตููˆูุฉ ุนู…ูˆุฏ ู…ุตููˆูุฉ ุตูุฑ
1228
+
1229
+ 308
1230
+ 00:38:55,740 --> 00:39:03,020
1231
+ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุชุฌู‡ ุนู…ูˆุฏูŠ ูˆู‡ุฐุง ู…ุชุฌู‡ ุตูุฑูŠ ูู…ุซู„ุง ู„ูˆ ุฃุฎุฏุช
1232
+
1233
+ 309
1234
+ 00:39:03,020 --> 00:39:09,460
1235
+ ู…ุตููˆูุฉ ุงู„ู…ุนุงู…ู„ุงุช ู‡ูŠูƒูˆู† ููŠู‡ุงุงู„ู€ vector ุงู„ุฃูˆู„ ุงู„
1236
+
1237
+ 310
1238
+ 00:39:09,460 --> 00:39:13,420
1239
+ vector ุงู„ุชุงู†ูŠ ุงู„ vector ุงู„ุชุงู„ุช ุงู„ู„ูŠ ุณู…ูŠุชู‡ U1 ูˆ U2
1240
+
1241
+ 311
1242
+ 00:39:13,420 --> 00:39:18,540
1243
+ ูˆ U3 ุญูŠูƒูˆู† ููŠู‡ุง ุงู„ raw vector ุงู„ุตู ุงู„ุฃูˆู„ ุงู„ุตู
1244
+
1245
+ 312
1246
+ 00:39:18,540 --> 00:39:24,280
1247
+ ุงู„ุชุงู†ูŠ ุงู„ุตู ุฑู‚ู… M ุฒูŠ ู…ุง ุฏูŠุชู‡ ุงู„ุฑู…ุฒ V ูŠุจู‚ู‰ U
1248
+
1249
+ 313
1250
+ 00:39:24,280 --> 00:39:29,640
1251
+ ุฃุทู„ู‚ุชู‡ุง ุนู„ู‰ ุงู„ุตููˆู ูˆ V ุฃุทู„ู‚ุชู‡ุง ุนู„ู‰ ุงู„ุฃุนู…ุฏุฉ ูˆ H
1252
+
1253
+ 314
1254
+ 00:39:29,640 --> 00:39:35,240
1255
+ ุฃุทู„ู‚ุชู‡ุง ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ุตููˆู ูŠุจู‚ู‰ ู…ู…ูƒู† ุฃุฑุฌุน ุฃูƒุชุจ
1256
+
1257
+ 315
1258
+ 00:39:35,240 --> 00:39:40,140
1259
+ ุงู„ู…ุตููˆู ุฃุณุชุฑ ุนู„ู‰ ุงู„ุตูŠุบุฉ ุงู„ุชุงู„ูŠุฉูŠุจู‚ู‰ U1 ูˆ U2 ูˆ ู„ุบุฉ
1260
+
1261
+ 316
1262
+ 00:39:40,140 --> 00:39:44,700
1263
+ UL ุทุจุนุง ู‡ุฐุง ุนู…ูˆุฏ ูˆ ู‡ุฐุง ุนู…ูˆุฏ ูˆ ู‡ุฐุง ุนู…ูˆุฏ ูˆ ู‡ุฐุง ุนู…ูˆุฏ
1264
+
1265
+ 317
1266
+ 00:39:44,700 --> 00:39:49,900
1267
+ ุงูˆ ุจู‚ุฏุฑ ุงูƒุชุจู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูˆ ูƒู„ ูˆุงุญุฏ ุนุจุงุฑุฉ ุนู†
1268
+
1269
+ 318
1270
+ 00:39:49,900 --> 00:39:55,260
1271
+ ู…ูŠู† ุนุจุงุฑุฉ ุนู† ุตู ุณูˆุงุก ูƒุงู† ู‡ุฐุง ูˆ ู„ุง ู‡ุฐุง ุงู„ุงุชู†ูŠู† are
1272
+
1273
+ 319
1274
+ 00:39:55,260 --> 00:40:00,280
1275
+ the same ู‡ู†ุญุงูˆู„ ู†ุนุทูŠ ุฃู…ุซู„ุฉ ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ุนู„ู‰ ุงู„ two
1276
+
1277
+ 320
1278
+ 00:40:00,280 --> 00:40:03,720
1279
+ definitions ู‡ุฐูˆู„ ุงู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ุงุนุทูŠูƒูˆุง ุงู„ุนููˆ
1280
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/HH8I6sciKRM_raw.srt ADDED
@@ -0,0 +1,1300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,690 --> 00:00:25,470
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุงุจุชุฏุฃู†ุง ุจ
4
+
5
+ 2
6
+ 00:00:25,470 --> 00:00:30,090
7
+ section ุงู„ homogeneous systems ูˆุฃุฎุฏู†ุง ุนู„ู‰ ุฐู„ูƒ
8
+
9
+ 3
10
+ 00:00:30,090 --> 00:00:37,110
11
+ ู…ุซุงู„ูŠู† ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุฑู‚ู… ุชู„ุงุชุฉ ูŠุนู†ูŠ
12
+
13
+ 4
14
+ 00:00:37,110 --> 00:00:40,450
15
+ ุงู„ู„ูŠ ู‚ู„ู†ุง ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุงู„ homogeneous system ูŠุง
16
+
17
+ 5
18
+ 00:00:40,450 --> 00:00:44,810
19
+ ุฅู…ุง ุฅู„ู‡ ู„ trivial solutionูŠุง ุฅู…ุง ุฅู„ู‡ ุงู„ู€ Non
20
+
21
+ 6
22
+ 00:00:44,810 --> 00:00:48,270
23
+ -homogeneous solutions ูˆู‡ุฐู‡ ุงู„ู€ Non-homogeneous
24
+
25
+ 7
26
+ 00:00:48,270 --> 00:00:52,170
27
+ solutions ุชุญุชูˆูŠ ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ู€ homogeneous
28
+
29
+ 8
30
+ 00:00:52,170 --> 00:00:56,570
31
+ solution ุฃู…ุง ุญูƒุงูŠุฉ ุฅู†ู‡ ู…ุงููŠุด solution ูู‡ุฐุง ู…ุณุชุจุนุฏ
32
+
33
+ 9
34
+ 00:00:56,570 --> 00:01:01,850
35
+ ุชู…ุงู…ุง ุฃุฎุฐู†ุง ู…ุซุงู„ูŠู† ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุงู„ุฑู‚ู… ุชู„ุงุชุฉ
36
+
37
+ 10
38
+ 00:01:02,300 --> 00:01:06,620
39
+ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ู„ูŠ for what values of A ู…ุง ู‡ูŠ ุงู„ู‚ูŠู…
40
+
41
+ 11
42
+ 00:01:06,620 --> 00:01:11,360
43
+ ุงู„ู„ูŠ ุจูŠุงุฎุฏู‡ุง ุซุงุจุช A ุจุญูŠุซ ุงู† ุงู„ system ุงู„ู„ูŠ ุนู†ุฏ ู‡ุฐุง
44
+
45
+ 12
46
+ 00:01:11,360 --> 00:01:17,280
47
+ ู„ู‡ non trivial solution ูŠุนู†ูŠ ู„ู‡ ุญู„ ุบูŠุฑ ุงู„ุญู„ ุงู„ุตูุฑูŠ
48
+
49
+ 13
50
+ 00:01:17,820 --> 00:01:21,620
51
+ ุทุจ ู†ุฌูŠุจ ู†ู‚ูˆู„ู‡ ุงู„ tactic ู†ูุณ ุงู„ู‚ุตุฉ ุชุงุจุนุฉ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ
52
+
53
+ 14
54
+ 00:01:21,620 --> 00:01:26,420
55
+ ูุงุชุช ุจุงู„ู†ุณุจุฉ ู„ู„ู…ุซุงู„ูŠู† ุงู„ุณุงุจู‚ูŠู† ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุจุฏุฃ
56
+
57
+ 15
58
+ 00:01:26,420 --> 00:01:31,460
59
+ ุจุงู„ู…ุตููˆูุฉ ุงู„ู…ูˆุณุนุฉ ูˆ ู†ุดุบู„ ุนู…ู„ูŠุงุช ุงู„ุตูู‚ุฉ ุงู„ุจุณูŠุทุฉ
60
+
61
+ 16
62
+ 00:01:31,460 --> 00:01:35,240
63
+ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ู„ู„ู…ุตููˆูุฉ ุงู„ู…ูˆุณุนุฉ ู‡ุชูƒูˆู† ุนู„ู‰ ุงู„ุดูƒู„
64
+
65
+ 17
66
+ 00:01:35,240 --> 00:01:42,480
67
+ ุงู„ุชุงู„ูŠ ูˆุงุญุฏุฃู†ุงู‚ุต ุงุชู†ูŠู† ุฒูŠุฑูˆ ุตู ุงู„ุชุงู†ูŠ ุงุชู†ูŠู† ู†ุงู‚ุต
68
+
69
+ 18
70
+ 00:01:42,480 --> 00:01:48,280
71
+ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุฒูŠุฑูˆ ุตู ุงู„ุชุงู„ุช ู†ุงู‚ุต ู†ุงู‚ุต ูˆุงุญุฏ ูˆู‡ู†ุง
72
+
73
+ 19
74
+ 00:01:48,280 --> 00:01:54,120
75
+ ูˆุงุญุฏ ูˆู‡ู†ุง ุฒูŠุฑูˆ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ู…ุตุฑูˆู ุงู„ู„ูŠ
76
+
77
+ 20
78
+ 00:01:54,120 --> 00:01:59,440
79
+ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจุฏุฃ ุญุงูˆู„ ุงู„ู„ูŠ ุทุจุนุง ูˆุงุถุญ ุงู† ุงู„ุนู…ูˆู‚ ุงู„ุตู
80
+
81
+ 21
82
+ 00:01:59,440 --> 00:02:03,740
83
+ ุงู„ุงู†ุตุฑ ุงู„ุฃูˆู„ ู‡ู†ุง ุงู„ leading ู‡ูˆ ูˆุงุญุฏ ูŠุจู‚ู‰ ุฌุงู‡ุฒ ู„ูƒู†
84
+
85
+ 22
86
+ 00:02:03,740 --> 00:02:09,330
87
+ ุงู„ุนูŠุงู…ูŠู† ู…ูŠู…ุฅูŠู‡ ู„ูˆ ุจุฏู†ุง ู†ุถุฑุจ ูˆ ู†ุถูŠู ุจุชุชุนุฌุฏ ุดูˆูŠุฉ
88
+
89
+ 23
90
+ 00:02:09,330 --> 00:02:14,930
91
+ ูุฅู„ุง ุฎุงุทุฑ ุฃุจุฏู„ ุงู„ุตู ุงู„ุฃูˆู„ ู…ุน ุงู„ุตู ุงู„ุชุงู„ุช ู…ุน ุถุฑุจ
92
+
93
+ 24
94
+ 00:02:14,930 --> 00:02:20,410
95
+ ุงู„ุตู ุงู„ุชุงู„ุช ููŠ ุฅุดุงุฑุฉ ุณุงู„ุจ ู…ุฑุฉ ูˆุงุญุฏุฉ ูˆุจุงู„ุชุงู„ูŠ ุจุฎู„ูŠ
96
+
97
+ 25
98
+ 00:02:20,410 --> 00:02:25,690
99
+ ุงู„ a ุชุญุช ูˆุจุงู„ุชุงู„ูŠ ุจุตูŠุฑ ุฃุณู‡ู„ู†ุง ุดูˆูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุนู…ู„
100
+
101
+ 26
102
+ 00:02:25,690 --> 00:02:30,750
103
+ ู…ุง ูŠุฃุชูŠ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุณู‡ู… ูŠุจู‚ู‰ ุจุงู„ุฏู‡ุฌุฉ ุฃู‚ูˆู„ู‡ replace
104
+
105
+ 27
106
+ 00:02:32,410 --> 00:02:41,890
107
+ ุงุณุชุจุฏู„ ุณุงู„ุจ R3 and R1 ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠ ุนู„ู‰ ุงู„ุตู ุงู„ุฃูˆู„
108
+
109
+ 28
110
+ 00:02:41,890 --> 00:02:45,830
111
+ ูˆุงู„ุตู ุงู„ุชุงู„ุช ู‡ุฐู‡ ู…ุนู†ุงุชู‡ ุจุฏูŠ ุฃุนู…ู„ ุนู…ู„ูŠุชูŠู† ู…ุน ุจุนุถ ููŠ
112
+
113
+ 29
114
+ 00:02:45,830 --> 00:02:50,690
115
+ ุงู†ุง ูˆุงุญุฏ ุจุฏูŠ ุฃุถุฑุจ ุงู„ุตู ุงู„ุชุงู„ุช ููŠ ุฅุดุงุฑุฉ ุณุงู„ุจ ููŠ
116
+
117
+ 30
118
+ 00:02:50,690 --> 00:02:55,910
119
+ ุฅุดุงุฑุฉ ุณุงู„ุจ ูˆุงุญุฏ ูˆู…ู† ุซู… ุฃุจุฏู„ ู…ุน ู…ูŠู† ู…ุน ุงู„ุตู ุงู„ุฃูˆู„
120
+
121
+ 31
122
+ 00:02:55,910 --> 00:03:00,470
123
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจูŠุตูŠุฑ ุงู„ู…ุตูˆูุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูˆุงุญุฏ
124
+
125
+ 32
126
+ 00:03:03,420 --> 00:03:11,280
127
+ ุตู ุงู„ุซุงู†ูŠ ูƒู…ุง ู‡ูˆ ู…ุงุนู…ู„ู†ุงู‡ุด ู„ู‡ ุญุงุฌุฉ ุงู„ุตู ุงู„ุฃูˆู„
128
+
129
+ 33
130
+ 00:03:11,280 --> 00:03:17,720
131
+ ุจูŠุตูŠุฑ ุงู„ุตู ุงู„ุชุงู„ุช ุงู„ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† ุฒูŠุฑูˆ ุจุงู„ุดูƒู„
132
+
133
+ 34
134
+ 00:03:17,720 --> 00:03:24,760
135
+ ุงู„ู„ูŠ ุนู†ุฏู†ุงุงู„ุงู† ุจุฏูŠ ุงุฎู„ ู‡ุฐุง zero ุจุฏู„ ุงุชู†ูŠู† ูˆ ู‡ุฐุง
136
+
137
+ 35
138
+ 00:03:24,760 --> 00:03:29,920
139
+ zero ูŠุจู‚ู‰ ุจุฏูŠ ุงุนู…ู„ ุนู…ู„ูŠุชูŠู† ููŠ ุงู†ุง ูˆุงุญุฏ ุนู„ู‰ ุงู„ุดูƒู„
140
+
141
+ 36
142
+ 00:03:29,920 --> 00:03:35,500
143
+ ุงู„ุชุงู„ู ุจุฏูŠ ุงุฏุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุงุถูŠูู‡
144
+
145
+ 37
146
+ 00:03:35,500 --> 00:03:42,650
147
+ ู„ู„ุตู ุงู„ุซุงู†ูŠูŠุจู‚ู‰ ุจุงู„ุฏุฑุฌุฉ ูŠู‚ูˆู„ ุณุงู„ุจ ุงุชู†ูŠู† R1 to R2
148
+
149
+ 38
150
+ 00:03:42,650 --> 00:03:51,750
151
+ ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุณุงู„ุจ R1 to R3 ู…ุฑุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ุจู†ุญุตู„
152
+
153
+ 39
154
+ 00:03:51,750 --> 00:03:57,880
155
+ ุนู„ู‰ ุงู„ุตู ุงู„ุชุงู„ูŠ ุงู„ุตู ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ูƒู…ุง ู‡ูˆูŠุจู‚ู‰ ู‡ู†ุง ู‡ูŠ
156
+
157
+ 40
158
+ 00:03:57,880 --> 00:04:03,820
159
+ ูˆุงุญุฏ ูˆู‡ู†ุง ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ุฒูŠุฑูˆ ูˆู‡ูŠ ู‚ูู„ู†ุง ุงู„ู…ุตูˆูุฉ
160
+
161
+ 41
162
+ 00:04:03,820 --> 00:04:10,100
163
+ ู‡ู†ุง ุจุฏู‰ ูŠุตูŠุฑ ุนู†ุฏู‰ ุฒูŠุฑูˆ ุณุงู„ุจ ุงุชู†ูŠู† ูˆุณุงู„ุจ ูˆุงุญุฏ ุจูŠุตูŠุฑ
164
+
165
+ 42
166
+ 00:04:10,100 --> 00:04:17,160
167
+ ุณุงู„ุจ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุชู„ุงุชุฉ ู…ูˆุฌุฉ ุจูˆุงุญุฏ ู„ุฅู† ู…ู‚ูู„
168
+
169
+ 43
170
+ 00:04:17,160 --> 00:04:22,020
171
+ ุถุฑุจู†ุง ููŠ ุณุงู„ุจ ุงุช๏ฟฝ๏ฟฝูŠู† ุจูŠุตูŠุฑ ู‡ู†ุง ู…ูˆุฌุฉ ุจุงุชู†ูŠู† ูˆู†ุงุฎุต
172
+
173
+ 44
174
+ 00:04:22,020 --> 00:04:27,300
175
+ ูˆุงุญุฏ ุจูŠุตูŠุฑ ุนู†ุฏู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ุฒูŠุฑูˆู‡ู†ุง ุถุฑุจู†ุง ููŠ ุณุงู„ุจ
176
+
177
+ 45
178
+ 00:04:27,300 --> 00:04:33,800
179
+ ูˆุงุญุฏ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ zero ูˆู‡ู†ุง a ู†ุงู‚ุต ุงู„ูˆุงุญุฏ ูˆู‡ู†ุง ุจูŠุตูŠุฑ
180
+
181
+ 46
182
+ 00:04:33,800 --> 00:04:39,980
183
+ ู…ูˆุฌุฉ ุจูˆุงุญุฏ ูˆุณุงู„ุจ ุงุชู†ูŠู† ุจุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง zero ูƒู…ุง ู‡ูŠ
184
+
185
+ 47
186
+ 00:04:40,830 --> 00:04:45,050
187
+ ู…ุฑุฉ ุชุงู†ูŠุฉ ูŠุง ุจู†ุงุฏุฑ ูŠุจู‚ู‰ ุถุฑุจุช ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุณู„ุจ
188
+
189
+ 48
190
+ 00:04:45,050 --> 00:04:48,870
191
+ ุงุชู†ูŠู† ูˆุงุถูุชู‡ ู„ุงุชู†ูŠู† ุจูŠุตูŠุฑ zero ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุณุงู„ุจ
192
+
193
+ 49
194
+ 00:04:48,870 --> 00:04:52,330
195
+ ูˆุงุญุฏ ุจูŠุตูŠุฑ ุณุงู„ุจ ุชู„ุงุชุฉ ู…ูˆุฌุฉ ุจุงุชู†ูŠู† ูˆ ุณุงู„ุจ ูˆุงุญุฏ
196
+
197
+ 50
198
+ 00:04:52,330 --> 00:04:56,970
199
+ ุจูŠุตูŠุฑ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ูˆุงุญุฏ zero ุณุงู„ุจ ูˆุงุญุฏ ูˆ a
200
+
201
+ 51
202
+ 00:04:56,970 --> 00:05:00,790
203
+ ุจูŠุตูŠุฑ a ุณุงู„ุจ ูˆุงุญุฏ ู…ูˆุฌุฉ ุจูˆุงุญุฏ ูˆ ุณุงู„ุจ ุงุชู†ูŠู† ุจูŠุตูŠุฑ
204
+
205
+ 52
206
+ 00:05:00,790 --> 00:05:07,310
207
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงู„ุจุงู‚ูŠ ุจ zeroู†ุฃุชูŠ ู„ู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ุฎุทูˆุฉ
208
+
209
+ 53
210
+ 00:05:07,310 --> 00:05:12,690
211
+ ุงู„ุชุงู„ูŠุฉ ุณุชุฌุนู„ ู‡ุฐุง ู‚ุฏุงุด ูˆุงุญุฏ ุตุญูŠุญ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑุจ ููŠ
212
+
213
+ 54
214
+ 00:05:12,690 --> 00:05:19,790
215
+ ุณุงู„ุจ ุชู„ุช R2 ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ุฐุง ุณู‡ู… ูˆู‡ุฐุง ุณุงู„ุจ ุชู„ุช
216
+
217
+ 55
218
+ 00:05:19,790 --> 00:05:27,470
219
+ R2 ู†ุญุตู„ ุนู„ู‰ ุงู„ู…ุตูˆูุฉ ุงู„ุชุงู„ูŠุฉูˆุงุญุฏ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ
220
+
221
+ 56
222
+ 00:05:27,470 --> 00:05:37,190
223
+ Zero Zero ูˆุงุญุฏ ุณุงู„ุจ ุชู„ุช ูˆ ู‡ู†ุง Zero A ู†ุงู‚ุต ูˆุงุญุฏ ูˆ
224
+
225
+ 57
226
+ 00:05:37,190 --> 00:05:45,290
227
+ ู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ูˆ ู‡ู†ุง Zero Zero ูƒูˆูŠุณูŠุจู‚ู‰ ุงู„ุฃู†
228
+
229
+ 58
230
+ 00:05:45,290 --> 00:05:51,830
231
+ ุจุงู„ุฏุงุฌูŠ ู„ู„ุตู ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ุตู ุงู„ุซุงู†ูŠ ุจุฏูŠ ุฃุฎู„ูŠ
232
+
233
+ 59
234
+ 00:05:51,830 --> 00:05:57,790
235
+ ุงู„ู„ูŠ ููˆู‚ zero ูˆ ุงู„ู„ูŠ ุชุญุช ุจุฏูŠ ุฃุญุงูˆู„ ุฃุฎู„ูŠู‡ุง zero ุจุณ
236
+
237
+ 60
238
+ 00:05:57,790 --> 00:06:05,150
239
+ ู‚ุจู„ู‡ุง ู„ูˆ ุฃุถูุช ุงู„ุตู ุงู„ุซุงู†ูŠ ุฅู„ู‰ ุงู„ุตู ุงู„ุชุงู„ุฏูŠุจู‚ู‰
240
+
241
+ 61
242
+ 00:06:05,150 --> 00:06:11,930
243
+ ูƒุฎุทูˆุฉ ุชุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุนู…ู„ ู…ุง ูŠุฃุชูŠ ุจุฏุงุฌูŠ ุฃุฎุฏ ุงู„ู„ูŠ
244
+
245
+ 62
246
+ 00:06:11,930 --> 00:06:20,270
247
+ ู‡ูˆ R2 to R3 ู†ุญุตู„ ุนู„ู‰ ู…ุง ูŠุฃุชูŠ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุตูŠุฑ ุนู†ู‡ู†ุงุด
248
+
249
+ 63
250
+ 00:06:20,270 --> 00:06:32,360
251
+ ูˆ ูƒุฐู„ูƒ R2 to R3 ูˆ ุณุงู„ุจ R2 to R1 ู…ุฑุฉ ูˆุงุญุฏุฉูŠุจู‚ู‰ ู‡ู†ุง
252
+
253
+ 64
254
+ 00:06:32,360 --> 00:06:42,420
255
+ 1 ูˆ ู‡ู†ุง 0 ุณุงู„ุจ ูŠุตุจุญ ู…ูˆุฌุฉ ุจุชู„ุช ูŠุจู‚ู‰ ู‡ู†ุง ุณุงู„ุจ ุชู„ุชูŠู†
256
+
257
+ 65
258
+ 00:06:42,420 --> 00:06:51,100
259
+ ูŠุจู‚ู‰ ู‡ู†ุง ุณุงู„ุจ ุชู„ุชูŠู† ูˆ ู‡ู†ุง 0ุงู„ุตู ู‡ุฐุง ูŠุจู‚ู‰ ูƒู…ุง ู‡ูˆ
260
+
261
+ 66
262
+ 00:06:51,100 --> 00:06:59,680
263
+ Zero ูˆุงุญุฏ ุณุงู„ุจ ุทูˆู„ ู‡ู†ุง Zero ูˆ ู‡ู†ุง ุฃุถูู†ุง ู‡ู†ุง ูŠุจู‚ู‰
264
+
265
+ 67
266
+ 00:06:59,680 --> 00:07:07,600
267
+ ุจุตูŠุฑ ุนู†ุฏู†ุง ู‡ู†ุง A ูู‚ุท ู„ุง ุบูŠุฑ ูˆ ู‡ู†ุง ู‡ุฐุง ู„ู…ุง ุฃุถูู†ุงู‡
268
+
269
+ 68
270
+ 00:07:07,600 --> 00:07:13,380
271
+ ุจุตูŠุฑ ุณุงู„ุจ ุฃุฑุจุนุฉ ุนู„ู‰ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุฃุฑุจุนุฉ ุนู„ู‰
272
+
273
+ 69
274
+ 00:07:13,380 --> 00:07:19,810
275
+ ุชู„ุงุชุฉ ู‚ูู„ู†ุง ู‡ุงูŠ Zero ูˆ Zero ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงุงู„ุงู†
276
+
277
+ 70
278
+ 00:07:19,810 --> 00:07:25,050
279
+ ู‡ุฐุง ุงู„ุนู…ูˆุฏ ุงู„ุนู†ุตุฑ ู‡ุฐุง ุงู„ู€ 0 ุงู„ู„ูŠ ููˆู‚ ู„ูƒู† ู„ุชุญุช ุงูŠุดุŸ
280
+
281
+ 71
282
+ 00:07:25,050 --> 00:07:31,350
283
+ A ุจุฏูŠ ุงุชุฎู„ุต ู…ู† ุงู„ู€ A ูŠุจู‚ู‰ ุจุฏูŠ ุงุถุฑุจ ุงู„ุตู ุงู„ุชุงู†ูŠ ููŠ
284
+
285
+ 72
286
+ 00:07:31,350 --> 00:07:38,770
287
+ ุณุงู„ุจ A ูˆุงุถูŠูู‡ ู„ู…ูŠู†ุŸ ู„ู„ุตู ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ู‡ุฐุง ุณู‡ู… ูŠุจู‚ู‰
288
+
289
+ 73
290
+ 00:07:38,770 --> 00:07:48,090
291
+ ุณุงู„ุจ AR2 to R3 ู‡ู†ุดูˆู ุดูˆ ุงู„ู„ูŠ ุจุฏูŠ ูŠุญุตู„ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡
292
+
293
+ 74
294
+ 00:07:48,090 --> 00:07:53,570
295
+ ุงู„ุญุงู„ุฉ ุจูŠุตูŠุฑ ุงู„ู…ุตูˆูุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ุตู ุงู„ุฃูˆู„
296
+
297
+ 75
298
+ 00:07:53,570 --> 00:08:01,310
299
+ ุฒูŠ ู…ุง ู‡ูˆ one zero ุณุงู„ุจ ุชู„ุชูŠู† zero ุงู„ุตู ุงู„ุซุงู†ูŠ ูƒู…ุง
300
+
301
+ 76
302
+ 00:08:01,310 --> 00:08:09,150
303
+ ู‡ูˆ zero ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ ุชู„ุชูˆู‡ู†ุง Zero ูˆ ู‡ู†ุง Zero
304
+
305
+ 77
306
+ 00:08:09,150 --> 00:08:17,190
307
+ ู†ุถุฑุจ ุณุงู„ุจ A ู‡ู†ุง ุจุตูŠุฑ ู…ูˆุฌุฉ ุจ A ุนู„ู‰ ุชู„ุงุชุฉ ูŠุจู‚ู‰ A ุนู„ู‰
308
+
309
+ 78
310
+ 00:08:17,190 --> 00:08:22,890
311
+ ุชู„ุงุชุฉ ู†ุงู‚ุต ุฃุฑุจุน ุนู„ู‰ ุชู„ุงุชุฉ ูˆ ู‡ู†ุง Zero Zero
312
+
313
+ 79
314
+ 00:08:26,370 --> 00:08:32,250
315
+ ุฃุธู† ุฃูƒุชุฑ ู…ู† ู‡ูŠูƒ ู…ุง ุฃู‚ุฏุฑุด ุฃุจุตุฑ ู†ุฑุฌุน ู„ู„ุณุคุงู„ ุงู„ุณุคุงู„
316
+
317
+ 80
318
+ 00:08:32,250 --> 00:08:37,490
319
+ ุจูŠู‚ูˆู„ ุณุคุงู„ ุจูŠู‚ูˆู„ ู‡ุงุช ู„ู‚ูŠู…ุฉ ุฅูŠู‡ ุจุญูŠุซ ู‡ุฐุง ุงู„ system
320
+
321
+ 81
322
+ 00:08:37,490 --> 00:08:44,170
323
+ ู„ู‡ูˆ have a non trivial solution ูŠุนู†ูŠ ุญู„ ุบูŠุฑ ุงู„ุญู„
324
+
325
+ 82
326
+ 00:08:44,170 --> 00:08:48,490
327
+ ุงู„ุตูุฑูŠ ุฅุฐุง ุฃู†ุง ู„ูˆ ุจุฏูŠ ุฃูƒุชุจ ุงู„ system ุงู„ู…ูƒุงูุฆ ู„ู„
328
+
329
+ 83
330
+ 00:08:48,490 --> 00:08:53,770
331
+ system ุงู„ุฃุตู„ูŠ ุจุฏูŠ ุฃู‚ูˆู„ X ูˆุงุญุฏ ู†ุงู‚ุต ุชู„ุชูŠู† X ุชู„ุงุชุฉ
332
+
333
+ 84
334
+ 00:08:53,770 --> 00:08:54,650
335
+ ุจุฏู‡ ูŠุณุงูˆูŠ zero
336
+
337
+ 85
338
+ 00:09:04,310 --> 00:09:12,030
339
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุนุทูŠู†ุง ุง ุนู„ู‰ ุชู„ุงุชุฉ ู†ุงู‚ุต ุงุฑุจุน ุนู„ู‰
340
+
341
+ 86
342
+ 00:09:12,030 --> 00:09:18,740
343
+ ุชู„ุงุชุฉ ๏ฟฝ๏ฟฝูƒุณ ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด ุจุฏู‡ ูŠุณุงูˆูŠ ุฒูŠุฑูˆูŠุจู‚ู‰
344
+
345
+ 87
346
+ 00:09:18,740 --> 00:09:22,540
347
+ ุงู†ุง ุงุฎุฏุช ู‡ุฐุง ุงู„ุฌุฒุก ูˆุงุณุจุช ุงู„ุงูˆู„ ู„ู„ุฃูˆู„ ู…ุด ู„ุงุฒู…ู„ูŠ ุงู†ุง
348
+
349
+ 88
350
+ 00:09:22,540 --> 00:09:27,300
351
+ ุจุฏูˆุฑ ุนู„ู‰ ู‚ูŠู…ุฉ ุงูŠู‡ ู‚ุงู„ ุงู„ system ู‡ุฐุง ู„ู‡ non trivial
352
+
353
+ 89
354
+ 00:09:27,300 --> 00:09:32,880
355
+ solution ุญู„ ุบูŠุฑ ุงู„ุญู„ ุงู„ุตูุฑูŠ ู…ุฏุงู† ููŠ ุญู„ ุบูŠุฑ ุงู„ุญู„
356
+
357
+ 90
358
+ 00:09:32,880 --> 00:09:39,580
359
+ ุงู„ุตูุฑูŠ ู‡ู„ ูŠู…ูƒู† ู„ x ุชู„ุงุชุฉ ุงู†ู‡ุง ุชุจู‚ู‰ zero ู„ูŠุณ ู…ู…ูƒู†ูŠุฉ
360
+
361
+ 91
362
+ 00:09:39,580 --> 00:09:47,580
363
+ ูŠุจู‚ู‰ since ุจู…ุง ุงู† the system have
364
+
365
+ 92
366
+ 00:10:11,030 --> 00:10:18,250
367
+ X3 ู„ุง ูŠู…ูƒู† ุฃู† ุชุณุงูˆูŠ 0ู…ุง ุฏุงู… X ุชู„ุงุชุฉ ู„ุง ูŠู…ูƒู† ุฃู†
368
+
369
+ 93
370
+ 00:10:18,250 --> 00:10:22,130
371
+ ุชุณุงูˆูŠ Zero ุญุงุตู„ ุถุฑุจ ุงู„ุงุชู†ูŠู† ูŠุณุงูˆูŠ Zero ุฅุฐุง ุงู„ term
372
+
373
+ 94
374
+ 00:10:22,130 --> 00:10:27,290
375
+ ุงู„ุชุงู†ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจ Zero ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุฃู† A ุนู„ู‰
376
+
377
+ 95
378
+ 00:10:27,290 --> 00:10:32,670
379
+ ุชู„ุงุชุฉ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ู‡ูŠ ุงู„ุชูŠ ุชุณุงูˆูŠ Zeroุฃุธู† ู„ูˆ
380
+
381
+ 96
382
+ 00:10:32,670 --> 00:10:36,470
383
+ ุถุฑุจุช ููŠ ุชู„ุงุชุฉ ุจูŠุตูŠุฑ ุงู„ a ู†ุงู‚ุต ุฃุฑุจุนุฉ ูŠุณุงูˆูŠ zero
384
+
385
+ 97
386
+ 00:10:36,470 --> 00:10:42,430
387
+ ูŠุจู‚ู‰ ุงู„ a ุชุณุงูˆูŠ ู‚ุฏุงุด ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู†ุช a ุจุงุฑุจุนุฉ
388
+
389
+ 98
390
+ 00:10:42,430 --> 00:10:48,150
391
+ ุจูŠุตูŠุฑ ุนู†ุฏ ุง ุจูŠุตูŠุฑ ุนู†ุฏ ุงู„ system ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู„ู‡
392
+
393
+ 99
394
+ 00:10:48,150 --> 00:10:54,370
395
+ ุญู„ ุบูŠุฑ ุงู„ุญู„ ุงู„ุตูุฑูŠ ูˆุงุถุญ ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ ุญุฏุง ููŠูƒู… ุงู„ู„ูŠ
396
+
397
+ 100
398
+ 00:10:54,370 --> 00:11:00,640
399
+ ู‡ูŠุชุณุงุกู„ุŸุทุจ ุงู„ุขู† ุงู†ุชู‡ู‰ ุงู„ section ูˆู„ูŠูƒู† ุฃุฑู‚ุงู…
400
+
401
+ 101
402
+ 00:11:00,640 --> 00:11:07,680
403
+ ุงู„ู…ุณุงุฆู„ ุชุชู…ุฑู† ุนู„ูŠู‡ุง ูŠุจู‚ู‰ ุจุงุฌู„ุฉ exercises ุงุชู†ูŠู†
404
+
405
+ 102
406
+ 00:11:07,680 --> 00:11:14,780
407
+ ุงุชู†ูŠู† ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ ุชู„ุงุชุฉ ูˆุฎู…ุณุฉ ูˆุณุจุนุฉ ูˆุชุณุนุฉ
408
+
409
+ 103
410
+ 00:11:14,780 --> 00:11:23,320
411
+ ูˆุญุฏุงุดุฑ ูˆุงุทู†ุงุด ูˆุชู„ุชุงุดุฑ ุงูŠู‡ุŸุชู„ุงุชุงุดุฑ ุจูŠู‡ุง ูŠุญู„ู†ุง ูˆู‡ุฐุง
412
+
413
+ 104
414
+ 00:11:23,320 --> 00:11:43,280
415
+ ุชู„ุงุชุงุดุฑ ุง ู…ุงุฑู†ูˆุง ูŠุฏูŠูƒูˆุง ููŠู‡ ู‡ูŠ ุชุณุงูˆู„ุŸ ุฎุทูˆุฉ
416
+
417
+ 105
418
+ 00:11:43,280 --> 00:11:49,170
419
+ ู‡ุฐู‡ ู‚ุตุฏูƒุŸุถุฑุจ ุชุงุฑ ุงุชู†ูŠู† ููŠ ุณุงู„ุจ A ู…ุธุจูˆุท ูŠุจู‚ู‰ ุจูŠุตูŠุฑ
420
+
421
+ 106
422
+ 00:11:49,170 --> 00:11:55,230
423
+ ุณุงู„ุจ A ูˆ A ุจ Zero ุณุงู„ุจ A ูˆ ุณุงู„ุจ ุชู„ุช ุจ A ุนู„ู‰ ุชู„ุงุชุฉ
424
+
425
+ 107
426
+ 00:11:55,230 --> 00:12:00,750
427
+ ู‡ูŠู‡ุง A ุนู„ู‰ ุชู„ุงุชุฉ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ุทู„ุน A ุนู„ู‰ ุชู„ุงุชุฉ
428
+
429
+ 108
430
+ 00:12:00,750 --> 00:12:04,290
431
+ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ุงู„ูƒู„ุงู… ุณู„ูŠู… ู…ุงุฆุฉ ุจุงู„ู…ุงุฆุฉ ู„ุง ูŠูˆุฌุฏ
432
+
433
+ 109
434
+ 00:12:04,290 --> 00:12:05,610
435
+ ุฃูŠ ุฎุทุฃ
436
+
437
+ 110
438
+ 00:12:24,050 --> 00:12:32,750
439
+ ู†ู†ุชู‚ู„ ุงู„ุงู† ุงู„ู‰ section 2-4 ุจุนุฏ ู…ุง ู†ุดุท ุจ2-3 ูŠุจู‚ู‰
440
+
441
+ 111
442
+ 00:12:32,750 --> 00:12:38,630
443
+ ุจู†ุฑูˆุญ ู„ section 2-4 2
444
+
445
+ 112
446
+ 00:12:38,630 --> 00:12:46,830
447
+ -4 ุงู„ู„ูŠ ู‡ูˆ matrices and
448
+
449
+ 113
450
+ 00:12:46,830 --> 00:12:48,970
451
+ vectors
452
+
453
+ 114
454
+ 00:12:54,430 --> 00:12:59,970
455
+ ุงู„ุชุญุฏูŠุซ ู‡ูˆ ุฅุฐุง
456
+
457
+ 115
458
+ 00:12:59,970 --> 00:13:11,010
459
+ ูƒุงู† ู„ุฏูŠู†ุง ู†ุธุงู… ุนุถูˆ ุนุถูˆ ู…ู† ุงู„ู‡ูˆุงุชู
460
+
461
+ 116
462
+ 00:13:11,010 --> 00:13:14,950
463
+ A11X1
464
+
465
+ 117
466
+ 00:13:19,910 --> 00:13:27,350
467
+ A12X2 A1NXN B1 A21X1
468
+
469
+ 118
470
+ 00:13:27,350 --> 00:13:33,430
471
+ A22X2 A2NXN
472
+
473
+ 119
474
+ 00:13:33,430 --> 00:13:38,190
475
+ B2 A
476
+
477
+ 120
478
+ 00:13:38,190 --> 00:13:57,690
479
+ M1X1 A M2X2 ุฒุงุฆุฏ A M N X N ุจุฏู‡ ุณุงูˆูŠ ุจูŠ M ู‡ุฐุง ุงู„
480
+
481
+ 121
482
+ 00:13:57,690 --> 00:14:04,430
483
+ system then then
484
+
485
+ 122
486
+ 00:14:04,430 --> 00:14:10,850
487
+ the matrix ุงู„ู…ุตูˆูุฉ
488
+
489
+ 123
490
+ 00:14:13,270 --> 00:14:26,830
491
+ ุงู„ุนู†ุงุตุฑู‡ุง a11, a12, a1n, a21, a22, a2n ู†ูุถ
492
+
493
+ 124
494
+ 00:14:26,830 --> 00:14:39,330
495
+ ุงู„ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ a m1, a m2, a mn it is called
496
+
497
+ 125
498
+ 00:14:42,480 --> 00:14:55,040
499
+ The coefficient matrix of
500
+
501
+ 126
502
+ 00:14:55,040 --> 00:15:00,220
503
+ size M in
504
+
505
+ 127
506
+ 00:15:17,780 --> 00:15:30,040
507
+ ุงู„ูˆุถุน AIG ู‡ูˆ ุงู„ู…ุฏุฎู„ ุงู„ู…ุฏุฎู„
508
+
509
+ 128
510
+ 00:15:30,040 --> 00:15:35,060
511
+ ููŠ ุนุตุฑ ุงู„ุนูŠู† ููŠ
512
+
513
+ 129
514
+ 00:15:35,060 --> 00:15:39,500
515
+ ุนุตุฑ
516
+
517
+ 130
518
+ 00:15:39,500 --> 00:15:40,240
519
+ ุงู„ุนูŠู† ูˆ
520
+
521
+ 131
522
+ 00:15:50,760 --> 00:15:52,160
523
+ definition
524
+
525
+ 132
526
+ 00:15:56,660 --> 00:15:59,760
527
+ ูŠุจู‚ู‰ ุจุฏุฑุฌุฉ ุนู„ู‰ ุงู„ุฎุงุตูŠุฉ ุฏู‡ ู‚ุจู„ ุฃู† ุฃู†ุชู‚ู„ ู„ุฎุงุตูŠุฉ
528
+
529
+ 133
530
+ 00:15:59,760 --> 00:16:04,900
531
+ ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุงู„ุจู„ุฏ ู‡ูŠูƒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฅูŠุด ู„ูˆ ุถุฑุจุช ุนุฏุฏ ููŠ
532
+
533
+ 134
534
+ 00:16:04,900 --> 00:16:09,360
535
+ ู…ุตูˆูุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑุจ ููŠ ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ู…ุตูˆูุฉ ุจู„ุง
536
+
537
+ 135
538
+ 00:16:09,360 --> 00:16:13,560
539
+ ุฅุณุชุซู†ุงุก ูŠุจู‚ู‰ ู‡ุงูŠ ุงู„ู…ู‚ุตูˆุฏ ุทุจ ุฃุถุฑุจ ู…ู† ุงู„ูŠู…ูŠู† ุงู„ุนู†ุตุฑ
540
+
541
+ 136
542
+ 00:16:13,560 --> 00:16:16,400
543
+ ูˆู„ุง ู…ู† ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ ู…ู† ุฃูŠู†ู…ุง ุจุฏูƒ ุชุถุฑุจ ุฃุถุฑุจ ู…ุง ุฏู‡
544
+
545
+ 137
546
+ 00:16:16,400 --> 00:16:20,610
547
+ ู…ุฑุงู‚ู…ุจุชุถุฑุจ ุงู„ู…ุตูˆูุฉ ุชุถุฑุจ ู…ู† ุงู„ูŠู…ูŠู† ูˆุชุถุฑุจ ู…ู† ุงู„ุดู…ุงู„
548
+
549
+ 138
550
+ 00:16:20,610 --> 00:16:24,870
551
+ ู„ุชู†ูŠู† are the same ูˆุจุงู„ุชุงู„ูŠ ุจู†ุถุฑุจ ู‡ุฐุง ุงู„ุฑู‚ู… ููŠ ูƒู„
552
+
553
+ 139
554
+ 00:16:24,870 --> 00:16:29,250
555
+ ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ ุงู„ู…ุตูˆูุฉ ูู…ุซู„ุง ู„ูˆ ูƒุงู† ุนู†ุตุฑ ุงู„ู…ุตูˆูุฉ A
556
+
557
+ 140
558
+ 00:16:29,250 --> 00:16:33,090
559
+ ุจู‚ู‰ ุจุฏูŠ ุชู„ุงุชุฉ A ุจุฑูˆุญ ุจุฏุฑุจ ุชู„ุงุชุฉ ููŠ ูƒู„ ุนู†ุตุฑ ู…ู† ุนู†ุตุฑ
560
+
561
+ 141
562
+ 00:16:33,090 --> 00:16:40,560
563
+ ุงู„ู…ุตูˆูุฉุงู„ู„ูŠ ููŠ ุงู„ุฏุงุฎู„ ูุจุตูŠุฑ 690-3-690315
564
+
565
+ 142
566
+ 00:16:40,560 --> 00:16:46,400
567
+ ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ู…ุนู†ู‰ ุถุฑุจ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุตุฑ ุฃูˆ ุถุฑุจ ุฑู‚ู… ููŠ
568
+
569
+ 143
570
+ 00:16:46,400 --> 00:16:52,520
571
+ ู…ุตููˆูุฉ ู†ุฌุฏ ุงู„ุฎุงุตูŠุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ู‡ุฐู‡ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ
572
+
573
+ 144
574
+ 00:16:52,520 --> 00:16:57,560
575
+ ุจุชู‚ูˆู„ ู„ูŠ ู…ุง ูŠุฃุชูŠ if
576
+
577
+ 145
578
+ 00:16:57,560 --> 00:17:02,940
579
+ ุงู„ A and ุงู„ B are
580
+
581
+ 146
582
+ 00:17:23,790 --> 00:17:34,150
583
+ ู…ุซู„ู‹ุง M ููŠ N ุซู…
584
+
585
+ 147
586
+ 00:17:36,220 --> 00:17:47,340
587
+ ุงู„ู€ A ุฒูŠ ุฏูŠ ุงู„ B ุงู„ู€ A matrix is a matrix of the
588
+
589
+ 148
590
+ 00:17:47,340 --> 00:17:54,780
591
+ same size of the
592
+
593
+ 149
594
+ 00:17:54,780 --> 00:18:05,000
595
+ same size M ููŠ N ู…ุงุฏูŠุด
596
+
597
+ 150
598
+ 00:18:05,000 --> 00:18:05,620
599
+ ุตูˆุช ุจุงู„ู…ุฑุฉ
600
+
601
+ 151
602
+ 00:18:23,830 --> 00:18:28,890
603
+ ูŠุจู‚ู‰ ู‡ุฐุง ุจุชูƒู„ู… ุนู„ู‰ ุฌู…ุน ู…ุตูููŠู† ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู† ุนู†ุฏ A
604
+
605
+ 152
606
+ 00:18:28,890 --> 00:18:34,910
607
+ ูˆB ู…ุตูููŠู† ู„ู‡ู… ู†ูุณ ุงู„ size ุงู„ู„ูŠ ู‡ูˆ M ููŠ N ู…ุซู„ุง ูŠุจู‚ู‰
608
+
609
+ 153
610
+ 00:18:34,910 --> 00:18:39,710
611
+ ุงู„ู…ุฌู…ูˆุน ุชุจุนู‡ู… ุจูŠุฏูŠู‡ูˆู„ู‡ ู†ูุณ ุงู„ size ุงู„ู„ูŠ ู‡ูˆ M ููŠ M
612
+
613
+ 154
614
+ 00:18:39,710 --> 00:18:47,250
615
+ ู†ุนุทูŠ ู…ุซุงู„ ุชุนูˆุถูŠู‡ุง for example F
616
+
617
+ 155
618
+ 00:18:48,620 --> 00:18:57,900
619
+ ุงู„ู€ A ุชุณุงูˆูŠ ู…ุซู„ุง ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ Zero ุฃุฑุจุนุฉ Zero
620
+
621
+ 156
622
+ 00:18:57,900 --> 00:19:08,300
623
+ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ุชู„ุงุชุฉ and ุงู„ B ุชุณุงูˆูŠุทุจุนุง
624
+
625
+ 157
626
+ 00:19:08,300 --> 00:19:14,280
627
+ ูˆุงุถุญ ุงู† ู‡ุฐุง ุงู„ู†ุธุงู… ู…ุง ุฌุฏูŠุด ู„ู‡ 2 ููŠ 4 ูŠุจู‚ู‰ ู…ุดุงู† ูŠุชู…
628
+
629
+ 158
630
+ 00:19:14,280 --> 00:19:18,680
631
+ ุฌู…ุน ู…ุน ู…ุตูˆูุฉ ุชุงู†ูŠุฉ ุจูŠู‡ ุจุฏูŠ ูŠูƒูˆู† ู†ุธุงู… ูƒุฐู„ูƒ ุงุชู†ูŠู†
632
+
633
+ 159
634
+ 00:19:18,680 --> 00:19:20,440
635
+ ูƒุฏู‡
636
+
637
+ 160
638
+ 00:19:26,850 --> 00:19:31,890
639
+ ุฃุชู†ูŠู† ููŠ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุจุงู„ุถุจุท ุชู…ุงู… ูŠูƒูˆู† ู‡ู†ุง ุงุชู†ูŠู†
640
+
641
+ 161
642
+ 00:19:31,890 --> 00:19:39,350
643
+ ููŠ ุฃุฑุจุนุฉ and ุงู„ B ูŠุณุงูˆูŠ Zero ุชู„ุงุชุฉ ู†ุงู‚ุต ูˆุงุญุฏ ุงุชู†ูŠู†
644
+
645
+ 162
646
+ 00:19:39,350 --> 00:19:45,590
647
+ ูˆ ู‡ู†ุง ูˆุงุญุฏ ุชู„ุงุชุฉ ุงุชู†ูŠู† ุฎู…ุณุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
648
+
649
+ 163
650
+ 00:19:45,590 --> 00:19:54,310
651
+ then ู„ูˆ ุจุฏุงุฌูŠ ุฃุฎุฏ ุงู„ A ุฒุงุฆุฏ ุงู„ BูŠุจู‚ู‰ ุจูŠู‚ูˆู„ ุงู„ุฌู…ุน
652
+
653
+ 164
654
+ 00:19:54,310 --> 00:19:59,230
655
+ ุจู†ุฌู…ุน ุงู„ุนู†ุงุตุฑ ุงู„ู…ุชู†ุงุถุฑุฉ ู…ุน ุจุนุถู‡ุง ูƒูŠูุŸ ูƒุงู„ุชุงู„ูŠ
656
+
657
+ 165
658
+ 00:19:59,230 --> 00:20:03,810
659
+ ูุจุงุฌูŠ ุจู‚ูˆู„ ุงู„ุงุชู†ูŠู† ู…ุน ุฒูŠุฑูˆ ุงู„ู„ูŠ ู‡ูŠ ุจุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆ
660
+
661
+ 166
662
+ 00:20:03,810 --> 00:20:09,310
663
+ ุชู„ุงุชุฉ ุจุณุชุฉ ูˆุงุญุฏ ูˆ ู†ุงู‚ุต ูˆุงุญุฏ ุจุฒูŠุฑูˆ ุงุฑุจุนุฉ ูˆ ุงุชู†ูŠู†
664
+
665
+ 167
666
+ 00:20:09,310 --> 00:20:15,750
667
+ ูƒุฐู„ูƒ ุจุณุชุฉ ุฒูŠุฑูˆ ูˆุงุญุฏ ุจูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุชู„ุงุชุฉ ุจุงุชู†ูŠู†
668
+
669
+ 168
670
+ 00:20:15,870 --> 00:20:21,070
671
+ ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุงุชู†ูŠู† ุงู ุฒูŠุฑูˆ ุณุงู„ุจ ุชู„ุงุชุฉ ูˆ ุฎู…ุณุฉ ุงู„ู„ูŠ
672
+
673
+ 169
674
+ 00:20:21,070 --> 00:20:29,620
675
+ ู‡ูˆ ุจู‚ุฏุงุด ุจุงุชู†ูŠู† ู„ูƒู† ู„ูˆ ุฌูŠุช ู‚ู„ุช ุงู„ A ู†ุงู‚ุต ุงู„ Bู…ุนู†ู‰
676
+
677
+ 170
678
+ 00:20:29,620 --> 00:20:37,960
679
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู† ู‡ุฐู‡ a ุฒุงุฆุฏ ู†ุงู‚ุต ูˆุงุญุฏ ููŠ b ูŠุจู‚ู‰ ูƒุฃู†ู‡
680
+
681
+ 171
682
+ 00:20:37,960 --> 00:20:42,680
683
+ ุงู†ุง ุจุฏู‡ ุงุถุฑุจ ุงู„ b ููŠ ู‚ุฏุงุด ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง
684
+
685
+ 172
686
+ 00:20:42,680 --> 00:20:48,280
687
+ ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณูˆูŠ ุงู„ a ุฒูŠ ู…ุง ู‡ูŠ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ
688
+
689
+ 173
690
+ 00:20:48,280 --> 00:20:54,540
691
+ ุงุฑุจุนุฉ Zero ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ุชู„ุงุชุฉ ุณุงู„ุจ
692
+
693
+ 174
694
+ 00:20:54,540 --> 00:20:59,180
695
+ ุชู„ุงุชุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุฒุงุฆุฏุจุฏุง ุงุฌูŠ ุนู„ู‰ P
696
+
697
+ 175
698
+ 00:20:59,180 --> 00:21:04,060
699
+ ูˆุงุถุฑุจู‡ุง ูƒู„ู‡ุง ููŠ ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ Zero ุณุงู„ุจ ุชู„ุงุชุฉ
700
+
701
+ 176
702
+ 00:21:04,060 --> 00:21:08,680
703
+ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุชู„ุงุชุฉ ุณุงู„ุจ ุงุชู†ูŠู†
704
+
705
+ 177
706
+ 00:21:08,680 --> 00:21:16,170
707
+ ุณุงู„ุจ ุฎู…ุณุฉ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠูŠุจู‚ู‰ ู‡ูŠ ุงุชู†ูŠู†
708
+
709
+ 178
710
+ 00:21:16,170 --> 00:21:23,110
711
+ ูˆู‡ูŠ zero ูˆู‡ูŠ ูƒู…ุงู† ุงุชู†ูŠู† ูˆู‡ู†ุง ูƒู…ุงู† ุงุชู†ูŠู† ุงู„ุตูุฑ
712
+
713
+ 179
714
+ 00:21:23,110 --> 00:21:31,290
715
+ ุงู„ุชุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ ุงุฑุจุนุฉ ูˆู‡ู†ุง ูƒู…ุงู†
716
+
717
+ 180
718
+ 00:21:31,290 --> 00:21:38,810
719
+ ุณุงู„ุจ ุงุฑุจุนุฉูˆู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุฌุฏ ูŠุงุด ุจูŠุธู„ ุณุงู„ุจ ุชู…ุงู†ูŠุฉ
720
+
721
+ 181
722
+ 00:21:38,810 --> 00:21:43,650
723
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู‡ุง ุฏู‡ ูŠุจู‚ู‰ ู‡ุงูŠ ุฌุงู…ุนุฉ ูˆุงุทุงุฑุญ ู…ุตูุชูŠู†
724
+
725
+ 182
726
+ 00:21:43,650 --> 00:21:47,770
727
+ ุงู„ุฌุงู…ุนุฉ ุงู„ุนู†ุงุต ุงู„ู…ุชู†ุงุถุฑุฉ ู…ุน ุจุนุถู‡ุง ูˆุงุทุงุฑุญ ูƒุฐู„ูƒ
728
+
729
+ 183
730
+ 00:21:47,770 --> 00:21:52,170
731
+ ุงู„ุนู†ุงุต ุงู„ู…ุชู†ุงุถุฑุฉ ู…ุน ุจุนุถู‡ุง ูˆูŠุฌุจ ุฃู† ุชูƒูˆู† ุงู„ู…ุตูุชูŠู† ู…ู†
732
+
733
+ 184
734
+ 00:21:52,170 --> 00:21:57,860
735
+ ู†ูุณ ุงู„ู†ุธุงู…ู„ูƒู† ู„ูˆ ุฃุฌู…ุน ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
736
+
737
+ 185
738
+ 00:21:57,860 --> 00:21:58,840
739
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
740
+
741
+ 186
742
+ 00:21:58,840 --> 00:22:05,320
743
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
744
+
745
+ 187
746
+ 00:22:05,320 --> 00:22:06,900
747
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
748
+
749
+ 188
750
+ 00:22:06,900 --> 00:22:08,000
751
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
752
+
753
+ 189
754
+ 00:22:08,000 --> 00:22:08,000
755
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
756
+
757
+ 190
758
+ 00:22:08,000 --> 00:22:08,000
759
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
760
+
761
+ 191
762
+ 00:22:08,000 --> 00:22:11,980
763
+ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ ู†ุธุงู… ูˆ
764
+
765
+ 192
766
+ 00:22:11,980 --> 00:22:22,120
767
+ ู†ุธุงู… ูˆ
768
+
769
+ 193
770
+ 00:22:22,120 --> 00:22:22,120
771
+ ู†
772
+
773
+ 194
774
+ 00:22:25,850 --> 00:22:36,410
775
+ ู…ุซู„ุซุงุช ู…ุซู„ุซุงุช ู…ุซู„ุซุงุช ู…ุซู„ุซุงุช ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
776
+
777
+ 195
778
+ 00:22:36,410 --> 00:22:38,330
779
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
780
+
781
+ 196
782
+ 00:22:38,330 --> 00:22:41,710
783
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
784
+
785
+ 197
786
+ 00:22:41,710 --> 00:22:41,870
787
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
788
+
789
+ 198
790
+ 00:22:41,870 --> 00:22:41,890
791
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
792
+
793
+ 199
794
+ 00:22:41,890 --> 00:22:41,930
795
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
796
+
797
+ 200
798
+ 00:22:41,930 --> 00:22:47,250
799
+ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ ู…ุซู„ุซุฉ
800
+
801
+ 201
802
+ 00:22:47,250 --> 00:22:50,830
803
+ ู…ุซู„ุซุฉ
804
+
805
+ 202
806
+ 00:22:51,360 --> 00:22:58,560
807
+ real numbers then
808
+
809
+ 203
810
+ 00:22:58,560 --> 00:23:10,820
811
+ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ a ุฒุงุฆุฏ ุงู„ b ูŠุณุงูˆูŠ ุงู„ b ุฒุงุฆุฏ ุงู„ a
812
+
813
+ 204
814
+ 00:23:10,820 --> 00:23:22,120
815
+ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ aุฒุงุฆุฏ ุงู„ B ุฒุงุฆุฏ ุงู„ C ุจุฏู‡ุง ุชุณุงูˆูŠ
816
+
817
+ 205
818
+ 00:23:22,120 --> 00:23:32,120
819
+ ุงู„ A ุฒุงุฆุฏ ุงู„ B ุฒุงุฆุฏ ุงู„ C ู…ู‚ุทุฉ
820
+
821
+ 206
822
+ 00:23:32,120 --> 00:23:40,660
823
+ ุชุงู„ุชุฉ ุงู„ A ููŠ ุงู„ B ููŠ ุงู„ A ุจุฏู‡ ูŠุณุงูˆูŠ A
824
+
825
+ 207
826
+ 00:23:56,380 --> 00:23:59,020
827
+ ุงู„ู†ู‚ุทุฉ ุงู„ุฑุงุจุนุฉ
828
+
829
+ 208
830
+ 00:24:02,840 --> 00:24:12,980
831
+ ุฒุงุฆุฏ ุงู„ู€ B ููŠ ุงู„ู…ุตุญูˆู A ุจูŠุณุงูˆูŠ AA ุฒุงุฆุฏ BA ู†ู‚ุทุฉ
832
+
833
+ 209
834
+ 00:24:12,980 --> 00:24:21,480
835
+ ุงู„ุฎุงู…ุณุฉ ุงู„ู€ C ููŠ ุงู„ู€ A ุฒุงุฆุฏ ุงู„ู€ B ุณุงูˆูŠ C ููŠ A ุฒุงุฆุฏ
836
+
837
+ 210
838
+ 00:24:21,480 --> 00:24:22,800
839
+ C ููŠ B
840
+
841
+ 211
842
+ 00:24:58,940 --> 00:25:04,660
843
+ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ู‰ ุจูŠู† ุฃุฏูŠู†ุง ู‡ุฐู‡ ุจุชุชูƒู„ู… ุนู† ุฌู…ุน ุงู„ู…ุตูˆูุงุช
844
+
845
+ 212
846
+ 00:25:04,660 --> 00:25:10,080
847
+ ู…ุน ุจุนุถู‡ุง ุงู„ุจุนุถ ุฃูˆ ุถุฑุจ ู…ู‚ุฏุงุฑ ุซุงุจุช ููŠู‡ ู…ุตูˆูุฉ ูˆ ุฌู…ุนู‡
848
+
849
+ 213
850
+ 00:25:10,080 --> 00:25:15,380
851
+ ู…ุน ู…ูŠู† ู…ุน ู…ุตูˆูุฉ ุฃุฎุฑู‰ ูุจู‚ูˆู„ ู„ูˆ ุนู†ุฏูŠ ุชู„ุช ู…ุตูˆูุงุช
852
+
853
+ 214
854
+ 00:25:15,380 --> 00:25:19,860
855
+ ุฏูŠุฑูˆุง ุจุงู„ูƒูˆุง ุงู„ุฑู…ุฒ ุงู„ูƒุจูŠุฑ ู‡ุฐุง ุงู„ู…ู…ุตุจ ู„ู„ู…ุตูˆูุฉ ุงู„ุฑู…ุฒ
856
+
857
+ 215
858
+ 00:25:19,860 --> 00:25:24,420
859
+ ุงู„ุตุบูŠุฑ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ู„ู„ real numberูุจุนุฏูŠู† ุจู‚ูˆู„ ู„ูˆ
860
+
861
+ 216
862
+ 00:25:24,420 --> 00:25:30,800
863
+ ุนู†ุฏูŠ ุชู„ุงุช ู…ุตููุงุช A ูˆB ูˆC ุงู„ุชู„ุงุชุฉ ู„ู‡ู… ู†ูุณ ุงู„ุญุฌู…
864
+
865
+ 217
866
+ 00:25:30,800 --> 00:25:34,080
867
+ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ูƒู„ู‡ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ุชู„ุงุชุฉ ููŠ
868
+
869
+ 218
870
+ 00:25:34,080 --> 00:25:39,190
871
+ ุชู„ุงุชุฉ ุฎู…ุณุฉ ููŠ ุนุดุฑุฉ ูƒู„ู‡ ุฎู…ุณุฉ ููŠ ุนุดุฑุฉุจูŠู‚ูˆู„ ูƒุงู† ุงู„ู€ A
872
+
873
+ 219
874
+ 00:25:39,190 --> 00:25:43,810
875
+ ูˆุงู„ู€ B ูˆุงู„ู€ C are real numbers ูŠุจู‚ู‰ ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉ
876
+
877
+ 220
878
+ 00:25:43,810 --> 00:25:49,510
879
+ ุฐู†ุจ ุงู„ู€ A ุฒุงุฆุฏ ุงู„ู€ B ุจุฏูŠู‡ ุณุงูˆูŠ B ุฒุงุฆุฏ ุงู„ู€ A ุดูˆ
880
+
881
+ 221
882
+ 00:25:49,510 --> 00:25:53,590
883
+ ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ุจู†ุณู…ูŠู‡ุง ููŠ ุฑู‚ู… ุงู„ุฑูŠุงุถูŠุงุชุŸ ุฎุงุตูŠุฉ
884
+
885
+ 222
886
+ 00:25:53,590 --> 00:25:58,630
887
+ ุงู„ุฅุจุฏุงู„ ูŠุจู‚ู‰ ุงู„ู…ู‚ุตูˆุฏ ููŠ ุฐู„ูƒ ุฃู† ุนู…ู„ูŠุฉ ุฌู…ุน ุงู„ู…ุตุญูุงุช
888
+
889
+ 223
890
+ 00:25:58,630 --> 00:26:05,350
891
+ ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ A ุฒุงุฆุฏ ุงู„ู€ B ุจุฏูŠู‡ ุณุงูˆูŠ B ุฒุงุฆุฏ ุงู„ู€ A
892
+
893
+ 224
894
+ 00:26:05,860 --> 00:26:10,820
895
+ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ a ุฒุงุฆุฏ ุงู„ b ุฒุงุฆุฏ ุงู„ c ู‡ุง ุจุฏูŠ ุฃุฌู…ุน a
896
+
897
+ 225
898
+ 00:26:10,820 --> 00:26:15,680
899
+ ูˆ b ููŠ ุงู„ุฃูˆู„ ุซู… ุฃุฌู…ุน ุงู„ู†ุชุฌ ุฅู„ู‰ c ุฃูˆ ุงู„ุนูƒุณ ุฃุฌู…ุน b ูˆ
900
+
901
+ 226
902
+ 00:26:15,680 --> 00:26:20,280
903
+ c ููŠ ุงู„ุฃูˆู„ ุซู… ุฃุฌู…ุน ู„ู‡ู…ูŠู† ุงู„ู…ุตูˆููŠู† ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุฌูŠู†ุง
904
+
905
+ 227
906
+ 00:26:20,280 --> 00:26:27,400
907
+ ู†ุณู…ูŠู‡ุง ุฎุงุตูŠุฉ ุงู„ุชุฌู…ูŠุน ุฃูˆ ุฎุงุตูŠุฉ ุงู„ุฏู…ุฌ ุฅุฐู† ุนู…ู„ูŠุฉ ุฌู…ุน
908
+
909
+ 228
910
+ 00:26:27,400 --> 00:26:33,120
911
+ ุงู„ู…ุตูˆุงุช ุนู…ู„ูŠุฉ ุฅุฏู…ุงุฌูŠุฉ ุจูŠุฌูŠู†ุง ู†ุณู…ูŠู‡ุง associative
912
+
913
+ 229
914
+ 00:26:33,120 --> 00:26:39,960
915
+ lawCommutative ู„ุง ู‚ุงู†ูˆู† ุงู„ุฅุจุฏุงู„ Associative ู„ุง
916
+
917
+ 230
918
+ 00:26:39,960 --> 00:26:46,280
919
+ ู‚ุงู†ูˆู† ุงู„ุฏู…ุฌ ุฃูˆ ู‚ุงู†ูˆู† ุงู„ุชุฌู…ูŠู„ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ ุงู„ู€ a ูˆ
920
+
921
+ 231
922
+ 00:26:46,280 --> 00:26:50,540
923
+ ุงู„ b are real numbers ุจูŠู‚ูˆู„ู‘ูŠ ู„ูˆ ุฌูŠุช ุนู„ู‰ ุงู„ู…ุตูˆู a
924
+
925
+ 232
926
+ 00:26:50,540 --> 00:26:55,440
927
+ ุถุฑุจุช ููŠ ุงู„ real number b ูˆ ุงู„ู„ูŠ ู†ุชุฌ ุถุฑุจุช ููŠู‡ ุงู„
928
+
929
+ 233
930
+ 00:26:55,440 --> 00:27:00,160
931
+ real number a ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุถุฑุจุช ุงู„ a ูˆ ุงู„ b as
932
+
933
+ 234
934
+ 00:27:00,160 --> 00:27:03,820
935
+ real numbers ููŠ ุจุนุถ ู‡ูŠุทู„ุน real number ุฌุฏูŠุฏ ูˆ ู„ูˆ
936
+
937
+ 235
938
+ 00:27:03,820 --> 00:27:08,950
939
+ ุทู„ุจู‡ ููŠ ุงู„ู…ุตูˆู a ุจุชุทู„ุน ู†ูุณ ุงู„ู†ุชุฌ ู‡ุฐุง ุฃูˆู„ูˆ ุจุฏู„ุช
940
+
941
+ 236
942
+ 00:27:08,950 --> 00:27:13,730
943
+ ู…ูƒุงู† a b equals b a ูู‡ูŠ ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ real numbers
944
+
945
+ 237
946
+ 00:27:13,730 --> 00:27:18,610
947
+ ุนู…ู„ูŠุฉ ุฎู…ุณุฉ ููŠ ุณุชุฉ ู‡ูŠ ุณุชุฉ ููŠ ุฎู…ุณุฉ ู…ุธุจูˆุท ู‡ุฐู‡ ุฃุนุฏุงุฏ
948
+
949
+ 238
950
+ 00:27:18,610 --> 00:27:23,810
951
+ ุญู‚ูŠู‚ูŠุฉ ุฅุฐุง ู‡ุฐู‡ ุนู…ู„ูŠุฉ ุงู„ุฅูุฏุงู„ ุนู„ูŠู‡ุง ุตุญูŠุญุฉูˆุจุงู„ุชุงู„ูŠ
952
+
953
+ 239
954
+ 00:27:23,810 --> 00:27:27,970
955
+ ู…ู…ูƒู† ุงุฑุฌุน ุชุงู†ูŠุฉ ูˆ ุงู‚ูˆู„ ุจูŠ ู„ุญุงู„ู‡ุง ูˆุจุนุฏูŠู† ุงุถุฑุจ ุง ููŠ
956
+
957
+ 240
958
+ 00:27:27,970 --> 00:27:33,950
959
+ ุง ูˆุงู„ู†ุชุฌ ุงุถุฑุจู‡ ููŠ ู…ูŠู† ููŠ ุจูŠ ู…ุงููŠุด ู…ุดูƒู„ุฉ ููŠ ุญุงู„ุฉ
960
+
961
+ 241
962
+ 00:27:33,950 --> 00:27:39,190
963
+ ุถุฑุจ ุงูŠ ุฑู‚ู… ุงูˆ ุฑู‚ู…ูŠู† ุงู† ุดุงุก ุงู„ู„ู‡ ุนุดุฑูŠู† ุฑู‚ู… ููŠ ู…ุตูˆุฑ
964
+
965
+ 242
966
+ 00:27:39,190 --> 00:27:44,100
967
+ ุชุถุฑุจ ู…ูŠู† ููŠ ุงู„ุงูˆู„ ู…ุงุนู†ุงู‡ ู…ุดูƒู„ุฉุจู†ุฌูŠ ุงู„ู„ูŠ ู‡ู†ุง ุงุณู…ู‡ุง
968
+
969
+ 243
970
+ 00:27:44,100 --> 00:27:50,200
971
+ distributive law ุฎุงุตูŠุฉ ุงู„ุชูˆุฒูŠุน ู„ูˆ ุนู†ุฏูŠ two real
972
+
973
+ 244
974
+ 00:27:50,200 --> 00:27:54,720
975
+ numbers ูˆ ุฌู…ุนุชู‡ู… ูˆ ุจุฏูŠ ุงุถุฑุจู‡ู… ููŠ ู…ูŠู† ููŠ ู…ุตูˆูุฉ ุงูŠู‡
976
+
977
+ 245
978
+ 00:27:54,720 --> 00:27:58,960
979
+ ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุถุฑุจุช ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ููŠ ุงูŠู‡ ูˆ ุงู„ุฑู‚ู…
980
+
981
+ 246
982
+ 00:27:58,960 --> 00:28:05,130
983
+ ุงู„ุชุงู†ูŠ ููŠ ุงูŠู‡ ูˆ ุซู… ุฌู…ุนุช ุงู„ู†ุชูŠุฌุฉูŠุจู‚ู‰ a ุฒุงุฆุฏ b ููŠ
984
+
985
+ 247
986
+ 00:28:05,130 --> 00:28:10,830
987
+ ุงู„ู…ุตูˆูุฉ a ู‡ูˆ a ููŠ a ุฒุงุฆุฏ b ููŠ ุงุชู†ูŠู† ู†ูุณ ุงู„ุนู…ู„ูŠุฉ
988
+
989
+ 248
990
+ 00:28:10,830 --> 00:28:15,130
991
+ ู‡ุฐุง ูƒู…ุงู† ุงู„ associatively constant ุงูˆ real number
992
+
993
+ 249
994
+ 00:28:15,130 --> 00:28:20,490
995
+ ุนู„ู‰ ู…ุฌู…ูˆุน two matrices ูŠุจู‚ู‰ c ููŠ a ุฒุงุฆุฏ b ูŠุณุงูˆูŠ c
996
+
997
+ 250
998
+ 00:28:20,490 --> 00:28:26,870
999
+ ููŠ a ุฒุงุฆุฏ c ููŠ bู‡ุฐู‡ ู…ุนู„ูˆู…ุงุช ุฃูˆู„ูŠุฉ ุนู† ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน
1000
+
1001
+ 251
1002
+ 00:28:26,870 --> 00:28:31,690
1003
+ ูˆุงู„ุทุฑุญ ุนู„ู‰ ุงู„ู…ุตููˆูุฉ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ู‡ูŠ ุนู…ู„ูŠุฉ ุงู„ุทุฑุญ
1004
+
1005
+ 252
1006
+ 00:28:31,690 --> 00:28:37,150
1007
+ ุจุงู„ุถุจุท ุชู…ุงู…ุง ูˆูƒุฃู†ู‡ ู†ูุณ ุงู„ุนู…ู„ูŠุฉ ุจุณ ุงู„ุทุฑุญ ุจูŠุฎู„ูŠู‡ุง
1008
+
1009
+ 253
1010
+ 00:28:37,150 --> 00:28:41,230
1011
+ ุฌู…ุน ูˆุจู‚ูˆู„ ูƒุฃู† ุงู„ู…ุตููˆูุฉ ุจุณ ู…ุถุฑูˆุจุฉ ููŠ ู…ู†ุŸ ููŠ ุณุงู„ุจ
1012
+
1013
+ 254
1014
+ 00:28:41,230 --> 00:28:46,010
1015
+ ูˆุงุญุฏ ุงุญู†ุง ูƒู†ุง ุฑูุนูŠู† ุนู†ูˆุงู† ุงู„ุนู†ูˆุงู† ู‡ุฐุง ุจู‚ูŠู† ุงู‚ูˆู„
1016
+
1017
+ 255
1018
+ 00:28:46,010 --> 00:28:51,150
1019
+ matrices andVectors ูŠุจู‚ู‰ ุงู„ุฃู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ vectors
1020
+
1021
+ 256
1022
+ 00:28:51,150 --> 00:28:56,670
1023
+ ู†ุนุฑู ู…ุง ู‡ูˆ ุงู„ู…ู‚ุตูˆุฏ ุจุงู„ vectors ุทุจุนุง ูŠุจู‚ู‰ ุจุฏู†ุง ู†ูŠุฌูŠ
1024
+
1025
+ 257
1026
+ 00:28:56,670 --> 00:29:09,870
1027
+ ู„ุนู†ูˆุงู† ุฌุงู†ุจ ู‡ูŠูƒ ุจุฏู†ุง ู†ู‚ูˆู„ raw and columns vectors
1028
+
1029
+ 258
1030
+ 00:29:18,270 --> 00:29:23,950
1031
+ ุชุจู‚ู‰ ุงู„ู…ุชุฌู‡ุงุช ุงู„ู…ุชุฌู‡ุงุช
1032
+
1033
+ 259
1034
+ 00:29:23,950 --> 00:29:31,010
1035
+ ุงู„ุตููˆู ูˆู…ุชุฌู‡ุงุช ุงู„ุฃุนู…ุฏุฉ definition ุชุนุฑูŠู ุงู„ุฃูˆู„ a
1036
+
1037
+ 260
1038
+ 00:29:31,010 --> 00:29:36,250
1039
+ matrix with
1040
+
1041
+ 261
1042
+ 00:29:36,250 --> 00:29:39,430
1043
+ with
1044
+
1045
+ 262
1046
+ 00:29:39,430 --> 00:29:42,530
1047
+ one call and
1048
+
1049
+ 263
1050
+ 00:29:48,970 --> 00:29:54,150
1051
+ in rows ุนู…ูˆุฏ
1052
+
1053
+ 264
1054
+ 00:29:54,150 --> 00:30:05,430
1055
+ ูˆุงุญุฏ ูˆ in ู…ู† ุงู„ุตููˆู of the form ุนู„ู‰ ุงู„ุดูƒู„ x ูˆุงุญุฏ ูˆ
1056
+
1057
+ 265
1058
+ 00:30:05,430 --> 00:30:11,450
1059
+ x ุงุชู†ูŠู† ูˆ ู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ x in ุจู‡ุฐุง ุงู„ุดูƒู„ is
1060
+
1061
+ 266
1062
+ 00:30:11,450 --> 00:30:12,310
1063
+ called
1064
+
1065
+ 267
1066
+ 00:30:18,200 --> 00:30:24,520
1067
+ and in dimensional
1068
+
1069
+ 268
1070
+ 00:30:24,520 --> 00:30:32,900
1071
+ convector
1072
+
1073
+ 269
1074
+ 00:30:32,900 --> 00:30:36,120
1075
+ ู…ุงุญุฏุด
1076
+
1077
+ 270
1078
+ 00:30:36,120 --> 00:30:46,060
1079
+ ุฃุญุณู† ู…ู† ุญุฏ ู†ุฏู‰ a matrix with
1080
+
1081
+ 271
1082
+ 00:30:53,740 --> 00:31:17,260
1083
+ ู…ุน ุดูƒู„ Y1
1084
+
1085
+ 272
1086
+ 00:31:17,260 --> 00:31:39,500
1087
+ ูˆ Y2ูˆ ู„ุบุงูŠุฉ yn is called ุจุฑูˆุญ ู†ุณู…ูŠู‡ indimensional
1088
+
1089
+ 273
1090
+ 00:31:39,500 --> 00:31:42,240
1091
+ raw vector
1092
+
1093
+ 274
1094
+ 00:31:51,570 --> 00:32:11,330
1095
+ for example ูƒู…ุซุงู„ ุนู„ู‰ ุฐู„ูƒ ุงู„ matrix ุงู„
1096
+
1097
+ 275
1098
+ 00:32:11,330 --> 00:32:36,770
1099
+ matrix A ุชุณุงูˆูŠ A11 A12A1N A21 A22 A2N AM1 AM2 AMN
1100
+
1101
+ 276
1102
+ 00:32:36,770 --> 00:32:47,530
1103
+ ุดูƒู„ ุงู† ู‡ุฐุง ุงู„ู„ูŠ ุณู…ูŠู‡ุง ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ star with size
1104
+
1105
+ 277
1106
+ 00:32:50,360 --> 00:32:57,120
1107
+ m ููŠ n has
1108
+
1109
+ 278
1110
+ 00:32:57,120 --> 00:33:03,100
1111
+ columns
1112
+
1113
+ 279
1114
+ 00:33:03,100 --> 00:33:15,020
1115
+ columns vectors columns vectors u1 ุจุฏู‡ ูŠุณุงูˆูŠ a11
1116
+
1117
+ 280
1118
+ 00:33:15,020 --> 00:33:17,620
1119
+ a21
1120
+
1121
+ 281
1122
+ 00:33:19,280 --> 00:33:36,220
1123
+ ูˆ ู„ุบุงูŠุฉ am1 ูˆ ุงู„ U2 ุจุฏู‡ ูŠุณ๏ฟฝ๏ฟฝูˆูŠ a12 a22 am2
1124
+
1125
+ 282
1126
+ 00:33:36,220 --> 00:33:49,990
1127
+ ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ un ุงู„ู„ูŠ ู‡ูŠ a1n a2nุฃู†
1128
+
1129
+ 283
1130
+ 00:34:19,440 --> 00:34:26,320
1131
+ ุนู†ุฏ ู‡ุฐู‡ ุงู„ูˆุตูุงุช ุงู„ูˆุงุญุฏุฉ ุงู„ูˆุงุญุฏุฉ
1132
+
1133
+ 284
1134
+ 00:34:26,320 --> 00:34:30,200
1135
+ ุงู„ูˆุงุญุฏุฉ ุงู„ูˆุงุญุฏุฉ ุงู„ูˆุงุญุฏุฉ ุงู„ูˆุงุญุฏุฉ
1136
+
1137
+ 285
1138
+ 00:34:39,070 --> 00:34:47,050
1139
+ A12 A1N V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
1140
+
1141
+ 286
1142
+ 00:34:47,050 --> 00:34:50,770
1143
+ V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
1144
+
1145
+ 287
1146
+ 00:34:50,770 --> 00:34:50,990
1147
+ V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
1148
+
1149
+ 288
1150
+ 00:34:50,990 --> 00:34:50,990
1151
+ V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
1152
+
1153
+ 289
1154
+ 00:34:50,990 --> 00:34:51,050
1155
+ V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
1156
+
1157
+ 290
1158
+ 00:34:51,050 --> 00:34:51,050
1159
+ V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2
1160
+
1161
+ 291
1162
+ 00:34:51,050 --> 00:34:55,330
1163
+ V2 V2 V2 V2 V2 V2 V2 V2 V2
1164
+
1165
+ 292
1166
+ 00:34:55,330 --> 00:35:01,870
1167
+ V2 V
1168
+
1169
+ 293
1170
+ 00:35:07,990 --> 00:35:30,810
1171
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ุฑูˆุญ
1172
+
1173
+ 294
1174
+ 00:35:30,810 --> 00:35:42,180
1175
+ ู†ูƒุชุจ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠA ุชุณุงูˆูŠ U1 U2 ูˆ ู„ุบุงูŠุฉ UN
1176
+
1177
+ 295
1178
+ 00:35:42,180 --> 00:35:48,120
1179
+ where each
1180
+
1181
+ 296
1182
+ 00:35:48,120 --> 00:36:02,560
1183
+ of U1 ูˆ U2 ูˆ ู„ุบุงูŠุฉ UN is M dimensionalู…
1184
+
1185
+ 297
1186
+ 00:36:02,560 --> 00:36:05,600
1187
+ ุฏุงูŠู…ูŠู†ุดูŠู†ุงู„
1188
+
1189
+ 298
1190
+ 00:36:05,600 --> 00:36:19,940
1191
+ ู… ุฏุงูŠู…ูŠู†ุดูŠู†ุงู„ ูƒู„ู… vectors ูˆูƒุฐู„ูƒ
1192
+
1193
+ 299
1194
+ 00:36:19,940 --> 00:36:42,270
1195
+ ุงู„ A ุชุณุงูˆูŠ V1 V2 ู„ุบุงูŠุฉ VmWhere each of V1 ูˆ V2 ูˆ
1196
+
1197
+ 300
1198
+ 00:36:42,270 --> 00:36:50,490
1199
+ ู„ุบุงูŠุฉ VM is an N-dimensional
1200
+
1201
+ 301
1202
+ 00:37:01,910 --> 00:37:06,290
1203
+ ุงู† ุฏุงูŠู…ู†ุดูŠู†ุงู„ ุฑุง ููƒุชุฑ
1204
+
1205
+ 302
1206
+ 00:37:47,410 --> 00:37:52,870
1207
+ ุงู„ุงู† ู†ุนูˆุฏ ู„ุจุนุถ ุงู„ุชุนุฑูŠูุงุช ุงู„ุชูŠ ุชุดุงู‡ุฏูˆู†ู‡ุง ุงู„ุชุนุฑูŠู
1208
+
1209
+ 303
1210
+ 00:37:52,870 --> 00:37:58,750
1211
+ ุงู„ุฃูˆู„ ู‡ูˆ matrix with one column and n rows ุนู…ูˆุฏ
1212
+
1213
+ 304
1214
+ 00:37:58,750 --> 00:38:03,530
1215
+ ูˆุงุญุฏ ูˆู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุตููˆุฑุฉ ู‡ุฐุง ู„ูŠุณ ู…ุตุทููˆุด ูู‚ุท ุนู…ูˆุฏ
1216
+
1217
+ 305
1218
+ 00:38:03,530 --> 00:38:07,590
1219
+ ูˆุงุญุฏ ูˆุตูุฑ ุงุชู†ูŠู† ูˆุชู„ุงุชุฉ ู…ู† ุงู„ุตููˆุฑุฉ ุงู† ู…ู† ุงู„ุตููˆุฑุฉ ููŠ
1220
+
1221
+ 306
1222
+ 00:38:07,590 --> 00:38:12,310
1223
+ ุงู„ุดูƒู„ ู„ุฃู† ู‡ุฐุง ุจู†ุณู…ูŠู‡ุง n-dimensional column vector
1224
+
1225
+ 307
1226
+ 00:38:12,310 --> 00:38:20,880
1227
+ ูŠุจู‚ู‰ู…ุชุฌู‡ ุนู…ูˆุฏูŠ ู„ู‡ N ู…ู† ุงู„ุฅุญุฏุงุซูŠุงุช M dimensional
1228
+
1229
+ 308
1230
+ 00:38:20,880 --> 00:38:26,580
1231
+ ูŠุนู†ูŠ ูƒุงู† ููŠู‡ N ู…ู† ุงู„ุนู†ุงุตุฑ ุชู…ุงู… ุงู„ู„ูŠ ุจุนุฏ Matrix
1232
+
1233
+ 309
1234
+ 00:38:26,580 --> 00:38:33,540
1235
+ with one row ุตู ูˆุงุญุฏ ู„ูƒู† M ู…ู† ุงู„ุฃุนู…ุฏุฉูŠุจู‚ู‰ ุตู ูˆุงุญุฏ
1236
+
1237
+ 310
1238
+ 00:38:33,540 --> 00:38:39,140
1239
+ ูˆ N ู…ู† ุงู„ุฃุนู…ุฏุฉ of the form Y1 Y2 ูŠุจู‚ู‰ ุตู ูˆุงุญุฏ
1240
+
1241
+ 311
1242
+ 00:38:39,140 --> 00:38:45,960
1243
+ ูˆุนู…ูˆุฏูŠ 2 3 4 N ูŠุจู‚ู‰ ุจุณู…ูŠู‡ N dimensional row vector
1244
+
1245
+ 312
1246
+ 00:38:49,140 --> 00:38:55,740
1247
+ N dimensional call vector ู…ุตููˆูุฉ ุนู…ูˆุฏ ู…ุตููˆูุฉ ุตูุฑ
1248
+
1249
+ 313
1250
+ 00:38:55,740 --> 00:39:03,020
1251
+ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุชุฌู‡ ุนู…ูˆุฏูŠ ูˆู‡ุฐุง ู…ุชุฌู‡ ุตูุฑูŠ ูู…ุซู„ุง ู„ูˆ ุฃุฎุฏุช
1252
+
1253
+ 314
1254
+ 00:39:03,020 --> 00:39:09,460
1255
+ ู…ุตููˆูุฉ ุงู„ู…ุนุงู…ู„ุงุช ู‡ูŠูƒูˆู† ููŠู‡ุงุงู„ู€ vector ุงู„ุฃูˆู„ ุงู„
1256
+
1257
+ 315
1258
+ 00:39:09,460 --> 00:39:13,420
1259
+ vector ุงู„ุชุงู†ูŠ ุงู„ vector ุงู„ุชุงู„ุช ุงู„ู„ูŠ ุณู…ูŠุชู‡ U1 ูˆ U2
1260
+
1261
+ 316
1262
+ 00:39:13,420 --> 00:39:18,540
1263
+ ูˆ U3 ุญูŠูƒูˆู† ููŠู‡ุง ุงู„ raw vector ุงู„ุตู ุงู„ุฃูˆู„ ุงู„ุตู
1264
+
1265
+ 317
1266
+ 00:39:18,540 --> 00:39:24,280
1267
+ ุงู„ุชุงู†ูŠ ุงู„ุตู ุฑู‚ู… M ุฒูŠ ู…ุง ุฏูŠุชู‡ ุงู„ุฑู…ุฒ V ูŠุจู‚ู‰ U
1268
+
1269
+ 318
1270
+ 00:39:24,280 --> 00:39:29,640
1271
+ ุฃุทู„ู‚ุชู‡ุง ุนู„ู‰ ุงู„ุตููˆู ูˆ V ุฃุทู„ู‚ุชู‡ุง ุนู„ู‰ ุงู„ุฃุนู…ุฏุฉ ูˆ H
1272
+
1273
+ 319
1274
+ 00:39:29,640 --> 00:39:35,240
1275
+ ุฃุทู„ู‚ุชู‡ุง ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ุตููˆู ูŠุจู‚ู‰ ู…ู…ูƒู† ุฃุฑุฌุน ุฃูƒุชุจ
1276
+
1277
+ 320
1278
+ 00:39:35,240 --> 00:39:40,140
1279
+ ุงู„ู…ุตููˆู ุฃุณุชุฑ ุนู„ู‰ ุงู„ุตูŠุบุฉ ุงู„ุชุงู„ูŠุฉูŠุจู‚ู‰ U1 ูˆ U2 ูˆ ู„ุบุฉ
1280
+
1281
+ 321
1282
+ 00:39:40,140 --> 00:39:44,700
1283
+ UL ุทุจุนุง ู‡ุฐุง ุนู…ูˆุฏ ูˆ ู‡ุฐุง ุนู…ูˆุฏ ูˆ ู‡ุฐุง ุนู…ูˆุฏ ูˆ ู‡ุฐุง ุนู…ูˆุฏ
1284
+
1285
+ 322
1286
+ 00:39:44,700 --> 00:39:49,900
1287
+ ุงูˆ ุจู‚ุฏุฑ ุงูƒุชุจู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูˆ ูƒู„ ูˆุงุญุฏ ุนุจุงุฑุฉ ุนู†
1288
+
1289
+ 323
1290
+ 00:39:49,900 --> 00:39:55,260
1291
+ ู…ูŠู† ุนุจุงุฑุฉ ุนู† ุตู ุณูˆุงุก ูƒุงู† ู‡ุฐุง ูˆ ู„ุง ู‡ุฐุง ุงู„ุงุชู†ูŠู† are
1292
+
1293
+ 324
1294
+ 00:39:55,260 --> 00:40:00,280
1295
+ the same ู‡ู†ุญุงูˆู„ ู†ุนุทูŠ ุฃู…ุซู„ุฉ ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ุนู„ู‰ ุงู„ two
1296
+
1297
+ 325
1298
+ 00:40:00,280 --> 00:40:03,720
1299
+ definitions ู‡ุฐูˆู„ ุงู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ุงุนุทูŠูƒูˆุง ุงู„ุนููˆ
1300
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/HSZXZRH7pd0_raw.json ADDED
The diff for this file is too large to render. See raw diff
 
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/JYkoCgwSRmw.srt ADDED
@@ -0,0 +1,1418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:19,510 --> 00:00:24,150
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุจู†ุชุงุจุน ุงู„ุญุฏูŠุซ ููŠ ุงู„ู…ูˆุถูˆุน
4
+
5
+ 2
6
+ 00:00:24,150 --> 00:00:27,510
7
+ ุงู„ู„ูŠ ุงุจุชุฏูŠู†ุง ุจู‡ ูˆู‡ูˆ ุฅูŠุฌุงุฏ ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ
8
+
9
+ 3
10
+ 00:00:27,510 --> 00:00:31,310
11
+ ุจุทุฑูŠู‚ุชูŠู† ุดุฑุญู†ุง ุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ุขู† ุจุฏู†ุง ู†ุฑูˆุญ
12
+
13
+ 4
14
+ 00:00:31,310 --> 00:00:35,730
15
+ ู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉุŒ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู‚ู„ู†ุง ุชุชูƒูˆู† ู…ู† ุซู„ุงุซ
16
+
17
+ 5
18
+ 00:00:35,730 --> 00:00:40,370
19
+ ู†ู‚ุงุทุŒ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุจุฏู‡ ุฃุดูŠู„ ูƒู„ ุนู†ุตุฑ ููŠ ุงู„ู…ุตููˆูุฉ A
20
+
21
+ 6
22
+ 00:00:40,370 --> 00:00:45,530
23
+ I J ูˆุญุท ุจุฏู„ ุงู„ู€ cofactor ุงู„ู…ู†ุงุธุฑ ู„ู‡
24
+
25
+ 7
26
+ 00:00:49,180 --> 00:00:55,200
27
+ ุงู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉ ุจุฏู‡ ูŠุฌูŠุจ ู…ุฏูˆุฑ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌุฉ
28
+
29
+ 8
30
+ 00:00:55,200 --> 00:01:02,080
31
+ ุงู„ุฎุทูˆุฉ ุงู„ุซุงู„ุซุฉ ุจุฏู‡ ูŠุฌูŠุจ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ุงู„ุฃุตู„ูŠุฉ
32
+
33
+ 9
34
+ 00:01:02,080 --> 00:01:07,060
35
+ ูˆูŠู‚ูˆู„ ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ
36
+
37
+ 10
38
+ 00:01:07,060 --> 00:01:11,940
39
+ ููŠ ุงู„ู€ Transpose ุงู„ู„ูŠ ุฌูŠุจู†ุงู‡ ููŠ ุงู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉุŒ ุจู‡ุง
40
+
41
+ 11
42
+ 00:01:11,940 --> 00:01:17,160
43
+ ู‡ุฐุง ุจูŠูƒูˆู† ุฌูŠุจู†ุง ู…ูŠู‡ุŸ ุฌูŠุจู†ุง ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉุŒ ูˆุงุถุญ
44
+
45
+ 12
46
+ 00:01:17,160 --> 00:01:19,920
47
+ ูƒู„ุงู…ูŠุŸ ูŠุจู‚ู‰ ู‡ุงูŠ ุงู„ุฎุทูˆุงุช ุงู„ุซู„ุงุซ ุงู„ู„ูŠ ูƒุชุจุชูŠู‡ุง ููŠ
48
+
49
+ 13
50
+ 00:01:19,920 --> 00:01:24,500
51
+ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุณุงุจู‚ุฉ ู‚ุจู„ ุณุงุนุฉ ูˆุดูˆูŠุฉุŒ ุชู…ุงู…ุŸ ู„ู…ุง ุจุฏู†ุง
52
+
53
+ 14
54
+ 00:01:24,500 --> 00:01:27,500
55
+ ู†ุทุจู‚ู‡ุง ุนู…ู„ูŠุงุŒ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุงุฏูŠ ูŠุง ุจู†ุงุช
56
+
57
+ 15
58
+ 00:01:27,500 --> 00:01:32,970
59
+ ุฃูˆุฌุฏู†ุง ุงู„ู…ุนูƒูˆุณ ุชุจุนู‡ุง ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ
60
+
61
+ 16
62
+ 00:01:32,970 --> 00:01:37,610
63
+ ุฃู†ู‘ู‡ ุงู„ู…ุตูˆูุฉ ุงู„ู…ูˆุณุนุฉ ูˆุฃุญูˆู„ู‡ุง ุฅู„ู‰ ู…ุตููˆูุชูŠู†ุŒ ุทุฑู
64
+
65
+ 17
66
+ 00:01:37,610 --> 00:01:40,450
67
+ ุงู„ูŠู…ูŠู† ูˆุงู„ุทุฑู ุงู„ุดู…ุงู„ุŒ ูˆุงู„ุทุฑู ุงู„ูŠู…ูŠู† ุจูŠูƒูˆู† ู‡ูŠ
68
+
69
+ 18
70
+ 00:01:40,450 --> 00:01:45,190
71
+ ุงู„ู…ุนูƒูˆุณุฉุŒ ุงู„ุขู† ู‡ุญู„ ู†ูุณ ุงู„ุณุคุงู„ ู„ูƒู† ุจูู‡ูŽู…ู‡ ุจุงู„ุทุฑูŠู‚ุฉ
72
+
73
+ 19
74
+ 00:01:45,190 --> 00:01:48,830
75
+ ุงู„ุฌุฏูŠุฏุฉ ูˆู†ุซุจุช ุฃู† ุฅุฌุงุจุชูŠู† ุงู„ุงุซู†ูŠู† ู…ุง ู„ู‡ู… ู†ูุณ
76
+
77
+ 20
78
+ 00:01:48,830 --> 00:01:54,500
79
+ ุงู„ุดูŠุกุŒ ุฅุฐุง ุฃู†ุง ุจุฏุงุฌูŠ ู„ู„ุญู„ุŒ ุจุฏุงุฌูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ
80
+
81
+ 21
82
+ 00:01:54,500 --> 00:02:01,380
83
+ ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุจุฏูŠ ุฃุฑูˆุญ ุฃุดูŠู„ ูƒู„ ุนู†ุตุฑ ู…ู†
84
+
85
+ 22
86
+ 00:02:01,380 --> 00:02:06,340
87
+ ุนู†ุงุตุฑ ุงู„ู…ุตููˆูุฉ ูˆุฃูƒุชุจ ุจุฏุงู„ู‡ ู…ูŠู†ุŸ ูˆุฃูƒุชุจ ุจุฏุงู„ู‡ ุงู„ู€
88
+
89
+ 23
90
+ 00:02:06,340 --> 00:02:11,060
91
+ cofactor ุชุจุนู‡ ุฃูˆ ุงู„ุนุงู…ู„ ุงู„ู…ุฑุงูู‚ ู„ู‡ุŒ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช
92
+
93
+ 24
94
+ 00:02:11,060 --> 00:02:16,300
95
+ ู„ู„ู…ุตููˆูุฉ ุงู„ุฃูˆู„ู‰ุŒ ุจุฏุงุฌูŠ ุฃู‚ูˆู„ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงู„ุฃูˆู„ู‰ุŒ ุจุฏูŠ
96
+
97
+ 25
98
+ 00:02:16,300 --> 00:02:20,770
99
+ ุฃุดูŠู„ ุงู„ูˆุงุญุฏ ูŠุง ุจู†ุงุช ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุชุŒ ุดุฑุทุชู‡ ุจุงู„ู…ูˆุฌุจ
100
+
101
+ 26
102
+ 00:02:20,770 --> 00:02:25,370
103
+ ูŠุจู‚ู‰ ุฃุดุทุจ ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ูŠุจู‚ู‰ 8 ู†ุงู‚ุต 2ุŒ ูŠุจู‚ู‰
104
+
105
+ 27
106
+ 00:02:25,370 --> 00:02:31,770
107
+ ูƒู…ุŸ 6ุŒ ูŠุจู‚ู‰ ุนู†ุตุฑ 3 ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช
108
+
109
+ 28
110
+ 00:02:31,770 --> 00:02:37,530
111
+ ุดุฑุทุชู‡ ู‡ูŠ ุณุงู„ุจุฉุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุณุงู„ุจุฉุŒ ูŠุจู‚ู‰ ุฃุดุทุจ ุตูู‡ ูˆ
112
+
113
+ 29
114
+ 00:02:37,530 --> 00:02:44,130
115
+ ุนู…ูˆุฏู‡ุŒ ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ูŠุจู‚ู‰ 0 ุฒุงุฆุฏ 2 ูŠุจู‚ู‰ ู†ุงู‚ุต
116
+
117
+ 30
118
+ 00:02:44,130 --> 00:02:49,710
119
+ 2ุŒ ุจุงู„ุฏุงู„ูŠ ู„ู„ุนู†ุตุฑ ุงู„ุซุงู„ุซ -1ุŒ ุงุดุทุจ ุตูู‡ ูˆ
120
+
121
+ 31
122
+ 00:02:49,710 --> 00:02:56,450
123
+ ุนู…ูˆุฏู‡ุŒ ุจูŠุธู„ 0 ุฒุงุฆุฏ 1 ูŠุจู‚ู‰ ุจู€ 1 ุญุณุจ ู‚ุงุนุฏุฉ
124
+
125
+ 32
126
+ 00:02:56,450 --> 00:02:57,570
127
+ ุงู„ุฅุดุงุฑุงุช
128
+
129
+ 33
130
+ 00:03:00,950 --> 00:03:05,930
131
+ ุจุชุฌูŠ ู„ู„ุตู ุงู„ุซุงู†ูŠุŒ ุงู„ุตู ุงู„ุซุงู†ูŠ ุจุชุฌูŠ ู„ู€ 0 ุญุณุจ ู‚ุงุนุฏุฉ
132
+
133
+ 34
134
+ 00:03:05,930 --> 00:03:10,910
135
+ ุงู„ุฅุดุงุฑุงุชุŒ ุดุฑุทุชู‡ ู…ุงู„ู‡ุงุŸ ุณุงู„ุจุฉุŒ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุดุทุจ ุตูู‡ ูˆ
136
+
137
+ 35
138
+ 00:03:10,910 --> 00:03:16,450
139
+ ุนู…ูˆุฏู‡ุŒ 3 ููŠ 8 ุจู€ 24 ู†ุงู‚ุต 0 ูŠุจู‚ู‰
140
+
141
+ 36
142
+ 00:03:16,450 --> 00:03:22,090
143
+ ุจู€ 24ุŒ ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฉ ุงู„ุฅุดุงุฑุงุช
144
+
145
+ 37
146
+ 00:03:22,090 --> 00:03:27,870
147
+ ุดุฑุทุชู‡ ู…ูˆุฌุจุฉุŒ ูŠุจู‚ู‰ ุจุงู„ู†ุดุท ุจุตูู‡ ุนู…ูˆุฏูŠุŒ ูŠุจู‚ู‰ 8 ู†ุงู‚ุต
148
+
149
+ 38
150
+ 00:03:27,870 --> 00:03:32,710
151
+ 1ุŒ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุทู„ุน ุจู‚ุฏุงุดุŸ ุจู€ 7ุŒ ุญุณุจ ู‚ุงุนุฉ ุงู„ุฅุดุงุฑุงุช
152
+
153
+ 39
154
+ 00:03:32,710 --> 00:03:36,990
155
+ ุงู„ู„ูŠ ุจุนุฏู‡ุŒ ุงู„ู„ูŠ ุดุฑุทุชู‡ ุงู„ุณุงู„ุจุŒ ูŠุจู‚ู‰ ุจุงู„ุฑูˆุญ ู†ุดุท ุจุตูู‡
156
+
157
+ 40
158
+ 00:03:36,990 --> 00:03:43,750
159
+ ูˆุนู…ูˆุฏู‡ุŒ ูŠุจู‚ู‰ 0 ุฒุงุฆุฏ 3 ูŠุจู‚ู‰ ุจุตูŠุฑ ู†ุงู‚ุต 3
160
+
161
+ 41
162
+ 00:03:44,270 --> 00:03:48,630
163
+ ุจุงู„ุฏุงู„ูŠ ู„ู„ุตู ุงู„ุซุงู„ุซ ุญุณุจ ู‚ุงุนุฏ ุงู„ุฅุดุงุฑุงุช ุดุฑุทุชู‡ ุจุงู„ู…ูˆุฌุจ
164
+
165
+ 42
166
+ 00:03:48,630 --> 00:03:54,950
167
+ ูŠุจู‚ู‰ ุจุงู„ุฏุงุดุทู‡ ุจุตูู‡ ุนู…ูˆุฏู‡ 6 ุฒุงุฆุฏ 1ุŒ ูˆุงู„ู„ูŠ ู‡ูŠ
168
+
169
+ 43
170
+ 00:03:54,950 --> 00:03:59,890
171
+ ู‚ุฏุงุดุŸ 7ุŒ ุจุงู„ุฏุงู„ูŠ ู„ู„ุนู†ุตุฑ ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฏ ุงู„ุฅุดุงุฑุงุช
172
+
173
+ 44
174
+ 00:03:59,890 --> 00:04:06,490
175
+ ุดุฑุทุชู‡ ุงู„ุณุงู„ุจุŒ ู†ุดุทู‡ ุจุตูู‡ ูˆุนู…ูˆุฏู‡ ูŠุจู‚ู‰ 2ุŒ ูˆุงู„ู„ูŠ ุจุนุฏู‡
176
+
177
+ 45
178
+ 00:04:06,490 --> 00:04:10,890
179
+ 0 ูŠุจู‚ู‰ ู…ุง ุนู†ุฏูŠุด ุฅู„ุง 2ุŒ ู†ูŠุฌูŠ ุงู„ุนู†ุตุฑ ุงู„ุซุงู„ุซ ุญุณุจ
180
+
181
+ 46
182
+ 00:04:10,890 --> 00:04:14,950
183
+ ู‚ุฑุต ุงู„ุดุฑุทุŒ ุดุฑุทุชู‡ ู…ูˆุฌุจุฉุŒ ู…ู† ู†ุดุทู‡ ุจุตูู‡ ูˆุนู…ูˆุฏู‡ ูŠุจู‚ู‰ 1
184
+
185
+ 47
186
+ 00:04:14,950 --> 00:04:19,110
187
+ ู†ุงู‚ุต 3ุŒ ุงู„ู„ูŠ ูŠุจู‚ู‰ ุฏุงุดุช ุจู€ 1ุŒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
188
+
189
+ 48
190
+ 00:04:19,110 --> 00:04:26,170
191
+ ู‡ุฐุงุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ุŒ ุงู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉ ุจุฏูŠ ุฃุฌูŠุจ
192
+
193
+ 49
194
+ 00:04:26,170 --> 00:04:28,030
195
+ ู„ู‡ุŒ ู„ู„ู…ุตููˆูุฉ ุจู‡
196
+
197
+ 50
198
+ 00:04:40,960 --> 00:04:45,680
199
+ ุจุจุจุจุจุจุจุจุจุจุจุจุจุจุจ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠุจ ู„ู€ Transpose ุจุงู„ู†ุณุจุฉ
200
+
201
+ 51
202
+ 00:04:45,680 --> 00:04:50,300
203
+ ุฅู„ูŠู‡ุงุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„ู…ุตูˆูุฉ ุนู„ู‰ ุงู„ุดูƒู„
204
+
205
+ 52
206
+ 00:04:50,300 --> 00:04:55,340
207
+ ุงู„ุชุงู„ูŠุŒ ุงู„ุตู ุงู„ุฃูˆู„ ุจุฏูŠ ูŠุตูŠุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ุŒ ุงู„ุตู
208
+
209
+ 53
210
+ 00:04:55,340 --> 00:05:02,040
211
+ ุงู„ุซุงู†ูŠ ุจุฏูŠ ูŠุตูŠุฑ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠุŒ ุงู„ุตู ุงู„ุซุงู„ุซ ุจุฏูŠ ูŠุตูŠุฑ
212
+
213
+ 54
214
+ 00:05:02,040 --> 00:05:07,220
215
+ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู„ุซุŒ 6ุŒ -2ุŒ 1 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง
216
+
217
+ 55
218
+ 00:05:07,880 --> 00:05:12,380
219
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ุจูŠุญุตู„ู†ุง ุนู„ูŠู‡ุง ู…ู† ุฎุทูˆุชูŠู†ุŒ ุงู„ุฎุทูˆุฉ
220
+
221
+ 56
222
+ 00:05:12,380 --> 00:05:16,920
223
+ ุงู„ุฃูˆู„ู‰ุŒ ุงุณุชุจุฏู„ู†ุง ูƒู„ ุนู†ุตุฑ ุจุงู„ู€ cofactor ุชุจุนู‡ุŒ ุฎุทูˆุฉ
224
+
225
+ 57
226
+ 00:05:16,920 --> 00:05:21,220
227
+ ุซุงู†ูŠุฉุŒ ุฌูŠุจู†ุง ู„ู€ Transpose ู„ูู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌุฉุŒ ุจู‚ูŠุช
228
+
229
+ 58
230
+ 00:05:21,220 --> 00:05:26,640
231
+ ุนู„ูŠู†ุง ุงู„ุฎุทูˆุฉุŒ ู…ุด ู‡ุฌูŠุจ ุงู„ุฎุทูˆุฉ ุงู„ุฃุฎูŠุฑุฉุŒ ุจู„ุฒู…ู†ูŠ ู…ุญุฏุฏ
232
+
233
+ 59
234
+ 00:05:26,640 --> 00:05:31,920
235
+ ุงู„ู…ุตููˆูุฉ AุŒ ุฅุฐุง ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ุจุฏูŠ ุฃุฌูŠุจ ู„ู‡ determinant
236
+
237
+ 60
238
+ 00:05:31,920 --> 00:05:36,740
239
+ ู„ู„ู…ุตููˆูุฉ AุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ุŒ ูˆู‡ุฐู‡ ุงู„ุฎุทูˆุฉ
240
+
241
+ 61
242
+ 00:05:36,740 --> 00:05:40,740
243
+ ุงู„ุซุงู†ูŠุฉ ูŠุง ุจู†ุงุชุŒ ุจุชุฌูŠ ู„ู„ุฎุทูˆุฉ ุงู„ุซุงู„ุซุฉ determinant
244
+
245
+ 62
246
+ 00:05:40,740 --> 00:05:49,560
247
+ ู„ู AุŒ ุจุชุณุงูˆูŠ ุงู„ู…ุญุฏุฏ ุจุชุฌูŠ ู„ู A ุงู„ุฃุตู„ูŠุฉุŸ 1ุŒ 3ุŒ -1ุŒ 0ุŒ 1ุŒ 2
248
+
249
+ 63
250
+ 00:05:49,560 --> 00:05:58,260
251
+ -1ุŒ 0ุŒ 8 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงุŒ ุจุฏุง ู†ููƒ ุงู„ู…ุตููˆูุฉ ุจุงุณุชุฎุฏุงู…
252
+
253
+ 64
254
+ 00:05:58,260 --> 00:06:04,320
255
+ ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ู…ุซู„ู‹ุงุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… 1 ููŠู‡
256
+
257
+ 65
258
+ 00:06:04,320 --> 00:06:10,140
259
+ ู†ุดุทุจ ุตูู‡ ุนู…ูˆุฏู‡ุŒ ูŠุจู‚ู‰ 8 ู†ุงู‚ุต 0ุŒ ุงู„ู„ูŠ ุจุนุฏู‡
260
+
261
+ 66
262
+ 00:06:10,140 --> 00:06:16,520
263
+ ู†ุงู‚ุต 0ุŒ ุฒุงุฆุฏ ู†ุงู‚ุต 1 ููŠู‡ุŒ ุฃุดุทุจ ุจุตูู‡ ุนู…ูˆุฏุŒ ุจูŠุตูŠุฑ
264
+
265
+ 67
266
+ 00:06:16,520 --> 00:06:24,800
267
+ 6 ุฒุงุฆุฏ 1ุŒ ูŠุจู‚ู‰ 6 ุฒุงุฆุฏ 1ุŒ ุงู„ุดูƒู„ ุนู† ู‡ู†ุง ูŠุจู‚ู‰
268
+
269
+ 68
270
+ 00:06:24,800 --> 00:06:30,760
271
+ ู‡ู†ุง 8ุŒ ูˆู‡ู†ุง ู†ุงู‚ุต 7ุŒ ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ูƒุฏู‡ ุงูŠุดุŸ 1
272
+
273
+ 69
274
+ 00:06:30,760 --> 00:06:37,140
275
+ ุตุญูŠุญุŒ ูŠุจู‚ู‰ ุงู„ู€ A inverse ูŠุจู‚ู‰ 1 ุนู„ู‰ ุงู„ู€
276
+
277
+ 70
278
+ 00:06:37,140 --> 00:06:43,760
279
+ determinant ู„ู„ู€ A ููŠ ุงู„ู…ุตููˆูุฉ BุŒ ูŠุจู‚ู‰ 1 ุนู„ู‰ 1
280
+
281
+ 71
282
+ 00:06:43,760 --> 00:06:48,840
283
+ ููŠ ุงู„ู…ุตููˆูุฉ B ุงู„ู„ูŠ ุทู„ุนุช ุงู„ู„ูŠ ู‡ูŠ 6ุŒ -4ุŒ
284
+
285
+ 72
286
+ 00:06:48,840 --> 00:06:57,020
287
+ 24ุŒ 7ุŒ -2ุŒ 7ุŒ -3ุŒ 1 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงุŒ ุทุจุนู‹ุง ู‡ุฐู‡ ู‡ูŠ ู†ูุณู‡ุง
288
+
289
+ 73
290
+ 00:07:04,230 --> 00:07:12,210
291
+ ุงู„ู‡ู…ูŠู†ุŒ 6ุŒ -4ุŒ 24ุŒ 7ุŒ -2ุŒ 7ุŒ -3ุŒ 1
292
+
293
+ 74
294
+ 00:07:12,210 --> 00:07:19,210
295
+ 7ุŒ -2ุŒ 1ุŒ -3ุŒ 1ุŒ ุทู„ุนุช ููŠ
296
+
297
+ 75
298
+ 00:07:19,210 --> 00:07:22,170
299
+ ุงู„ู†ุชูŠุฌุฉ ู‡ุฐู‡ุŒ ูˆุงู„ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ุฃูˆุฌุฏู†ุงู‡ุง ููŠ ุงู„ู…ุญุงุถุฑุฉ
300
+
301
+ 76
302
+ 00:07:22,170 --> 00:07:26,210
303
+ ุงู„ุณุงุจู‚ุฉ ุงู„ุงุซู†ูŠู† are the sameุŒ ูŠุจู‚ู‰ ู†ูุณ ุงู„ู†ุชูŠุฌุฉ
304
+
305
+ 77
306
+ 00:07:26,210 --> 00:07:30,970
307
+ ุจุงู„ุญุฑู ุงู„ูˆุนูŠุฏุŒ ุฅุฐุง ุณูˆุงุก ุงุณุชุฎุฏู…ุช ุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ููŠ
308
+
309
+ 78
310
+ 00:07:30,970 --> 00:07:34,870
311
+ ุฅูŠุฌุงุฏ ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ ุฃูˆ ุงุณุชุฎุฏู…ุช ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ููŠ
312
+
313
+ 79
314
+ 00:07:34,870 --> 00:07:41,840
315
+ ุฅูŠุฌุงุฏ ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ ุงู„ุงุซู†ูŠู† are the sameุŒ ุชู…ุงู…ุŸ ุทูŠุจ
316
+
317
+ 80
318
+ 00:07:41,840 --> 00:07:47,940
319
+ ุจุฏู†ุง ู†ูŠุฌูŠ ุงู„ุขู† ุจุนุฏ ู…ุง ุงู†ุชู‡ูŠู†ุง ู…ู† ุฐู„ูƒ ู†ุนุทูŠูƒูŠ ูƒู…ุงู†
320
+
321
+ 81
322
+ 00:07:47,940 --> 00:07:56,920
323
+ ู…ุซุงู„ุŒ ุงู„ู…ุซุงู„ ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠุŒ exampleุŒ find
324
+
325
+ 82
326
+ 00:07:56,920 --> 00:08:09,550
327
+ the inverse of ุงู„ู€ A ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ ุงู„ู€ A ุชุณุงูˆูŠ
328
+
329
+ 83
330
+ 00:08:09,550 --> 00:08:14,810
331
+ 2ุŒ 3ุŒ 1ุŒ 4 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
332
+
333
+ 84
334
+ 00:08:14,810 --> 00:08:18,210
335
+ solution
336
+
337
+ 85
338
+ 00:08:18,210 --> 00:08:31,970
339
+ ุทู„ุจุชูŠ
340
+
341
+ 86
342
+ 00:08:31,970 --> 00:08:42,480
343
+ ุงูŠุดุŸ ู‡ุงุฏูŠ 1 ุนู„ู‰ ุงู„ู€ determinant ููŠ ุงู„ู€ BุŒ ูˆุงุญุฏุฉ
344
+
345
+ 87
346
+ 00:08:42,480 --> 00:08:45,860
347
+ ูˆุงุญุฏุฉ ุจุณ ู†ุงุณ ู…ุง ุนูŠุด ุจุชู‚ูˆู„ ุชุงู†ูŠ ุนูŠุฏูŠ ุชุงู†ูŠุŒ ู‡ูŠู‚ูˆู„ู†ุง
348
+
349
+ 88
350
+ 00:08:45,860 --> 00:08:49,920
351
+ 1 ุนู„๏ฟฝ๏ฟฝ ุงู„ู€ determinant ููŠ BุŒ B ุงู„ู„ูŠ ู‡ูŠ ู‡ุงุฏูŠุŒ ู„ุฃู†
352
+
353
+ 89
354
+ 00:08:49,920 --> 00:08:54,580
355
+ ูƒุงุชุจ ุนู„ูŠู‡ุง TransposeุŒ ู„ุณู‡ ุจุฏูŠ ุฃุญูˆู„ู‡ุงุŒ ูุจูƒุชุจ ู‡ุงุฏูŠ
356
+
357
+ 90
358
+ 00:08:54,580 --> 00:09:02,110
359
+ ุชู…ุงู…ุŸ ุทูŠุจ ู†ุฌูŠ ูŠุงู„ุง ูƒู„ ูˆุงุญุฏ ูŠุชุนู„ู…ูƒ ุจุงู„ุงุณู…ุฉ ูˆุฅูŠุงูƒ
360
+
361
+ 91
362
+ 00:09:02,110 --> 00:09:05,650
363
+ ูˆุงุญุฏุฉุŒ ุชุนู„ู… ู‚ุฏุงู… ุงุณู…ู‡ุŒ ูˆุงุญุฏุฉ ุซุงู†ูŠุฉ ุฏูŠ ูŠุง ุฑุจ ุงู„ุนุงู„ู…ูŠู†ุŒ ูุถู„
364
+
365
+ 92
366
+ 00:09:05,650 --> 00:09:08,290
367
+ ูŠุงู„ุงุŒ ุชุนู„ู… ุงุณู…ูƒ ุจุงุณู… ุงู„ู…ุญุงุถุฑุฉ ู‡ุงุฏูŠ
368
+
369
+ 93
370
+ 00:09:12,560 --> 00:09:16,100
371
+ ุทูŠุจุŒ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ูŠุง ุจู†ุงุชุŒ ู‡ุฐู‡
372
+
373
+ 94
374
+ 00:09:16,100 --> 00:09:22,160
375
+ ุงู„ู…ุตููˆูุฉ 2ร—2 ูˆู„ูŠุณุช 3ร—3 ูƒู…ุง ูƒุงู†ุช ุงู„ู…ุตููˆูุฉ ู‚ุจู„ ู‚ู„ูŠู„ุŒ
376
+
377
+ 95
378
+ 00:09:22,160 --> 00:09:26,580
379
+ ุชู…ุงู…ุŸ ู„ูƒู† ุฃู†ุง ุจุฏูŠ ุฃุญุงูˆู„ ุฃุญู„ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ
380
+
381
+ 96
382
+ 00:09:26,580 --> 00:09:31,700
383
+ ุงุชุจุนุช ู‡ู†ุง ู‚ุจู„ ู‚ู„ูŠู„ุŒ ูุจุงุฌูŠ ุฃูˆู„ ุฎุทูˆุฉุŒ ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€
384
+
385
+ 97
386
+ 00:09:31,700 --> 00:09:33,020
387
+ Determinant
388
+
389
+ 98
390
+ 00:09:34,840 --> 00:09:40,620
391
+ ูŠุจู‚ู‰ ุงู„ู…ุญุฏุฏ 2ุŒ 3ุŒ 1ุŒ 4ุŒ 8 ู†ุงู‚ุต
392
+
393
+ 99
394
+ 00:09:40,620 --> 00:09:46,980
395
+ 3ุŒ ูˆูŠุณุงูˆูŠ ูƒู…ุŸ 5ุŒ ูŠุจู‚ู‰ ู‡ุฐุง ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ
396
+
397
+ 100
398
+ 00:09:46,980 --> 00:09:53,520
399
+ 5ุŒ ุจุนุฏ ู‡ูŠูƒ ุจุฏูŠ ุฃุฌูŠ ู„ูู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ูˆุงุณุชุจุฏู„ ูƒู„
400
+
401
+ 101
402
+ 00:09:53,520 --> 00:10:01,000
403
+ ุนู†ุตุฑ ุจุงู„ู€ cofactor ุงู„ู…ู†ุงุธุฑ ู„ู‡ุŒ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู„ุขู†
404
+
405
+ 102
406
+ 00:10:01,000 --> 00:10:04,420
407
+ ุจุฏูŠ ุฃุฌู‰ ู„ู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ูˆุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€
408
+
409
+ 103
410
+ 00:10:04,420 --> 00:10:10,460
411
+ cofactorุŒ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุดูŠู„ 2 ูˆุฃุดุทุจ ุตู ูˆุนู…ูˆุฏ ูˆุจู€
412
+
413
+ 104
414
+ 00:10:10,460 --> 00:10:15,580
415
+ ูŠุถู„ ู‚ุฏุงุด ุนู†ุฏู†ุงุŸ 4 ุจุณุŒ ูŠุจู‚ู‰ ุฌุงู‡ุฒ ุจุญุท 4 ุฒูŠ ู…ุง ู‡ูŠ
416
+
417
+ 105
418
+ 00:10:15,580 --> 00:10:20,000
419
+ ูˆุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช ุงู„ุนู†ุตุฑ ู‡ุฐุง ุฅุดุงุฑุชู‡ ุจุงู„ู…ูŠู†ุŸ
420
+
421
+ 106
422
+ 00:10:20,000 --> 00:10:24,560
423
+ ุจุงู„ู…ูˆุฌุจุŒ ุงู„ุขู† ุจุฏูŠ ุฃุฑูˆุญ ู„ู„ุนู†ุตุฑ ุจุนุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ 3
424
+
425
+ 107
426
+ 00:10:24,560 --> 00:10:29,440
427
+ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุดุทุจ ุตูู‡ ูˆุนู…ูˆุฏู‡ุŒ ุจูŠุถู„ ู‚ุฏุงุดุŸ 1 ุจุณุŒ ุญุณุจ
428
+
429
+ 108
430
+ 00:10:29,440 --> 00:10:38,060
431
+ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุชุŒ ุงู„ุฅุดุงุฑุฉ ู…ุงู„ู‡ุงุŸ ุจุงู„ุณุงู„ุจุŒ ุจุฏูŠ ุฃุดุทุจ ุตูู‡
432
+
433
+ 109
434
+ 00:10:38,060 --> 00:10:42,900
435
+ ูˆ ุนู…ูˆุฏู‡ุŒ ุจูŠุถู„ ู‚ุฏุงุดุŸ 3 ุจุณุŒ ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช
436
+
437
+ 110
438
+ 00:10:42,900 --> 00:10:50,060
439
+ ุงู„ุฅุดุงุฑุฉ ุจุงู„ุณุงู„ุจุŒ ุชู…ุงู…ุŸ ุจุงู„ุฏุงุฌู„ ุงู„ุนู†ุตุฑ 4ุŒ ุฑุดุท ุจุตูู‡
440
+
441
+ 111
442
+ 00:10:50,060 --> 00:10:57,320
443
+ ูˆ ุนู…ูˆุฏู‡ุŒ ุจูŠุถู„ู‡ ูƒุฏู‡ 2ุŒ ูˆุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช ู…ูˆุฌุจ
444
+
445
+ 112
446
+ 00:10:57,320 --> 00:11:03,560
447
+ ุชู…ุงู…ุŒ ุทูŠุจ ุฃู†ุง ุจุฏูŠ ุฃุฑูˆุญ ุจุฏูŠ ู„ุชุฑุงู†ุณุจูˆุฒ ุชุจุนู‡ุงุŒ ูŠุจู‚ู‰
448
+
449
+ 113
450
+ 00:11:03,560 --> 00:11:10,220
451
+ ุจูƒุชุจ ุนู„ูŠู‡ุง ุชุฑุงู†ุณุจูˆุฒ ูˆุจุฑูˆุญ ุจุณู…ูŠู‡ุง ุงู„ู…ุตูˆูุฉ B ุชู…ุงู…
452
+
453
+ 114
454
+ 00:11:10,220 --> 00:11:18,020
455
+ ู…ูŠู†ุŸ ู„ุชุฑุงู†ุณุจูˆุฒ ุชุจุนู‡ุง ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุตู ุงู„ุฃูˆู„ ุจุฏู‡
456
+
457
+ 115
458
+ 00:11:18,020 --> 00:11:23,020
459
+ ูŠุตูŠุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ุŒ ุงู„ุตู ุงู„ุซุงู†ูŠ ุจุฏู‡ ูŠุตูŠุฑ ุงู„ุนู…ูˆุฏ
460
+
461
+ 116
462
+ 00:11:23,020 --> 00:11:28,220
463
+ ุงู„ุซุงู†ูŠุŒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุŒ ุจุนุฏ ุฐู„ูƒ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฌูŠุจ
464
+
465
+ 117
466
+ 00:11:28,220 --> 00:11:35,360
467
+ ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ A ู…ู† ุงู„ุตูŠุบุฉ 1 ุนู„ู‰ ู…ุญุฏุฏ ุงู„ู€ A ููŠ
468
+
469
+ 118
470
+ 00:11:35,360 --> 00:11:50,140
471
+ ุงู„ู…ุตููˆูุฉ BุŒ ูŠุจู‚ู‰ 1 ุนู„ู‰ 5 ููŠ ุงู„ู…ุตููˆูุฉ BุŒ 4ุŒ -3ุŒ -1ุŒ 2ุŒ ูŠุง
472
+
473
+ 119
474
+ 00:11:50,140 --> 00:11:55,400
475
+ ุจุชุฎู„ูŠู‡ุง ุฒูŠ ู…ุง ู‡ูŠุŒ ูŠุง ุฅู…ุง ุจุชุฏุฎู„ูŠู‡ุง ุนู„ูŠู‡ุง ูˆุชู‚ูˆู„ูŠู„ูŠ ู‡ุฐู‡
476
+
477
+ 120
478
+ 00:11:55,400 --> 00:12:02,400
479
+ 4 ุฃุฎู…ุงุณุŒ ู†ุงู‚ุต 3 ุฃุฎู…ุงุณุŒ ูˆู‡ู†ุง ู†ุงู‚ุต ุฎู…ุณุŒ ูˆู‡ู†ุง
480
+
481
+ 121
482
+ 00:12:02,400 --> 00:12:08,820
483
+ ุฎู…ุณูŠู†ุŒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุŒ ุทูŠุจ
484
+
485
+ 122
486
+ 00:12:10,080 --> 00:12:14,680
487
+ ุจุตูˆุงุŒ ุตุจุฑูˆุง ุดูˆูŠุฉุŒ ู„ุณู‡ ู…ุง ุฎู„ุตุชุด ูŠุนู†ูŠุŒ ุงุญู†ุง ู‡ูŠูƒ ุฌูŠุจู†ุง
488
+
489
+ 123
490
+ 00:12:14,680 --> 00:12:19,800
491
+ ุงู„ู…ุนูƒูˆุณ ุชู…ุงู…ู‹ุง ู…ุฆุฉ ุจุงู„ู…ุฆุฉ ุจุฏูˆู† ุฃูŠ ู…ุดุงูƒู„ุŒ ุงู„ุณุคุงู„
492
+
493
+ 124
494
+ 00:12:19,800 --> 00:12:25,900
495
+ ุงู„ู„ูŠ ุจุฏู‡ ุฃุทุฑุญู‡ุŒ ุทุจ ุฎู„ูŠู†ูŠ ู†ุฏู‚ู‚ ุงู„ู†ุธุฑ ููŠ ุงู„ู…ุตููˆูุฉ B
496
+
497
+ 125
498
+ 00:12:25,900 --> 00:12:31,960
499
+ ู‡ุฐู‡ ูˆู†ุดูˆู ู†ู‚ุงุฑู†ู‡ุง ุจุงู„ู…ุตููˆูุฉ ุงู„ุฃุตู„ูŠุฉุŒ ู„ูˆ ุฌูŠุช ู„ูŠ
500
+
501
+ 126
502
+ 00:12:31,960 --> 00:12:37,590
503
+ ุงู„ู…ุตููˆูุฉ ุงู„ุฃุตู„ูŠุฉ ุจู„ุงุญุธ ุจุฏู„ุช ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ
504
+
505
+ 127
506
+ 00:12:37,590 --> 00:12:43,550
507
+ ู…ูƒุงู† ุจุนุถ ูˆุบูŠุฑุช ุฅุดุงุฑุงุช ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠุŒ ู…ุธุจูˆุท
508
+
509
+ 128
510
+ 00:12:43,550 --> 00:12:48,730
511
+ ูˆู„ุง ู„ุฃุŸ ุฅุฐุง ู…ู† ุงู„ุขู† ูุตุงุนุฏู‹ุง ูŠุง ุจู†ุงุชุŒ ุฅุฐุง ุจุฏูŠ ุฃุฌูŠุจ
512
+
513
+ 129
514
+ 00:12:48,730 --> 00:12:53,910
515
+ ุงู„ู…ุตููˆูุฉ B ู‡ุงุฏูŠุŒ ู…ุง ููŠ ุฏุงุนูŠ ุฃู† ุฃุฐู‡ุจ ูˆุฃุจุฏุฃ ุฃุญุณุจ ู…ู† ุฃูˆู„ ูˆุฌุฏูŠุฏ
516
+
517
+ 130
518
+ 00:12:53,910 --> 00:12:58,050
519
+ ูŠุจู‚ู‰ ุจุณ ุจุฏู„ูŠ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู…ูƒุงู† ุจุนุถ
520
+
521
+ 131
522
+ 00:12:58,050 --> 00:13:01,990
523
+ ู…ู„ูŠูˆู† ู…ุชุดูŠู†ุŒ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ุฎู„ูŠู‡ู… ุฒูŠ ู…ุง ู‡ู…
524
+
525
+ 132
526
+ 00:13:01,990 --> 00:13:05,790
527
+ ุจุณ ุญุทูŠู†ู‡ู… ุจุดุงุฑุชู‡ู… ุงู„ุณุงู„ุจุฉุŒ ุจูƒูˆู† ุฌูŠุจุชูŠ ุงู„ู…ุตููˆูุฉ BุŒ ุงูŠุด ุถุงูŠู„
528
+
529
+ 133
530
+ 00:13:05,790 --> 00:13:10,490
531
+ ุนู„ูŠู‡ุŸ ุถุงูŠู„ ุนู„ูŠู‡ ุฃุฌูŠุจ ู‚ุฏุงุด ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ A ูˆุฃุถุฑุจ
532
+
533
+ 134
534
+ 00:13:10,490 --> 00:13:13,630
535
+ 1 ุนู„ู‰ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ููŠ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉุŒ ุจูƒูˆู† ุฌูŠุจุชูŠ
536
+
537
+ 135
538
+ 00:13:13,630 --> 00:13:19,870
539
+ ุงู„ู…ุนูƒูˆุณุŒ ุจุณ ู‡ุฐู‡ ู„ู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู†ุธุงู…ู‡ุง 2 ููŠ 2
540
+
541
+ 136
542
+ 00:13:20,110 --> 00:13:26,330
543
+ ูˆุงู„ู„ูŠ ุงู„ู€ inverse ุชุจุนู‡ุง exist ู…ุด ู„ุฃูŠ ู…ุตููˆูุฉุŒ ูŠุจู‚ู‰
544
+
545
+ 137
546
+ 00:13:26,330 --> 00:13:32,270
547
+ ุดุฑุทูŠู†ุŒ ุงู„ู…ุนูƒูˆุณ ู‡ุฐุง ู…ุง ู„ู‡ ู…ูˆุฌูˆุฏุŸ ุงุซู†ูŠู†ุŒ ูˆูŠูƒูˆู† ู†ุธุงู…ู‡ุง
548
+
549
+ 138
550
+ 00:13:32,270 --> 00:13:38,990
551
+ 2 ููŠ 2ุŒ ู…ุงุดูŠุŸ ููŠ ุฃูŠ ุชุณุงุคู„ุŸ ุฎู„ุงุตู†ุง ุนุธู…ู†ุง
552
+
553
+ 139
554
+ 00:13:38,990 --> 00:13:47,050
555
+ ุฌุงุจู†ุง ุชุณุงุคู„ูƒุŸ ูƒู…ุง ุฃู†ุช ุณุคุงู„ุฉุŒ ุชูุถู„ูŠ ุฅุฐุง
556
+
557
+ 140
558
+ 00:13:47,050 --> 00:13:50,910
559
+ ุงู„ู€ determinant ุณุงู„ุจ ูˆุงู„ู„ู‡ ู…ูˆุฌุจ ูˆุงู„ู„ู‡ ูƒุณุฑ ุงูŠุด ู…ุง
560
+
561
+ 141
562
+ 00:13:50,910 --> 00:13:54,750
563
+ ูŠูƒูˆู†ุŒ ูŠูƒูˆู† ู„ุง ุฏุฎู„ุฉ ู„ู‡ ููŠ ุงู„ู…ูˆุถูˆุนุŒ 1 ุนู„ู‰ ุงู„ู…ุญุฏุฏ
564
+
565
+ 142
566
+ 00:13:54,750 --> 00:14:00,330
567
+ ุจุงุฌูŠ ูˆุงู„ู„ูŠ ุฌูˆุง ุฌูˆุง ุงู„ู…ุตููˆูุฉ ุฒูŠ ู…ุง ู‡ูŠุŒ ู„ุญุฏ ู‡ูŠูƒ ุจูŠูƒูˆู†
568
+
569
+ 143
570
+ 00:14:00,330 --> 00:14:06,230
571
+ ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ู€ sectionุŒ ูˆู„ุง ูŠูƒูˆู† ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ ุงู„ู„ูŠ
572
+
573
+ 144
574
+ 00:14:06,230 --> 00:14:13,810
575
+ ู‡ูŠ exercisesุŒ ุงู„ู„ูŠ ู‡ูˆ 12 ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ
576
+
577
+ 145
578
+ 00:14:13,810 --> 00:14:22,110
579
+ ุงู„ู„ูŠ ู‡ูŠ 1 ูˆ3 ูˆ5 ูˆ7 ูˆู…ู† 10 ู„ุบุงูŠุฉ
580
+
581
+ 146
582
+ 00:14:22,110 --> 00:14:29,650
583
+ 15ุŒ ูˆุจู†ุฑูˆุญ ู„ู€ additional exercisesุŒ additional
584
+
585
+ 147
586
+ 00:14:29,650 --> 00:14:37,490
587
+ exercises ูˆุจุฏู†ุง ุงู„ู…ุณุงุฆู„ ู…ู† 1 ู„ุบุงูŠุฉ 8ุŒ ู„ูƒู† ููŠ
588
+
589
+ 148
590
+ 00:14:37,490 --> 00:14:41,870
591
+ ุงู„ู…ู‚ุงุจู„ ููŠ ุจุนุถ ุงู„ุฃุณุฆู„ุฉ ุงู„ู†ุธุฑูŠุฉ ููŠ ุงู„ู€ Additional
592
+
593
+ 149
594
+ 00:14:41,870 --> 00:14:49,670
595
+ ExercisesุŒ ุจุฏูŠ ุฃุฑูˆุญ ุฃุญู„ ู‡ุฐู‡ ุงู„ุฃุณุฆู„ุฉ ุญุงู„ู‡ุง ูƒุงู„ุชุงู„ูŠ
596
+
597
+ 150
598
+ 00:15:05,220 --> 00:15:11,500
599
+ ู…ูŠู† ุงู„ู„ูŠ ุจุชุณุฃู„ ุงู„ุณุคุงู„ุŸ ูƒูŠูุŸ ูˆูŠู† ู…ุง ุจุฏูƒุŸ ู„ูˆ ูƒุงู† ุงู„ู€
600
+
601
+ 151
602
+ 00:15:11,500 --> 00:15:14,120
603
+ system ู…ุนูŠู†ุŒ ุนุฏุฏ ุงู„ู€ unknowns ููŠู‡ ุจูŠุณุงูˆูŠ ุนุฏุฏ
604
+
605
+ 152
606
+ 00:15:14,120 --> 00:15:18,040
607
+ ุงู„ู…ุนุงุฏู„ุงุชุŒ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู…ูŠุฉ ุจุงู„ู…ูŠุฉ ุฅู†ู‡ ุฎู„ุงู‡ุงุŸ ู„ุฃ
608
+
609
+ 153
610
+ 00:15:18,040 --> 00:15:21,180
611
+ ุทูŠุจุŒ
612
+
613
+ 154
614
+ 00:15:21,180 --> 00:15:23,840
615
+ ุนู„ู‰ ุฃูŠ ุญุงู„ุŒ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู€ exercises
616
+
617
+ 155
618
+ 00:15:30,340 --> 00:15:41,080
619
+ 12ุŒ page ุตูุญุฉ 145 ู„ุบุงูŠุฉ 1
620
+
621
+ 156
622
+ 00:15:41,080 --> 00:15:49,940
623
+ 46ุŒ ุงู„ุณุคุงู„ 12 ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠุŒ if ุงู„ู€ a
624
+
625
+ 157
626
+ 00:15:49,940 --> 00:15:54,500
627
+ is non-singular
628
+
629
+ 158
630
+ 00:15:56,270 --> 00:16:08,370
631
+ non-singular matrix show that ุจูŠู‘ู† ุฅู† ุงู„ู€ A
632
+
633
+ 159
634
+ 00:16:08,370 --> 00:16:09,470
635
+ transpose
636
+
637
+ 160
638
+ 00:16:15,830 --> 00:16:25,890
639
+ ุงู„ูƒู„ inverse ูŠุณุงูˆูŠ A inverse transpose ุจุงู„ุดูƒู„
640
+
641
+ 161
642
+ 00:16:25,890 --> 00:16:30,670
643
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงุŒ solution
644
+
645
+ 162
646
+ 00:16:39,690 --> 00:16:45,290
647
+ ุงู„ุขู† ุจุฏูŠ ุฃุญู„ูƒ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฃุณุฆู„ุฉ ุนู† ู†ุธุฑูŠุฉ ุนู„ู‰ ู‡ุฐุง
648
+
649
+ 163
650
+ 00:16:45,290 --> 00:16:49,510
651
+ ุงู„ู€ sectionุŒ ุงู„ุฃุณุฆู„ุฉ
652
+
653
+ 164
654
+ 00:16:49,510 --> 00:17:03,870
655
+ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ูƒู„ู‡ุง ููŠ ุงู„ูƒุชุงุจุŒ ู‡ูˆ ู†ูุณู‡
656
+
657
+ 165
658
+ 00:17:03,870 --> 00:17:09,850
659
+ ุจุงู„ุถุจุท ุชู…ุงู…ู‹ุง ูƒู…ุง ู„ูˆ ุฌุจุช ุงู„ู…ุนูƒูˆุณ ุฃูˆู„ู‹ุง ุซู… ุฌุจุช ุงู„ู…ุฏูˆุฑ
660
+
661
+ 166
662
+ 00:17:09,850 --> 00:17:15,730
663
+ ู…ู† ุงู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌุฉุŒ ูŠุจู‚ู‰ A inverse transpose ู‡ูˆ A
664
+
665
+ 167
666
+ 00:17:15,730 --> 00:17:21,170
667
+ transpose inverseุŒ ุชู…ุงู…ุŸ ุจู†ู‚ูˆู„ู‡ ุจุณูŠุทุฉุŒ ุงุญู†ุง ุนู†ุฏู†ุง ุงู„ู€
668
+
669
+ 168
670
+ 00:17:21,170 --> 00:17:29,310
671
+ A is non-singularุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุฃูŠุด
672
+
673
+ 201
674
+ 00:20:36,530 --> 00:20:40,490
675
+ inverse ุฃุธู†
676
+
677
+ 202
678
+ 00:20:40,490 --> 00:20:46,870
679
+ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ู…ุด ู‡ูŠ ุงู„ู„ูŠ ุจุฏู†ุง ู†ุซุจุชู‡ุŸ ุฎู„ุตู†ุง ุฃูŠุถุงุŒ ุตุนุจุŸ
680
+
681
+ 203
682
+ 00:20:47,520 --> 00:20:52,020
683
+ ูˆุงู„ู‡ุฌุฑ ุฃุฎุฐู†ุง ุชุนุฑูŠูู‡ non-singular ูŠุจู‚ู‰ ุงู„ู…ุนูƒูˆุณ ู…ูˆุฌูˆุฏ
684
+
685
+ 204
686
+ 00:20:52,020 --> 00:20:58,160
687
+ ุนุฑูู†ุง ุงู„ู…ุนูƒูˆุณ ุฃุฎุฐู†ุง ุงู„ู€Transpose ูˆุนู…ู„ู†ุง ุงู„ู…ุณุงูˆุงุฉ
688
+
689
+ 205
690
+ 00:20:58,160 --> 00:21:02,980
691
+ ู„ูŠุณ ุฅู„ุง ู„ูˆ ุทู„ุนุช ู…ุนุงู†ุง ุนู„ู‰ ุทูˆู„ ุงู„ู‚ุงุทุน ู…ุง ุนู†ุฏู†ุงุด ู…ุดูƒู„ุฉ
692
+
693
+ 206
694
+ 00:21:02,980 --> 00:21:09,700
695
+ ูŠุจู‚ู‰ ู‡ุฐุง ูƒุงู† ุณุคุงู„ 12 ุนู†ุฏูƒ ู…ู† ุงู„ูƒุชุงุจุŒ ู†ู†ุชู‚ู„ ู„ุณุคุงู„ 13
696
+
697
+ 207
698
+ 00:21:09,700 --> 00:21:18,770
699
+ ุงู„ู„ูŠ ูˆุฑุงู‡ ู…ุจุงุดุฑุฉุŒ ู‡ุฐุง ุณุคุงู„ 13 ุซู„ุงุซ ุนุดุฑุฉุŒ ุจูŠู‚ูˆู„ ุงูุชุฑุถ ุฃู†
700
+
701
+ 208
702
+ 00:21:18,770 --> 00:21:25,550
703
+ ุงู„ู€A ูˆุงู„ู€B ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู†
704
+
705
+ 209
706
+ 00:21:25,550 --> 00:21:26,290
707
+ ๏ฟฝ๏ฟฝูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู†
708
+
709
+ 210
710
+ 00:21:26,290 --> 00:21:27,250
711
+ ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู†
712
+
713
+ 211
714
+ 00:21:27,250 --> 00:21:28,650
715
+ ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู†
716
+
717
+ 212
718
+ 00:21:28,650 --> 00:21:28,890
719
+ ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู†
720
+
721
+ 213
722
+ 00:21:28,890 --> 00:21:37,850
723
+ ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠูƒูˆู† ุจูŠ
724
+
725
+ 214
726
+ 00:21:37,990 --> 00:21:44,850
727
+ the same order ู…ู† ู†ูุณ ุงู„ุฑุชุจุฉ ุฃูˆ ู†ูุณ ุงู„ู†ุธุงู…
728
+
729
+ 215
730
+ 00:21:44,850 --> 00:21:54,370
731
+ ุจูŠู‚ูˆู„ ู„ู€F ุฅุฐุง ูƒุงู† ุงู„ู€C ุฅุฐุง ูƒุงู† ุงู„ู…ุตููˆูุฉ C ุจุฏู‡ุง
732
+
733
+ 216
734
+ 00:21:54,370 --> 00:22:04,540
735
+ ุชุณุงูˆู‰ุŒ ุญุตู„ ุงู„ุถุฑุจ FุŒ show thatุŒ ุจูŠู‘ู† ู„ูŠ ุฃู†
736
+
737
+ 217
738
+ 00:22:04,540 --> 00:22:11,920
739
+ ุงู„ู€C inverse ุจุฏู‡ุง ุชุณุงูˆูŠ B inverse ููŠ ุงู„ู€A inverse
740
+
741
+ 218
742
+ 00:22:11,920 --> 00:22:24,480
743
+ ู†ุฑุฌุน
744
+
745
+ 219
746
+ 00:22:24,480 --> 00:22:30,110
747
+ ู„ุณุคุงู„ู†ุง ู…ุฑุฉ ุซุงู†ูŠุฉุŒ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู† ูƒู„ ู…ู† A ูˆB
748
+
749
+ 220
750
+ 00:22:30,110 --> 00:22:34,490
751
+ non singular matrices ูŠุจู‚ู‰ ู…ุญุฏุฏ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ู…ุง ู„ู‡ุŸ
752
+
753
+ 221
754
+ 00:22:34,490 --> 00:22:40,950
755
+ ู„ุง ูŠุณุงูˆูŠ ุตูุฑุŒ ูˆุชู†ุชู‡ูŠ ู…ู† ู†ูุณ ุงู„ูˆุฑู‚ุฉุŒ ู‚ุงู„ ู„ูˆ ูƒุงู† ุงู„ู€C
756
+
757
+ 222
758
+ 00:22:40,950 --> 00:22:48,030
759
+ ุญุตู„ ู„ุถุฑุจ A ููŠ BุŒ ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„ู…ุนูƒูˆุณ ุชุจุน ุงู„ู…ุตููˆูุฉ C
760
+
761
+ 223
762
+ 00:22:48,030 --> 00:22:53,730
763
+ ู‡ูˆ ุงู„ู€B inverse ููŠ ุงู„ู€A inverseุŒ ุทุจ ู‡ูˆ ู‚ุงู„ ู‡ู„ ุงู„ู€A
764
+
765
+ 224
766
+ 00:22:53,730 --> 00:23:01,550
767
+ ูˆB ู„ู‡ุง ู…ุนูƒูˆุณุŒ ู…ุง ู‚ุงู„ ู„ูŠุŒ ุฃู†ุง ุจุฏูŠ ุฃุซุจุช ุฃู† ู„ู‡ุง ู…ุนูƒูˆุณ
768
+
769
+ 225
770
+ 00:23:01,550 --> 00:23:05,670
771
+ ูˆุจุนุฏูŠู† ุฃุฑูˆุญ ุฃุซุจุช ุฃู† ุงู„ู…ุนูƒูˆุณ ู‡ุฐุง ุจูŠุณุงูˆูŠ ุจุนุถู‡ุŒ ุตุญ ูˆู„ุง
772
+
773
+ 226
774
+ 00:23:05,670 --> 00:23:12,650
775
+ ู„ุงุŒ ุจู‚ูˆู„ู‡ ุจุณูŠุทุฉ ุฌุฏุงุŒ ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุฃุฌูŠ ู„ู„ู€solution ุจุฏูŠ
776
+
777
+ 227
778
+ 00:23:12,650 --> 00:23:22,710
779
+ ุฃุฌูŠ ู„ู„ู…ุนุทูŠุงุชุŒ ุงู„ู€A ูˆุงู„ู€B are non singular ู‡ุฐุง
780
+
781
+ 228
782
+ 00:23:22,710 --> 00:23:28,580
783
+ ุฅูŠุด ู…ุนู†ุงู‡ ูŠุง ุจู†ุงุช non singularุŸ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€
784
+
785
+ 229
786
+ 00:23:28,580 --> 00:23:34,780
787
+ determinant ู„ู„ู€A ู„ุง ูŠุณุงูˆูŠ ุตูุฑุŒ ูˆุงู„ู€determinant
788
+
789
+ 230
790
+ 00:23:34,780 --> 00:23:40,640
791
+ ู„ู„ู€B ู„ุง ูŠุณุงูˆูŠ ุตูุฑุŒ ุตุญุŸ
792
+
793
+ 231
794
+ 00:23:41,180 --> 00:23:47,260
795
+ ุทุจ ู„ูˆ ุถุฑุจุช ุงุซู†ูŠู† ููŠ ุจุนุถุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูˆ ูŠุนุทูŠู†ุง ุฃู† ุงู„ู€
796
+
797
+ 232
798
+ 00:23:47,260 --> 00:23:53,400
799
+ determinant ู„ู„ู€A ููŠ ุงู„ู€determinant ู„ู„ู€B ู…ุง ู„ู‡ุŸ ู„ุง
800
+
801
+ 233
802
+ 00:23:53,400 --> 00:24:01,170
803
+ ูŠุณุงูˆูŠ ุตูุฑุŒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู†ู‡ ุญุงุตู„ ุงู„ุถุฑุจุŒ ู‡ุฐุง ุงู„ู€
804
+
805
+ 234
806
+ 00:24:01,170 --> 00:24:05,170
807
+ determinant ู„ู„ู€A ููŠ ุงู„ู€determinant ู„ู„ู€B ุงู„ู„ูŠ ุจุฏูˆ
808
+
809
+ 235
810
+ 00:24:05,170 --> 00:24:10,550
811
+ ูŠุณุงูˆูŠ ุงู„ู€determinant ู„ู„ู€A ููŠ B ู„ุง ูŠุณุงูˆูŠ ุตูุฑ
812
+
813
+ 236
814
+ 00:24:10,550 --> 00:24:18,090
815
+ ุชู…ุงู…ุŸ ู‡ุฐุง ู…ุนู†ุงู‡ ุฅูŠุดุŸ ู…ุนู†ุงู‡ ุฃู† ุงู„ู€A ููŠ B is non
816
+
817
+ 237
818
+ 00:24:18,090 --> 00:24:28,870
819
+ singularุŒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€A B inverse exist
820
+
821
+ 238
822
+ 00:24:31,040 --> 00:24:37,780
823
+ ูŠุจู‚ู‰ ุงู„ู…ุนูƒูˆุณ ู‡ุฐุง ู…ุง ู„ู‡ุŸ ู…ูˆุฌูˆุฏุŒ ุทูŠุจ ู‡ูˆ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู† ุงู„ู€
824
+
825
+ 239
826
+ 00:24:37,780 --> 00:24:43,040
827
+ C ุชุณุงูˆูŠ ุงู„ู€A ููŠ ุงู„ู€BุŒ ุจุฏูƒ ุชุซุจุช ู„ูŠ ุฃู† ู‡ุฐุง ุงู„ู…ุนูƒูˆุณ
828
+
829
+ 240
830
+ 00:24:43,040 --> 00:24:47,820
831
+ ูŠุณุงูˆูŠ B inverse A inverseุŒ ูŠุนู†ูŠ ูƒุฃู†ู‡ ุฃู†ุง ุจุฏุฃุช ุฃุซุจุช
832
+
833
+ 241
834
+ 00:24:47,820 --> 00:24:52,640
835
+ ุฃู† ุงู„ู€A ููŠ B ุงู„ูƒู„ inverse ูŠุณุงูˆูŠ B inverseุŒ ูŠุนู†ูŠ ูƒุฃู†ู‡
836
+
837
+ 242
838
+ 00:24:52,640 --> 00:24:57,620
839
+ ุจู†ุบู„ุจุŒ ูˆู†ุถุนู‡ู… ุฒูŠ ุงู„ู€transpose ุจุงู„ุธุจุทุŒ ู…ุด ุญุตู„ ุถุฑุจ A
840
+
841
+ 243
842
+ 00:24:57,620 --> 00:25:00,880
843
+ ููŠ B ุงู„ูƒู„ transposeุŒ ุฌูŠู†ุง ู†ู‚ูˆู„ B transpose ููŠ ุงู„ู€A
844
+
845
+ 244
846
+ 00:25:00,880 --> 00:25:05,080
847
+ transposeุŒ ูŠุจู‚ู‰ ู‡ู†ุง ู†ูุณ ุงู„ููƒุฑุฉุŒ ูƒู„ ูˆุงุญุฏ ุนู„ู…ุช ุนู„ู‰ ุงุณู…ู‡
848
+
849
+ 245
850
+ 00:25:05,080 --> 00:25:13,600
851
+ ู‡ู†ุงุŒ ุจู†ุงุฏุฑ ูƒู„ู‡ ุชู…ุงู…ุŒ ุทูŠุจ ู†ุฑุฌุน ุงู„ุขู†ุŒ ู†ุฌูŠ ู†ุดูˆู ุตุญุฉ ู‡ุฐุง
852
+
853
+ 246
854
+ 00:25:13,600 --> 00:25:23,840
855
+ ุงู„ูƒู„ุงู…ุŒ ู„ูˆ ุฃู†ุง ุฌูŠุช ุฃุฎุฏุช ุงู„ู€A, B ููŠ ุงู„ู€A, B ุฃูˆ A ููŠ ุฏู‡
856
+
857
+ 247
858
+ 00:25:23,840 --> 00:25:30,800
859
+ ููŠ ุฃุฎุฐู‡ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€B inverse A inverse ุงู„ู„ูŠ ู‚ุงูŠู„
860
+
861
+ 248
862
+ 00:25:30,800 --> 00:25:38,250
863
+ ุนู„ูŠู‡ุŒ ู‡ุฐุงุŒ ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูˆ ูŠุณุงูˆูŠุŒ ุจุฏูŠ ุฃุฌูŠ ู„ุฎุงุตูŠุฉ ุงู„ู€
864
+
865
+ 249
866
+ 00:25:38,250 --> 00:25:43,110
867
+ associativity ุนู„ู‰ ุงู„ู…ุตููˆูุงุชุŒ ุฎุงุตูŠุฉ ุงู„ุฏู…ุฌุŒ ุฅุฐุง ู‡ุฐู‡
868
+
869
+ 250
870
+ 00:25:43,110 --> 00:25:50,450
871
+ ุชุณุงูˆูŠ A ููŠ ุงู„ู€B ููŠ B inverse A inverseุŒ ู…ุธุจูˆุทุŸ ู‡ุฐู‡ ุงู„ู„ูŠ
872
+
873
+ 251
874
+ 00:25:50,450 --> 00:25:56,050
875
+ ุจูŠู† ู‚ูˆุณูŠู†ุŒ ู…ูŠู† ู‡ูŠุŸ ุงู„ู€identity matrixุŒ ูŠุจู‚ู‰ ุงู„ู€A ููŠ
876
+
877
+ 252
878
+ 00:25:56,050 --> 00:26:00,830
879
+ ุงู„ู€identity matrix ููŠ ุงู„ู€A inverseุŒ ุงู„ู€identity
880
+
881
+ 253
882
+ 00:26:00,830 --> 00:26:04,990
883
+ matrix ู„ู…ุง ุชุถุฑุจูŠู‡ุง ููŠ ุฃูŠ ู…ุตููˆูุฉุŒ ุดูˆ ุจูŠุทู„ุนุŸ ู†ูุณ
884
+
885
+ 254
886
+ 00:26:04,990 --> 00:26:08,870
887
+ ุงู„ู…ุตููˆูุฉุŒ the same matrixุŒ ูŠุจู‚ู‰ ุงู„ู€A ููŠ ุงู„ู€A inverse
888
+
889
+ 255
890
+ 00:26:08,870 --> 00:26:16,150
891
+ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€main ุงู„ู…ุตููˆูุฉ AุŒ ุทูŠุจุŒ ูˆุงู„ู„ูˆ ุฃุฎุฏุช ุงู„ู€B
892
+
893
+ 256
894
+ 00:26:16,150 --> 00:26:21,770
895
+ inverse A inverse ุถุฑุจุช ููŠ ุงู„ู€ABุŒ ูŠุง ู…ุง ุฃู†ุง ุดูˆ ุจุฏูŠ
896
+
897
+ 257
898
+ 00:26:21,770 --> 00:26:26,750
899
+ ูŠุนุทูŠู†ูŠุŸ ุจุฏูŠ ุฃุณุชุฎุฏู… ุฎุงุตูŠุฉ ุงู„ู€associativityุŒ ูŠุจู‚ู‰ B
900
+
901
+ 258
902
+ 00:26:26,750 --> 00:26:36,240
903
+ inverse A inverse ABุŒ ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ ููŠ ุงู„ู…ุตููˆูุฉ ุงู„ู€
904
+
905
+ 259
906
+ 00:26:36,240 --> 00:26:43,480
907
+ identity matrixุŒ ูŠุจู‚ู‰ B inverse IBุŒ ูŠุนู†ูŠ B inverse B
908
+
909
+ 260
910
+ 00:26:43,480 --> 00:26:49,180
911
+ ูŠุนู†ูŠ ุงู„ู€identity matrixุŒ ุฅุฐุง ู…ู† ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ุŒ ุฅูŠุด
912
+
913
+ 261
914
+ 00:26:49,180 --> 00:26:56,520
915
+ ุจู†ุณุชู†ุชุฌ ูŠุง ุจู†ุงุชุŸ ุจู†ุณุชู†ุชุฌ ุฃู† ุงู„ู€AB ููŠ ุงู„ู€B inverse
916
+
917
+ 262
918
+ 00:26:56,520 --> 00:27:03,020
919
+ A inverse ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€B inverse A inverseุŒ ููŠ
920
+
921
+ 263
922
+ 00:27:03,020 --> 00:27:10,890
923
+ ุงู„ู€AB ููŠ ุงู„ู€AB ุจุฏูˆ ูŠุณุงูˆูŠ 100ุŒ ูŠุจู‚ู‰ ู…ุนู†ุงู‡ ูƒู„ ูˆุงุญุฏุฉ
924
+
925
+ 264
926
+ 00:27:10,890 --> 00:27:17,950
927
+ ููŠู‡ู… ู…ุนูƒูˆุณ ู„ู„ุซุงู†ูŠุฉุŒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€B inverse A
928
+
929
+ 265
930
+ 00:27:17,950 --> 00:27:31,150
931
+ inverse is the inverse of A ููŠ BุŒ ุตุญ ูˆู„ุง ู„ุฃุŸ but the
932
+
933
+ 266
934
+ 00:27:31,150 --> 00:27:35,010
935
+ inverse of
936
+
937
+ 267
938
+ 00:27:37,100 --> 00:27:48,620
939
+ A B is denoted by A B ุงู„ูƒู„ inverse
940
+
941
+ 268
942
+ 00:27:51,920 --> 00:27:55,860
943
+ ูˆู‚ุจู„ ุดูˆูŠุฉ ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุตูุญุฉุŒ ุฃุซุจุชู†ุง ู†ุธุฑูŠุฉ ุฃู† ุงู„ู€
944
+
945
+ 269
946
+ 00:27:55,860 --> 00:28:02,500
947
+ inverse ูŠูƒูˆู† ูˆุงุญุฏุงุŒ ุฅุฐุง ู‡ุฐุง ู‡ูˆ ุงู„ุซุงู†ูŠุŒ ูŠุจู‚ู‰ but the
948
+
949
+ 270
950
+ 00:28:02,500 --> 00:28:09,360
951
+ inverse of A B is denoted by ูƒุฐุงุŒ ูˆุงู„ู€inverse
952
+
953
+ 271
954
+ 00:28:09,360 --> 00:28:12,740
955
+ of
956
+
957
+ 272
958
+ 00:28:12,740 --> 00:28:17,180
959
+ a matrix is
960
+
961
+ 273
962
+ 00:28:18,080 --> 00:28:23,940
963
+ ูŠูƒูˆู† ู‡ู†ุงูƒ ูŠูƒูˆู† ูˆุญูŠุฏุงุŒ ู‡ุฐุง ุจุฏูˆ ูŠุนุทูŠู†ุง ุฃู† ุงู„ู€A B
964
+
965
+ 274
966
+ 00:28:23,940 --> 00:28:29,720
967
+ ุงู„ูƒู„ inverse ุจุฏูˆ ูŠุณุงูˆูŠ B inverse A inverse
968
+
969
+ 275
970
+ 00:28:33,320 --> 00:28:38,080
971
+ ู‡ุชู„ุงุญุธูŠู† ู„ู…ุง ุชูƒูˆู† ู‡ุฐู‡ ุงู„ู€C ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู€ABุŒ ู‚ุงู„ ู„ูŠ
972
+
973
+ 276
974
+ 00:28:38,080 --> 00:28:42,660
975
+ ุฃุซุจุช ู„ูŠ ุฃู† ุงู„ู€C inverse ุชุณุงูˆูŠ ูƒุฐุงุŒ ู…ุธุจูˆุทุŸ ุงู„ุญูŠู†
976
+
977
+ 277
978
+ 00:28:42,660 --> 00:28:47,440
979
+ ุงู„ู€C inverse ุจุฏู‡ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ AB inverseุŒ ูŠุจู‚ู‰ ู‡ุฐุง
980
+
981
+ 278
982
+ 00:28:47,440 --> 00:28:53,960
983
+ ุจุฏูˆ ูŠุนุทูŠู†ุง ุฃู† ุงู„ู€C inverse ุจุฏู‡ุง ุชุณุงูˆูŠ B inverse A
984
+
985
+ 279
986
+ 00:28:53,960 --> 00:28:59,350
987
+ inverseุŒ ุนุธู… ู…ุง ู‡ูˆ ุงู„ู…ุทู„ูˆุจุŒ ุฅุฐุง ู…ู† ุงู„ุขู† ูุตุงุนุฏุง ู‡ุฐุง
988
+
989
+ 280
990
+ 00:28:59,350 --> 00:29:03,650
991
+ ุงู„ุณุคุงู„ุŒ ู„ูŠุด ุจูŠู‚ูˆู„ ู„ูŠู‡ุŸ ุจูŠู‚ูˆู„ ู„ูˆ ุนู†ุฏูŠ ุญุงุตู„ ุถุฑุจ
992
+
993
+ 281
994
+ 00:29:03,650 --> 00:29:09,370
995
+ ู…ุตููˆูุชูŠู† A ูˆBุŒ ูˆุญุงุตู„ ุถุฑุจู‡ู… ุงู„ูƒู„ inverse ุชุณุงูˆูŠ inverse
996
+
997
+ 282
998
+ 00:29:09,370 --> 00:29:13,490
999
+ ุงู„ุซุงู†ูŠุฉ ููŠ inverse ุงู„ุฃูˆู„ู‰ุŒ ุจุฏู†ุง ู†ุฌูŠุจู‡ุง ุฒูŠ
1000
+
1001
+ 283
1002
+ 00:29:13,490 --> 00:29:16,330
1003
+ ุงู„ู€transpose ุจุงู„ุธุจุท ุชู…ุงู…ุง
1004
+
1005
+ 284
1006
+ 00:29:31,740 --> 00:29:37,780
1007
+ ู‡ุฐุง ูƒุงู† ุณุคุงู„ 13 ู…ู† ุงู„ูƒุชุงุจุŒ ู†ู†ุชู‚ู„ ู„ุณุคุงู„ 14 ุจุฑุถู‡ ู†ุธุฑูŠ
1008
+
1009
+ 285
1010
+ 00:29:37,780 --> 00:29:50,280
1011
+ ุณุคุงู„ 14 ุจูŠู‚ูˆู„ ู„ูŠุŒ let ุงู„ู€A be a non singular
1012
+
1013
+ 286
1014
+ 00:29:50,280 --> 00:30:00,470
1015
+ matrixุŒ non singular matrixุŒ show thatุŒ ุฃู†
1016
+
1017
+ 287
1018
+ 00:30:00,470 --> 00:30:07,910
1019
+ ุงู„ู€A Inverse Inverse ุจุฏูˆ ูŠุนุทูŠู†ูŠ ุงู„ู€A
1020
+
1021
+ 288
1022
+ 00:30:19,610 --> 00:30:23,630
1023
+ ู†ูุณ ุงู„ุชูƒุชูŠูƒ ุงู„ู„ูŠ ุงุชุจุน ููŠ ุงู„ุณุคุงู„ูŠู† ุงู„ุณุงุจู‚ูŠู†ุŒ ุจู…ุณูƒ
1024
+
1025
+ 289
1026
+ 00:30:23,630 --> 00:30:27,590
1027
+ ุงู„ู…ุนู„ูˆู…ุฉุŒ ุจุญุงูˆู„ ุฃุณุชููŠุฏ ู…ู†ู‡ุงุŒ ู…ุด ุจูŠุนุทูŠู†ุง ุงู„ู…ุนู„ูˆู…ุฉ
1028
+
1029
+ 290
1030
+ 00:30:27,590 --> 00:30:31,270
1031
+ ุจู„ุงุด ุจุณ ู†ุชูุฑุฌ ุนู„ูŠู‡ุงุŒ ู„ุฃ ู„ุฃ ู„ุฃุŒ ุจุญุงูˆู„ ู†ุณุชููŠุฏ ู…ู†ู‡ุงุŒ ุฅุฐุง
1032
+
1033
+ 291
1034
+ 00:30:31,270 --> 00:30:39,890
1035
+ ุงุญู†ุง ุจุฏู†ุง ู†ุฌูŠ ู‡ู†ุง ุงู„ุขู†ุŒ let ุงู„ู€A be a non singular
1036
+
1037
+ 292
1038
+ 00:30:39,890 --> 00:30:47,000
1039
+ matrixุŒ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ูŠุง ุฌู…ุงุนุฉ ุฃู† ุงู„ู€determinant
1040
+
1041
+ 293
1042
+ 00:30:47,000 --> 00:30:54,740
1043
+ ู„ู„ู€A ู„ุง ูŠุณุงูˆูŠ 0ุŒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€A inverse exists
1044
+
1045
+ 294
1046
+ 00:30:54,740 --> 00:31:01,120
1047
+ ูŠุนู†ูŠ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€A ููŠ ุงู„ู€A inverse ุณูŠูƒูˆู† ู…ุตููˆูุฉ
1048
+
1049
+ 295
1050
+ 00:31:01,120 --> 00:31:08,420
1051
+ ุงู„ูˆุญุฏุฉุŒ ุชู…ุงู…ุŸ ุญุชู‰ ู„ุฃู† ูƒู„ุงู… ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ูƒุฃู†ู‡
1052
+
1053
+ 296
1054
+ 00:31:08,420 --> 00:31:12,720
1055
+ ู„ูŠุณ ู„ู‡ ุนู„ุงู‚ุฉ ุจุงู„ู…ุทู„ูˆุจุŒ ุงู„ู…ุทู„ูˆุจ ุฏูŠ ุฃุซุจุช ุฃู† ู…ุนูƒูˆุณ
1056
+
1057
+ 297
1058
+ 00:31:12,720 --> 00:31:18,910
1059
+ ุงู„ู…ุนูƒูˆุณ ูŠุนุทูŠู†ุง ุงู„ุฃุตู„ุŒ ุตุญุŸ ูŠุนู†ูŠ ู„ูˆ ุฌูŠุจุช ู…ุนูƒูˆุณ ู…ุตููˆูุฉุŒ ูˆ
1060
+
1061
+ 298
1062
+ 00:31:18,910 --> 00:31:23,030
1063
+ ุฑูˆุญุช ุฌูŠุจุช ู„ู‡ุง ูƒู…ุงู† ู…ุนูƒูˆุณ ู„ู„ู…ุนูƒูˆุณุŒ ุจุฏูŠู‡ ูŠุทู„ุน ุงู„ู…ุตููˆูุฉ
1064
+
1065
+ 299
1066
+ 00:31:23,030 --> 00:31:27,570
1067
+ ุงู„ุฃุตู„ูŠุฉุŒ ู…ุธุจูˆุทุŸ ู‡ูˆ ุงู„ู„ูŠ ุจูŠู‚ูˆู„ ู„ูŠ ุฃุซุจุช ุฃู† A inverse
1068
+
1069
+ 300
1070
+ 00:31:27,570 --> 00:31:32,610
1071
+ inverse ุจุฏูˆ ูŠุณุงูˆูŠ ู…ู† ุงู„ู€AุŒ ุฅุฐุง ุฃู†ุง ู…ุดุงู† ุฃุฌูŠุจ ู„ู‡ ุงู„ู€
1072
+
1073
+ 301
1074
+ 00:31:32,610 --> 00:31:36,110
1075
+ inverse ุจุฏูŠ ุฃุฑูˆุญ ุขุฎุฐ inverse ู„ู…ูŠู†ุŸ ู„ู„ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ุฃู†ุง
1076
+
1077
+ 302
1078
+ 00:31:36,110 --> 00:31:44,390
1079
+ ุชูˆุตู„ุช ู„ู‡ุงุŒ ุชู…ุงู…ุŒ ูุจุฌูŠ ุจู‚ูˆู„ ู„ู‡ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€A ููŠ
1080
+
1081
+ 303
1082
+ 00:31:44,390 --> 00:31:50,510
1083
+ ุงู„ู€A inverse ุงู„ูƒู„ inverse ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€I inverse
1084
+
1085
+ 304
1086
+ 00:31:53,570 --> 00:32:00,070
1087
+ ุณุคุงู„ ูƒู…ุงู† ู…ุฑุฉุŒ ู…ุนูƒูˆุณ ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ ู…ูŠู† ู‡ูŠุŸ ู†ูุณ
1088
+
1089
+ 305
1090
+ 00:32:00,070 --> 00:32:05,870
1091
+ ุงู„ูˆุญุฏุฉ ู†ูุณู‡ุงุŒ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง ู‡ุฐุง ุจุฏูˆ
1092
+
1093
+ 306
1094
+ 00:32:05,870 --> 00:32:11,330
1095
+ ูŠุนุทูŠูƒ ุจู†ุงุก ุนู„ู‰ ุงู„ุฎูˆุงุต ุชุจุน ู…ูŠู†ุŸ ุชุจุน ุงู„ู€inverse
1096
+
1097
+ 307
1098
+ 00:32:11,330 --> 00:32:14,970
1099
+ ุงู„ู„ูŠ ุฃุซุจุชู†ุงู‡ุง ู‡ู†ุงุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€inverse ู„ูŠุด ุจุฏู†ุง
1100
+
1101
+ 308
1102
+ 00:32:14,970 --> 00:32:19,850
1103
+ ู†ุณูˆูŠู‡ุŸ ุจุฏู†ุง ู†ุฌูŠุจ ูˆุถุนู‡ุงุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุนุทูŠูƒ A inverse
1104
+
1105
+ 309
1106
+ 00:32:19,850 --> 00:32:25,050
1107
+ inverse ููŠ ุงู„ู€A inverse ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€identity
1108
+
1109
+ 310
1110
+ 00:32:25,050 --> 00:32:30,190
1111
+ matrixุŒ ู‡ุฐุง ุฌุจุชู‡ ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ุณุคุงู„ ูˆูŠู†ุŸ ู…ู† ุงู„ุณุคุงู„
1112
+
1113
+ 311
1114
+ 00:32:30,190 --> 00:32:40,390
1115
+ 13ุŒ ูŠุจู‚ู‰ ู‡ุฐุง from exercises 13ุŒ ุทูŠุจ ูƒูˆูŠุณ ุฅูŠุด ุฑุฃูŠูƒุŸ
1116
+
1117
+ 312
1118
+ 00:32:40,390 --> 00:32:48,290
1119
+ ุฃู†ุง ุจุฏูŠ ู‡ุฐู‡ุŒ ุตุญุŸ ุทุจ ุฎู„ูŠู†ูŠ ุฃุถุฑุจ ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ
1120
+
1121
+ 313
1122
+ 00:32:48,290 --> 00:32:53,850
1123
+ ุงู„ู…ุตููˆูุฉ AุŒ ู…ุด ุฃู†ุง ุฃุฎู„ูŠู‡ุง ุฏูŠ ู„ูˆุญุฏู‡ุงุŒ ุฅุฐุง ู„ูˆ ุฌู‡ุฉ ุถุฑุจุช
1124
+
1125
+ 314
1126
+ 00:32:53,850 --> 00:33:00,070
1127
+ ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ ุงู„ู…ุตููˆูุฉ AุŒ ุจุตูŠุฑ A inverse inverse
1128
+
1129
+ 315
1130
+ 00:33:00,070 --> 00:33:06,290
1131
+ A inverse ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู…ุตููˆูุฉ AุŒ ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู€identity
1132
+
1133
+ 316
1134
+ 00:33:06,290 --> 00:33:12,740
1135
+ matrix ููŠ ุงู„ู…ุตููˆูุฉ AุŒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€A inverse
1136
+
1137
+ 317
1138
+ 00:33:12,740 --> 00:33:19,740
1139
+ inverse ู‡ุฏู ู‡ุฏู ู…ู† ุจุงู„ู€identity matrix ุจุฏูˆ ูŠุณุงูˆูŠ
1140
+
1141
+ 318
1142
+ 00:33:19,740 --> 00:33:25,220
1143
+ ุงู„ู…ุตููˆูุฉ AุŒ ุทูŠุจ ุงู„ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ ู„ู…ุง ู†ุถุฑุจู‡ุง ููŠ ุฃูŠ
1144
+
1145
+ 319
1146
+ 00:33:25,220 --> 00:33:30,800
1147
+ ู…ุตููˆูุฉ ุจุชุนุทูŠู†ูŠ ู…ูŠู†ุŸ ู†ูุณ ุงู„ู…ุตููˆูุฉุŒ ูŠุจู‚ู‰ ุงู„ู€A inverse
1148
+
1149
+ 320
1150
+ 00:33:30,800 --> 00:33:38,940
1151
+ inverse ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ู…ุตููˆูุฉ A ู†ูุณู‡ุงุŒ ู…ุธุจูˆุท ู‡ูƒุฐุงุŸ ูŠุจู‚ู‰
1152
+
1153
+ 321
1154
+ 00:33:38,940 --> 00:33:44,420
1155
+ ู…ุง ุณูˆูŠู†ุง ุดูŠุŒ ุฎู„ุตู†ุงุŒ ูŠุจู‚ู‰ ุฃุซุจุชู†ุง ุฃู† ู…ุนูƒูˆุณ ู„ู…ุนูƒูˆุณ
1156
+
1157
+ 322
1158
+ 00:33:44,420 --> 00:33:50,620
1159
+ ุงู„ู…ุตููˆูุฉ ุจูŠุนุทูŠู†ุง ุงู„ู…ุตููˆูุฉ ู†ูุณู‡ุงุŒ ู†ุฃุฎุฐ ูƒู…ุงู† ุณุคุงู„
1160
+
1161
+ 323
1162
+ 00:33:50,620 --> 00:33:59,640
1163
+ ุงู„ุณุคุงู„ ุงู„ุฎุงู…ุณ ุนุดุฑ ุจูŠู‚ูˆู„ ู„ูŠุŒ the matrixุŒ the matrix
1164
+
1165
+ 324
1166
+ 00:33:59,640 --> 00:34:03,160
1167
+ IN
1168
+
1169
+ 325
1170
+ 00:34:03,160 --> 00:34:14,280
1171
+ ู„ู„ู€identity matrix is its own inverseุŒ ูŠุนู†ูŠ
1172
+
1173
+ 326
1174
+ 00:34:14,280 --> 00:34:23,060
1175
+ ู‡ูŠ ู…ุนูƒูˆุณ ู„ู†ูุณู‡ุงุŒ since ู„ูŠุดุŸ ู„ุฃู† ุงู„ู€identity matrix
1176
+
1177
+ 327
1178
+ 00:34:23,060 --> 00:34:28,520
1179
+ ู„ู…ุง ู†ุถุฑุจู‡ุง ููŠ ุงู„ู€identity matrix ุจูŠุทู„ุน ู…ู† ุนู†ุฏู†ุง ุงู„ู€
1180
+
1181
+ 328
1182
+ 00:34:28,520 --> 00:34:33,660
1183
+ identity matrixุŒ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ู…ู† ุงู„ุณุคุงู„ุŒ find
1184
+
1185
+ 329
1186
+ 00:34:35,470 --> 00:34:45,290
1187
+ at least ุนู„ู‰ ุงู„ุฃู‚ู„ to second
1188
+
1189
+ 330
1190
+ 00:34:45,290 --> 00:34:48,830
1191
+ order
1192
+
1193
+ 331
1194
+ 00:34:48,830 --> 00:34:57,030
1195
+ to second order matricesุŒ matrices
1196
+
1197
+ 332
1198
+ 00:34:57,030 --> 00:35:04,050
1199
+ other than I N
1200
+
1201
+ 333
1202
+ 00:35:07,740 --> 00:35:18,800
1203
+ that have this propertyุŒ ุฅู„ุง
1204
+
1205
+ 334
1206
+ 00:35:18,800 --> 00:35:27,080
1207
+ ุฏูŠ ุงู„ุฎุงุตูŠุฉ ู†ู…ุฑ ุจูŠู‡ุŒ if ุงู„ู€A ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู€A inverse
1208
+
1209
+ 335
1210
+ 00:35:27,080 --> 00:35:28,800
1211
+ show that
1212
+
1213
+ 336
1214
+ 00:35:32,000 --> 00:35:39,460
1215
+ show thatุŒ ุจูŠู‘ู† ู„ูŠ ุฃู† ุงู„ู€determinant ู„ู„ู€A ุจุฏู‡ุง ุชุณุงูˆูŠ
1216
+
1217
+ 337
1218
+ 00:35:39,460 --> 00:35:41,860
1219
+ ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต ูˆุงุญุฏ
1220
+
1221
+ 338
1222
+ 00:36:10,490 --> 00:36:16,950
1223
+ ู†ุฑุฌุน ู„ุณุคุงู„ู†ุง ู…ุฑุฉ ุซุงู†ูŠุฉุŒ ุงู„ุณุคุงู„ ุฐูˆ ุดู‚ูŠู†ุŒ ู†ู‚ุฑุฃ ุงู„ุณุคุงู„
1224
+
1225
+ 339
1226
+ 00:36:16,950 --> 00:36:21,370
1227
+ ูƒูˆูŠุณุŒ ูˆุจุนุฏูŠู† ู‡ูŠ ูƒุฏู‡ุŒ ุชุนุงู„ูŠ ูŠุง ุจู†ุชุŒ ูŠุง ุจู†ุช ุชุนุงู„ูŠ ุชุนุงู„ูŠ
1228
+
1229
+ 340
1230
+ 00:36:21,370 --> 00:36:27,510
1231
+ ุชุนุงู„ูŠุŒ ุจู‚ูˆู„ ุทู„ุนุช
1232
+
1233
+ 341
1234
+ 00:36:27,510 --> 00:36:30,990
1235
+ ูƒู„ู…ุฉ ุฌูˆุงู„ุŒ ู…ุด ู‡ูŠูƒุŸ ุจุชุงุฎุฏูŠ ูƒุชุจูƒ ูˆุชุตู„ูŠุŒ ุชุนูˆุฏูŠ ุนู„ู‰
1236
+
1237
+ 342
1238
+ 00:36:30,990 --> 00:36:35,750
1239
+ ุงู„ู…ุญุงุถุฑุฉ ุฃุจุฏุงุŒ ูŠุง ุจุชู‚ุนุฏูŠ ูˆุชู†ุณูŠ ุญูƒุงูŠุฉ ุงู„ุฌูˆุงู„ุŒ ุฃู†ุง ู…ู†
1240
+
1241
+ 343
1242
+ 00:36:35,750 --> 00:36:37,630
1243
+ ุฃูˆู„ ู…ุญุงุถุฑุฉ ู‚ู„ุช ู„ูƒ ูŠุง ุฌูˆุงู„ ูŠุง ู…ุญุงุถุฑุฉ
1244
+
1245
+ 344
1246
+ 00:36:48,030 --> 00:36:52,030
1247
+ ู‚ู„ุช ู„ูƒ ุงู„ู…ุญุงุถุฑุฉ ู…ุซู„ ุตู„ุงุฉ ุงู„ุฌู…ุนุฉุŒ ูุฅูŠุด ุงู„ุฅูŠู…ุงู† ุจุงู„ู…ุฎุทุจ
1248
+
1249
+ 345
1250
+ 00:36:52,030 --> 00:36:55,410
1251
+ ูˆุงุญุฏ ูŠุทู„ุน ูŠุฑุฏ ุนู„ู‰ ุงู„ุฌูˆุงู„ ูˆูŠุนูˆุฏ ู„ุฎุทุจุฉุŒ ู…ุณุฎุฑุฉ ู‡ุฐู‡ ู…ุด
1252
+
1253
+ 346
1254
+ 00:36:55,410 --> 00:37:00,510
1255
+ ุตู„ุงุฉุŒ ูˆุงุญู†ุง ู‡ู†ุง ู…ูƒุงู† ุงู„ู…ุญุงุถุฑุฉุŒ ู…ูƒุงู† ุนุจุงุฏุฉ ุชู…ุงู…ุง ู…ุซู„
1256
+
1257
+ 347
1258
+ 00:37:00,510 --> 00:37:07,150
1259
+ ุงู„ุตู„ุงุฉ ุนู†ุฏูŠุŒ ูŠุจู‚ู‰ ูŠุง ุฏูŠ ุฏุฑุงุณุฉ ูŠุง ุฅู…ุง ุฌูˆุงู„ุŒ ู†ุฑุฌุน
1260
+
1261
+ 348
1262
+ 00:37:07,150 --> 00:37:08,190
1263
+ ู„ุณุคุงู„ู†ุง ู…ุฑุฉ ุซุงู†ูŠุฉ
1264
+
1265
+ 349
1266
+ 00:37:13,170 --> 00:37:18,390
1267
+ ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ ู‡ูŠ ู…ุตููˆูุฉ ู…ุนูƒูˆุณ ู„ู†ูุณู‡ุง
1268
+
1269
+ 350
1270
+ 00:37:29,590 --> 00:37:37,050
1271
+ ู‡ุงุช ู„ูŠ at least ุนู„ู‰ ุงู„ุฃู‚ู„ ู…ุตููˆูุชูŠู† ู…ู† ุงู„ู€second
1272
+
1273
+ 351
1274
+ 00:37:37,050 --> 00:37:42,530
1275
+ orderุŒ ูŠุนู†ูŠ ุงู„ู†ุธุงู… ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ู…ู† ุบูŠุฑ ุงู„ู€IุŒ ุฃู†ุช
1276
+
1277
+ 352
1278
+ 00:37:42,530 --> 00:37:45,910
1279
+ ู…ุด ู‡ุชุฑูˆุญ ุชู‚ูˆู„ูŠ ุงู„ู…ุตููˆูุฉ IุŒ too ุตููŠู† ูˆุนุงู…ู„ูŠู†ุŒ ุชู‚ูˆู„ูŠ
1280
+
1281
+ 353
1282
+ 00:37:45,910 --> 00:37:51,650
1283
+ ุฃูŠ ูˆุงุญุฏุŸ ู„ุฃุŒ ุฏู‡ ู‡ุชุฌูŠุจ ู…ุตููˆูุชูŠู† ุบูŠุฑู‡ู…ุŒ ุจุญูŠุซ ู„ู‡ู… ู‡ุฐู‡
1284
+
1285
+ 354
1286
+ 00:37:51,650 --> 00:37:55,770
1287
+ ุงู„ุฎุงุตูŠุฉุŒ ูŠุนู†ูŠ ู„ูˆ ุถุฑุจุช ุงู„ู…ุตููˆูุฉ ููŠ ู†ูุณู‡ุง ุจุฏู‡ุง ุชุทูŠู†ูŠ
1288
+
1289
+ 355
1290
+ 00:37:55,770 --> 00:38:01,290
1291
+ ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉุŒ ุจุณ ุจุดุฑุท ู…ุง ุชูƒูˆู†ุด ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉุŒ ุชู…ุงู…ุŸ
1292
+
1293
+ 356
1294
+ 00:38:01,290 --> 00:38:05,490
1295
+ ุงูŠูˆุง ู‡ุฐุง ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ุŒ ุงู„ู…ุทู„ูˆุจ ุงู„ุซุงู†ูŠ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู† ุงู„ู€
1296
+
1297
+ 357
1298
+ 00:38:05,490 --> 00:38:09,030
1299
+ A ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู€inverseุŒ show that ุฃู† ุงู„ู€determinant
1300
+
1301
+ 358
1302
+ 00:38:09,030 --> 00:38:14,670
1303
+ ู„ู„ู€A ุจุฏู‡ุง ุชุณุงูˆูŠ ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต ูˆุงุญุฏุŒ ุจุณูŠุทุฉ ุฌุฏุงุŒ ุฎู„ูŠู†ุง
1304
+
1305
+ 359
1306
+ 00:38:14,670 --> 00:38:20,460
1307
+ ู…ุน ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ุŒ ุจุฏูŠ ุฃุญุงูˆู„ ุฃุฏูˆุฑ ุนู„ู‰ ู…ุตููˆูุฉุŒ ู„ูˆ ุถุฑุจุช
1308
+
1309
+ 360
1310
+ 00:38:20,460 --> 00:38:25,940
1311
+ ููŠ ู†ูุณูŠ ูŠุทู„ุน ู…ูŠู† ุนู†ุฏูŠุŸ ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉุŒ ุญุฏ ููŠูƒู… ุจุชู‚ุฏุฑ
1312
+
1313
+ 361
1314
+ 00:38:25,940 --> 00:38:28,480
1315
+ ุชุฌูŠุจ ู„ูŠ ู…ุตููˆูุฉ ู†ุธุงู…ู‡ุง ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู†ุŸ ู…ุง ุชุจุฏุงุด ูƒุชูŠุฑ
1316
+
1317
+ 362
1318
+ 00:38:28,480 --> 00:38:36,140
1319
+ ูŠุนู†ูŠ ุฃุบุดุดูƒูŠ ุฃูƒุชุฑุŒ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุฃุตูุงุฑุŒ ูŠู„ุง ุธู„ ุนู„ูŠูƒูŠ
1320
+
1321
+ 363
1322
+ 00:38:36,140 --> 00:38:41,020
1323
+ ุนุฏุฏูŠู† ุจุณุŒ ู…ุตููˆูุฉ ู†ุธุงู…ู‡ุง ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู†ุŒ ูˆุงู„ู‚ุทุฑ
1324
+
1325
+ 364
1326
+ 00:38:41,020 --> 00:38:46,620
1327
+ ุงู„ุฑุฆูŠุณูŠ ุฃุตูุงุฑุŒ ุจุฏูŠ ู„ูˆ ุถุฑุจุชู‡ุง ุชุทู„ุน ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ
1328
+
1329
+ 365
1330
+ 00:39:14,950 --> 00:39:16,550
1331
+ ุซู„ุงุซุฉ ูˆุซู„ุงุซุŒ ุซู„ุงุซุฉ ูˆุซู„ุงุซุŒ ุซู„ุงุซ ุซู„ุงุซ ุซู„ุงุซ ุซู„ุงุซ ุซู„ุงุซ
1332
+
1333
+ 366
1334
+ 00:39:18,130 --> 00:39:23,410
1335
+ ุจู‘ุชู†ูุนุŒ ุฃุฑุจุนุฉ ูˆุฃุฑุจุนุฉ ุจุชู‘ู†ูุนุŒ ุฎู…ุณุฉ ูˆุฎู…ุณุŒ ูŠุจู‚ู‰ ู‡ูŠ ู…ุด
1336
+
1337
+ 367
1338
+ 00:39:23,410 --> 00:39:28,410
1339
+ ู…ุตููˆูุชูŠู†ุŒ ุตุงุฑ ู…ู„ุงูŠูŠู†.. ุฅูŠุฌุงุฏ ุงุด ู…ู„ุงูŠูŠู† ุนุฏุฏ ู„ุฅู†ู‡ุงุก
1340
+
1341
+ 368
1342
+ 00:39:28,410 --> 00:39:32,270
1343
+ ู…ู† ุงู„ู…ุตููˆูุงุช ูˆู„ูŠุณ.. ุจุณ ู…ู† ุฏู‡ ุงุชู‘ูƒุฏ ุฃู† ูƒู„ุงู…ู†ุง ู‡ุฐุง
1344
+
1345
+ 369
1346
+ 00:39:32,270 --> 00:39:37,45
1347
+
1348
+ 401
1349
+ 00:42:39,870 --> 00:42:45,310
1350
+ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู€ determinant ู„ู„ู€ A ููŠ ุงู„ู€ A ุจุฏู‡
1351
+
1352
+ 402
1353
+ 00:42:45,310 --> 00:42:51,390
1354
+ ูŠุณุงูˆูŠ ุงู„ู€ determinant ู„ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ I ุญุณุจ ุฎูˆุงุต ุงู„ู€
1355
+
1356
+ 403
1357
+ 00:42:51,390 --> 00:42:56,490
1358
+ determinant ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ determinant ู„ู„ู€ A ููŠ ุงู„ู€
1359
+
1360
+ 404
1361
+ 00:42:56,490 --> 00:43:01,990
1362
+ determinant ู„ู„ู€ A ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ determinant ู„ู…ุตููˆูุฉ
1363
+
1364
+ 405
1365
+ 00:43:01,990 --> 00:43:08,590
1366
+ ุงู„ูˆุงุญุฏุฉ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ determinant ู„ู„ู€ A ู„ูƒู„ ุชุฑุจูŠุน
1367
+
1368
+ 406
1369
+ 00:43:08,590 --> 00:43:13,010
1370
+ ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ุงู„ู€ determinant ู„ู…ุตููˆูุฉ ุงู„ูˆุงุญุฏุฉ ูˆุงุญุฏุฉ
1371
+
1372
+ 407
1373
+ 00:43:13,010 --> 00:43:17,030
1374
+ ู„ูˆ ุฃุฎุฐู†ุง ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ุฅู„ู‰ ุงู„ุทุฑููŠู† ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุงู„ู€
1375
+
1376
+ 408
1377
+ 00:43:17,030 --> 00:43:22,510
1378
+ determinant ู„ู„ู€ A ูŠุณุงูˆูŠ ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต ูˆุงุญุฏ ุฃุธู† ูˆู‡ูˆ
1379
+
1380
+ 409
1381
+ 00:43:22,510 --> 00:43:28,560
1382
+ ุงู„ู…ุทู„ูˆุจ ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุฃุฑุจุน ุฃุณุฆู„ุฉ ู…ุชูˆุงู„ูŠุฉ ูˆูƒู„ู‡ู… ุฃุณุฆู„ุฉ
1383
+
1384
+ 410
1385
+ 00:43:28,560 --> 00:43:33,740
1386
+ ู†ุธุฑูŠุฉ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒ ููŠ ุงู„ูƒุชุงุจ 12 ูˆ 13 ูˆ 14 ูˆ 15 ูˆู‡ูŠ
1387
+
1388
+ 411
1389
+ 00:43:33,740 --> 00:43:40,380
1390
+ ุญู„ู„ู†ุง ู„ูƒ ุงู„ุฃุฑุจุน ุฃุณุฆู„ุฉ ุงู„ู†ุธุฑูŠุฉ ูˆู„ุง ุนุฐุฑ ู„ูƒ ุจุนุฏ ุฐู„ูƒ
1391
+
1392
+ 412
1393
+ 00:43:40,380 --> 00:43:45,200
1394
+ ุทุจุนุง ุงุญู†ุง ู‚ู„ู†ุง ุงู„ู€ exercises ุงุซู†ูŠู† ุงุซู†ุง ุนุดุฑ ู†ุงูƒู„
1395
+
1396
+ 413
1397
+ 00:43:45,200 --> 00:43:49,140
1398
+ ู…ุณุงุฆู„ ุนู„ูŠู‡ู… ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุซู„ุงุซุฉ ุฎู…ุณุฉ ุณุจุนุฉ ูˆู…ู† ุนุดุฑ
1399
+
1400
+ 414
1401
+ 00:43:49,140 --> 00:43:54,300
1402
+ ู„ุฎู…ุณุฉ ุนุดุฑ ูˆุงู„ู€ exercise ู…ู† ูˆุงุญุฏ ู„ุซู…ุงู†ูŠุฉ ู…ุด ู‡ูŠูƒ ุชู…ุงู…
1403
+
1404
+ 415
1405
+ 00:43:54,300 --> 00:44:00,940
1406
+ ุชู…ุงู… ูŠุจู‚ู‰ ุนู„ู‰ ู‡ูŠูƒ ูŠูƒูˆู† ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ู€ section ุงู„ู„ูŠ
1407
+
1408
+ 416
1409
+ 00:44:00,940 --> 00:44:08,700
1410
+ ู‡ูˆ ุงู„ู€ section ุงุซู†ูŠู† ุงุซู†ุง ุนุดุฑ ูˆุจู†ุชู‡ูŠู‡ ูŠู†ุชู‡ูŠ chapter ุงุซู†ูŠู†
1411
+
1412
+ 417
1413
+ 00:44:08,700 --> 00:44:14,520
1414
+ ูˆุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ุจุฏู†ุง ู†ูŠุฌูŠ ู…ูุชุญูŠู† ูˆู…ุฎู†ุง ุตุงุญูŠ ูˆู†ุธูŠู
1415
+
1416
+ 418
1417
+ 00:44:14,520 --> 00:44:20,680
1418
+ ู…ุดุงู† ู†ุจุฏุฃ chapter ุซู„ุงุซุฉ ุงู„ู„ูŠ ุจุชูƒู„ู… ุนู† vector spaces
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/LnjjOsm63Sg_raw.srt ADDED
@@ -0,0 +1,1740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:19,340 --> 00:00:23,660
3
+ ุจุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู„ุงุฒู„ู†ุง ููŠ ู†ูุณ ุงู„ section ุชุจุน
4
+
5
+ 2
6
+ 00:00:23,660 --> 00:00:28,740
7
+ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆู‡ูˆ kramer's rule ููŠ ู†ู‡ุงูŠุฉ ู‡ุฐุง ุงู„
8
+
9
+ 3
10
+ 00:00:28,740 --> 00:00:33,940
11
+ section ุญุถุฑุชู†ุง ู†ุธุฑูŠุฉ ุงู„ู†ุธุฑูŠุฉ ุจุชุชุญุฏุซ ุนู† ุงู„
12
+
13
+ 4
14
+ 00:00:33,940 --> 00:00:38,540
15
+ homogeneous system ูุจุชู‚ูˆู„ ู„ูŠ ู…ุนุงูŠุงุชูŠ ู„ูˆ ูƒุงู† ุนู†ุฏ ุงู„
16
+
17
+ 5
18
+ 00:00:38,540 --> 00:00:44,580
19
+ homogeneous system Ax ูŠุณุงูˆูŠ 0 ููŠ N ู…ู† ุงู„ู…ุนุงุฏู„ุงุช ูˆ
20
+
21
+ 6
22
+ 00:00:44,580 --> 00:00:50,020
23
+ N ู…ู† ุงู„ู…ุฌุงู‡ูŠู†ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ู‡ุฐุง ุงู„ู€ system ู„ู‡
24
+
25
+ 7
26
+ 00:00:50,020 --> 00:00:53,920
27
+ non-trivial solution ุฅุฐุง ูƒุงู† ุงู„ู€ determinant ู„ุฅูŠู‡
28
+
29
+ 8
30
+ 00:00:53,920 --> 00:00:57,700
31
+ ุจุฏู‡ ุณุงูˆูŠ zero ุทุจุนุง ุฃุญู†ุง ุจุงู„ู†ุณุจุฉ ู„ู„ู‡ูˆู…ูˆู„ูŠู†ูŠุง
32
+
33
+ 9
34
+ 00:00:57,700 --> 00:01:01,460
35
+ ุงู„ุณุงุจู‚ุฉ ู†ู‚ูˆู„ ุฅู† ู…ุงุนู†ุฏูŠุด ุฅู„ุง ุฃุญุฏ ุฃู…ุฑูŠู†ุŒ ูŠุง ุฅู…ุง ููŠ
36
+
37
+ 10
38
+ 00:01:01,460 --> 00:01:06,360
39
+ ุงู„ุญู„ ุงู„ุตูุฑูŠ ูู‚ุท ู„ุบูŠุฑุŒ ูŠุง ุฅู…ุง ููŠ ุนุฏุฏ ู„ู†ู‡ุงุฆูŠ ู…ู†
40
+
41
+ 11
42
+ 00:01:06,360 --> 00:01:12,400
43
+ ุงู„ุญู„ูˆู„ ุงู„ู…ุฌุชู…ู„ุฉ ุนุงู„ู…ูŠุงุนู„ู‰ ุงู„ุญู„ ุงู„ุตูุฑูŠ ู„ุงู† ุนู†ุฏู…ุง ู„ุง
44
+
45
+ 12
46
+ 00:01:12,400 --> 00:01:16,520
47
+ ูŠูˆุฌุฏ ู„ุฏูŠ ุฅู„ุง ุงู„ุญู„ ุงู„ุตูุฑูŠ ูˆ ู„ุง ูŠูˆุฌุฏ ู„ุฏูŠ ุนุฏุฏ ู„ู†ู‡ุงุฆูŠ
48
+
49
+ 13
50
+ 00:01:16,520 --> 00:01:20,660
51
+ ู…ู† ุงู„ุญู„ูˆู„ ุจู‚ูˆู„ ูˆ ุงู„ู„ู‡ ุฅุฐุง ูƒุงู† ุงู„ determinant ู„ู„ A
52
+
53
+ 14
54
+ 00:01:20,660 --> 00:01:25,100
55
+ ู…ุญุฏุฏ ุงู„ A ูŠุณุงูˆูŠ Zero ู…ุนู†ุงุชู‡ ุนู†ุฏูŠ ุนุฏุฏ ู„ู†ู‡ุงุฆูŠ ู…ู†
56
+
57
+ 15
58
+ 00:01:25,100 --> 00:01:30,280
59
+ ุงู„ุญู„ูˆู„ ุงู„ determinant ู„ุง ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ู…ุงุนู†ุฏูŠุด
60
+
61
+ 16
62
+ 00:01:30,280 --> 00:01:34,990
63
+ ุฅู„ุง ุงู„ุญู„ ุงู„ุตูุฑูŠูŠุจู‚ู‰ ุจุงู„ู†ุณุจุฉ ู„ู„ู€ Homogeneous System
64
+
65
+ 17
66
+ 00:01:34,990 --> 00:01:39,830
67
+ ูŠุง ุจู†ุงุช ุฅุฐุง ุงู„ู…ุญุฏุฏ ู„ุง ูŠุณุงูˆูŠ Zero ุชุจุน ู…ุตููˆูุฉ
68
+
69
+ 18
70
+ 00:01:39,830 --> 00:01:44,470
71
+ ุงู„ู…ุนุงู…ู„ุงุชุŒ ู„ุง ูŠูˆุฌุฏ ุนู†ุฏู‰ ุฅู„ุง ุงู„ุญู„ ุงู„ุตูุฑูŠ ุฃู…ุง ุฅุฐุง
72
+
73
+ 19
74
+ 00:01:44,470 --> 00:01:50,930
75
+ ูƒุงู† ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ Zero ู„ู…ุตููˆูุฉ ุงู„ู…ุนุงู…ู„ุงุช ูุนู†ุฏูŠ ุนุฏุฏ
76
+
77
+ 20
78
+ 00:01:50,930 --> 00:01:57,000
79
+ ู„ู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ุจู†ุงุฎุฏ ู…ุซุงู„ ุนู„ู‰ ุฐู„ูƒ ุจูŠู‚ูˆู„ determine
80
+
81
+ 21
82
+ 00:01:57,000 --> 00:02:03,180
83
+ all values ู‡ุชู„ูŠ ูƒู„ ุงู„ู‚ูŠู… ุชุจุน ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช C ุจุญูŠุซ
84
+
85
+ 22
86
+ 00:02:03,180 --> 00:02:09,100
87
+ ุงู† ุงู„ system ุงู„ุชุงู„ูŠ has none trivial solution and
88
+
89
+ 23
90
+ 00:02:09,100 --> 00:02:13,380
91
+ then find all such solution ูŠุนู†ูŠ ุจุนุฏ ู…ุง ุชุฌูŠุจู„ูŠ
92
+
93
+ 24
94
+ 00:02:13,380 --> 00:02:19,210
95
+ ู‚ูŠู…ุฉ C ุจุฏูƒ ุชุฑูˆุญ ุชุฌูŠุจู„ูŠ ุญู„ ู‡ุฐุง ุงู„ systemุทุจุนุง ุงุด
96
+
97
+ 25
98
+ 00:02:19,210 --> 00:02:23,870
99
+ ุจู‚ูˆู„ ู‡ู†ุง ุฌุงู„ูŠ non-trivial solution ูŠุนู†ูŠ ุจุฏูŠ ู‚ุฏุงุด
100
+
101
+ 26
102
+ 00:02:23,870 --> 00:02:30,970
103
+ ู‚ูŠู…ุฉ C ุงู„ู„ูŠ ุจุชุฎู„ูŠู‡ non-trivialูŠุนู†ูŠ ุจุฏูŠ determinant
104
+
105
+ 27
106
+ 00:02:30,970 --> 00:02:35,370
107
+ ุงูŠู‡ ู‡ุณูˆูŠู‡ ุจุงู„ู€ main ู‡ุณูˆูŠู‡ ุจุงู„ู€ zero ูˆ ุฑูˆุญ ู†ุญู„ ู‡ุฐุง
108
+
109
+ 28
110
+ 00:02:35,370 --> 00:02:41,210
111
+ ุงู„ูƒู„ุงู… ุงุฐุง ุงุญู†ุง ู‡ู†ุฌูŠ ุนู„ู‰ ุงู„ system of linear
112
+
113
+ 29
114
+ 00:02:41,210 --> 00:02:46,450
115
+ equations ู‡ุฐุง ูˆ ู†ุฌูŠ ู†ุญู„ ู‡ุฐุง ุงู„ system ุจุนุฏ ู…ุง ู†ุชู‚ู„
116
+
117
+ 30
118
+ 00:02:46,450 --> 00:02:50,890
119
+ .. ู„ูƒู† ู‡ุฐุง ุจู†ุง ู†ุญู„ู‡ ุจุนุฏ ู…ุง ู†ุฌูŠุจ ู‚ูŠู…ุฉ C ุชู…ุงู…ุŸ ูŠุจู‚ู‰
120
+
121
+ 31
122
+ 00:02:50,890 --> 00:02:55,850
123
+ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู„ุญู„ ูƒุชุงู„ุฉุงู„ู€ System has non-trivial
124
+
125
+ 32
126
+ 00:02:55,850 --> 00:03:00,970
127
+ solution ูŠุจู‚ู‰
128
+
129
+ 33
130
+ 00:03:00,970 --> 00:03:13,550
131
+ ู‡ู†ุง since ุจู…ุง ุฃู† ุงู„ู€ System star has non-trivial
132
+
133
+ 34
134
+ 00:03:13,550 --> 00:03:15,450
135
+ solution
136
+
137
+ 35
138
+ 00:03:23,670 --> 00:03:26,430
139
+ Determinant ู„ู€ A ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€ Zero ู„ู€ A ุจูŠู‚ูˆู…
140
+
141
+ 36
142
+ 00:03:26,430 --> 00:03:27,670
143
+ ุจุฅุนุทุงุก ุงู„ู€ Zero ู„ู€ A ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€ Zero ู„ู€ A
144
+
145
+ 37
146
+ 00:03:27,670 --> 00:03:28,590
147
+ ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€ Zero ู„ู€ A ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€ Zero
148
+
149
+ 38
150
+ 00:03:28,590 --> 00:03:30,010
151
+ ู„ู€ A ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€ Zero ู„ู€ A ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€
152
+
153
+ 39
154
+ 00:03:30,010 --> 00:03:31,310
155
+ Zero ู„ู€ A ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€ Zero ู„ู€ A ุจูŠู‚ูˆู… ุจุฅุนุทุงุก
156
+
157
+ 40
158
+ 00:03:31,310 --> 00:03:32,910
159
+ ุงู„ู€ Zero ู„ู€ A ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€ Zero ู„ู€ A ุจูŠู‚ูˆู…
160
+
161
+ 41
162
+ 00:03:32,910 --> 00:03:35,590
163
+ ุจุฅุนุทุงุก ุงู„ู€ Zero ู„ู€ A ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€ Zero ู„ู€ A
164
+
165
+ 42
166
+ 00:03:35,590 --> 00:03:43,870
167
+ ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€ Zero ู„ู€ A ุจูŠู‚ูˆู… ุจุฅุนุทุงุก ุงู„ู€ Zero
168
+
169
+ 43
170
+ 00:03:43,870 --> 00:03:48,170
171
+ ู„ู€ A ุจูŠู‚ูˆู…
172
+
173
+ 44
174
+ 00:03:48,170 --> 00:03:54,160
175
+ ุจุฅุนู‡ุฐุง ู„ุงุฒู… ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ุจุฏู‡ ูŠุณุงูˆูŠ zero ู‡ุฐุง ุจุฏู‡
176
+
177
+ 45
178
+ 00:03:54,160 --> 00:03:59,220
179
+ ูŠุนุทูŠู†ุง ุจู†ุฑูˆุญ ู†ููƒ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ุจู†ุงุช ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุฃูŠ
180
+
181
+ 46
182
+ 00:03:59,220 --> 00:04:04,140
183
+ ุตู ุฃูˆ ุฃูŠ ุนู…ูˆุฏ ูู„ูˆ ุฑุญุช ูุงูƒุฑุชู‡ ุจุงุณุชุฎุฏุงู… ุงู„ุนู…ูˆ๏ฟฝ๏ฟฝูŠ
184
+
185
+ 47
186
+ 00:04:04,140 --> 00:04:08,720
187
+ ุงู„ุซุงู„ุซ ู„ุฅู†ู‡ ููŠ ุงู„ุตูุฑ ู†ุชุงู„ุจ ู†ุดุชุบู„ ุทูˆู„ุชูŠู† ุงู„ุดุบู„ ู…ุด
188
+
189
+ 48
190
+ 00:04:08,720 --> 00:04:15,100
191
+ ุงู„ุดุบู„ ูƒุงู…ู„ุงูŠุจู‚ู‰ ุจุฑูˆุญ ุจู‚ูˆู„ ู„ู‡ ู‡ุฐุง ุนู†ุฏู†ุง C ููŠ ู…ูŠู† ููŠ
192
+
193
+ 49
194
+ 00:04:15,100 --> 00:04:20,100
195
+ ุงู„ู…ุญุฏุฏ ุฃุตุบุฑ ู…ู†ุธุฑ ุงู„ู„ูŠ ุจุฏุฃุดุชู‡ ุจุตูู‡ ุนู…ูˆุฏู‡ ุจุตูŠุฑ ุชู„ุงุชุฉ
196
+
197
+ 50
198
+ 00:04:20,100 --> 00:04:26,960
199
+ ู†ุงู‚ุต ุงุชู†ูŠู† ูŠุจู‚ู‰ ููŠ ุชู„ุงุชุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต Zero ููŠ
200
+
201
+ 51
202
+ 00:04:26,960 --> 00:04:33,760
203
+ ู…ุญุฏุฏู‡ Zero ู†ุฌูŠ ุงู„ู„ูŠ ุจุนุฏู‡ ุฒุงุฆุฏ ูˆุงุญุฏูู‰ ู†ุดุทุฉ ุจุตูู‡
204
+
205
+ 52
206
+ 00:04:33,760 --> 00:04:40,920
207
+ ูˆุนู…ูˆุฏู‡ ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุณุชุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ
208
+
209
+ 53
210
+ 00:04:40,920 --> 00:04:45,420
211
+ ุณุชุฉ ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‰ ูŠุณุงูˆูŠ ู…ูŠู† ุจุฏู‰ ูŠุณุงูˆูŠ Zero ุงุฐุง
212
+
213
+ 54
214
+ 00:04:45,420 --> 00:04:51,700
215
+ ุตุงุฑ ุงู† ู‡ุฐุง C ู†ุงู‚ุต ุณุจุนุฉ ุจุฏู‰ ูŠุณุงูˆูŠ Zero ู‡ุฐุง ู…ุนู†ุงุชู‡
216
+
217
+ 55
218
+ 00:04:51,700 --> 00:04:57,460
219
+ ุงู† C ุฌุฏุงุด ุชุณุงูˆูŠ ุณุจุนุฉุฅุฐุง ู„ูˆ ูƒุงู† ุนู†ุฏู†ุง C ุชุณุงูˆูŠ ุณุจุนุฉ
220
+
221
+ 56
222
+ 00:04:57,460 --> 00:05:04,760
223
+ ุจูŠูƒูˆู† ุนู†ุฏู†ุง Non-trivial solution ู‚ุงู„ ู‡ู†ุง ู‡ู‡ู‡ ุจุฌูŠุช
224
+
225
+ 57
226
+ 00:05:04,760 --> 00:05:09,980
227
+ ุงู„ุณุคุงู„ and then find all such solutions ูˆู„ู…ู‘ุง ุชุฌูŠุจ
228
+
229
+ 58
230
+ 00:05:09,980 --> 00:05:13,900
231
+ ู‚ูŠู…ุฉ C ู‡ุงุชู„ูŠ ู…ุง ู‡ูˆ ุงู„ุดูƒู„ ุงู„ุญุงู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุฌูŠุจู„ูŠ
232
+
233
+ 59
234
+ 00:05:13,900 --> 00:05:19,100
235
+ ุนุฏุฏ ู„ู†ู‡ุงุฆูŠ ู…ู†ุงู„ุญู„ูˆู„ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุญู„ ุงู„ system
236
+
237
+ 60
238
+ 00:05:19,100 --> 00:05:25,140
239
+ ู‡ุฐุง ุจุฃูŠ ุทุฑูŠู‚ุฉ ู…ู† ุงู„ุทุฑู‚ ุงู„ุชูŠ ุณุจู‚ุช ุฏุฑุงุณุชู‡ุง ุงุชุนูˆุฏู†ุง
240
+
241
+ 61
242
+ 00:05:25,140 --> 00:05:29,580
243
+ ู‡ุฐุง ุงู†ุญู„ู‡ ุงู„ homogeneous system ุจูˆุงุณุทุฉ ุงู„ู…ุตูˆูุฉ
244
+
245
+ 62
246
+ 00:05:29,580 --> 00:05:35,600
247
+ ุงู„ู…ูˆุงุณุนุฉ ุงูˆ echelon four ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุงู‚ูˆู„ู‡ ู‡ู†ุง ู‡ุฐู‡
248
+
249
+ 63
250
+ 00:05:35,600 --> 00:05:46,830
251
+ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุนู†ุฏูŠุงู„ุนู†ุงุตุฑ ุชุจุนุชู‡ุง 1 2 c 3-1 0 ุฅู„ู‰
252
+
253
+ 64
254
+ 00:05:46,830 --> 00:05:55,750
255
+ ู†ู‚ุต 2 1 1ุจู†ุฌูŠุจ ูˆู†ุถูŠู ุงู„ู€ consonants ุงู„ู„ูŠ ู‡ู…
256
+
257
+ 65
258
+ 00:05:55,750 --> 00:05:59,590
259
+ ุงู„ุชู„ุงุชุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู‚ูˆู„ ู‡ุฐู‡
260
+
261
+ 66
262
+ 00:05:59,590 --> 00:06:06,990
263
+ ุจุฏู†ุง ู†ุนู…ู„ ุงู„ู‡ู…ูŠุงุชูŠ ุณุงู„ุจ ุชู„ุงุชุฉ R ูˆุงุญุฏ ุจุถูŠู ูู„ุงู…ูŠู† ู„
264
+
265
+ 67
266
+ 00:06:06,990 --> 00:06:14,690
267
+ R ุงุชู†ูŠู†ูˆ ุจุนุฏูŠู† ุงุชู†ูŠู† ุงุฑ ูˆุงุญุฏ ุงุชู†ูŠู† ุงุฑ ุซู„ุงุซุฉ ุจู†ุญุตู„
268
+
269
+ 68
270
+ 00:06:14,690 --> 00:06:19,450
271
+ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ู ุงู„ุตู ุงู„ุฃูˆู„ ุฒูŠ ู…ุง ู‡ูˆ ูˆุงุญุฏ ุงุชู†ูŠู† C
272
+
273
+ 69
274
+ 00:06:19,450 --> 00:06:24,730
275
+ ุงู„ุตู ุงู„ุชุงู†ูŠ ุจูŠุตูŠุฑ Zero ุณุงู„ุจ ุชู„ุงุชุฉ ููŠ ุงุชู†ูŠู† ุจุณุงู„ุจ
276
+
277
+ 70
278
+ 00:06:24,730 --> 00:06:31,010
279
+ ุณุชุฉ ูˆ ุณุงู„ุจ ูˆุงุญุฏ ุจูŠุตูŠุฑ ุณุงู„ุจ ุณุจุนุฉ ุณุงู„ุจ ุชู„ุงุชุฉ C ู‡ู†ุง
280
+
281
+ 71
282
+ 00:06:31,010 --> 00:06:36,920
283
+ ุณุงู„ุจ ุชู„ุงุชุฉ Cู‡ู†ุง ุจุฏู‡ ูŠุตูŠุฑ ุนู†ุฏู†ุง zero ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู†
284
+
285
+ 72
286
+ 00:06:36,920 --> 00:06:45,020
287
+ ุจุงุฑุจุน ูˆุงุญุฏ ุฎู…ุณุฉ ูˆู‡ู†ุง ุงุชู†ูŠู† ุถุฑุจู†ุง ุงุชู†ูŠู† C ุจุงุชู†ูŠู† C
288
+
289
+ 73
290
+ 00:06:45,020 --> 00:06:55,240
291
+ ุฒุงุฆุฏ ูˆุงุญุฏ ูˆู‡ุฐุง ูƒู„ู‡ Zero Zero Zeroุชู…ุงู…ุŸ ุงู„ุขู† ุจู‚ุฏุฑ
292
+
293
+ 74
294
+ 00:06:55,240 --> 00:07:00,200
295
+ ุฃุฎู„ูŠ ู‡ุฐุง ุงู„ุฑู‚ู… ุงู„ู„ูŠ ุนู†ุฏูŠ ูƒุฏู‡ .. ู†ุฎู„ูŠู‡ ูˆุงุญุฏ ุตุญูŠุญ
296
+
297
+ 75
298
+ 00:07:00,200 --> 00:07:04,780
299
+ ู„ู…ุง ู†ุฎู„ูŠู‡ ูˆุงุญุฏ ุตุญูŠุญ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑุจ ูƒู„ู‡ ููŠ ุณุงู„ุจ ุณุจุน
300
+
301
+ 76
302
+ 00:07:04,780 --> 00:07:12,220
303
+ ูŠุจู‚ู‰ .. ููŠ ุญูƒู… .. ุฅูŠุด ููŠู‡ุŸ ู…ุด ุณุงู…ุน ู…ูŠู† ุงู„ู„ูŠ ุจุชุญูƒูŠุŒ
304
+
305
+ 77
306
+ 00:07:12,220 --> 00:07:16,300
307
+ ุงุชูˆุฑูŠู†ูŠ .. ุงู‡ ุงุชูุถู„ูŠ ุงู‡
308
+
309
+ 78
310
+ 00:07:18,230 --> 00:07:24,170
311
+ ู„ุงุฒู… ู†ุนูˆุถ ุนู†ู‡ุง ุณุจุนุฉ ูŠุง ุจู†ุงุช ู‡ุฐู‡ ู‡ู†ุง ุณุจุนุฉ ุตุญูŠุญ ุจู†ุง
312
+
313
+ 79
314
+ 00:07:24,170 --> 00:07:30,730
315
+ ู†ุณุชุฎุฏู…ู‡ุง ูˆู‡ุฐู‡ ู‡ู†ุง ุณุจุนุฉ ุงุฐุง ุจุฏู†ุง ู†ุนุฏู„ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ
316
+
317
+ 80
318
+ 00:07:30,730 --> 00:07:38,190
319
+ ุงุญู†ุง ุฌุงูŠู„ูŠู‡ ู‡ุฐุง ูƒุช ู„ูŠู‡ุทุจุนุง ุงุญู†ุง ุถุฑุจู†ุง ุงู„ุตู ุงู„ุฃูˆู„
320
+
321
+ 81
322
+ 00:07:38,190 --> 00:07:43,150
323
+ ููŠ ุณุงู„ุจ ุชู„ุงุชุฉ ูˆ ุจู†ุถูŠู ูˆู„ุง ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰ ุณุงู„ุจ ุชู„ุงุชุฉ
324
+
325
+ 82
326
+ 00:07:43,150 --> 00:07:48,950
327
+ ููŠ ุณุจุนุฉ ุจุณุงู„ุจ ูˆุงุญุฏ ูˆุนุดุฑูŠู† ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ูˆุนุดุฑูŠู†
328
+
329
+ 83
330
+ 00:07:48,950 --> 00:07:54,400
331
+ ู‡ุถุฑุจู†ุง ููŠ ุงุชู†ูŠู† ุงุฑุจุนุชุงุดุฑ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุฎู…ุณุชุงุดุฑูŠุจู‚ู‰
332
+
333
+ 84
334
+ 00:07:54,400 --> 00:08:01,980
335
+ ุงู„ุฃู† ุจูŠุฌูŠ ู†ุงุฎุฏ ู…ู† ุณุงู„ุจ ุณุจุน ู‚ุงุฑูŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐุง
336
+
337
+ 85
338
+ 00:08:01,980 --> 00:08:08,000
339
+ ุจุชุตูŠุฑ ุงู„ู…ุตูˆูุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ุณุจุนุฉ
340
+
341
+ 86
342
+ 00:08:08,000 --> 00:08:16,680
343
+ ุฒูŠุฑูˆ ู‡ู†ุง ุฒูŠุฑูˆ ูˆู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ุชู„ุงุชุฉ ูˆู‡ู†ุง ุฒูŠุฑูˆูˆ
344
+
345
+ 87
346
+ 00:08:16,680 --> 00:08:25,460
347
+ ุจุงู„ู…ุฑุฉ ู†ุงุฎุฏ ูƒู…ุงู† ุฎู…ุณ R ุชู„ุงุชุฉ ูˆ ู‡ุฐุง ูƒู…ุงู† ุฎู…ุณ R
348
+
349
+ 88
350
+ 00:08:25,460 --> 00:08:31,580
351
+ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ูƒู…ุงู† Zero ูˆุงุญุฏ ูˆ ู‡ู†ุง
352
+
353
+ 89
354
+ 00:08:31,580 --> 00:08:37,210
355
+ ุชู„ุงุชุฉ ูˆ ู‡ู†ุง Zero ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุชู…ุงู…ุŸ ูŠุจู‚ู‰
356
+
357
+ 90
358
+ 00:08:37,210 --> 00:08:43,370
359
+ ู‡ุฐุง ุงู„ู…ุตูŠุฑ ุชุงุฎุฏ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุจุฏูŠ ุฃุถุฑุจ ุงู„ุตู ุงู„ุซุงู†ูŠ
360
+
361
+ 91
362
+ 00:08:43,370 --> 00:08:50,450
363
+ ููŠ ุณุงู„ุจ ูˆ ุฃุถูŠูู‡ ููˆู‚ ูˆ ุชุญุช ูŠุจู‚ู‰ ุงู„ุณุงู„ุจ R ุงูˆ ุณุงู„ุจ
364
+
365
+ 92
366
+ 00:08:50,450 --> 00:09:01,120
367
+ ุงุชู†ูŠู† ุณุงู„ุจ ุงุชู†ูŠู† R ุงุชู†ูŠู† to R oneูˆ ุจุนุฏ ุฐู„ูƒ ุณุงู„ุจ R2
368
+
369
+ 93
370
+ 00:09:01,120 --> 00:09:08,240
371
+ to R3 ู†ุญุตู„ ุนู„ู‰ ู…ุง ูŠุฃุชูŠ ุงู„ุขู† ู‡ุฐู‡ ูˆุงุญุฏุฉ ุฒูŠ ู…ุง ู‡ูŠ ูˆ
372
+
373
+ 94
374
+ 00:09:08,240 --> 00:09:16,040
375
+ ู‡ู†ุง ุณุงู„ุจ 2 ู…ุน 2 ุจู€ 0 ุณุงู„ุจ 2 ููŠ 3 ุณุงู„ุจ 6 ูˆ 7 ู„ูŠู‡
376
+
377
+ 95
378
+ 00:09:16,040 --> 00:09:21,620
379
+ ูŠุจู‚ู‰ ุงู„ูˆุงุญุฏ ูˆ ู‡ู†ุง Zero ูˆ ู‡ู†ุง Zero ูˆุงุญุฏ ุชู„ุงุชุฉ Zero
380
+
381
+ 96
382
+ 00:09:21,990 --> 00:09:28,430
383
+ ูˆู‡ู†ุง 00000 ู…ุด ู‡ูŠูƒ ู„ุฅู†ู†ุง ุถุฑุจู†ุง ููŠู‡ ุณุงู„ุจ ูˆุถูู†ุงู‡ ูƒู„ู‡
384
+
385
+ 97
386
+ 00:09:28,430 --> 00:09:33,150
387
+ ุจุตูŠุฑ zero ูŠุจู‚ู‰ ุงู„ system ุจุงู„ุดูƒู„ ู‡ุฐุง ูŠุจู‚ู‰ ุงู„ system
388
+
389
+ 98
390
+ 00:09:33,150 --> 00:09:37,090
391
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ star ุงู„ุฃุตู„ูŠ ูŠุจู‚ู‰ ุจุฏูŠ ุจู‚ูˆู„ู‡ the
392
+
393
+ 99
394
+ 00:09:37,090 --> 00:09:43,250
395
+ system star is equivalent
396
+
397
+ 100
398
+ 00:10:00,320 --> 00:10:07,320
399
+ ู…ุงุนู†ุฏูŠุด ุฅู„ุง ู…ุนุงุฏู„ุชูŠู† ููŠ ุซู„ุงุซุฉ ู…ุฌุงู‡ูŠู„ุฅุฐุง ู„ุง ูŠู…ูƒู† ุญู„
400
+
401
+ 101
402
+ 00:10:07,320 --> 00:10:12,020
403
+ ู‡ุฐุง ุงู„ู€ system ุฅู„ุง ุจุฅุนุทุงุก ู‚ูŠู…ุฉ ู„ุฃุญุฏ ุงู„ู…ุฌุงู‡ูŠู„
404
+
405
+ 102
406
+ 00:10:12,020 --> 00:10:19,600
407
+ ุงู„ุซู„ุงุซุฉ ูˆ ู†ุฃุชูŠ ุจู‚ูŠู…ุฉ ุงู„ู…ุฌู‡ูˆู„ูŠู† ุงู„ุขุฎุฑูŠู† ุฅุฐุง ู„ูˆ ุฌูŠุช
408
+
409
+ 103
410
+ 00:10:19,600 --> 00:10:30,320
411
+ ู‡ู†ุง ู‚ู„ุช ู…ุซู„ุง if x3 ูŠุณุงูˆูŠ ู…ุซู„ุง ุณุงู„ุจ a ุญุทูŠุช x3 ูŠุณุงูˆูŠ
412
+
413
+ 104
414
+ 00:10:30,320 --> 00:10:38,700
415
+ ุณุงู„ุจ aุงู„ู€ X1 ุจูŠุตูŠุฑ ูƒุฏู‡ ูŠุง ุฌู…ุงุนุฉุŸ A ูˆุงู„ู€ X2 ุจูŠุตูŠุฑ
416
+
417
+ 105
418
+ 00:10:38,700 --> 00:10:44,560
419
+ ุซู„ุงุซุฉ A ู„ู…ุง ุฃุถุน ู‡ุฐู‡ ุจุงู„ุณู„ุจ A ุจูŠุตูŠุฑ X1 ุจูŠุตูŠุฑ A ูˆุฅุฐุง
420
+
421
+ 106
422
+ 00:10:44,560 --> 00:10:47,620
423
+ ุฃุถุน ู‡ุฐู‡ ุจุงู„ุณู„ุจ A ุจูŠุตูŠุฑ ุณู„ุจ ุซู„ุงุซุฉ A ูˆุฅุฐุง ุฃุถุนู‡ุง ุนู„ู‰
424
+
425
+ 107
426
+ 00:10:47,620 --> 00:10:54,280
427
+ ุงู„ุดุฌุฑุฉ ุงู„ุชุงู†ูŠุฉ ุจูŠุตูŠุฑ ุซู„ุงุซุฉ A ูŠุจู‚ู‰ ุณุงุฑ The solution
428
+
429
+ 108
430
+ 00:10:56,960 --> 00:11:11,120
431
+ The system A star is X1 ูˆ X2 ูˆ X3 ุจุฏู‡ ูŠุณุงูˆูŠ X1
432
+
433
+ 109
434
+ 00:11:11,120 --> 00:11:20,650
435
+ ุทู„ุนู†ุงู‡ุง ุจู€A ูˆ X2 ุจู€3A ูˆ X3 ุจู€-A ุจู‡ุฐุง ุงู„ุดูƒู„ู…ุงุนู†ุฏูŠุด
436
+
437
+ 110
438
+ 00:11:20,650 --> 00:11:26,210
439
+ ู‚ูŠูˆุฏ ุนู„ู‰ ุฅูŠู‡ ุฅุฐุง ู‡ุฐุง ูŠุนุชุจุฑ ุนุฏุฏ ู„ุงู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„
440
+
441
+ 111
442
+ 00:11:26,210 --> 00:11:30,070
443
+ ุงู„ุฌุงุฏู…ุฉ ุชูƒูˆู† ู‚ูŠู…ุฉ ุฅูŠู‡ ุชูƒูˆู† ู…ุน ุฃู†ู‡ุง ู…ุดูƒู„ุฉ ููŠ ู‡ุฐู‡
444
+
445
+ 112
446
+ 00:11:30,070 --> 00:11:36,730
447
+ ุงู„ุญุงู„ุฉ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ exercises ุงุชู†ูŠู† ุงุญุฏุงุดุฑ
448
+
449
+ 113
450
+ 00:11:36,730 --> 00:11:44,250
451
+ ุงู„ู…ุณุงุฆู„ ูˆุงุญุฏ ูˆ ุชู„ุงุชุฉ ูˆู…ู† ุณุจุนุฉ ู„ุบุงูŠุฉ ุงุชู†ุงุดุฑ
452
+
453
+ 114
454
+ 00:11:46,540 --> 00:11:51,620
455
+ ุนู„ู‰ ู‡ูŠูƒ ุจูƒูˆู† ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ section ูˆู„ู… ูŠุจู‚ู‰ ุฃู…ุงู…ู†ุง
456
+
457
+ 115
458
+ 00:11:51,620 --> 00:11:56,420
459
+ ุฅู„ุง ุงู„ section ุงู„ุฃุฎูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ section 212
460
+
461
+ 116
462
+ 00:12:09,590 --> 00:12:15,030
463
+ ูŠุจู‚ู‰ ุจุงู„ุฐุงุช ูŠู„ูŠู‡ section ุงุชู†ูŠู† ุงุชู†ุงุด ุงู„ู„ูŠ ู‡ูˆ the
464
+
465
+ 117
466
+ 00:12:15,030 --> 00:12:19,190
467
+ inverse of A matrix
468
+
469
+ 118
470
+ 00:12:26,460 --> 00:12:32,280
471
+ Inverse of a matrix ูŠุนู†ูŠ ู…ุนูƒูˆุณ ุงู„ู…ุตูˆูุฉ ุทุจุนุงู‹ ู‡ู†ุนุทูŠ
472
+
473
+ 119
474
+ 00:12:32,280 --> 00:12:37,860
475
+ ุชุนุฑูŠู ู„ู…ุนูƒูˆุณ ุงู„ู…ุตูˆูุฉ ูˆุจุนุฏ ู…ุง ู†ุนุทูŠ ุงู„ุชุนุฑูŠู ุจู†ุชุณุฃู„
476
+
477
+ 120
478
+ 00:12:37,860 --> 00:12:43,260
479
+ ู‡ู„ ุงู„ู…ุนูƒูˆุณ ู‡ุฐุง ู…ูˆุฌูˆุฏ ู„ุฃูŠ ู…ุตูˆูุฉ ูˆ ุงู„ู„ู‡ ู…ูˆุฌูˆุฏ ู„ุจุนุถ
480
+
481
+ 121
482
+ 00:12:43,260 --> 00:12:51,150
483
+ ุงู„ู…ุตูˆูุงุช ูˆ ู„ุจุนุถ ุงู„ุขุฎุฑ ู„ุฃุทุจุนุง ู…ุด ูƒู„ ู…ุตูˆูุฉ ู„ู‡ุง ู…ุนูƒูˆุณ
484
+
485
+ 122
486
+ 00:12:51,150 --> 00:12:56,050
487
+ ูˆุฅู†ู…ุง ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ู„ู‡ุง ู…ุนูƒูˆุณ ูู‚ุท ู‡ูŠ ุงู„ู…ุตูˆูุฉ
488
+
489
+ 123
490
+ 00:12:56,050 --> 00:13:03,230
491
+ ุงู„ู…ุญุฏุฏู‡ุง ู„ุง ูŠุณุงูˆูŠ zero ู„ุฐุง ุงู„ู…ุตูˆูุฉ ุงู„ู…ุญุฏุฏู‡ุง ู„ุง
492
+
493
+ 124
494
+ 00:13:03,230 --> 00:13:07,590
495
+ ูŠุณุงูˆูŠ zero ูŠุจู‚ู‰ ุงู„ู…ุนูƒูˆุณ existence ู„ูŠุดุŸ ู‡ุฐุง ู…ุง
496
+
497
+ 125
498
+ 00:13:07,590 --> 00:13:13,320
499
+ ุณู†ุนุฑูู‡ ุจุนุฏ ู‚ู„ูŠู„ ุงู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุถุน
500
+
501
+ 126
502
+ 00:13:13,320 --> 00:13:20,140
503
+ ุชุนุฑูŠู ู„ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ definition ุจูŠู‚ูˆู„
504
+
505
+ 127
506
+ 00:13:20,140 --> 00:13:29,400
507
+ ู„ุฐุง N by N matrix A ุงู„ู…ุตููˆูุฉ ู„ู†ุธุงู… N ููŠ N has an
508
+
509
+ 128
510
+ 00:13:29,400 --> 00:13:36,540
511
+ inverse matrix has an inverse matrix
512
+
513
+ 129
514
+ 00:13:40,240 --> 00:13:49,000
515
+ ูุฅุฐุง ูƒุงู† ุงู„ A ููŠ ุงู„ B ุณูˆู‰ ุงู„ B ููŠ ุงู„ A ุณูˆู‰ ุงู„
516
+
517
+ 130
518
+ 00:13:49,000 --> 00:13:58,720
519
+ identity matrix IN remark ุงู„
520
+
521
+ 131
522
+ 00:13:58,720 --> 00:14:10,870
523
+ matrix A ุงู„ matrix A has an inverse has anInverse
524
+
525
+ 132
526
+ 00:14:10,870 --> 00:14:18,290
527
+ ู‡ุฏู‘ูŠู„ู‡ ุงู„ุฑู…ุฒ A ูˆ ููˆู‚ู‡ุง ุณุงู„ุจ ูˆุงุญุฏ if and only if ุงู„
528
+
529
+ 133
530
+ 00:14:18,290 --> 00:14:26,210
531
+ determinant ู„ู„ู€ A ู„ุง ูŠุณุงูˆูŠ zero ู†ุฃุฎุฏ
532
+
533
+ 134
534
+ 00:14:26,210 --> 00:14:33,670
535
+ ุฃูˆู„ ู†ุธุฑูŠุฉ ุนู„ู‰ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน theorem ุจุชู‚ูˆู„ let ุงู„ A ุจ
536
+
537
+ 135
538
+ 00:14:38,070 --> 00:14:56,890
539
+ an n by n matrix if there exists a matrix B such
540
+
541
+ 136
542
+ 00:14:56,890 --> 00:15:01,450
543
+ that ุงู„
544
+
545
+ 137
546
+ 00:15:01,450 --> 00:15:08,650
547
+ A ููŠ ุงู„ B ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ identity matrix I Nุจุนุฏ ุฐู„ูƒ
548
+
549
+ 138
550
+ 00:15:08,650 --> 00:15:15,530
551
+ ุงู„ู€ B ููŠ ุงู„ู€ A ุจูŠูƒูˆู† ุณุงูˆูŠุฉ ุงู„ู€ Identity Matrix I N
552
+
553
+ 139
554
+ 00:15:15,530 --> 00:15:23,410
555
+ ูˆุจุนุฏ ุฐู„ูƒ ุงู„ู€ B ุจูŠูƒูˆู† ุณุงูˆูŠุฉ A ุงู†ูุฑุฒ
556
+
557
+ 140
558
+ 00:15:35,480 --> 00:15:57,820
559
+ ุฃุธู† ุฃู† ู‡ุฐุง ุงู„ุดุฌุฉ ุงู†ุชู‡ูŠ ู‡ู†ุง ู…ู†ู‡ุง ุฎู„ุงุต ูˆูŠู†
560
+
561
+ 141
562
+ 00:15:57,820 --> 00:16:02,860
563
+ ูˆุตู„ุช ุงู„ูˆุฑู‚ุฉ ุงู„ู„ูŠ ุจุชู„ูุŸ ูƒู„ ูˆุงุญุฏุฉ ุนู„ู…ุช ู…ู† ุงู„ู„ูŠ ู‚ุนุฏุช
564
+
565
+ 142
566
+ 00:16:02,860 --> 00:16:16,860
567
+ ุนู„ูŠ ุงุณู…ู‡ุงูƒู„ ูˆุงุญุฏุฉ ุฃุดุฑุฉ ุชุฌุจ ุนู„ูŠ ุงุณู…ู‡ุง ู‡ู†ุง ุทูŠุจ
568
+
569
+ 143
570
+ 00:16:16,860 --> 00:16:20,800
571
+ ู†ุฑุฌุน ู„ section 212 ูˆู‡ูˆ ุขุฎุฑ section ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐุง ุงู„
572
+
573
+ 144
574
+ 00:16:20,800 --> 00:16:25,700
575
+ chapter ุจุชุญุฏุซ ุนู† ู…ุนูƒูˆุซ ุงู„ู…ุตูˆูุฉ ุจุฏุฃ ู†ุนุทูŠ ุชุนุฑูŠู
576
+
577
+ 145
578
+ 00:16:25,700 --> 00:16:31,120
579
+ ู„ู…ุนูƒูˆุซ ุงู„ู…ุตูˆูุฉ ูˆู…ู† ุซู… ู†ุฑูˆุญ ู†ู„ุงู‚ูŠ ูˆู‚ุช ุฅูŠุด ุงู„ู…ุนูƒูˆุซ
580
+
581
+ 146
582
+ 00:16:31,120 --> 00:16:36,310
583
+ ู‡ุฐุง ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุงูุจุนุฏูŠู† ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ
584
+
585
+ 147
586
+ 00:16:36,310 --> 00:16:43,130
587
+ n by n matrix A ู‡ุฐูŠ ู„ู‡ุง ู…ุนูƒูˆุณ B ุฅุฐุง ุชุญู‚ู‚ ู…ุง ูŠุฃุชูŠ
588
+
589
+ 148
590
+ 00:16:43,130 --> 00:16:47,950
591
+ ุฌูŠุช ุนู„ู‰ ุงู„ู…ุตูˆู A ุถุฑุจุช ู…ู† ุงู„ูŠู…ูŠู† ุทู„ุนุช ู…ุตูˆู ุงู„ูˆุงุญุฏุฉ
592
+
593
+ 149
594
+ 00:16:47,950 --> 00:16:52,010
595
+ ุถุฑุจุช ู…ู† ุงู„ุดู…ุงู„ ููŠ ู‡ุฐุง ุงู„ู…ุนูƒูˆุณ ุทู„ุนุช main ู…ุตูˆู
596
+
597
+ 150
598
+ 00:16:52,010 --> 00:16:56,760
599
+ ุงู„ูˆุงุญุฏุฉ ูŠุนู†ูŠ ุฃู†ุงู„ูˆ ุฅุฏุนูŠุช ุฅู†ู‡ ุจูŠู‡ ู‡ุฐู‡ ู…ุนูƒูˆุณ ู„ุงุฒู…
600
+
601
+ 151
602
+ 00:16:56,760 --> 00:16:59,720
603
+ ุฅุฐุง ุถุฑุจุช ููŠ ุฅูŠู‡ ู…ู† ุงู„ูŠู…ูŠู† ุฃูˆ ุถุฑุจุช ููŠ ุฅูŠู‡ ู…ู†
604
+
605
+ 152
606
+ 00:16:59,720 --> 00:17:04,880
607
+ ุงู„ุดู…ุงู„ุŒ ุจุฏูŠ ูŠุนุทูŠู†ูŠ ู…ุตูˆูุฉ ุงู„ูˆุญุฏุฉ ุฅู† ู…ุง ุทู„ุนุด .. ุจุฏูŠ
608
+
609
+ 153
610
+ 00:17:04,880 --> 00:17:08,060
611
+ ูŠุนุทูŠู†ูŠ ู…ุตูˆูุฉ ุงู„ูˆุญุฏุฉ ุฅู† ู…ุง ุทู„ุนุด ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจู‚ู‰
612
+
613
+ 154
614
+ 00:17:08,060 --> 00:17:12,960
615
+ ุงู„ู…ุตูˆูุฉ ุจูŠู‡ ู…ุงู‡ูŠุงุด ู…ุนูƒูˆุณ ุงู„ู…ุตูˆูุฉ ุทุจุนุง ุทุฑุญู†ุง ุณุคุงู„
616
+
617
+ 155
618
+ 00:17:12,960 --> 00:17:17,780
619
+ ู‚ุจู„ ู‚ู„ูŠู„ ู‚ู„ู†ุง ูƒู„ ู…ุตูˆูุฉ ู„ู‡ุง ู…ุนูƒูˆุณ ุงู„ุฅุฌุงุจุฉ ูƒุงู†ุช ู…ุด
620
+
621
+ 156
622
+ 00:17:17,780 --> 00:17:22,390
623
+ ูƒู„ ุงู„ู…ุตูˆูุงุช ู„ู‡ุง ู…ุนูƒูˆุณุงู„ู…ุนูƒูˆุณ ุงู„ุฑูŠู…ุงุฑูƒ ู‡ุฐุง ุจุชู‚ูˆู„ ุงู„
624
+
625
+ 157
626
+ 00:17:22,390 --> 00:17:28,990
627
+ matrix A ู„ู‡ุง ุงู„ู…ุนูƒูˆุณ A ูˆููˆู‚ู‡ ุณุงู„ุจ ูˆุงุญุฏ ู…ุด ุงู‡ ูˆุณุงู„ุจ
628
+
629
+ 158
630
+ 00:17:28,990 --> 00:17:34,650
631
+ ูˆุงุญุฏ ู‡ุฐุง ุฑู…ุฒ ูŠุฏู„ ุนู„ู‰ ู…ุนูƒูˆุณ ุงู„ู…ุตูˆูุฉ ูˆู„ุง ูŠุณูˆูŠ ูˆุงุญุฏ
632
+
633
+ 159
634
+ 00:17:34,650 --> 00:17:39,990
635
+ ุนู„ู‰ ุงูŠู‡ ู„ุงู† ู…ุงุนู†ุฏู†ุงุด ุญุงุฌุฉ ุงุณู…ู‡ุง ู‚ุณู…ุฉ ู…ุตูˆูุงุช ู…ุด
636
+
637
+ 160
638
+ 00:17:39,990 --> 00:17:45,760
639
+ ุนู†ุฏู†ุง ููŠ ุนู„ู… ุงู„ู…ุตูˆูุงุช ุญุงุฌุฉ ุงุณู…ู‡ุง ู‚ุณู…ุฉ ู…ุตูˆูุงุชูŠุจู‚ู‰
640
+
641
+ 161
642
+ 00:17:45,760 --> 00:17:51,720
643
+ ุงู„ู€ A ุฃูุงุฌุฃูˆ ุฃุณ ุณุงู„ุจ ูˆุงุญุฏ ูŠุฏู„ ุนู„ู‰ ู…ุนูƒูˆุณ ุงู„ู…ุตูˆูุฉ
644
+
645
+ 162
646
+ 00:17:51,720 --> 00:17:56,920
647
+ ูˆู„ูŠุณ A ุฃุณ ุณุงู„ุจ ูˆุงุญุฏ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุฑู…ุฒ ูŠุฏู„ ุนู„ู‰
648
+
649
+ 163
650
+ 00:17:56,920 --> 00:18:02,160
651
+ ู…ุนูƒูˆุณ ุงู„ู…ุตูˆูุฉ ูŠุจู‚ู‰ ุงู„ู…ุนูƒูˆุณ ู‡ุฐุง ู…ูˆุฌูˆุฏ ุฅุฐุง ูƒุงู†
652
+
653
+ 164
654
+ 00:18:02,160 --> 00:18:07,920
655
+ ุงู„ู…ุญุฏุฏ ู„ุง ูŠุณุงูˆูŠ Zero ูˆุงู„ุนูƒุณ ู„ูˆ ูƒุงู† ุงู„ู…ุญุฏุฏ ู„ุง ูŠุณุงูˆูŠ
656
+
657
+ 165
658
+ 00:18:07,920 --> 00:18:12,710
659
+ Zero ูŠุจู‚ู‰ ุงู„ู…ุนูƒูˆุณ ู…ุงู„ู‡ุŸู…ูˆุฌูˆุฏ ุทุจุนุงู‹ ู„ูŠุด ู‡ุฐุง ุงู„ูƒู„ุงู…
660
+
661
+ 166
662
+ 00:18:12,710 --> 00:18:17,690
663
+ ู„ุง ูŠุณุงูˆูŠ ุฒุฑุน ุจุนุฏ ู‚ู„ูŠู„ ู‡ู†ู‚ูˆู„ ู„ูƒ ู„ูŠุด ุงู† ุดุงุก ุงู„ู„ู‡ ุทูŠุจ
664
+
665
+ 167
666
+ 00:18:17,690 --> 00:18:21,650
667
+ ุจู‚ูˆู„ little a,b,n,n by n matrix ู†ุธุฑูŠุฉ ุฌุงู„ูŠ ุฅุฐุง
668
+
669
+ 168
670
+ 00:18:21,650 --> 00:18:26,430
671
+ ุฌุฏุฑู†ุง ู†ู„ุงู‚ูŠ matrix B ุจุญูŠุซ ุฃู† ุงู„ A ููŠ ุงู„ B ุจุฏูˆ
672
+
673
+ 169
674
+ 00:18:26,430 --> 00:18:31,630
675
+ ูŠุณุงูˆูŠ ุงู„ identity matrix ูŠุจู‚ู‰ automatic ู„ุงุฒู… ูŠูƒูˆู†
676
+
677
+ 170
678
+ 00:18:31,630 --> 00:18:36,250
679
+ B ููŠ A ุจุฏูˆ ูŠุณุงูˆูŠ ุงู„ identity matrix ูˆุจุงู„ุชุงู„ูŠ B
680
+
681
+ 171
682
+ 00:18:36,250 --> 00:18:43,430
683
+ ุชุจุนุชู†ุง ู‡ุฐู‡ู‡ูŠ ู…ูŠู†ุŸ ู‡ูŠ ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ A ูŠุจู‚ู‰ B ู‡ูŠ
684
+
685
+ 172
686
+ 00:18:43,430 --> 00:18:48,870
687
+ ุนุจุงุฑุฉ ุนู† inverse ุจุฏู†ุง ู†ุฑูˆุญ ู†ุซุจุช ุตุญุฉ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ
688
+
689
+ 173
690
+ 00:18:48,870 --> 00:18:55,210
691
+ ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ ุงู„ุดุบู„ุฉ ุงู„ุฃูˆู„ู‰ ุฃู†ุง ุนู†ุฏูŠ ู†ุธุงู…ู‡ุง N ููŠ M
692
+
693
+ 174
694
+ 00:18:55,480 --> 00:19:01,800
695
+ ู„ูˆ ูˆุฌุฏุช ู…ุตููˆูุฉ ุจูŠ ุถุฑุจุชู‡ุง ููŠ ุฅูŠู‡ ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ุทู„ุน
696
+
697
+ 175
698
+ 00:19:01,800 --> 00:19:05,560
699
+ ุงู„ identityุŸ ุจุฏูŠ ุฃุซุจุช ุฅูŠู‡ุŸ ุฅู†ู‡ ู„ูˆ ุถุฑุจุชู‡ุง ู…ู† ุฌู‡ุฉ
700
+
701
+ 176
702
+ 00:19:05,560 --> 00:19:10,520
703
+ ุงู„ุดู…ุงู„ ุจุฏูŠ ุฃุนุทูŠู†ูŠ ุงู„ identity ูˆุจุงู„ุชุงู„ูŠ ุชุญู‚ู‚ุช ุงู„ู„ูŠ
704
+
705
+ 177
706
+ 00:19:10,520 --> 00:19:17,420
707
+ ููˆู‚ ูˆุจุงู„ุชุงู„ูŠ ุงู„ ุจูŠ ู‡ูŠ ู…ุนูƒุณ ู…ู† ุฅูŠู‡ุŸ ุต๏ฟฝ๏ฟฝูŠุญ ูˆู„ุง ู„ุฃุŸ
708
+
709
+ 178
710
+ 00:19:17,420 --> 00:19:18,860
711
+ ุทูŠุจ ู†ูŠุฌูŠ ู„ู„ proof
712
+
713
+ 179
714
+ 00:19:33,380 --> 00:19:40,890
715
+ ู‡ู„ ู‚ู„ู†ุง ุงู† ุงู„ู…ุนูƒูˆุณ ู…ูˆุฌูˆุฏุŸู…ุง ู‚ู„ู†ุงุด ูŠุจู‚ู‰ ุงู†ุง ุจุฏูŠ
716
+
717
+ 180
718
+ 00:19:40,890 --> 00:19:45,550
719
+ ุงุซุจุชู„ู‡ ุงู† ุงู„ู…ุนูƒูˆุณ ู…ูˆุฌูˆุฏ ู‚ุจู„ ู…ุง ุงุจุฏุฃ ุงุดุชุบู„ ุงู„ุดุบู„
720
+
721
+ 181
722
+ 00:19:45,550 --> 00:19:49,490
723
+ ุงู„ู„ูŠ ู‡ูˆ ุทุงู„ุจู‡ ู‡ุฐุง ุจู‚ูˆู„ูƒ ุงุฐุง ู…ุดุงู† ุงุซุจุช ุงู„ู…ุนูƒูˆุณ
724
+
725
+ 182
726
+ 00:19:49,490 --> 00:19:55,190
727
+ ู…ูˆุฌูˆุฏ ุจุฏูŠ ุงุฎุฏ ุงู„ determinant ู„ู„ุทุฑููŠู† ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ
728
+
729
+ 183
730
+ 00:19:55,190 --> 00:20:00,550
731
+ ูŠุนุทูŠู†ุง ุงู† ุงู„ determinant ู„ู„ A ููŠ ุงู„ B ูŠุณุงูˆูŠ ุงู„
732
+
733
+ 184
734
+ 00:20:00,550 --> 00:20:06,840
735
+ determinant ู„ู…ุตููˆูุฉ ุงู„ูˆุงุญุฏุฉ ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุงู‡ุฐุง
736
+
737
+ 185
738
+ 00:20:06,840 --> 00:20:10,160
739
+ ู…ุนู†ุงู‡ ู…ูŠู†ุŸ ุงู„ู€ determinant ู„ู€ A ููŠ ุงู„ู€ determinant
740
+
741
+ 186
742
+ 00:20:10,160 --> 00:20:15,860
743
+ ู„ู€ B ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงุชู‡ ุงู„ู€ determinant ู„ู€ A ููŠ ุงู„ู€
744
+
745
+ 187
746
+ 00:20:15,860 --> 00:20:20,320
747
+ determinant ู„ู€ B ุจุฏู‡ ูŠุณุงูˆูŠ ุฌุฏุงุด ุงู„ determinant
748
+
749
+ 188
750
+ 00:20:20,320 --> 00:20:21,840
751
+ ู„ู…ุตูˆูุฉ ุงู„ูˆุญุฏุฉุŸ
752
+
753
+ 189
754
+ 00:20:28,940 --> 00:20:35,180
755
+ ู…ู…ุชุงุฒ ุฌุฏุง ูŠุจู‚ู‰ ุงู†ุง ุทู„ุนุช ุญุตู„ ุถุฑุจ ูƒู…ูŠุชูŠู† ูŠุณุงูˆูŠ ูˆุงุญุฏ
756
+
757
+ 190
758
+ 00:20:35,180 --> 00:20:41,050
759
+ ุตุญูŠุญ ูˆุงุชู†ูŠู† are real numberู‡ู„ ูŠู…ูƒู† ู„ุฃุญุฏู‡ู…ุง ุฃู† ุชูƒูˆู†
760
+
761
+ 191
762
+ 00:20:41,050 --> 00:20:45,070
763
+ zero ููŠ ูŠูˆู… ู…ู† ุงู„ุฃูŠุงู…ุŒ ูˆู„ูˆ ู…ุฑุฉ ูˆุงุญุฏุฉ ููŠ ุงู„ุชุงุฑูŠุฎุŒ
764
+
765
+ 192
766
+ 00:20:45,070 --> 00:20:50,650
767
+ ู„ูŠุณ ุฅู…ูƒุงู†ูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ determinant ู„ู„ุงูŠู‡
768
+
769
+ 193
770
+ 00:20:50,650 --> 00:20:55,530
771
+ ู„ุง ูŠู…ูƒู† ุฃู† ูŠุณุงูˆูŠ zero ู…ุงุฏุงู… ุญุตู„ ุถุฑุจ ุงู„ุฃุชู†ูŠู† ุจุณูˆุนุฉ
772
+
773
+ 194
774
+ 00:20:55,530 --> 00:21:00,100
775
+ ุตุญูŠุญ ูŠุจู‚ู‰ ุฃุญุฏู‡ู… ู„ุงูŠู…ูƒู† ุฃู† ูŠูƒูˆู† zeroูˆู„ูˆ ูƒุงู† Zero
776
+
777
+ 195
778
+ 00:21:00,100 --> 00:21:04,240
779
+ ู„ุฃุตุจุญ ุงู„ู†ุงุชุฌ ูŠุณุงูˆูŠ Zero ุทูŠุจ ุฅุฐุง ุงู„ determinant
780
+
781
+ 196
782
+ 00:21:04,240 --> 00:21:11,200
783
+ ู„ุฅูŠู‡ ู„ุฃ ูŠุณุงูˆูŠ Zero ู…ุนู†ุงุชู‡ ุงู„ู…ุนูƒูˆุณ ู…ุงู„ู‡ exist ูŠุจู‚ู‰
784
+
785
+ 197
786
+ 00:21:11,200 --> 00:21:20,560
787
+ ู‡ุฐุง ุจุฏูŠ ุฃุนุทูŠู‡ ู„ูƒ the inverse matrix ู„ุฅูŠู‡ inverse
788
+
789
+ 198
790
+ 00:21:20,560 --> 00:21:25,140
791
+ exist exist
792
+
793
+ 199
794
+ 00:21:25,140 --> 00:21:35,090
795
+ ูƒูˆูŠุณุฃุญู†ุง ุจู†ุซุจุช ุงู† b ููŠ a ูŠุณูˆู‰ ุงู„ identity ู„ูˆ ุฑุญุช
796
+
797
+ 200
798
+ 00:21:35,090 --> 00:21:47,550
799
+ ูˆู‚ู„ุช ุงูุชุฑุถูŠ ุงู† ุนู†ุฏูŠ ู…ุตููˆูุฉ c ุชุณุงูˆูŠ b ููŠ a ุฌูŠุช
800
+
801
+ 201
802
+ 00:21:47,550 --> 00:21:54,200
803
+ ุงู†ุง ู‚ู„ุช ู„ู‡ ุฎุฏู„ูŠ ู‡ู†ุง ุงู„ a ููŠ cุดูˆู ุงู„ู„ูŠ ุจุงู„ู„ู‡ ูƒุฏู‡
804
+
805
+ 202
806
+ 00:21:54,200 --> 00:22:00,720
807
+ ุจุชุทู„ุน ู‡ุฐู‡ ุจู‚ูˆู„ ู„ู‡ ุงู‡ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ a ููŠ c main
808
+
809
+ 203
810
+ 00:22:00,720 --> 00:22:07,700
811
+ ุนู†ุฏูŠ ู„ b ููŠ ุงู„ a ุตุญูŠุญ ูˆู„ุง ู„ุฃ ุงู„ุณุคุงู„ ู‡ูˆ ุฎุงุตูŠุฉ ุงู„
812
+
813
+ 204
814
+ 00:22:07,700 --> 00:22:12,260
815
+ associative ุตุญูŠุญุฉ ุนู„ู‰ ุงู„ู…ุตุจูˆุญุงุช ูˆู„ุง ู„ุฃ ุฎุงุตูŠุฉ ุงู„ุฏู…ุฌ
816
+
817
+ 205
818
+ 00:22:12,260 --> 00:22:18,620
819
+ ุตุญูŠุญุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ a b ููŠ main ููŠ ุงู„
820
+
821
+ 206
822
+ 00:22:18,620 --> 00:22:24,670
823
+ aุทุจุนุง ุงู†ุง ุนู†ุฏูŠ ู…ุนุทูŠุงุช ุงู† ุงู„ู€ A B ู‚ุฏ ุดูˆ ุณุงูˆูŠ ุงู„
824
+
825
+ 207
826
+ 00:22:24,670 --> 00:22:33,470
827
+ identity ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ identity matrix ููŠ ุงู„ A A
828
+
829
+ 208
830
+ 00:22:33,470 --> 00:22:38,330
831
+ B ุงุญู†ุง ู‚ูˆู„ู†ุง A C ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฐุง ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ู…ูŠู†ุŸ
832
+
833
+ 209
834
+ 00:22:38,640 --> 00:22:42,540
835
+ ู‡ุฐุง ุงู„ูƒู„ุงู…
836
+
837
+ 210
838
+ 00:22:42,540 --> 00:22:47,420
839
+ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ identity matrix ููŠ ุงู„ A ุทุจ ุงู„
840
+
841
+ 211
842
+ 00:22:47,420 --> 00:22:51,080
843
+ identity matrix ู„ูˆ ุถุฑุจุชู‡ุง ููŠ ุฃูŠ ู…ุตููˆูุฉ ุฅูŠุด ุงู„ู†ุงุชุฌุŸ
844
+
845
+ 212
846
+ 00:22:51,080 --> 00:22:58,340
847
+ ู†ูุณ ุงู„ู…ุตููˆูุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ูŠ ุงู„ A ูŠุจู‚ู‰ ูŠุง ุจู†ุงุช
848
+
849
+ 213
850
+ 00:22:58,340 --> 00:23:04,070
851
+ ุฅูŠุด ุตุงุฑ ุนู†ุฏูŠุŸ ุฅู† ุงู„ A ููŠ ุงู„ C ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ Aู‡ูŠ
852
+
853
+ 214
854
+ 00:23:04,070 --> 00:23:11,750
855
+ ุงู„ู„ูŠ ุทู„ุนุช ู…ู†ู‡ ู…ุธุจูˆุท ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ a ููŠ ุงู„ c ู†ุงู‚ุต
856
+
857
+ 215
858
+ 00:23:11,750 --> 00:23:16,790
859
+ ุงู„ a ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ Zero ุทุจุนุง ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงู„ุตูุฑูŠุฉ
860
+
861
+ 216
862
+ 00:23:16,790 --> 00:23:21,550
863
+ ู…ุด ุงู„ุนู†ุตุฑ ุงู„ุตูุฑูŠ ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ zero ุงู„ู„ูŠ ู…ุทุงูˆู„ุฉ
864
+
865
+ 217
866
+ 00:23:21,550 --> 00:23:27,250
867
+ ุจุงู„ุดูƒู„ ู‡ุฐุง ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงู„ุตูุฑูŠุฉ ุณุคุงู„ุจู†ู‚ุฏุฑ ู†ุงุฎุฏ
868
+
869
+ 218
870
+ 00:23:27,250 --> 00:23:32,590
871
+ ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูŠุจู‚ู‰ ุงูŠุด ุจูŠุตูŠุฑ ุนู†ุฏู†ุงุŸ
872
+
873
+ 219
874
+ 00:23:32,590 --> 00:23:38,490
875
+ ุงูŠ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุธู„ C ู†ู‚ุต ูƒุฏู‡ุŸ ู†ู‚ุต ูˆุงุญุฏ
876
+
877
+ 220
878
+ 00:23:41,650 --> 00:23:46,990
879
+ ู†ู‚ุต ุงู„ identity matrix ู…ุด ูˆุงุญุฏ ูŠุจู‚ู‰ ู†ุงู‚ุต ุงู„
880
+
881
+ 221
882
+ 00:23:46,990 --> 00:23:52,110
883
+ identity matrix ูˆ ุฅู„ุง ูˆ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ
884
+
885
+ 222
886
+ 00:23:52,110 --> 00:23:58,190
887
+ ุจุฏู‡ ูŠุณุงูˆูŠ ุฒูŠ ู…ุง ูˆ ุฅู„ุง ู„ูˆ ูƒุงู† ูˆุงุญุฏ ู‡ู„ ุจู‚ุฏุฑ ุฃุถูŠู
888
+
889
+ 223
890
+ 00:23:58,190 --> 00:24:03,380
891
+ ุงู„ูˆุงุญุฏ ู„ุฃูŠ ู…ุตููˆูุฉุŸูˆู„ูˆ ูƒุงู† ูˆุงุญุฏ ูƒุงู† ู‚ูˆู„ู†ุง ู‡ุฐู‡ ูŠุจู‚ู‰
892
+
893
+ 224
894
+ 00:24:03,380 --> 00:24:07,160
895
+ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ Zero ุฃูˆ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ Zero ุตุญูŠุญ
896
+
897
+ 225
898
+ 00:24:07,160 --> 00:24:11,800
899
+ ูˆู„ุง ู„ุงุŸ ุฅุฐุง ุจุตูŠุฑ ุงู„ C ู†ู‚ุต ู„ู„ูˆุงุญุฏ ุชุณุงูˆูŠ Zero ูŠุจู‚ู‰
900
+
901
+ 226
902
+ 00:24:11,800 --> 00:24:15,880
903
+ ุงู„ู…ุตููˆูุฉ C ุชุณุงูˆูŠ Zero ุตุญูŠุญ ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ ุฃูˆ ุชุณุงูˆูŠ
904
+
905
+ 227
906
+ 00:24:15,880 --> 00:24:20,700
907
+ ูˆุงุญุฏ ูˆุงุญุฏ number ุฑู‚ู… ู…ุด ู…ุตููˆูุฉ ูŠุจู‚ู‰ ู„ูŠุณ ุตุญูŠุญ ูŠุจู‚ู‰
908
+
909
+ 228
910
+ 00:24:20,700 --> 00:24:25,280
911
+ ู„ู…ุง ู†ุงุฎุฏ ุนุงู…ู„ ู…ุดุชุฑูƒ ููŠ ุญุงู„ุฉ ุงู„ู…ุตููˆูุฉ ุจุฏู„ ุงู„ูˆุงุญุฏ ููŠ
912
+
913
+ 229
914
+ 00:24:25,280 --> 00:24:30,250
915
+ ุงู„ุนู…ู„ูŠุฉ ุงู„ุดุบู„ ุงู„ุนุงุฏู‰ ุจูŠุตูŠุฑ ุงู„ identity matrixุชู…ุงู…
916
+
917
+ 230
918
+ 00:24:30,250 --> 00:24:35,390
919
+ ุชู…ุงู… ูŠุจู‚ู‰ ุชูˆุตู„ู†ุง ุงู„ู‰ ุงู†ู‡ ุงู„ูƒู„ุงู… ุงู„ู„ู‰ ุนู†ุฏู†ุง ุทูŠุจ
920
+
921
+ 231
922
+ 00:24:35,390 --> 00:24:40,410
923
+ ุงุญู†ุง ุนู†ุฏู†ุง ูŠุง ุจู†ุงุช ุงู† ุงู„ a inverse exist ูˆ ุงู„
924
+
925
+ 232
926
+ 00:24:40,410 --> 00:24:47,170
927
+ determinant ู„ุง ูŠู…ูƒู† ุงู† ูŠุณุงูˆูŠ zero ุชู…ุงู… ูŠุจู‚ู‰ ู…ุนู†ู‰
928
+
929
+ 233
930
+ 00:24:47,170 --> 00:24:52,330
931
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู† ุงู„ู…ุตูˆูุฉ ู„ุง ูŠู…ูƒู† ุงู† ุชุณุงูˆูŠ zero ูŠุจู‚ู‰
932
+
933
+ 234
934
+ 00:24:52,330 --> 00:24:57,370
935
+ ู…ูŠู† ุงู„ู„ู‰ ุจุฏู‡ ูŠุณุงูˆูŠ zero ุงู„ C ู†ุงู‚ุต ุงู„ู„ู‡ ุงูˆ ุจู…ุนู†ู‰
936
+
937
+ 235
938
+ 00:24:57,370 --> 00:25:02,830
939
+ ุงุฎุฑู…ู† ู…ุนู†ู‰ ุขุฎุฑ ุจุฏูŠ ุฃุฌูŠุจู„ูƒ ุจุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ู„ูˆ ุถุฑุจุช
940
+
941
+ 236
942
+ 00:25:02,830 --> 00:25:08,370
943
+ ุงู„ุทุฑููŠู† ููŠ a inverse ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ูŠุจู‚ุงุด ุจูŠุตูŠุฑ
944
+
945
+ 237
946
+ 00:25:08,370 --> 00:25:17,150
947
+ ุนู†ุฏูŠ ุงู„ a inverse a ููŠ c minus ุงู„ I ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ
948
+
949
+ 238
950
+ 00:25:17,150 --> 00:25:24,890
951
+ ุงู„ a inverse ููŠ ุงู„ zero ู…ุธุจูˆุทุŸ ุทูŠุจ ุงู„ a ููŠ ุงู„ a
952
+
953
+ 239
954
+ 00:25:24,890 --> 00:25:29,760
955
+ inverse ุดูˆ ุจุชุนุทูŠู†ุง ู‡ุฐู‡ุŸู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ ุงู„ identity
956
+
957
+ 240
958
+ 00:25:29,760 --> 00:25:33,280
959
+ ุงู„ identity matrix ู„ู…ุง ู†ุถุฑุจู‡ุง ููŠ ุฃูŠ ู…ุตููˆูุฉ ุงูŠุด
960
+
961
+ 241
962
+ 00:25:33,280 --> 00:25:38,300
963
+ ุจูŠุนุทูŠู†ุง ู†ูุณ ุงู„ู…ุตููˆูุฉ ู…ุธุจูˆุท ุทุจุนุง ูŠุง ุจู†ุงุช ู„ู…ุง ุงู‚ูˆู„ I
964
+
965
+ 242
966
+ 00:25:38,300 --> 00:25:44,200
967
+ ูƒู„ู‡ I in ู‡ุฐู‡ ูƒู„ู‡ I in ุฒูŠ ู…ุง ู‡ูŠ ู…ุงุดูŠ ู…ุนุงู†ุง I in
968
+
969
+ 243
970
+ 00:25:44,200 --> 00:25:51,800
971
+ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู„ identity matrix I in ููŠ C minus
972
+
973
+ 244
974
+ 00:25:51,800 --> 00:25:58,010
975
+ ุงู„ I inูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุงู„ู…ุตููˆูุฉ ุงู„ุตูุฑูŠุฉ ู‡ุฐุง
976
+
977
+ 245
978
+ 00:25:58,010 --> 00:26:05,370
979
+ ู…ุนู†ุงู‡ ุงู† ุงู„ู€C minus IN ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุฑุŸ ู„ู‡ Zero ูŠุจู‚ู‰
980
+
981
+ 246
982
+ 00:26:05,370 --> 00:26:13,650
983
+ ุงู„ู€C ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู…ุตููˆูุฉ IM ู…ู† ู‡ูŠ ุงู„ู€CุŸ ุจูŠ ููŠ A
984
+
985
+ 247
986
+ 00:26:13,650 --> 00:26:19,430
987
+ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุจูŠ ููŠ A ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ identity
988
+
989
+ 248
990
+ 00:26:19,430 --> 00:26:24,580
991
+ magical as in ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจุŸุจูŠุจุฏูˆุง ูŠุณูˆูˆุง ุงู„
992
+
993
+ 249
994
+ 00:26:24,580 --> 00:26:28,720
995
+ identity ุจูŠุจุฏูˆุง
996
+
997
+ 250
998
+ 00:26:28,720 --> 00:26:31,920
999
+ ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง
1000
+
1001
+ 251
1002
+ 00:26:31,920 --> 00:26:34,120
1003
+ ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง
1004
+
1005
+ 252
1006
+ 00:26:34,120 --> 00:26:37,840
1007
+ ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง
1008
+
1009
+ 253
1010
+ 00:26:37,840 --> 00:26:37,900
1011
+ ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง
1012
+
1013
+ 254
1014
+ 00:26:37,900 --> 00:26:37,900
1015
+ ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง
1016
+
1017
+ 255
1018
+ 00:26:37,900 --> 00:26:37,900
1019
+ ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง
1020
+
1021
+ 256
1022
+ 00:26:37,900 --> 00:26:37,900
1023
+ ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง
1024
+
1025
+ 257
1026
+ 00:26:37,900 --> 00:26:37,900
1027
+ ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง
1028
+
1029
+ 258
1030
+ 00:26:37,900 --> 00:26:37,900
1031
+ ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง ูŠุณูˆูˆุง ุงู„ identity ุจูŠุจุฏูˆุง
1032
+
1033
+ 259
1034
+ 00:26:37,900 --> 00:26:40,600
1035
+ ูŠุณูˆูˆุง ุงู„ identity ุจูŠุงู„ู€ A ููŠ B ุจุฏูŠู‡ ูŠุณุงูˆูŠ ุงู„ู€
1036
+
1037
+ 260
1038
+ 00:26:40,600 --> 00:26:45,880
1039
+ Identity and ุงู„ู€ B ููŠ ุงู„ู€ A ุจุฏูŠู‡ ูŠุณุงูˆูŠ ุงู„ู€
1040
+
1041
+ 261
1042
+ 00:26:45,880 --> 00:26:51,440
1043
+ Identity Matrix ุงู„ู„ูŠ ู‡ูˆ IN ุญุณุจ ุงู„ู€ Definition ู‡ุฐุง
1044
+
1045
+ 262
1046
+ 00:26:51,440 --> 00:26:58,440
1047
+ ุจุฏูŠ ูŠุนุทูŠู†ุง ุฃู†ู‡ ุจูŠุจุฏุฃ ูŠุณุงูˆูŠ ุงู„ู€ A inverse ูŠุนู†ูŠ ู‡ูŠ
1048
+
1049
+ 263
1050
+ 00:26:58,440 --> 00:27:05,070
1051
+ ู…ุนูƒูˆุณ ุงู„ู…ุตูˆูุฉ Aุทุจ ุฎู„ูŠู†ูŠ ุฃุณุฃู„ ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠ ู‡ู„ ูŠู…ูƒู†
1052
+
1053
+ 264
1054
+ 00:27:05,070 --> 00:27:12,450
1055
+ ุงู„ู…ุตูˆูุฉ ุฃู† ูŠูƒูˆู† ู„ู‡ุง ุฃูƒุซุฑ ู…ู† ู…ุนูƒูˆุณุŸ ูŠุนู†ูŠ ูƒู„ ุงู„ู…ุตูˆู
1056
+
1057
+ 265
1058
+ 00:27:12,450 --> 00:27:18,470
1059
+ ู…ุนูƒูˆุณูŠู†ุŒ ุชู„ุงุชุฉุŒ ุฃุฑุจุนุฉุŒ ุฎู…ุณุฉุŸ ูŠุนู†ูŠ ู…ุนูƒูˆุณุง ู…ุญูŠุฏุงุŒ ุจุณ
1060
+
1061
+ 266
1062
+ 00:27:18,470 --> 00:27:22,850
1063
+ ุจุฏู†ุง ู†ุซุจุช ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู…ุŒ ูŠุจู‚ู‰ ู‡ุฏู ุฃู† ู†ุญุทู‡ ุนู„ู‰
1064
+
1065
+ 267
1066
+ 00:27:22,850 --> 00:27:25,510
1067
+ ุตูŠุบุฉ ๏ฟฝ๏ฟฝู„ู†ุธุฑูŠุฉ ุงู„ุชุงู„ูŠุฉ
1068
+
1069
+ 268
1070
+ 00:27:56,110 --> 00:27:59,970
1071
+ ู„ูˆ ูƒุงู†ุช A ู…ุนูƒูˆุณุฉ
1072
+
1073
+ 269
1074
+ 00:28:02,270 --> 00:28:14,630
1075
+ ุงู„ู€ B ู‡ุฐู‡ is the unique inverse of A ู†ุธุฑูŠุฉ ู…ุฑุฉ
1076
+
1077
+ 270
1078
+ 00:28:14,630 --> 00:28:21,550
1079
+ ุชุงู†ูŠุฉุจู‚ูˆู„ ู„ูŠุดุŸ ู„ูˆ ูƒุงู† ุงู„ู€ A ู…ุตุญูˆูุฉ ู…ุฑุจุนุฉ ู†ุธุงู…ู‡ุง N
1080
+
1081
+ 271
1082
+ 00:28:21,550 --> 00:28:27,150
1083
+ ููŠ N ูˆูƒุงู† B ู‡ูˆ ู…ุนูƒูˆุณ ุงู„ู€ A then B is the unique
1084
+
1085
+ 272
1086
+ 00:28:27,150 --> 00:28:33,170
1087
+ inverse of A ูŠุจู‚ู‰ B ู‡ูŠ ุงู„ู…ุนูƒูˆุณ ุงู„ูˆุญูŠุฏ ู„ุฅูŠู‡ุŸ unique
1088
+
1089
+ 273
1090
+ 00:28:33,170 --> 00:28:39,390
1091
+ inverse ูŠุจู‚ู‰ ุงู„ู…ุนูƒูˆุณ ุงู„ูˆุญูŠุฏ ู„ู„ู…ุตุญูˆู A ูŠุนู†ูŠ ุงู„ู…ุตุญูˆู
1092
+
1093
+ 274
1094
+ 00:28:39,390 --> 00:28:45,190
1095
+ A ู„ุง ูŠูˆุฌุฏ ู„ู‡ุง ุฅู„ุง ู…ุนูƒูˆุณ ูˆุญูŠุฏ ูˆุงุญุฏ ูู‚ุทุฏู‡ ุบูŠุฑ ุทุจ
1096
+
1097
+ 275
1098
+ 00:28:45,190 --> 00:28:50,950
1099
+ ู†ุซุจุช ู‡ุฐุง ุงู„ูƒู„ุงู… ู†ุซุจุชู‡ ูƒูŠู ุจุฑูˆุญ ุจูุฑุถ ุงู† ููŠ ุนู†ุฏูŠ
1100
+
1101
+ 276
1102
+ 00:28:50,950 --> 00:28:57,470
1103
+ ู…ุนูƒูˆุณูŠู† ู„ู„ู…ุตูˆูุฉ A ูˆ ุจุฑูˆุญ ุจุซุจุช ุงู† ู‡ุฐุงู† ุงู„ู…ุนูƒูˆุณูŠู†
1104
+
1105
+ 277
1106
+ 00:28:57,470 --> 00:29:04,990
1107
+ ู…ุชุณุงูˆูŠุงู† ูˆุงู„ู„ู‡ ุงู† ู‡ุฐูŠู† ุงู„ู…ุนูƒูˆุณูŠู† ู…ุชุณุงูˆูŠุงู† ู…ุธุจูˆุท
1108
+
1109
+ 278
1110
+ 00:29:04,990 --> 00:29:09,670
1111
+ ุทุจุนุง ุงู†ู‡ุง ุจุชู†ุตุจ ุงุณู… ูˆ ุจุชุฑูุน ุฎุจุฑู‡ุง ู…ุด ู‡ูŠูƒ ูˆ ุงู† ู‡ุฐูŠู†
1112
+
1113
+ 279
1114
+ 00:29:09,670 --> 00:29:15,690
1115
+ ุงู„ู…ุนูƒูˆุณูŠู† ู…ุชุณุงูˆูŠุฉูŠุจู‚ู‰ ุจู†ุฑุฌุน ุขูŠุฉ ู‡ู†ุง ุชุงู†ูŠ ูŠุจู‚ู‰ ุฃู†ุง
1116
+
1117
+ 280
1118
+ 00:29:15,690 --> 00:29:19,550
1119
+ ุจุฏูŠ ุฃูุฑุถ ุฃู†ู‡ ุนู†ุฏูŠ ู…ุนูƒุณูŠู† ู‡ูˆ ู‚ุงู„ ู„ูŠ ู…ูŠู† ู‚ุงู„ ู„ูŠ ุจูŠ
1120
+
1121
+ 281
1122
+ 00:29:19,550 --> 00:29:23,430
1123
+ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃู‚ูˆู„ู‡ ุจุฏูŠ ุฃูุชุฑุถ ุฃู†ู‡ ุจูŠ ูˆ ุณูŠ ู…ุนูƒุณูŠู†
1124
+
1125
+ 282
1126
+ 00:29:23,430 --> 00:29:34,650
1127
+ ู„ู„ู…ุตูˆูุฉ ู…ู† ุงูŠู‡ ูŠุจู‚ู‰ ู‡ู†ุง assume that ุฃู† ุงู„ ุจูŠ and
1128
+
1129
+ 283
1130
+ 00:29:34,650 --> 00:29:38,810
1131
+ ุงู„ ุณูŠ are two
1132
+
1133
+ 284
1134
+ 00:29:41,570 --> 00:29:52,570
1135
+ inverses of the matrix A then
1136
+
1137
+ 285
1138
+ 00:29:52,570 --> 00:29:58,390
1139
+ ู…ุฏุงู„ู‡ุง ุฏูˆู„ ู…ุนูƒูˆุณูŠู† ุทุจู‚ุง ู„ู‡ุฐุง ุงู„ุชุนุฑูŠู ูŠุจู‚ุงุด ุจุฏู‡
1140
+
1141
+ 286
1142
+ 00:29:58,390 --> 00:30:05,610
1143
+ ูŠุตูŠุฑ ุนู†ู‡ุง A ููŠ B ุจุฏู‡ ูŠุณุงูˆูŠ B ููŠ A ุจุฏู‡ ูŠุณุงูˆูŠ
1144
+
1145
+ 287
1146
+ 00:30:05,610 --> 00:30:12,970
1147
+ identity matrixูˆุทุจุนุงู‹ ูƒูˆู† ุงู„ู†ุธุงู… N ููŠ N ูŠุจู‚ู‰ ุงู„ I
1148
+
1149
+ 288
1150
+ 00:30:12,970 --> 00:30:23,030
1151
+ N ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุงู„ A C ุจุฏู‡ ูŠุณุงูˆูŠ C ููŠ A ุจุฏู‡ ูŠุณุงูˆูŠ
1152
+
1153
+ 289
1154
+ 00:30:23,030 --> 00:30:25,970
1155
+ ุงู„ identity matrix I N
1156
+
1157
+ 290
1158
+ 00:30:29,230 --> 00:30:34,270
1159
+ ุจุฏูŠ ุฃุซุจุช ุฅูŠู‡ ูŠุง ุจู†ุงุชุŸ ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ู…ุตูˆูุฉ A ุจุฏูŠ
1160
+
1161
+ 291
1162
+ 00:30:34,270 --> 00:30:40,130
1163
+ ุฃุซุจุช ุฅู† ุงู„ู…ุตูˆูุฉ B ู‡ูŠ ู†ูุณ ุงู„ู…ุตูˆูุฉ ู…ู† C ูŠุจู‚ู‰ ุจุฏุงุฌูŠ
1164
+
1165
+ 292
1166
+ 00:30:40,130 --> 00:30:49,330
1167
+ ุฃู‚ูˆู„ ู„ู‡ consider ุฎุฏู„ูŠ ุงู„ู…ุตูˆูุฉ B ุฅูŠุด ุฑุฃูŠูƒ ุงู„ู€ B
1168
+
1169
+ 293
1170
+ 00:30:49,330 --> 00:30:56,650
1171
+ ู‡ุฐู‡ุŸ ู…ุด ู‡ูŠ ุนุจุงุฑุฉ ุนู† B ููŠ ุงู„ identity ุตุญ ูˆู„ุง ู„ุฃุŸ
1172
+
1173
+ 294
1174
+ 00:30:56,650 --> 00:31:04,090
1175
+ ุตุญุŸุทูŠุจ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ identity ุจู‚ุฏุฑ ุงุดูŠู„ู‡ุง ูˆ
1176
+
1177
+ 295
1178
+ 00:31:04,090 --> 00:31:09,350
1179
+ ุงูƒุชุจ ุจุฏุงู„ู‡ุง ุงูŠ ูˆุงุญุฏุฉ ู…ู† ู‡ุฏูˆู„ ุตุญ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„
1180
+
1181
+ 296
1182
+ 00:31:09,350 --> 00:31:13,510
1183
+ identity ุจุฏู‡ุง ุงุญุท ู…ุซู„ุง ุงู„ AC
1184
+
1185
+ 297
1186
+ 00:31:15,520 --> 00:31:20,180
1187
+ ุทุจ ู„ูŠุด ู…ุงุงุฎุฏุชุด ูˆู„ุง ูˆุงุญุฏุฉ ู…ู† ู‡ุฏูˆู„ุŸ ุจู‚ูˆู„ ุงู‡ ู„ุฃู†ู‡ ุงู†ุง
1188
+
1189
+ 298
1190
+ 00:31:20,180 --> 00:31:25,780
1191
+ ุจุฏูŠ ุงุซุจุช ุงู†ู‡ B ุชุณุงูˆูŠ CุŒ ุงุฐุง ุจุฏูŠ ุงุฏุฎู„ C ู…ุนุงู†ุงุŒ ู…ุดุงู†
1192
+
1193
+ 299
1194
+ 00:31:25,780 --> 00:31:31,940
1195
+ ู†ู‚ุฏุฑ ู†ูˆุตู„ ู„ู‡ุงุŒ ูŠุจู‚ู‰ ุงู†ุง ุดูŠู„ุช ุงู„ identity matrix IN
1196
+
1197
+ 300
1198
+ 00:31:31,940 --> 00:31:38,570
1199
+ ูˆุญุทูŠุช ุจุฏู„ู‡ุง ICุงู„ุงู…ู† ุฎุงุตูŠุฉ ุงู„ associative ุนู„ู‰
1200
+
1201
+ 301
1202
+ 00:31:38,570 --> 00:31:47,580
1203
+ ุงู„ู…ุตูˆูุงุช ูŠุจู‚ู‰ ู‡ุงุฏูŠ ุนุจุงุฑุฉ ุนู† ุจูŠ ููŠ ุงู„ู…ุตูˆูุฉ Cุจุชุฑุฌุน
1204
+
1205
+ 302
1206
+ 00:31:47,580 --> 00:31:53,480
1207
+ ู‡ู†ุง ุงู„ B ููŠ A ุจู‚ุฏุงุด ุจุงู„ identity matrix I N ููŠ
1208
+
1209
+ 303
1210
+ 00:31:53,480 --> 00:31:58,700
1211
+ ุงู„ู…ุตู‡ูˆูุฉ C ุงู„ identity matrix ู„ู…ุง ู†ุถุฑุจู‡ุง ููŠ ุฃูŠ
1212
+
1213
+ 304
1214
+ 00:31:58,700 --> 00:32:03,840
1215
+ ู…ุตู‡ูˆูุฉ ุจูŠุทู„ุน ู…ูŠู†ุŸ ู†ูุณ ุงู„ู…ุตู‡ูˆูุฉ ูŠุจู‚ู‰ ุจู†ุงุกู‹ ุนู„ูŠู‡
1216
+
1217
+ 305
1218
+ 00:32:03,840 --> 00:32:09,500
1219
+ ุตุงุฑุช B ุชุณุงูˆูŠ ู…ูŠู†ุŸ ุชุณุงูˆูŠ C ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู†ู‡
1220
+
1221
+ 306
1222
+ 00:32:09,500 --> 00:32:16,110
1223
+ ู…ุงุนู†ุฏูŠุด ุงู„ู„ูŠ Aู…ุนูƒูˆุณ ูˆุงุญุฏ ูู‚ุท ู„ุง ุบูŠุฑ ูŠุจู‚ู‰ So P is
1224
+
1225
+ 307
1226
+ 00:32:16,110 --> 00:32:24,230
1227
+ the unique inverse of the matrix A ูŠุจู‚ู‰ ู‡ู†ุง So P
1228
+
1229
+ 308
1230
+ 00:32:24,230 --> 00:32:31,330
1231
+ is the unique inverse
1232
+
1233
+ 309
1234
+ 00:32:31,330 --> 00:32:36,550
1235
+ of
1236
+
1237
+ 310
1238
+ 00:32:39,910 --> 00:32:48,730
1239
+ The Matrix A ู‡ูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ูˆุญูŠุฏ ุงู„ุฐูŠ ู„ุง ูŠูˆุฌุฏ ุบูŠุฑู‡
1240
+
1241
+ 311
1242
+ 00:32:52,370 --> 00:33:00,030
1243
+ ุทูŠุจ ุงู„ุณุคุงู„ ู‡ูˆ ูƒูŠู ูŠู…ูƒู† ุฅูŠุฌุงุฏ ุงู„ู…ุนูƒูˆุณ ู„ู…ุตูˆูุฉ ู…ุงุŸ
1244
+
1245
+ 312
1246
+ 00:33:00,030 --> 00:33:04,770
1247
+ ุงุญู†ุง ุงุชูƒู„ู…ู†ุง ูˆุญุทูŠู†ุง ุงู„ุนู†ูˆุงู† ู…ุนูƒูˆุณ ุงู„ู…ุตูˆูุฉ ุญุชู‰ ุงู„ุขู†
1248
+
1249
+ 313
1250
+ 00:33:04,770 --> 00:33:09,050
1251
+ ู‚ู„ู†ุง ุจุณ ูˆุฌูˆุฏ ุงู„ู…ุนูƒูˆุณ ู…ูˆุฌูˆุฏ ูˆ ุงู„ู„ู‡ ู…ุด ู…ูˆุฌูˆุฏ ูˆ
1252
+
1253
+ 314
1254
+ 00:33:09,050 --> 00:33:13,310
1255
+ ูˆุงุฌุฏุงุด ูˆ ู…ูˆุญูŠุฏ ูˆ ุงู„ู„ู‡ ู…ุด ูˆุงุญุฏ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูƒู† ูƒูŠู
1256
+
1257
+ 315
1258
+ 00:33:13,310 --> 00:33:18,310
1259
+ ู†ุฌุฏ ู‡ุฐุง ุงู„ู…ุนูƒูˆุณ ู„ุณู‡ ู…ุด ุนุงุฑููŠู† ู„ุฐู„ูƒ ู‡ุฑูˆุญ ู†ุญุท ุงู„ุณุคุงู„
1260
+
1261
+ 316
1262
+ 00:33:18,310 --> 00:33:21,330
1263
+ ุงู„ุชุงู„ูŠ ุงู„ุณุคุงู„ ู‡ูˆ
1264
+
1265
+ 317
1266
+ 00:33:24,770 --> 00:33:40,670
1267
+ to find a inverse for the n by n matrix A ุงู„ุดูƒู„
1268
+
1269
+ 318
1270
+ 00:33:40,670 --> 00:33:47,170
1271
+ ู„ุฃู† ุฃู†ุง ุงู„ุงุฌุงุจุฉ ููŠ ุฃูƒุซุฑ ู…ู† ุทุฑูŠู‚ุฉ ุจุงู„ุฏุงุฎู„ ุงู„ first
1272
+
1273
+ 319
1274
+ 00:33:47,170 --> 00:33:55,140
1275
+ method ุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ู„ุฅูŠุฌุงุฏ ุงู„ู…ุนูƒูˆุณุฎุทูˆุชูŠู† ู„ุซุงู„ุซ
1276
+
1277
+ 320
1278
+ 00:33:55,140 --> 00:34:06,380
1279
+ ู„ู‡ู… ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ write the argumented matrix
1280
+
1281
+ 321
1282
+ 00:34:06,380 --> 00:34:18,740
1283
+ ุงูƒุชุจ ุงู„ู…ุตูˆูุฉ ุงู„ู…ูˆุณุนุฉ a ูˆู…ุนู‡ุง ู…ูŠู† ู…ุตูˆูุฉ ุงู„ูˆุญุฏุฉ ู†ู…ุฑ
1284
+
1285
+ 322
1286
+ 00:34:18,740 --> 00:34:22,380
1287
+ ุงุชู†ูŠู† use
1288
+
1289
+ 323
1290
+ 00:34:25,130 --> 00:34:32,910
1291
+ Echelon form use
1292
+
1293
+ 324
1294
+ 00:34:32,910 --> 00:34:40,050
1295
+ echelon form to write to
1296
+
1297
+ 325
1298
+ 00:34:40,050 --> 00:34:45,710
1299
+ write the
1300
+
1301
+ 326
1302
+ 00:34:45,710 --> 00:34:51,270
1303
+ matrix ุงูŠู‡
1304
+
1305
+ 327
1306
+ 00:34:51,270 --> 00:35:10,070
1307
+ ู…ุนุงู„ู€ I N A ู…ุน ุงู„ I N in the form ููŠ ุงู„ุดูƒู„ I N ูˆ
1308
+
1309
+ 328
1310
+ 00:35:10,070 --> 00:35:19,850
1311
+ ุจุนุฏูŠู† B then B ุงู„ู„ูŠ ุจุชุทู„ุน ุจุชูƒูˆู† ู‡ูŠ ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ
1312
+
1313
+ 329
1314
+ 00:35:19,850 --> 00:35:23,190
1315
+ A ู†ุนุทูŠ ู…ุซุงู„
1316
+
1317
+ 330
1318
+ 00:35:38,720 --> 00:35:41,220
1319
+ ู…ุนูƒุณ ุงู„ู…ุตููˆูุฉ
1320
+
1321
+ 331
1322
+ 00:35:44,950 --> 00:35:57,290
1323
+ 1 3-1 0 1 2-1 0 8 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
1324
+
1325
+ 332
1326
+ 00:36:00,630 --> 00:36:07,630
1327
+ ุฃู†ุง ุนู†ุฏูŠ ู…ุตูˆูุฉ ู…ุฑุจุนุฉ A ุนุฏุฏ ุตููˆูู‡ุง N ูˆ ุนุฏุฏ ุฃุนู…ู„ุงุชู‡ุง
1328
+
1329
+ 333
1330
+ 00:36:07,630 --> 00:36:12,850
1331
+ N ุจู‚ูˆู„ ูƒูŠู ุจุฏูƒ ุชุฌูŠุจ ุงู„ู…ุนูƒูˆุณ ู„ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ุจู‚ูˆู„ู‡
1332
+
1333
+ 334
1334
+ 00:36:12,850 --> 00:36:19,410
1335
+ ุฎุทูˆุชุงู† ู„ุซุงู„ุซ ู„ู‡ู…ุงุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ write the
1336
+
1337
+ 335
1338
+ 00:36:19,410 --> 00:36:23,950
1339
+ geometrical matrix A ูˆ I in ูŠุนู†ูŠ ุจุฏู‡ ุงุญุท ุงู„ู…ุตูˆูุฉ A
1340
+
1341
+ 336
1342
+ 00:36:23,950 --> 00:36:29,770
1343
+ ูˆุฌุงู†ุจู‡ุง ู…ุตูˆูุฉ ุงู„ ูˆุงุญุฏุฉ ุงุนุชุจุฑู‡ู… ูƒู„ู‡ู… ู…ุตูˆูุฉ ู…ูˆุณุนุฉ
1344
+
1345
+ 337
1346
+ 00:36:29,770 --> 00:36:33,910
1347
+ ู…ุตูˆูุฉ ูˆุงุญุฏุฉ ุงู„ุฎุท ู‡ุฐุง ุจุณ ู…ุดุงู† ูŠุญุฏ ูุงุตู„ ู…ุง ุจูŠู†
1348
+
1349
+ 338
1350
+ 00:36:33,910 --> 00:36:38,240
1351
+ ุงู„ุงุชู†ูŠู† ู„ูƒู† ูƒู„ู‡ุง ู…ุตูˆูุฉ ูˆุงุญุฏุฉุงู„ุฎุทูˆุฉ ุงู„ุชุงู†ูŠุฉ ู‡ูŠ
1352
+
1353
+ 339
1354
+ 00:36:38,240 --> 00:36:44,220
1355
+ ุงุณุชุฎุฏุงู… ุงู„ู€ ocean floor ู„ุญูˆู‘ู„ ุงู„ู€ A ุนู„ู‰ ุงู„ูŠู…ูŠู†
1356
+
1357
+ 340
1358
+ 00:36:44,220 --> 00:36:48,240
1359
+ ูˆุงู„ู€ I on ุงู„ุดู…ุงู„ ูŠุนู†ูŠ ุงู†ุง ุจุฏูŠ ุงุฎู„ู‘ูŠ ุงู„ identity
1360
+
1361
+ 341
1362
+ 00:36:48,240 --> 00:36:53,200
1363
+ matrix ููŠ ุงู„ุดุฌุฉ ุงู„ุดู…ุงู„ ูˆู‡ุฐู‡ A ุจุณ ู…ุงุชุถู„ุด A ู‡ุชุชู„ุฎุจุท
1364
+
1365
+ 342
1366
+ 00:36:53,200 --> 00:36:58,740
1367
+ ู‡ุฐู‡ ู„ู…ุง ุชุชู„ุฎุจุท ู‡ุณู…ูŠู‡ุง B ุฏูŠ ุจุฏูŠ ุงูƒุชุจู‡ุง ุนู„ู‰ ุดูƒู„ I N
1368
+
1369
+ 343
1370
+ 00:36:58,740 --> 00:37:04,050
1371
+ ูˆB ูƒู…ุตูˆูุฉ ู…ูˆุณุนุฉุจ ุงู„ู„ูŠ ุจุชุทู„ุน ู‡ุฐูŠ ุจุชูƒูˆู† ู‡ูŠ ู…ูŠู† ู‡ูŠ
1372
+
1373
+ 344
1374
+ 00:37:04,050 --> 00:37:09,870
1375
+ ู…ุนูƒูˆุณ ุงู„ู…ุตูˆูุฉ ูˆ ุงุฐุง ู…ุด ู…ุตุฏู‚ุฉ ูุจู†ุถุฑุจ ุงู„ุชู†ุชูŠู† ููŠ ุจุนุถ
1376
+
1377
+ 345
1378
+ 00:37:09,870 --> 00:37:19,230
1379
+ ูˆ ู„ุงุฒู… ุงู„ู†ุชูŠุฌ ูŠุทู„ุนidentity matrix ุงู„ู…ุนูƒูˆุณ
1380
+
1381
+ 346
1382
+ 00:37:19,230 --> 00:37:22,990
1383
+ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐู‡ ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุฃุทุจู‚ู„ู‡
1384
+
1385
+ 347
1386
+ 00:37:22,990 --> 00:37:27,010
1387
+ ุงู„ุฎุทูˆุทูŠู† ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู„ูŠู‡ู… ูŠุจู‚ู‰ ุจุฏุงูŠุฌูŠ ุฃุฎุฏู„ู‡ ุงู„
1388
+
1389
+ 348
1390
+ 00:37:27,010 --> 00:37:33,930
1391
+ argumentive matrix ุงู„ู„ูŠ ู‡ูŠ ุงู„ A ู…ุน ู…ูŠู† ู…ุน ุงู„ู…ุตููˆูุฉ
1392
+
1393
+ 349
1394
+ 00:37:33,930 --> 00:37:39,310
1395
+ I ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ู‡ุงูŠ ูˆุงุญุฏ
1396
+
1397
+ 350
1398
+ 00:37:39,310 --> 00:37:45,170
1399
+ ู‡ุงูŠ ุชู„ุงุชุฉ ู‡ุงูŠ ุณุงู„ุจ ูˆุงุญุฏ Zero ูˆุงุญุฏ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ
1400
+
1401
+ 351
1402
+ 00:37:45,170 --> 00:37:49,590
1403
+ Zero ุชู…ุงู†ูŠุฉ ู‡ูˆ Y ุงู„ุฎุงุทุฑ ุงู„ู…ุตูˆูุฉ ุงู„ูˆุงุญุฏุฉ ูˆุงุญุฏ ู…ู†
1404
+
1405
+ 352
1406
+ 00:37:49,590 --> 00:37:56,480
1407
+ ู†ูุณ ุงู„ู†ุธุงู…ู‡ุง Zero ูˆุงุญุฏ Zero Zero Zero ูˆุงุญุฏุฃุนู…ู„
1408
+
1409
+ 353
1410
+ 00:37:56,480 --> 00:38:00,840
1411
+ ุงู„ู„ูŠ ุจุฏูƒ ู‡ูŠ ุฑูŠุงุถูŠุง ุจุญูŠุซ ุฃุฎู„ูŠ ู…ุตูˆูุฉ ุงู„ูˆุญุฏุฉ ููŠ ู‡ุฐุง
1412
+
1413
+ 354
1414
+ 00:38:00,840 --> 00:38:06,400
1415
+ ุงู„ู…ูƒุงู† ูˆู‡ุฐู‡ ุชู†ุชู‚ู„ ุจุฃุฑู‚ุงู… ุฌุฏูŠุฏุฉ ู„ูˆูŠู† ุฅู„ู‰ ุงู„ูŠุงู…ูŠู†
1416
+
1417
+ 355
1418
+ 00:38:06,400 --> 00:38:12,570
1419
+ ูƒูˆูŠุณ ูŠุจู‚ู‰ ู…ุดุงู† ู‡ูŠูƒ ุฃู†ุง ุจุฏูŠ ู‡ุฐุง ูŠูƒูˆู† ุฌุฏุงุดุจุฏูŠ zero
1420
+
1421
+ 356
1422
+ 00:38:12,570 --> 00:38:17,770
1423
+ ุฅุฐุง ุญุถุฑ ุจุงู„ุตู ุงู„ุฃูˆู„ ุฃูˆ ุฃุถูŠู ุงู„ุตู ุงู„ุฃูˆู„ ู„ู„ุตู ุงู„ุชุงู„ุช
1424
+
1425
+ 357
1426
+ 00:38:17,770 --> 00:38:26,070
1427
+ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ุฐุง ู…ุจุงุดุฑุฉ R1 to R3 ู„ูŠุดุŸ ู„ุฅู† R2
1428
+
1429
+ 358
1430
+ 00:38:26,070 --> 00:38:32,730
1431
+ ุฌุงู‡ุฒ ู…ุด ู…ุญุชุงุฌ ุญุงุฌุฉ ูŠุจู‚ู‰ ู‡ุงูŠ ูˆุงุญุฏ ุชู„ุงุชุฉ ุณุงู„ุจ ูˆุงุญุฏ ูˆ
1432
+
1433
+ 359
1434
+ 00:38:32,730 --> 00:38:38,780
1435
+ ูˆุงุญุฏ Zero Zero ู‡ูŠู‚ูู„ู†ุงู†ุฌูŠ ู„ุจุนุฏู‡ ุฒูŠ ู…ุง ู‡ูˆ Zero ูˆุงุญุฏ
1436
+
1437
+ 360
1438
+ 00:38:38,780 --> 00:38:44,500
1439
+ ุงุชู†ูŠู† Zero ูˆุงุญุฏ Zero ุงุถูู†ุง ุฅุถุงูุฉ ูŠุจู‚ู‰ ู‡ู†ุง Zero
1440
+
1441
+ 361
1442
+ 00:38:44,500 --> 00:38:51,600
1443
+ ูˆู‡ู†ุง ุชู„ุงุชุฉ ุชู…ุงู…ุŸ ูˆุงุถูู†ุง ูŠุจู‚ู‰ ู‡ู†ุง ุณุจุนุฉ ูˆุงุถูู†ุง ูŠุจู‚ู‰
1444
+
1445
+ 362
1446
+ 00:38:51,600 --> 00:38:57,060
1447
+ ู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง Zero ูˆู‡ู†ุง ูˆุงุญุฏ ู„ุฃู†ู‡ ุฅุถุงูุฉ ู…ุงุณูˆูŠุชุด
1448
+
1449
+ 363
1450
+ 00:38:57,060 --> 00:39:06,260
1451
+ ุฃุดูŠุงุก ูˆุงุถุญุฉ ุฒูŠู†ุŸ ููŠ ุฃูŠ ุชุณูˆูŠู„ุŸ ุทูŠุจุŒ ู†ูƒู…ู„ุงู„ุญูŠู† ุงู†
1452
+
1453
+ 364
1454
+ 00:39:06,260 --> 00:39:11,900
1455
+ ู‡ุฐุง ุงู„ุดุฎุต ูŠุฃุชูŠ ู„ู„ู€ leading ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงุจุชุฎู„ู‘ูŠ
1456
+
1457
+ 365
1458
+ 00:39:11,900 --> 00:39:15,880
1459
+ ุงู„ู„ูŠ ุชุญุชู‡ Zero ูˆ ุงู„ู„ูŠ ููˆู‚ู‡ Zero ูŠุจู‚ู‰ ุจุฏู‡ ุฃุถุฑุจู‡ ุณู„ุจ
1460
+
1461
+ 366
1462
+ 00:39:15,880 --> 00:39:21,180
1463
+ ุชู„ุงุชุฉ ูˆ ุฃุถูŠูู‡ ู„ู„ุตู ุงู„ุฃูˆู„ ูˆ ุงู„ุตู ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ู‡ู†ุง
1464
+
1465
+ 367
1466
+ 00:39:21,180 --> 00:39:34,100
1467
+ ุณุงู„ุจ ุชู„ุงุชุฉ R2 ุณุงู„ุจ ุชู„ุงุชุฉ R2 to R1 and to R3 ุจูŠุตูŠุฑ
1468
+
1469
+ 368
1470
+ 00:39:34,100 --> 00:39:39,650
1471
+ ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุทุจุนุง ู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง Zeroูˆ ู„ู…ุง ุถุฑุจุช ููŠ
1472
+
1473
+ 369
1474
+ 00:39:39,650 --> 00:39:45,610
1475
+ ุณุงู„ุจ ุชู„ุงุชุฉ ุจูŠุตูŠุฑ ุณุงู„ุจ ุณุชุฉ ูˆ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุณุจุนุฉ
1476
+
1477
+ 370
1478
+ 00:39:45,610 --> 00:39:51,910
1479
+ ุณุงู„ุจ ุชู„ุงุชุฉ ุจูŠุตูŠุฑ ู‡ู†ุง ูˆุงุญุฏ ุฒูŠ ู…ุง ู‡ูŠ ูˆ ู‡ู†ุง ุณุงู„ุจ
1480
+
1481
+ 371
1482
+ 00:39:51,910 --> 00:39:58,580
1483
+ ุชู„ุงุชุฉ ู…ุธุจูˆุท ูŠุง ุจู†ุงุชุŸูˆู‡ุฐุง zero ุฒูŠ ู…ุง ู‡ูˆ ู†ุฌูŠ ู‡ุฐุง
1484
+
1485
+ 372
1486
+ 00:39:58,580 --> 00:40:05,400
1487
+ zero ูˆุงุญุฏ ุงุชู†ูŠู† zero ูˆุงุญุฏ zero ุงู„ุงู† ุจุฏู‡ ุงุถูŠูู‡ ู„ู„ุตู
1488
+
1489
+ 373
1490
+ 00:40:05,400 --> 00:40:11,720
1491
+ ุงู„ู„ูŠ ุจุนุฏ ูŠุจู‚ู‰ zero zero ุณุงู„ุจ ุณุชุฉ ุจูŠุถู„ ู‡ู†ุง ูˆุงุญุฏ ูˆ
1492
+
1493
+ 374
1494
+ 00:40:11,720 --> 00:40:17,660
1495
+ ุจุนุฏ ู‡ูŠูƒ ู‡ู†ุง ุจูŠุถู„ ูˆุงุญุฏ ุฒูŠ ู…ุง ู‡ูˆ ูˆ ู‡ู†ุง ุถุฑุจู†ุง ููŠ ุณุงู„ุจ
1496
+
1497
+ 375
1498
+ 00:40:17,660 --> 00:40:24,080
1499
+ ุชู„ุงุชุฉ ุจูŠุตูŠุฑ ู‡ู†ุง ุณุงู„ุจ ุชู„ุงุชุฉ ูˆ ู‡ู†ุง ูˆุงุญุฏ ุฒูŠ ู…ุง ู‡ูˆ
1500
+
1501
+ 376
1502
+ 00:40:26,750 --> 00:40:34,190
1503
+ ุงู„ุญูŠู† ุงุญู†ุง ุฌุงู‡ุฒูŠู† ุจุฏูŠ ุงุฎู„ูŠ ู‡ุฐุง Zero ูˆุงุฎู„ูŠ ู‡ุฐุง Zero
1504
+
1505
+ 377
1506
+ 00:40:34,190 --> 00:40:40,830
1507
+ ูŠุจู‚ู‰ ุณุจุนุฉ R ุชู„ุงุชุฉ to R one ูŠุจู‚ู‰ ุงู†ุง ุจุฏูŠ ุงุนู…ู„ ู…ุง
1508
+
1509
+ 378
1510
+ 00:40:40,830 --> 00:40:48,510
1511
+ ูŠุงุชูŠ ุณุจุนุฉ R ุชู„ุงุชุฉ to R one ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุณุงู„ูŠ
1512
+
1513
+ 379
1514
+ 00:40:48,510 --> 00:40:55,280
1515
+ ุจุงุชู†ูŠู† R ุชู„ุงุชุฉ to R twoูŠุจู‚ู‰ ุจูŠุตุจุญ ู‡ุฐุง ุงู„ู…ุตูˆูุฉ ุนู„ู‰
1516
+
1517
+ 380
1518
+ 00:40:55,280 --> 00:41:01,260
1519
+ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ู‡ุฐุง ูˆุงุญุฏ ุฒูŠ ู…ุง ู‡ูˆ ูˆู…ุงุนู†ุงุด ู…ุดูƒู„ุฉ ุชู…ุงู…ุŸ
1520
+
1521
+ 381
1522
+ 00:41:01,260 --> 00:41:08,120
1523
+ ูˆู‡ุฐุง ุฒูŠุฑูˆ ุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ุฐุง ุจูŠุตูŠุฑ ุฒูŠุฑูˆ ู‡ู„ู‡ุง ู…ุถุฑุจูŠู† ู‡ุฐุง
1524
+
1525
+ 382
1526
+ 00:41:08,120 --> 00:41:14,580
1527
+ ููŠ ุฌุฏุงุด ู‚ู„ู†ุงุŸููŠ ุณุจุนุฉ ุณุจุนุฉ ููŠ ูˆุงุญุฏ ุณุจุนุฉ ูˆูˆุงุญุฏ
1528
+
1529
+ 383
1530
+ 00:41:14,580 --> 00:41:20,580
1531
+ ุชู…ุงู†ูŠุฉ ุณุจุนุฉ ููŠ ุชู„ุงุชุฉ ุณุงู„ุจ ูˆุงุญุฏ ูˆุนุดุฑูŠู† ูŠุจู‚ู‰ ุณุงู„ุจ
1532
+
1533
+ 384
1534
+ 00:41:20,580 --> 00:41:26,410
1535
+ ุงุฑุจุนุฉ ูˆุนุดุฑูŠู† ุณุจุนุฉ ููŠ ูˆุงุญุฏ ููŠ ุณุจุนุฉ ูŠุจู‚ู‰ ุณุจุนุฉุฎู„ุตู†ุง
1536
+
1537
+ 385
1538
+ 00:41:26,410 --> 00:41:32,650
1539
+ ุงู„ุตูุฉ ุงู„ุฃูˆู„ุฉ ุงู„ุงู† ุจุฏูŠ ุงุถุฑุจู‡ ููŠ ุณุงู„ุจ ุงุชู†ูŠู† ูˆุงุถูŠูู‡
1540
+
1541
+ 386
1542
+ 00:41:32,650 --> 00:41:38,370
1543
+ ููˆู‚ ุจุตูŠุฑ zero ูˆ ุจุตูŠุฑ ู‡ู†ุง ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุจุตูŠุฑ ู‡ู†ุง
1544
+
1545
+ 387
1546
+ 00:41:38,370 --> 00:41:44,310
1547
+ ุณุจุนุฉ ู„ุงู† ุงุถุฑุจู‡ ููŠ ุณุงู„ุจ ุงุชู†ูŠู† ุจุตูŠุฑ ุณุชุฉ ูˆุงุญุฏ ุณุจุนุฉ
1548
+
1549
+ 388
1550
+ 00:41:44,310 --> 00:41:52,370
1551
+ ุงู„ุงู† ุณุงู„ุจ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุณุงู„ุจ ุงุชู†ูŠู† ู‡ู†ุง zero zero ูˆุงุญุฏ
1552
+
1553
+ 389
1554
+ 00:41:52,370 --> 00:42:00,020
1555
+ ูˆุงุญุฏ ุณุงู„ุจ ุชู„ุงุชุฉูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุงู‡ุฃูŠูˆุฉ ูŠุจู‚ู‰ ุงูŠุด
1556
+
1557
+ 390
1558
+ 00:42:00,020 --> 00:42:04,760
1559
+ ุจูŠู‚ูˆู„ู„ูŠ ุงู„ุฎุทูˆุฉ ุงู„ุชุงู†ูŠุฉ ุงุณุชุฎุฏู… ุงู„ุงุดูŠู„ูˆู† form ู…ุดุงู†
1560
+
1561
+ 391
1562
+ 00:42:04,760 --> 00:42:09,640
1563
+ ุชูƒุชุจ ุงู„ matrix a ููŠ ุงู„ identity ุงู„ู…ุตููˆูุฉ ุงู„ู…ูˆุณุนุฉ
1564
+
1565
+ 392
1566
+ 00:42:09,640 --> 00:42:14,460
1567
+ ู…ุดุงู† ู†ูƒุชุจ ุงู„ identity ู…ุน ุจูŠ ูƒู…ุตููˆูุฉ ู…ูˆุณุนุฉ ุงุธู†
1568
+
1569
+ 393
1570
+ 00:42:14,460 --> 00:42:21,160
1571
+ ูƒุชุจู†ุงู‡ุง ูŠุจู‚ู‰ ุจูŠ ู…ูŠู† ู‡ูŠ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡
1572
+
1573
+ 394
1574
+ 00:42:21,160 --> 00:42:26,320
1575
+ ูŠุนุทูŠูƒูŠ the inverse matrix
1576
+
1577
+ 395
1578
+ 00:42:27,970 --> 00:42:39,130
1579
+ of a is ุจูŠุชุณุงูˆูŠ ุจูŠุชุณุงูˆูŠ ุชู…ุงู†ูŠุฉ ุณุงู„ุจ ุงุฑุจุนุฉ ูˆุนุดุฑูŠู†
1580
+
1581
+ 396
1582
+ 00:42:39,130 --> 00:42:47,530
1583
+ ูˆุณุจุนุฉ ูˆุณุงู„ุจ ุงุชู†ูŠู† ูˆุณุจุนุฉ ูˆุณุงู„ุจ ุงุชู†ูŠู† ูˆูˆุงุญุฏ ูˆุณุงู„ุจ
1584
+
1585
+ 397
1586
+ 00:42:47,530 --> 00:42:56,760
1587
+ ุชู„ุงุชุฉ ูˆูƒู…ุงู† ุฌุฏุงุด ูˆูƒู…ุงู† ูˆุงุญุฏ ุชู…ุงู…ุŸ ุทูŠุจุงู„ุงู† ู‡ุฐู‡ ู‡ูŠ
1588
+
1589
+ 398
1590
+ 00:42:56,760 --> 00:43:01,120
1591
+ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ูŠุง ุจู†ุงุช ู„ู„ุญุตูˆู„ ุนู„ู‰ ู…ุนูƒูˆุณ ุงู„ู…ุตูˆูุฉ
1592
+
1593
+ 399
1594
+ 00:43:01,120 --> 00:43:06,420
1595
+ ุงู„ุงู† ุนู†ุฏูƒ ูุฑุงุบ ุจุนุฏ ู†ู…ุทู‡ุง ุงู† ุดุงุก ุงู„ู„ู‡ ุฌุฑุจูŠ ุฃุถุฑุจ
1596
+
1597
+ 400
1598
+ 00:43:06,420 --> 00:43:10,800
1599
+ ุงู„ู…ุตูˆูุฉ ู‡ุฐู‡ ููŠ ุงู„ู…ุตูˆูุฉ ู‡ุฐู‡ ูˆุดูˆู ูŠุทู„ุน ู…ุนุงูƒ ู…ุตูˆูุฉ
1600
+
1601
+ 401
1602
+ 00:43:10,800 --> 00:43:15,920
1603
+ ุงู„ูˆุงุญุฏุฉ ูˆู„ุง ู„ุง ุจุณ ุจุฏูŠ ุฃุนุทูŠูƒูŠ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ูƒู†ุธุฑูŠ
1604
+
1605
+ 402
1606
+ 00:43:15,920 --> 00:43:20,720
1607
+ ูˆ ุจู†ุญู„ ุงู„ู…ุซุงู„ ู†ูุณู‡ ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุจุนุฏ ุงู„ุธู‡ุฑ
1608
+
1609
+ 403
1610
+ 00:43:20,720 --> 00:43:25,550
1611
+ ุงู† ุดุงุก ุงู„ู„ู‡ ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ุฌุฏูŠุฏุฉูŠุจู‚ู‰ ุจุฏุฃุชูŠ ู„ู€ second
1612
+
1613
+ 404
1614
+ 00:43:25,550 --> 00:43:34,670
1615
+ method second method ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู†ู…ุฑ ูˆุงุญุฏ
1616
+
1617
+ 405
1618
+ 00:43:34,670 --> 00:43:47,050
1619
+ ุจู†ุนู…ู„ ุชู„ุช ุฎุทูˆุงุช replace ุงุณุชุจุฏู„ each element a i j
1620
+
1621
+ 406
1622
+ 00:43:48,530 --> 00:43:54,570
1623
+ ููŠ ุงู„ู…ุงุชุฑูŠูƒุณ A ููŠ ุงู„ู…ุงุชุฑูŠูƒุณ
1624
+
1625
+ 407
1626
+ 00:43:54,570 --> 00:44:07,710
1627
+ A ู…ู† ุงู„ู€ Cofactor ู…ู† ุงู„ู€ Cofactor ู…ู† ุงู„ู€ Cofactor
1628
+
1629
+ 408
1630
+ 00:44:07,710 --> 00:44:11,890
1631
+ ู…ู† AIG
1632
+
1633
+ 409
1634
+ 00:44:11,890 --> 00:44:16,090
1635
+ ูˆู‡ูˆ IN
1636
+
1637
+ 410
1638
+ 00:44:17,540 --> 00:44:32,360
1639
+ replace ุงุณุชุจุฏู„ a i j by by a i j ุจุฏูŠ ุงุณูˆูŠ ุงู„ุณู„ุจ
1640
+
1641
+ 411
1642
+ 00:44:32,360 --> 00:44:39,860
1643
+ ูˆุงุญุฏ ู…ุฑููˆุน ู„ู„ุฃุณ ูˆุงุญุฏ ุฒุงุฆุฏ j ููŠ ุงู„ minor ุงู„ู„ูŠ ู‡ูˆ m
1644
+
1645
+ 412
1646
+ 00:44:39,860 --> 00:44:40,900
1647
+ i j
1648
+
1649
+ 413
1650
+ 00:44:45,820 --> 00:44:52,680
1651
+ ู‡ุฐู‡ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุงู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉ take the
1652
+
1653
+ 414
1654
+ 00:44:52,680 --> 00:45:00,120
1655
+ transpose of
1656
+
1657
+ 415
1658
+ 00:45:00,120 --> 00:45:07,200
1659
+ the resulting matrix
1660
+
1661
+ 416
1662
+ 00:45:07,200 --> 00:45:13,620
1663
+ resulting matrix in part one
1664
+
1665
+ 417
1666
+ 00:45:16,180 --> 00:45:24,620
1667
+ part one and denoted
1668
+
1669
+ 418
1670
+ 00:45:24,620 --> 00:45:28,080
1671
+ it
1672
+
1673
+ 419
1674
+ 00:45:28,080 --> 00:45:41,840
1675
+ by B and denoted it by B ุฃุนุทูŠู‡ุง ุงู„ุฑู…ุฒ B ุฎุทูˆุฉ
1676
+
1677
+ 420
1678
+ 00:45:41,840 --> 00:45:54,750
1679
+ ุงู„ุชุงู„ุชุฉ ูˆุงู„ุฃุฎูŠุฑุฉ findA inverse from the formula ู…ู†
1680
+
1681
+ 421
1682
+ 00:45:54,750 --> 00:46:04,730
1683
+ ุงู„ุตูŠุบุฉ A inverse ูŠุณูˆู‰ ูˆุงุญุฏ ุนู„ู‰ ุงู„ determinant ู„ู„ A
1684
+
1685
+ 422
1686
+ 00:46:04,730 --> 00:46:08,790
1687
+ ู‡ุฐุง ูƒู„ู‡ ููŠ ุงู„ู…ุตูˆูุฉ B
1688
+
1689
+ 423
1690
+ 00:46:18,720 --> 00:46:19,280
1691
+ ู…ุงุฐุง ุจุญุงุฌุฉุŸ
1692
+
1693
+ 424
1694
+ 00:46:28,860 --> 00:46:32,620
1695
+ ูŠุจู‚ู‰ ุจุงุฎุชุตุงุฑ ุจุฏู†ุง ู†ุนู…ู„ ุซู„ุงุซ ุฎุทูˆุงุช ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰
1696
+
1697
+ 425
1698
+ 00:46:32,620 --> 00:46:38,420
1699
+ ุจุฏูŠ ุฃุดูŠู„ ูƒู„ a ij ูˆ ุฃุถุน ูƒูˆููƒุชูˆุฑ ุชุจุนู‡ ู†ุงู‚ุต ูˆุงุญุฏ ู…ู†
1700
+
1701
+ 426
1702
+ 00:46:38,420 --> 00:46:44,360
1703
+ aij ููŠ ุงู„ m ij ุงู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉ ุจุฏูŠ ุฃุฌูŠุจ ู…ุฏูˆุฑ ู‡ุฐู‡
1704
+
1705
+ 427
1706
+ 00:46:44,360 --> 00:46:50,300
1707
+ ุงู„ู…ุตูˆูุฉ ุงู„ู„ู‰ ู†ุชุฌุช ููŠ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ุฎุทูˆุฉ ุชุงู„ุชุฉ
1708
+
1709
+ 428
1710
+ 00:46:50,300 --> 00:46:53,240
1711
+ ุงู„ู…ุตูˆูุฉ ุงู„ู„ู‰ ุญุตู„ุช ุนู„ูŠู‡ุง ุจุฏูŠ ุฃุถุฑุจู‡ุง ููŠ ูˆุงุญุฏ ุนู„ู‰
1712
+
1713
+ 429
1714
+ 00:46:53,240 --> 00:46:59,320
1715
+ ู…ุญุฏุฏ ุงู„ู…ุตูˆูุฉ ูˆู‡ุฐุง ูŠุชูู‚ ู…ุน ุงู„ูƒู„ุงู… ุงู„ู„ู‰ ู‚ุจู„ ู‚ู„ูŠู„ ู„ูŠุด
1716
+
1717
+ 430
1718
+ 00:46:59,320 --> 00:47:05,680
1719
+ ู…ุญุฏุฏ ุงู„ู…ุตูˆูุฉ ู„ุง ูŠุณุงูˆูŠ zero ู„ุฃู† ู„ูˆ ูƒุงู† ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ
1720
+
1721
+ 431
1722
+ 00:47:05,680 --> 00:47:09,470
1723
+ zero ู‡ู„ ุจู‚ุฏุฑ ุฃุฌูŠุจ ู‡ุฐุง ุงู„ู…ุนูƒูˆุณุŸูŠุจู‚ู‰ ููŠุด ู…ูƒุงู† ูŠุจู‚ู‰
1724
+
1725
+ 432
1726
+ 00:47:09,470 --> 00:47:14,650
1727
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ุฐูŠ ุงุฏุนูŠู†ุงู‡ ู‚ุจู„ ู‚ู„ูŠู„ ุงู„ุขู† ุงู„ุณุจุจ ููŠ ุฃู†
1728
+
1729
+ 433
1730
+ 00:47:14,650 --> 00:47:19,930
1731
+ ุงู„ู…ุญุฏุฏ ู„ุง ูŠุณุงูˆูŠ zero ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎู„ ุงู„ู…ุนูƒูˆุณ exist
1732
+
1733
+ 434
1734
+ 00:47:19,930 --> 00:47:25,490
1735
+ ูˆุฅู„ุง ู„ูˆ ูƒุงู† ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ zero ู„ุฃุตุจุญ ุงู„ู…ุนูƒูˆุณ ุบูŠุฑ
1736
+
1737
+ 435
1738
+ 00:47:25,490 --> 00:47:27,310
1739
+ ู…ูˆุฌูˆุฏ ุฃุนุทูŠูƒู… ุงู„ุนุงููŠุฉ
1740
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/OshDqhIzcK8_raw.srt ADDED
@@ -0,0 +1,1580 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,500 --> 00:00:25,220
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุฃุฎุฑ ุญุงุฌุฉ ุฃุฎุฏู†ุงู‡ุง ุงู„ู…ุฑุฉ
4
+
5
+ 2
6
+ 00:00:25,220 --> 00:00:30,220
7
+ ุงู„ู„ูŠ ููŠู‡ุง ูƒุงู†ุช ู†ุธุฑูŠุฉ ูˆู†ุชูŠุฌุฉ ุนู„ูŠู‡ุง ูˆูƒุงู†ุช ุงู„ู†ุชูŠุฌุฉ ู„ูˆ
8
+
9
+ 3
10
+ 00:00:30,220 --> 00:00:35,140
11
+ ุนู†ุฏูŠ diagonal matrix ูˆู‡ุฐู‡ ุงู„ diagonal ูƒุงู†ุช scalar
12
+
13
+ 4
14
+ 00:00:35,140 --> 00:00:39,880
15
+ matrix ูˆุถุฑุจุช ุงู„ scalar matrix ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ููŠ
16
+
17
+ 5
18
+ 00:00:39,880 --> 00:00:44,640
19
+ ุงู„ู…ุตุญูˆู ุฃูŠู‡ ูŠุณูˆู‰ ุชู…ุงู…ุง ุงู„ุฑู‚ู… ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„
20
+
21
+ 6
22
+ 00:00:44,640 --> 00:00:49,560
23
+ scalar matrix ูƒู…ุง ู„ูˆ ุถุฑุจุชู‡ ููŠ ู…ูŠู† ููŠ ุงู„ู…ุตุญูˆู ุฃูŠู‡
24
+
25
+ 7
26
+ 00:00:49,950 --> 00:00:53,930
27
+ ูู‚ู„ู†ุง ุฏูŠุงุฌูˆู†ุงู„ ู…ุชุฑูŠูƒุณ ุฃูˆ ุงู„ scalar ุฏูŠุงุฌูˆู†ุงู„ ู…ุชุฑูŠูƒุณ
28
+
29
+ 8
30
+ 00:00:53,930 --> 00:01:00,050
31
+ C ุถุฑุจู†ุงู‡ุง ููŠ ุฃูŠู‡ุŸ ุจุฏูŠ ู†ุณูˆูŠ ุงู„ุฑู‚ู… C ู…ุถุฑูˆุจ ููŠ ุฃูŠู‡ุŸ
32
+
33
+ 9
34
+ 00:01:00,050 --> 00:01:04,490
35
+ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุตู…ูˆู… ููŠ ุฃูŠู‡ุŸ ู‡ุฐุง ุขุฎุฑ ู…ุง ูƒุชุจุชูŠู‡ ุงู„ู…ุฑุฉ
36
+
37
+ 10
38
+ 00:01:04,490 --> 00:01:10,280
39
+ ุงู„ู…ุงุถูŠุฉุจู†ุนุทูŠ ู…ุซุงู„ ุนู„ู‰ ุฐู„ูƒ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุงู„ู…ุตุฑูˆูุฉ A
40
+
41
+ 11
42
+ 00:01:10,280 --> 00:01:15,800
43
+ ู‡ูŠ ุงู„ู…ุตุฑูˆูุฉ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐู‡ ูˆุงู„ู…ุตุฑูˆูุฉ C ู‡ูŠ ุงู„
44
+
45
+ 12
46
+ 00:01:15,800 --> 00:01:21,240
47
+ scalar matrix 30000030003
48
+
49
+ 13
50
+ 00:01:21,720 --> 00:01:27,760
51
+ ุฌุงู„ูŠ ู‡ุงุชู„ูŠ ุญุตู„ ุถุฑุจ ุงู„ู…ูุชูˆุญุชูŠู† C ูƒุจุชู† ููŠ A ูˆ ูƒุฐู„ูƒ
52
+
53
+ 14
54
+ 00:01:27,760 --> 00:01:33,280
55
+ ุญุตู„ ุถุฑุจ ุงู„ุฑู‚ู… ุชู„ุงุชุฉ ููŠ ุงู„ู…ุตููˆูุฉ A what can you say
56
+
57
+ 15
58
+ 00:01:33,280 --> 00:01:38,680
59
+ ูˆ ุฅูŠุด ู…ู…ูƒู† ุชู‚ูˆู„ ุนู† ุงู„ู†ุชุงุฆุฌ ุงู„ู„ูŠ ุจู†ุญุตู„ ุนู„ูŠู‡ุง ููŠ ูƒู„ุง
60
+
61
+ 16
62
+ 00:01:38,680 --> 00:01:44,020
63
+ ุงู„ุฃู…ุฑูŠู† ุงู„ุขู† ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐู‡ ุชู„ุงุชุฉ ููŠ ุฃุฑุจุน
64
+
65
+ 17
66
+ 00:01:44,230 --> 00:01:49,430
67
+ ุชู…ุงู… ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุนุจุงุฑุฉ ุนู† ุงูŠุด ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ุงุฐุง
68
+
69
+ 18
70
+ 00:01:49,430 --> 00:01:59,770
71
+ ู„ุง ูŠู…ูƒู† ุถุฑุจ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุชู…ุงู… ู„ุง ุงุญู†ุง ุจู†ุถุฑุจ ุงุฐุง C
72
+
73
+ 19
74
+ 00:01:59,770 --> 00:02:06,950
75
+ ููŠ A ูˆู„ูŠุณ A ููŠ C ุงุฐุง ุงู„ู„ูŠ ู…ุทู„ูˆุจ ู‡ู†ุง CA ูˆู„ูŠุณุช AC
76
+
77
+ 20
78
+ 00:02:06,950 --> 00:02:09,570
79
+ ูุจุนุฏูŠู† ุจู‚ูˆู„ู‡ ู‡ู†ุง solution
80
+
81
+ 21
82
+ 00:02:13,030 --> 00:02:20,570
83
+ ุจู†ุงุฎุฏ C ููŠ ุงู„ู€ A ูŠุจู‚ู‰ C ุงู„ู„ูŠ ู‡ูŠ ุชู„ุงุชุฉ Zero Zero
84
+
85
+ 22
86
+ 00:02:20,570 --> 00:02:28,230
87
+ Zero ุชู„ุงุชุฉ Zero Zero ุชู„ุงุชุฉ ู…ุถุฑูˆุจุฉ ููŠ ุงุชู†ูŠู† ุชู„ุงุชุฉ
88
+
89
+ 23
90
+ 00:02:28,230 --> 00:02:34,070
91
+ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ูˆุงุญุฏ Zero Zero ูˆุงุญุฏ
92
+
93
+ 24
94
+ 00:02:34,070 --> 00:02:39,570
95
+ ุงุชู†ูŠู† ุชู„ุงุชุฉูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู†ุธุงู…ุฉ ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ูˆู‡ุฐู‡
96
+
97
+ 25
98
+ 00:02:39,570 --> 00:02:44,230
99
+ ุชู„ุงุชุฉ ููŠ ุฃุฑุจุน ุฅุฐุง ูŠู…ูƒู† ุถุฑุจ ู‡ุชูŠู† ุงู„ู…ุตููˆู ู‡ุชูŠู†
100
+
101
+ 26
102
+ 00:02:44,230 --> 00:02:49,330
103
+ ูˆุงู„ู†ุชุฌ ู‡ูˆ ุชู„ุงุชุฉ ููŠ ุฃุฑุจุน ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ุถุฑุจุช ู‡ุฐู‡
104
+
105
+ 27
106
+ 00:02:49,330 --> 00:02:53,650
107
+ ุงู„ู…ุตููˆู ู‡ูŠูƒูˆู† ุญุงุตู„ ุงู„ุถุฑุจ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ุตู
108
+
109
+ 28
110
+ 00:02:53,650 --> 00:02:57,550
111
+ ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุชู„ุงุชุฉ ููŠ ุงุชู†ูŠู† ููŠ ุณุชุฉ
112
+
113
+ 29
114
+ 00:02:57,550 --> 00:03:03,560
115
+ ูˆุงู„ุจุงู‚ูŠุฃุตูุฑู‹ุง ุตูุฑ ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰
116
+
117
+ 30
118
+ 00:03:03,560 --> 00:03:08,560
119
+ ุจุงู„ู†ุธุฑ ุจุงู„ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ูˆุงู„ุจุงู‚ูŠ ุฃุตูุฑู‹ุง ุชู„ุงุชุฉ ููŠ
120
+
121
+ 31
122
+ 00:03:08,560 --> 00:03:14,080
123
+ ุชู„ุงุชุฉ ุจู‚ุฏุงุด ุจุชุณุนุฉ ุงู„ู„ูŠ ุจุนุฏู‡ ุชู„ุงุชุฉ ููŠ ูˆุงุญุฏ ุจุชู„ุงุชุฉ
124
+
125
+ 32
126
+ 00:03:14,080 --> 00:03:20,040
127
+ ูˆู‡ุฐุง ุณุงู„ุจ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุตูุฑ ุงู„ุฃูˆู„ ุจุฏุฃุฌูŠ ู„ู„ุตูุฑ
128
+
129
+ 33
130
+ 00:03:20,040 --> 00:03:25,640
131
+ ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ Zero ุชู„ุงุชุฉ ููŠ ูˆุงุญุฏ ุจุชู„ุงุชุฉ
132
+
133
+ 34
134
+ 00:03:25,640 --> 00:03:26,900
135
+ ูˆุงู„ุจุงู‚ูŠ Zero
136
+
137
+ 35
138
+ 00:03:34,200 --> 00:03:42,540
139
+ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู„ุช ูŠุจู‚ู‰ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ
140
+
141
+ 36
142
+ 00:03:42,540 --> 00:03:50,630
143
+ ุงู„ุนู…ูˆุฏ ุงู„ู€ 0 ุณู„ุจ 6ู‡ุฐุง ุณุงู„ุจ ุณุชุฉ ุงู„ุตู ู‡ุฐุง ููŠ ุงู„ุนู…ูˆุฏ
144
+
145
+ 37
146
+ 00:03:50,630 --> 00:03:56,030
147
+ ุงู„ุชุงู„ุช ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุจุชู„ุงุชุฉ ุงู„ุตู ู‡ุฐุง ููŠ ุงู„ุนู…ูˆุฏ ู‡ุฐุง
148
+
149
+ 38
150
+ 00:03:56,030 --> 00:04:02,590
151
+ ูŠุจู‚ู‰ Zero Zero Zero ูŠุจู‚ู‰ ูƒู„ู‡ ุจ Zero ู†ูŠุฌูŠ ุงู„ุตู
152
+
153
+ 39
154
+ 00:04:02,590 --> 00:04:07,870
155
+ ุงู„ุชุงู„ุช ููŠ ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ู‡ูˆ Zero Zero Zero ูƒุฐู„ูƒ ุฒูŠ ู…ุง
156
+
157
+ 40
158
+ 00:04:07,870 --> 00:04:18,390
159
+ ู‡ูˆ ุจ Zero ุจุนุฏ ุฐู„ูƒ Zero Zero ุชู„ุงุชุฉุงู„ู„ูŠ ุจุนุฏู‡ 003ร—2ร—6
160
+
161
+ 41
162
+ 00:04:18,390 --> 00:04:23,410
163
+ ุงู„ู„ูŠ ุจุนุฏู‡ 003ร—3ร—9
164
+
165
+ 42
166
+ 00:04:23,410 --> 00:04:28,170
167
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู‡ุฐุง ุญุงุตู„ ุถุฑุจ ุงู„ scholar
168
+
169
+ 43
170
+ 00:04:28,170 --> 00:04:32,830
171
+ diagonal matrix ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ููŠ ู…ูŠู† ููŠ ุงูŠู‡ ุงู„ุขู†
172
+
173
+ 44
174
+ 00:04:32,830 --> 00:04:38,570
175
+ ุจุงู„ุฏุฑุฌุฉ ุงุดูˆู C ููŠ ุงูŠู‡ C ุงู„ูŠูˆู…ูŠู† ุงู„ุฑู‚ู… 3ูŠุจู‚ู‰
176
+
177
+ 45
178
+ 00:04:38,570 --> 00:04:44,450
179
+ ุจุงู„ุฏุงุฌูŠ ุงู„ุง ุชู„ุงุชุฉ ููŠ ุงู„ู…ุตูˆูุฉ ุงูŠู‡ุŸ ูŠุจู‚ู‰ ุชู„ุงุชุฉ ููŠ
180
+
181
+ 46
182
+ 00:04:44,450 --> 00:04:50,550
183
+ ุงู„ู…ุตูˆูุฉ ุงูŠู‡ุŸ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู†
184
+
185
+ 47
186
+ 00:04:50,550 --> 00:04:58,290
187
+ ูˆุงุญุฏ ุฒูŠุฑ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูŠุณุงูˆูŠุงู„ุชู„ุงุชุฉ ุนู†ุฏู…ุง
188
+
189
+ 48
190
+ 00:04:58,290 --> 00:05:03,090
191
+ ุฃุถุฑุจู‡ุง ููŠ ุงู„ู…ุตูˆูุฉ ุฃุถุฑุจู‡ุง ููŠ ุฌู…ูŠุน ุฃู†ุงุตุฑ ุงู„ู…ุตูˆูุฉ
192
+
193
+ 49
194
+ 00:05:03,090 --> 00:05:08,250
195
+ ุจุงู„ุงุณุชุซู†ุงุก ูŠุจู‚ู‰ ุชู„ุงุชุฉ ููŠ ุงุชู†ูŠู† ุจุณุชุฉ ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ
196
+
197
+ 50
198
+ 00:05:08,250 --> 00:05:15,070
199
+ ุจุชุณุนุฉ ุชู„ุงุชุฉ ุณุงู„ุจ ุชู„ุงุชุฉ ูˆู‡ู†ุง ุชู„ุงุชุฉ ูˆู‡ู†ุง ุณุงู„ุจ ุณุชุฉ
200
+
201
+ 51
202
+ 00:05:15,070 --> 00:05:20,070
203
+ ูˆู‡ู†ุง ุชู„ุงุชุฉ ููŠ ูˆุงุญุฏ ุจุชู„ุงุชุฉ ูˆู‡ู†ุง Zero ูˆู‡ู†ุง ูƒู…ุงู† Zero
204
+
205
+ 52
206
+ 00:05:20,070 --> 00:05:25,930
207
+ ูˆู‡ู†ุง ุชู„ุงุชุฉ ุณุชุฉ ุชุณุนุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุชุนุงู„ู‰
208
+
209
+ 53
210
+ 00:05:25,930 --> 00:05:30,990
211
+ ู‚ุงุฑู†ู‰ ุจูŠู† ุงู„ู†ุชุฌุชูŠู† ุงู„ุงูˆู„ ุถุฑุจู†ุง ู…ุตูˆูุชูŠู† ููŠ ุจุนุถ ู‡ู†ุง
212
+
213
+ 54
214
+ 00:05:30,990 --> 00:05:36,370
215
+ ุถุฑุจู†ุง ุงู„ุฑู‚ู… ููŠ ู…ุตูˆุดู‡ ูˆ ุจุชู„ุงุญุธูˆุง ุงู†ู‡ุง ู†ุชุฌุชูŠู† ุงุชู†ุชูŠู†
216
+
217
+ 55
218
+ 00:05:36,370 --> 00:05:42,710
219
+ are equal ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ุงู†ู‡ capital
220
+
221
+ 56
222
+ 00:05:42,710 --> 00:05:49,810
223
+ C ููŠ ุงู„ A ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู„ู‰ ู‡ูˆ ุชู„ุงุชุฉ ุง
224
+
225
+ 57
226
+ 00:05:49,810 --> 00:05:55,130
227
+ ู…ุจุงุดุฑุฉู„ุฃู†ู‡ ู‚ุงู„ ู„ูŠ ุงูŠุด ุจุชู‚ุฏุฑ ุชู‚ูˆู„ ุนู† ุงู„ู†ุชูŠุฌุฉ ูุจู‚ูˆู„
228
+
229
+ 58
230
+ 00:05:55,130 --> 00:06:00,250
231
+ ู„ู‡ ุญุตู„ ุถุฑุจ ุงู„ scalar matrix A ููŠ ุงู„ A ุจุฏูŠ ูŠุณุงูˆูŠ
232
+
233
+ 59
234
+ 00:06:00,250 --> 00:06:04,870
235
+ ุญุตู„ ุถุฑุจ 3 ููŠ A ูˆู‡ุฐุง ุชุทุจูŠู‚ ู…ุจุงุดุฑ ุนู„ู‰ ุงู„ูƒุฑูˆู„ุฑูŠ ุชุจุน
236
+
237
+ 60
238
+ 00:06:04,870 --> 00:06:12,230
239
+ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉู†ู†ุชู‚ู„ ุงู„ุขู† ุฅู„ู‰ ุชุนุฑูŠู ุฌุฏูŠุฏ ุฃูˆ ุซู„ุงุซ
240
+
241
+ 61
242
+ 00:06:12,230 --> 00:06:17,890
243
+ ุชุนุฑูŠูุงุช ูˆู‡ูŠ very important ู„ุฃู†ู‡ุง ุจุชุฌูŠุจู„ูŠ ู…ุนู„ูˆู…ุงุช
244
+
245
+ 62
246
+ 00:06:17,890 --> 00:06:24,330
247
+ ุฌุฏูŠุฏุฉ ูŠุนู†ูŠ ู…ุด ุฏุฑุฌุฉ ุนู†ุฏู†ุง ู‚ุจู„ ุฐู„ูƒ ู…ุนู„ูˆู…ุงุช ุฌุฏูŠุฏุฉ
248
+
249
+ 63
250
+ 00:06:24,330 --> 00:06:30,250
251
+ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ูŠุฌูŠ ุฅู„ู‰ definitions ุงู„ุชุนุฑูŠู ุงู„ุฃูˆู„ ุจูŠู‚ูˆู„
252
+
253
+ 64
254
+ 00:06:30,250 --> 00:06:44,840
255
+ if ุงู„ a is aู… ููŠ ุงู† matrix ู… ููŠ ุงู† matrix we
256
+
257
+ 65
258
+ 00:06:44,840 --> 00:06:58,160
259
+ define we define the transpose a transpose of a
260
+
261
+ 66
262
+ 00:06:58,160 --> 00:07:01,460
263
+ written
264
+
265
+ 67
266
+ 00:07:07,860 --> 00:07:23,020
267
+ ูˆ ูŠููƒุชุจ as a transpose to be the n by m matrix
268
+
269
+ 68
270
+ 00:07:23,020 --> 00:07:33,060
271
+ whose
272
+
273
+ 69
274
+ 00:07:33,060 --> 00:07:33,880
275
+ elements
276
+
277
+ 70
278
+ 00:07:39,760 --> 00:07:49,300
279
+ ุงู„ุฃุดูŠุงุก ุงู„ุชูŠ ุชุณู…ูŠู‡ุง a i j ุชุฑุงู†ุณุจูˆุฒ ุชุณู…ูŠ ุงูŠ ุฌูŠ ุงูŠ
280
+
281
+ 71
282
+ 00:07:49,300 --> 00:07:53,640
283
+ ุงูˆ
284
+
285
+ 72
286
+ 00:07:53,640 --> 00:07:53,740
287
+ ุงูŠ ุงูŠ ุงูŠ ุงูŠ ุงูŠ ุงูŠ ุงูŠ ุงูŠ ุงูŠ ุงูŠ ุงูŠ ุงูŠ
288
+
289
+ 73
290
+ 00:08:07,470 --> 00:08:14,970
291
+ ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ ุฎู…ุณุฉ zero zero ุณุงู„ุจ ูˆุงุญุฏ
292
+
293
+ 74
294
+ 00:08:14,970 --> 00:08:26,290
295
+ ูˆุงุญุฏ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุงุฑุจุนุฉ then a transpose ุชุณุงูˆูŠ
296
+
297
+ 75
298
+ 00:08:26,290 --> 00:08:28,790
299
+ ุงู„ู„ูŠ ู‡ูˆ main
300
+
301
+ 76
302
+ 00:08:47,710 --> 00:08:56,930
303
+ ุชุนุฑูŠู ุงู„ุฃูˆู„ ุชุนุฑูŠู ุงู„ุซุงู†ูŠ ุชุนุฑูŠู
304
+
305
+ 77
306
+ 00:08:56,930 --> 00:09:08,380
307
+ ุงู„ุซุงู†ูŠA matrix A A matrix A is called symmetric is
308
+
309
+ 78
310
+ 00:09:08,380 --> 00:09:17,380
311
+ called symmetric if
312
+
313
+ 79
314
+ 00:09:17,380 --> 00:09:33,110
315
+ A transpose ุชุณุงูˆูŠ ุงู„ A ุงู„ู…ุฑุฉ ุชู„ุงุชุฉA matrix A
316
+
317
+ 80
318
+ 00:09:33,110 --> 00:09:46,790
319
+ is called skew symmetric skew
320
+
321
+ 81
322
+ 00:09:46,790 --> 00:09:54,490
323
+ symmetric if A transpose ุชุณุงูˆูŠ ุณู„ุจ A
324
+
325
+ 82
326
+ 00:10:06,490 --> 00:10:15,050
327
+ example determine whether
328
+
329
+ 83
330
+ 00:10:15,050 --> 00:10:23,110
331
+ the following matrices
332
+
333
+ 84
334
+ 00:10:23,110 --> 00:10:26,550
335
+ are
336
+
337
+ 85
338
+ 00:10:26,550 --> 00:10:29,270
339
+ symmetric
340
+
341
+ 86
342
+ 00:10:32,520 --> 00:10:43,280
343
+ or skew symmetric ุฃุตูˆูุฉ
344
+
345
+ 87
346
+ 00:10:43,280 --> 00:10:47,660
347
+ A ุชุณุงูˆูŠ
348
+
349
+ 88
350
+ 00:10:47,660 --> 00:10:58,000
351
+ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุงุฑุจุน ุณุงู„ุจ ุงุชู†ูŠู†
352
+
353
+ 89
354
+ 00:10:58,000 --> 00:11:11,730
355
+ ุฎู…ุณุฉ ูˆุงุญุฏุจุชุณุงูˆูŠ Zero ุณุงู„ุจ ุชู„ุงุชุฉ ุงุชู†ูŠู† Zero ุณุงู„ุจ
356
+
357
+ 90
358
+ 00:11:11,730 --> 00:11:19,190
359
+ ุชู„ุงุชุฉ ุชู„ุงุชุฉ Zero ุณุงู„ุจ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ูˆุงุญุฏ Zero
360
+
361
+ 91
362
+ 00:11:19,190 --> 00:11:20,170
363
+ ุจุงู„ุดูƒู„ ุงู†
364
+
365
+ 92
366
+ 00:12:02,920 --> 00:12:07,800
367
+ ูŠุจู‚ู‰ ุจูŠุฌูŠ ุงู„ุงู† ู„ู…ุตุญูˆูุฉ J ุฏู‡ ุงูŠู‡ ุฏู‡ ู„ู… ู†ุชุนุงู…ู„ ู…ุนู‡ุง
368
+
369
+ 93
370
+ 00:12:07,800 --> 00:12:16,540
371
+ ู…ู† ู‚ุจู„ ู‡ุฐู‡ ุงู„ู…ุตุญูˆูุฉ ูƒุงู„ุชุงู„ูŠุฉ ูŠุจู‚ู‰ ููŠู‡ุง M
372
+
373
+ 94
374
+ 00:12:16,540 --> 00:12:22,220
375
+ ู…ู† ุงู„ุตููˆู ูˆ N ู…ู† ุงู„ุฃุนู…ุฏุฉ ุจู†ุนุฑู the transpose of A
376
+
377
+ 95
378
+ 00:12:22,220 --> 00:12:28,180
379
+ ูŠุนู†ูŠ ู…ุฏูˆุฑ ุงู„ู…ุตุญูˆูุฉ A ุงูˆ ุจูŠุณู…ูˆู‡ ู…ู†ู‚ูˆู„ ุงู„ู…ุตุญูˆูุฉ A
380
+
381
+ 96
382
+ 00:12:28,180 --> 00:12:33,710
383
+ ุงุนุชู‚ุฏ ููŠ ุงู„ุซุงู†ูˆูŠุฉ ูƒู†ุช ุจูŠุณู…ูˆู‡ ู…ุฏูˆุฑ ุงู„ู…ุตุญ๏ฟฝ๏ฟฝูุฉ AูŠุจู‚ู‰
384
+
385
+ 97
386
+ 00:12:33,710 --> 00:12:37,950
387
+ ุงู„ู€ Transpose of A ู‡ูˆ ู…ุถุงูˆุฑ ู…ุตุญูˆูุฉ written as A ูˆ
388
+
389
+ 98
390
+ 00:12:37,950 --> 00:12:43,650
391
+ ุจุญุท ูุฌู‡ุฉ T ูˆ ุชู‚ุฑุฃ A Transpose ูŠุนู†ูŠ Transpose of
392
+
393
+ 99
394
+ 00:12:43,650 --> 00:12:49,090
395
+ Matrix A to be the N by M Matrix ูŠุจู‚ู‰ ุงู„ุตู ุจูŠุตูŠุฑ
396
+
397
+ 100
398
+ 00:12:49,090 --> 00:12:56,070
399
+ ุนู…ูˆุฏ ูˆ ุงู„ุนู…ูˆุฏ ู…ุด ุจูŠุตูŠุฑ ุตู ูŠุจู‚ู‰ ุงู„ N ููŠ Mู† ููŠ m
400
+
401
+ 101
402
+ 00:12:56,070 --> 00:13:03,790
403
+ matrix whose elements aij transpose ู‡ูˆ aji ูŠุจู‚ู‰ ู…ุด
404
+
405
+ 102
406
+ 00:13:03,790 --> 00:13:06,730
407
+ ุนุงุฏูŠ ุฃุฌูŠุจ ู„ูŠู‡ ุงู„ transpose ุชุจุน ุงู„ element ุจุจุฏู„
408
+
409
+ 103
410
+ 00:13:06,730 --> 00:13:10,330
411
+ ุงู„ุตู ุนู…ูˆุฏ ูˆ ุงู„ุนู…ูˆุฏ ุตู ูŠุนู†ูŠ ุงู„ answer ูƒุงู† ููŠ ุงู„ุตู
412
+
413
+ 104
414
+ 00:13:10,330 --> 00:13:14,390
415
+ ุงู„ุซุงู†ูŠ ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจุตูŠุฑ ููŠ ุงู„ุตู ุงู„ุฃูˆู„ ูˆ ุงู„ุนู…ูˆุฏ
416
+
417
+ 105
418
+ 00:13:14,390 --> 00:13:19,030
419
+ ุงู„ุซุงู†ูŠ ูˆ ู‡ูƒุฐุง ู†ุนุทูŠ ู…ุซุงู„ for example ู„ูˆ ูƒุงู†ุช
420
+
421
+ 106
422
+ 00:13:19,030 --> 00:13:23,110
423
+ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ A transpose
424
+
425
+ 107
426
+ 00:13:23,110 --> 00:13:28,470
427
+ ุชุจุนู‡ุง ูŠุจู‚ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ุจุฏูŠ ุฃุฎู„ูŠู‡ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุงู„ุตู
428
+
429
+ 108
430
+ 00:13:28,470 --> 00:13:31,730
431
+ ุงู„ุซุงู†ูŠ ุจุฏูŠ ุฃุฎู„ูŠู‡ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุงู„ุตู ุงู„ุชุงู„ุช ุจุฏูŠ
432
+
433
+ 109
434
+ 00:13:31,730 --> 00:13:36,790
435
+ ุฃุฎู„ูŠู‡ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู„ุช ูŠุจู‚ู‰ 2 3 1 5 ู‡ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„
436
+
437
+ 110
438
+ 00:13:36,790 --> 00:13:42,230
439
+ ุทู„ุน 2 3 1 5 ุงู„ุตู ุงู„ุซุงู†ูŠ ุจุฏูŠ ุฃุฎู„ูŠู‡ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ
440
+
441
+ 111
442
+ 00:13:42,230 --> 00:13:50,420
443
+ ูŠุจู‚ู‰ 00-1 1 00-1 1ู„ุฃู† ุตูุฉ ุชุงู„ุช ุจุชุฎู„ูŠ ุงู„ุนู…ูˆุฏ ุชู„ูˆ 1
444
+
445
+ 112
446
+ 00:13:50,420 --> 00:13:56,420
447
+ 2 3 4 ูŠูƒูˆู† 1 2 3 4 ูŠุจู‚ู‰ ุฅุฐุง ุฎู„ุช ุงู„ุตููˆู ุฃุนู…ุฏุฉ ูˆ
448
+
449
+ 113
450
+ 00:13:56,420 --> 00:14:01,060
451
+ ุงู„ุฃุนู…ุฏุฉ ุตููˆู ู†ุธุงู… ุงู„ู…ุตูˆูุฉ ุงู„ุฃุตู„ูŠ ูƒุงู† M ููŠ N ูŠุจู‚ู‰
452
+
453
+ 114
454
+ 00:14:01,060 --> 00:14:07,900
455
+ ู†ุธุงู… ุงู„ู…ุตูˆูุฉ ุงู„ุฌุฏูŠุฏุฉ ู‡ูˆ Nุจู†ู‚ู„ุจ ุงู„ูˆุถุน ูŠุจู‚ู‰ ู‡ุฐุง
456
+
457
+ 115
458
+ 00:14:07,900 --> 00:14:12,060
459
+ ุจุงู„ู†ุณุจุฉ ู„ู„ุชุนุฑูŠู ุงู„ุฃูˆู„ ุงู„ุชุนุฑูŠู ุงู„ุซุงู†ูŠ symmetric
460
+
461
+ 116
462
+ 00:14:12,060 --> 00:14:17,360
463
+ matrix ูŠุนู†ูŠ ู…ุตููˆูุฉ ู…ุชู…ุงุซู„ุฉ ุจู‚ูˆู„ ุนู†ู‡ุง ูˆู‚ุช ุฃุดู‡ุฑ ู„ูˆ
464
+
465
+ 117
466
+ 00:14:17,360 --> 00:14:23,870
467
+ ุฌุจุช ู„ู‡ุง transpose ุทู„ุนุช main ู†ูุณ ุงู„ู…ุตููˆูุฉ ุชู…ุงู…ุฃุฐุง
468
+
469
+ 118
470
+ 00:14:23,870 --> 00:14:27,950
471
+ ู„ูˆ ุฌุจุช ู„ุชุฑุงู†ุณุจูˆุฒ ู„ู„ู…ุตุฑูˆูุฉ ูˆุทู„ุน ู†ูุณ ุงู„ู…ุตุฑูˆูุฉ ุจู‚ูˆู„
472
+
473
+ 119
474
+ 00:14:27,950 --> 00:14:32,410
475
+ ู‡ุฐูŠ ุงู„ู„ูŠ ู‡ูˆ symmetric matrix ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุนุฑูŠู ุงู„ุฃูˆู„
476
+
477
+ 120
478
+ 00:14:32,410 --> 00:14:37,170
479
+ ุจุฏุฃุฌูŠ ู„ู„ุชุนุฑูŠู ุงู„ุซุงู†ูŠ ู„ูˆ ุฌุจุช ู„ุชุฑุงู†ุณุจูˆุฒ ู„ matrix A
480
+
481
+ 121
482
+ 00:14:37,170 --> 00:14:46,540
483
+ ุทู„ุน ู†ูุณ ุงู„ู…ุตุฑูˆูุฉ A ุจุฅุดุงุฑุฉุณุงู„ุฉ ูŠุจู‚ู‰ ู…ุชู…ุซู„
484
+
485
+ 122
486
+ 00:14:46,540 --> 00:14:56,700
487
+ ู…ุชุฎู„ู ู…ุชู…ุซู„ ู…ุชุฎู„ู ู…ุชู…ุซู„ ู…ุชุฎู„ู ู…ุชู…ุซู„
488
+
489
+ 123
490
+ 00:14:56,700 --> 00:15:03,240
491
+ ู…ุชุฎู„ููŠุจู‚ู‰ matrix is called skew symmetric ู„ูˆ ุชู…ุซู„
492
+
493
+ 124
494
+ 00:15:03,240 --> 00:15:09,160
495
+ ู…ุชุฎู„ู F ุงู„ู€ A ููŠ ุงู„ู€ A transpose ู…ุด ุงู„ู€ A ู†ุงู‚ุต
496
+
497
+ 125
498
+ 00:15:09,160 --> 00:15:16,760
499
+ ูˆุงุญุฏ ุตู„ุญูŠู‡ุง ุจุงู„ู„ู‡ A transpose ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ A
500
+
501
+ 126
502
+ 00:15:16,760 --> 00:15:22,630
503
+ ูŠุจู‚ู‰ ุฅุฐุง ูƒุงู† ุงู„ู€ A transpose ูŠุณุงูˆูŠ ุณุงู„ุจ Aุงู„ุงู† ู…ุซุงู„
504
+
505
+ 127
506
+ 00:15:22,630 --> 00:15:25,390
507
+ ุจูŠู‚ูˆู„ ุฏูŠ determine whether the following matrices
508
+
509
+ 128
510
+ 00:15:25,390 --> 00:15:29,570
511
+ are symmetric or skew symmetric ุงูƒู…ู„ูŠ ุนู„ู‰ ูƒู„
512
+
513
+ 129
514
+ 00:15:29,570 --> 00:15:34,130
515
+ ู…ุตููˆูุฉ ู…ู† ู‡ุฐู‡ ุงู„ู…ุตููˆูุงุช ู‡ู„ ู‡ูŠ ุณูŠู…ุชุฑูŠูƒ ูˆู„ุง ุณูƒูŠูˆูŠ
516
+
517
+ 130
518
+ 00:15:34,130 --> 00:15:41,560
519
+ ุณูŠู…ุชุฑูŠูƒ ู†ู…ุณูƒ ุงู„ู…ุตููˆูุฉ ุงู„ุฃูˆู„ู‰ูŠุจู‚ู‰ ุจุถุงุฌูŠ ุงุฎุฏ ุงู„ a
520
+
521
+ 131
522
+ 00:15:41,560 --> 00:15:48,840
523
+ transpose ูŠุฒุงูˆุฏ ุงู„ุตู ุงู„ุฃูˆู„ ุจูŠุตูŠุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰
524
+
525
+ 132
526
+ 00:15:48,840 --> 00:15:53,560
527
+ ุงูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุงู„ุตู ุงู„ุซุงู†ูŠ ุจูŠุตูŠุฑ ุงู„ุนู…ูˆุฏ
528
+
529
+ 133
530
+ 00:15:53,560 --> 00:16:06,310
531
+ ุงู„ุชุงู†ูŠ ูŠุจู‚ู‰ ุงุชู†ูŠู† ุงุฑุจุนุฉ ุณุงู„ุจ ุงุชู†ูŠู†ูŠุจู‚ู‰ ุชู„ุงุชุฉ
532
+
533
+ 134
534
+ 00:16:06,310 --> 00:16:10,870
535
+ ู†ู‚ุต ุงุชู†ูŠู† ุฎู…ุณุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงูŠุด ุฑุงูŠูƒุŸ ูˆู‡ูŠ
536
+
537
+ 135
538
+ 00:16:10,870 --> 00:16:17,250
539
+ ุงู„ู…ุตูˆูุฉ ุงู„ุฃุตู„ูŠุฉุŸุตุญ ูˆู„ุง ู„ุฃุŸ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† A
540
+
541
+ 136
542
+ 00:16:17,250 --> 00:16:22,230
543
+ Transpose ุจุฏู‡ ูŠุณุงูˆูŠ A ูŠุจู‚ู‰ A ุนุจุงุฑุฉ ุนู† ุงูŠู‡ุŸ
544
+
545
+ 137
546
+ 00:16:22,230 --> 00:16:30,310
547
+ Symmetric Matrix ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ A is a Symmetric
548
+
549
+ 138
550
+ 00:16:30,310 --> 00:16:33,530
551
+ Matrix
552
+
553
+ 139
554
+ 00:16:33,530 --> 00:16:42,570
555
+ ูŠุจู‚ู‰ ู…ุตูˆูุง ู…ุชู…ุซู„ุง andุจุงู„ุฏุงู„ูŠ ู„ู„ู…ุตูˆูุฉ B transpose
556
+
557
+ 140
558
+ 00:16:42,570 --> 00:16:49,010
559
+ ุจุฏูŠ ุงุฎู„ ุงู„ุตู ุงู„ุฃูˆู„ ู‡ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ Zero ุณุงู„ุจ
560
+
561
+ 141
562
+ 00:16:49,010 --> 00:16:54,470
563
+ ุชู„ุงุชุฉ ุงุชู†ูŠู† ุงู„ุตู ุงู„ุชุงู†ูŠ ู‡ูˆ ุง๏ฟฝ๏ฟฝุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุชู„ุงุชุฉ
564
+
565
+ 142
566
+ 00:16:54,470 --> 00:16:58,890
567
+ Zero ุณุงู„ุจ ูˆุงุญุฏ ุงู„ุตู ุงู„ุชุงู„ุช ู‡ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู„ุช ูŠุจู‚ู‰
568
+
569
+ 143
570
+ 00:16:58,890 --> 00:17:04,270
571
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงุญุฏ Zero ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ู‡ุง ู‡ู„ ู‡ุฐุง ู‡ูˆ
572
+
573
+ 144
574
+ 00:17:04,270 --> 00:17:11,130
575
+ ุงู„ู…ุตูˆูุฉ Bู„ุฃ ุทุจ ุฎู„ูŠู†ูŠ ุฃุฌุฑุจ ุฃุฎุฏ ุณุงู„ุจ ูˆุงุญุฏ ุนุงู…ู„ ู…ุดุชุฑูƒ
576
+
577
+ 145
578
+ 00:17:11,130 --> 00:17:16,950
579
+ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ุฃุฎุฏุช ุณุงู„ุจ ูˆุงุญุฏ ุจูŠุตูŠุฑ ุณุงู„ุจ ู‡ุฐุง Zero ุฒูŠ
580
+
581
+ 146
582
+ 00:17:16,950 --> 00:17:23,370
583
+ ู…ุง ู‡ูˆ ู‡ุฐุง ุณุงู„ุจ ุชู„ุงุชุฉ ู‡ุฐุง ูˆุงุญุฏ ู‡ุฐุง ุชู„ุงุชุฉ ู‡ุฐุง Zero
584
+
585
+ 147
586
+ 00:17:23,370 --> 00:17:30,830
587
+ ู‡ุฐุง ุณุงู„ุจ ูˆุงุญุฏ ู‡ุฐุง ุณุงู„ุจ ุงุชู†ูŠู† ู‡ุฐุง ูˆุงุญุฏ ู‡ุฐุง Zero ู‡ุฐู‡
588
+
589
+ 148
590
+ 00:17:30,830 --> 00:17:32,730
591
+ ู‡ูŠ ุงู„ู…ุตูˆูุฉ ุจูŠู‡ ูˆู„ุง ู„ุฃุŸ
592
+
593
+ 149
594
+ 00:17:53,240 --> 00:17:59,260
595
+ ุจุชุฑุงู†ุณุจูˆุฒ ู‡ูŠ ุงู„ุตู ุงู„ุฃูˆู„ Zero ุณุงู„ุจ ุชู„ุงุชุฉ ุงุชู†ูŠู†
596
+
597
+ 150
598
+ 00:17:59,260 --> 00:18:03,360
599
+ ุชู„ุงุชุฉ Zero ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงุญุฏ
600
+
601
+ 151
602
+ 00:18:06,280 --> 00:18:13,860
603
+ ุงุณุชู†ู‰ ุงุณุชู†ู‰ ุดูˆูŠุฉ ุงุณุชู†ู‰ ุดูˆูŠุฉ ุจุฑุงุฌุน ูƒุชุงุจุชู‡ุง ุงู„ู…ุตููˆู
604
+
605
+ 152
606
+ 00:18:13,860 --> 00:18:21,140
607
+ ุจูŠู‡ ุนู†ุฏู†ุง Zero ุณุงู„ุจ ุชู„ุงุชุฉ ุงุชู†ูŠู† ุชู„ุงุชุฉ Zero ุณุงู„ุจ
608
+
609
+ 153
610
+ 00:18:21,140 --> 00:18:27,020
611
+ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ู‡ุฐู‡ ู…ู† ุนู†ุฏูƒ ู‡ุฐู‡ ุณุงู„ุจ ุงุชู†ูŠู† Zero
612
+
613
+ 154
614
+ 00:18:27,020 --> 00:18:32,710
615
+ ูˆุงุญุฏ ุจุณ ุฎุทุฃ ููŠ ุงู„ูƒุชุงุจุฉุฅุฐุง ุงู„ุตู ุงู„ุฃูˆู„ ู‡ูˆ ุงู„ู€ A ูŠุจู‚ู‰
616
+
617
+ 155
618
+ 00:18:32,710 --> 00:18:40,090
619
+ ู‡ุฐู‡ transpose ูŠุจู‚ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ู‡ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุงู„ุตู
620
+
621
+ 156
622
+ 00:18:40,090 --> 00:18:47,170
623
+ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏู‡ุง ุชุตูŠุฑ ุณุงู„ุจ ุงุชู†ูŠู†ูŠุจู‚ู‰ ุงู„ุตูุช ู…ู†
624
+
625
+ 157
626
+ 00:18:47,170 --> 00:18:52,930
627
+ ุณู„ุจ ุงุชู†ูŠู† ูˆุงุญุฏ ุฒูŠุฑูˆ ุงู„ุงู† ุจุฏุงุด ูŠุงุฎุฏ ุณู„ุจ ุนู…ู„ ู…ุดุชุฑูƒ
628
+
629
+ 158
630
+ 00:18:52,930 --> 00:19:00,770
631
+ ุจูŠุตูŠุฑ ู‡ุงุฏูŠ ุงุชู†ูŠู† ุชู…ุงู… ู‡ุงุฏูŠ ุงุชู†ูŠู† ูˆ ู‡ุงุฏูŠ ุชู„ุงุชุฉ ุฒูŠุฑูˆ
632
+
633
+ 159
634
+ 00:19:00,770 --> 00:19:05,130
635
+ ุณู„ุจ ูˆุงุญุฏ ูˆ ู‡ุงุฏูŠ ุณู„ุจ ุงุชู†ูŠู† ูˆุงุญุฏ ุฒูŠุฑูˆ ุงุทู„ุนูŠู„ูŠ
636
+
637
+ 160
638
+ 00:19:05,130 --> 00:19:09,100
639
+ ุงู„ู…ุตูˆูุฉ ู‡ุฐู‡ ู‡ูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ููˆู‚ูŠุจู‚ู‰ ู‡ู‰
640
+
641
+ 161
642
+ 00:19:09,100 --> 00:19:13,320
643
+ ุงู„ู…ุตูŠูุฉ ุงู„ู„ู‰ ููˆู‚ ุจุงู„ุถุจุท ุชู…ุงู…ุง ูŠุจู‚ู‰ ู‡ุฏู‰ ุจุฏู‰ ูŠุณูˆู‰
644
+
645
+ 162
646
+ 00:19:13,320 --> 00:19:19,740
647
+ ู…ูŠู† ุณุงู„ุจ ุจู‰ ุฅุฐุง ุจูŠุชุฑุงู†ุณุจูˆุฒ ุณูˆู‰ ุชุณุงู„ุจ ุจู‰ ูŠุจู‚ู‰ ู‡ู†ุง
648
+
649
+ 163
650
+ 00:19:19,740 --> 00:19:24,960
651
+ ุจูŠุณุงุณูƒูŠูˆูŠ
652
+
653
+ 164
654
+ 00:19:24,960 --> 00:19:29,940
655
+ symmetric matrix
656
+
657
+ 165
658
+ 00:19:37,920 --> 00:19:43,380
659
+ ุทูŠุจ ู…ุฌุฑุฏ ู…ู„ุงุญุธุฉ ุนู„ู‰ ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ู„ูˆ ุทู„ุนู†ุง ู„ู„ู…ุตูˆูุฉ A
660
+
661
+ 166
662
+ 00:19:43,380 --> 00:19:48,640
663
+ ุซู… ู„ู…ุตูˆูุฉ B ู‡ุง ู„ูˆ ุจุฏู‰ ุฃุณุชู†ุชุฌ ุงู„ุณู†ุชูŠู† ู‚ุจู„ ู…ุง ุฃุจุฏุฃ
664
+
665
+ 167
666
+ 00:19:48,640 --> 00:19:53,340
667
+ ุฃุดุชุบู„ ุจุงุฌูŠ ุจุงุทู„ุน ููŠ ุงู„ู…ุตูˆูุฉ A ู„ุงุญุธ ุงู„ุตู ุงู„ุฃูˆู„ ู‡ูˆ
668
+
669
+ 168
670
+ 00:19:53,340 --> 00:19:58,520
671
+ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุงู„ุนู†ุตุฑ ู‡ุฐุง ู‡ูˆ ุงู„ุนู†ุตุฑ ู‡ุฐุง ูˆ ุงู„ู‚ุทุฉ
672
+
673
+ 169
674
+ 00:19:58,520 --> 00:20:03,110
675
+ ุงู„ุฑุฆูŠุณูŠุฉ ู…ุด ู…ุดูƒู„ุฉ ู…ูŠู†ู…ุง ูŠูƒูˆู† ูŠูƒูˆู†ุชู…ุงู…ุŸ ู„ู…ุงุฐุงุŸ ู„ุฃู†
676
+
677
+ 170
678
+ 00:20:03,110 --> 00:20:08,050
679
+ under transpose ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู‚ุทุฑูŠุฉ ุชุจู‚ู‰ ูƒู…ุง ู‡ูŠ ู‡ุฐุง
680
+
681
+ 171
682
+ 00:20:08,050 --> 00:20:12,190
683
+ ุงูŠู‡ ุฏู‡ ูƒุงู†ุช ู…ุตูˆูุฉ ู…ุฑุจุนุฉ ูŠุจู‚ู‰ ุจุชุจู‚ู‰ ุงู„ุนู†ุงุตุฑ ูƒู…ุง ู‡ูŠ
684
+
685
+ 172
686
+ 00:20:12,190 --> 00:20:15,970
687
+ ู…ุงุนู†ุงู‡ุง ู…ุดูƒู„ุฉ ุชุนุงู„ู‰ ู„ุฃู† ุงู„ู…ุตูˆูุฉ ุจูŠู‡ ุงูŠุด ุจุชู„ุงุญุธ ุนู„ู‰
688
+
689
+ 173
690
+ 00:20:15,970 --> 00:20:21,990
691
+ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูƒู„ู‡ ุฃุตูุฑุง ูŠุจู‚ู‰ ููŠ ุญุงู„ุฉ ุงู„ skew ุงู„
692
+
693
+ 174
694
+ 00:20:21,990 --> 00:20:27,030
695
+ symmetric ูˆุงู„ู…ุตูˆูุฉ ู…ุฑุจุนุฉ ู„ุงุฒู… ูŠูƒูˆู†ูˆุง ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ
696
+
697
+ 175
698
+ 00:20:27,030 --> 00:20:33,590
699
+ ุงู„ุฑุฆูŠุณูŠ ุฃุตูุฑุงุฅุชู†ุงู† ู…ุดุงู† ุงู„ู„ูŠ ุงู„ู…ุตุญูˆูุฉ ุชุทู„ุน ุงู„ู„ูŠ ู‡ูˆ
700
+
701
+ 176
702
+ 00:20:33,590 --> 00:20:37,950
703
+ ุงู„ transpose ู‡ูˆ ู†ูุณู‡ุง ู„ุงุฒู… ุชูƒูˆู† ุงู„ู…ุตุญูˆูุฉ ุนู†ุฏู‰
704
+
705
+ 177
706
+ 00:20:37,950 --> 00:20:44,730
707
+ ู…ุตุญูˆูุฉ ู…ุฑุจุนุฉ ุชู…ุงู… ูŠุจู‚ู‰ symmetric ูˆ skew symmetric
708
+
709
+ 178
710
+ 00:20:44,730 --> 00:20:49,280
711
+ ู„ุงุฒู… ุงู„ุฃุตู„ ุชุจู‚ู‰ ู…ุตุญูˆูุฉ ู…ุฑุจุนุฉุงู„ูƒู„ุงู… ุงู„ู„ู‰ ุจู‚ูˆู„ู‡
712
+
713
+ 179
714
+ 00:20:49,280 --> 00:20:55,460
715
+ ู‡ุถุทุฑูƒ ููŠ ุตูŠุบุฉ ุงู„ู…ู„ุงุญุธุงุช ุงู„ุชุงู„ูŠุฉ ูŠุนู†ูŠ ู„ูˆ ุฌูŠุจู†ุงู„ูƒ
716
+
717
+ 180
718
+ 00:20:55,460 --> 00:20:59,020
719
+ ู…ุตููˆูุฉ ู…ุณุชุทูŠู„ุฉ ูˆ ู‚ูˆู„ู†ุง ู„ูƒ ู‡ุฐู‡ symmetric ูˆ ุงู„ู„ู‡
720
+
721
+ 181
722
+ 00:20:59,020 --> 00:21:03,000
723
+ ู…ุงู‡ูŠุงุด symmetric ู…ู† ุฏูˆู† ู…ุง ุชุดุชุบู„ูŠ ุจุฏูƒ ุชู‚ูˆู„ ู‡ุฐู‡
724
+
725
+ 182
726
+ 00:21:03,000 --> 00:21:08,360
727
+ ู…ุงู‡ูŠุงุด symmetric ู„ุฃู† ุนุฏุฏ ุงู„ุตููˆู ุฅุฐุง ู…ุงุณูˆุงุด ุนุฏุฏ
728
+
729
+ 183
730
+ 00:21:08,360 --> 00:21:13,480
731
+ ุงู„ุฃุนู…ุฏุฉ ู„ู…ุง ุฌูŠุจู„ูŠ transpose ู„ุงูŠู…ูƒู† ุชุทู„ุน ุงู„ู…ุตููˆูุฉ
732
+
733
+ 184
734
+ 00:21:13,480 --> 00:21:20,830
735
+ ุงู„ุฃุตู„ูŠุฉ ุจุฃูŠ ุญุงู„ ู…ู† ุงู„ุฃุญูˆุงู„ูŠุจู‚๏ฟฝ๏ฟฝ ุงู„ู…ู„ุงุญุธุฉ ูƒุชุงู„ุฉ
736
+
737
+ 185
738
+ 00:21:20,830 --> 00:21:28,890
739
+ remark ู‡ุฌุณู…ู‡ุง
740
+
741
+ 186
742
+ 00:21:28,890 --> 00:21:40,090
743
+ ุฅู„ู‰ ุซู„ุงุซ ู†ู‚ุงุท ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ the symmetric and
744
+
745
+ 187
746
+ 00:21:40,090 --> 00:21:44,310
747
+ skew symmetric
748
+
749
+ 188
750
+ 00:21:58,170 --> 00:22:04,870
751
+ must be ูŠุฌุจ
752
+
753
+ 189
754
+ 00:22:04,870 --> 00:22:14,290
755
+ ุฃู† ุชูƒูˆู† aยฒ matrix ุงู„ู…ู„ุงุญุธุฉ
756
+
757
+ 190
758
+ 00:22:14,290 --> 00:22:20,020
759
+ ุงู„ุซุงู†ูŠุฉ ุฏุง ุฏุง ูŠู‚ูˆู„ ุงู„ matrixof the diagonal
760
+
761
+ 191
762
+ 00:22:20,020 --> 00:22:30,200
763
+ elements of
764
+
765
+ 192
766
+ 00:22:30,200 --> 00:22:34,040
767
+ a
768
+
769
+ 193
770
+ 00:22:34,040 --> 00:22:45,820
771
+ square matrix A and A transpose
772
+
773
+ 194
774
+ 00:22:48,290 --> 00:22:57,350
775
+ are the same that
776
+
777
+ 195
778
+ 00:22:57,350 --> 00:23:04,890
779
+ is ุฃูŠ ุฃู† ุงู„ู€
780
+
781
+ 196
782
+ 00:23:04,890 --> 00:23:14,950
783
+ AII transpose ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ AII for all I ุงู„ู†ู‚ุทุฉ
784
+
785
+ 197
786
+ 00:23:14,950 --> 00:23:22,950
787
+ ุงู„ุซุงู„ุซุฉand askew symmetric and askew
788
+
789
+ 198
790
+ 00:23:22,950 --> 00:23:28,170
791
+ symmetric and
792
+
793
+ 199
794
+ 00:23:28,170 --> 00:23:32,850
795
+ askew symmetric matrix
796
+
797
+ 200
798
+ 00:23:32,850 --> 00:23:36,850
799
+ the
800
+
801
+ 201
802
+ 00:23:36,850 --> 00:23:44,390
803
+ main diagonal ุงู„ู‚ุทุฑ
804
+
805
+ 202
806
+ 00:23:44,390 --> 00:23:54,360
807
+ ุงู„ุฑุฆูŠุณูŠุงู„ู€ main diagonal elements are
808
+
809
+ 203
810
+ 00:23:54,360 --> 00:24:12,320
811
+ zero ูŠุจู‚ู‰ ุฏุงุฆู…ุง ูˆุงุจุฏุง ุจุชูƒูˆู† ุฃุตูุฑุง that is that
812
+
813
+ 204
814
+ 00:24:12,320 --> 00:24:26,040
815
+ isุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ AII ุจุฏู‡ ูŠุณุงูˆูŠ 0 for all I ุจู†ุฌูŠ
816
+
817
+ 205
818
+ 00:24:26,040 --> 00:24:33,540
819
+ ู„ูŠู‡ some properties of
820
+
821
+ 206
822
+ 00:24:33,540 --> 00:24:39,980
823
+ a transpose matrix
824
+
825
+ 207
826
+ 00:24:41,720 --> 00:24:54,900
827
+ ุจุนุฏ ุฎูˆุงุต ู…ุฏูˆุฑ ุงู„ู…ุตููˆูุฉ four a square matrices
828
+
829
+ 208
830
+ 00:24:54,900 --> 00:24:59,140
831
+ matrices
832
+
833
+ 209
834
+ 00:24:59,140 --> 00:25:05,140
835
+ a and b we have
836
+
837
+ 210
838
+ 00:25:10,340 --> 00:25:16,300
839
+ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ A Transpose ุฒูŠ ุงู„ Transpose ุจุฏู‡
840
+
841
+ 211
842
+ 00:25:16,300 --> 00:25:24,480
843
+ ูŠุณุงูˆูŠ A itself ู†ู…ุฑุฉ ุงุชู†ูŠู† A ุฒูŠ B Transpose ุจุฏู‡
844
+
845
+ 212
846
+ 00:25:24,480 --> 00:25:34,940
847
+ ูŠุณุงูˆูŠ A Transpose ุฒูŠ B Transpose ุชู„ุงุชุฉ A
848
+
849
+ 213
850
+ 00:25:34,940 --> 00:25:42,600
851
+ Btranspose ุจุฏูŠ ูŠุณูˆูŠ ุจูŠ ุชุฑุงู†ุณุจูˆุฒ ููŠ ุงู„ a transpose
852
+
853
+ 214
854
+ 00:25:42,600 --> 00:25:58,900
855
+ ู†ู…ุฑุฉ ุฃุฑุจุน four any scalar c c a ูƒู„ู‡ transpose
856
+
857
+ 215
858
+ 00:25:58,900 --> 00:26:02,960
859
+ ุจูŠุณูˆูŠ c ููŠ ุงู„ a transpose
860
+
861
+ 216
862
+ 00:26:13,180 --> 00:26:26,560
863
+ example example one show that show
864
+
865
+ 217
866
+ 00:26:26,560 --> 00:26:34,100
867
+ that if ุงู„ a is
868
+
869
+ 218
870
+ 00:26:38,460 --> 00:26:45,100
871
+ square matrix then
872
+
873
+ 219
874
+ 00:27:11,840 --> 00:27:17,280
875
+ ู†ู…ุฑุฉ A ุงู„ู€
876
+
877
+ 220
878
+ 00:27:17,280 --> 00:27:25,060
879
+ A ููŠ ุงู„ู€ A Transpose and ุงู„ู€ A ุฒุงุฆุฏ ุงู„ู€ A
880
+
881
+ 221
882
+ 00:27:25,060 --> 00:27:33,400
883
+ Transpose are symmetric ู†ู…ุฑุฉ
884
+
885
+ 222
886
+ 00:27:33,400 --> 00:27:44,930
887
+ Vู†ู…ุฑ ุจูŠ ุงู„ a ู†ุงู‚ุต ุงู„ a transpose as a skew
888
+
889
+ 223
890
+ 00:27:44,930 --> 00:27:46,610
891
+ symmetric
892
+
893
+ 224
894
+ 00:28:26,180 --> 00:28:29,100
895
+ ู†ุฑุฌุน ุงู„ูƒู„ุงู… ุงู„ู„ู‰ ุงุญู†ุง ูƒุงุชุจูŠู†ู‡ ู‡ุฐุง ู…ุฑุฉ ุชุงู†ูŠุฉ
896
+
897
+ 225
898
+ 00:28:29,100 --> 00:28:35,140
899
+ ู†ุชุนุฑุถู„ู‡ ุชูุตูŠู„ูŠุง ุซู… ู†ุฐู‡ุจ ุงู„ู‰ ุญู„ ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ ุนู„ู‰
900
+
901
+ 226
902
+ 00:28:35,140 --> 00:28:36,320
903
+ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน
904
+
905
+ 227
906
+ 00:28:42,630 --> 00:28:49,450
907
+ ู…ุซูˆูุฉ ุงู„ู…ุชู…ุงุซู„ุฉ ุฃูˆ ุดุจู‡ ุงู„ู…ุชู…ุงุซู„ุฉ ุฃูˆ ุงู„ู…ุชู…ุงุซู„ุฉ
908
+
909
+ 228
910
+ 00:28:49,450 --> 00:28:54,370
911
+ ุชู…ุงุซู„ุฉ ุงู„ู…ุชุฎุงู„ู ุงุชู†ูŠู† ู…ุตูˆูุชูŠู† ู…ุฑุจุนุชูŠู† ู„ูŠุด ุงู† ุนุฏุฏ
912
+
913
+ 229
914
+ 00:28:54,370 --> 00:28:58,530
915
+ ุงู„ุตููˆู ูŠุณูˆู‰ ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ูุฅู† ุฌู„ุจุชู‡ุง ุชุตุจุญ ุนุฏุฏ ุงู„ุตููˆู
916
+
917
+ 230
918
+ 00:28:58,530 --> 00:29:04,740
919
+ ูŠุณูˆู‰ ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ูŠุฌุจ ุฃู† ุชูƒูˆู† ู…ุตูˆูุฉ ู…ุฑุจุนุฉุงู„ู†ู‚ุทุฉ
920
+
921
+ 231
922
+ 00:29:04,740 --> 00:29:07,580
923
+ ุงู„ุชุงู†ูŠุฉ ุงู„ู€ diagonal matrix ููŠ ุงู„ square matrix A
924
+
925
+ 232
926
+ 00:29:07,580 --> 00:29:12,240
927
+ ูˆุงู„ู€ A transpose are the same ู†ูุณ ุงู„ุดูŠุก ูŠุจู‚ู‰ ู…ุณุญู†ุง
928
+
929
+ 233
930
+ 00:29:12,240 --> 00:29:18,100
931
+ ุดูˆูŠุฉ ุชูˆู„ ู…ุตููˆูุฉ ู„ู…ุง ู†ุนู…ู„ู†ุง ุนู†ุงุตุฑ ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ A11,
932
+
933
+ 234
934
+ 00:29:18,440 --> 00:29:23,760
935
+ A22, A33 ูˆุฅู† ู†ุฒู„ ูƒู„ู‡ ุจุชุธู„ ุงู„ุนู†ุตุฑ ู„ุฃู† ุงู„ุนู†ุตุฑ ู…ูˆู‚ุน
936
+
937
+ 235
938
+ 00:29:23,760 --> 00:29:28,380
939
+ ููŠ ุงู„ุตู ูˆู†ูุณ ู…ูˆู‚ุน ููŠ ุงู„ุนู…ูˆุฏ ูŠุจู‚ู‰ ู‡ุฐุง ู„ุงูŠุชุบูŠุฑ
940
+
941
+ 236
942
+ 00:29:28,380 --> 00:29:32,540
943
+ ุจุชุบูŠุฑู‡ ู…ู† ุงู„ุนู†ุงุตุฑ ุงู„ุฃุฎุฑู‰ ู„ูƒู† ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ
944
+
945
+ 237
946
+ 00:29:32,540 --> 00:29:33,780
947
+ ุชุจู‚ู‰ ูƒู…ุง ู‡ูŠ
948
+
949
+ 238
950
+ 00:29:38,310 --> 00:29:49,210
951
+ ุงู„ุนู†ุตุฑ ุงู„ุฐูŠ ูŠู‚ุน ููŠ ุงู„ุตู I ูˆ ุงู„ุนู…ูˆุฏ ุฑู‚ู… I ูŠุจู‚ู‰
952
+
953
+ 239
954
+ 00:29:49,210 --> 00:29:54,800
955
+ ุงู„ุนู†ุตุฑ ู†ูุณู‡ ู„ุงูŠุชุบูŠุฑุงู„ู†ู‚ุทุฉ ุงู„ุชุงู„ุชุฉ ููŠ ุงู„ู€ SQL
956
+
957
+ 240
958
+ 00:29:54,800 --> 00:29:57,140
959
+ Symmetric Matrix of the mean ุฏู‡ ูŠุฌุจ ุงู† ุงู„ elements
960
+
961
+ 241
962
+ 00:29:57,140 --> 00:30:03,900
963
+ ูƒู„ู‡ ู…ุงู„ู‡ ุฃุณูุงุฑุง ูŠุนู†ูŠ ุงู„ aii ุจุฏู‡ ูŠุณุงูˆูŠ zero ู„ูƒู„
964
+
965
+ 242
966
+ 00:30:03,900 --> 00:30:08,300
967
+ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนู†ุงุตุฑ i ู„ู…ุง ุชุฌูŠุจ ุงู„ transpose ุจุฑุถู‡
968
+
969
+ 243
970
+ 00:30:08,300 --> 00:30:14,940
971
+ ุจุธู„ู…ูŠู† ุจุฑุถู‡ zero zero ูŠุนู†ูŠ ุจุชู‚ุฏุฑ ุชู‚ูˆู„ ุงู„ aii ุจุฏู‡
972
+
973
+ 244
974
+ 00:30:14,940 --> 00:30:20,520
975
+ ูŠุณุงูˆูŠ zero ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ ai transpose ู‡ุฐุง ูˆุงู„ู„ู‡ ู‡ุฐุง
976
+
977
+ 245
978
+ 00:30:20,520 --> 00:30:28,560
979
+ ูƒู„ู‡ ุฃุณูุงุฑุงุทูŠุจ ูู‰ ู„ .. ู„ูŠู‡ transpose ู‡ุฐุง ู„ู„ู…ุตููˆูุฉ
980
+
981
+ 246
982
+ 00:30:28,560 --> 00:30:33,600
983
+ ุงู„ู„ู‰ Transpose Matrix ู„ู‡ุง ุจุนุถ ุงู„ุฎูˆุงุตุฉ ูุจู‚ูˆู„ ู„ูˆ ูƒุงู†
984
+
985
+ 247
986
+ 00:30:33,600 --> 00:30:39,680
987
+ ุนู†ุฏู‰ a ูˆ b ู…ุตููˆูุฉ ุชุงู†ู‰ ู…ุฑุจุนุชุงู† ู m a transpose
988
+
989
+ 248
990
+ 00:30:39,680 --> 00:30:42,740
991
+ Transpose Transpose Transpose Transpose Transpose
992
+
993
+ 249
994
+ 00:30:42,740 --> 00:30:43,280
995
+ Transpose Transpose Transpose Transpose Transpose
996
+
997
+ 250
998
+ 00:30:43,280 --> 00:30:43,520
999
+ Transpose Transpose Transpose Transpose Transpose
1000
+
1001
+ 251
1002
+ 00:30:43,520 --> 00:30:43,760
1003
+ Transpose Transpose Transpose Transpose Transpose
1004
+
1005
+ 252
1006
+ 00:30:43,760 --> 00:30:43,760
1007
+ Transpose Transpose Transpose Transpose Transpose
1008
+
1009
+ 253
1010
+ 00:30:43,760 --> 00:30:43,760
1011
+ Transpose Transpose Transpose Transpose Transose
1012
+
1013
+ 254
1014
+ 00:30:43,760 --> 00:30:50,040
1015
+ Transose Transose Transose Transose Transose
1016
+
1017
+ 255
1018
+ 00:30:50,040 --> 00:30:50,560
1019
+ Transose Transose Transose Transose Transose
1020
+
1021
+ 256
1022
+ 00:30:50,560 --> 00:30:50,720
1023
+ Transose Transose Transose Transose Transose
1024
+
1025
+ 257
1026
+ 00:30:50,720 --> 00:30:50,780
1027
+ Transose Transose Transose Transose Transose
1028
+
1029
+ 258
1030
+ 00:30:50,780 --> 00:30:50,780
1031
+ Transose Transose Transose Transose Transose
1032
+
1033
+ 259
1034
+ 00:30:50,780 --> 00:30:50,780
1035
+ Transose Transose Transose Transose Transose
1036
+
1037
+ 260
1038
+ 00:30:50,780 --> 00:30:50,780
1039
+ Transose Transose Transose Transose Transose
1040
+
1041
+ 261
1042
+ 00:30:50,780 --> 00:30:50,780
1043
+ Transose Transose Transose Transose Transose
1044
+
1045
+ 262
1046
+ 00:30:50,780 --> 00:30:50,780
1047
+ Transose Transose Transose Transose Transose
1048
+
1049
+ 263
1050
+ 00:30:50,780 --> 00:30:50,780
1051
+ Transose Transose Transose Transose Transose
1052
+
1053
+ 264
1054
+ 00:30:50,780 --> 00:30:51,950
1055
+ Transose Transose Transose TransoseูŠุจู‚ู‰ ุจุตูŠุฑ A
1056
+
1057
+ 265
1058
+ 00:30:51,950 --> 00:30:56,710
1059
+ Transpose ูˆ Transpose ู‡ูŠ ู…ู‡ู… ุงู„ู…ุตุญูˆูุฉ A ู„ูˆ ูƒุงู† A
1060
+
1061
+ 266
1062
+ 00:30:56,710 --> 00:31:02,530
1063
+ ุฒุงุฆุฏ B Transpose ุฌู…ุนุชู‡ู… ุซู… ุฌุจุชู„ูŠ Transpose ุชุจุนู‡ู…
1064
+
1065
+ 267
1066
+ 00:31:02,530 --> 00:31:06,450
1067
+ ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุฌุจุชู„ูŠ Transpose ู„ู„ุฃูˆู„ู‰ ูˆ Transpose
1068
+
1069
+ 268
1070
+ 00:31:06,450 --> 00:31:11,850
1071
+ ู„ู„ุซุงู†ูŠุฉ ูˆ ู…ู† ุซู… ุฑูˆุญู†ุง ุฌู…ุนู†ุง ู‡ูŠุนุทูŠู†ูŠ ู†ูุณ ุงู„ู†ุงุชุฌุฉ
1072
+
1073
+ 269
1074
+ 00:31:11,850 --> 00:31:15,810
1075
+ ุฎุงุตูŠุฉ ุงู„ุชุงู„ุชุฉ ู‡ุฐู‡ ุจุชุฎุชู„ู ุดูˆูŠุฉ ู‡ุฐู‡ ุงู„ุฃูˆู„ุงู†ูŠุฉ
1076
+
1077
+ 270
1078
+ 00:31:15,810 --> 00:31:19,870
1079
+ ุจุงู„ู†ุณุจุฉ ู„ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ู„ูƒู† ุงู„ุชุงู†ูŠุฉ ุจุงู„ู†ุณุจุฉ ู„ุนู…ู„ูŠุฉ
1080
+
1081
+ 271
1082
+ 00:31:19,870 --> 00:31:20,370
1083
+ ุงู„ุถุฑุจ
1084
+
1085
+ 272
1086
+ 00:31:23,540 --> 00:31:32,500
1087
+ ุจู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ูˆุถุน ุงู„ B ูˆ ู†ุฌู„ุจ
1088
+
1089
+ 273
1090
+ 00:31:32,500 --> 00:31:32,500
1091
+ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ B ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ
1092
+
1093
+ 274
1094
+ 00:31:32,500 --> 00:31:32,500
1095
+ ูˆุถุน ุงู„ B ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ B ูˆ ู†ุฌู„ุจ
1096
+
1097
+ 275
1098
+ 00:31:32,500 --> 00:31:33,260
1099
+ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ B ูˆ ู†ุฌู„ุจ
1100
+
1101
+ 276
1102
+ 00:31:33,260 --> 00:31:34,920
1103
+ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ
1104
+
1105
+ 277
1106
+ 00:31:34,920 --> 00:31:37,080
1107
+ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ
1108
+
1109
+ 278
1110
+ 00:31:37,080 --> 00:31:37,080
1111
+ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ
1112
+
1113
+ 279
1114
+ 00:31:37,080 --> 00:31:37,480
1115
+ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ
1116
+
1117
+ 280
1118
+ 00:31:37,480 --> 00:31:44,310
1119
+ ูˆุถุน ุงู„ A ูˆ ู†ุฌู„ุจ ูˆุถุน ุงู„ A ูˆ ู†ุทูŠุจ for any scalar C
1120
+
1121
+ 281
1122
+ 00:31:44,310 --> 00:31:49,590
1123
+ ูŠุนู†ูŠ ู„ุฃูŠ ุนุฏุฏ ุญู‚ูŠู‚ูŠ ุงู„ู€C ู„ูˆ ุถุฑุจุช ุงู„ู€C ููŠ ุงู„ู…ุตูˆูุฉ
1124
+
1125
+ 282
1126
+ 00:31:49,590 --> 00:31:55,570
1127
+ ุงู„ู€A ูˆ ุจุนุฏ ุฐู„ูƒ ุฌุจุชู„ู‡ุง ู„ุชุฑุงู†ุณุจูˆุฒ ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุฌุจุช
1128
+
1129
+ 283
1130
+ 00:31:55,570 --> 00:31:58,970
1131
+ ู„ุชุฑุงู†ุณุจูˆุฒ ู„A ูˆ ุถุฑุจุช ููŠ ู…ูŠู‡ู† ุงู„ู€C ูŠุนู†ูŠ ุงู„ู€constant
1132
+
1133
+ 284
1134
+ 00:31:58,970 --> 00:32:02,710
1135
+ ุถุฑุจุชู‡ ู‚ุจู„ ุงู„ุชุฑุงู†ุณุจูˆุฒ ูˆุงู„ู„ู‡ ุจุนุฏ ุงู„ุชุฑุงู†ุณุจูˆุฒ ุนู„ู‰ ูƒู„
1136
+
1137
+ 285
1138
+ 00:32:02,710 --> 00:32:07,930
1139
+ ุงู„ุฃู…ุฑูŠู† ุจูŠุนุทูŠู†ูŠ ู…ูŠู‡ู† ุจูŠุนุทูŠู†ูŠ ู†ูุณ ุงู„ู†ุชูŠุฌุฉู†ุนุทูŠ ุจุนุถ
1140
+
1141
+ 286
1142
+ 00:32:07,930 --> 00:32:12,830
1143
+ ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ ูƒูŠููŠุฉ ุชุทุจูŠู‚ ู‡ุฐู‡ ุงู„ุฎุงุตุฉ ุจูŠู‚ูˆู„ ุงู„ู…ุซุงู„ ู‡ูˆ
1144
+
1145
+ 287
1146
+ 00:32:12,830 --> 00:32:17,550
1147
+ ุงู„ุจูŠุงู† ุฅู†ู‡ ู„ูˆ ูƒุงู†ุช ุงุณู…ู‡ุง ุตูˆูุฉ ู…ุฑุจุนุฉ ูŠุจู‚ู‰ ุงู„ู…ุทู„ูˆุจ
1148
+
1149
+ 288
1150
+ 00:32:17,550 --> 00:32:22,810
1151
+ ุงู„ุฃูˆู„ ุฃุซุจุชู„ู‡ ุฅู† ุงู„ู€A ู…ุถุฑูˆุจุฉ ููŠ ุงู„ู€A transpose ู‡ูŠ
1152
+
1153
+ 289
1154
+ 00:32:22,810 --> 00:32:28,310
1155
+ symmetric ูˆูƒุฐู„ูƒ ุงู„ู€A ุฒูŠ ุงู„ู€A transpose ู‡ูŠ man ู‡ูŠ
1156
+
1157
+ 290
1158
+ 00:32:28,310 --> 00:32:32,510
1159
+ symmetric ู‡ุฐุง ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ุงู„ู…ุทู„ูˆุจ ุงู„ุชุงู†ูŠุฃุซุจุช ู„ู‡
1160
+
1161
+ 291
1162
+ 00:32:32,510 --> 00:32:35,990
1163
+ ุฃู† ุงู„ู€ A ู†ู‚ุต ุงู„ู€ A Transpose ู‡ูˆ Q ุฃุณู… ู…ุชุฑูƒ
1164
+
1165
+ 292
1166
+ 00:32:47,080 --> 00:32:51,720
1167
+ Symmetric ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎุฏู„ู‡ุง ู„ุชุฑุงู†ุณุจูˆุฒ ู„ู…ุง ุฃุฎุฏู„ู‡ุง
1168
+
1169
+ 293
1170
+ 00:32:51,720 --> 00:32:57,240
1171
+ ู„ุชุฑุงู†ุณุจูˆุฒ ุจุฏูŠ ุงู„ู†ุงุชุฌ ูŠุทู„ุน ู…ูŠู†ุŸ ุงู„ู…ุตููˆู ุงู„ุฃุตู„ูŠ ู„ูŠู‡ุŸ
1172
+
1173
+ 294
1174
+ 00:32:57,240 --> 00:33:03,140
1175
+ A ููŠ A ุชุฑุงู†ุณุจูˆุฒ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ู‡ุฐุง ุชุฑุงู†ุณุจูˆุฒ ู„ู…ูŠู†ุŸ
1176
+
1177
+ 295
1178
+ 00:33:03,140 --> 00:33:07,160
1179
+ ู„ุญุงุตู„ ุงู„ุถุฑุจุจูŠู‚ูˆู„ ุงู„ู€ A transpose ุงู„ู„ูŠ ุญุตู„ ุงู„ุฏุฑุจ
1180
+
1181
+ 296
1182
+ 00:33:07,160 --> 00:33:12,400
1183
+ ุจุฏูƒ ุชููƒู‡ ูˆ ุชู‚ู„ุจ ูˆุถุน ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ูŠุจู‚ู‰ ู‡ุฐู‡ ุดูˆ ุจุฏู‡ุง
1184
+
1185
+ 297
1186
+ 00:33:12,400 --> 00:33:18,240
1187
+ ุชุตูŠุฑ A transpose A transpose ููŠ ุงู„ A transpose
1188
+
1189
+ 298
1190
+ 00:33:18,240 --> 00:33:23,640
1191
+ ูŠุจู‚ู‰ ู‡ุงูŠ ู‚ู„ุจู†ุง ุงู„ูˆุถุน ุชู…ุงู… ู‡ุฐุง ุงู„ูƒู„ุงู… ุฌุจุชู‡ ู…ู† ูˆูŠู†ุŸ
1192
+
1193
+ 299
1194
+ 00:33:23,640 --> 00:33:30,620
1195
+ ู…ู† ุงู„ property ุชู„ุงุชุฉ ู…ู† ู‡ุฐุง ุฌุจุชู‡ ู…ู† ุงู„ property
1196
+
1197
+ 300
1198
+ 00:33:30,620 --> 00:33:36,690
1199
+ ุชู„ุงุชุฉุทูŠุจ ู‡ุฐุง ุงู„ุงู† ุจุฏู‰ ูŠุณุงูˆูŠ A ุชุฑุงู†ุณุจูˆุฒ ุชุฑุงู†ุณุจูˆุฒ
1200
+
1201
+ 301
1202
+ 00:33:36,690 --> 00:33:42,910
1203
+ ุจู…ูŠู†ุŸ ุจA ููŠ ุงู„ A ุชุฑุงู†ุณุจูˆุฒ ูŠุจู‚ู‰ ู‡ุฐุง property ู…ูŠู†ุŸ
1204
+
1205
+ 302
1206
+ 00:33:42,910 --> 00:33:48,410
1207
+ one ุฃูˆู„ ุฎุงุตูŠุฉ ุทูŠุจ ุฅูŠุด ุชูุณูŠุฑูƒ ู„ู‡ุฐู‡ุŸ ู‡ุงูŠ ุงู„ู„ูŠ ุจูŠู†
1208
+
1209
+ 303
1210
+ 00:33:48,410 --> 00:33:52,110
1211
+ ู‚ูˆุณูŠู† ู‡ูŠ ุงู„ู„ูŠ ุทู„ุนุช ุนู†ุฏู‡ุง ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุนู„ู‡ุงุŸ symmetric
1212
+
1213
+ 304
1214
+ 00:33:52,110 --> 00:33:58,390
1215
+ ูŠุจู‚ู‰ ุณูˆุงุก ุงู„ู„ูŠ ู‡ูˆ ุงู„ A ููŠ ุงู„ A ุชุฑุงู†ุณุจูˆุฒ is
1216
+
1217
+ 305
1218
+ 00:33:58,390 --> 00:34:00,770
1219
+ asymmetric
1220
+
1221
+ 306
1222
+ 00:34:04,440 --> 00:34:12,620
1223
+ ู…ุงุชุฑูŠูƒุณ ุชู…ุงู… ุจุฏู†ุง ู†ูŠุฌูŠ and ุงู„ a ุฒูŠ ุงู„ a ุชุฑุงู†ุณุจูˆุฒ
1224
+
1225
+ 307
1226
+ 00:34:12,620 --> 00:34:18,180
1227
+ ุงู„ูƒู„ ุชุฑุงู†ุณุจูˆุฒ ุฅุฐุง
1228
+
1229
+ 308
1230
+ 00:34:18,180 --> 00:34:21,400
1231
+ ุบูŠุฑุช ุฃุซุจุช ุฃู†ู‡ุง ุชุณุงูˆูŠ ุงู„ู„ูŠ ุจูŠู†ุฌูˆ ุงู„ุณูŠู† a ุฒูŠ a
1232
+
1233
+ 309
1234
+ 00:34:21,400 --> 00:34:28,360
1235
+ ุชุฑุงู†ุณุจูˆุฒ ู‡ูŠุจู‚ู‰ ุจุตูŠุฑ ู‡ุงุฏ a ุณูŠู…ุงุชุฑูŠูƒ ุจู‚ูˆู„ู‡ ุชู…ุงู… ุจุงุฌูŠ
1236
+
1237
+ 310
1238
+ 00:34:28,360 --> 00:34:33,420
1239
+ ุจุฑุฌุน ุนู„ู‰ ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุงุฏู‰ุฎุงุตูŠุฉ ุจูŠู‚ูˆู„ ุง ุฒุงุฆุฏ
1240
+
1241
+ 311
1242
+ 00:34:33,420 --> 00:34:38,540
1243
+ ุจูŠ ุชุฑุงู†ุณุจูˆุฒ ูŠุณุงูˆูŠ ุง ุชุฑุงู†ุณุจูˆุฒ ุฒุงุฆุฏ ุจูŠ ุชุฑุงู†ุณุจูˆุฒ ูŠุจู‚ู‰
1244
+
1245
+ 312
1246
+ 00:34:38,540 --> 00:34:43,220
1247
+ ุจู†ุงุก ุงู† ุงู†ุง ุจู‚ุฏุฑ ุงู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ ุง ุชุฑุงู†ุณุจูˆุฒ ุฒุงุฆุฏ ุง
1248
+
1249
+ 313
1250
+ 00:34:43,220 --> 00:34:46,620
1251
+ ุชุฑุงู†ุณุจูˆุฒ ุชุฑุงู†ุณุจูˆุฒ ู‡ุฐู‡ property
1252
+
1253
+ 314
1254
+ 00:34:49,830 --> 00:34:55,630
1255
+ property two ุชู…ุงู… ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ a transpose
1256
+
1257
+ 315
1258
+ 00:34:55,630 --> 00:35:00,150
1259
+ ุฒุงุฆุฏ a transpose ุงู„ transpose ุงู„ู„ูŠ you mean ุงูˆ ู‡ุฐู‡
1260
+
1261
+ 316
1262
+ 00:35:00,150 --> 00:35:04,250
1263
+ property one ุงู„ุญูŠู† ู„ู…ุง ุงู‚ูˆู„ ูŠุง ุจู†ุงุช a transpose
1264
+
1265
+ 317
1266
+ 00:35:04,250 --> 00:35:08,610
1267
+ ุฒุงุฆุฏ a ูˆุงู„ู„ู‡ a ุฒุงุฆุฏ transpose ู…ุด ู‡ูŠ ู†ูุณู‡ุง ู…ุด ุฎุฏู†ุง
1268
+
1269
+ 318
1270
+ 00:35:08,610 --> 00:35:13,460
1271
+ ุนู…ู„ูŠุฉ ุงู†ุฌู…ุน ุงู„ู…ุตูุงุช is commutativeูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ุง
1272
+
1273
+ 319
1274
+ 00:35:13,460 --> 00:35:20,440
1275
+ ุฏูŠ ุจุฏู‡ุง ุชุณุงูˆูŠ A ุฒุงุฆุฏ A Transpose ูŠุจู‚ู‰ ู‡ู†ุง ุณุงุฆู„ A
1276
+
1277
+ 320
1278
+ 00:35:20,440 --> 00:35:34,220
1279
+ ุฃู‚ู„ ุฒุงุฆุฏ ุงู„ A ุฒุงุฆุฏ A Transpose is symmetric ูƒูˆูŠุณ
1280
+
1281
+ 321
1282
+ 00:35:35,120 --> 00:35:41,240
1283
+ ุจุนุฏ ุฐู„ูƒ ู‚ุงู„ ุงุซุจุช ู„ูŠ ุงู† ุงู„ A ู†ุงู‚ุต A ุชุฑุงู†ุณุจูˆุฒ is S Q
1284
+
1285
+ 322
1286
+ 00:35:41,240 --> 00:35:47,080
1287
+ ุณูŠู…ุงุชุฑูƒ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุงู„ A ู„ู†ู…ุฑุฉ B ู†ู…ุฑุฉ B
1288
+
1289
+ 323
1290
+ 00:35:47,080 --> 00:35:53,120
1291
+ ุจุฏุงุฌูŠ ุงุฎุฏ ู„ู‡ ุงู„ A ู…ุงูŠู†ูˆุณ A ุชุฑุงู†ุณุจูˆุฒ ู„ูƒู„ ุชุฑุงู†ุณุจูˆุฒ
1292
+
1293
+ 324
1294
+ 00:35:56,760 --> 00:36:06,280
1295
+ ู‡ุฐู‡ ุจู‚ุฏุฑ ุงู‚ูˆู„ ูˆุชุณุงูˆูŠ ุง ุฒุงุฆุฏ ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ุงู„ a ุง
1296
+
1297
+ 325
1298
+ 00:36:06,280 --> 00:36:15,350
1299
+ transpose ูƒู„ู‡ transpose ุตุญ ูˆู„ุง ู„ุงุŸุทุจ ุงุทู„ุนูŠู„ูŠ ู‡ู†ุง
1300
+
1301
+ 326
1302
+ 00:36:15,350 --> 00:36:22,530
1303
+ ู„ู…ุง ูŠูƒูˆู† ุงู„ุฑู‚ู… ู…ุถูˆุจ ููŠ ุงู„ a ู†ุงู‚ุต a transpose ูˆ ู‡ุฐู‡
1304
+
1305
+ 327
1306
+ 00:36:22,530 --> 00:36:25,670
1307
+ ุงู„ transpose ุงู„ู„ูŠ ุจุฑุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุฌูŠุจุชู‡ ู…ู† ุฃูŠู† ูŠุง
1308
+
1309
+ 328
1310
+ 00:36:25,670 --> 00:36:30,450
1311
+ ุจู†ุงุชุŸ ุงู„ุฎุงุตูŠุฉ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูŠ property
1312
+
1313
+ 329
1314
+ 00:36:30,450 --> 00:36:38,130
1315
+ ุฃุฑุจุนุฉุจุนุฏ ู‡ูŠูƒ ุจู‚ุฏุฑ ุงุฏุฎู„ Transpose ุนู„ู‰ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู…
1316
+
1317
+ 330
1318
+ 00:36:38,130 --> 00:36:46,130
1319
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ A Transpose ุฒุงุฆุฏ ู†ุงู‚ุต A
1320
+
1321
+ 331
1322
+ 00:36:46,130 --> 00:36:54,850
1323
+ Transpose ู„ูƒู„ Transpose ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ู…ู†ุŸ ุงู„ุฎุงุตูŠุฉ
1324
+
1325
+ 332
1326
+ 00:36:54,850 --> 00:37:00,330
1327
+ ุงู„ุชุงู†ูŠุฉ ูƒูŠู ู†ู‚ูˆู„ู‡ุงุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ property
1328
+
1329
+ 333
1330
+ 00:37:06,420 --> 00:37:13,060
1331
+ two ู‡ุฐุง ุงู„ุฃู† ูŠุจุฏูˆ ูŠุณุงูˆูŠ a ู„ Transpose ุฒูŠ ู…ุง ู‡ูŠ
1332
+
1333
+ 334
1334
+ 00:37:13,060 --> 00:37:18,380
1335
+ ุฒุงุฆุฏ ุงู„ุญูŠู† ู‡ุฐู‡ ู†ุงู‚ุต a Transpose Transpose ุญุณุจ
1336
+
1337
+ 335
1338
+ 00:37:18,380 --> 00:37:25,520
1339
+ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ู‡ุฐุง ูŠุจุฏูˆ ูŠุณุงูˆูŠ ู†ุงู‚ุต a ูู‚ุท ู„ุง
1340
+
1341
+ 336
1342
+ 00:37:25,520 --> 00:37:32,320
1343
+ ุบูŠุฑูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
1344
+
1345
+ 337
1346
+ 00:37:32,320 --> 00:37:38,640
1347
+ ูŠุณุงูˆูŠู…ู…ูƒู† ุงุฎุฏ ู†ุงู‚ุต ุจุฑุง ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ุงู„ูƒู„ ูŠุจู‚ู‰ ู„ูˆ
1348
+
1349
+ 338
1350
+ 00:37:38,640 --> 00:37:44,320
1351
+ ุงุฎุฏุช ู†ุงู‚ุต ุจุฑุง ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ุงู„ูƒู„ ุจูŠุธู„ a ู†ุงู‚ุต a
1352
+
1353
+ 339
1354
+ 00:37:44,320 --> 00:37:49,280
1355
+ transpose ูŠุจู‚ู‰ ู…ุนู†ุงุชู‡ ุฏูŠ ุนุจุงุฑุฉ ุนู† ุงูŠู‡ ุงุณูƒูŠูˆูŠ
1356
+
1357
+ 340
1358
+ 00:37:49,280 --> 00:37:57,100
1359
+ ุณูŠู…ุงุชุฑูŠูƒ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ุณุง ุงู„ a ู†ุงู‚ุต ุงู„ a transpose
1360
+
1361
+ 341
1362
+ 00:38:11,590 --> 00:38:13,930
1363
+ ุจู†ุนุทูŠ ู…ุซุงู„
1364
+
1365
+ 342
1366
+ 00:38:35,280 --> 00:38:43,180
1367
+ show that if ุงู„
1368
+
1369
+ 343
1370
+ 00:38:43,180 --> 00:38:53,060
1371
+ A and ุงู„ B are symmetric matrices
1372
+
1373
+ 344
1374
+ 00:38:53,060 --> 00:38:53,780
1375
+ then
1376
+
1377
+ 345
1378
+ 00:39:02,270 --> 00:39:14,510
1379
+ ุงู„ู€ A ููŠ B is symmetric if and only if ุงู„
1380
+
1381
+ 346
1382
+ 00:39:14,510 --> 00:39:17,470
1383
+ A ููŠ ุงู„ B ุจุฏูŠ ุณูˆู‰ ุงู„ B ููŠ ุงู„ A
1384
+
1385
+ 347
1386
+ 00:39:31,610 --> 00:39:48,910
1387
+ ุนู„ูŠ ุจุงู„ูƒู… ุงู„ุณุคุงู„
1388
+
1389
+ 348
1390
+ 00:39:48,910 --> 00:39:53,520
1391
+ ู…ุฑุฉ ุชุงู†ูŠุฉุจู‚ูˆู„ ูŠุจูŠู† ุฅู† ู„ูˆ ูƒุงู†ุช ุงู„ู€A ูˆุงู„ู€B ุงู„ุชู†ุชูŠู†
1392
+
1393
+ 349
1394
+ 00:39:53,520 --> 00:39:59,460
1395
+ symmetric ูŠุจู‚ู‰ ุญุงุตู„ ุถุฑุจู‡ู… ุจูŠูƒูˆู† symmetric ุฅุฐุง ูƒุงู†
1396
+
1397
+ 350
1398
+ 00:39:59,460 --> 00:40:03,000
1399
+ ุงู„ู€A ููŠ B ุจุฏูŠ ุณูˆู‰ ุงู„ู€B ููŠ A ุฅุฐุง ูƒุงู†ูˆุง commutative
1400
+
1401
+ 351
1402
+ 00:40:03,000 --> 00:40:07,240
1403
+ ูˆุงู„ุนูƒุณ ุจุงู„ุนูƒุณ ู„ุฃู† ู‡ุฐู‡ F and all F ุชุนู†ูŠ ุฅู† ุงู„ุจุฑู‡ุงู†
1404
+
1405
+ 352
1406
+ 00:40:07,240 --> 00:40:14,440
1407
+ ุจุฏูŠ ูŠุญุตู„ ููŠ ุงุชุฌุงู‡ูŠู†ูŠุจู‚ู‰ f and only f ู…ุนู†ุงุชู‡ ู„ูˆ ูƒุงู†
1408
+
1409
+ 353
1410
+ 00:40:14,440 --> 00:40:18,340
1411
+ ุงู„ a ููŠ ุงู„ b ุจุฏูŠ ุงุณูˆูŠ ุงู„ b ููŠ ุงู„ a ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุญุงูˆู„
1412
+
1413
+ 354
1414
+ 00:40:18,340 --> 00:40:23,920
1415
+ ู†ุซุจุชู‡ ุงู† ุงู„ a ูˆ ุงู„ b are symmetric ูŠุจู‚ู‰ ู…ุดุงู† ุงุจุฑู‡ู†
1416
+
1417
+ 355
1418
+ 00:40:23,920 --> 00:40:31,480
1419
+ ูŠุจู‚ู‰ assume ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุงู‚ูˆู„ู‡ assume ุงูุชุฑุถ that ุงู†
1420
+
1421
+ 356
1422
+ 00:40:31,480 --> 00:40:36,680
1423
+ ุงู„ a and ุงู„ b are symmetric
1424
+
1425
+ 357
1426
+ 00:40:43,590 --> 00:40:50,170
1427
+ ุจุนุฏ ุฐู„ูƒ ู‡ุฐูŠ ู…ุนู†ุงู‡ุง ุงู† ุงู„ A Transpose ุจุฏูŠ ุณุงูˆูŠ ุงู„ A
1428
+
1429
+ 358
1430
+ 00:40:50,170 --> 00:40:57,570
1431
+ ูˆ ุงู„ B Transpose ุจุฏูŠ ุณุงูˆูŠ ุงู„ Bู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุฉ ุงู†ุง ุจุฏูŠ
1432
+
1433
+ 359
1434
+ 00:40:57,570 --> 00:41:03,010
1435
+ ุงุณุชุฎุฏู…ู‡ุง ู…ุชู‰ ู„ุงุฒู… ุฃู„ู‚ุงู…ู‡ุง ุจูŠู‚ูˆู„ ู„ูŠ ุงูŠุด ุฐู†ุจ ุงูŠู‡ ุจูŠู‡
1436
+
1437
+ 360
1438
+ 00:41:03,010 --> 00:41:08,910
1439
+ ุณูŠู…ุงุชุฑูŠูƒ ุงู ุนู†ุฏู‡ ุงู„ู ูŠุจู‚ู‰ ุงู†ุง ุจุฏุงุฌูŠ ุงู‚ูˆู„ ู„ู‡ ุงุณูŠูˆู…
1440
+
1441
+ 361
1442
+ 00:41:08,910 --> 00:41:19,310
1443
+ ุงูุชุฑุถ ุฐุงุช ุงู† ุงู„ a,b is symmetric ุงูŠุด
1444
+
1445
+ 362
1446
+ 00:41:19,310 --> 00:41:26,070
1447
+ ุจุฏูŠ ุงุซุจุชุจุฏูŠ ุงุซุจุช ุงู†ู‡ a ููŠ b ุจุฏูŠ ุณูˆู‰ ุงู„ b ููŠ a ูŠุจู‚ู‰
1448
+
1449
+ 363
1450
+ 00:41:26,070 --> 00:41:34,530
1451
+ then ุงู„ a b transpose ุจุฏูŠ ุณูˆู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ a ููŠ ุงู„ b
1452
+
1453
+ 364
1454
+ 00:41:35,740 --> 00:41:39,920
1455
+ ู…ุด ู‡ุฐุง ู…ุนู†ู‰ ู„ุชุฑุงู†ุณุจูˆุฒุŸ ุงู†ุง ูุงุฑุถ ุงู†ู‡ ู‡ุฐูŠ symmetric
1456
+
1457
+ 365
1458
+ 00:41:39,920 --> 00:41:44,640
1459
+ ูŠุจู‚ู‰ ู…ู†ุงุทู‚ ุงู„ A B ุชุฑุงู†ุณุจูˆุฒ ุจุฏูŠ ุชุณูˆู‰ AB ุจุฏูŠ ุงุฑุฌุน
1460
+
1461
+ 366
1462
+ 00:41:44,640 --> 00:41:52,300
1463
+ ู…ุฑุฉ ุชุงู†ูŠุฉ ู„ู…ูŠู† ู„ุฎูˆุงุต ุงู„ A B ุชุฑุงู†ุณุจูˆุฒ ูŠุจู‚ู‰ ุงู„ A B
1464
+
1465
+ 367
1466
+ 00:41:52,300 --> 00:41:59,740
1467
+ ุชุฑุงู†ุณุจูˆุฒ ู‡ูŠ ุนุจุงุฑุฉ ุนู† B ุชุฑุงู†ุณุจูˆุฒ ููŠ ุงู„ A ุชุฑุงู†ุณุจูˆุฒูˆ
1468
+
1469
+ 368
1470
+ 00:41:59,740 --> 00:42:03,800
1471
+ ู‡ุฐูŠ ุจุฏู‡ ุชุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ ุชุณุงูˆูŠ A ููŠ ุงู„ู€B ุงู„ู„ูŠ ุนู†ุฏู†ุง
1472
+
1473
+ 369
1474
+ 00:42:03,800 --> 00:42:09,420
1475
+ ุตุญูŠุญ ูˆู„ุง ู„ุงุŸ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู„ู€B transpose ุงู„ู„ูŠ ู‡ูŠ
1476
+
1477
+ 370
1478
+ 00:42:09,420 --> 00:42:13,880
1479
+ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ูŠุง ุจู†ุงุชูŠุŸ BุŒ ุจุฏู‡ ุงุดูŠู„ู‡ุง ูˆ ุงุญุท ู…ูƒุงู†ู‡ุง
1480
+
1481
+ 371
1482
+ 00:42:13,880 --> 00:42:19,560
1483
+ B ุงู„ู€A transpose ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุงู„ู€AุŒ ุจุฏู‡ ูŠุณุงูˆูŠ
1484
+
1485
+ 372
1486
+ 00:42:19,560 --> 00:42:25,930
1487
+ ู…ูŠู†ุŸูˆุฃุธู†ู‡ุง ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุฎู„ุตู†ุง ูŠุจู‚ู‰ ุฃุฎุฏุช ุงู„ A ุจูŠ ุงู„
1488
+
1489
+ 373
1490
+ 00:42:25,930 --> 00:42:30,890
1491
+ symmetric ุฃุซุจุช ุฃู† ุงู„ A ุจูŠ ูŠุณูˆู‰ ุงู„ B ููŠ ุงู„ A ุงู„ุขู†
1492
+
1493
+ 374
1494
+ 00:42:30,890 --> 00:42:35,910
1495
+ ุจุฏุฃูŠ ุฃุนู…ู„ ุนู…ู„ูŠุฉ ุนูƒุณูŠุฉ ูŠุจู‚ู‰ ุจุฏุฃูŠ ุฃู‚ูˆู„ ู„ู‡ conversely
1496
+
1497
+ 375
1498
+ 00:42:35,910 --> 00:42:45,790
1499
+ ูˆ ุจุงู„ุนูƒุณ assume that ุฃู† ุงู„ A ููŠ B ุจุฏู‡ ูŠุณูˆู‰ ุงู„ B ููŠ
1500
+
1501
+ 376
1502
+ 00:42:45,790 --> 00:42:48,110
1503
+ A ุฅูŠุด ุจุฏู‡ ูŠุซุจุชุŸ
1504
+
1505
+ 377
1506
+ 00:42:50,990 --> 00:42:56,590
1507
+ ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ู€ A ููŠ B is symmetric ุตุญ ูˆู„ุง ู„ุฃ ูŠุจู‚ู‰
1508
+
1509
+ 378
1510
+ 00:42:56,590 --> 00:43:05,570
1511
+ ุจุฏุงุฌูŠ ุฃุฎุฏู„ู‡ ุงู„ู€ A ุจูŠ Transpose ุจุฏูŠ ุฃุซุจุช ู„ู‡ ุฅู† ู‡ุฐู‡
1512
+
1513
+ 379
1514
+ 00:43:05,570 --> 00:43:10,470
1515
+ ุชุณุงูˆูŠ 100 ููŠ B ุฅุฐุง ุฃุซุจุช ู„ู‡ ุฅู†ู‡ุง A ููŠ B ุจุชู†ุชู‡ูŠ
1516
+
1517
+ 380
1518
+ 00:43:10,470 --> 00:43:21,000
1519
+ ู‚ุตุชู†ุง ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุงู„ุงู† ูƒูŠูุŸู‡ุฐุง ุงู„ู€
1520
+
1521
+ 381
1522
+ 00:43:21,000 --> 00:43:29,000
1523
+ A B Transpose ุจู‚ุฏุฑ ุฃูƒุชุจ ุจุฏุงู„ู‡ุง B A Transpose ูŠุจู‚ู‰
1524
+
1525
+ 382
1526
+ 00:43:29,000 --> 00:43:35,240
1527
+ ู‡ุฐุง B A Transpose ู„ูŠุดุŸ ู„ุฃู† ุงู„ู€ B ููŠ ุงู„ู€ A ู‡ูŠ ุงู„ู€ A
1528
+
1529
+ 383
1530
+ 00:43:35,240 --> 00:43:41,280
1531
+ ููŠ ุงู„ู€ B ุตุญ ูˆู„ุง ู„ุงุŸ ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ุญุณุจ ุงู„ุฎูˆุงุต ุจุฏูŠ
1532
+
1533
+ 384
1534
+ 00:43:41,280 --> 00:43:48,850
1535
+ ูŠุณูˆูŠ A Transpose B Transposeู…ุธุจูˆุทุŸ ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู…
1536
+
1537
+ 385
1538
+ 00:43:48,850 --> 00:43:53,910
1539
+ ุจุฏู‡ ูŠุณูˆูŠ A Transpose ู‡ูŠ ู…ูŠู†ุŸ ุจ A ูˆ B Transpose ู‡ูŠ
1540
+
1541
+ 386
1542
+ 00:43:53,910 --> 00:43:58,490
1543
+ ู…ูŠู†ุŸ ุจ B ูŠุจุฌู‰ ุจู†ุงุก ุนู„ูŠ ุฃุฎุฏู†ุง A B Transpose ุทู„ุนุช
1544
+
1545
+ 387
1546
+ 00:43:58,490 --> 00:44:02,670
1547
+ ู…ูŠู†ุŸ ุจ A ูŠุจุฌู‰ ุงู„ A ููŠ B is symmetric ูŠุจุฌู‰ ู‡ุฐุง
1548
+
1549
+ 388
1550
+ 00:44:02,670 --> 00:44:12,330
1551
+ ู…ุนู†ุงู‡ ุฃู† ุงู„ A B is symmetric ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจุทูŠุจ ู„ุญุฏ
1552
+
1553
+ 389
1554
+ 00:44:12,330 --> 00:44:16,490
1555
+ ู‡ู†ุง stop ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ section ูˆุฅู„ู‰ ูŠูƒูˆู† ุฃุฑู‚ุงู…
1556
+
1557
+ 390
1558
+ 00:44:16,490 --> 00:44:24,070
1559
+ ุงู„ู…ุณุงุฆู„ ู…ู† exercises ุงุชู†ูŠู† ุณุจุนุฉ ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ
1560
+
1561
+ 391
1562
+ 00:44:24,070 --> 00:44:29,030
1563
+ ุงุชู†ูŠู†
1564
+
1565
+ 392
1566
+ 00:44:29,030 --> 00:44:35,930
1567
+ ุณุจุนุฉ ุงู„ู…ุณุงุฆู„ ู…ู† ูˆุงุญุฏ ู„ุบุงูŠุฉ ุชู…ุงู†ูŠุฉ ูˆ ุงุญุฏุงุดุฑ ูˆ
1568
+
1569
+ 393
1570
+ 00:44:35,930 --> 00:44:46,520
1571
+ ุงุชู†ุงุดุฑูˆุงุฑุจุนุชุงุด ุจ ูˆุณูŠ ุจ ูˆุณูŠ
1572
+
1573
+ 394
1574
+ 00:44:46,520 --> 00:44:53,080
1575
+ ุงู„ู…ุฑุฉ
1576
+
1577
+ 395
1578
+ 00:44:53,080 --> 00:44:56,900
1579
+ ุฌุงู‰ ุจู†ุจุฏุฃ ุงู„ section ุงู„ู„ู‰ ุจุนุฏู‡ ุงู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰
1580
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/QZepsKIgm9Y.srt ADDED
@@ -0,0 +1,1307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:19,170 --> 00:00:24,010
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุฑุฌุน ู„ุจุฏุงูŠุฉ ุงู„ู€ section ุงู„ู„ูŠ
4
+
5
+ 2
6
+ 00:00:24,010 --> 00:00:28,950
7
+ ู‡ูˆ ุงู„ู€ subspaces ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ูุถุงุกุงุช ุงู„ุงุชุฌุงู‡ูŠุฉ
8
+
9
+ 3
10
+ 00:00:28,950 --> 00:00:34,010
11
+ ุงู„ุฌุฒุฆูŠุฉ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฃุนุทูŠู†ุง ุชุนุฑูŠู ู„ู„ูุถุงุก
12
+
13
+ 4
14
+ 00:00:34,010 --> 00:00:39,590
15
+ ุงู„ุงุชุฌุงู‡ูŠ ุงู„ุฌุฒุฆูŠ ูˆุงุจุชุฏุฃู†ุง ู†ุงุฎุฏ ุนู„ูŠู‡ ุฃู…ุซู„ุฉ ุฃุฎุฐู†ุง
16
+
17
+ 5
18
+ 00:00:39,590 --> 00:00:44,870
19
+ ุฃุฑุจุนุฉ ุฃู…ุซู„ุฉ ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุงู„ุฎุงู…ุณ ุจุชุฐูƒุฑ ุจุงู„ุชุนุฑูŠู
20
+
21
+ 6
22
+ 00:00:44,870 --> 00:00:51,090
23
+ ู„ุฅู†ู†ุง ุจู†ุญุงูˆู„ ู†ุณุชุฎุฏู…ู‡ ููŠ ุงู„ุญูƒู… ุนู„ู‰ ุงู„ู€ sets ุงู„ู…ุฎุชู„ูุฉ
24
+
25
+ 7
26
+ 00:00:51,090 --> 00:00:57,670
27
+ ู‡ู„ ู‡ูŠ subspaces ุฃู… ู„ุง ุจู†ุฌูŠ ู†ู‚ูˆู„ ุฃู†ู‡ ู„ูˆ ุฃุฎุฏุช
28
+
29
+ 8
30
+ 00:00:57,670 --> 00:01:03,330
31
+ subset U ู…ู† vector space V ู‡ุฐุง ุงู„ู€ subset ุจู‚ูˆู„ ุนู†ู‡
32
+
33
+ 9
34
+ 00:01:03,330 --> 00:01:08,870
35
+ vector space ุฅุฐุง ุญู‚ู‚ ู„ูŠู‡ ุซู„ุงุซุฉ ุดุฑูˆุท ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุฅู†
36
+
37
+ 10
38
+ 00:01:08,870 --> 00:01:13,410
39
+ ู‡ุฐุง ุงู„ู€ subset ุงู„ู„ูŠ ุฃุฎุฏุชู‡ is non-empty ุนู„ู‰ ุงู„ุฃู‚ู„
40
+
41
+ 11
42
+ 00:01:13,410 --> 00:01:17,850
43
+ ุจุฏูŠ ุฃุซุจุช ูˆู„ูˆ ุนู†ุตุฑ ูˆุงุญุฏ ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐุง ุงู„ู€ subset
44
+
45
+ 12
46
+ 00:01:17,850 --> 00:01:23,850
47
+ ุงุซู†ูŠู† ู„ูˆ ุฃุฎุฏุช scalar ู…ู† R ู…ุน vector ู…ู† U ุถุฑุจุช
48
+
49
+ 13
50
+ 00:01:23,850 --> 00:01:28,050
51
+ ุงุซู†ูŠู† ููŠ ุจุนุถ ุจุฏูŠ ุฃุทู„ุน ู†ุงุชุฌ vector ุฌุฏูŠุฏ ู…ูˆุฌูˆุฏ ููŠ
52
+
53
+ 14
54
+ 00:01:28,050 --> 00:01:33,250
55
+ ุงู„ู€ U itself ุงู„ุฃู…ุฑ ุงู„ุซุงู„ุซ ู„ูˆ ุฃุฎุฏุช vectors ู…ู† U
56
+
57
+ 15
58
+ 00:01:33,250 --> 00:01:38,530
59
+ ูˆุฌู…ุนุช ุงู„ุงุซู†ูŠู† ุงู„ุฌุงู…ุนุฉ ุฏูŠ ุจุฏูŠ ุฃุซุจุช ุฅู† ู‡ุฐุง ุงู„ู…ุฌู…ูˆุน
60
+
61
+ 16
62
+ 00:01:38,530 --> 00:01:44,070
63
+ ู…ูˆุฌูˆุฏ ููŠ U ูƒุฐู„ูƒ ุฅู† ุชุญู‚ู‚ ุงู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉ ูŠุจู‚ู‰ ุงู„ู€
64
+
65
+ 17
66
+ 00:01:44,070 --> 00:01:49,470
67
+ subset ุงู„ู„ูŠ ุฃุฎุฏุชู‡ุง ู…ู† V ุจุชูƒูˆู† subspace ุงุฎุชู„ ุฃูŠ ุดุฑุท
68
+
69
+ 18
70
+ 00:01:49,470 --> 00:01:54,210
71
+ ู…ู† ุงู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉ ูŠุจู‚ู‰ ู…ุงู‡ูŠุด subspace ูˆุงุฎุฏู†ุง ุนู„ู‰
72
+
73
+ 19
74
+ 00:01:54,210 --> 00:01:59,870
75
+ ุฐู„ูƒ ุฃุฑุจุนุฉ ุฃู…ุซู„ุฉ ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุงู„ุฎุงู…ุณ ูŠุจู‚ู‰ ุงู„ู…ุซุงู„
76
+
77
+ 20
78
+ 00:01:59,870 --> 00:02:05,990
79
+ ุงู„ุฎุงู…ุณ ุจู‚ูˆู„ let P ุจูŠุจุฏุฃ ุชุณุงูˆูŠ PN ู…ูŠู† ู‡ูŠ ุงู„ู€ PNุŸ ูŠุจู‚ู‰
80
+
81
+ 21
82
+ 00:02:05,990 --> 00:02:11,470
83
+ ู‡ูŠ ูƒุซูŠุฑุงุช ุงู„ุญุฏูˆุฏ ุงู„ู„ูŠ ุฏุฑุฌุชู‡ุง ุฃู‚ุตู‰ ู…ุง ูŠูƒูˆู† ู‡ูˆ N
84
+
85
+ 22
86
+ 00:02:11,470 --> 00:02:17,650
87
+ ูŠุนู†ูŠ ูŠุง ุฅู…ุง N ูŠุง ุฅู…ุง ุฃู‚ู„ ู…ู† N ูˆุงู„ู€ N ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ
88
+
89
+ 23
90
+ 00:02:17,650 --> 00:02:23,670
91
+ ุงู„ู€ N is a positive integer ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ุงู„ู€ P of X ู‡ูŠ
92
+
93
+ 24
94
+ 00:02:23,670 --> 00:02:27,670
95
+ ุงู„ู€ polynomial of degree at most N ูƒู„ ูƒุซูŠุฑุงุช
96
+
97
+ 25
98
+ 00:02:27,670 --> 00:02:33,250
99
+ ุงู„ุญุฏูˆุฏ ุงู„ู„ูŠ ุฃู‚ุตู‰ ุฏุฑุฌุฉ ููŠู‡ุง N ูŠุนู†ูŠ N ุฃูˆ ุฃู‚ู„ ู…ู†ู‡ุง
100
+
101
+ 26
102
+ 00:02:33,250 --> 00:02:40,370
103
+ ุญูŠุซ ุฅู† ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจุŒ that is ุฃูŠ ุฃู† ุงู„ู€ P in ุงู„ู€
104
+
105
+ 27
106
+ 00:02:40,370 --> 00:02:45,750
107
+ set of all polynomials P X such that P of X ูŠุนู†ูŠ
108
+
109
+ 28
110
+ 00:02:45,750 --> 00:02:50,610
111
+ ุฃู†ุง ุจุฏูŠ ุฃุชุฑุฌู… ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ููˆู‚ ุฑูŠุงุถูŠุง ู…ุดุงู† ู†ุณุชุนู…ู„ู‡
112
+
113
+ 29
114
+ 00:02:50,610 --> 00:02:58,870
115
+ ุงู„ู€ P of X ู‡ูŠ A0 ุฒุงุฆุฏ A1X ุฒุงุฆุฏ A2Xยฒ ุฒุงุฆุฏ A3Xยณ ูˆุธู„ ู…ุงุดูŠ
116
+
117
+ 30
118
+ 00:02:58,870 --> 00:03:03,450
119
+ ู„ุบุงูŠุฉ ู…ุง ูˆุตู„ ุฅู„ู‰ An X to the power n ุงู„ู„ูŠ ุฃู†ุง ู‚ู„ุช
120
+
121
+ 31
122
+ 00:03:03,450 --> 00:03:08,960
123
+ at most ุงู„ู€ degree ุชุจุนุชู‡ุง ุจุชูƒูˆู† N ูŠุจู‚ู‰ ู‡ุฐุง ู…ู† ู‡ุฐุง ุงู„ู€
124
+
125
+ 32
126
+ 00:03:08,960 --> 00:03:14,080
127
+ vector space V ุฃุฎุฏุช ู…ู†ู‡ subspace ุฃุฎุฏุช ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€
128
+
129
+ 33
130
+ 00:03:14,080 --> 00:03:19,040
131
+ polynomial ู…ู† ู‡ุฐู‡ ุงู„ู€ polynomial ุชุนุงู„ู‰ ู†ุดูˆู ู‚ุงู„
132
+
133
+ 34
134
+ 00:03:19,040 --> 00:03:23,740
135
+ ูŠูุชุฑุถ ุฃู† ุงู„ู€ U ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ subset ู…ู† V the set of
136
+
137
+ 35
138
+ 00:03:23,740 --> 00:03:28,720
139
+ all elements P of X such that P of X ุชุณุงูˆูŠ Axยฒ ุฒุงุฆุฏ Bx
140
+
141
+ 36
142
+ 00:03:28,720 --> 00:03:33,040
143
+ ุฒุงุฆุฏ C ูˆุงู„ู€ A ูˆุงู„ู€ B ูˆุงู„ู€ C ู…ูˆุฌูˆุฏุฉ ููŠ R ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ู…ูŠู†
144
+
145
+ 37
146
+ 00:03:33,040 --> 00:03:38,280
147
+ ูƒุซูŠุฑุงุช ุงู„ุญุฏูˆุฏ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ุฃุฎุฏุชู‡ู… ูƒู„ู‡ู… ูˆ ุฑูˆุญุช
148
+
149
+ 38
150
+ 00:03:38,280 --> 00:03:44,220
151
+ ุญุงุทูŠุชู‡ู… ููŠ ุงู„ู€ set ูˆ ุณู…ูŠุช ุงู„ู€ set ู‡ุฐู‡ U ุจุฏูŠ ุฃุญุงูˆู„
152
+
153
+ 39
154
+ 00:03:44,220 --> 00:03:48,870
155
+ ุฃุซุจุช ุฅู†ู‡ U subspace ูˆ ูŠู…ูƒู† ู…ุง ุฃู‚ุฏุฑุด ุงู„ู„ู‡ ุฃุนู„ู… ู„ู…ุง
156
+
157
+ 40
158
+ 00:03:48,870 --> 00:03:53,190
159
+ ูŠู‚ูˆู„ prove or disapprove ุฅู† ุงู„ู€ U a subspace ูˆููŠู‡
160
+
161
+ 41
162
+ 00:03:53,190 --> 00:03:57,550
163
+ ู…ุด ุฅุฌุจุงุฑูŠ ุฃุซุจุช ุฅู†ู‡ุง subspace ูŠู…ูƒู† ุชุทู„ุน subspace
164
+
165
+ 42
166
+ 00:03:57,550 --> 00:04:01,150
167
+ ูˆูŠู…ูƒู† ู…ุง ุชุทู„ุนุด ูŠุนู†ูŠ prove ุฃุซุจุช this prove ู…ุง ุชุซุจุชุด
168
+
169
+ 43
170
+ 00:04:01,150 --> 00:04:05,390
171
+ ุงู„ู„ูŠ ุจุฏูƒ ู‡ูŠ ุงู„ู„ูŠ ุชู‚ุฏุฑ ุนู„ูŠู‡ ุงุดุชุบู„ู‡ ุชู…ุงู… ูŠุจู‚ู‰ ุจุงุฌูŠ
172
+
173
+ 44
174
+ 00:04:05,390 --> 00:04:11,810
175
+ ุจู‚ูˆู„ ุจุฏูŠ ุฃุญุงูˆู„ ุฃุซุจุช ุฅู† ู‡ุฐู‡ ู‡ูŠ subspace ุฅ๏ฟฝ๏ฟฝ ู‚ุฏุฑุช ูƒุงู†
176
+
177
+ 45
178
+ 00:04:11,810 --> 00:04:15,250
179
+ ุจู‡ุง ู…ุง ู‚ุฏุฑุช ูƒุงู† ุจู‡ุง ุทูŠุจ ูŠุจู‚ู‰ ู…ุดุงู† ุฃุซุจุช ุฅู†ู‡ุง
180
+
181
+ 46
182
+ 00:04:15,250 --> 00:04:20,100
183
+ subspace ุฃู†ุง ุจุฑูˆุญ ุฃุญู‚ู‚ ุงู„ุดุฑูˆุท ุงู„ุชุงู„ูŠุฉ ุงู„ุณุคุงู„ ู‡ูˆ
184
+
185
+ 47
186
+ 00:04:20,100 --> 00:04:27,000
187
+ ุญุฏ ููŠูƒู… ูŠู‚ุฏุฑ ูŠุซุจุช ู„ูŠ ุฅู†ู‡ ู‡ุฐู‡ ุงู„ู€ non-empty ูŠุนู†ูŠ ุนู„ู‰
188
+
189
+ 48
190
+ 00:04:27,000 --> 00:04:33,540
191
+ ุงู„ุฃู‚ู„ ููŠู‡ุง ุนู†ุตุฑ ูˆู„ูˆ ูƒุงู† ุตูุฑ ู…ูˆุฌูˆุฏ ุงู„ุตูุฑ ููŠู‡ุง ูˆู„ุง
192
+
193
+ 49
194
+ 00:04:33,540 --> 00:04:39,170
195
+ ู„ุงุŸ ู…ูˆุฌูˆุฏ ู…ูˆุฌูˆุฏ ู„ูŠุดุŸ ู„ุฃู†ู‡ ุฌุงู„ุณ ุงู„ู„ูŠ ู‡ุชุจู‚ู‰ ุนู„ู‰ ุงู„ุดูƒู„
196
+
197
+ 50
198
+ 00:04:39,170 --> 00:04:43,870
199
+ ุงู„ู„ูŠ ุนู†ุฏู‡ุง ุฏู‡ ูˆุงู„ู€ A ูˆุงู„ู€ B ูˆุงู„ู€ C ู…ูˆุฌูˆุฏุฉ ูˆูŠู† ุญุท ู„ูŠ ู‚ูŠูˆุฏ
200
+
201
+ 51
202
+ 00:04:43,870 --> 00:04:48,750
203
+ ุนู„ู‰ A ูˆ B ูˆ C ู…ุง ุญุทุด ู‚ูŠูˆุฏ ุชุงุฎุฏู‡ู… ุฃุตูุงุฑ ุชุงุฎุฏู‡ู… ุฃุนุฏุงุฏ
204
+
205
+ 52
206
+ 00:04:48,750 --> 00:04:52,810
207
+ ุชุงุฎุฏ ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ ูŠุจู‚ู‰ ู…ุง ุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ
208
+
209
+ 53
210
+ 00:04:52,810 --> 00:04:56,790
211
+ ูŠุจู‚ู‰ ุจุฑูˆุญ ุจู‚ูˆู„ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุฃูˆ ุงู„ู€ condition ุงู„ุฃูˆู„
212
+
213
+ 54
214
+ 00:04:56,790 --> 00:05:00,810
215
+ ุงู„ู€ U is non-empty
216
+
217
+ 55
218
+ 00:05:02,620 --> 00:05:10,640
219
+ ู„ูŠุดุŸ because ุงู„ู€ zero ู‡ู‡ู‡ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ zero X ุชุฑุจูŠุน
220
+
221
+ 56
222
+ 00:05:10,640 --> 00:05:16,460
223
+ ุฒุงุฆุฏ zero X ุฒุงุฆุฏ zero ูŠู†ูุน ู„ุง ู…ุง ูŠู†ูุนุด ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€
224
+
225
+ 57
226
+ 00:05:16,460 --> 00:05:22,490
227
+ polynomial ุงู„ุตูุฑูŠุฉ ู‡ุฐุง ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ู…ูˆุฌูˆุฏ ููŠ U ุฅุฐุง
228
+
229
+ 58
230
+ 00:05:22,490 --> 00:05:26,950
231
+ ุงู„ู€ U non-empty ูŠุจู‚ู‰ ุงู„ู€ condition ุงู„ุฃูˆู„ ุชุญู‚ู‚ ูŠุจู‚ู‰
232
+
233
+ 59
234
+ 00:05:26,950 --> 00:05:39,710
235
+ ุงู„ู€ condition
236
+
237
+ 60
238
+ 00:05:39,710 --> 00:05:45,270
239
+ ุงู„ุฃูˆู„ ุชุญู‚ู‚ ูŠุจู‚ู‰
240
+
241
+ 61
242
+ 00:05:45,270 --> 00:05:49,290
243
+ ุงู„ู€ condition ุงู„ุฃูˆู„ ุชุญู‚ู‚ ูŠุจู‚ู‰ ุงู„ู€ condition ุงู„ุฃูˆู„
244
+
245
+ 62
246
+ 00:05:49,290 --> 00:05:50,170
247
+ ุชุญู‚ู‚ ูŠุจู‚ู‰ ุงู„ู€ condition ุงู„ุฃูˆู„ ุชุญู‚ู‚ ูŠุจู‚ู‰ ุงู„ู€
248
+
249
+ 63
250
+ 00:05:50,170 --> 00:05:50,890
251
+ condition ุงู„ุฃูˆู„ ุชุญู‚ู‚ ูŠุจู‚ู‰ ุงู„ู€ condition ุงู„ุฃูˆู„ ุชุญู‚ู‚
252
+
253
+ 64
254
+ 00:05:50,890 --> 00:05:51,250
255
+ ุงู„ุฃูˆู„ ุชุญู‚ู‚ ูŠุจู‚ู‰ ุงู„ู€ condition ุงู„ุฃูˆู„ ุชุญู‚ู‚ ูŠุจู‚ู‰ ุงู„ู€
256
+
257
+ 65
258
+ 00:05:51,810 --> 00:06:00,640
259
+ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูŠูˆู… then ู†ุจุฏุฃ ุฃู†ุง ุขุฎุฏ C1 ููŠ P of X ุงู„ู„ูŠ
260
+
261
+ 66
262
+ 00:06:00,640 --> 00:06:06,300
263
+ ุนู†ุฏู†ุง ู‡ุฐู‡ ุฃุดูˆู ู‡ู„ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ U ุฃู… ู„ุง ูŠุจู‚ู‰ ู‡ุฐุง
264
+
265
+ 67
266
+ 00:06:06,300 --> 00:06:14,100
267
+ ุจุฏูŠ ูŠุนุทูŠู†ุง C1 ุจุฏูŠ ุฃุถุฑุจู‡ุง ููŠ AX ุชุฑุจูŠุน ุฒุงุฆุฏ BX ุฒุงุฆุฏ
268
+
269
+ 68
270
+ 00:06:14,100 --> 00:06:23,990
271
+ C ุทุจุนุง ูŠุจู‚ู‰ ุจุฏูŠ ุฃููƒ ุงู„ู‚ูˆุณ ุฏู‡ ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุตูŠุฑ C1AXยฒ
272
+
273
+ 69
274
+ 00:06:23,990 --> 00:06:36,770
275
+ AXยฒ
276
+
277
+ 70
278
+ 00:06:36,770 --> 00:06:41,810
279
+ AXยฒ AXยฒ AXยฒ
280
+
281
+ 71
282
+ 00:06:41,810 --> 00:06:51,530
283
+ AXยฒ AXยฒ ู…ุธุจูˆุทุŸ ู„ุฃู† ู‡ุฐุง ุฑู‚ู… ู‡ุฐุง ุฑู‚ู… ูˆ ู‡ุฐุง ุฑู‚ู… real
284
+
285
+ 72
286
+ 00:06:51,530 --> 00:06:56,890
287
+ numbers ุฅุฐุง ู‡ุฐุง ูƒู„ู‡ ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ููŠ ุงู„ู€ set U ุฅุฐุง
288
+
289
+ 73
290
+ 00:06:56,890 --> 00:07:00,750
291
+ ุงู†ุชุญู‚ู‚ ู…ู†ูŠู†ุŸ ุงู†ุชุญู‚ู‚ ุงู„ู€ condition ุงู„ุซุงู†ูŠ ุฃุฎุฏ
292
+
293
+ 74
294
+ 00:07:00,750 --> 00:07:05,510
295
+ element ู…ู† R ูˆ ุฃุฎุฏ element ู…ู† U ู„ูƒูŠ ุชุญุตู„ ุงู„ุถุฑุจ ู‡ุฐุง
296
+
297
+ 75
298
+ 00:07:05,510 --> 00:07:09,970
299
+ ู…ูˆุฌูˆุฏ ููŠู‡ ูŠุจู‚ู‰ ุจุงู‚ูŠ ุนู†ุฏูŠ ุจุณ ุงู„ู€ condition ุงู„ุซุงู„ุซ
300
+
301
+ 76
302
+ 00:07:09,970 --> 00:07:16,050
303
+ condition ุงู„ุซุงู„ุซ ุจุฐู„ูƒ ุฃู‚ูˆู„ FLP
304
+
305
+ 77
306
+ 00:07:28,610 --> 00:07:36,750
307
+ ุนู„ู‰ ุงู„ุดูƒู„ A1 X ุชุฑุจูŠุน ุฒุงุฆุฏ B1 X ุฒุงุฆุฏ C1 ู…ูˆุฌูˆุฏุฉ ููŠ U
308
+
309
+ 78
310
+ 00:07:39,100 --> 00:07:45,640
311
+ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎุฏ ู…ุฌู…ูˆุนู‡ู… ุจุฏูŠ ุฃุฎุฏ ุงู„ู€ P of X ุฒุงุฆุฏ ู„ู€ Q of
312
+
313
+ 79
314
+ 00:07:45,640 --> 00:07:51,280
315
+ X ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุงู„ุฌู…ุน component-wise ูŠุจู‚ู‰
316
+
317
+ 80
318
+ 00:07:51,280 --> 00:07:57,380
319
+ ุจุฏูŠ ุฃุฌู…ุน ู‡ุฐู‡ ู…ุน ู‡ุฐู‡ ู…ู†ู‡ุง ูŠุจู‚ู‰ ู…ุง ุจู„ุงู‚ูŠ ุจู„ุงู‚ูŠ ุงู„ ax
320
+
321
+ 81
322
+ 00:07:57,380 --> 00:08:09,000
323
+ ุชุฑุจูŠุน ุฒุงุฆุฏ a1x ุชุฑุจูŠุน ุฒุงุฆุฏ bx ุฒุงุฆุฏ b1x ุฒุงุฆุฏ c ุฒุงุฆุฏ
324
+
325
+ 82
326
+ 00:08:09,000 --> 00:08:14,790
327
+ c1 ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ู…ุง ุฑุฃูŠูƒ ู„ูˆ ู‡ู†ุง ููŠ ุนุงู…ู„ ู…ุดุชุฑูƒ
328
+
329
+ 83
330
+ 00:08:14,790 --> 00:08:19,770
331
+ ุงู„ู„ูŠ ู‡ูˆ X ุชุฑุจูŠุน ูˆู‡ู†ุง ููŠ ุนุงู…ู„ ู…ุดุชุฑูƒ ุงู„ู„ูŠ ู‡ูˆ X ูˆู‡ู†ุง
332
+
333
+ 84
334
+ 00:08:19,770 --> 00:08:27,430
335
+ ู…ุง ููŠุด ุนุงู…ู„ ู…ุดุชุฑูƒ ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐุง A ุฒุงุฆุฏ A1 ูƒู„ู‡
336
+
337
+ 85
338
+ 00:08:27,430 --> 00:08:35,350
339
+ ููŠ X ุชุฑุจูŠุน ุฒุงุฆุฏ B ุฒุงุฆุฏ B1 ูƒู„ู‡ ููŠ X ู‡ุฐุง X ุชุฑุจูŠุน ูˆู‡ุฐุง X
340
+
341
+ 86
342
+ 00:08:35,350 --> 00:08:45,410
343
+ ุฒุงุฆุฏ C ุฒุงุฆุฏ C1 real number ููŠ ุงู„ู€ X ุชุฑุจูŠุน ู…ูˆุฌูˆุฏ
344
+
345
+ 87
346
+ 00:08:45,410 --> 00:08:50,850
347
+ ููŠ ุงู„ู€ U ุฃู… ู„ุง ูŠุจู‚ู‰ ู‡ุฏู belongs to main to U ุฅุฐุง
348
+
349
+ 88
350
+ 00:08:50,850 --> 00:08:55,310
351
+ ุงู†ุช ุญู‚ู‚ุช ุงู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉ ุฃู… ู„ุง ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ so
352
+
353
+ 89
354
+ 00:08:55,310 --> 00:08:59,770
355
+ ุงู„ู€ U is a subspace
356
+
357
+ 90
358
+ 00:09:01,690 --> 00:09:09,590
359
+ R V ูŠุจู‚ู‰ ู‡ุฐุง subspace ู…ู† V ู†ูƒู…ู„ ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ ู†ูุณ
360
+
361
+ 91
362
+ 00:09:09,590 --> 00:09:14,130
363
+ ุงู„ู…ูˆุถูˆุน ูŠุจู‚ู‰
364
+
365
+ 92
366
+ 00:09:14,130 --> 00:09:19,630
367
+ ู‡ุฐุง ุงู„ู…ุซุงู„ ุฑู‚ู… ุฎู…ุณุฉ ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู…ุซุงู„ ุฑู‚ู… ุณุชุฉ ูŠุจู‚ู‰
368
+
369
+ 93
370
+ 00:09:19,630 --> 00:09:30,600
371
+ example 6 ุจู‚ูˆู„ let V ุชุณุงูˆูŠ P ุชูƒูŠุจ let ุงู„ู€ V ุชุณุงูˆูŠ R
372
+
373
+ 94
374
+ 00:09:30,600 --> 00:09:39,420
375
+ ุชูƒูŠุจ ูˆุงู„ู„ูŠ ู‡ูŠ ุจุฏู„ ุชุณุงูˆูŠ The set of all ุทุจุนุง
376
+
377
+ 95
378
+ 00:09:39,420 --> 00:09:43,900
379
+ ุงู„ู„ูŠ ู‡ูŠ the set of all X ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ูˆ X ุซู„ุงุซุฉ
380
+
381
+ 96
382
+ 00:09:43,900 --> 00:09:49,280
383
+ ูˆ X ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ูˆ X ุซู„ุงุซุฉ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ set of
384
+
385
+ 97
386
+ 00:09:49,280 --> 00:09:58,160
387
+ real numbers Little u ูˆ ุฏูŠ ู„ู†ุง ุงู„ู€ U ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
388
+
389
+ 98
390
+ 00:09:58,160 --> 00:10:05,860
391
+ the set of all elements x1 ูˆx2 ูˆx3 such that ุจุญูŠุซ
392
+
393
+ 99
394
+ 00:10:05,860 --> 00:10:18,160
395
+ ุฅู† x3 ูŠุณุงูˆูŠ x1 ุฒุงุฆุฏ x2 ุงู„ุณุคุงู„ ู‡ูˆ show that
396
+
397
+ 100
398
+ 00:10:21,470 --> 00:10:35,830
399
+ Show that U is a subspace of V ู‡ุฐุง ุงู„ู…ุซุงู„ ุฑู‚ู… ุณุชุฉ
400
+
401
+ 101
402
+ 00:10:35,830 --> 00:10:41,510
403
+ ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุจุฏุฃ ุฃุฎุฏ ุงู„ู€ vector space V ู‡ูˆ ุงู„ู€ R3
404
+
405
+ 102
406
+ 00:10:41,510 --> 00:10:46,490
407
+ ุชุญุช ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ูˆุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ ุงู„ูŠูˆุฒุฑ ุณุชุฉ ูˆุจุฑู†ุงู…ุฌ
408
+
409
+ 103
410
+ 00:10:46,490 --> 00:10:50,050
411
+ X ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ูˆ X ุซู„ุงุซุฉ ุจุญูŠุซ X ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ูˆ
412
+
413
+ 104
414
+ 00:10:50,050 --> 00:10:55,830
415
+ X ุซู„ุงุซุฉ are real number ุจุฏุงุฎู„ ุงู„ูŠูˆุฒุฑ ุชุชูƒูˆู† ู…ู† ุซู„ุงุซ
416
+
417
+ 105
418
+ 00:10:55,830 --> 00:11:01,510
419
+ ู…ูƒูˆู†ุงุช ู„ูƒู† ุงู„ู…ูƒูˆู†ุฉ ุงู„ุซุงู„ุซุฉ ู‡ูŠ ู…ุฌู…ูˆุน ุงู„ู€ two
420
+
421
+ 106
422
+ 00:11:01,510 --> 00:11:06,740
423
+ components ุงู„ุฃูˆู„ู‰ ูˆุงู„ุซุงู†ูŠุฉ ุทู„ุนูŠู†ูŠ ู‡ู†ุง x1 ูˆ x2 ูˆ x3
424
+
425
+ 107
426
+ 00:11:06,740 --> 00:11:12,360
427
+ such that x3 ุงู„ู„ูŠ ู‡ูŠ ุชุณุงูˆูŠ x1 ุฒุงุฆุฏ x2 ูŠุนู†ูŠ ู‡ุฐุง ูŠุง
428
+
429
+ 108
430
+ 00:11:12,360 --> 00:11:18,440
431
+ ุจู†ุงุช ู„ูˆ ุจุฏูŠ ุฃุตูŠุบู‡ ุจู‚ูˆู„ ู‡ูŠ ูƒู„ ุงู„ุนู†ุงุตุฑ ุนู„ู‰ ุตูŠุบุฉ x1 ูˆ
432
+
433
+ 109
434
+ 00:11:18,440 --> 00:11:24,680
435
+ x2 ูˆ x1 ุฒุงุฆุฏ x2 ูŠุนู†ูŠ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูˆ x1 ูˆ
436
+
437
+ 110
438
+ 00:11:24,680 --> 00:11:29,540
439
+ x2 ู…ูˆุฌูˆุฏุฉ ููŠ R ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุงูŠ ุงู„ู…ู‚ุตูˆุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
440
+
441
+ 111
442
+ 00:11:29,540 --> 00:11:34,870
443
+ ุนู†ุฏู†ุง ู‡ุฐุง ู‚ุงู„ ู„ูŠ ุจูŠุธู‡ุฑ ู„ูŠ ุฅู† ู‡ุฐุง is a subspace ูŠุจู‚ู‰
444
+
445
+ 112
446
+ 00:11:34,870 --> 00:11:40,290
447
+ ุฃู†ุง ุจุฑูˆุญ ู„ู…ูŠู† ู„ู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉ ุจุฏูŠ ุฃุซุจุช ุฅู† ู‡ุฐู‡ ุงู„ู€ U
448
+
449
+ 113
450
+ 00:11:40,290 --> 00:11:45,470
451
+ ุนู„ู‰ ุงู„ุฃู‚ู„ ููŠู‡ุง ู…ุง ููŠู‡ุง element ูˆุงุญุฏ ูˆุจุนุฏ ู‡ูŠูƒ ุจุฑูˆุญ
452
+
453
+ 114
454
+ 00:11:45,470 --> 00:11:50,290
455
+ ุจูƒู…ู‘ู„ ุฅุฐุง ุจุฏูŠ ุฃุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุญุฏ ููŠูƒู… ูŠู‚ุฏุฑ
456
+
457
+ 115
458
+ 00:11:50,290 --> 00:11:54,050
459
+ ูŠุฌูŠุจ ู„ูŠ answer ูˆุงุญุฏ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ U
460
+
461
+ 116
462
+ 00:11:59,950 --> 00:12:11,230
463
+ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง ุงู„ู€ U is non-empty ู„ูŠุดุŸ because
464
+
465
+ 117
466
+ 00:12:13,230 --> 00:12:19,290
467
+ ุฅู† ุงู„ู€ zero ูˆ ุงู„ู€ zero ูˆ ุงู„ู€ zero ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ U
468
+
469
+ 118
470
+ 00:12:19,290 --> 00:12:26,510
471
+ sentence ู„ูŠุดุŸ ู„ุฃู† ุงู„ู€ zero ุจุฏู‡ ูŠุณุงูˆูŠ zero ุฒุงุฆุฏ zero
472
+
473
+ 119
474
+ 00:12:26,510 --> 00:12:30,470
475
+ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ูƒูˆู†ุฉ ุงู„ุซุงู„ุซุฉ ุชุณุงูˆูŠ ุงู„ู…ูƒูˆู†ุฉ ุงู„ุฃูˆู„ู‰
476
+
477
+ 120
478
+ 00:12:30,470 --> 00:12:36,510
479
+ ุฒุงุฆุฏ ุงู„ู…ูƒูˆู†ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุจู†ุฌูŠ ู†ุฃุฎุฐ
480
+
481
+ 121
482
+ 00:12:36,510 --> 00:12:43,490
483
+ element a ู…ูˆุฌูˆุฏ ููŠ set of real numbers and ุงู„ู€ V
484
+
485
+ 122
486
+ 00:12:43,490 --> 00:12:49,110
487
+ ู…ุซู„ุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ U ูˆ ุงู„ู€ V ุจุฏูŠ ุฃูƒุชุจู‡ ุนู„ู‰ ุงู„ุดูƒู„
488
+
489
+ 123
490
+ 00:12:49,110 --> 00:12:57,530
491
+ ุงู„ุชุงู„ูŠ ุงู„ู€ V ุชุณุงูˆูŠ ุงู„ู€ X ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ูˆ X ูˆุงุญุฏ
492
+
493
+ 124
494
+ 00:12:57,530 --> 00:13:04,330
495
+ ุฒุงุฆุฏ X ุงุซู†ูŠู† ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ U ุฏุงู…ู† ุจุฏูŠ ุขุฎุฏ ุญุงุตู„ ุงู„ุถุฑุจ
496
+
497
+ 125
498
+ 00:13:04,330 --> 00:13:12,520
499
+ ูŠุจู‚ู‰ ุจุฏูŠ ุขุฎุฏ A ููŠ V ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุตูŠุฑ A ููŠ X1 ูˆ X2 ูˆ
500
+
501
+ 126
502
+ 00:13:12,520 --> 00:13:22,020
503
+ X1 ุฒุงุฆุฏ X2 ุฅู†ุทู„ุน ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ U ุจูƒูˆู† ุฅู†ุช ู‡ู†ุง ู…ู†
504
+
505
+ 127
506
+ 00:13:22,020 --> 00:13:25,000
507
+ ุงู„ู€ condition ุงู„ุซุงู†ูŠ ูˆ ุจุฑูˆุญ ุจุฏูˆุฑ ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ู€
508
+
509
+ 128
510
+ 00:13:25,000 --> 00:13:30,220
511
+ condition ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ุจูŠุฏูุนูƒ ู‡ุฐุง ุงู„ู‚ุตุฉ ุจู†ุฌูŠ ู†ู‚ูˆู„ A
512
+
513
+ 129
514
+ 00:13:30,220 --> 00:13:50,600
515
+ X1 ax2 a x1 a x2 a x2 a x1 a x2 a x2 a x2 a x2 a x2
516
+
517
+ 130
518
+ 00:13:50,600 --> 00:13:56,850
519
+ a x2 a x2 a x2 a x2 a x2 a x2 a x2 a x2 a x2 ู‡ู„ ู‡ูˆ
520
+
521
+ 131
522
+ 00:13:56,850 --> 00:14:01,130
523
+ ู…ุฌู…ูˆุน ุงู„ู€ two terms ุงู„ู„ูŠ ู‡ู†ุงุŸ ูŠุนู†ูŠ ุงู„ู…ูƒูˆู†ุฉ ุงู„ุซุงู„ุซุฉ
524
+
525
+ 132
526
+ 00:14:01,130 --> 00:14:04,210
527
+ ู…ุฌู…ูˆุน ุงู„ู…ูƒูˆู†ุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ู…ูƒูˆู†ุฉ ุงู„ุซุงู†ูŠุฉ ููŠ ุงู„ู€ a
528
+
529
+ 133
530
+ 00:14:04,210 --> 00:14:09,150
531
+ three useful ู†ุนู… ุจุงู„ุถุจุท ุฅุฐุง ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ูˆูŠู†ุŸ ู…ูˆุฌูˆุฏุฉ
532
+
533
+ 134
534
+ 00:14:09,150 --> 00:14:13,850
535
+ ููŠ U ูŠุจู‚ู‰ ุชุญู‚ู‚ ุงู„ู€ condition ุงู„ุซุงู†ูŠ ู†ุจุฏุฃ ู†ุฑูˆุญ ู„ู„ู€
536
+
537
+ 135
538
+ 00:14:13,850 --> 00:14:22,110
539
+ condition ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ F ุง๏ฟฝ๏ฟฝู„ูŠ ู‡ูˆ ู…ู†ุŸ F
540
+
541
+ 136
542
+ 00:14:22,360 --> 00:14:29,720
543
+ ุงู„ู€ U ุจู€ small ุจุฏู‡ุง ุชุณุงูˆูŠ X ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ูˆ X
544
+
545
+ 137
546
+ 00:14:29,720 --> 00:14:37,140
547
+ ูˆุงุญุฏ ุฒุงุฆุฏ X ุงุซู†ูŠู† ูˆ ุงู„ู€ V ุจุฏู‡ุง ุชุณุงูˆูŠ Y ูˆุงุญุฏ ูˆ Y
548
+
549
+ 138
550
+ 00:14:37,140 --> 00:14:43,000
551
+ ุงุซู†ูŠู† ูˆ Y ูˆุงุญุฏ ุฒุงุฆุฏ Y ุงุซู†ูŠู† ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ูˆุฌูˆุฏ ููŠ U
552
+
553
+ 139
554
+ 00:14:43,000 --> 00:14:48,550
555
+ then ูŠุจู‚ู‰ ุฃุฎุฏ ุนู†ุตุฑูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ U ุจุงู„ู€D ุฃุดูˆู ู‡ู„
556
+
557
+ 140
558
+ 00:14:48,550 --> 00:14:54,410
559
+ ุฌุงู…ุนู‡ู… ู…ูˆุฌูˆุฏ ููŠ U ุฃู… ู„ุง ูŠุจู‚ู‰ ุจุฑูˆุญ ุจุฃุฎุฏ ู„ู‡ ุงู„ู€ U
560
+
561
+ 141
562
+ 00:14:54,410 --> 00:15:01,660
563
+ ุฒุงุฆุฏ ุงู„ู€ V ูŠุจู‚ู‰ ู„ุฌู…ุน component twice ูŠุจู‚ู‰ x ูˆุงุญุฏ
564
+
565
+ 142
566
+ 00:15:01,660 --> 00:15:10,980
567
+ ุฒุงุฆุฏ y ูˆุงุญุฏ x ุงุซู†ูŠู† ุฒุงุฆุฏ y ุงุซู†ูŠู† ู†ุฌู…ุน x ูˆุงุญุฏ ุฒุงุฆุฏ
568
+
569
+ 143
570
+ 00:15:10,980 --> 00:15:17,660
571
+ x ุงุซู†ูŠู† ุฒุงุฆุฏ y ูˆุงุญุฏ ุฒุงุฆุฏ y ุงุซู†ูŠู† ูˆู‡ุฐู‡ ุงู„ู…ูƒูˆู†ุฉ ุงู„ู„ูŠ
572
+
573
+ 144
574
+ 00:15:17,660 --> 00:15:23,490
575
+ ุนู†ุฏู†ุง ุทูŠุจ ุฃู†ุง ุจุฏูŠ ุฅูŠุงู‡ุง ู…ุฌู…ูˆุน ุงู„ุฃูˆู„ู‰ ุฒูŠ ุฏูŠ ุงู„ุซุงู†ูŠุฉ
576
+
577
+ 145
578
+ 00:15:23,490 --> 00:15:34,420
579
+ ุจู‚ุฏุฑ ุฃุนูŠุฏ ุงู„ุชุฑุชูŠุจ ูˆ ุฃู‚ูˆู„ X1 ุฒูŠ Y1 X2 ุฒูŠ Y2 ู…ู…ูƒู†
580
+
581
+ 146
582
+ 00:15:34,420 --> 00:15:42,640
583
+ ุฃุฌู…ุน ู‡ุฐู‡ ู…ุน ู‡ุฐู‡ ูŠุจู‚ู‰ ู…ูŠู†ุŸ x ูˆุงุญุฏ ุฒุงุฆุฏ y ูˆุงุญุฏ ุฒุงุฆุฏ
584
+
585
+ 147
586
+ 00:15:42,640 --> 00:15:48,700
587
+ x ุงุซู†ูŠู† ุฒุงุฆุฏ y ุงุซู†ูŠู† ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุทู„ุน ู„ูŠ
588
+
589
+ 148
590
+ 00:15:48,700 --> 00:15:52,440
591
+ ููŠ ุงู„ู€ term ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ูˆ ู…ุฌู…ูˆุน ุงู„ู€ components
592
+
593
+ 149
594
+ 00:15:52,440 --> 00:15:56,970
595
+ ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ ู†ุนู… ู‡ูˆ ู…ุฌู…ูˆุนุฉ .. ุฅุฐุง ู‡ุฐุง ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ
596
+
597
+ 150
598
+ 00:15:56,970 --> 00:16:02,610
599
+ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ U ุฅุฐุง ุชุญู‚ู‚ุช ุงู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉ ูุจุงุฌูŠ ุจู‚ูˆู„
600
+
601
+ 151
602
+ 00:16:02,610 --> 00:16:11,830
603
+ ู„ู‡ ุงู„ู€ U is a subspace of
604
+
605
+ 152
606
+ 00:16:11,830 --> 00:16:14,950
607
+ V ูˆุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ุง
608
+
609
+ 153
610
+ 00:16:42,900 --> 00:16:57,320
611
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู…ุซุงู„ ุงู„ุณุงุฏุณ ู…ุซุงู„ ุงู„ุณุงุจุน ู…ุซุงู„ ุณุจุนุฉ ุจู‚ูˆู„
612
+
613
+ 154
614
+ 00:16:57,320 --> 00:17:01,940
615
+ ุฅู† ุงู„ู€ V ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰
616
+
617
+ 155
618
+ 00:17:01,940 --> 00:17:04,100
619
+ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰ ุจูŠุจู‚ู‰
620
+
621
+ 156
622
+ 00:17:09,670 --> 00:17:22,270
623
+ Define ู„ู ู…ุนุฑูุฉ on an interval I ู…ุนุฑูุฉ ุนู„ู‰ ูุชุฑุฉ ู…ุง
624
+
625
+ 157
626
+ 00:17:22,270 --> 00:17:31,670
627
+ ู†ุฃุฎุฐ ุงู„ู€ U ู„ุช ุงู„ู€ U ุชุณุงูˆูŠ the set of all element f
628
+
629
+ 158
630
+ 00:17:31,670 --> 00:17:40,910
631
+ such that ุงู„ู€ F W prime of X ุฒุงุฆุฏ ุงุซู†ูŠู† ููŠ ุงู„ู€ F of
632
+
633
+ 159
634
+ 00:17:40,910 --> 00:17:47,750
635
+ X ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูƒู„ ุงู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
636
+
637
+ 160
638
+ 00:17:47,750 --> 00:17:57,350
639
+ ููŠ ุงู„ู€ interval I ุงู„ุณุคุงู„ ู‡ูˆ ุจูŠู‚ูˆู„ prove or disprove
640
+
641
+ 161
642
+ 00:17:58,880 --> 00:18:11,160
643
+ prove or disprove that ุงู„ู€ U is a subspace of V
644
+
645
+ 162
646
+ 00:18:11,160 --> 00:18:26,380
647
+ ุฎุงู†ุฉ
648
+
649
+ 163
650
+ 00:18:26,380 --> 00:18:32,490
651
+ ู‡ุฐู‡ ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ุง ุทูŠุจ ุฃู†ุชูˆ ู…ู„ุงุญุธูŠู† ุงู„ุฃู…ุซู„ุฉ ุจุงู„ู†ูˆุนู‡ุง
652
+
653
+ 164
654
+ 00:18:32,490 --> 00:18:37,630
655
+ ูƒู„ ู…ุฑุฉ ุจู†ุฌูŠุจ ู…ุซุงู„ ุดูƒู„ ูŠุฎุชู„ู ููŠ ู…ุถู…ูˆู†ู‡ ุนู† ุงู„ู…ุซุงู„
656
+
657
+ 165
658
+ 00:18:37,630 --> 00:18:42,030
659
+ ุงู„ู‚ุจู„ ู„ูƒู† ุจุงู„ู†ุณุจุฉ ู„ู„ุจุฑู‡ุงู† ูƒู„ู‡ ู†ูุณ ุงู„ููƒุฑุฉ ุชุจุนู‡
660
+
661
+ 166
662
+ 00:18:42,030 --> 00:18:47,710
663
+ ุงู„ุจุฑู‡ุงู† ุจุณ ู†ู‚ุฏุฑ ู†ุทุจู‚ ู„ู‡ ุชุทุจูŠู‚ ุตุญูŠุญ ู†ุฑุฌุน ู„ุณุคุงู„ู†ุง
664
+
665
+ 167
666
+ 00:18:47,710 --> 00:18:51,710
667
+ ู‡ุฐุง ู…ุฑุฉ ุซุงู†ูŠุฉ ู‚ุงู„ ูŠุงุฎุฏ ุงู„ู€ V the set of all
668
+
669
+ 168
670
+ 00:18:51,710 --> 00:18:56,420
671
+ functions ุงู„ู…ุนุฑูุฉ ุนู„ู‰ ูุชุฑุฉ ู…ุง ูŠุนู†ูŠ ุฃู†ุง ุฌูŠุช ุนู„ู‰ ุงู„ู€
672
+
673
+ 169
674
+ 00:18:56,420 --> 00:19:00,720
675
+ real line ูˆ ุฃุฎุฏุช ูุชุฑุฉ ู…ุญุฏุฏุฉ ูˆ ุฌุจุช ูƒู„ ุงู„ู€ functions
676
+
677
+ 170
678
+ 00:19:00,720 --> 00:19:05,240
679
+ ุงู„ู„ูŠ ุฎู„ู‚ู‡ุง ุฑุจู†ุง ูˆ ุงู„ู„ูŠ ุงุญู†ุง ุจู†ุนุฑูู‡ ุงู„ู…ุนุฑูุฉ ุนู„ู‰ ู‡ุฐู‡
680
+
681
+ 171
682
+ 00:19:05,240 --> 00:19:11,280
683
+ ุงู„ูุชุฑุฉ ูˆ ู‚ู„ุช ู‡ุฏูˆู„ vector space ุงู„ู„ูŠ ู‡ูˆ V ุฑูˆุญุช ู…ู†
684
+
685
+ 172
686
+ 00:19:11,280 --> 00:19:14,840
687
+ ู‡ุฐุง ุงู„ู€ vector space ุฃุฎุฏุช ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€ functions
688
+
689
+ 173
690
+ 00:19:14,840 --> 00:19:18,700
691
+ ู…ูŠู†
692
+
693
+ 201
694
+ 00:21:44,280 --> 00:21:48,920
695
+ ุงุชู†ูŠู† F of X ูŠุณุงูˆูŠ Zero ุงู„ู€ F'' of Zero
696
+
697
+ 202
698
+ 00:21:48,920 --> 00:21:55,820
699
+ ุฒุงุฆุฏูŠ ุงุชู†ูŠู† ููŠ Zero ูŠุณุงูˆูŠ Zero ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ F
700
+
701
+ 203
702
+ 00:21:55,820 --> 00:22:00,710
703
+ ุงู„ู„ูŠ ุนู†ุฏู‡ุง ู…ูˆุฌูˆุฏุฉ ูˆูŠู†ููŠ ุงู„ู€ U ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ U
704
+
705
+ 204
706
+ 00:22:00,710 --> 00:22:07,850
707
+ is non-empty ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุง ู‡ูŠูŽุงุด ุงู„ูุฆุฉ ุงู„ุฎุงูˆูŠุฉ ูŠุจู‚ู‰
708
+
709
+ 205
710
+ 00:22:07,850 --> 00:22:13,350
711
+ ู‡ุฐู‡ ุงู„ูุฆุฉ ูˆููŠู‡ุง ู…ู† ูˆููŠู‡ุง ุนู†ุงุตุฑ ูŠุจู‚ู‰ ู‡ุฐู‡ ุฃุซุจุชู†ุง ุฃู†
712
+
713
+ 206
714
+ 00:22:13,350 --> 00:22:19,410
715
+ ู‡ุฐู‡ ุงู„ู€ set ุนู„ู‰ ุงู„ุฃู‚ู„ ููŠู‡ุง ูˆู„ูˆ ุนู†ุตุฑ ูˆุงุญุฏ ู†ุฌูŠ ุฑู‚ู…
716
+
717
+ 207
718
+ 00:22:19,410 --> 00:22:26,770
719
+ ุงุชู†ูŠู† ุจุฏูŠ ุขุฎุฏ ุงู„ู€ C ู…ูˆุฌูˆุฏ ููŠ set of real numbers
720
+
721
+ 208
722
+ 00:22:29,320 --> 00:22:36,160
723
+ ูˆุงู„ู€ F ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ U ูุงู„ู€ F ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ U
724
+
725
+ 209
726
+ 00:22:36,160 --> 00:22:41,400
727
+ ู…ุนู†ุงุชู‡ ุงู„ู€ F double prime of X ุฒุงุฆุฏูŠ ุงุชู†ูŠู† F of X
728
+
729
+ 210
730
+ 00:22:41,400 --> 00:22:49,460
731
+ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุฃู†ุง ู…ูŠู† ุจุฏูŠ ุฃุซุจุชุŸ ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ู€CF
732
+
733
+ 211
734
+ 00:22:49,460 --> 00:22:55,520
735
+ ูƒู„ู‡ุง double prime ุฒุงุฆุฏ ุงุชู†ูŠู† CF ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุฅู†
736
+
737
+ 212
738
+ 00:22:55,520 --> 00:23:01,240
739
+ ุฃุซุจุช ุฐู„ูƒ ุจูŠุตูŠุฑ ุงู„ู€CF ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€U ูˆุจุงู„ุชุงู„ูŠ ุจูƒูˆู†
740
+
741
+ 213
742
+ 00:23:01,240 --> 00:23:06,540
743
+ ุชุญู‚ู‚ ุงู„ู€ condition ู‡ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ุงู„ุขู† ุจุฏู‘ูŠ ุฃู‚ูˆู„
744
+
745
+ 214
746
+ 00:23:06,540 --> 00:23:07,420
747
+ consider
748
+
749
+ 215
750
+ 00:23:10,510 --> 00:23:17,550
751
+ ูƒุฏู‡ ู„ูŠ ูƒุฏู‡
752
+
753
+ 216
754
+ 00:23:17,550 --> 00:23:23,150
755
+ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡
756
+
757
+ 217
758
+ 00:23:23,150 --> 00:23:32,350
759
+ ูƒุฏู‡
760
+
761
+ 218
762
+ 00:23:32,350 --> 00:23:36,930
763
+ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡
764
+
765
+ 219
766
+ 00:23:36,930 --> 00:23:37,610
767
+ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡
768
+
769
+ 220
770
+ 00:23:37,610 --> 00:23:41,070
771
+ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ูƒุฏู‡ ุฃุธู† ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช ู„ูˆ ูุถู„
772
+
773
+ 221
774
+ 00:23:41,070 --> 00:23:45,790
775
+ ู…ุฑุฉ ูˆู„ุง ู…ุฑุชูŠู† ูˆู„ุง ุชู„ุงุชุฉ ูˆู„ุง ุนุดุฑุฉ ุจูŠุธู„.. ุจูŠุธู„ ุฒูŠ
776
+
777
+ 222
778
+ 00:23:45,790 --> 00:23:49,930
779
+ ู…ุง ู‡ูˆ ูƒู„ ุงู„ู€ function ู…ูˆุฌูˆุฏุฉ F ู„ูƒู† ู„ูˆ ุงู„ู€ function
780
+
781
+ 223
782
+ 00:23:49,930 --> 00:23:54,430
783
+ ุงู†ุชู‡ุช ุจูŠุตูŠุฑ ู…ุดุชู‚ ู„ุจุนุถู‡ุง ุจู€ Zero ู…ุธุจูˆุท ุทุจ ุงุญู†ุง ุนู†ุฏู†ุง
784
+
785
+ 224
786
+ 00:23:54,430 --> 00:24:00,310
787
+ ู…ุดุชู‚ุชูŠู† ูุจุฌูŠ ุจู‚ูˆู„ ู„ู‡ ู‡ุฐุง ู…ุนู†ุงู‡ C ููŠ ุงู„ู€ F double
788
+
789
+ 225
790
+ 00:24:00,310 --> 00:24:05,650
791
+ prime of X ุฒุงุฆุฏ
792
+
793
+ 226
794
+ 00:24:06,250 --> 00:24:14,350
795
+ ู‡ุฐู‡ ู„ูˆ ุฌูŠุช ููƒุชู‡ุง ุจูŠุตูŠุฑ ุงุชู†ูŠู† C ููŠ ุงู„ู€ F of X ู‡ุฐู‡ ู„ูˆ
796
+
797
+ 227
798
+ 00:24:14,350 --> 00:24:19,810
799
+ ุฑูˆุญุช ุฃุฎุฏุช ุงู„ู€ C ุนุงู… ุงู„ู…ุดุชุฑูƒ ุจูŠุธู„ F double prime of
800
+
801
+ 228
802
+ 00:24:19,810 --> 00:24:26,410
803
+ X ุฒุงุฆุฏ ุงุชู†ูŠู† F of X ูŠุจู‚ู‰ ุฏู‡ ุจุชุณูˆู‰ ูƒุฏู‡ ุดุจู‡ ุฃู†ุง
804
+
805
+ 229
806
+ 00:24:26,410 --> 00:24:31,910
807
+ ู‡ุชู‡ูŠุฃ ุงู„ู€ C ู„ุจุฑุง ู„ ุจูŠู† ุฌุซูŠู† ู‡ุงูŠู‡ ุฃู†ุง ูุฑุถู‡ ู…ู† ู‚ุจู„
808
+
809
+ 230
810
+ 00:24:31,910 --> 00:24:38,970
811
+ ุจู‚ุฏุงุดุŸ ุจู€ ุฒูŠุฑูˆ ูŠุจู‚ู‰ ุงู„ู€C ููŠ ุฒูŠุฑูˆ ุจู‚ุฏุงุด ุงูŠุด ุชูุณูŠุฑ ูƒู„
812
+
813
+ 231
814
+ 00:24:38,970 --> 00:24:43,730
815
+ ู‡ุฐุง ุงู„ูƒู„ุงู…ุŸ ูŠุจู‚ู‰ ุงู„ู€CF ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€U ูŠุจู‚ู‰ ู‡ู†ุง
816
+
817
+ 232
818
+ 00:24:43,730 --> 00:24:49,290
819
+ ุจุฑูˆุญ ุจู‚ูˆู„ ู„ู‡ ุงู„ุณุงุนุฉ ุงู„ู€CF ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€U ุจุฏู‡ ุงุฑูˆุญ
820
+
821
+ 233
822
+ 00:24:49,290 --> 00:24:54,430
823
+ ู„ู„ู€ condition ุงู„ุชุงู†ูŠ ุจุฏูŠ ุขุฎุฏ two functions ู…ูˆุฌูˆุฏุงุช
824
+
825
+ 234
826
+ 00:24:54,430 --> 00:25:00,450
827
+ ููŠ ุงู„ู€ U ุจู…ุนู†ู‰ ุฃู† ุงู„ู€ f double prime of x ุฒูŠ ุฏูŠ
828
+
829
+ 235
830
+ 00:25:00,450 --> 00:25:05,230
831
+ ุงุชู†ูŠู† f of x ุจุฏูŠ ุณุงูˆูŠ zero ูˆุฏุงู„ุฉ ุชุงู†ูŠุฉ g of x ุจุญูŠุซ
832
+
833
+ 236
834
+ 00:25:05,230 --> 00:25:09,270
835
+ ุงู„ู€ g double prime of x ุฒูŠ ุฏูŠ ุงุชู†ูŠู† g of x ุจุฏูŠ ุณุงูˆูŠ
836
+
837
+ 237
838
+ 00:25:09,270 --> 00:25:16,060
839
+ ู…ูŠู†ุŸ Zero ูŠุจู‚ู‰ ุจุฏู‘ูŠ ุฃู‚ูˆู„ู‡ ู‡ู†ุง ุงูุชุฑุถูŠ ุฅู† ุงู„ู€ F ูˆ
840
+
841
+ 238
842
+ 00:25:16,060 --> 00:25:22,200
843
+ ุงู„ู€ G ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ U ุซู… ุงู„ู€ F double prime of X
844
+
845
+ 239
846
+ 00:25:22,200 --> 00:25:29,880
847
+ ุฒุงุฆุฏ ุงุชู†ูŠู† F of X ุจุฏูŠ ุณุงูˆูŠ Zero ูˆ ููŠ ู†ูุณ ุงู„ูˆู‚ุช G
848
+
849
+ 240
850
+ 00:25:29,880 --> 00:25:35,180
851
+ double prime of X ุฒุงุฆุฏ ุงุชู†ูŠู† G of X ูƒู„ ู‡ุฐุง ุจุฏูŠ
852
+
853
+ 241
854
+ 00:25:35,180 --> 00:25:40,510
855
+ ุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏูŠ ุณุงูˆูŠ Zero ุฃู†ุง ุจุฏูŠ ุฃุซุจุช ุฅู† ู…ุฌู…ูˆุนู‡ู…
856
+
857
+ 242
858
+ 00:25:40,510 --> 00:25:45,950
859
+ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ U ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ู€ F of X ุฒุงุฆุฏ ุงู„ู€
860
+
861
+ 243
862
+ 00:25:45,950 --> 00:25:51,210
863
+ G of X ูƒู„ู‡ ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ุจุฏูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ U ู„ูŠุด ู‡ูƒุฐุงุŸ
864
+
865
+ 244
866
+ 00:25:51,210 --> 00:25:58,530
867
+ ุจุฏูŠ ุฃุฑูˆุญ ุฃู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุฎุฐูŠู„ูŠ ุงู„ู„ูŠ ู‡ูˆ F of X ุฒุงุฆุฏ
868
+
869
+ 245
870
+ 00:25:58,530 --> 00:26:02,150
871
+ ุงู„ู€ G of X ''
872
+
873
+ 246
874
+ 00:26:05,020 --> 00:26:16,460
875
+ ุฒุงุฆุฏ ุงุชู†ูŠู† F of X ุฒุงุฆุฏ G of X ุฅุฐุง ุทู„ุน ู‡ุฐุง ูŠุณุงูˆูŠ
876
+
877
+ 247
878
+ 00:26:16,460 --> 00:26:22,420
879
+ Zero ุจูŠุตูŠุฑ ุงู„ู…ุฌู…ูˆุน ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ูŠูˆู… ุงู„ุชุงู„ูŠ ูŠูƒูˆู†
880
+
881
+ 248
882
+ 00:26:22,420 --> 00:26:27,660
883
+ ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู‚ุตุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ู†ุฑุฌุน ู„ู„ู€ calculus
884
+
885
+ 249
886
+ 00:26:30,100 --> 00:26:35,200
887
+ ู…ุดุชู‚ุฉ ุงู„ู…ุฌู…ูˆุน ุงู„ุฌุจุฑูŠ ู„ุฏุงู„ุชูŠู† ูŠุณูˆูŠ ู…ูŠู†ุŸ ุงู„ู…ุฌู…ูˆุน
888
+
889
+ 250
890
+ 00:26:35,200 --> 00:26:43,300
891
+ ุงู„ุฌุจุฑูŠ ู„ู„ู…ุดุชู‚ุชูŠู† ูˆู„ูˆ ุงุดุชู‚ุช ูƒู…ุงู† ู…ุฑุฉ ูŠุจู‚ู‰
892
+
893
+ 251
894
+ 00:26:43,300 --> 00:26:49,960
895
+ ุงู„ู…ุฌู…ูˆุน ุงู„ุฌุจุฑูŠ ู„ู„ู…ุดุชู‚ุชูŠู† ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู„ู€ F ''
896
+
897
+ 252
898
+ 00:26:49,960 --> 00:26:58,150
899
+ of X ุฒุงุฆุฏ ุงู„ู€ G '' of X ู…ุธุจูˆุทุŸ ุทูŠุจ ู‡ุฐุง
900
+
901
+ 253
902
+ 00:26:58,150 --> 00:27:03,530
903
+ ุงู„ูƒู„ุงู… ุจุฏูŠ ุฃุถูŠู ู„ู‡ ุจุฏูŠ ุฃููƒ ุงู„ู€ Goal ุงู„ุณุงุฏุฉ ูŠุจู‚ู‰ 2 F
904
+
905
+ 254
906
+ 00:27:03,530 --> 00:27:12,500
907
+ of X ุฒุงุฆุฏ๏ฟฝ๏ฟฝ 2 G of X ูŠุณุงูˆูŠ ุจุฏูŠ ุขุฎุฏู‡ู… ู…ุฌู…ูˆุนุชูŠู† ุจุฏูŠ
908
+
909
+ 255
910
+ 00:27:12,500 --> 00:27:17,840
911
+ ุฃุญุท ุงู„ู€ f ู…ุน ุจุนุถ ูˆ ุงู„ู€ g ู…ุน ุจุนุถ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง
912
+
913
+ 256
914
+ 00:27:17,840 --> 00:27:24,640
915
+ ู…ูŠู† ุจุฏู‡ ูŠุนุทูŠู†ุง F'' of x ุฒูŠ ุฏูŠ ุงุชู†ูŠู† f of x
916
+
917
+ 257
918
+ 00:27:24,640 --> 00:27:25,900
919
+ ุจุฏูŠ ุขุฎุฏู‡ู… ู…ุน ุจุนุถ
920
+
921
+ 258
922
+ 00:27:29,230 --> 00:27:37,490
923
+ G''XG''XG
924
+
925
+ 259
926
+ 00:27:37,490 --> 00:27:46,250
927
+ ''XG''XG''
928
+
929
+ 260
930
+ 00:27:46,250 --> 00:27:51,170
931
+ ''XG
932
+
933
+ 261
934
+ 00:27:51,170 --> 00:27:52,930
935
+ ''XG''XG''XG''XG''XG''XG''XG''XG''XG''XG
936
+
937
+ 262
938
+ 00:27:52,930 --> 00:27:53,370
939
+ ''XG''XG''XG''XG''XG''XG''XG''XG''XG''XG''XG
940
+
941
+ 263
942
+ 00:27:53,370 --> 00:28:00,970
943
+ ''XG''XG''X ุฒุงุฆุฏ ุงู„ู€ ุฌูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ U ูŠุจู‚ู‰ ุงู„ู€ U is a
944
+
945
+ 264
946
+ 00:28:00,970 --> 00:28:02,090
947
+ subspace
948
+
949
+ 265
950
+ 00:28:17,170 --> 00:28:27,670
951
+ ุงู„ู€ U is a subspace of Z
952
+
953
+ 266
954
+ 00:28:30,300 --> 00:28:36,120
955
+ ุทูŠุจ ุฃุฎุฏู†ุง ุญุชู‰ ุงู„ุขู† ุจุฏู„ ุงู„ู…ุซุงู„ ุณุจุนุฉ ุฃู…ุซู„ุฉ ุฃุนุชู‚ุฏ ุฃู†
956
+
957
+ 267
958
+ 00:28:36,120 --> 00:28:41,260
959
+ ู‡ุฐู‡ ุงู„ุฃู…ุซู„ุฉ ุงู„ุณุจุนุฉ ุซุจุชุช ู…ูู‡ูˆู… ุงู„ู€ subspace ุนู†ุฏู†ุง
960
+
961
+ 268
962
+ 00:28:41,260 --> 00:28:46,700
963
+ ุจุฏุฑุฌุฉ ูƒุจูŠุฑุฉ ูŠุจู‚ู‰ ู†ุฏุฎู„ ุดูˆูŠุฉ ูƒู…ุงู† ููŠ ู†ูุณ ุงู„ู€ section
964
+
965
+ 269
966
+ 00:28:46,700 --> 00:28:52,380
967
+ ูุฅู†ู†ุง ู†ุนุทูŠ ุชุนุฑูŠู ุฌุฏูŠุฏ ุงู„ุชุนุฑูŠู ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ
968
+
969
+ 270
970
+ 00:28:52,380 --> 00:28:54,900
971
+ definition let
972
+
973
+ 271
974
+ 00:29:01,360 --> 00:29:12,560
975
+ ุงู„ู€ V ุจุฅูŠู‡ุŸ Vector Space Vector Space and let
976
+
977
+ 272
978
+ 00:29:12,560 --> 00:29:22,560
979
+ ูˆุงูุชุฑุถูˆุง ูƒุฐู„ูƒ ุฃู† V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ VM ู…ูˆุฌูˆุฏุฉ ููŠ
980
+
981
+ 273
982
+ 00:29:22,560 --> 00:29:34,310
983
+ Capital V We say that We say that ุฅู† ุงู„ู€ V ู‡ุฐู‡ ุงู„ู€
984
+
985
+ 274
986
+ 00:29:34,310 --> 00:29:43,350
987
+ V ุงู„ุตุบูŠุฑุฉ is a linear combination linear
988
+
989
+ 275
990
+ 00:29:43,350 --> 00:29:47,490
991
+ combination
992
+
993
+ 276
994
+ 00:29:47,490 --> 00:29:57,930
995
+ linear combination of V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ ุงู„ู€ VM
996
+
997
+ 277
998
+ 00:30:00,530 --> 00:30:13,850
999
+ there exist c1 ูˆ c2 ูˆ cm in are such that
1000
+
1001
+ 278
1002
+ 00:30:13,850 --> 00:30:27,170
1003
+ ุจุญูŠุซ ุฃู† ุงู„ู€ V ุจุฏู‡ ูŠุณุงูˆูŠ c1 v1 c2 v2 cm vm
1004
+
1005
+ 279
1006
+ 00:30:29,300 --> 00:30:39,640
1007
+ ูƒู…ุงู† definition ุชุงู†ูŠ if
1008
+
1009
+ 280
1010
+ 00:30:39,640 --> 00:30:47,100
1011
+ every element
1012
+
1013
+ 281
1014
+ 00:30:47,100 --> 00:31:00,720
1015
+ of a vector a space of a vector space V if every
1016
+
1017
+ 282
1018
+ 00:31:00,720 --> 00:31:07,700
1019
+ element of a vector space V is a linear
1020
+
1021
+ 283
1022
+ 00:31:07,700 --> 00:31:18,280
1023
+ combination of
1024
+
1025
+ 284
1026
+ 00:31:18,280 --> 00:31:32,320
1027
+ V1 ูˆ V2 ูˆ V M We say that.. We say that.. ุจุฑูˆุญ
1028
+
1029
+ 285
1030
+ 00:31:32,320 --> 00:31:45,940
1031
+ ู†ู‚ูˆู„ We say that Capital V ู‡ุฐุง is spanned.. is
1032
+
1033
+ 286
1034
+ 00:31:45,940 --> 00:31:57,570
1035
+ spanned by..this elements by this elements also
1036
+
1037
+ 287
1038
+ 00:31:57,570 --> 00:32:01,170
1039
+ ูˆูƒุฐู„ูƒ
1040
+
1041
+ 288
1042
+ 00:32:01,170 --> 00:32:15,170
1043
+ we say that we say that the elements ุงู„ู„ูŠ
1044
+
1045
+ 289
1046
+ 00:32:15,170 --> 00:32:25,020
1047
+ ู‡ูˆ V ูˆุงุญุฏ ูˆ V ุงุชู†ูŠู† ูˆ VM Span V
1048
+
1049
+ 290
1050
+ 00:33:35,580 --> 00:33:41,880
1051
+ ุทูŠุจ ู†ุฌูŠ ู„ู„ู€ two definitions ุงู„ู„ูŠ ุงุญู†ุง ู…ุนุฑููŠู†ู‡ู… ูˆ
1052
+
1053
+ 291
1054
+ 00:33:41,880 --> 00:33:46,100
1055
+ ุจุฏุฃู†ุง ููŠ ุงู„ุฌุฏ ุดูˆูŠุฉ ุงู‡ุฏุฑูˆุง ุจุงู„ูƒู… ุงู„ุขู† ู…ุน ุจุฏุงูŠุฉ
1056
+
1057
+ 292
1058
+ 00:33:46,100 --> 00:33:49,820
1059
+ ุงู„ุชุนุฑูŠูุงุช ุงู„ุงุชู†ูŠู† ุฏูˆู„ ุจุฏุฃู†ุง ู†ุฏุฎู„ ููŠ ุตู…ูŠู… ุงู„ู…ูˆุถูˆุน
1060
+
1061
+ 293
1062
+ 00:33:49,820 --> 00:33:53,960
1063
+ ูƒู„ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ูุงุช ูƒู„ู‡ ูƒู„ุงู… ุจุณูŠุท ูŠุนุชุจุฑ ุงู„ู„ูŠ ู‡ู…
1064
+
1065
+ 294
1066
+ 00:33:53,960 --> 00:33:58,420
1067
+ ุจูŠู‚ูˆู„ูˆุง ูŠูุชุฑุถ ุงู„ู€ V ู‡ูˆ ุนุจุงุฑุฉ ุนู† Vector space ุฃุฎุฏุช
1068
+
1069
+ 295
1070
+ 00:33:58,420 --> 00:34:03,100
1071
+ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€ vectors ู…ูˆุฌูˆุฏุฉ ูˆูŠู† ููŠ V ูŠุนู†ูŠ ุฃุฎุฏุช
1072
+
1073
+ 296
1074
+ 00:34:03,100 --> 00:34:08,260
1075
+ ุฎู…ุณุฉ ุณุชุฉ ุณุจุนุฉ ุฌุฏ ู…ุง ูŠูƒูˆู† ุนุฏุฏู‡ู… V1 ูˆV2 ู„ุบุงูŠุฉ VM
1076
+
1077
+ 297
1078
+ 00:34:08,260 --> 00:34:12,950
1079
+ ู…ูˆุฌูˆุฏุฉ ููŠ Capital V ูŠุจู‚ู‰ ุงู„ููŠุงุช ู‡ุฏูˆู„ ูƒู„ู‡ู… ุงูŠุดุŸ ูƒู„ู‡ู…
1080
+
1081
+ 298
1082
+ 00:34:12,950 --> 00:34:17,290
1083
+ vectors ุฏุงุฎู„ ุงู„ู€ Vector space ูŠุนู†ูŠ ู„ูˆ ุฌูŠุช ู‚ู„ุช
1084
+
1085
+ 299
1086
+ 00:34:17,290 --> 00:34:21,190
1087
+ ุงู„ุจู†ุงุช ู‡ุฏูˆู„ ุงู„ู€ Vector space ุฃุฎุฏุช ู…ู†ุŸ ุฃุฎุฏุช ุฃูˆู„ ุฎู…ุณุฉ
1088
+
1089
+ 300
1090
+ 00:34:21,190 --> 00:34:24,630
1091
+ ูŠุจู‚ู‰ ุฃูˆู„ ุฎู…ุณุฉ ูŠุนุชุจุฑูˆุง vectors ููŠ ู…ู†ุŸ ููŠ ุงู„ู€ Vector
1092
+
1093
+ 301
1094
+ 00:34:24,630 --> 00:34:30,650
1095
+ space ู…ุงู„ู‡ู… ุงู„ุฎู…ุณุฉ ู‡ุฏูˆู„ุŸ we say that ู…ู†ู‚ูˆู„ ุงู„ู€ V is
1096
+
1097
+ 302
1098
+ 00:34:30,650 --> 00:34:36,270
1099
+ a linear combination of ุฃู†ุง ู„ูˆ ุฑูˆุญุช ูˆ ุฃุฎุฏุช Vector
1100
+
1101
+ 303
1102
+ 00:34:36,270 --> 00:34:42,070
1103
+ ุชุงู†ูŠ ูˆ ู„ุงุฌุฆุช ุฃู† ุงู„ู€ Vector ุงู„ุชุงู†ูŠ ู‚ุฏุฑุช ุงูƒุชุจู‡ ุจุฏู„ุงู„ุฉ
1104
+
1105
+ 304
1106
+ 00:34:42,070 --> 00:34:45,990
1107
+ ุงู„ุฎู…ุณุฉ ู‡ุฏูˆู„ ูŠุนู†ูŠ ุฃุฎุฏุช ุฃูŠ Vector ู…ู† ุงู„ู€ Vector ุงุณู…ู‡
1108
+
1109
+ 305
1110
+ 00:34:45,990 --> 00:34:49,550
1111
+ ุฅุฐุง ู‚ุฏุฑุช ุงูƒุชุจู‡ ุจุฏู„ุงู„ุฉ ุงู„ุฎู…ุณุฉ ู‡ุฏูˆู„
1112
+
1113
+ 306
1114
+ 00:35:04,700 --> 00:35:11,400
1115
+ ู…ุงุดูŠ ูŠุนู†ูŠ ูŠุนู†ูŠ ู„ูˆ ุฌูŠุช ุฃุฎุฏุช ุฃุฎุฏุช ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€
1116
+
1117
+ 307
1118
+ 00:35:11,400 --> 00:35:16,860
1119
+ Vector ู‚ูˆู„ ุฎู…ุณุฉ ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‡ู†ุง ูˆ ุงู„ุฎู…ุณุฉ ู‡ุฏูˆู„ ุฑูˆุญุช
1120
+
1121
+ 308
1122
+ 00:35:16,860 --> 00:35:21,920
1123
+ ุฃุฎุฏุช Vector ุชุงู†ูŠ ู„ุฌูŠุช ุงู„ู€ Vector ู‡ุฐุง ุจู‚ุฏุฑ ุฃูƒุชุจ
1124
+
1125
+ 309
1126
+ 00:35:21,920 --> 00:35:27,040
1127
+ ุจุฏู„ุงู„ุฉ ุงู„ุฎู…ุณุฉ constant ููŠ ุงู„ู€ Vector ุงู„ุฃูˆู„ ุฒุงุฆุฏ
1128
+
1129
+ 310
1130
+ 00:35:27,040 --> 00:35:29,640
1131
+ constant ููŠ ุงู„ู€ Vector ุงู„ุชุงู†ูŠ ุฒุงุฆุฏ constant ููŠ ุงู„ู€
1132
+
1133
+ 311
1134
+ 00:35:29,640 --> 00:35:34,310
1135
+ Vector ุงู„ุชุงู†ูŠ ุฒุงุฆุฏ constant ููŠ ุงู„ู€ Vector ุงู„ุฎุงู…ุณ ุฅู†
1136
+
1137
+ 312
1138
+ 00:35:34,310 --> 00:35:39,750
1139
+ ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุจู‚ูˆู„ ุงู„ู€ Vector V ุงู„ู€ Vector ุงู„ู€
1140
+
1141
+ 313
1142
+ 00:35:39,750 --> 00:35:44,790
1143
+ element ุงู„ูˆุงุญุฏ V ู‡ูˆ linear combination ู…ุฌู…ูˆุนุฉ ุฎุทูŠุฉ
1144
+
1145
+ 314
1146
+ 00:35:44,790 --> 00:35:52,110
1147
+ ุฃูˆ ุชุฌู…ูŠุน ุฎุทูŠ ู…ู† ุงู„ู€ Vectors V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ V5 ูŠุจู‚ู‰
1148
+
1149
+ 315
1150
+ 00:35:52,110 --> 00:35:56,450
1151
+ ู‡ุฐุง ู…ุนู†ู‰ linear linear ุฎุทูŠ combination ุชุฌู…ูŠุน ูŠุจู‚ู‰
1152
+
1153
+ 316
1154
+ 00:35:56,450 --> 00:36:02,690
1155
+ ุชุฌู…ูŠุน ุฎุทูŠ ุชู…ุงู… ู„ูƒู† ู‡ู„ ูƒู„ Vector of space ุจู‚ุฏุฑ
1156
+
1157
+ 317
1158
+ 00:36:02,690 --> 00:36:07,690
1159
+ ุฃูƒุชุจู‡ ุจุฏู„ุงู„ุฉ ุงู„ุฎู…ุณุฉ ู‡ุฏูˆู„ ุงู„ุฅุฌุงุจุฉ ู‚ุฏ ูŠูƒูˆู† ูˆ ู‚ุฏ ู„ุง
1160
+
1161
+ 318
1162
+ 00:36:07,690 --> 00:36:13,310
1163
+ ูŠูƒูˆู† ุทุจุนุง ุญูŠูƒูˆู† ุฅุฐุง ุญุฏุซ ุฐู„ูƒ ููŠ ูƒู„ุงู… ุชุงู†ูŠ ุณู†ุชุญุฏุซ ุจู‡
1164
+
1165
+ 319
1166
+ 00:36:13,310 --> 00:36:18,770
1167
+ ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ุฃูˆ ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฎู„ูŠู†ูŠ
1168
+
1169
+ 320
1170
+ 00:36:18,770 --> 00:36:24,600
1171
+ ุฃุณู…ุน ู‡ุฐุง ู…ุฑุฉ ุชุงู†ูŠุฉ ุจู‚ูˆู„ ุฃู†ุง ุนู†ุฏูŠ.. ุฃู†ุง ุนู†ุฏูŠ.. ุงู‡
1172
+
1173
+ 321
1174
+ 00:36:24,600 --> 00:36:29,900
1175
+ Vector space ุฃุฎุฏุช ู…ู†ู‡ ู…ุฌู…ูˆุนุฉ ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ู‚ู„ุชู„ู‡ู…
1176
+
1177
+ 322
1178
+ 00:36:29,900 --> 00:36:35,140
1179
+ ุถุฑุจุช ูƒู„ ุตู†ู ุงู„ุฃูˆู„ ูƒู„ ุตู†ู
1180
+
1181
+ 323
1182
+ 00:36:35,140 --> 00:36:39,920
1183
+ ุงู„ุชุงู†ูŠ ูƒู„ ุตู†ู ุงู„ุชุงู„ุช ู…ุฑุฉ ุฃุจู‚ู‰ ูˆุฌู…ุนุชู‡ู… ุฃุนุทุงู†ูŠ ู‡ุฐุง
1184
+
1185
+ 324
1186
+ 00:36:39,920 --> 00:36:43,860
1187
+ ุงู„ู…ุฌู…ูˆุน Vector ู…ู† ุงู„ู€ Vector space ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
1188
+
1189
+ 325
1190
+ 00:36:43,860 --> 00:36:48,300
1191
+ Vector ุฌุฏูŠุฏ ู…ู† ุนู†ุงุตุฑ ุงู„ู€ Vector space ุงู„ู„ูŠ ูƒุจูŠุฑุฉ
1192
+
1193
+ 326
1194
+ 00:36:48,300 --> 00:36:52,680
1195
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุนู†ุตุฑ ุจู‚ูˆู„ ู‡ูˆ linear combination ู…ู†
1196
+
1197
+ 327
1198
+ 00:36:52,680 --> 00:36:57,120
1199
+ ู…ุฌู…ูˆุนุฉ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุฃุฎุฏุชู‡ุง ูˆุงุถุญ ุฃุธู† ู…ุด ููŠู‡ ู…ุดูƒู„ุฉ
1200
+
1201
+ 328
1202
+ 00:36:57,120 --> 00:37:02,270
1203
+ ูˆุงุถุญ ุนู„ู‰ ุงู„ุชุนุฑูŠู ุทูŠุจ ู†ุฌู„ุฉ ุงู„ุชุนุฑูŠู ุงู„ุชุงู†ูŠ ุจูŠู‚ูˆู„ ู„ูˆ
1204
+
1205
+ 329
1206
+ 00:37:02,270 --> 00:37:07,030
1207
+ ูƒุงู† ูƒู„ ุนู†ุตุฑ ููŠ ุงู„ู€ Vector space ู‡ูˆ linear
1208
+
1209
+ 330
1210
+ 00:37:07,030 --> 00:37:12,030
1211
+ combination ู…ู† ุงู„ู€ Vectors ู‡ุฏูˆู„ ุจู†ุฑูˆุญ ู†ู‚ูˆู„ ุงู„ู€ V
1212
+
1213
+ 331
1214
+ 00:37:12,030 --> 00:37:16,170
1215
+ spanned by this vector ุจู†ู‚ูˆู„ ุงู„ู€ Vector space V
1216
+
1217
+ 332
1218
+ 00:37:16,170 --> 00:37:25,030
1219
+ ูŠูˆู„ุฏ ุจู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ ุฃูˆ ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ ุชูˆู„ุฏ ู…ู†ุŸ ุชูˆู„ุฏ ุงู„ู€
1220
+
1221
+ 333
1222
+ 00:37:25,030 --> 00:37:30,140
1223
+ Vector V ุชูˆู„ุฏ V ูˆุงู„ู„ู‡ ู‡ู… ุจูˆู„ุฏูˆุง V ูƒู„ู‡ ู†ูุณ ุงู„ุดูŠุก ู…ุฑุฉ
1224
+
1225
+ 334
1226
+ 00:37:30,140 --> 00:37:39,320
1227
+ ุชุงู†ูŠุฉ ู…ุฑุฉ ุชุงู†ูŠุฉ ุงู„ุชุนุฑูŠู ุงู„ุชุงู†ูŠ ุฅุฐุง ุจุงู„ุจู„ุฏ ู‡ูŠูƒ ุฅุฐุง
1228
+
1229
+ 335
1230
+ 00:37:39,320 --> 00:37:44,480
1231
+ ุฃุฎุฏุช ุฃูŠ Vector ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ space ุงู„ู„ูŠ ุฌูŠุช ู‡ูˆ
1232
+
1233
+ 336
1234
+ 00:37:44,480 --> 00:37:49,180
1235
+ linear combination ู…ู† ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€ Vectors ุจู‚ูˆู„ ุฅู†
1236
+
1237
+ 337
1238
+ 00:37:49,180 --> 00:37:53,860
1239
+ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ู€ Vectors ุชูˆู„ุฏ ุงู„ู€ Vector space ุฃูˆ ุงู„ู€
1240
+
1241
+ 338
1242
+ 00:37:53,860 --> 00:37:59,180
1243
+ Vector space ูŠูˆู„ุฏ ุจู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ู…ูˆุถูˆุน ุฃูƒุชุฑ ุนุตูŠุฑ
1244
+
1245
+ 339
1246
+ 00:37:59,180 --> 00:38:03,980
1247
+ ุงู„ุจู†ุงุช ุงู„ู„ูŠ ููŠ ุงู„ุดุฌุฉ ุฏูŠ ุณุชุฉ ุจุณ ุดุงูŠููŠู†ู‡ู…ุŸ into ูƒู„
1248
+
1249
+ 340
1250
+ 00:38:03,980 --> 00:38:07,360
1251
+ co-vector space ู…ู† ุงู„ู„ูŠ ุฃุฎุฏุช ุงู„ุณุชุฉ ุงู„ู„ูŠ ู‚ู„ุชู„ู‡ู…
1252
+
1253
+ 341
1254
+ 00:38:07,360 --> 00:38:13,760
1255
+ ุชุนุงู„ูˆุง ุนู„ู‰ ุงู„ุดุฌุฉ ุฌูŠุช ู…ุณูƒุช ุฃูŠ ูˆุงุญุฏุฉ ููŠูƒู… ู„ุฌูŠุชู‡ุง ู‡ูŠ
1256
+
1257
+ 342
1258
+ 00:38:13,760 --> 00:38:17,220
1259
+ ูƒู„ ุตูุฑ ุงู„ุฃูˆู„ ูƒู„ ุตูุฑ ุงู„ุชุงู†ูŠ ูƒู„ ุตูุฑ ุงู„ุชุงู„ุชุฉ ูƒู„ ุตูุฑ
1260
+
1261
+ 343
1262
+ 00:38:17,220 --> 00:38:20,160
1263
+ ุงู„ุฑุงุจุนุฉ ูƒู„ ุตูุฑ ุงู„ุฎู…ุณุฉ ูƒู„ ุตูุฑ ุงู„ุณุงุฏุณุฉ ุทู„ุน ุจุงู„ุถุจุท
1264
+
1265
+ 344
1266
+ 00:38:20,160 --> 00:38:25,210
1267
+ ุชู…ุงู… ุจุนุฏ ุฐู„ูƒ ุฌูŠุช ู„ู‡ุง ุชุงู†ูŠ ุจู†ูŠ ูƒู†ุณุชุงู† ุชุงู†ูŠ ุฌุฏูŠุฏ ู…ุด
1268
+
1269
+ 345
1270
+ 00:38:25,210 --> 00:38:29,890
1271
+ ุงู„ูƒู†ุณุชุงู† ุงู„ุฃูˆู„ุงู†ูŠ ุชู…ุงู… ูˆ ู„ุฌูŠุชู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ู„ู…ุง
1272
+
1273
+ 346
1274
+ 00:38:29,890 --> 00:38:33,650
1275
+ ู†ู…ุณูƒุช ู…ู† ุนู†ุฏ ุฃูˆู„ ูˆุงุญุฏุฉ ู„ุฃุฎุฑ ู„ุบุงูŠุฉ ุขุฎุฑ ูˆุงุญุฏุฉ ู…ู†
1276
+
1277
+ 347
1278
+ 00:38:33,650 --> 00:38:38,550
1279
+ ู‡ู†ุงูƒ ู„ุฌูŠุช ูƒู„ ูˆุงุญุฏุฉ ููŠูƒูˆุง ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุญุงุตู„ ุถุฑุจ
1280
+
1281
+ 348
1282
+ 00:38:38,550 --> 00:38:41,530
1283
+ ูƒู†ุณุชุงู† ููŠ ุงู„ุฃูˆู„ู‰ ุฒูŠ ูƒู†ุณุชุงู† ููŠ ุงู„ุชุงู†ูŠุฉ ุฒูŠ ูƒู†ุณุชุงู† ููŠ
1284
+
1285
+ 349
1286
+ 00:38:41,530 --> 00:38:47,200
1287
+ ุงู„ุณุงุฏุณุฉ ุฅู† ุญุฏุซ ุฐู„ูƒ ุจู‚ูˆู„ ุงู„ุจู†ุงุช ุงู„ุณุชุฉ ู‡ุฏูˆู„ ุจูˆู„ุฏูˆุง ูƒู„
1288
+
1289
+ 350
1290
+ 00:38:47,200 --> 00:38:52,760
1291
+ ุงู„ุจู†ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู‚ุงุนุฉ ุฃูˆ ุฃูˆ ุงู„ู€ Vector space
1292
+
1293
+ 351
1294
+ 00:38:52,760 --> 00:38:58,620
1295
+ ู‡๏ฟฝ๏ฟฝุง ูƒู„ู‡ ูŠูˆู„ุฏ ุจูˆุงุณุทุฉ ุฏู‡ ุณุช ุจู†ุงุช ุตุนุจุฉุŸ ู„ุฃุจุฏุงุŒ ู‡ูŠุจู‚ู‰
1296
+
1297
+ 352
1298
+ 00:38:58,620 --> 00:39:03,040
1299
+ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู„ู„ูŠ ุงู„ู€ span ุชุจุน ุงู„ู„ูŠ ุทุจุนุง ู†ุฎุด ุนู…ู‚ ุดูˆูŠุฉ
1300
+
1301
+ 353
1302
+ 00:39:03,040 --> 00:39:06,120
1303
+ ููŠ ุงู„ู…ุญุงุถุฑุฉ ุจุนุฏ ุงู„ุธู‡ุฑ ุงู„ู„ูŠ ุฃู†ุง ู…ู†ู‡ุง ุฃูˆู‚ู ู…ุดุงู†
1304
+
1305
+ 354
1306
+ 00:39:06,120 --> 00:39:07,700
1307
+ ู†ูˆุฒุน ุฃูˆุฑุงู‚
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/TyJEG3dRJH8_postprocess.srt ADDED
@@ -0,0 +1,1132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:19,620 --> 00:00:24,920
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ู„ู‰ ูุงุชุช ู‚ู„ู†ุง ุจุฏู†ุง
4
+
5
+ 2
6
+ 00:00:24,920 --> 00:00:29,680
7
+ ู†ูŠุฌูŠ ู„ู„ complex solutions ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุฐุงุช
8
+
9
+ 3
10
+ 00:00:29,680 --> 00:00:35,990
11
+ ุงู„ู…ุนุงู…ู„ุงุช ุงู„ุซุงุจุชุฉ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ู†ูˆู†ูŠุฉูˆุจุฏุฃู†ุง ุจุฃูˆู„
12
+
13
+ 4
14
+ 00:00:35,990 --> 00:00:40,310
15
+ ุญุงู„ุฉ ุงู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู„ูˆ ุฌูŠุจู†ุง ู„ู‡ุง ุงู„ุฌุฐูˆุฑ ุฌูŠุจู†ุง
16
+
17
+ 5
18
+ 00:00:40,310 --> 00:00:44,730
19
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุณุงุนุฏุฉ ูˆู…ู† ุซู… ุฌูŠุจู†ุง ู„ู‡ุง ุงู„ุฌุฐูˆุฑ ุงู„ุฌุฐูˆุฑ
20
+
21
+ 6
22
+ 00:00:44,730 --> 00:00:48,870
23
+ ู‡ุฐู‡ ู‚ูˆู„ู†ุง ู‚ุฏ ุชูƒูˆู† ุญู‚ูŠู‚ูŠุฉ ูˆู…ุฎุชู„ูุฉ ู‚ุฏ ุชูƒูˆู† ุญู‚ูŠู‚ูŠุฉ
24
+
25
+ 7
26
+ 00:00:48,870 --> 00:00:54,930
27
+ ูˆู…ูƒุฑุฑุฉ ู‚ุฏ ุชูƒูˆู† ุชุฎูŠูˆู„ูŠุฉ ุฃุฎุฏู†ุง ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ ูƒุงู†ุช
28
+
29
+ 8
30
+ 00:00:54,930 --> 00:01:00,490
31
+ ุงู„ุฌุฐูˆุฑ ุญู‚ูŠู‚ูŠุฉ ูˆู…ุฎุชู„ูุฉ ูˆุงู„ุงู† ู†ู†ุชู‚ู„ ุฅุฐุง ูƒุงู†ุช ุงู„ุฌุฐูˆุฑ
32
+
33
+ 9
34
+ 00:01:00,490 --> 00:01:08,070
35
+ ุงูŠุด ูƒุงู†ุชุŸุงู„ุชุฎูŠู„ูŠุฉ ู…ู…ุชุงุฒ ุฌุฏุง ูŠุจู‚ู‰ ู…ูˆุถูˆุนู†ุง ุงู„ูŠูˆู…
36
+
37
+ 10
38
+ 00:01:08,070 --> 00:01:11,850
39
+ ู…ูˆุถูˆุน ุงู„ complex rules ูŠุจู‚ู‰ ุญุงุทูŠู† ุงู„ุนู†ูˆุงู† complex
40
+
41
+ 11
42
+ 00:01:11,850 --> 00:01:15,270
43
+ solutions of the differential equation of y ูŠุณุงูˆูŠ
44
+
45
+ 12
46
+ 00:01:15,270 --> 00:01:20,490
47
+ ู…ูŠู† ูŠุณุงูˆูŠ zero ุฅุฐุง ุจุฏู†ุง ู†ุฌูŠ ู†ุฌูŠุจ ุงู„ุญู„ูˆู„ ุงู„ุชุฎูŠู„ูŠุฉ
48
+
49
+ 13
50
+ 00:01:20,490 --> 00:01:24,870
51
+ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุจุงู„ุดูƒู„ ุนู†ู‡ุง ู‡ู†ุง ูƒูŠู ุจุฏู‰ ูŠูƒูˆู† ุดูƒู„ู‡ุง
52
+
53
+ 14
54
+ 00:01:25,420 --> 00:01:29,380
55
+ ุฌุงู„ ูŠุนุชุจุฑ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ู‰ ุนู†ุฏู†ุง ู‡ุฐู‡ ุงู„ู„ู‰
56
+
57
+ 15
58
+ 00:01:29,380 --> 00:01:34,220
59
+ ุจุชุฏู‡ู† ุฏุฑุงุณุชู†ุง ููŠู‡ุง ููŠ ุงู„ section ุงู„ู…ุงุถู‰ ุชู…ุงู… ุฏู‡
60
+
61
+ 16
62
+ 00:01:34,220 --> 00:01:37,260
63
+ ุงู†ุง ุจุฏูŠ ุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุทุจุนุง ุงู„ a naught ูˆ ุงู„ a
64
+
65
+ 17
66
+ 00:01:37,260 --> 00:01:41,140
67
+ one ูˆ ุงู„ a n minus one ูˆ ุงู„ a n ูƒู„ู‡ู… ุซูˆุงุจุช
68
+
69
+ 18
70
+ 00:01:52,970 --> 00:01:59,620
71
+ ุงู„ุฑู‚ู… ู‡ุฐุง ู‚ุฏ ูŠูƒูˆู† ุญู‚ูŠู‚ูŠ ูˆู‚ุฏ ูŠูƒูˆู† ุชุฎูŠู‘ู„ูŠุทูŠุจ ูุฑุถู†ุง
72
+
73
+ 19
74
+ 00:01:59,620 --> 00:02:04,300
75
+ ุงู†ู‡ ู‡ุฐุง ุญู„ ู„ู…ุง ุฌูŠู†ุง ู‡ุฐุง ุงู„ุญู„ ุงุดุชู‚ุชู†ุง ู…ุฑุฉ ูˆ ุงุชู†ูŠู† ูˆ
76
+
77
+ 20
78
+ 00:02:04,300 --> 00:02:08,220
79
+ ุซู„ุงุซุฉ ูˆ ุงุฑุจุน ูˆ ุงุซู†ุชุง ูˆ ูƒู„ ุงู„ุญู„ูˆู„ ู‡ุฐู‡ are linearly
80
+
81
+ 21
82
+ 00:02:08,220 --> 00:02:14,740
83
+ independent ูˆ ู…ู† ุซู… ุญุตู„ู†ุง ุนู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุณุงุนุฏุฉ
84
+
85
+ 22
86
+ 00:02:14,740 --> 00:02:19,880
87
+ ู‡ุฐู‡ ู…ู† ุฎู„ุงู„ ุชุนูˆูŠุถ BY ูˆู…ุดุชู‚ุชู‡ุง ููŠ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ
88
+
89
+ 23
90
+ 00:02:19,880 --> 00:02:23,480
91
+ ุญุตู„ู†ุง ุนู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุจุฌู‡ุฏ ุจุณู…ู‡ุง ุงู„ู…ุนุงุฏู„ุฉ
92
+
93
+ 24
94
+ 00:02:23,480 --> 00:02:29,590
95
+ ุงู„ู…ุณุงุนุฏุฉ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุณู‡ุฑ ูˆ ุจุฏูŠู‡ุง ุงู„ุฑู‚ู…Double star
96
+
97
+ 25
98
+ 00:02:29,590 --> 00:02:34,970
99
+ ุฃูˆ ุจุณู…ูŠู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ู…ูŠุฒุฉ ู„ู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… star
100
+
101
+ 26
102
+ 00:02:34,970 --> 00:02:39,290
103
+ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ู‡ูŠ ุงู„ู„ูŠ ุฌุฐูˆุฑู‡ุง ู‚ุฏ ุชูƒูˆู† ุญู‚ูŠู‚ูŠุฉ ู…ุฎุชู„ูุฉ
104
+
105
+ 27
106
+ 00:02:39,290 --> 00:02:43,210
107
+ ูˆู‚ุฏ ุชูƒูˆู† ุญู‚ูŠู‚ูŠุฉ ู…ูƒุฑุฑุฉ ูˆู‚ุฏ ุชูƒูˆู† complex ู…ูˆุถูˆุนู†ุง
108
+
109
+ 28
110
+ 00:02:43,210 --> 00:02:46,570
111
+ ุงู„ูŠูˆู… if the roots of equation double star are
112
+
113
+ 29
114
+ 00:02:46,570 --> 00:02:51,430
115
+ complex ูŠุจู‚ู‰ then every pair of solutions are
116
+
117
+ 30
118
+ 00:02:51,430 --> 00:02:58,110
119
+ conjugated ูƒู„ ุฒูˆุฌ ู…ู† ู‡ุฐู‡ ุงู„ุญู„ูˆู„ ุจูŠูƒูˆู† ู…ุชุฑุงูู‚ุงู†ู‡ุฐุง
120
+
121
+ 31
122
+ 00:02:58,110 --> 00:03:02,610
123
+ ูŠุนู†ูŠ ู„ูˆ ูƒุงู† ุงู„ุญู„ ุงู„ุฃูˆู„ ู‡ูˆ a ุฒุงุฆุฏ ib ุงู„ู„ูŠ ู‡ูŠ R1
124
+
125
+ 32
126
+ 00:03:02,610 --> 00:03:09,050
127
+ ูŠุจู‚ู‰ R2 ูŠูƒูˆู† a ู†ุงู‚ุต ib ูŠุจู‚ู‰ the two solutions of
128
+
129
+ 33
130
+ 00:03:09,050 --> 00:03:12,250
131
+ the differential equation ู‡ุฐูŠ R ูŠุนู†ูŠ ู„ูˆ ูƒุงู†ุช
132
+
133
+ 34
134
+ 00:03:12,250 --> 00:03:16,650
135
+ ุงู„ู…ุนุงุฏู„ุฉ ู…ู† ุงู„ุฑุชุจุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุงู„ุญู„ูˆู„ ู‡ุชูƒูˆู† ุนู„ู‰
136
+
137
+ 35
138
+ 00:03:16,650 --> 00:03:25,820
139
+ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠุงู„ุญู„ ุงู„ุฃูˆู„ ูŠูƒูˆู† Y1 ูŠุณุงูˆูŠ E ุฃูุณ R1 X
140
+
141
+ 36
142
+ 00:03:25,820 --> 00:03:31,980
143
+ ูŠุจู‚ู‰ E ุฃูุณ R1 ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุนู† ุงู„ุฌุฏุฑ ูŠุทู„ุน ุฃู†ู‡ A
144
+
145
+ 37
146
+ 00:03:31,980 --> 00:03:40,980
147
+ ุฒุงุฆุฏ IB ูŠุจู‚ู‰ A ุฒุงุฆุฏ IB ููŠ ุงู„ X ุฃูˆ ุงู† ุดุฆุชู… ูู‚ูˆู„ูˆุง E
148
+
149
+ 38
150
+ 00:03:40,980 --> 00:03:46,560
151
+ ููŠ ุงู„ A X ู…ุถุฑูˆุจุฉ ููŠ ุงู„ E ุฃูุณ IBX
152
+
153
+ 39
154
+ 00:03:48,760 --> 00:03:54,140
155
+ ุฅุฐุง ูˆุฒุนุช ุงู„ X ุนู„ู‰ ุงู„ู‚ุต ูุตู„ุช ุงุชู†ูŠู† ุฅู„ู‰ ุญุงุตู„ ุถุฑุจ
156
+
157
+ 40
158
+ 00:03:54,140 --> 00:04:00,840
159
+ ู„ุฃู†ู‡ ุนู†ุฏ ุงู„ุถุฑุจ ุฅุฐุง ุชุณุงูˆุช ุงู„ุฃุณุงุณุงุช ุชุฌู…ุน ุงู„ุฃุณุณ ู‡ุฐุง
160
+
161
+ 41
162
+ 00:04:00,840 --> 00:04:05,400
163
+ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ูˆุงุถุญ ุฃู† ู‡ุฐุง real ู…ุงู„ูŠุด ุฏุนูˆุฉ ุฅุฐุง ู‡ุฐุง
164
+
165
+ 42
166
+ 00:04:05,400 --> 00:04:13,890
167
+ ุจุฑูˆุญ ุจูƒุชุจ ุฒูŠ ู…ุง ู‡ูˆ Xุจู†ุฌูŠ ู„ E ุฃูุณ I BX ุฎุฏู†ุง ุตูŠุบุฉ
168
+
169
+ 43
170
+ 00:04:13,890 --> 00:04:17,630
171
+ Euler ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ูู‚ู„ู†ุง ู„ู„ุดุบู„ุงุช ุงู„ู„ูŠ ู…ู† ุงู„
172
+
173
+ 44
174
+ 00:04:17,630 --> 00:04:21,170
175
+ complex number ุงู„ู„ูŠ ุจุชู„ุฒู…ู†ุง ููƒุงู†ุช ุนู†ุฏู†ุง ุตูŠุบุฉ Euler
176
+
177
+ 45
178
+ 00:04:21,170 --> 00:04:26,230
179
+ E ุฃูุณ I ุซูŠุชุง ูŠุณุงูˆูŠ cosine theta ุฒุงุฆุฏ I sine theta
180
+
181
+ 46
182
+ 00:04:26,230 --> 00:04:34,730
183
+ ุฅุฐุง ู‡ุฐู‡ ุจุฏู‡ุง ุชุตูŠุฑ cosine BX ุฒุงุฆุฏ I sine BX
184
+
185
+ 47
186
+ 00:04:48,380 --> 00:04:58,730
187
+ ุงู„ุญู„ ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ andูŠุจู‚ู‰ Y2 ุจูŠุณูˆูŠ E ุฃูุณ R2 X E
188
+
189
+ 48
190
+ 00:04:58,730 --> 00:05:02,510
191
+ ุฃูุณ A ู†ุงู‚ุต I B X
192
+
193
+ 49
194
+ 00:05:10,510 --> 00:05:16,490
195
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… E ุฃุณ AX ุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ุฐู‡ ุจุตูŠุบุฉ Euler
196
+
197
+ 50
198
+ 00:05:16,490 --> 00:05:25,490
199
+ ูƒุฐู„ูƒ ุงู„ู„ูŠ ู‡ูŠ mean cosine BX ู†ุงู‚ุต I sine BX ุงูˆ ุงู†
200
+
201
+ 51
202
+ 00:05:25,490 --> 00:05:35,790
203
+ ุดุฆุชู… ูู‚ูˆู„ูˆุง ูŠุจู‚ู‰ E ุฃุณ AX cosine BX ู†ุงู‚ุต I E ุฃุณ AX
204
+
205
+ 52
206
+ 00:05:35,790 --> 00:05:37,990
207
+ sine BX
208
+
209
+ 53
210
+ 00:05:40,030 --> 00:05:48,050
211
+ ุทู„ุนูŠู„ูŠ ููŠ ุงู„ุญู„ุงู„ ุงุชู†ูŠู† ู‡ุฐูˆู„ ุนุดุงู† ู†ู„ุงุญุธ ุนู„ูŠู‡ู… ุงุชู†ูŠู†
212
+
213
+ 54
214
+ 00:05:48,050 --> 00:05:53,370
215
+ ู†ูุณ ุงู„ุดูŠุก ุจุณ ู…ูุฑุฌูˆุง ุนู† ุจุนุถ ู…ูŠู† ุจุฅุดุงุฑุฉ ุณุงู„ุจ ูŠุจู‚ู‰
216
+
217
+ 55
218
+ 00:05:53,370 --> 00:05:59,050
219
+ ุณุงู„ุจ I ูˆุงู„ู„ู‡ ุฒุงุฆุฏ I ุนู†ุฏ ู‡ุฐูˆู„ ุซูˆุงุจุช ู…ุธุจูˆุท ูˆู„ุง ู„ุงุŸ
220
+
221
+ 56
222
+ 00:05:59,050 --> 00:06:03,010
223
+ ุงู‡ ู„ูˆ ุฑุฌุนู†ุง ู„ู„ุฎูˆุงุต ุงู„ู„ูŠ ุฎุฏู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช
224
+
225
+ 57
226
+ 00:06:03,010 --> 00:06:10,500
227
+ ุงู„ุฎุงุตูŠุฉ ุฑู‚ู… ุฎู…ุณุฉ ููŠู‡ู…ุฎุงุตุฉ ุฑู‚ู… ุฎุงู…ุณุฉ ุจุชู‚ูˆู„ ู„ูˆ ูƒุงู†
228
+
229
+ 58
230
+ 00:06:10,500 --> 00:06:16,060
231
+ ุงู„ W of X ูŠุณุงูˆูŠ U of X ุฒุงุฆุฏ I of X ุนุจุงุฑุฉ ุนู†
232
+
233
+ 59
234
+ 00:06:16,060 --> 00:06:20,720
235
+ solution ูŠุจู‚ู‰ ูƒู„ ู…ู† ุงู„ู…ุฑูƒุจุฉ ุงู„ุญู‚ูŠู‚ุฉ ูˆุงู„ุชุฎูŠู„ูŠุฉ
236
+
237
+ 60
238
+ 00:06:20,720 --> 00:06:26,080
239
+ ุนุจุงุฑุฉ ุนู† ุญู„ ูŠุจู‚ู‰ ุงู„ U of X ุนุจุงุฑุฉ ุนู† ุญู„ ูˆูƒุฐู„ูƒ ุงู„ V
240
+
241
+ 61
242
+ 00:06:26,080 --> 00:06:32,700
243
+ of X ุนุจุงุฑุฉ ุนู† ุญู„ ู…ุธุจูˆุทูƒ ู…ูƒุชูˆุจ ู…ุนุงูƒู… ุตุญุŸุณุงูƒุชูŠู† ุงู†
244
+
245
+ 62
246
+ 00:06:32,700 --> 00:06:39,210
247
+ .. ุงูุชุญ ุฏุงูุชุฑูƒ ูˆุดูˆู ุงู„ุฎุงุตูŠุฉ ุฑู‚ู… 5ู‚ุงุตูŠุฉ ุฑู‚ู… ุฎู…ุณุฉ ููŠ
248
+
249
+ 63
250
+ 00:06:39,210 --> 00:06:42,310
251
+ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ููŠ ู†ู‡ุงูŠุฉ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ู„ู…ุง
252
+
253
+ 64
254
+ 00:06:42,310 --> 00:06:47,210
255
+ ุงุจุชุฏุฃู†ุง ู‡ุฐุง section ุฃุฎุฏู†ุง ุณุช ุฎูˆุงุต ู‚ุงุตูŠุฉ ุฑู‚ู… ุฎู…ุณุฉ
256
+
257
+ 65
258
+ 00:06:47,210 --> 00:06:52,270
259
+ ููŠู‡ู… ู…ุฑุฉ ุชุงู†ูŠุฉ ุจุชู‚ูˆู„ ู„ูˆ ูƒุงู† W of X ุจุฏูŠ ุฃุณุงูˆูŠ U of
260
+
261
+ 66
262
+ 00:06:52,270 --> 00:06:57,010
263
+ X ุฒุงุฆุฏ I V of X ุนุจุงุฑุฉ ุนู† solution ู„ู„ู…ุนุงุฏู„ุฉ
264
+
265
+ 67
266
+ 00:06:57,010 --> 00:07:01,630
267
+ ุงู„ุชูุงุถู„ูŠุฉ ูŠุจู‚ู‰ ูƒู„ู‡ู… ู…ู† U of X ูˆV of X ุนุจุงุฑุฉ ุนู†
268
+
269
+ 68
270
+ 00:07:01,630 --> 00:07:06,370
271
+ solution ู…ุธุจูˆุท ูˆู„ุง ู„ุฃ ูŠุจู‚ู‰ ู…ุนู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู… from
272
+
273
+ 69
274
+ 00:07:11,410 --> 00:07:23,570
275
+ property five we have ุงู†ู‡ E ุฃุณ X E ุฃุณ X cosine BX
276
+
277
+ 70
278
+ 00:07:23,570 --> 00:07:35,590
279
+ and ุงู„ E ุฃุณ X sin BX are two solutions
280
+
281
+ 71
282
+ 00:07:52,310 --> 00:07:55,890
283
+ ู‡ู„ ู‡ู… linearly independent ูˆู„ุง linearly
284
+
285
+ 72
286
+ 00:07:55,890 --> 00:08:00,790
287
+ independent ุงู„ู„ู‡ ุฃุนู„ู… ุฅุฐุง ุทู„ุน linearly independent
288
+
289
+ 73
290
+ 00:08:00,790 --> 00:08:07,010
291
+ ูŠุจู‚ู‰ ุฏูˆู„ ุจูŠุฌูŠุจูˆู„ูŠ ุดูƒู„ ุงู„ general solutionุทูŠุจ ูŠุจู‚ู‰
292
+
293
+ 74
294
+ 00:08:07,010 --> 00:08:11,410
295
+ ู‡ู†ุง ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู„ุฑูˆู†ุณูƒูŠู† as a function of x ูŠุณูˆู‰
296
+
297
+ 75
298
+ 00:08:11,410 --> 00:08:22,860
299
+ ุงู„ู…ุญุฏุฏ E ุฃุณ AX Cos BX ูˆ E ุฃุณ AX Sin BXุจุฏู†ุง ู†ุดุชู‚
300
+
301
+ 76
302
+ 00:08:22,860 --> 00:08:31,260
303
+ ู‡ุฐู‡ ู…ุดุชู‚ุฉ ุญุงุตู„ ุถุฑุจ ุฏู„ูŠุชูŠู† ูŠุจู‚ู‰ a ููŠ e ุฃุณ a x ููŠ
304
+
305
+ 77
306
+ 00:08:31,260 --> 00:08:41,120
307
+ cosine bx ู†ุงู‚ุต b ููŠ e ุฃุณ a x ููŠ sin bx ุฃูุถู„ cosine
308
+
309
+ 78
310
+ 00:08:41,120 --> 00:08:46,980
311
+ ุจุณู„ุจ sin ุถุฑุจ ู…ุดุชู‚ุฉ ุงู„ุฒุงูˆูŠุฉ ู‡ุฐุง ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ a ููŠ e
312
+
313
+ 79
314
+ 00:08:46,980 --> 00:08:57,120
315
+ ุฃุณ a x ููŠ sin bxุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ B ููŠ E ุฃุณ AX ููŠ Cos
316
+
317
+ 80
318
+ 00:08:57,120 --> 00:09:08,660
319
+ BX ุดูƒู„ู‡ุง ุงู„ู†ุงู†ูˆ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูƒุงู„ุชุงู„ูŠ ุงู„ุฑุฆูŠุณ
320
+
321
+ 81
322
+ 00:09:08,660 --> 00:09:17,950
323
+ ุงู„ู†ุงู‚ุต ุงู„ุซุงู†ูˆูŠ ูŠุจู‚ู‰ A E ุฃุณ ุงุชู†ูŠู† AXูู‰ ู…ูŠู†ุŸ ูู‰ sin
324
+
325
+ 82
326
+ 00:09:17,950 --> 00:09:28,430
327
+ ุจูŠ ุฅูƒุณ ูƒุณูŠู† ุจูŠ ุฅูƒุณ ุฒุงุฆุฏุจ ููŠ ุงู„ู€ E ุฃุณูŠ ุงุชู†ูŠู† AX
328
+
329
+ 83
330
+ 00:09:28,430 --> 00:09:38,150
331
+ ูƒูˆุตูŠู† ุชุฑุงุจูŠุน ู„ู„ู€ BX ู‡ุฐุง ุงู„ุฑุฆูŠุณูŠ ู†ุงู‚ุตูŠ ุงู„ุซุงู†ูˆูŠ ู†ุงู‚ุต
332
+
333
+ 84
334
+ 00:09:38,150 --> 00:09:48,570
335
+ A ููŠ ุงู„ู€ E ุฃุณูŠ ุงุชู†ูŠู† AX ููŠ ุงู„ู€ sine ุจูŠูƒุณ ูƒูˆุตูŠู†ุจูƒุณ
336
+
337
+ 85
338
+ 00:09:48,570 --> 00:09:59,490
339
+ ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฆุฏ ุจูŠ ุฃุณ ุงุชู†ูŠู† ุงูƒุณ ุตูŠู† ุชุฑุงุจูŠุน
340
+
341
+ 86
342
+ 00:09:59,490 --> 00:10:01,570
343
+ ุจูƒุณ
344
+
345
+ 87
346
+ 00:10:03,720 --> 00:10:09,580
347
+ ุฃุธู† ู‡ุฐู‡ ุจุงู„ุณุงู„ุจ ูˆู‡ุฐู‡ ุจุงู„ู…ูˆุฌุฉ ุจู†ูุณ ุงู„ุดูŠุก ู…ุน ุงู„ุณู„ุงู…ุฉ
348
+
349
+ 88
350
+ 00:10:09,580 --> 00:10:16,840
351
+ ูŠุณุงูˆูŠ ุจูŠ ููŠ e ุฃุณ ุงุชู†ูŠู† ax ููŠ cosine ุชุฑุจูŠู‡ ุจูŠ ุงูƒุณ
352
+
353
+ 89
354
+ 00:10:16,840 --> 00:10:21,200
355
+ ุฒุงุฆุฏ sin ุชุฑุจูŠู‡ ุจูŠ ุงูƒุณ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‚ุฏุงุด ุงู„ู„ูŠ ุจูŠู† ู‚ุณูŠู†
356
+
357
+ 90
358
+ 00:10:21,200 --> 00:10:32,440
359
+ ูŠุณุงูˆูŠ ุจูŠ ููŠ e ุฃุณ ุงุชู†ูŠู† ax ุทุจูŠุจ
360
+
361
+ 91
362
+ 00:10:32,440 --> 00:10:40,880
363
+ ูƒูˆูŠุณุงู„ุณ๏ฟฝ๏ฟฝุงู„ ู‡ูˆ ู‡ู„ ูŠู…ูƒู† ู„ B ุงู† ุชุจู‚ู‰ ุจ ZeroุŸ B ุชุจู‚ู‰ ุจ
364
+
365
+ 92
366
+ 00:10:40,880 --> 00:10:48,850
367
+ ZeroุŸ ู…ู† ูˆูŠู† ุฌุชู†ูŠ BุŸ ู‡ูŠ ุฌุชู†ูŠ ู…ู† ู‡ู†ุงู‡ุฐุง ูˆุงุญุฏ ูˆู‡ุฐุง
368
+
369
+ 93
370
+ 00:10:48,850 --> 00:10:53,150
371
+ ูˆุงุญุฏุŒ ู„ูˆ ูƒุงู†ุช ู‡ุฏู Zero ุฃูˆ ู‡ุฏู ZeroุŒ ุจูŠุธู„ ุงู„ุญู„
372
+
373
+ 94
374
+ 00:10:53,150 --> 00:10:56,230
375
+ Complex ู„ูˆ ุจูŠุตูŠุฑ RealุŒ ุจูŠุตูŠุฑ RealุŒ ูŠุจู‚ู‰ ุงุญู†ุง
376
+
377
+ 95
378
+ 00:10:56,230 --> 00:11:00,450
379
+ ุทุงู„ุนู†ุง ุจุฑุง ุงู„ูƒู„ุงู… ุฏู‡ุŒ ุฅุฐุง ู„ุง ูŠู…ูƒู† ุงู„ู€B ุฃู† ุชุณุงูˆูŠ
380
+
381
+ 96
382
+ 00:11:00,450 --> 00:11:04,690
383
+ ZeroุŒ ู‡ุฐุง ูˆุงุญุฏ. ุงู„ุชุงู†ูŠุฉุŒ ู‡ู„ ุงู„ exponential ููŠ ูŠูˆู…
384
+
385
+ 97
386
+ 00:11:04,690 --> 00:11:09,210
387
+ ู…ู† ุงู„ุฃูŠุงู… ุจุชุณุงูˆูŠ ZeroุŸ ุทุจุนุงู‹ ู„ุฃุŒ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡
388
+
389
+ 98
390
+ 00:11:09,210 --> 00:11:13,450
391
+ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ู„ุง ูŠุณุงูˆูŠ Zeroุฅุฐู† ุงุชู†ูŠู† ู‡ุฐูˆุฑ are
392
+
393
+ 99
394
+ 00:11:13,450 --> 00:11:17,410
395
+ linearly independent solution ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุจูŠุฌูŠุจูˆู„ูŠ
396
+
397
+ 100
398
+ 00:11:17,410 --> 00:11:20,750
399
+ main ุงู„ุญู„ ุงู„ุนุงู… ูŠุจู‚ู‰ ู‡ู†ุง
400
+
401
+ 101
402
+ 00:11:27,130 --> 00:11:35,070
403
+ And ุงู„ู€ E ุฃูุณ X ููŠ side ุจูŠ X are linearly
404
+
405
+ 102
406
+ 00:11:35,070 --> 00:11:45,010
407
+ independent ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ The general solution of
408
+
409
+ 103
410
+ 00:11:45,010 --> 00:11:46,830
411
+ equation
412
+
413
+ 104
414
+ 00:11:50,280 --> 00:11:57,780
415
+ ู…ุง ุฑุฃูŠูƒูˆุง ุจุงุฎุฏ E ุฃุณ A X ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุธู„ C1 ููŠ
416
+
417
+ 105
418
+ 00:11:57,780 --> 00:12:04,860
419
+ cosine ุจูŠูƒุณ ุฒูŠ C2 ููŠ sin ุจูŠูƒุณ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
420
+
421
+ 106
422
+ 00:12:04,860 --> 00:12:12,440
423
+ ู…ุฑุฉ
424
+
425
+ 107
426
+ 00:12:12,440 --> 00:12:13,060
427
+ ุชุงู†ูŠุฉ ุจู‚ูˆู„
428
+
429
+ 108
430
+ 00:12:17,870 --> 00:12:23,910
431
+ ุฌู„ุจู†ุง ูƒู„ ู…ู† R ูˆุงุญุฏ ูˆ R ุงุชู†ูŠู† ูŠุจู‚ู‰ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุญู„
432
+
433
+ 109
434
+ 00:12:23,910 --> 00:12:28,690
435
+ ู„ุฃู† ุงู„ุญู„ ุงู„ุฃูˆู„ Y one E ุฃุณ R one X ุญุดู„ู†ุง ุงู„ R one ูˆ
436
+
437
+ 110
438
+ 00:12:28,690 --> 00:12:34,630
439
+ ุญุทูŠู†ุง ุจุฏุงู„ู‡ุง A ุฒุงุฆุฏ I B X ููƒูŠุช ุงู„ุฌุฒุก ูˆุตุงุฑ two
440
+
441
+ 111
442
+ 00:12:34,630 --> 00:12:38,650
443
+ exponentials ู‡ุฐู‡ ุงู„ุฑูŠุง ุงู„ู„ูŠ ุจุฎู„ูŠู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ู‡ุฐู‡
444
+
445
+ 112
446
+ 00:12:38,650 --> 00:12:43,110
447
+ complex ู…ูƒุชูˆุจุฉ ุจุตูŠุบุฉ Euler ูƒุชุจู†ุงู‡ุง ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
448
+
449
+ 113
450
+ 00:12:43,110 --> 00:12:50,460
451
+ ุนู†ุฏู†ุง ุฏู‡ุจุงู„ู…ุซู„ Y2E2R2A-IBX ุฒูŠ ูƒุชุจู†ุงู‡ุง ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
452
+
453
+ 114
454
+ 00:12:50,460 --> 00:12:53,920
455
+ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ู‡ู†ุง ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ู‡ู†ุง ูˆ
456
+
457
+ 115
458
+ 00:12:53,920 --> 00:12:57,680
459
+ ุงู„ู„ูŠ ู‡ู†ุง ุงู„ู„ูŠ ู‡ู†ุง ุงู„ุจุงู‚ูŠุฉ ุชูƒูˆู† ุซูˆุงุจุช ูŠุจู‚ู‰ ุทุจู‚ุฉ
460
+
461
+ 116
462
+ 00:12:57,680 --> 00:13:04,810
463
+ ู„ู„ุฎุงุตูŠุฉ ูƒูˆู…ู†ูƒุณ ู†ู…ุฐุฌุงู„ุณุงุจู‚ุฉ ุฑู‚ู… ุฎู…ุณุฉ EOSX Cos BX
464
+
465
+ 117
466
+ 00:13:04,810 --> 00:13:10,770
467
+ ูˆูƒุฐู„ูƒ EOSX Sin BX are solutions ู„ูƒู† ู‡ู„ ู‡ุฏูˆู„ ู‡ู…
468
+
469
+ 118
470
+ 00:13:10,770 --> 00:13:15,390
471
+ ุงู„ู„ูŠ ุจูŠุฌูŠุจูˆู„ูŠ ุงู„ general solution ูˆู„ุง ู„ุฃ ุงูˆ ู‡ู… ุงู„
472
+
473
+ 119
474
+ 00:13:15,390 --> 00:13:19,710
475
+ basesู„ู„ู€ vector space of all solutions ูˆ ู„ุง ู„ุฃ
476
+
477
+ 120
478
+ 00:13:19,710 --> 00:13:24,090
479
+ ุงู„ู„ู‡ ุฃุนู„ู… ุฅุฐุง ู„ูˆ ุฑูˆุญุช ุฎุฏุช ุงู„ู„ูŠ ู‡ู… ุงู„ุฑูˆู†ุณูƒูŠู† ุญุณุจู†ุง
480
+
481
+ 121
482
+ 00:13:24,090 --> 00:13:28,290
483
+ ุงู„ุฑูˆู†ุณูƒูŠู† ุงู„ู„ูŠ ุฌูŠุชู‡ ู…ุงู„ู‡ ู„ุง ูŠุณุงูˆูŠ 0 ูŠู‚ู„ 2 ู‡ุฐูˆู„ are
484
+
485
+ 122
486
+ 00:13:28,290 --> 00:13:32,810
487
+ linearly independent ู…ุฏุงู… linearly independent
488
+
489
+ 123
490
+ 00:13:32,810 --> 00:13:37,170
491
+ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุดูƒู„ ุงู„ general solution constant ููŠ
492
+
493
+ 124
494
+ 00:13:37,170 --> 00:13:43,680
495
+ ุงู„ุฃูˆู„ ุฒุงุฆุฏ constant ููŠ ุงู„ุชุงู†ูŠุงู„ู€ E Os X ุนุงู…ู„
496
+
497
+ 125
498
+ 00:13:43,680 --> 00:13:47,740
499
+ ุงู„ู…ุดุชุฑูƒ ู…ุง ุจูŠู† ุงู„ุงุชู†ูŠู† ุฃุฎุฏู†ุงู‡ู… ูŠุจู‚ู‰ ุดูƒู„ ุงู„ุญู„ ููŠ
500
+
501
+ 126
502
+ 00:13:47,740 --> 00:13:54,280
503
+ ุญุงู„ุฉ ุงู„ complex root ู‡ูˆ E Os X ููŠ C1 Cos BX ุฒูŠ C2
504
+
505
+ 127
506
+ 00:13:54,280 --> 00:14:00,730
507
+ Sin BX ูŠุจู‚ู‰ ูŠุง ุจู†ุงุชู„ูˆ ุงุญู†ุง ุจู†ุญู„ ุดุบู„ ุฑุณู…ูŠ ุงู„ุขู† ู…ู†
508
+
509
+ 128
510
+ 00:14:00,730 --> 00:14:04,830
511
+ ุญุฏ ู…ู„ุงู‚ูŠ ุงู„ roots ู‡ุฏูˆู„ complex ู…ุงููŠุด ุฏุงุนูŠ ู„ูƒู„
512
+
513
+ 129
514
+ 00:14:04,830 --> 00:14:10,410
515
+ ุงู„ูƒู„ุงู… ู‡ุฐุง ุงู†ุง ุงุนุทุชู‡ู„ูƒ ู†ุธุฑูŠ ูˆูˆุตู„ุชูƒ ู„ู…ูŠู† ู„ู„ุฅุฌุงุจุฉ ู…ู†
516
+
517
+ 130
518
+ 00:14:10,410 --> 00:14:13,550
519
+ ุญุฏ ู…ุง ุฌูŠุจูŠู‡ ุงู„ roots ู‚ูˆู„ูŠู„ูŠ ุงู„ุญู„ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ู
520
+
521
+ 131
522
+ 00:14:13,550 --> 00:14:19,570
523
+ ู…ูŠู† ู‡ูŠ ุงู„ a ู‡ูˆ ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุทุจ ุงูุฑุถ
524
+
525
+ 132
526
+ 00:14:19,570 --> 00:14:24,340
527
+ ู…ุงุทู„ุนุด ุนู†ุฏูŠ a ู„ู…ุง ุฌุจุชู‡ ุทู„ุนุช ุจุณ ibู…ู†ู‡ุง ุฏูŠ ุจุชุดูŠู„
528
+
529
+ 133
530
+ 00:14:24,340 --> 00:14:27,900
531
+ ุจูŠุทูŠู„ E ูˆ ุงู„ zero ุงู„ู„ูŠ ู‡ูˆ ุงู„ main ุฅูŠู‡ ุจูˆุงุญุฏุŸ ุทุจ ูˆ
532
+
533
+ 134
534
+ 00:14:27,900 --> 00:14:31,360
535
+ ุงู„ B main ู‡ูˆ ุงู„ู…ุนุงู…ู„ ุชุจุน ุงู„ I ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฏู‡
536
+
537
+ 135
538
+ 00:14:31,360 --> 00:14:35,420
539
+ ูˆุจุงู„ุชุงู„ุฉ ุตุงุฑุช ู‚ุตุชู†ุง ุจุณูŠุทุฉ ุญุฏ ููŠูƒู… ุจุชุณุฃู„ ุฃุณุฆู„ุฉ ู„ุฅู†ู‡
540
+
541
+ 136
542
+ 00:14:35,420 --> 00:14:40,460
543
+ ุฎู„ุตู†ุง ุงู„ู†ุธุฑ ุชุจุน ุงู„ section ุจุฏู†ุง ู†ุจุฏุฃ ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุญุฏ
544
+
545
+ 137
546
+ 00:14:40,460 --> 00:14:47,380
547
+ ููŠูƒู… ู„ูŠู‡ ุชุณุฃู„ ู‡ู†ุงุŸ ุฃู‡ ููŠุดุŸ ุฅุฐุง ู…ุงููŠุด ุฃู†ุง ุจุณุฃู„ูƒ ูƒู„
548
+
549
+ 138
550
+ 00:14:47,380 --> 00:14:50,280
551
+ ูˆู‚ุช ุงูƒุชุจ ุงุณู… ูˆ ุฑู‚ู… ุงู„ุฌุงู…ุนุฉ ู‡ู†ุง ุชูุถู„
552
+
553
+ 139
554
+ 00:14:54,150 --> 00:14:58,650
555
+ ุทูŠุจ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุฌูŠ ุงู„ุฃูˆู„ ู…ุซุงู„ ุนู„ู‰ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน
556
+
557
+ 140
558
+ 00:14:58,650 --> 00:15:07,370
559
+ ุงู„ู…ุซุงู„ ุจูŠู‚ูˆู„ ูŠุจู‚ู‰ example one ูŠู‚ูˆู„
560
+
561
+ 141
562
+ 00:15:07,370 --> 00:15:09,110
563
+ find the general solution
564
+
565
+ 142
566
+ 00:15:21,630 --> 00:15:27,350
567
+ of the differential equation of the differential
568
+
569
+ 143
570
+ 00:15:27,350 --> 00:15:39,890
571
+ equation ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ Dยฒ ุฒุงุฆุฏ ุฃุฑุจุนุฉ D ุฒุงุฆุฏ
572
+
573
+ 144
574
+ 00:15:39,890 --> 00:15:45,890
575
+ ุฎู…ุณุฉ ูƒู„ู‡ ููŠ ุงู„ Y ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ Zero
576
+
577
+ 145
578
+ 00:16:14,340 --> 00:16:19,500
579
+ ู‚ุจู„ ู†ุจุฏุฃ ุญู„ ุฃู†ุง ู‡ุณุฃู„ ู„ุงู† ู‚ู„ุชู„ูƒูˆุง ุญุฏ ุจุชุณุฃู„ ุฃูŠ ุณุคุงู„
580
+
581
+ 146
582
+ 00:16:19,500 --> 00:16:24,400
583
+ ูˆู„ูˆ ุญุฏ ุญูƒู‰ ุงุชุทู„ู‚ุชู‡ ุณุงูƒุชูŠ ูŠุจู‚ู‰ ุงู†ุง ุจุฏูŠ ุงุณุฃู„ ุงุญู†ุง
584
+
585
+ 147
586
+ 00:16:24,400 --> 00:16:28,780
587
+ ุญูƒูŠู†ุง ุงู„ู„ูŠ ุทู„ุนู†ุง ุงู„ุญู„ ู‡ุฐุง ู„ูˆ ูƒุงู†ุช ุงู„ู…ุนุงุฏู„ุฉ ู…ู†
588
+
589
+ 148
590
+ 00:16:28,780 --> 00:16:36,800
591
+ ุงู„ุฑุชุจุฉ ุงู„ุซุงู†ูŠุฉ ูุจูุฑุถ ุทู„ุนุช ู…ู† ุงู„ุฑุชุจุฉ ุงู„ุชุงู„ุชุฉุจุฏูŠ
592
+
593
+ 149
594
+ 00:16:36,800 --> 00:16:41,240
595
+ ุงุจุฏุฃ ู†ูุณ ุงู„ู‚ุตุฉ USRX ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุญู„ ู†ุฌูŠุจ ุงู„
596
+
597
+ 150
598
+ 00:16:41,240 --> 00:16:44,480
599
+ characteristic equation ุจุณ ุงู„ characteristic ู„ู‡ุง
600
+
601
+ 151
602
+ 00:16:44,480 --> 00:16:51,620
603
+ ุซู„ุงุซุฉ ุญู„ูˆู„ ู…ู…ูƒู† ูŠุทู„ุนูˆุง ุงู„ุชู„ุงุชุฉ complexุŸ ู…ู…ูƒู†ุŸ ู…ุด
604
+
605
+ 152
606
+ 00:16:51,620 --> 00:16:55,460
607
+ ู…ู…ูƒู†ูŠุฉ ู…ู…ูƒู† ูŠุทู„ุนูˆุง ุงุชู†ูŠู† complex ุงู† ุงู„ูˆุงุญุฏ ู‡ูˆ
608
+
609
+ 153
610
+ 00:16:55,460 --> 00:17:00,380
611
+ ุงู„ู…ุฑุงูู‚ ุชุจุนู‡ ุงุฐุง ู„ุง ูŠู…ูƒู† ูŠูƒูˆู†ูˆุง ุงู„ุชู„ุงุชุฉ complex
612
+
613
+ 154
614
+ 00:17:00,380 --> 00:17:05,280
615
+ ุงุชู†ูŠู† complex ูˆุงุญุฏ real ุทุจ ุงูุฑุถ ู…ู† ุงู„ุฑุชุจุฉ ุงู„ุฑุงุจุนุฉ
616
+
617
+ 155
618
+ 00:17:06,130 --> 00:17:12,350
619
+ ูˆุทู„ุน ุฃุฑุจุนุฉ complex ูŠุจู‚ู‰ ูƒู„ ุงุชู†ูŠู† ุจูŠูƒูˆู†ูˆุง conjugate
620
+
621
+ 156
622
+ 00:17:12,350 --> 00:17:20,890
623
+ ูŠุนู†ูŠ ุงุญู†ุง ู‡ุฏูˆู„ ุญู„ูŠู† ุจูŠุฌูŠ ูƒู…ุงู† ุฒุงุฆุฏ C ุชู„ุงุชุฉ ููŠ E ุฃุณ
624
+
625
+ 157
626
+ 00:17:20,890 --> 00:17:26,170
627
+ ุงู„ุฑู‚ู… ุบูŠุฑ ุงู„ุฑู‚ู… ู‡ุฐุง ู‡ูŠูƒูˆู† ูˆ ุงู„ B ู‡ุฐูŠ ูƒู…ุงู† ุฑู‚ู… ุชุงู†ูŠ
628
+
629
+ 158
630
+ 00:17:26,170 --> 00:17:31,250
631
+ ูŠุจู‚ู‰ ุฒูŠู‡ุง ุจุณ ุจู†ูƒุฑุฑู‡ุง ู„ู„ุฑู‚ุงู…ูŠู† ุงู„ุขุฎุฑูŠู† ูˆ ู‡ูƒุฐุงูŠุนู†ูŠ
632
+
633
+ 159
634
+ 00:17:31,250 --> 00:17:35,370
635
+ ูƒู„ ุงุชู†ูŠู† ุจูŠูƒูˆู† ุฑ conjugate ูŠุจู‚ู‰ ุงู„ exponential
636
+
637
+ 160
638
+ 00:17:35,370 --> 00:17:39,790
639
+ ุจูŠูƒูˆู† L ุฃูุณ ุงู†ุชู‚ู„ุช ู„ุฑู‚ู… ุชู„ุงุชุฉ ุจู„ุงูŠ ุงู„ exponential
640
+
641
+ 161
642
+ 00:17:39,790 --> 00:17:43,750
643
+ ู„ L ุฃูุณ ุชุงู†ูŠ ูˆุงู„ุฒุงูˆูŠุฉ ุชุงุจุนุฉ ุงู„ cosine ูˆุงู„sin ูƒู…ุงู†
644
+
645
+ 162
646
+ 00:17:43,750 --> 00:17:48,490
647
+ ุฒุงูˆูŠุฉ ุชุงู†ูŠุฉ ูˆ ู‡ูƒุฐุงูˆุงุถุญ ูƒู„ุงู…ูŠุŸ ู„ุฃู† ุฃูˆู„ ู…ุง ุจุฏุฃู†ุง ู‡ูˆ
648
+
649
+ 163
650
+ 00:17:48,490 --> 00:17:52,890
651
+ ู…ุนุงุฏู„ุฉ ู…ู† ุงู„ุฑุชุจุฉ ุงู„ู†ูˆู†ูŠุฉุŒ ุจุณุทู†ุง ูˆู‚ู„ู†ุง ู…ุนุงุฏู„ุฉ ู…ู†
652
+
653
+ 164
654
+ 00:17:52,890 --> 00:17:57,470
655
+ ุงู„ุฑุชุจุฉ ุงู„ุซุงู†ูŠุฉ ูˆู„ูŠู‡ ุณู…ู†ุงู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… ูˆุงุญุฏุŒ ู„ูƒู†
656
+
657
+ 165
658
+ 00:17:57,470 --> 00:18:00,090
659
+ ู„ูˆ ุตุฑุช ู…ู† ุงู„ุฑุชุจุฉ ุงู„ุชุงู„ุชุฉ ุฃูˆ ุงู„ุฑุงุจุนุฉ ุฃูˆ ุงู„ุฎู…ุณุฉุŒ
660
+
661
+ 166
662
+ 00:18:00,090 --> 00:18:04,960
663
+ ุดูˆููŠุฅุฐุง ุฑุชุจุฉ ูุฑุฏูŠุฉ ู„ุง ูŠู…ูƒู† ูŠุทู„ุนูˆุง ูƒู„ู‡ู… complex
664
+
665
+ 167
666
+ 00:18:04,960 --> 00:18:08,780
667
+ ู…ู…ูƒู† ูŠูƒูˆู†ูˆุง complex ูˆ ุฅุฐุง ุฑูŠุงู„ ู„ูƒู† ุฅุฐุง ุฑุชุจุฉ ุฒูˆุฌูŠุฉ
668
+
669
+ 168
670
+ 00:18:08,780 --> 00:18:13,860
671
+ ู…ู…ูƒู† ูƒู„ู‡ู… ูŠูƒูˆู†ูˆุง complex ุนุงุฏูŠ ุฌุฏุง ู„ูŠุดุŸ ู„ุฃู† ูƒู„ ุญู„
672
+
673
+ 169
674
+ 00:18:13,860 --> 00:18:20,340
675
+ ุงู„ู…ุฑุงูู‚ ุทุจุนู‡ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุทุท ุทุจ ู†ุฌูŠ ู„ุณุคุงู„ู†ุงุงู†ุช ูƒุงุชุจ
676
+
677
+ 170
678
+ 00:18:20,340 --> 00:18:23,580
679
+ D ู‡ู†ุง ุจู‚ูˆู„ ู„ูƒ ุขุฏู… ู‡ู… ู†ุงุฑ ูˆ ู†ุงุฑุฉ ุงู„ู„ูŠ ูุงุชุช ู‚ูˆู„ู†ุง D
680
+
681
+ 171
682
+ 00:18:23,580 --> 00:18:27,620
683
+ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ุจุงู„ู†ุณุจุฉ ู„ X Dยฒ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ
684
+
685
+ 172
686
+ 00:18:27,620 --> 00:18:32,660
687
+ ุงู„ุชุงู†ูŠุฉ D ุชูƒูŠุจ ู‡ูŠ ุงู„ู…ุดุชู‚ุฉ ุงู„ุชุงู„ุชุฉ ูˆ ู‡ูƒุฐุง ูŠุจู‚ู‰ Dยฒ
688
+
689
+ 173
690
+ 00:18:32,660 --> 00:18:38,500
691
+ ู‡ุฐู‡ ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุจุงู„ู†ุณุจุฉ ู„ X ู„ู…ูŠู†ุŸ ู„ู„ Yู‡ู†ุง D ู‡ูŠ
692
+
693
+ 174
694
+ 00:18:38,500 --> 00:18:43,580
695
+ ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ู„ Y ุจุงู„ู†ุณุจุฉ ู„ูƒ ู‡ุฐู‡ ุฎู…ุณุฉ Y ูŠุจู‚ู‰ ุฎู…ุณุฉ
696
+
697
+ 175
698
+ 00:18:43,580 --> 00:18:47,460
699
+ ุงู„ูŠูˆู… ู…ู‚ุฏุงุฑ ุซุงุจุช ูŠุจู‚ู‰ ูƒุงู… ุจุฏุฃ ุฃุจุฏุฃ ุงู„ุญู„ ุจุฏูŠ ุฃุจุฏุฃ
700
+
701
+ 176
702
+ 00:18:47,460 --> 00:18:53,500
703
+ ุฒูŠ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ูŠุจู‚ู‰ ุจุฏุงุดูŠ ุฃู‚ูˆู„ู‡ let ุงูุชุฑุถ ุงู†
704
+
705
+ 177
706
+ 00:18:53,500 --> 00:19:01,680
707
+ ุงู„ Y ุชุณุงูˆูŠ E ุฃูุณ RX ุจ A solution ูˆุณู…ูŠู‡ ู„ู„ู…ุนุงุฏู„ุฉ
708
+
709
+ 178
710
+ 00:19:01,680 --> 00:19:10,560
711
+ ุงู„ุฃุตู„ูŠุฉ ุฏูŠ star of thedifferential equation star
712
+
713
+ 179
714
+ 00:19:10,560 --> 00:19:15,280
715
+ ูŠุจู‚ู‰
716
+
717
+ 180
718
+ 00:19:15,280 --> 00:19:28,460
719
+ then the characteristic ุงูˆ auxiliary equation is R
720
+
721
+ 181
722
+ 00:19:28,460 --> 00:19:38,490
723
+ ุชุฑุจูŠุน ุฒุงุฆุฏ 4R ุฒุงุฆุฏ 5 ูŠุณุงูˆูŠ 0ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ู…ู…ูƒู†
724
+
725
+ 182
726
+ 00:19:38,490 --> 00:19:47,830
727
+ ุช๏ฟฝ๏ฟฝู„ูŠู„ู‡ุงุŸ ู…ู…ูƒู†ูŠุฉ ุชุญู„ูŠู„ู‡ุงุŸ ู…ุชุฃูƒุฏูŠู†ุŸ ู„ูŠุณ ู…ู…ูƒู†ูŠุฉ ุนู„ู‰
728
+
729
+ 183
730
+ 00:19:47,830 --> 00:19:53,070
731
+ ุงู„ุฅุทู„ุงู‚ุŒ ู„ูˆ ูƒุงู†ุช ู‡ุฐู‡ ุณุชุฉ ุงู„ู„ูŠ ููŠ ุงู„ู†ุตุŒ ุฃู‡ ู…ู…ูƒู†ุŒ
732
+
733
+ 184
734
+ 00:19:53,070 --> 00:19:57,350
735
+ ุบูŠุฑ ู‡ูŠูƒ ูŠุจุนุชู„ูƒ ุงู„ู„ู‡ุŒ ู„ูƒู† ู„ูˆ ูƒุงู†ุช ุงู„ุฅุดุงุฑุฉ ุงู„ุณุงู„ุจ
736
+
737
+ 185
738
+ 00:19:57,350 --> 00:20:01,610
739
+ ุชุจุนุช ุงู„ุฃุฑุจุนุฉุŒ ุฃู‡ ู…ู…ูƒู† ุจุตูŠุฑุŒ ู„ูƒู† ุจุงู„ุดูƒู„ ู‡ุฐุง ู„ุง
740
+
741
+ 186
742
+ 00:20:01,610 --> 00:20:04,730
743
+ ูŠู…ูƒู†ุŒ ุฅุฐุง ุงู„ู…ุนุงุฏู„ุฉ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุชุงู†ูŠุฉ ุจุฑูˆุญ ุจุญู„ู‡ุง
744
+
745
+ 187
746
+ 00:20:04,730 --> 00:20:09,920
747
+ ุจุงุณุชุฎุฏุงู…ุงู„ู‚ุงู†ูˆู† ุงู„ู„ู‰ ุจู‚ูˆู„ ุฑ ูŠุณุงูˆูŠ ู†ุงู‚ุต ุจุง ุฒูŠ ู„ูˆ
748
+
749
+ 188
750
+ 00:20:09,920 --> 00:20:12,460
751
+ ู†ุงู‚ุต ุงู„ุฌุฏุฑ ุงู„ุชุฑุจูŠุฉ ุงู„ู„ู‰ ุจู‚ู‰ ุชุฑุจูŠุฉ ู†ุงู‚ุต ุฃุฑุจุน ุฃู„ู
752
+
753
+ 189
754
+ 00:20:12,460 --> 00:20:18,200
755
+ ุฌูŠู… ูƒู„ู‡ ุนู„ู‰ ุงุชู†ูŠู† ุฃู„ู ูŠุจู‚ู‰ ู…ุฏุงู† ุนู„ูŠู‡ ุจู‚ูˆู„ู‡ ุฑ ูŠุณุงูˆูŠ
756
+
757
+ 190
758
+ 00:20:18,200 --> 00:20:24,300
759
+ ู†ุงู‚ุต ุจุง ู‚ุฏุงุด ุนู†ุฏู‡ ู‡ู†ุง ุฃุฑุจุนุฒุงุฆุฏ ุงูˆ ู†ุงู‚ุต ุงู„ุฌุฏุฑูŠ
760
+
761
+ 191
762
+ 00:20:24,300 --> 00:20:30,960
763
+ ุงู„ุชุฑุจูŠุนูŠ ู„ุจุง ุชุฑุจูŠุงู„ูŠ ุจ 16 ู†ุงู‚ุต 4 ููŠ ุฃู„ู ุงู„ู„ูŠ ู‡ูˆ
764
+
765
+ 192
766
+ 00:20:30,960 --> 00:20:35,420
767
+ ุจูˆุงุญุฏ ุฌูŠู…ูŠ ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุด ุงู„ู„ูŠ ู‡ูˆ ุจุฎู…ุณุฉ ูƒู„ู‡ ุนู„ู‰
768
+
769
+ 193
770
+ 00:20:35,420 --> 00:20:41,180
771
+ ุงุชู†ูŠู† ุฃู„ู ุงุชู†ูŠู† ููŠ ูˆุงุญุฏ ูŠุณุงูˆูŠ ุณุงู„ุจ ุฃุฑุจุน ุฒุงุฆุฏ ุงูˆ
772
+
773
+ 194
774
+ 00:20:41,180 --> 00:20:46,700
775
+ ู†ุงู‚ุต ุงู„ุฌุฏุฑูŠ ุงู„ุชุฑุจูŠุนูŠ ุนุดุฑูŠู† ู†ุงู‚ุต ุณุชุงุดุฑ ูŠุจู‚ู‰ ุงู„ู‚ุฏุงุด
776
+
777
+ 195
778
+ 00:20:47,090 --> 00:20:54,050
779
+ ุณุงู„ุจ ุงุฑุจุนุฉ ูƒู…ูŠุฉ ุชุญูŠูˆู„ูŠุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุงุฑุจุนุฉ ุฒุงุฆุฏ ุงูˆ
780
+
781
+ 196
782
+ 00:20:54,050 --> 00:21:00,270
783
+ ู†ุงู‚ุต ุงุชู†ูŠู† I ุฌุฏุฑ ุงู„ุงุฑุจุนุฉ ุจุชู†ูŠู† ุจูŠุธู„ ุฌุฏุฑ ุงู„ุชุฑุจูŠู‡
784
+
785
+ 197
786
+ 00:21:00,270 --> 00:21:06,050
787
+ ุงู„ู„ูŠ ุณุงู„ุจ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุจ I ูƒู„ู‡ ุนู„ู‰ ุงุชู†ูŠู† ูŠุจู‚ู‰ ู†ุงู‚ุต
788
+
789
+ 198
790
+ 00:21:06,050 --> 00:21:11,790
791
+ ุงุชู†ูŠู† ุฒุงุฆุฏ ุงูˆ ู†ุงู‚ุต I ูŠุจู‚ู‰ ุงู„ ุงูŠู‡ ุงู„ุฌุฏุด ุนู†ุฏูŠ ูŠุง
792
+
793
+ 199
794
+ 00:21:11,790 --> 00:21:12,510
795
+ ุจู†ุงุชุŸ
796
+
797
+ 200
798
+ 00:21:19,630 --> 00:21:32,490
799
+ the general solution of the differential equation
800
+
801
+ 201
802
+ 00:21:32,490 --> 00:21:42,680
803
+ star isY to 7 E ุฃูุณ A X ุงู„ู€ A ุนู†ุฏู‰ ุจู‚ุฏุฑุด ุจุณุงู„ูŠ
804
+
805
+ 202
806
+ 00:21:42,680 --> 00:21:51,840
807
+ ุจุงุชู†ูŠู† X ูู‰ C ูˆุงุญุฏ ูƒูˆุตูŠู† ุงู„ B ุจู‚ุฏุฑุด ุจูˆุงุญุฏ ูƒูˆุตูŠู† X
808
+
809
+ 203
810
+ 00:21:51,840 --> 00:21:58,700
811
+ ุฒุงูŠุฏ C ุงุชู†ูŠู† ุตูŠู† ุงู„ X ูƒูู‰ ุงู„ู„ู‡ ุงู„ู…ุคู…ู†ูŠู† ุงู„ู‚ุชุงู„ู‰
812
+
813
+ 204
814
+ 00:21:58,700 --> 00:22:01,980
815
+ ูŠุจู‚ู‰ ู‡ุฐุง ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ
816
+
817
+ 205
818
+ 00:22:04,640 --> 00:22:13,960
819
+ ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ example 2 solve
820
+
821
+ 206
822
+ 00:22:13,960 --> 00:22:22,680
823
+ the initial value problemุงู„ู„ูŠ ู‡ูŠ y double prime
824
+
825
+ 207
826
+ 00:22:22,680 --> 00:22:30,200
827
+ ุฒุงุฆุฏ ุณุชุงุดุฑ y ุจุฏู‡ ูŠุณุงูˆูŠ zero ูˆุงู„ y ุนู†ุฏ ุงู„ zero ุจุฏู‡
828
+
829
+ 208
830
+ 00:22:30,200 --> 00:22:35,320
831
+ ูŠุณุงูˆูŠ ู„ุฅุชู†ูŠู† ูˆุงู„ y prime ุนู†ุฏ ุงู„ zero ุจุฏู‡ ูŠุณุงูˆูŠ
832
+
833
+ 209
834
+ 00:22:35,320 --> 00:22:36,360
835
+ ุณุงู„ู… ุงุชู†ูŠู†
836
+
837
+ 210
838
+ 00:22:44,390 --> 00:22:50,990
839
+ ูŠุจู‚ู‰ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงูุชุฑุถ ุงู† ุงู„ Y ุชุณุงูˆูŠ E ุฃูุต R X
840
+
841
+ 211
842
+ 00:22:50,990 --> 00:23:02,310
843
+ ุจูŠู‡ solution of the initial value problem ูˆุณู…ูˆู‡ุง
844
+
845
+ 212
846
+ 00:23:02,310 --> 00:23:11,290
847
+ ู„ูŠ Star then the characteristic equation
848
+
849
+ 213
850
+ 00:23:15,620 --> 00:23:25,200
851
+ R ุชุฑุจูŠุน ุฒุงุฆุฏ ุณุชุงุดุฑ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู‡ุฐุง ุจุฏู‰ ูŠุนุทูŠู†ุง ูŠุง
852
+
853
+ 214
854
+ 00:23:25,200 --> 00:23:32,120
855
+ ุจู†ุงุช ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุด ุงู„ู„ูŠ ู‡ูˆ R ุชุณุงูˆูŠ ุฒุงุฆุฏ ุงูˆ ู†ุงู‚ุต
856
+
857
+ 215
858
+ 00:23:32,120 --> 00:23:41,040
859
+ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุน ุงู„ู‰ ู†ุงู‚ุต ุณุชุงุดุฑ ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุด ุฒุงุฆุฏ ุงูˆ
860
+
861
+ 216
862
+ 00:23:41,040 --> 00:23:48,900
863
+ ู†ุงู‚ุต ุงุฑุจุนุฉ IูŠุจู‚ู‰ ุงู„ A ุนู†ุฏูŠ ุจู‚ุฏุฑุดุŸ Zero ูˆ ุงู„ B
864
+
865
+ 217
866
+ 00:23:48,900 --> 00:23:54,860
867
+ ุจุงุฑุจุน ูŠุนู†ูŠ ู‡ุฐุง ู…ุนู†ุงุชู‡ ุงู† ุงู„ A ุชุณุงูˆูŠ Zero ูˆ ุงู„ B
868
+
869
+ 218
870
+ 00:23:54,860 --> 00:23:59,720
871
+ ุชุณุงูˆูŠ ุฃุฑุจุน ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ the solution
872
+
873
+ 219
874
+ 00:24:14,300 --> 00:24:18,840
875
+ ูŠุจู‚ู‰ C1cos4xC2sin4x ูˆู…ุงุนู†ุฏูŠุด exponential
876
+
877
+ 220
878
+ 00:24:21,930 --> 00:24:29,930
879
+ ู…ุง ุฑุงูŠูƒูˆุง ุจุงู„ู…ุฑุฉ ู†ุฌูŠุจ y' ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ 4 c1
880
+
881
+ 221
882
+ 00:24:29,930 --> 00:24:40,600
883
+ sin 4x ุฒุงุฆุฏ 4 c2 cos 4xุจู†ุฌูŠ ู„ุงู† ู†ู‚ุด ุงู„ condition
884
+
885
+ 222
886
+ 00:24:40,600 --> 00:24:47,720
887
+ ุงู„ุฃูˆู„ ุฌุงู„ูŠ y ุนู†ุฏ ุงู„ zero ุจุฏู‡ ูŠุชุณุงูˆูŠ ู‚ุฏุงุด ุงุชู†ูŠู† ู‡ุฐุง
888
+
889
+ 223
890
+ 00:24:47,720 --> 00:24:56,500
891
+ ู…ุนู†ุงุชู‡ ุงู†ู‡ ุงุชู†ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ c ูˆุงุญุฏ ู‚ุตูŠู† ุงู„ zero ุงุธู†
892
+
893
+ 224
894
+ 00:24:56,500 --> 00:25:02,580
895
+ ุตูŠู† ุงู„ zero ุจ zeroูŠุจู‚ู‰ ุทุงุฑุช ูŠุจู‚ู‰ ุฒุงุฆุฏ ุฒูŠุฑูˆ ู‡ุฐุง
896
+
897
+ 225
898
+ 00:25:02,580 --> 00:25:07,980
899
+ ู…ุนู†ุงุชู‡ ุงู†ู‡ C1 ูŠุณุงูˆูŠ 2 ู„ุงู† ุงู„ cosine ุตูุฑ ุจูˆุงุญุฏ ุงู„ุขู†
900
+
901
+ 226
902
+ 00:25:07,980 --> 00:25:12,900
903
+ ู†ูŠุฌูŠ ู„ู„ Y prime ุนู†ุฏ ุงู„ zero Y prime ุนู†ุฏ ุงู„ zero
904
+
905
+ 227
906
+ 00:25:12,900 --> 00:25:18,580
907
+ ุจุฏู‡ ุณุงูˆูŠ ุณุงู„ูŠ ุจ 2 ู‡ุฐุง implies ุงู†ู‡ ุณุงู„ูŠ ุจ 2 ุจุฏู†ุง
908
+
909
+ 228
910
+ 00:25:18,580 --> 00:25:27,130
911
+ ู†ูŠุฌูŠ ู„ู„ Y primeูŠุจู‚ู‰ zero ูˆู‡ู†ุง ุฒุงุฆุฏ ุงุฑุจุน c ุงุชู†ูŠู†
912
+
913
+ 229
914
+ 00:25:27,130 --> 00:25:33,790
915
+ cosine ุตูุฑ cosine ุตูุฑ ุจูˆุงุญุฏ ูŠุจู‚ู‰ ู…ุนู†ุงุชู‡ ุงู†ู‡ c
916
+
917
+ 230
918
+ 00:25:33,790 --> 00:25:39,490
919
+ ุงุชู†ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ ู†ุต ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง
920
+
921
+ 231
922
+ 00:25:39,490 --> 00:25:43,890
923
+ solution of
924
+
925
+ 232
926
+ 00:25:44,620 --> 00:25:57,820
927
+ The initial value problem is Y ุชุณุงูˆูŠ C1-B2 Cos 4X
928
+
929
+ 233
930
+ 00:25:57,820 --> 00:26:04,380
931
+ C2-1.5 Sin 4X
932
+
933
+ 234
934
+ 00:26:24,020 --> 00:26:34,960
935
+ ุงู„ุฃู…ุซู„ุฉ ุงู„ุซุงู„ุซุฉ Solve
936
+
937
+ 235
938
+ 00:26:34,960 --> 00:26:44,720
939
+ the differential equation Y
940
+
941
+ 236
942
+ 00:26:44,720 --> 00:26:51,240
943
+ to the derivative of 5 V
944
+
945
+ 237
946
+ 00:26:55,090 --> 00:27:02,990
947
+ ู†ุงู‚ุต 16Y' ูŠุณุงูˆูŠ 0 ู‡ุฐู‡
948
+
949
+ 238
950
+ 00:27:02,990 --> 00:27:04,210
951
+ ู…ุนุฏู„ุฉ ู…ู† ุฃูŠ ุฑุชุจุฉ
952
+
953
+ 239
954
+ 00:27:06,830 --> 00:27:11,790
955
+ ุงู„ุฎุงู…ุณุฉ ู…ุนู†ุงุชู‡ ุนู†ุฏูŠ ุฎู…ุณุฉ ุญู„ูˆู„ ู…ุนู†ุงุชู‡ ููŠ ุฅุดูŠ
956
+
957
+ 240
958
+ 00:27:11,790 --> 00:27:17,410
959
+ complex ูˆ ุฅุดูŠ real ุชู…ุงู…ุŸ ู„ุฅู†ู‡ ูุฑุฏูŠ ุงู„ุฑู‚ู… ูุฑุฏูŠ ูŠู…ูƒู†
960
+
961
+ 241
962
+ 00:27:17,410 --> 00:27:23,370
963
+ ูŠูƒูˆู† ุนู†ุฏูŠ ุฃุฑุจุน complex ูˆ ูˆุงุญุฏ real ุฃูˆ ุชู„ุงุชุฉ real ูˆ
964
+
965
+ 242
966
+ 00:27:23,370 --> 00:27:28,590
967
+ ุงุชู†ูŠู† complex ู…ุธุจูˆุทุŸ ู‡ุงูŠ ุงู„ุฎู…ุณุฉ ุชุนุงู„ูˆุง ู†ุดูˆู ูŠุจู‚ู‰
968
+
969
+ 243
970
+ 00:27:28,590 --> 00:27:32,510
971
+ ุจุฏูŠ ุฃุจุฏุฃ ุจู†ูุณ ุงู„ุชูƒุชูŠูƒ ุงู„ู…ุชุจุนุฉ ุนู†ุฏ ุญู„ ุงู„ู…ุซุงู„ูŠู†
972
+
973
+ 244
974
+ 00:27:32,510 --> 00:27:35,050
975
+ ุงู„ุณุงุจู‚ูŠู†
976
+
977
+ 245
978
+ 00:27:35,740 --> 00:27:45,940
979
+ ุจุฏุง ุงู‚ูˆู„ ู„ู‡ let Y ุชุณุงูˆูŠ E ุจุตุฑ X ุจูŠู‡ solution of
980
+
981
+ 246
982
+ 00:27:45,940 --> 00:27:53,640
983
+ the differential equation star ูˆุณู…ูŠู„ูŠ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ
984
+
985
+ 247
986
+ 00:27:53,640 --> 00:28:00,430
987
+ ุงู„ู„ูŠ ู‡ูŠ ุฑู‚ู… starูŠุจู‚ู‰ ุจู†ุงุกู‹ ุนู„ูŠู‡ ุจู‚ูˆู„ู‡ ุฏูŠ
988
+
989
+ 248
990
+ 00:28:00,430 --> 00:28:10,190
991
+ characteristic equation is R ุฃุณ ุฎู…ุณุฉ ู†ุงู‚ุต ุณุช ุนุดุฑ R
992
+
993
+ 249
994
+ 00:28:10,190 --> 00:28:18,240
995
+ ุจุฏูŠ ุณุงูˆูŠ ู‚ุฏุงุด Zeroุฃูˆ ู…ู…ูƒู† ุงุฎุฏ R ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุธู„ R
996
+
997
+ 250
998
+ 00:28:18,240 --> 00:28:24,880
999
+ ุฃุฑุจุนุฉ ู†ุงู‚ุต ุณุชุฉ ุนุดุฑ ูŠุณูˆู‰ ุฌุฏุงุด Zero ู‡ุฐุง ูุฑู‚ ุจูŠู†
1000
+
1001
+ 251
1002
+ 00:28:24,880 --> 00:28:33,070
1003
+ ุงู„ู…ุฑุจุนูŠู† ูŠุจู‚ู‰ Rูู‰ R ุชุฑุจูŠุน ู†ุงู‚ุต ุฃุฑุจุนุฉ ูู‰ R ุชุฑุจูŠุน
1004
+
1005
+ 252
1006
+ 00:28:33,070 --> 00:28:37,970
1007
+ ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูŠุณุงูˆูŠ Zero ู‡ุฐุง ุงู„ุฌูˆุฒ ูƒู…ุงู† ูุฑู‚ ุจูŠู†
1008
+
1009
+ 253
1010
+ 00:28:37,970 --> 00:28:46,010
1011
+ ุงู„ู…ุฑุจุนูŠู† ูŠุจู‚ู‰ R ูู‰ R ู†ุงู‚ุต ุงุชู†ูŠู† ูู‰ R ุฒุงุฆุฏ ุงุชู†ูŠู† ูู‰
1012
+
1013
+ 254
1014
+ 00:28:46,010 --> 00:28:52,070
1015
+ R ุชุฑุจูŠุน ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูŠุณุงูˆูŠ Zero ู‡ุฐุง ู„ุง ูŠู…ูƒู† ุชุญู„ูŠู„ู‡
1016
+
1017
+ 255
1018
+ 00:28:52,070 --> 00:28:59,160
1019
+ ุชู…ุงู…ุŸ ุฅุฐุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ู†ุง ูŠุง ุฅู…ุง R ุชุณุงูˆูŠ ZeroูŠุงู…ุง R
1020
+
1021
+ 256
1022
+ 00:28:59,160 --> 00:29:06,600
1023
+ ุชุณุงูˆูŠ ุงุชู†ูŠู†ุŒ ูŠุงู…ุง R ุชุณุงูˆูŠ ุณุงู„ุจ ุงุชู†ูŠู†ุŒ ูŠุงู…ุง R ุชุฑุจูŠู‡
1024
+
1025
+ 257
1026
+ 00:29:06,600 --> 00:29:12,060
1027
+ ุชุณุงูˆูŠ ุณุงู„ุจ ุงุฑุจุนุฉุŒ ู‡ุฐุง ุจุชุนุทูŠูƒ ุงู† R ุชุณุงูˆูŠ ุฒุงุฆุฏ ุงูˆ
1028
+
1029
+ 258
1030
+ 00:29:12,060 --> 00:29:23,380
1031
+ ู†ุงู‚ุต ุฌุฏุงุด ุงุชู†ูŠู† I ุฅุฐุง ุฃุตู„ุง ุนู†ุฏูŠ ูƒุงู… ุญู„ุฎู…ุณุฉ ุญู„ูˆู„
1032
+
1033
+ 259
1034
+ 00:29:23,380 --> 00:29:28,880
1035
+ ุงุชู†ูŠู† complex ูˆ ุชู„ุงุชุฉ real ุชู…ุงู…ุŸ ุงุฐุง ุจุชุฑูˆุญ ุงุฌูŠุจ
1036
+
1037
+ 260
1038
+ 00:29:28,880 --> 00:29:33,940
1039
+ ุดูƒู„ ุงู„ุญู„ ุงู„ุนุงู… ุจุณ ุงู„ real ุฒูŠ ู…ุง ุงู†ุช ุดุงูŠูู‡ุง ู‡ุฐุง
1040
+
1041
+ 261
1042
+ 00:29:33,940 --> 00:29:40,520
1043
+ ุนู†ุฏู‡ ุงู„ a ุจู‚ุฏุงุดุŸ Zero ูˆ ุงู„ bุŸ ุจุงุชู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุญู„
1044
+
1045
+ 262
1046
+ 00:29:40,520 --> 00:29:47,460
1047
+ ุจุงู„ุฐุงุช ูŠุนู†ูŠ ุงู† a ุชุณุงูˆูŠ zero ูˆ b ุชุณุงูˆูŠ ุงุชู†ูŠู† ูŠุจู‚ู‰
1048
+
1049
+ 263
1050
+ 00:29:47,460 --> 00:29:54,900
1051
+ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญู‡ุฐู‡ ู‡ูŠ ุญู„ู‚ุฉ
1052
+
1053
+ 264
1054
+ 00:29:54,900 --> 00:30:02,080
1055
+ ุนุงู…ุฉ ู„ุฅูŠู‚ุงุน
1056
+
1057
+ 265
1058
+ 00:30:08,760 --> 00:30:16,100
1059
+ ุณูŠ ูˆุงุญุฏ ููŠ E ุฃุณ ุฒูŠุฑูˆ E ุฃุณ ุฒูŠุฑูˆ ุจุฌุฏุงุด ู…ุน ุงู„ุณู„ุงู…ุฉ
1060
+
1061
+ 266
1062
+ 00:30:16,100 --> 00:30:24,360
1063
+ ุฒุงุฆุฏ C ุงุชู†ูŠู† E ุฃุณ ุงุชู†ูŠู† X ุฒุงุฆุฏ C ุชู„ุงุชุฉ E ุฃุณ ู†ุงู‚ุต
1064
+
1065
+ 267
1066
+ 00:30:24,540 --> 00:30:29,820
1067
+ ุฃุชู†ูŠู† ุฃูƒุณ ุฎู„ุตู†ุง ุงู„ real ูˆุฒูŠ ู…ุง ุงู†ุช ุดุงูŠู ูˆู‚ุงู„ ู‡ุฏูˆู„
1068
+
1069
+ 268
1070
+ 00:30:29,820 --> 00:30:34,360
1071
+ ุงู„ุชู„ุงุชุฉ real and different ูˆู„ุง ูˆุงุญุฏ ูŠูˆู… ุฒูŠ ุงู„ุชุงู†ูŠ
1072
+
1073
+ 269
1074
+ 00:30:34,360 --> 00:30:39,380
1075
+ ูŠุนู†ูŠ ูƒุฃู† ู‡ุฐุง ุงู„ุณุคุงู„ ุฃุตุจุญ ู…ุฒูŠุฌุง ู…ุง ุจูŠู† ุงู„ section
1076
+
1077
+ 270
1078
+ 00:30:39,380 --> 00:30:44,480
1079
+ ุงู„ู„ูŠ ุจูŠู† ุฅูŠุฏู†ุง ูˆ ุงู„ sectionุงู„ุฌุฐูˆุฑ ุงู„ู…ุงุถูŠ ูƒุงู†ูˆุง
1080
+
1081
+ 271
1082
+ 00:30:44,480 --> 00:30:50,040
1083
+ ุญู‚ูŠู‚ูŠุฉ ูˆู…ุฎุชู„ูุฉ ูŠุจู‚ู‰ ุงู†ุง ุนู†ุฏูŠ ุซู„ุงุซุฉ ุฌุฐูˆุฑ ูˆู‡ุฐู‡
1084
+
1085
+ 272
1086
+ 00:30:50,040 --> 00:30:54,500
1087
+ ุงู„ุซู„ุงุซุฉ ุญู‚ูŠู‚ูŠุฉ ูˆู…ุฎุชู„ูุฉ ู‡ุฐูˆู„ ุงุชู†ูŠู† complex ูˆ ุงู„
1088
+
1089
+ 273
1090
+ 00:30:54,500 --> 00:30:58,920
1091
+ complex are conjugated ูŠุจู‚ู‰ ุชุจุนูŠู† ุงู„ุญู‚ูŠู‚ู‡ ุจุฏู‡ ุงุทุจู‚
1092
+
1093
+ 274
1094
+ 00:30:58,920 --> 00:31:02,440
1095
+ ุนู„ูŠู‡ู… ุงู„ุญู‚ูŠู‚ู‡ ูˆ ุงู„ complex ุจุฏู‡ ุงุทุจู‚ ุนู„ูŠู‡ู… ุงู„
1096
+
1097
+ 275
1098
+ 00:31:02,440 --> 00:31:11,210
1099
+ complex ุฒุงุฏูƒูˆ ุตูŠู† ุงุชู†ูŠ๏ฟฝ๏ฟฝ ุงูƒุณ ุฒุงุฆุฏ C ุฎู…ุณุฉ ุตูŠู† ุงุชู†ูŠู†
1100
+
1101
+ 276
1102
+ 00:31:11,210 --> 00:31:17,290
1103
+ ุงูƒุณ ู„ุฅู† E of Zero ูŠุจู‚ู‰ ุฏุงุดุฑ ุจูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุดูƒู„
1104
+
1105
+ 277
1106
+ 00:31:17,290 --> 00:31:22,830
1107
+ ุงู„ general solution ู„ู…ูŠู† ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูู‡ู…
1108
+
1109
+ 278
1110
+ 00:31:22,830 --> 00:31:27,250
1111
+ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… start ุญุฏ ููŠูƒู… ุจุชุณุฃู„ ุฃูŠ ุณุคุงู„
1112
+
1113
+ 279
1114
+ 00:31:27,250 --> 00:31:31,190
1115
+ ุงู†ุง
1116
+
1117
+ 280
1118
+ 00:31:31,190 --> 00:31:39,780
1119
+ ุจุณุฃู„ ุจุนุฏูŠู† ุงู‡ุทูŠุจ ุงู†ุง ุจุณุฃู„ ุจุณุฃู„ูƒูˆุง ูƒู„ูƒูˆุง ุญู„ ุงู„ู…ุณุงุฆู„
1120
+
1121
+ 281
1122
+ 00:31:39,780 --> 00:31:47,540
1123
+ ุงู„ุชุงู„ูŠุฉ exercises ุฎู…ุณุฉ ุชู„ุงุชุฉ ุงู„ู…ุณุงุฆู„ ุงู„ุณุคุงู„ ุงู„ุชุงู„ุช
1124
+
1125
+ 282
1126
+ 00:31:47,540 --> 00:31:56,300
1127
+ ุจุฏู†ุง a ูˆ b ูˆ c ูˆุงู„ุณุคุงู„ ุงู„ุณุงุจุน ูˆุงู„ุณุคุงู„ ุงู„ุชุงู…
1128
+
1129
+ 283
1130
+ 00:32:00,350 --> 00:32:05,690
1131
+ ู‡ุฐุง ุงู„ุฑู‚ู… D ุฃูˆู„ ู…ุซุงู„ ููŠู‡ู… ู‡ูˆ ุฑู‚ู… D
1132
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/W-gk0MowpAY.srt ADDED
@@ -0,0 +1,1458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,700 --> 00:00:25,610
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุฃู†ุช ู‡ู†ุง ููŠ section 2-4 ู…ู†
4
+
5
+ 2
6
+ 00:00:25,610 --> 00:00:31,490
7
+ ุถุฑุจ ุงู„ู…ุตููˆูุฉ ุจู…ู‚ุฏุงุฑ ุซุงุจุช ุฃูˆ ุฌู…ุน ู…ุตููˆูุชูŠู† ุฃูˆ ุงู„ raw
8
+
9
+ 3
10
+ 00:00:31,490 --> 00:00:35,570
11
+ vectors ูˆ ุงู„ column vectors ู†ู†ุชู‚ู„ ู‡ู†ุง ููŠ section 2-5
12
+
13
+ 4
14
+ 00:00:35,570 --> 00:00:40,270
15
+ ู„ matrix multiplication ูŠุนู†ูŠ ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตูˆูุงุช
16
+
17
+ 5
18
+ 00:00:40,270 --> 00:00:44,210
19
+ ูŠุนู†ูŠ ุจุฏู†ุง ู†ุถุฑุจ ู…ุตููˆูุชูŠู† ููŠ ุจุนุถ ุงู„ section ุงู„ุณุงุจู‚
20
+
21
+ 6
22
+ 00:00:44,210 --> 00:00:48,010
23
+ ูƒุงู† ุถุฑุจ ูƒูˆู†ุณุชุงู† ููŠ ู…ุตููˆูุฉ ุฃู…ุง ู‡ู†ุง ุจุฏู†ุง ู†ุถุฑุจ two
24
+
25
+ 7
26
+ 00:00:48,010 --> 00:00:53,950
27
+ matrices ู…ุน ุจุนุถู‡ู… ุงู„ุจุนุถ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุนู†ุฏู†ุง ุงู„ system
28
+
29
+ 8
30
+ 00:00:53,950 --> 00:00:57,890
31
+ of linear equation ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูƒูˆูŠุณ ู‡ุฐุง
32
+
33
+ 9
34
+ 00:00:57,890 --> 00:01:02,810
35
+ ุงู„ system ุจุฏูŠ ุฃุญุงูˆู„ ุฃุตูŠุบู‡ ุจุตูŠุงุบุฉ ุฃุฎุฑู‰ ุจุงุณุชุฎุฏุงู…
36
+
37
+ 10
38
+ 00:01:02,810 --> 00:01:07,870
39
+ ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตููˆูุงุช ุฅุฐุง ุจุฏูŠ ุฃุฌู…ุน ุงู„ุซูˆุงุจุช ู‡ุฐูˆู„
40
+
41
+ 11
42
+ 00:01:07,870 --> 00:01:13,850
43
+ ูƒู„ู‡ู… ููŠ ู…ุตููˆูุฉ ูˆุงู„ู…ุฌุงู‡ูŠู„ ุงู„ X ููŠ ู…ุตููˆูุฉ ูˆุงู„ุซูˆุงุจุช
44
+
45
+ 12
46
+ 00:01:13,850 --> 00:01:17,770
47
+ ููŠ ู…ุตููˆูุฉ ุฒูŠ ู…ุง ุฃู†ุชู… ุดุงูŠููŠู† ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
48
+
49
+ 13
50
+ 00:01:18,060 --> 00:01:22,200
51
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ system ู‚ุฏุฑุช ุฃูƒุชุจ ุนู„ู‰ ุดูƒู„ ุญุงุตู„ ุถุฑุจ
52
+
53
+ 14
54
+ 00:01:22,200 --> 00:01:27,560
55
+ ู…ุตููˆูุชูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุงู† ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุตููˆูุฉ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡
56
+
57
+ 15
58
+ 00:01:27,560 --> 00:01:32,500
59
+ ุฅูŠุด ูƒู†ุง ู†ุณู…ูŠู‡ุง ูŠุง ุจู†ุงุชุŸ ู…ุตููˆูุฉ ุงู„ู…ุนุงู…ู„ุงุช ุงู„ู€
60
+
61
+ 16
62
+ 00:01:32,500 --> 00:01:38,440
63
+ coefficient matrix ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ู…ุตููˆูุฉ ุงู„ู…ุฌุงู‡ูŠู„ ุงู„ู€
64
+
65
+ 17
66
+ 00:01:38,440 --> 00:01:43,620
67
+ unknown matrix ู‡ุฐู‡ ู…ุตููˆูุฉ ุงู„ุซูˆุงุจุช ุงู„ู€ constant
68
+
69
+ 18
70
+ 00:01:43,620 --> 00:01:47,920
71
+ matrix ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุตููˆูุฉ ุงู„ุซูˆุงุจุช ู‡ุฐู‡ ู…ุตููˆูุฉ ุงู„ู…ุฌุงู‡ูŠู„
72
+
73
+ 19
74
+ 00:01:47,920 --> 00:01:54,420
75
+ ู‡ุฐู‡ ู…ุตููˆูุฉ ุงู„ู…ุนุงู…ู„ุงุช ู„ูˆ ุถุฑุจู†ุง ู‡ุฐูˆู„ ููŠ ุจุนุถ ุจูŠุทู„ุน
76
+
77
+ 20
78
+ 00:01:54,420 --> 00:01:58,020
79
+ ุนู†ุฏู†ุง ู…ู†ุŸ ุจูŠุทู„ุน ุนู†ุฏู†ุง ุงู„ู„ูŠ ููˆู‚ ูƒูŠู ุนู…ู„ูŠุฉ ุงู„ุถุฑุจุŸ
80
+
81
+ 21
82
+ 00:01:58,040 --> 00:02:09,500
83
+ ุจุถุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ A11x1 A12x2 A13x3
84
+
85
+ 22
86
+ 00:02:09,500 --> 00:02:13,060
87
+ A14x4 A1nxn
88
+
89
+ 23
90
+ 00:02:18,190 --> 00:02:23,950
91
+ ูˆู‡ูƒุฐุง ุงู„ุขู† ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ู†ูุณ ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ุนู†ุฏู†ุง
92
+
93
+ 24
94
+ 00:02:23,950 --> 00:02:28,790
95
+ ู‡ุฐุง ุจูŠุทู„ุน ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… ุงุซู†ูŠู† ุงู„ุตู ุงู„ุซุงู„ุซ ููŠ ู†ูุณ
96
+
97
+ 25
98
+ 00:02:28,790 --> 00:02:33,150
99
+ ุงู„ุนู…ูˆุฏ ุจูŠุทู„ุน ุงู„ู…ุนุงุฏู„ุฉ ุงุซู†ูŠู† ุงู„ุตู ุฑู‚ู… M ููŠ ุงู„ุนู…ูˆุฏ
100
+
101
+ 26
102
+ 00:02:33,150 --> 00:02:39,170
103
+ ุจูŠุนุทูŠู†ุง ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… M ุงู„ู„ูŠ ุนู†ุฏู†ุง ุทูŠุจ ู‡ุฐุง ุจุฏูŠ ูŠุฎู„ูŠ
104
+
105
+ 27
106
+ 00:02:39,170 --> 00:02:47,130
107
+ ุนู†ุฏู†ุง ุดุฑุท ู…ุชู‰ ูŠู…ูƒู† ุถุฑุจ ู…ุตููˆูุชูŠู† ุชู…ุงู… ูŠู…ูƒู† ุถุฑุจู‡ุง ุซุงู†ูŠ
108
+
109
+ 28
110
+ 00:02:47,130 --> 00:02:53,370
111
+ ุงู„ู…ุตููˆูุชูŠู† ุซุงู†ูŠ ุฅุฐุง ูƒุงู† ุนุฏุฏ ุฃุนู…ุฏุฉ ุงู„ู…ุตููˆูุฉ ุงู„ุฃูˆู„ู‰ ูŠุณุงูˆูŠ
112
+
113
+ 29
114
+ 00:02:53,370 --> 00:02:59,290
115
+ ุนุฏุฏ ุตููˆู ุงู„ู…ุตููˆูุฉ ุงู„ุซุงู†ูŠุฉ ุทู„ุนูŠ ู‡ุฐูˆู„ ุงู„ุฃุนู…ุฏุฉ ูƒู… ูˆุงุญุฏุŸ
116
+
117
+ 30
118
+ 00:02:59,290 --> 00:03:05,470
119
+ ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ุฅู† ุนุฏุฏ ุตููˆู ุงู„ุซุงู†ูŠุฉ ูˆุงุญุฏ
120
+
121
+ 31
122
+ 00:03:05,470 --> 00:03:11,730
123
+ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ุฅู† ูŠุจู‚ู‰ ุชุณุงูˆูŠ ุนุฏุฏ ุฃุนู…ุฏุฉ ุงู„ุฃูˆู„ู‰
124
+
125
+ 32
126
+ 00:03:11,730 --> 00:03:18,180
127
+ ู…ุน ุนุฏุฏ ุตููˆู ุงู„ุซุงู†ูŠุฉ ุฅุฐุง ูŠู…ูƒู† ุฃู† ุชุชู… ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ
128
+
129
+ 33
130
+ 00:03:18,180 --> 00:03:25,660
131
+ ูˆุงู„ู†ุงุชุฌ ู‡ูˆ ู…ุตููˆูุฉ ุนุจุงุฑุฉ ุนู† ุนุฏุฏ ุตููˆู ุงู„ู…ุตููˆูุฉ
132
+
133
+ 34
134
+ 00:03:25,660 --> 00:03:33,050
135
+ ุงู„ุฃูˆู„ู‰ ูˆุฃุนู…ุฏุฉ ู…ู† ุงู„ู…ุตููˆูุฉ ุงู„ุซุงู†ูŠุฉ ูˆู‡ูƒุฐุง ู‡ุฐุง ุงู„ูƒู„ุงู…
136
+
137
+ 35
138
+ 00:03:33,050 --> 00:03:36,130
139
+ ุงู„ู„ูŠ ุฃู†ุง ุจู‚ูˆู„ู‡ ุจุฏู†ุง ู†ุญุทู‡ ููŠ ุตูŠุบุฉ ุงู„ู€ definition
140
+
141
+ 36
142
+ 00:03:36,130 --> 00:03:40,590
143
+ ุงู„ุชุงู„ูŠุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู†ุง ุงู„ definition ุจูŠู‚ูˆู„ ู…ุงุฐุง
144
+
145
+ 37
146
+ 00:03:40,590 --> 00:03:48,290
147
+ ูŠุฃุชูŠ If ุงู„ A is an ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† M ููŠ N matrix ูŠุจู‚ู‰
148
+
149
+ 38
150
+ 00:03:48,290 --> 00:03:54,030
151
+ ู…ุตููˆูุฉ ุงู„ size ุชุจุนู‡ุง M ููŠ N ุนุฏุฏ ุงู„ุตููˆู M ุนุฏุฏ
152
+
153
+ 39
154
+ 00:03:54,030 --> 00:04:01,250
155
+ ุงู„ุฃุนู…ุฏุฉ N ูˆ B ูƒุงู†ุช ุนุจุงุฑุฉ ุนู† matrix ู„ N ููŠ K ูŠุจู‚ู‰
156
+
157
+ 40
158
+ 00:04:01,250 --> 00:04:06,170
159
+ ุนุฏุฏ ุงู„ุตููˆู ูŠุณุงูˆูŠ N ูˆุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ูŠุณุงูˆูŠ K ูŠุจู‚ู‰ ุนุฏุฏ
160
+
161
+ 41
162
+ 00:04:06,170 --> 00:04:11,410
163
+ ุงู„ุตููˆู ู‡ู†ุง ูŠุณุงูˆูŠ ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ู‡ู†ุง ุจุงู„ุถุจุท ุชู…ุงู…ุง ุฅุฐุง
164
+
165
+ 42
166
+ 00:04:11,410 --> 00:04:17,150
167
+ ูŠู…ูƒู† ุฃู† ุชุชู… ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ then we define the
168
+
169
+ 43
170
+ 00:04:17,150 --> 00:04:20,730
171
+ multiplication matrix ุงู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌุฉ ู…ู† ๏ฟฝ๏ฟฝู…ู„ูŠุฉ
172
+
173
+ 44
174
+ 00:04:20,730 --> 00:04:26,390
175
+ ุถุฑุจ ุจุฏูŠ ุฃุนุทูŠู‡ุง ุงู„ุฑู…ุฒ capital C ูˆู‡ูŠ ุชุณุงูˆูŠ A ููŠ B
176
+
177
+ 45
178
+ 00:04:26,390 --> 00:04:33,070
179
+ with size M ููŠ K ูŠุนู†ูŠ ูŠุง ุจู†ุงุช ุงู„ู…ุตููˆูุฉ ุงู„ุฃูˆู„ู‰ M ููŠ
180
+
181
+ 46
182
+ 00:04:33,070 --> 00:04:42,400
183
+ N ูˆุงู„ุซุงู†ูŠุฉ N ููŠ K ุงู„ุจุณุท ุจู‡ุฐู‡ ูˆู‡ุฐู‡ ุจูŠุธู„ M ููŠ K ูŠุจู‚ู‰
184
+
185
+ 47
186
+ 00:04:42,400 --> 00:04:48,420
187
+ ุงู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌุฉ ุจุฏู‡ุง ูŠูƒูˆู† ููŠู‡ุง M ู…ู† ุงู„ุตููˆู ูˆ K ู…ู†
188
+
189
+ 48
190
+ 00:04:48,420 --> 00:04:53,300
191
+ ุงู„ุฃุนู…ุฏุฉ ูˆุงุถุญ ูƒู„ุงู…ู†ุง ูƒู…ุŸ ู…ุฑุฉ ุซุงู†ูŠุฉ ุจู‚ูˆู„ ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏ
192
+
193
+ 49
194
+ 00:04:53,300 --> 00:04:58,760
195
+ ุงู„ู…ุตููˆูุฉ ุงู„ุฃูˆู„ู‰ ู†ุธุงู…ู‡ุง M ููŠ N ุงู„ู…ุตููˆูุฉ ุงู„ุซุงู†ูŠุฉ
196
+
197
+ 50
198
+ 00:04:58,760 --> 00:05:04,080
199
+ ู†ุธุงู…ู‡ุง N ููŠ K ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ููŠ ุงู„ุฃูˆู„ู‰ ูŠุณุงูˆูŠ ุนุฏุฏ
200
+
201
+ 51
202
+ 00:05:04,080 --> 00:05:09,380
203
+ ุงู„ุตููˆู ููŠ ุงู„ุซุงู†ูŠุฉ ุฅุฐุง ูŠู…ูƒู† ุฃู† ู†ู‚ูˆู… ุจุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุทุจ
204
+
205
+ 52
206
+ 00:05:09,380 --> 00:05:14,560
207
+ ุถุฑุจู†ุง ุดูˆ ุดูƒู„ ุงู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌุฉ ุดูƒู„ู‡ุง ูˆู…ุตููˆูุฉ ููŠู‡ุง M
208
+
209
+ 53
210
+ 00:05:14,560 --> 00:05:20,500
211
+ ู…ู† ุงู„ุตููˆู ูˆK ู…ู† ุงู„ุฃุนู…ุฏุฉ ู‡ุฐุง ูŠุฌุนู„ู†ูŠ ุฃุทุฑุญ ุงู„ุณุคุงู„
212
+
213
+ 54
214
+ 00:05:20,500 --> 00:05:28,850
215
+ ุงู„ุชุงู„ูŠ ุฃู†ุง ู‡ู†ุง ุถุฑุจุช A ููŠ B ู‡ู„ ู‡ุฐู‡ ู‡ูŠ B ููŠ AุŸ ุงุซู†ูŠู†
216
+
217
+ 55
218
+ 00:05:28,850 --> 00:05:33,350
219
+ ู‡ู„ ูŠู…ูƒู† ุฃู† ุชุชู… ุนู…ู„ูŠุฉ ุงู„ู€ B ููŠ AุŸ ุจู‚ูˆู„ ูˆุงู„ู„ู‡ ู…ุง ู‡ู†ุง
220
+
221
+ 56
222
+ 00:05:33,350 --> 00:05:38,810
223
+ ุนุงุฑููŠู† ุฅุฐุง ู„ูˆ ุฌูŠุช ุงู„ B ููŠ A ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ ุงู„ B ููŠ
224
+
225
+ 57
226
+ 00:05:38,810 --> 00:05:46,910
227
+ ุงู„ุฃูˆู„ ุงู„ B ุงู„ู„ูŠ ู‡ูŠ N ููŠ K ุงู„ุขู† A ู„ M ููŠ N ูŠุจู‚ู‰ M
228
+
229
+ 58
230
+ 00:05:46,910 --> 00:05:53,110
231
+ ููŠ N ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ู‡ู†ุง ู„ุง ูŠุณุงูˆูŠ ุนุฏุฏ ุงู„ุตููˆู ุฅุฐุง ู„ุง
232
+
233
+ 59
234
+ 00:05:53,110 --> 00:05:58,790
235
+ ูŠู…ูƒู† ุฃู† ุชุชู… ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ู‡ุฐู‡ ุฅุฐุง ุจู†ุงุก ุนู„ู‰ ุฐู„ูƒ ุจู‚ุฏุฑ
236
+
237
+ 60
238
+ 00:05:58,790 --> 00:06:05,450
239
+ ุฃุณุชู†ุชุฌ ุฃู† ุงู„ A ููŠ ุงู„ B ู„ูŠู‡ ุชุณุงูˆูŠ B ููŠ AุŸ ูŠุจู‚ู‰ ุนู…ู„ูŠุฉ
240
+
241
+ 61
242
+ 00:06:05,450 --> 00:06:10,530
243
+ ุถุฑุจ ุงู„ู…ุตููˆูุงุช ู„ูŠุณุช ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉุŒ ุจุนูƒุณ ุงู„ุฌู…ุน
244
+
245
+ 62
246
+ 00:06:11,180 --> 00:06:16,000
247
+ ุฌู…ุน ุงู„ู…ุตููˆูุฉ ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ ู„ูƒู† ุงู„ุถุฑุจ ุนู…ู„ูŠุฉ ู„ูŠุณุช
248
+
249
+ 63
250
+ 00:06:16,000 --> 00:06:20,440
251
+ ุฅุจุฏุงู„ูŠุฉ ูŠุจู‚ู‰ ุถุฑุจ ุงู„ุงุจุชูƒุงุดู† matrix is not
252
+
253
+ 64
254
+ 00:06:20,440 --> 00:06:26,280
255
+ commutative ู„ูŠุณุช ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ ุชุนุงู„ูˆุง ู†ุดูˆู ู‡ุฐุง
256
+
257
+ 65
258
+ 00:06:26,280 --> 00:06:29,960
259
+ ุงู„ูƒู„ุงู… ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน ุจุฃู…ุซู„ุฉ ู…ุฎุชู„ูุฉ
260
+
261
+ 66
262
+ 00:06:41,170 --> 00:06:46,570
263
+ ูŠุนู†ูŠ ุฅุฐุง ู…ุง ุนุฑู ุจุฏูƒ ุชุถุฑุจ ู…ุด ุนุฑู ุฎู„ุงุต ู…ุง ููŠ ุฏุงุนูŠ ู„ู‡ุง
264
+
265
+ 67
266
+ 00:06:46,570 --> 00:06:51,210
267
+ ูŠุดุบู„ ู†ู‚ุฏุฑุด ู†ุนู…ู„ู‡ุง ุดุบู„ู‡ุง ุฏูŠ for each of the full or
268
+
269
+ 68
270
+ 00:06:51,210 --> 00:06:53,770
271
+ for the following matrices ู„ูƒู„ ู…ู† ุงู„ู…ุตููˆูุงุช
272
+
273
+ 69
274
+ 00:06:53,770 --> 00:06:58,570
275
+ ุงู„ุชุงู„ูŠุฉ ูˆุทุงู†ูŠ ู†ู…ุฑุฉ A ูˆู†ู…ุฑุฉ B ู†ู…ุฑุฉ A ุณุคุงู„ ููŠ ุงู„ูƒุชุงุจ
276
+
277
+ 70
278
+ 00:06:58,570 --> 00:07:02,970
279
+ ูˆู†ู…ุฑุฉ B ุณุคุงู„ ุขุฎุฑ ุฃุนุชู‚ุฏ ุณุชุฉ ูˆุซู…ุงู†ูŠุฉ ุฃูˆ ุณุชุฉ ูˆุชุณุนุฉ
280
+
281
+ 71
282
+ 00:07:02,970 --> 00:07:08,310
283
+ ุงู„ุฃูˆู„ ุณุชุฉ ูˆุงู„ุซุงู†ูŠ ุชุณุนุฉ ุฃุนุชู‚ุฏ ุชู…ุงู…ุŸ ุฅุฐู† ุจุชุฏุฎู„
284
+
285
+ 72
286
+ 00:07:08,310 --> 00:07:14,170
287
+ ุงู„ู…ุตููˆูุฉ ุฅูŠู‡ุŸ ุงู„ู…ุตููˆูุฉ ููŠู‡ุง ุตููŠู† ูˆูƒู… ุนู…ูˆุฏ ูŠุง
288
+
289
+ 73
290
+ 00:07:14,170 --> 00:07:20,850
291
+ ุจู†ุงุชุŸ ุซู„ุงุซุฉ ุงู„ู…ุตููˆูุฉ ุฏูŠ ููŠู‡ุง ุซู„ุงุซุฉ ุตููˆู ูˆุนู…ูˆุฏูŠู†ุŒ
292
+
293
+ 74
294
+ 00:07:20,850 --> 00:07:27,210
295
+ ู…ุธุจูˆุทุŸ ุฅุฐู† ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ู‡ู†ุง ูŠุณุงูˆูŠ ุนุฏุฏ ุงู„ุตููˆู ู‡ู†ุงุŒ
296
+
297
+ 75
298
+ 00:07:27,210 --> 00:07:33,490
299
+ ุฅุฐู† ู‡ุฐุง ุงู„ุถุฑุจ ู…ู…ูƒู† ุฃู† ูŠุญุฏุซ ูˆุงู„ู†ุชุฌ ู‡ูˆ ู…ุตููˆูุฉ ู†ุธุงู…ู‡ุง
300
+
301
+ 76
302
+ 00:07:33,490 --> 00:07:41,190
303
+ 2ร—2 ุจุณ ุตููŠู† ูˆุนู…ุฏูŠู† ูƒูŠู ุจุฏูŠ ุฃุชู… ูƒุชุงู„ุชู‡ุงุŸ ุทู„ุนูŠ ู„ูŠ ู‡ู†ุง
304
+
305
+ 77
306
+ 00:07:41,190 --> 00:07:48,040
307
+ ู†ู…ุฑุฉ A ุจุฌูŠ ุจู‚ูˆู„ู‡ ุจูƒุชุจ ุงู„ู…ุตููˆูุฉ a ููŠ b ุฒูŠ ู…ุง ู‡ูˆ ู‚ุงู„
308
+
309
+ 78
310
+ 00:07:48,040 --> 00:07:54,140
311
+ ู‡ู†ุง a ููŠ b ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ a ุงู„ู„ูŠ ู‡ูŠ ุงุซู†ูŠู† ูˆุงุญุฏ
312
+
313
+ 79
314
+ 00:07:54,140 --> 00:08:00,800
315
+ ุตูุฑ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุซู†ูŠู† ุงุซู†ูŠู† ููŠ b ุงู„ู„ูŠ ู‡ูŠ ุงุซู†ูŠู†
316
+
317
+ 80
318
+ 00:08:00,800 --> 00:08:07,600
319
+ ุฃุฑุจุนุฉ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ุซู„ุงุซุฉ ูˆุงุญุฏ ุงู„ู†ุงุชุฌ ุจุฏูŠ ุฅูŠุงู‡ุง ุชุทู„ุน
320
+
321
+ 81
322
+ 00:08:07,600 --> 00:08:15,600
323
+ ู…ุตููˆูุฉ ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ูƒู…ุง ุฒุนู…ู†ุง ู…ุธุจูˆุท ูŠุจู‚ู‰ ุฃู†ุง ุจู‚ุฏุฑ
324
+
325
+ 82
326
+ 00:08:15,600 --> 00:08:19,620
327
+ ุฃุนุฑู ู‚ุฏูŠุด ู‡ุฐุง ุงู„ุตููˆู ูˆู‡ุฐุง ุงู„ุนู…ู„ูŠุฉ ู‚ุจู„ ุฃู† ุฃู‚ูˆู…
328
+
329
+ 83
330
+ 00:08:19,620 --> 00:08:24,620
331
+ ุจุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ูƒูŠู ุจุฑูˆุญ ููŠ ุงู„ู‡ุงู…ุด ุจู‚ูˆู„ ุงู„ุฃูˆู„ู‰ ุงุซู†ูŠู†
332
+
333
+ 84
334
+ 00:08:24,620 --> 00:08:30,420
335
+ ููŠ ุซู„ุงุซุฉ ูˆุงู„ุซุงู†ูŠุฉ ุซู„ุงุซุฉ ููŠ ุงุซู†ูŠู† ุฅุฐุง ู…ู…ูƒู† ุฃู† ุชุชู…
336
+
337
+ 85
338
+ 00:08:30,420 --> 00:08:34,320
339
+ ุงู„ุนู…ู„ูŠุฉ ูˆุจูŠุธู‡ุฑ ู‚ุฏูŠุด ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ูŠุจู‚ู‰ ุงู„ู…ุตููˆูุฉ
340
+
341
+ 86
342
+ 00:08:34,320 --> 00:08:38,440
343
+ ุงู„ู†ุชูŠุฌุฉ ุฃู†ุง ุนุงุฑู ููŠู‡ุง ุตููŠู† ูˆุนู…ูˆุฏูŠู† ู‚ุจู„ ุฃู† ุฃุจุฏุฃ
344
+
345
+ 87
346
+ 00:08:38,440 --> 00:08:44,390
347
+ ุงู„ุขู† ุนู…ู„ูŠู‹ุง ูƒูŠู ุณุชุชู… ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุดูˆู ูŠุง ู…ู†ู‰ ุจุฏูŠ
348
+
349
+ 88
350
+ 00:08:44,390 --> 00:08:50,830
351
+ ุจุถุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูƒู„ ุนู†ุตุฑ ู…ุน ู†ุธูŠุฑู‡
352
+
353
+ 89
354
+ 00:08:50,830 --> 00:08:57,930
355
+ ูˆุจุฌู…ุน ุงู„ู†ุงุชุฌ ุนู†ุตุฑ ุฃูˆู„ ููŠ ุงู„ู…ุตููˆูุฉ ุงู„ุฌุฏูŠุฏุฉ ุทู„ุน ู‡ู†ุง
356
+
357
+ 90
358
+ 00:08:57,930 --> 00:09:04,690
359
+ ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ุฃุฑุจุนุฉ ูˆุงุญุฏ ููŠ ูˆุงุญุฏ ูˆุงุญุฏ ูˆุฃุฑุจุนุฉ ุฎู…ุณุฉ
360
+
361
+ 91
362
+ 00:09:04,690 --> 00:09:12,190
363
+ ุตูุฑ ูŠุจู‚ู‰ ุงู„ุนู†ุตุฑ ุงู„ุฃูˆู„ ุฎู…ุณุฉ ุงู„ู„ูŠ ุนู…ู„ุช ู„ู„ุนู…ูˆุฏ ุงู„ุฃูˆู„
364
+
365
+ 92
366
+ 00:09:12,190 --> 00:09:18,230
367
+ ุจุฏูŠ ุฃุฑูˆุญ ุฃุนู…ู„ ู„ู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ 2ร—4 ุซู…ุงู†ูŠุฉ ูˆุณุงู„ุจ
368
+
369
+ 93
370
+ 00:09:18,230 --> 00:09:25,960
371
+ ูˆุงุญุฏ ุจุฏู„ ุณุจุนุฉ ูˆู‡ู†ุง ุตูุฑ ูŠุจู‚ู‰ ุณุจุนุฉ ุฎู„ุตู†ุง ุงู„ุตู ุงู„ุฃูˆู„
372
+
373
+ 94
374
+ 00:09:25,960 --> 00:09:32,760
375
+ ุจูŠุฌูŠ ู„ู„ุตู ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ุจุงุฌูŠ ู„ู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ
376
+
377
+ 95
378
+ 00:09:32,760 --> 00:09:38,340
379
+ ุงู„ุฃูˆู„ ูƒู„ ุนู†ุตุฑ ู…ุน ู†ุธูŠุฑู‡ ู‡ู†ุง ุณุงู„ุจ ุงุซู†ูŠู† ูˆู‡ู†ุง ุณุงู„ุจ
380
+
381
+ 96
382
+ 00:09:38,340 --> 00:09:47,310
383
+ ุงุซู†ูŠู† ุณุงู„ุจ ุฃุฑุจุนุฉ ุณุงู„ุจ ุฃุฑุจุนุฉ ูˆุณุชุฉ ุจูŠุถู„ ุงุซู†ูŠู† ุงู„ุขู†
384
+
385
+ 97
386
+ 00:09:47,310 --> 00:09:52,430
387
+ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู„ุซ ุณุงู„ุจ ุฃุฑุจุนุฉ ู…ูˆุฌุจ
388
+
389
+ 98
390
+ 00:09:52,430 --> 00:09:58,650
391
+ ุจุงุซู†ูŠู† ุจูŠุธู„ ุณุงู„ุจ ุงุซู†ูŠู† ุณุงู„ุจ ุงุซู†ูŠู† ู…ูˆุฌุจ ุจุงุซู†ูŠู†
392
+
393
+ 99
394
+ 00:09:58,650 --> 00:10:05,270
395
+ ุตูุฑ ุชู…ุงู…ุŸ ุฃุธู† ู†ูุณ ุงู„ุดูŠุก ุงู„ู„ูŠ ุชุนู„ู…ู†ุง ููŠ ุงู„ุซุงู†ูˆูŠุฉ
396
+
397
+ 100
398
+ 00:10:05,930 --> 00:10:10,950
399
+ ุจุบูŠุฑู†ุง ุดูˆูŠุฉ ู„ูƒู„ู…ุฉ ุนุงุฏูŠ ุฌุฏู‹ุง ุจุงุฌูŠ ุงู„ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุฃูˆู„
400
+
401
+ 101
402
+ 00:10:10,950 --> 00:10:14,230
403
+ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจุถุฑุจ ูƒู„ ุนู†ุตุฑ ููŠ ู†ุธูŠุฑู‡ ูˆุจุฌู…ุน ุจุชุทู„ุน
404
+
405
+ 102
406
+ 00:10:14,230 --> 00:10:19,790
407
+ ุงู„ุนู†ุตุฑ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุฎู…ุณุฉ ู†ูุณ ุงู„ุตู ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ
408
+
409
+ 103
410
+ 00:10:19,790 --> 00:10:24,350
411
+ ุจุฌูŠุจ ู„ู„ุนู†ุตุฑ ุงู„ุซุงู†ูŠ ุฎู„ุตุช ุงู„ุตู ุงู„ุฃูˆู„ ุถุฑุจุชู‡ ููŠ ูƒู„
412
+
413
+ 104
414
+ 00:10:24,350 --> 00:10:28,580
415
+ ุนู†ุงุตุฑ ุงู„ู…ุตููˆูุฉ ุจุนุฏ ุฐู„ูƒ ุจุฑูˆุญ ุจุงู„ุตู ุงู„ุซุงู†ูŠ ูˆุจุถุฑุจู‡ ููŠ
416
+
417
+ 105
418
+ 00:10:28,580 --> 00:10:32,960
419
+ ูƒู„ ุนู†ุงุตุฑ ูˆุจุถุฑุจู‡ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูˆุจูŠุทู„ุน ู„ูŠู‡ ุงู„ุนู†ุตุฑ
420
+
421
+ 106
422
+ 00:10:32,960 --> 00:10:35,780
423
+ ุงู„ุฃูˆู„ ู…ู† ุงู„ุตู ุงู„ุซุงู†ูŠ ูˆุจุถุฑุจู‡ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ูˆ
424
+
425
+ 107
426
+ 00:10:35,780 --> 00:10:39,740
427
+ ุจูŠุทู„ุนู‡ ู„ู„ุนู†ุตุฑ ุงู„ุซุงู†ูŠ ู…ู† ุงู„ุตู ุงู„ุซุงู†ูŠ ูˆุจูŠูƒูˆู† ุฎู„ุตุช
428
+
429
+ 108
430
+ 00:10:39,740 --> 00:10:44,340
431
+ ูŠุจู‚ู‰ ู‡ูŠ ุทู„ุนุช ู‚ุฏูŠุด ู†ุธุงู…ู‡ุง ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ูƒู…ุง ุงุฒุนู…ู†ุง
432
+
433
+ 109
434
+ 00:10:44,340 --> 00:10:50,960
435
+ ุงุญู†ุง ู‚ุจู„ ู‚ู„ูŠู„ ุชู…ุงู…ุŸ ุทูŠุจ ุจุฏูŠ ุฃุฌูŠ ุงู„ุขู† ู„ B ููŠ A
436
+
437
+ 110
438
+ 00:10:50,960 --> 00:10:59,060
439
+ ุชุทู„ุน ู„ูŠ ู‡ู†ุง ุจุฏูŠ ุฃุฌูŠ ู„ู„ B ููŠ A and ููŠ ุฅูŠู‡ุŸ ู‚ุฏูŠุด ู†ุธุงู…
440
+
441
+ 111
442
+ 00:10:59,060 --> 00:11:06,660
443
+ ุงู„ BุŸ ุซู„ุงุซุฉ ููŠ ุงุซู†ูŠู† ุฅุฐุง ู‡ุงุฏูŠ ุซู„ุงุซุฉ ููŠ ุงุซู†ูŠู† ู‚ุฏูŠุด
444
+
445
+ 112
446
+ 00:11:06,660 --> 00:11:14,240
447
+ ู†ุธุงู… ุงู„ AุŸ ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ ุฅุฐุง ูŠู…ูƒู†
448
+
449
+ 113
450
+ 00:11:14,240 --> 00:11:21,490
451
+ ุฃู† ุชุชู… ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ูˆุงู„ู†ุงุชุฌ ุซู„ุงุซุฉ ุตููˆู ูˆุซู„ุงุซุฉ ุฃุนู…ุฏุฉุŒ
452
+
453
+ 114
454
+ 00:11:21,490 --> 00:11:26,850
455
+ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุซู„ุงุซุฉ ุตููˆู ูˆุซู„ุงุซุฉ ุฃุนู…ุฏุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠ
456
+
457
+ 115
458
+ 00:11:26,850 --> 00:11:31,570
459
+ ุฃู‚ูˆู„ู‡ ู‡ูŠูƒ ู…ุดุงู† ู…ุง ุชุชู„ุฎุจุทูˆุง ูŠุง ุจู†ุงุช ุจุฑูˆุญ ุจุตูุทู‡ู… ุฌุงู†ุจ ุจุนุถ
460
+
461
+ 116
462
+ 00:11:31,570 --> 00:11:36,590
463
+ ูˆุจุนุฏ ุฐู„ูƒ ุจู‚ูˆู… ุจุนู…ู„ูŠุฉ ุถุฑุจ ู…ุด ุนู† ุบูŠุฑู‡ู… ูŠุจู‚ู‰ ุจุฌูŠ ู„ B
464
+
465
+ 117
466
+ 00:11:36,590 --> 00:11:43,530
467
+ ูˆุจูƒุชุจู‡ุง ูƒู…ุง ู‡ูŠ ุงุซู†ูŠู† ุฃุฑุจุนุฉ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ุซู„ุงุซุฉ
468
+
469
+ 118
470
+ 00:11:43,530 --> 00:11:56,060
471
+ ูˆุงุญุฏ ุจุฏูŠ ุฃุฌูŠ ู„ A ุงุซู†ูŠู† ูˆุงุญุฏ ุตูุฑ ูˆุงุญุฏ ุงุซู†ูŠู† ูˆุงุญุฏ ุตูุฑ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุซู†ูŠู†
472
+
473
+ 119
474
+ 00:11:56,060 --> 00:12:01,200
475
+ ุงุซู†ูŠู† ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุงู„ู†ุงุชุฌ ุจุฏูŠ ูŠูƒูˆู† ุซู„ุงุซุฉ
476
+
477
+ 120
478
+ 00:12:01,200 --> 00:12:06,520
479
+ ููŠ ุซู„ุงุซุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ
480
+
481
+ 121
482
+ 00:12:06,520 --> 00:12:12,040
483
+ ุจุฏูŠ ุฃุจุฏุฃ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุงุซู†ูŠู† ููŠ
484
+
485
+ 122
486
+ 00:12:12,040 --> 00:12:15,240
487
+ ุงุซู†ูŠู† ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ููŠ ุณุงู„ุจ ูˆุงุญุฏ
488
+
489
+ 123
490
+ 00:12:18,720 --> 00:12:24,140
491
+ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุงุซู†ูŠู† ูˆุณุงู„ุจ ุซู…ุงู†ูŠุฉ
492
+
493
+ 124
494
+ 00:12:24,140 --> 00:12:29,760
495
+ ุจูŠุตูŠุฑ ุณุงู„ุจ ุณุชุฉ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู„ุซ ุตูุฑ
496
+
497
+ 125
498
+ 00:12:29,760 --> 00:12:34,880
499
+ ูˆุฃุฑุจุนุฉ ููŠ ุงุซู†ูŠู† ุจุซู…ุงู†ูŠุฉ ุงู„ู„ุญุธุฉ ุงู„ุตู ุงู„ุฃูˆู„ ู…ูƒูˆู‘ู† ู…ู†
500
+
501
+ 126
502
+ 00:12:34,880 --> 00:12:39,400
503
+ ุซู„ุงุซุฉ ุนู†ุงุตุฑ ุฎู„ุตุช ุงู„ุตู ุงู„ุฃูˆู„ ุงู„ุขู† ุจุฏูŠ ุฃุฌูŠ ู„ู„ุตู
504
+
505
+ 127
506
+ 00:12:39,400 --> 00:12:45,210
507
+ ุงู„ุซุงู†ูŠ ูˆุฃุถุฑุจู‡ ููŠ ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ู…ุตููˆูุฉ ุจุงู„ุชุฑุชูŠุจ ุงู„ุตู
508
+
509
+ 128
510
+ 00:12:45,210 --> 00:12:52,890
511
+ ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุงุซู†ูŠู† ูˆูˆุงุญุฏ ุซู„ุงุซุฉ ูŠุจู‚ู‰
512
+
513
+ 129
514
+ 00:12:52,890 --> 00:12:57,110
515
+ ู‡ูŠ ุซู„ุงุซุฉ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ู‡ูŠ ูˆุงุญุฏ
516
+
517
+ 130
518
+ 00:12:57,110 --> 00:13:03,750
519
+ ูˆุงุซู†ูŠู† ูƒู…ุงู† ุซู„ุงุซุฉ ุงู„ุตู ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุตูุฑ ูˆู‡ู†ุง ุณุงู„ุจ
520
+
521
+ 131
522
+ 00:13:03,750 --> 00:13:08,710
523
+ ุจุงุซู†ูŠู† ุงู„ุขู† ุงู„ุตู ุงู„ุซุงู„ุซ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุซู„ุงุซุฉ ููŠ
524
+
525
+ 132
526
+ 00:13:08,710 --> 00:13:16,100
527
+ ุงุซู†ูŠู† ุณุชุฉ ูˆู†ุงู‚ุต ูˆุงุญุฏ ูŠุธู„ ุฎู…ุณุฉ ุงู„ุขู† ุจุงู„ุฏุงู„ูŠ ู„ู„ุตู
528
+
529
+ 133
530
+ 00:13:16,100 --> 00:13:21,680
531
+ ุงู„ุซุงู„ุซ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุซู„ุงุซุฉ ูˆู†ุงู‚ุต ุงุซู†ูŠู† ุจูŠุถู„
532
+
533
+ 134
534
+ 00:13:21,680 --> 00:13:28,040
535
+ ู‚ุฏูŠุด ูˆุงุญุฏ ุงู„ุตู ุงู„ุซุงู„ุซ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู„ุซ ุตูุฑ ูˆู‡ู†ุง
536
+
537
+ 135
538
+ 00:13:28,040 --> 00:13:33,120
539
+ ุงุซู†ูŠู† ุจุงู„ุดูƒู„ ุฃู†ู‡ ุฒูŠ ู…ุง ุฃู†ุชู… ุดุงูŠููŠู†ู‡ ู‡ุฐู‡ ุทู„ุนุช ุซู„ุงุซุฉ ููŠ
540
+
541
+ 136
542
+ 00:13:33,120 --> 00:13:39,290
543
+ ุซู„ุงุซุฉ ุฒูŠ ู…ุง ุงุญู†ุง ู‚ู„ู†ุง ู‡ู†ุง ู‚ุจู„ ู‚ู„ูŠู„ ุฅุฐู† ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ
544
+
545
+ 137
546
+ 00:13:39,290 --> 00:13:45,890
547
+ ู…ู…ูƒู† ุฃู† ุชุชู… ุฎู„ุตู†ุง ู†ู…ุฑุฉ A ุจุฏูŠ ุฃุฌูŠ ู„ู†ู…ุฑุฉ B ู…ู† ุงู„ู…ุซุงู„
548
+
549
+ 138
550
+ 00:13:45,890 --> 00:13:52,410
551
+ ุจุฑุถู‡ ุจูŠู…ู†ุนุทูŠู†ูŠ ู…ุตููˆูุฉ ุงู„ุฃูˆู„ู‰ ู‡ุฐู‡ ู†ุธุงู…ู‡ุง ุตู ูˆุงุญุฏ
552
+
553
+ 139
554
+ 00:13:52,410 --> 00:14:01,810
555
+ ูˆุซู„ุงุซุฉ ุฃุนู…ุฏุฉ ู‡ุฐู‡ ุซู„ุงุซุฉ ุตููˆู ูˆู‚ุฏูŠุด ูˆุนู…ูˆุฏูŠู† ุนุฏุฏ
556
+
557
+ 140
558
+ 00:14:01,810 --> 00:14:07,650
559
+ ุงู„ุฃุนู…ุฏุฉ ูŠุณุงูˆูŠ ุนุฏุฏ ุงู„ุตููˆู ุฅุฐุง ู…ู…ูƒู† ูˆุงู„ู†ุชุฌ ู‡ูˆ ู…ุตููˆูุฉ
560
+
561
+ 141
562
+ 00:14:07,650 --> 00:14:12,370
563
+ ูˆุงุญุฏ ููŠ ุงุซู†ูŠู† ูŠุนู†ูŠ ููŠ ุงู„ุตู ูˆุงุญุฏ ูˆุนู…ูˆุฏูŠู† ูŠุนู†ูŠ ุจุณ
564
+
565
+ 142
566
+ 00:14:12,370 --> 00:14:16,030
567
+ ุนู†ุตุฑูŠู† ููŠู‡ุง ุดุงูŠููŠู† ู…ู† ุงู„ูƒุชุงุฑ ุงู„ู„ูŠ ุจูŠุทู„ุน ุจุณ ุนู†ุตุฑูŠู†
568
+
569
+ 143
570
+ 00:14:16,030 --> 00:14:27,250
571
+ ูƒูŠู ูƒุงู† ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุจุฏุฃ ุฃุฎุฏ ู‡ู†ุง FB ูŠุณุงูˆูŠ FB 2 3 -1
572
+
573
+ 144
574
+ 00:14:27,250 --> 00:14:34,330
575
+ FB 2 0 1 4 -2 1
576
+
577
+ 145
578
+ 00:14:37,410 --> 00:14:42,450
579
+ ุจุฏู‡ุง ูŠุทู„ุน ุนู†ุฏูŠ ู…ุตููˆูุฉ ู‚ูˆู„ู†ุง ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ููŠ ุงุซู†ูŠู†
580
+
581
+ 146
582
+ 00:14:42,450 --> 00:14:52,270
583
+ ู…ุง ููŠุด ุบูŠุฑู‡ุง ู„ูŠุดุŸ ู„ุฃู† ู‡ุฐู‡ ูˆุงุญุฏ ููŠ ุซู„ุงุซุฉ ูˆู‡ุฐู‡ ุซู„ุงุซุฉ
584
+
585
+ 147
586
+ 00:14:52,270 --> 00:14:57,170
587
+ ููŠ ุงุซู†ูŠู† ุฅุฐุง ุซู„ุงุซุฉ ู…ุน ุซู„ุงุซุฉ ุจูŠุธู„ ูˆุงุญุฏ ูˆุงุซู†ูŠู† ุตู
588
+
589
+ 148
590
+ 00:14:57,170 --> 00:15:03,610
591
+ ูˆุงุญุฏ ูˆุนู…ูˆุฏูŠู† ูู‚ุท ู„ุง ุบูŠุฑ ุชุนุงู„ู‰ ู†ุถุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ุทุจุนู‹ุง
592
+
593
+ 149
594
+ 00:15:03,610 --> 00:15:09,780
595
+ ู…ุง ููŠุด ุบูŠุฑู‡ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ู‡ุง ุทู„ุน ุงู„ุตู ุงู„ุฃูˆู„ ููŠ
596
+
597
+ 150
598
+ 00:15:09,780 --> 00:15:18,500
599
+ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ 2 ููŠ 2 ุฃุฑุจุนุฉ ูˆ3 7 ูˆ2 9 ูŠุจู‚ู‰
600
+
601
+ 151
602
+ 00:15:18,500 --> 00:15:25,140
603
+ ุงู„ุนู†ุตุฑ ุงู„ุฃูˆู„ 9 ู…ุง ููŠุด ุบูŠุฑู‡ ุงู„ุตู ู†ูุณู‡ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ
604
+
605
+ 152
606
+ 00:15:25,140 --> 00:15:32,680
607
+ ูŠุจู‚ู‰ ุตูุฑ ูˆู‡ู†ุง 12 ูˆู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ูŠุจู‚ู‰ 11 ู…ุง ููŠุด ุบูŠุฑ
608
+
609
+ 153
610
+ 00:15:32,680 --> 00:15:38,860
611
+ ู‡ูŠูƒุŸ ุฒูŠ ู…ุง ุฃู†ุชู… ุดุงูŠููŠู†ู‡ุง ุตู ูˆุงุญุฏ ูˆุนู…ูˆุฏูŠู† ูู‚ุท ู‡ุฐุง a ููŠ
612
+
613
+ 154
614
+ 00:15:38,860 --> 00:15:46,720
615
+ b ุทุจ ุจุชุฌูŠ ู„ b ููŠ a ุชุนุงู„ูˆุง b ููŠ a ู„ูˆ ุฌูŠุช ู‚ู„ุช ุงู„ b ู‡ูŠ
616
+
617
+ 155
618
+ 00:15:46,720 --> 00:15:51,700
619
+ ุนุจุงุฑุฉ ุนู† ุซู„ุงุซุฉ ููŠ ุงุซู†ูŠู† ููŠ ุงู„ู‡ุนู… ู…ุด ู‡ูŠูƒ ู‡ูŠ ุซู„ุงุซุฉ
620
+
621
+ 156
622
+ 00:15:51,700 --> 00:15:59,470
623
+ ููŠ ุงุซู†ูŠู† ูˆุฌูŠุช ู„ a ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ููŠ ุซู„ุงุซุฉ ุนุฏุฏ
624
+
625
+ 157
626
+ 00:15:59,470 --> 00:16:05,610
627
+ ุงู„ุฃุนู…ุฏุฉ ู„ุง ูŠุณุงูˆูŠ ุนุฏุฏ ุงู„ุตููˆู ุจุงู„ุชุงู„ูŠ ู„ุง ูŠู…ูƒู† ุฃู†
628
+
629
+ 158
630
+ 00:16:05,610 --> 00:16:18,070
631
+ ูŠุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุจุงู„ุฏุงู„ูŠ and ุงู„ b ููŠ a does not exist
632
+
633
+ 159
634
+ 00:16:19,440 --> 00:16:29,440
635
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุด ู…ู…ูƒู† ู†ู‚ูˆู„ู‡ ู„ูŠุดุŸ because the
636
+
637
+ 160
638
+ 00:16:29,440 --> 00:16:34,340
639
+ number of
640
+
641
+ 161
642
+ 00:16:34,340 --> 00:16:46,440
643
+ columns in ุงู„ู…ุตููˆูุฉ a ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ููŠ ุงู„ู…ุตููˆูุฉ a is
644
+
645
+ 162
646
+ 00:16:46,440 --> 00:16:48,680
647
+ three and
648
+
649
+ 163
650
+ 00:16:51,910 --> 00:17:05,530
651
+ the number of rows in B is ุนุฏุฏ ุงู„ุตููˆู ููŠ ุงู„ู…ุตููˆูุฉ
652
+
653
+ 164
654
+ 00:17:05,530 --> 00:17:08,850
655
+ ุจูŠ
656
+
657
+ 165
658
+ 00:17:08,850 --> 00:17:15,410
659
+ .. ุฅูŠุด ุงุญู†ุง ุจุฏู†ุง ุจูŠ ููŠ ุฅูŠู‡ุŸ ู„ุฃ ุจุฏู†ุง ููŠ ุจูŠุŒ ุงู„ุฃูˆู„ู‰
660
+
661
+ 166
662
+ 00:17:15,410 --> 00:17:25,130
663
+ ุนุฏุฏ ู…ู† ุจูŠ ููŠ ุจูŠ is three ูˆู‡ู†ุง ุนุฏุฏ ุงู„ุตููˆู is one
664
+
665
+ 167
666
+ 00:17:25,130 --> 00:17:33,790
667
+ ุงู„ุฃูˆู„ู‰ ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ููŠู‡ุง ุงุซู†ูŠู† ูˆุงู„ุซุงู†ูŠุฉ ูˆุงุญุฏ ูˆุฏูˆู„
668
+
669
+ 168
670
+ 00:17:33,790 --> 00:17:39,650
671
+ ุงุซู†ูŠู† are not equal ู…ู† ู‡ู†ุง ู„ุง ูŠู…ูƒู† ุฃู† ุชุชู… ุนู…ู„ูŠุฉ
672
+
673
+ 169
674
+ 00:17:39,650 --> 00:17:40,370
675
+ ุงู„ุถุฑุจ
676
+
677
+ 170
678
+ 00:17:59,400 --> 00:18:09,360
679
+ ู…ุซุงู„ ุงุซู†ูŠู† example two write
680
+
681
+ 171
682
+ 00:18:09,360 --> 00:18:14,860
683
+ the system write the system
684
+
685
+ 172
686
+ 00:18:16,500 --> 00:18:23,840
687
+ ูƒุชุจูˆู„ู†ุง ุงู„ system ุงู„ู„ูŠ ู‡ูˆ ุงุซู†ูŠู† X one ุฒุงุฆุฏ ุฎู…ุณุฉ X
688
+
689
+ 173
690
+ 00:18:23,840 --> 00:18:33,000
691
+ two ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆุซู„ุงุซุฉ X one ู†ุงู‚ุต ุงุซู†ูŠู† X
692
+
693
+ 174
694
+ 00:18:33,000 --> 00:18:40,520
695
+ two ุจุฏู‡ ูŠุณุงูˆูŠ ุตูุฑ ูˆ X one ุฒุงุฆุฏ
696
+
697
+ 201
698
+ 00:22:08,530 --> 00:22:15,350
699
+ x ุจุฏู‡ ูŠุณุงูˆูŠ ุจูŠู‡ ุงู„ู€ a ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู„ู€ a
700
+
701
+ 202
702
+ 00:22:15,350 --> 00:22:21,310
703
+ ู…ูˆุฌูˆุฏุฉ ู‡ุฐุง ุงู„ู€ a ููŠ ุงู„ู€ x ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ
704
+
705
+ 203
706
+ 00:22:21,310 --> 00:22:30,530
707
+ ุงู„ู€ a ุงู„ู„ูŠ ู‡ูŠุจู‚ู‰ ุนู†ุงุตุฑู‡ุง ุณุงู„ุจ 2 1 3 ูˆุฏูŠ 3 0 1 ููŠ
708
+
709
+ 204
710
+ 00:22:30,530 --> 00:22:36,990
711
+ ู…ุตููˆูุฉ ู‡ู†ุง ู…ูŠู† ู‡ูŠ ุงู„ู„ู‡ ุฃุนู„ู… ุจุฏู‡ุง ุชุณุงูˆูŠ 0 ูˆ 0
712
+
713
+ 205
714
+ 00:22:38,870 --> 00:22:45,670
715
+ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ู†ุธุงู…ู‡ุง ูƒู…ุŸ ุงุชู†ูŠู† ููŠ ุชู„ุงุชุฉ ูƒูˆูŠุณ ุงู„ู…ุตูˆูุฉ
716
+
717
+ 206
718
+ 00:22:45,670 --> 00:22:51,930
719
+ ู‡ุฐู‡ ู†ุธุงู…ู‡ุง ุงุชู†ูŠู† ููŠ ูˆุงุญุฏ ุตููŠู† ูˆ ุนู…ูˆุฏ ู‡ุฐู‡ ู…ุดุงู†
720
+
721
+ 207
722
+ 00:22:51,930 --> 00:22:58,600
723
+ ุชู†ุถุฑุจ ุจุฏูŠ ูŠูƒูˆู† ุนู†ุฏูŠ ู‡ู†ุง ูƒู…ุŸ ุชู„ุงุชุฉ ุตููˆู ูˆ ุนู…ูˆุฏ ูˆุงุญุฏ
724
+
725
+ 208
726
+ 00:22:58,600 --> 00:23:03,800
727
+ ูŠุจู‚ู‰ ู‡ุฐุง ูŠุฑูŠุฏ ุชู„ุงุชุฉ ุตููˆู ูˆ ุนู…ูˆุฏ ูˆุงุญุฏ ุชู„ุงุชุฉ ุตููˆู
728
+
729
+ 209
730
+ 00:23:03,800 --> 00:23:09,300
731
+ ุฅุฐุง ุฃู†ุง ุจุงุฏุฑ ุฃู‚ูˆู„ x ูˆุงุญุฏ ูˆ x ุงุชู†ูŠู† ูˆ x ุชู„ุงุชุฉ
732
+
733
+ 210
734
+ 00:23:09,300 --> 00:23:12,720
735
+ ู…ุธุจูˆุท ุฅุฐุง ู‡ูˆ ุงู„ู„ูŠ ูŠู‚ูˆู„ find the system of
736
+
737
+ 211
738
+ 00:23:12,720 --> 00:23:18,440
739
+ equations ู‡ุงุชู„ูŠ ู†ุธุงู… ุงู„ู…ุนุงุฏู„ุฉ ุฃูˆ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ูƒูˆู†ุฉ
740
+
741
+ 212
742
+ 00:23:18,440 --> 00:23:24,720
743
+ ู„ู†ุธุงู… ุงู„ู…ู†ุธุฑ ู„ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุฅุฐุง ุฃู†ุง ุญุชู‰ ุงู„ุขู† ูƒุชุจุช
744
+
745
+ 213
746
+ 00:23:25,030 --> 00:23:29,330
747
+ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุตุฑููŠุฉ ูƒุชุจุชู‡ุง ุจุดูƒู„ ุฃุนุธู… ู„ู‡ุฐุง ุงู„
748
+
749
+ 214
750
+ 00:23:29,330 --> 00:23:34,310
751
+ system ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„
752
+
753
+ 215
754
+ 00:23:34,310 --> 00:23:38,930
755
+ ุจูŠุนุทูŠู†ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ู…ู† ู‡ุฐุง ุงู„ system ูŠุจู‚ู‰
756
+
757
+ 216
758
+ 00:23:38,930 --> 00:23:42,370
759
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰
760
+
761
+ 217
762
+ 00:23:42,370 --> 00:23:50,270
763
+ ู†ุงู‚ุต ุงุชู†ูŠู† x one ุฒุงุฆุฏ x two ุฒุงุฆุฏ ุชู„ุงุชุฉ x three
764
+
765
+ 218
766
+ 00:23:50,270 --> 00:23:59,640
767
+ ุจุฏูˆู† ุณูˆูŠู† ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู†ูŠุฉ ุชู„ุงุชุฉ x ูˆุงู† ุฒุงุฆุฏ x
768
+
769
+ 219
770
+ 00:23:59,640 --> 00:24:00,860
771
+ ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ
772
+
773
+ 220
774
+ 00:24:00,860 --> 00:24:01,040
775
+ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x
776
+
777
+ 221
778
+ 00:24:01,040 --> 00:24:01,740
779
+ ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ
780
+
781
+ 222
782
+ 00:24:01,740 --> 00:24:02,580
783
+ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ
784
+
785
+ 223
786
+ 00:24:02,580 --> 00:24:05,280
787
+ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x
788
+
789
+ 224
790
+ 00:24:05,280 --> 00:24:13,100
791
+ ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ ุฒุงุฆุฏ x ุซุฑูŠ
792
+
793
+ 225
794
+ 00:24:19,640 --> 00:24:25,080
795
+ ุงู„ู€ ุญู„ ุนู„ู‰ ุงู„ุฃู‚ู„ ุงู„ุญู„ ุงู„ุตูุฑูŠ ู…ุด ุดุบู„ุชู†ุง ู‡ุฐู‡ ุงู„ู…ู‡ู…
796
+
797
+ 226
798
+ 00:24:25,080 --> 00:24:30,060
799
+ ุงุญู†ุง ุจุฏู†ุง ู†ุนุฑู ู‡ุงู„ุดุบู„ ู‡ุฐุง ุทูŠุจ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ู„ุงุญุธุฉ ู…ุง
800
+
801
+ 227
802
+ 00:24:30,060 --> 00:24:36,420
803
+ ู†ูƒุชุจ ู‡ุฐู‡ ุงู„ู…ู„ุงุญุธุฉ ูˆู†ุญุงูˆู„ ู†ุณุชุฎุฏู…ู‡ุง ุฃูˆ ู†ุนู…ู… ู…ุง ุณุจู‚
804
+
805
+ 228
806
+ 00:24:36,420 --> 00:24:46,580
807
+ ุงู„ุญุฏูŠุซ ุนู†ู‡ ูŠุจู‚ู‰ remark in general ุนู„ู‰
808
+
809
+ 229
810
+ 00:24:46,580 --> 00:24:56,480
811
+ ูˆุฌู‡ ุงู„ุนู…ูˆู… the product product
812
+
813
+ 230
814
+ 00:24:56,480 --> 00:25:03,380
815
+ of matrices of
816
+
817
+ 231
818
+ 00:25:03,380 --> 00:25:13,820
819
+ matrices is not commutative is not ูŠุนู†ูŠ
820
+
821
+ 232
822
+ 00:25:13,820 --> 00:25:18,280
823
+ ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตูˆูุงุช ู„ูŠุณุช ุฅุจุฏุงู„ูŠุฉ
824
+
825
+ 233
826
+ 00:25:20,320 --> 00:25:27,560
827
+ that is if ุงู„ู€
828
+
829
+ 234
830
+ 00:25:27,560 --> 00:25:39,560
831
+ A and ุงู„ู€ B are matrices such
832
+
833
+ 235
834
+ 00:25:39,560 --> 00:25:52,360
835
+ that ุจุญูŠุซ ุฃู† ุงู„ู€ A ููŠ ุงู„ู€ B and ุงู„ู€ B ููŠ ุงู„ู€ A are
836
+
837
+ 236
838
+ 00:25:52,360 --> 00:26:06,400
839
+ both defined ูƒู„ุงู‡ู…ุง ู…ุนุฑู then it is not
840
+
841
+ 237
842
+ 00:26:06,400 --> 00:26:07,460
843
+ necessarily
844
+
845
+ 238
846
+ 00:26:19,130 --> 00:26:28,790
847
+ necessary that ุฃู† ุงู„ู€ A ููŠ ุงู„ู€ B ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ ุงู„ู€
848
+
849
+ 239
850
+ 00:26:28,790 --> 00:26:37,150
851
+ A example ู†ู…ุฑุฉ
852
+
853
+ 240
854
+ 00:26:37,150 --> 00:26:56,740
855
+ A show that ุจูŠู†ูŠู„ูŠ F ุงู„ู€ A ุชุณุงูˆูŠ-2 5 1 4 and B
856
+
857
+ 241
858
+ 00:26:56,740 --> 00:27:11,620
859
+ ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ ุฃุฑุจุนุฉ then ุงู„ู€
860
+
861
+ 242
862
+ 00:27:11,620 --> 00:27:25,380
863
+ A ููŠ B ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ ุงู„ู€ A Nimra B Show that if
864
+
865
+ 243
866
+ 00:27:25,380 --> 00:27:31,160
867
+ ุงู„ู€ A ุชุณุงูˆูŠ ูˆุงุญุฏ
868
+
869
+ 244
870
+ 00:27:31,160 --> 00:27:40,080
871
+ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ Zero and ุงู„ู€ B ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ
872
+
873
+ 245
874
+ 00:27:40,080 --> 00:27:46,560
875
+ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† then
876
+
877
+ 246
878
+ 00:27:48,780 --> 00:27:53,120
879
+ ุงู„ู€ A ููŠ ุงู„ู€ B ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ ุงู„ู€ A
880
+
881
+ 247
882
+ 00:28:24,260 --> 00:28:28,440
883
+ ุจู†ุฌูŠ ู„ู„ู€ remark ุงู„ู„ูŠ ุงุญู†ุง ูƒุงุชุจูŠู†ู‡ ู‡ุฐุง ุจู‚ูˆู„ in
884
+
885
+ 248
886
+ 00:28:28,440 --> 00:28:33,760
887
+ general ุนู„ู‰ ูˆุฌู‡ ุงู„ุนู…ูˆู… the product of matrices is
888
+
889
+ 249
890
+ 00:28:33,760 --> 00:28:38,960
891
+ not commutative ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตุญูุงุช ู„ูŠุณุช ุนู…ู„ูŠุฉ
892
+
893
+ 250
894
+ 00:28:38,960 --> 00:28:43,400
895
+ ุฅุจุฏุงู„ูŠุฉ that is ู„ูˆ ูƒุงู† ุงู„ู€ a ูˆ ุงู„ู€ e are matrices
896
+
897
+ 251
898
+ 00:28:43,400 --> 00:28:47,200
899
+ ุจุญูŠุซ ุฃู† ุงู„ู€ a ูˆ ุงู„ู€ a ููŠ b ูˆ ุงู„ู€ b ููŠ a are both
900
+
901
+ 252
902
+ 00:28:47,200 --> 00:28:50,580
903
+ defined ู„ูˆ ูƒุงู†ุช ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ู…ู† ุงู„ูŠู…ูŠู† ูˆ ู…ู† ุงู„ูŠุณุงุฑ ู…ุนุฑูุฉ then it is not necessary ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู†
904
+
905
+ 253
906
+ 00:28:50,580 --> 00:28:56,470
907
+ ุงู„ู€ A ููŠ ุงู„ู€ B ุจุฏูˆุง ูŠุณูˆูˆุง ู…ูŠู†ุŒ B ููŠ ุงู„ู€ A ูŠุนู†ูŠ ุนู…ู„ูŠุฉ
908
+
909
+ 254
910
+ 00:28:56,470 --> 00:29:00,170
911
+ ุถุฑุจ ุงู„ู…ุตุฑูุงุช ู„ูŠุณุช ุนู…ู„ูŠุฉ .. ู„ู…ุง ุฃู‚ูˆู„ in general ูŠุง
912
+
913
+ 255
914
+ 00:29:00,170 --> 00:29:04,110
915
+ ุจู†ุงุช ูŠุนู†ูŠ ุนู„ู‰ ูˆุฌู‡ ุงู„ุนู…ูˆู… ูŠุนู†ูŠ ู‚ุฏ ุดูˆุฐ ุญุงู„ุฉ ุฃูˆ ุญุงู„ุชูŠู†
916
+
917
+ 256
918
+ 00:29:04,110 --> 00:29:09,030
919
+ ุฃูˆ ุชู„ุงุชุฉ ุนู† ู…ูŠู† ุนู† ู‡ุฐุง ุงู„ู†ุธุงู… ู„ูƒู† in general ุจู‚ูˆู„
920
+
921
+ 257
922
+ 00:29:09,030 --> 00:29:13,000
923
+ ุบูŠุฑ ู…ุง ุฅู† ุทู„ุนุช ู…ุฑุฉ ูˆ ุงู„ู„ู‡ ู…ุฑุชูŠู† ูˆ ุงู„ู„ู‡ ุชู„ุงุชุฉ ูŠุญุฏุซ
924
+
925
+ 258
926
+ 00:29:13,000 --> 00:29:17,780
927
+ ุชุณูˆูŠ ู‡ุฐุง ู…ุนู†ุงู‡ ุฅู†ู‡ ู…ุด ุฏุงุฆู…ุง ู‡ูˆ ุจูŠุญุฏุซ ุชุณุงูˆูŠ ู„ูƒู† ุจู‚ุฏุฑ
928
+
929
+ 259
930
+ 00:29:17,780 --> 00:29:23,140
931
+ ุงู„ู„ู‡ ุทู„ุนุช ู…ุฑุชูŠู† ุฃูˆ ู…ุฑุฉ ุฃูˆ ุชู„ุงุชุฉ ุงู„ุขู† ุณุฃุนุทูŠูƒ ู…ุซุงู„
932
+
933
+ 260
934
+ 00:29:28,390 --> 00:29:32,790
935
+ ุฃุจูŠู‘ู† ู„ูƒ ุฃู† ุถุฑุจ ุงู„ู…ุตูˆูุงุช ู„ูŠุณุช commutative ูˆุถุฑุจ
936
+
937
+ 261
938
+ 00:29:32,790 --> 00:29:35,790
939
+ ุงู„ู€ ุงูƒุชู†ุชุฑูˆู† ูˆุงุทู„ุนู‡ู… commutative ูŠุจู‚ู‰ ูŠุนุทูŠู†ุง ุงู„ู†ุชุฌ
940
+
941
+ 262
942
+ 00:29:35,790 --> 00:29:41,330
943
+ ููŠ ูƒู„ุงู…ู†ุง ูˆุจุงู„ุชุงู„ูŠ ุนู…ู„ูŠุฉ ุงู„ุชุณุงูˆูŠ ุบูŠุฑ ุตุญูŠุญุฉ ุจูŠู‚ูˆู„
944
+
945
+ 263
946
+ 00:29:41,330 --> 00:29:46,290
947
+ ู…ุซุงู„ show that ุฃู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู…ุตูˆูุฉ A ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
948
+
949
+ 264
950
+ 00:29:46,290 --> 00:29:51,810
951
+ ุนู†ุฏู†ุง ู‡ูˆ B ูŠุจู‚ู‰ ุงู„ู€ A ููŠ B ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ A ุฅุฐุง
952
+
953
+ 265
954
+ 00:29:51,810 --> 00:29:55,750
955
+ ุฃู†ุง ุจุฑูˆุญ ุฃุฎุฏ ุงู„ู€ A ููŠ ุงู„ู€ B solution
956
+
957
+ 266
958
+ 00:29:58,690 --> 00:30:03,490
959
+ ูˆุจุฏุฃ ุฃุฎุฐ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุฅู† ู‡ูˆ ุงู„ู…ุฑุฃุฉ ุจุฏุฃ ุฃุฎุฐ ุงู„ู€ a ููŠ
960
+
961
+ 267
962
+ 00:30:03,490 --> 00:30:09,710
963
+ ุงู„ู€ b ุจุฏุฃ ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ ุงุชู†ูŠู† ุฎู…ุณุฉ ูˆุงุญุฏ ุฃุฑุจุน
964
+
965
+ 268
966
+ 00:30:09,710 --> 00:30:15,130
967
+ ููŠ b ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ุงุชู†ูŠู† ุณุงู„ุจ ุชู„ุงุชุฉ ุฃุฑุจุน ูŠุจู‚ู‰
968
+
969
+ 269
970
+ 00:30:15,130 --> 00:30:19,430
971
+ ุงู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌ ูƒุงู„ุชุงู„ูŠ ุทุจุนุง ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูˆู‡ุฐุง
972
+
973
+ 270
974
+ 00:30:19,430 --> 00:30:22,410
975
+ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงู„ู†ุงุชุฌ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูƒุฐู„ูƒ
976
+
977
+ 271
978
+ 00:30:22,410 --> 00:30:27,890
979
+ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู†ุงู‚ุต ุณุชุฉ ูˆู†ุงู‚ุต
980
+
981
+ 272
982
+ 00:30:27,890 --> 00:30:33,200
983
+ ุฎู…ุณุชุงุดุฑ ุจู†ุงู‚ุต ูˆุงุญุฏ ูˆุนุดุฑูŠู† ูŠุจู‚ู‰ ู‡ุงูŠ ู†ุงู‚ุต ูˆุงุญุฏ ูˆุนุดุฑูŠู†
984
+
985
+ 273
986
+ 00:30:33,200 --> 00:30:38,640
987
+ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏูŠ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ู†ุงู‚ุต ุฃุฑุจุนุฉ ูˆุนู†ุฏูƒ
988
+
989
+ 274
990
+ 00:30:38,640 --> 00:30:45,200
991
+ ู‡ู†ุง ุนุดุฑูŠู† ุจูŠุธู„ ู‚ุฏุงุด ุณุชุฉ ุนุดุฑ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏูŠ
992
+
993
+ 275
994
+ 00:30:45,200 --> 00:30:51,720
995
+ ุงู„ุฃูˆู„ ุชู„ุงุชุฉ ูˆ ู‡ู†ุง ู†ุงู‚ุต ุงุชู†ุงุดุฑ ุจูŠุธู„ ู‚ุฏุงุด ู†ุงู‚ุต ุชุณุนุฉ
996
+
997
+ 276
998
+ 00:30:51,720 --> 00:30:56,480
999
+ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏูŠ ุงู„ุชุงู†ูŠ ูŠุจู‚ู‰ ุงุชู†ูŠู† ูˆุณุชุงุดุฑ
1000
+
1001
+ 277
1002
+ 00:30:56,480 --> 00:31:03,400
1003
+ ุจุนุฏูŠู† ุงู…ูŠู†ุชู…ู†ุชุงุดุฑ ูŠุจู‚ู‰ ุซู…ุงู†ูŠุฉ ุนุดุฑ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
1004
+
1005
+ 278
1006
+ 00:31:03,400 --> 00:31:12,700
1007
+ ุทูŠุจ ุจุฏู†ุง ู†ูŠุฌูŠ B ููŠ A and ุงู„ู€ B ููŠ ุงู„ู€ A ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ูŠ
1008
+
1009
+ 279
1010
+ 00:31:12,700 --> 00:31:19,580
1011
+ ุชู„ุงุชุฉ ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ููŠ ุณุงู„ุจ ุงุชู†ูŠู† ุฎู…ุณุฉ
1012
+
1013
+ 280
1014
+ 00:31:19,580 --> 00:31:25,290
1015
+ ูˆุงุญุฏ ุฃุฑุจุนุฉ ุจุฏู‡ุง ุชุณุงูˆูŠ ุทุจุนุง ู‡ูŠุนุทูŠู†ูŠ ูƒู…ุงู† ู…ุตููˆูุฉ ู†ุธุงู…
1016
+
1017
+ 281
1018
+ 00:31:25,290 --> 00:31:29,370
1019
+ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„
1020
+
1021
+ 282
1022
+ 00:31:29,370 --> 00:31:35,970
1023
+ ุณุงู„ุจ ุณุชุฉ ูˆู…ูˆุฌุฉ ุจุงุชู†ูŠู† ูŠุธู„ ุณุงู„ุจ ุฃุฑุจุน ุงู„ู„ุญุธุฉ ุงุฎุชู„ู
1024
+
1025
+ 283
1026
+ 00:31:35,970 --> 00:31:40,030
1027
+ ู…ู† ุงู„ุจุฏุงูŠุฉ ู…ู† ุฃูˆู„ ุนู†ุตุฑ ู‚ุจู„ ู…ุง ุชูƒู…ู„ ูŠุจู‚ู‰ ุชุณุงูˆูŠ ุบูŠุฑ
1028
+
1029
+ 284
1030
+ 00:31:40,030 --> 00:31:46,850
1031
+ ุญุงุตู„ ุทูŠุจ ู†ูƒู…ู„ ูŠุจู‚ู‰ ุชู„ุงุชุฉ ููŠ ุฎู…ุณุฉ ุจุฎู…ุณุชุงุดุฑ ูˆุซู…ุงู†ูŠุฉ
1032
+
1033
+ 285
1034
+ 00:31:46,850 --> 00:31:54,050
1035
+ ุชู„ุงุชุฉ ูˆุนุดุฑูŠู† ุงู„ุขู† ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุณุชุฉ ูˆ
1036
+
1037
+ 286
1038
+ 00:31:54,050 --> 00:31:59,570
1039
+ ุฃุฑุจุนุฉ ุนุดุฑ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุณุงู„ุจ
1040
+
1041
+ 287
1042
+ 00:31:59,570 --> 00:32:05,470
1043
+ ุฎู…ุณุชุงุดุฑ ูˆุนู†ุฏูƒ ุณุชุงุดุฑ ุจูŠุจู‚ู‰ ุงู„ู‚ุฏุงุด ูˆุงุญุฏ ูŠุจู‚ู‰ ู…ู†
1044
+
1045
+ 288
1046
+ 00:32:05,470 --> 00:32:12,810
1047
+ ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุจู‚ุฏุฑ ุฃุณุชู†ุชุฌ ุฅู† ุงู„ู€ A B ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ B
1048
+
1049
+ 289
1050
+ 00:32:12,810 --> 00:32:13,570
1051
+ ููŠ ุงู„ู€ A
1052
+
1053
+ 290
1054
+ 00:32:20,340 --> 00:32:28,320
1055
+ ุทูŠุจ ุจุฏูŠ ุฃุฎุฏ ุงู„ู€ a ููŠ ุงู„ู€ b ูˆูŠุณุงูˆูŠ ูŠุจู‚ู‰ ูˆุงุญุฏ ุงุชู†ูŠู†
1056
+
1057
+ 291
1058
+ 00:32:28,320 --> 00:32:34,540
1059
+ ุณุงู„ุจ ูˆุงุญุฏ ุฒูŠุฑูˆ ูˆุงุญุฏ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุฒูŠุฑูˆ ููŠ b ุงู„ู„ูŠ
1060
+
1061
+ 292
1062
+ 00:32:34,540 --> 00:32:39,820
1063
+ ู‡ูˆ ู…ู† ุณุงู„ุจ ูˆุงุญุฏ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ
1064
+
1065
+ 293
1066
+ 00:32:39,820 --> 00:32:45,840
1067
+ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ูˆูŠุณุงูˆูŠ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ
1068
+
1069
+ 294
1070
+ 00:32:45,840 --> 00:32:50,640
1071
+ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ูˆุณุงู„ุจ ุงุชู†ูŠู† ููŠ ุงู„ุฌุฏุงุฑ
1072
+
1073
+ 295
1074
+ 00:32:50,640 --> 00:32:55,280
1075
+ ุจุณุงู„ุจ ุชู„ุงุชุฉ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุงุชู†ูŠู†
1076
+
1077
+ 296
1078
+ 00:32:55,280 --> 00:33:00,840
1079
+ ูˆุณุงู„ุจ ุฃุฑุจุนุฉ ุจุณุงู„ุจ ุงุชู†ูŠู† ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ
1080
+
1081
+ 297
1082
+ 00:33:00,840 --> 00:33:06,520
1083
+ ุงู„ุฃูˆู„ ุจูˆุงุญุฏ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุจุณุงู„ุจ
1084
+
1085
+ 298
1086
+ 00:33:06,520 --> 00:33:12,970
1087
+ ุงุชู†ูŠู† ุงู„ุขู† ุจุฏุงุฌูŠ ู„ู„ู€ B ููŠ ุงู„ู€ A ุงู„ู€ B ููŠ ุงู„ู€ A ูŠุจู‚ู‰
1088
+
1089
+ 299
1090
+ 00:33:12,970 --> 00:33:17,890
1091
+ ุณุงู„ุจ ูˆุงุญุฏ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ููŠ ูˆุงุญุฏ ุงุชู†ูŠู†
1092
+
1093
+ 300
1094
+ 00:33:17,890 --> 00:33:23,250
1095
+ ุณุงู„ุจ ูˆุงุญุฏ Zero ูˆูŠุณุงูˆูŠ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„
1096
+
1097
+ 301
1098
+ 00:33:23,250 --> 00:33:29,250
1099
+ ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ูˆุณุงู„ุจ ุงุชู†ูŠู† ุจุณุงู„ุจ ุชู„ุงุชุฉ ุงู„ุตู ุงู„ุฃูˆู„
1100
+
1101
+ 302
1102
+ 00:33:29,250 --> 00:33:34,510
1103
+ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุณุงู„ุจ ุงุชู†ูŠู† ูˆุฐุงูƒ ุจู€ Zero ุงู„ุตู
1104
+
1105
+ 303
1106
+ 00:33:34,510 --> 00:33:40,520
1107
+ ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู‡ุงูŠ ุนู†ุฏูŠ ุงู„ู€ ูˆุงู…ูŠู† ุจุณุงู„ุจ
1108
+
1109
+ 304
1110
+ 00:33:40,520 --> 00:33:47,480
1111
+ ูˆุงุญุฏ ุจุณุงู„ุจ ูˆุงุญุฏ ูˆู…ูˆุฌุฉ ุจุงุชู†ูŠู† ูŠุจู‚ู‰ ุจูˆุงุญุฏ ุงู„ุตู
1112
+
1113
+ 305
1114
+ 00:33:47,480 --> 00:33:52,180
1115
+ ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุจุณุงู„ุจ ุงุชู†ูŠู† ูˆุงู„ุขุฎุฑ ุจุฒูŠุฑูˆ
1116
+
1117
+ 306
1118
+ 00:33:52,340 --> 00:33:57,380
1119
+ ุฃุทู„ุน ุงู„ู†ุชูŠุฌุฉ ุทู„ุน ุงู„ู€ ู…ุตููˆูุชูŠู† ุจูŠุณุงูˆูˆุง ุจุนุถ ูŠุจู‚ู‰ ุจุงุฌูŠ
1120
+
1121
+ 307
1122
+ 00:33:57,380 --> 00:34:03,300
1123
+ ุจู‚ูˆู„ ุงู„ุณุงุนุฉ ุงู„ู€ A ููŠ ุงู„ู€ B ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ ุงู„ู€ A
1124
+
1125
+ 308
1126
+ 00:34:03,300 --> 00:34:07,960
1127
+ ูŠุนู†ูŠ ูŠุง ุจู†ุงุช ู‚ุฏ ูŠุญุฏุซ ุงู„ุชุณุงูˆูŠ ูˆู‚ุฏ ู„ุง ูŠุญุฏุซ ู„ูƒู† ููŠ
1128
+
1129
+ 309
1130
+ 00:34:07,960 --> 00:34:14,490
1131
+ ุงู„ุบุงู„ุจู„ู† ูŠุญุฏุซ ู‡ุฐุง ุงู„ุชุณุงูˆูŠ ูŠุจู‚ู‰ in general ุนู„ู‰ ูˆุฌู‡
1132
+
1133
+ 310
1134
+ 00:34:14,490 --> 00:34:20,130
1135
+ ุงู„ุนู…ูˆู… ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตูˆูุงุช ู„ูŠุณุช ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ ุจู…ุนู†ู‰
1136
+
1137
+ 311
1138
+ 00:34:20,130 --> 00:34:25,450
1139
+ ุฃู† A ููŠ B ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ A ุงู„ุขู† ุฒูŠ ู…ุง ุฃุฎุฐู†ุง
1140
+
1141
+ 312
1142
+ 00:34:25,450 --> 00:34:30,390
1143
+ ู†ุธุฑูŠุฉ ุนู„ู‰ ุนู…ู„ูŠุฉ ุฌู…ุน ุงู„ู…ุตูˆูุงุช ุจู†ุงุฎุฏ ู†ุธุฑูŠุฉ ุนู„ู‰ ุนู…ู„ูŠุฉ
1144
+
1145
+ 313
1146
+ 00:34:30,390 --> 00:34:35,890
1147
+ ุถุฑุจ ุงู„ู…ุตูˆูุงุช ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ theorem
1148
+
1149
+ 314
1150
+ 00:34:43,300 --> 00:34:58,080
1151
+ ุจูŠู‚ูˆู„ if c is a number ูƒุงู† ู‡ุฐุง ุนุฏุฏ ุญู‚ูŠู‚ูŠ and if ุงู„ู€
1152
+
1153
+ 315
1154
+ 00:34:58,080 --> 00:35:11,140
1155
+ a will be and c and capital C ูˆุงู„ู„ู‡ if a ูˆ b ูˆ c
1156
+
1157
+ 316
1158
+ 00:35:13,350 --> 00:35:22,350
1159
+ and D are matrices
1160
+
1161
+ 317
1162
+ 00:35:22,350 --> 00:35:29,050
1163
+ ู…ุตููˆูุงุช such that
1164
+
1165
+ 318
1166
+ 00:35:29,050 --> 00:35:33,550
1167
+ the indicated
1168
+
1169
+ 319
1170
+ 00:35:33,550 --> 00:35:37,130
1171
+ sums
1172
+
1173
+ 320
1174
+ 00:35:37,130 --> 00:35:41,970
1175
+ and products
1176
+
1177
+ 321
1178
+ 00:35:43,980 --> 00:35:54,760
1179
+ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ู‡ูˆ ุงู„ุถุฑุจ are defined then ุงู„ู†ู‚ุทุฉ
1180
+
1181
+ 322
1182
+ 00:35:54,760 --> 00:36:06,880
1183
+ ุงู„ุฃูˆู„ู‰ C ููŠ A ููŠ B ุจุฏู‡ ูŠุณุงูˆูŠ A ููŠ C B ูŠุณุงูˆูŠ
1184
+
1185
+ 323
1186
+ 00:36:06,880 --> 00:36:10,020
1187
+ C ููŠ B
1188
+
1189
+ 324
1190
+ 00:36:14,240 --> 00:36:31,380
1191
+ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู†ู‚ุทุฉ
1192
+
1193
+ 325
1194
+ 00:36:31,380 --> 00:36:40,240
1195
+ ุงู„ุชุงู„ุชุฉ ุงู„ู„ูŠ ู‡ูˆ B ุฒุงุฆุฏ C ูƒู„ู‡ุง ููŠ D ุชุณุงูˆูŠ
1196
+
1197
+ 326
1198
+ 00:36:42,440 --> 00:36:52,360
1199
+ B D ุฒุงุฆุฏ C ููŠ D ุฒุงุฆุฏ
1200
+
1201
+ 327
1202
+ 00:36:52,360 --> 00:37:02,700
1203
+ C ููŠ D ุงู„ู†ู‚ุทุฉ ุงู„ุฑุงุจุนุฉ ุงู„ู€ A ููŠ ุงู„ู€ B ููŠ ุงู„ู€ D ูŠุณุงูˆูŠ
1204
+
1205
+ 328
1206
+ 00:37:02,700 --> 00:37:06,780
1207
+ ุงู„ู€ A ููŠ ุงู„ู€ B ููŠ ุงู„ู€ D
1208
+
1209
+ 329
1210
+ 00:37:09,610 --> 00:37:14,970
1211
+ ุทูŠุจ ู†ูŠุฌูŠ ู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุจูŠู‚ูˆู„ if c is a number ู„ูˆ ูƒุงู†
1212
+
1213
+ 330
1214
+ 00:37:14,970 --> 00:37:19,390
1215
+ c ุนุฏุฏ ุญู‚ูŠู‚ูŠ ูˆูƒุงู† ุงู„ู€ a ูˆ ุงู„ู€ b ูˆ ุงู„ู€ c ูˆ d ุนุจุงุฑุฉ ุนู†
1216
+
1217
+ 331
1218
+ 00:37:19,390 --> 00:37:24,890
1219
+ ู…ุตููˆูุงุช ุจุญูŠุซ ุฃู† indicated sums and products ุนุงู…ู„ูŠู†
1220
+
1221
+ 332
1222
+ 00:37:24,890 --> 00:37:30,030
1223
+ ุงู„ุฌู…ุน ูˆุงู„ุถุฑุจ ุงู„ู…ูˆุถุญุฉ are defined ูŠุจู‚ู‰ ูƒู„ ุนู…ู„ูŠุฉ
1224
+
1225
+ 333
1226
+ 00:37:30,030 --> 00:37:35,680
1227
+ ุงู„ุถุฑุจ ูˆุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ู‡ู†ุง ู…ุนุฑูุฉ ูŠุจู‚ู‰ them ู„ูˆ ุถุฑุจุช
1228
+
1229
+ 334
1230
+ 00:37:35,680 --> 00:37:40,020
1231
+ constant ููŠ a ุชุทู„ุน ู…ุตููˆูุฉ ุฌุฏูŠุฏุฉ ู„ุฃู† ุงู„ู€ c ุจุฏุฑุจู‡ ููŠ
1232
+
1233
+ 335
1234
+ 00:37:40,020 --> 00:37:46,180
1235
+ ุฌู…ูŠุน ุนู†ุงุตุฑ a ูˆุถุฑุจุช ุงู„ู†ุชุฌ ููŠ ุงู„ู…ุตูˆูุฉ b ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ
1236
+
1237
+ 336
1238
+ 00:37:46,180 --> 00:37:50,020
1239
+ ุถุฑุจุช ุงู„ู€ constant ููŠ b ูˆุงู„ู„ูŠ ู†ุชุฌ ุถุฑุจุช ููŠ main
1240
+
1241
+ 337
1242
+ 00:37:50,020 --> 00:37:54,720
1243
+ ุงู„ู…ุตููˆูุฉ a ุฃูˆ ุถุฑุจุช ุงู„ู…ุตููˆูุชูŠู† a ูˆ b ููŠ ุจุนุถ ูˆุงู„ู„ูŠ
1244
+
1245
+ 338
1246
+ 00:37:54,720 --> 00:37:59,800
1247
+ ู†ุชุฌ ุถุฑุจุชู‡ ููŠ main ููŠ c ุงู„ุซู„ุงุซ ู‚ูŠู… are the same ูŠุจู‚ู‰
1248
+
1249
+ 339
1250
+ 00:37:59,800 --> 00:38:02,880
1251
+ ุจุชูุฑู‚ุด ุนู†ุฏูŠ ู„ุฃู†ูŠ ุจุถุฑุจ constant ููŠ ู…ุตููˆูุฉ ู…ุด
1252
+
1253
+ 340
1254
+ 00:38:02,880 --> 00:38:06,600
1255
+ ู…ุตููˆูุชูŠู† ููŠ ุจุนุถ ูŠุจู‚ู‰ constant ู…ุตููˆูุฉ ุชุถุฑุจ ูŠู…ูŠู† ุฃูˆ
1256
+
1257
+ 341
1258
+ 00:38:06,600 --> 00:38:11,160
1259
+ ุชุถุฑุจ ุดู…ุงู„ ูƒู†ุง ุจุฃุซุฑุด ุนู†ู‡ุง ุณุงุจู‚ุง ุฃุฎุฐู†ุงู‡ุง ุทูŠุจ ุงู„ู†ู‚ุทุฉ
1260
+
1261
+ 342
1262
+ 00:38:11,160 --> 00:38:15,880
1263
+ ุงู„ุซุงู†ูŠุฉ ุจุฏูŠ ุฃุถุฑุจ a ููŠ b ุฒุงุฆุฏ c ูŠุจู‚ู‰ ู‡ุฐูŠ ูƒู„ู‡ุง
1264
+
1265
+ 343
1266
+ 00:38:15,880 --> 00:38:21,860
1267
+ ู…ุตููˆูุงุช ูŠุจู‚ู‰ ูƒุฃู†ู‡ ุจุฏูŠ ูˆุฒุน ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุนู„ู‰ ุนู…ู„ูŠุฉ ู…ู†
1268
+
1269
+ 344
1270
+ 00:38:21,860 --> 00:38:28,040
1271
+ ุงู„ุฌู…ุน ูŠุจู‚ู‰ ูŠุณุงูˆูŠ a ููŠ b ุฒุงุฆุฏ a ููŠ c ู„ุญุธุฉ ุงู„ุถุฑุจ ู…ู†
1272
+
1273
+ 345
1274
+ 00:38:28,040 --> 00:38:35,620
1275
+ ูˆูŠู†ุŸ ู…ู† ุฌู‡ุชูŠ ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ a ููŠ b ุซู… a ููŠ c ุงู„ุชุฑุชูŠุจ
1276
+
1277
+ 346
1278
+ 00:38:35,620 --> 00:38:40,440
1279
+ ุถุฑูˆุฑูŠ ุฌุฏุง ู…ุด ู‡ุชู‚ูˆู„ูŠ ู„ูŠ a ููŠ b ุฒุงุฆุฏ c ููŠ a ู„ุฃ ุบู„ุท
1280
+
1281
+ 347
1282
+ 00:38:40,440 --> 00:38:44,300
1283
+ ูŠุจู‚ู‰ ุถุฑุจุชูŠ ู…ู† ุฌู‡ุชูŠ ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ ุถู„ูƒ ู…ุด ู‡ุชุถุฑุจ ู…ู†
1284
+
1285
+ 348
1286
+ 00:38:44,300 --> 00:38:49,940
1287
+ ุฌู‡ุชูŠ ุงู„ุดู…ุงู„ ุถุฑุจุชูŠ ู…ู† ุฌู‡ุชูŠ ุงู„ูŠู…ูŠู† b ุฒุงุฆุฏ c ููŠ d
1288
+
1289
+ 349
1290
+ 00:38:49,940 --> 00:38:56,820
1291
+ ูŠุจู‚ู‰ b ููŠ d ุฒุงุฆุฏ c ููŠ d ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ู… ุงู„ู€
1292
+
1293
+ 350
1294
+ 00:38:56,820 --> 00:39:02,700
1295
+ distributive law ุนู…ู„ูŠุฉ ุงู„ุชูˆุฒูŠุน ูˆู‡ู†ุง ุงู„ุฎุงุตูŠุฉ ุงู„ุฑุงุจุนุฉ
1296
+
1297
+ 351
1298
+ 00:39:02,700 --> 00:39:10,160
1299
+ ุนู…ู„ูŠุฉ ุงู„ุฏู…ุฌ A ููŠ B ููŠ C ูŠุณูˆู‰ A ููŠ B ููŠ D ูŠุณูˆู‰ A ููŠ
1300
+
1301
+ 352
1302
+ 00:39:10,160 --> 00:39:16,080
1303
+ B ููŠ D ูŠุนู†ูŠ ุงูŠู‡ุŸ ูŠุนู†ูŠ ู„ูˆ ุถุฑุจุช B ููŠ D ุฃูˆู„ุง ู†ุชุฌุฉ
1304
+
1305
+ 353
1306
+ 00:39:16,080 --> 00:39:20,920
1307
+ ู…ุตููˆูุฉ ุถุฑุจุชู‡ุง ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ููŠ A ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุถุฑุจุช
1308
+
1309
+ 354
1310
+ 00:39:20,920 --> 00:39:24,660
1311
+ A ููŠ B ููŠ ุจุนุถ ูˆุงู„ู†ุชุฌุฉ ุถุฑุจุชู‡ุง ููŠ D ูˆู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ
1312
+
1313
+ 355
1314
+ 00:39:24,660 --> 00:39:30,920
1315
+ ุจุฌูŠู†ุง ู†ุณู…ูŠู‡ุง ุฎุงุตูŠุฉ ุงู„ุฏู…ุฌ ุงู„ู€ associative law ุงู„ู„ูŠ ู‡ูˆ
1316
+
1317
+ 356
1318
+ 00:39:30,920 --> 00:39:35,100
1319
+ ู‚ุงู†ูˆู† ุงู„ุฏู…ุฌ ุงู„ู„ูŠ ุฌุงุจู„ู‡ ุงู„ู€ distributive law ุงู„ู„ูŠ ู‡ูˆ
1320
+
1321
+ 357
1322
+ 00:39:35,100 --> 00:39:40,480
1323
+ ู‚ุงู†ูˆู† ุงู„ุชูˆุฒูŠุน ุชู…ุงู…ุŸ ุจู‚ุช ุนู†ุฏู†ุง ููŠ ู‡ุฐุง section
1324
+
1325
+ 358
1326
+ 00:39:40,480 --> 00:39:46,140
1327
+ ู…ู„ุงุญุธุฉ ุฃุฎุฑู‰ remark ูŠุจู‚ู‰
1328
+
1329
+ 359
1330
+ 00:39:46,140 --> 00:39:57,630
1331
+ remark ุจุชู‚ูˆู„ ู…ุง ุชู‚ูู„ AF ุงู„ู€ a is an n by n matrix
1332
+
1333
+ 360
1334
+ 00:39:57,630 --> 00:40:06,930
1335
+ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู†ุช ู…ุตููˆูุฉ ู…ุฑุจุนุฉ is an m ููŠ n matrix m ููŠ
1336
+
1337
+ 361
1338
+ 00:40:06,930 --> 00:40:24,360
1339
+ n matrix and ุงู„ู€ b and ุงู„ู€ b is aninvp matrix ู…ุตููˆูุฉ
1340
+
1341
+ 362
1342
+ 00:40:24,360 --> 00:40:31,680
1343
+ ู†ุธุงู… invp then is
1344
+
1345
+ 363
1346
+ 00:40:31,680 --> 00:40:49,200
1347
+ written as is written as call vectors as followas
1348
+
1349
+ 364
1350
+ 00:40:49,200 --> 00:40:56,900
1351
+ follow ูƒุงู„ุชุงู„ูŠ ุจูŠ
1352
+
1353
+ 365
1354
+ 00:40:56,900 --> 00:41:11,600
1355
+ ุจุฏู‡ุง ุชุณุงูˆูŠ ู…ุซู„ุง ุจูŠ ูˆู† ุจูŠ ุชูˆ ุจูŠ ุจูŠ ุจูŠ and
1356
+
1357
+ 366
1358
+ 00:41:11,600 --> 00:41:24,280
1359
+ hence ูˆู…ู† ุซู… the product a
1360
+
1361
+ 367
1362
+ 00:41:24,280 --> 00:41:43,880
1363
+ ููŠ b is ุงู„ู„ูŠ ู‡ูˆ a b ู…ุฏุฑุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ a b1 a b2 a bp
1364
+
1365
+ 368
1366
+ 00:41:43,880 --> 00:41:50,640
1367
+ ุงู„ุดูƒู„ ุนู† ู‡ุฐุง ุนูˆุงุฏุฉ ุจุชุฏุนูŠู‡ุง ุงู„ุฑู…ุฒ main ูˆุงู„ุฑู…ุฒ star
1368
+
1369
+ 369
1370
+ 00:41:50,640 --> 00:41:56,860
1371
+ example
1372
+
1373
+ 370
1374
+ 00:41:56,860 --> 00:42:02,360
1375
+ if
1376
+
1377
+ 371
1378
+ 00:42:02,360 --> 00:42:12,290
1379
+ ุงู„ู€ a ุชุณุงูˆูŠ ุงุชู†ูŠู† ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ Zero ุงุชู†ูŠู† ุชู„ุงุชุฉ
1380
+
1381
+ 372
1382
+ 00:42:12,290 --> 00:42:26,050
1383
+ ูˆุงุญุฏ ู†ู‚ุต ุงุชู†ูŠู† Zero and ุงู„ู€ B ุชุณุงูˆูŠ ูˆุงุญุฏ ูˆุงุญุฏ ุณุงู„ุจ
1384
+
1385
+ 373
1386
+ 00:42:26,050 --> 00:42:33,810
1387
+ ูˆุงุญุฏ ุชู„ุงุชุฉ ุงุชู†ูŠู† ูˆุงุญุฏ right then
1388
+
1389
+ 374
1390
+ 00:42:38,59
1391
+
1392
+ 401
1393
+ 00:45:31,570 --> 00:45:37,030
1394
+ ูˆุณุงู„ุจ ูˆุงุญุฏ ูˆุณุงู„ุจ ุงุซู†ูŠู† ุงุซู†ูŠู† ูˆุณุงู„ุจ ุงุซู†ูŠู† ู…ุน
1395
+
1396
+ 402
1397
+ 00:45:37,030 --> 00:45:43,220
1398
+ ุงู„ุณู„ู…ุฉ ุจูŠุทู„ุน ูƒุฏู‡ุŸ ุณุงู„ุจ ูˆุงุญุฏ ุฎู„ุตู†ุง ู…ู†ู‡ ุงู„ุงู† ุจุงู„ุฏุงู„ูŠ
1399
+
1400
+ 403
1401
+ 00:45:43,220 --> 00:45:49,700
1402
+ ู„ู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ู†ูุณู‡ ูŠุจู‚ู‰ ุตูุฑ ุณุงู„ุจ ุงุซู†ูŠู†
1403
+
1404
+ 404
1405
+ 00:45:49,700 --> 00:45:54,620
1406
+ ูˆุฒุงุฆุฏ ุณุชุฉ ุจุถุฑุจ ู‚ุฏุงุด ุฃุฑุจุนุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
1407
+
1408
+ 405
1409
+ 00:45:54,620 --> 00:45:58,680
1410
+ ุจูƒุชุจุด ููŠ ุงู„ุตู ู„ุฅู† ู…ุงุนู†ุฏูŠุด ุจูƒุชุจ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
1411
+
1412
+ 406
1413
+ 00:45:58,680 --> 00:46:05,010
1414
+ ู‡ุฐุง ูŠ๏ฟฝ๏ฟฝู‚ู‰ ู‡ู†ุง ูˆุงุญุฏ ูˆุณุงู„ุจ ุงุซู†ูŠู† ูŠุนู†ูŠ ุจุตูŠุฑ ุงุซู†ูŠู†
1415
+
1416
+ 407
1417
+ 00:46:05,010 --> 00:46:10,850
1418
+ ุซู„ุงุซุฉ ูˆุตูุฑ ูŠุจู‚ู‰ ู‡ู†ุง ูŠุง ุดุจุงุจ ุซู„ุงุซุฉ ู„ุญุธุฉ ุงู„ู…ุตููˆูุฉ
1419
+
1420
+ 408
1421
+ 00:46:10,850 --> 00:46:14,810
1422
+ ุซู„ุงุซุฉ ููŠ ุซู„ุงุซุฉ ูˆู‡ุฐู‡ ุซู„ุงุซุฉ ููŠ ูˆุงุญุฏ ุจูŠุตูŠุฑ ุซู„ุงุซุฉ ููŠ
1423
+
1424
+ 409
1425
+ 00:46:14,810 --> 00:46:19,570
1426
+ ูˆุงุญุฏ ู‡ุฐู‡ ุซู„ุงุซุฉ ุตููˆู ูˆูˆุงุญุฏ ุฎู„ุตู†ุง ู‡ู†ุง ุจุฏุงูŠู‡ ู„ู‡ุฐู‡
1427
+
1428
+ 410
1429
+ 00:46:19,570 --> 00:46:26,150
1430
+ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงุซู†ูŠู† ูˆุซู„ุงุซุฉ ุฎู…ุณุฉ ูˆุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰
1431
+
1432
+ 411
1433
+ 00:46:26,150 --> 00:46:36,230
1434
+ ุฃุฑุจุนุฉ ุงู„ู„ูŠ ุจุนุฏู‡ ุตูุฑ ูˆุณุชุฉ ูˆุซู„ุงุซุฉ ูŠุจู‚ู‰ ุชุณุนุฉ ุงู„ู„ูŠ ุจุนุฏู‡
1435
+
1436
+ 412
1437
+ 00:46:36,230 --> 00:46:43,430
1438
+ ูˆุงุญุฏ ูˆุณุงู„ุจ ุณุชุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุฎู…ุณุฉ ูˆุตูุฑ ูŠุจู‚ู‰ ุณุงู„ุจ
1439
+
1440
+ 413
1441
+ 00:46:43,430 --> 00:46:49,640
1442
+ ุฎู…ุณุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌุฉ ู…ู† ุญุงุตู„ ุงู„ุถุฑุจ ูˆุตู„ู†ุง ู„
1443
+
1444
+ 414
1445
+ 00:46:49,640 --> 00:46:57,440
1446
+ exercises 2-5 ูŠุจู‚ู‰ exercises 2-5 ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ
1447
+
1448
+ 415
1449
+ 00:46:57,440 --> 00:47:09,330
1450
+ ุงู„ู„ูŠ ู‡ู… ุงุซู†ูŠู† ุซู„ุงุซุฉ ุฎู…ุณุฉ ุณุจุนุฉ ุชุณุนุฉ ุนุดุฑุฉ ุฃุญุฏ ุนุดุฑ ุงุซู†ุง ุนุดุฑ ุณุชุฉ ุนุดุฑ ุณุจุนุฉ ุนุดุฑ ุชุณุนุฉ ุนุดุฑ ูŠุนุทูŠูƒู…
1451
+
1452
+ 416
1453
+ 00:47:09,330 --> 00:47:17,530
1454
+ ุฃุญุฏ ุนุดุฑ ุฅุซู†ูŠ ุนุดุฑ ุณุชุฉ ุนุดุฑ ุณุจุนุฉ ุนุดุฑ ุชุณุนุฉ ุนุดุฑ ูŠุนุทูŠูƒู…
1455
+
1456
+ 417
1457
+ 00:47:17,530 --> 00:47:17,850
1458
+ ุงู„ุนุฌุจ
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/W-gk0MowpAY_raw.srt ADDED
@@ -0,0 +1,1672 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,700 --> 00:00:25,610
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู…ุฃู†ุช ู‡ู†ุง ููŠ section 2-4 ู…ู†
4
+
5
+ 2
6
+ 00:00:25,610 --> 00:00:31,490
7
+ ุถุฑุจ ุงู„ู…ุตูˆูุฉ ู…ู‚ุฏุงุฑ ุซุงู…ุช ุฃูˆ ุฌุงู…ุน ู…ุตูˆูุชูŠู† ุฃูˆ ุงู„ raw
8
+
9
+ 3
10
+ 00:00:31,490 --> 00:00:35,570
11
+ vectors ูˆ ุงู„ cone vectors ู†ู†ุชู‚ู„ ู‡ู†ุง ููŠ section 2-5
12
+
13
+ 4
14
+ 00:00:35,570 --> 00:00:40,270
15
+ ู„ matrix multiplication ูŠุนู†ูŠ ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตูˆูุงุช
16
+
17
+ 5
18
+ 00:00:40,270 --> 00:00:44,210
19
+ ูŠุนู†ูŠ ุจุฏู†ุง ู†ุถุฑุจ ู…ุตูˆูุชูŠู† ููŠ ุจุนุถ ุงู„ section ุงู„ุณุงุจู‚
20
+
21
+ 6
22
+ 00:00:44,210 --> 00:00:48,010
23
+ ูƒุงู† ุถุฑุจ ูƒูˆู†ุณุชุงู† ููŠ ู…ุตูˆูุฉ ู„ุฃ ู‡ู†ุง ุจุฏู†ุง ู†ุถุฑุจ two
24
+
25
+ 7
26
+ 00:00:48,010 --> 00:00:53,950
27
+ matrices ู…ุน ุจุนุถู‡ู… ุงู„ุจุนุถุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุนู†ุฏู†ุง ุงู„ system
28
+
29
+ 8
30
+ 00:00:53,950 --> 00:00:57,890
31
+ of linear equation ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูƒูˆูŠุณ ู‡ุฐุง
32
+
33
+ 9
34
+ 00:00:57,890 --> 00:01:02,810
35
+ ุงู„ system ุจุฏูŠ ุฃุญุงูˆู„ ุฃุตูŠุบู‡ ุจุตูŠุงุบุฉ ุฃุฎุฑู‰ ุจุงุณุชุฎุฏุงู…
36
+
37
+ 10
38
+ 00:01:02,810 --> 00:01:07,870
39
+ ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตููˆูุงุช ุฅุฐุง ุจุฏูŠ ุฃุฌู…ุน ุงู„ุซูˆุงุจุท ุงู„ุฅูŠู‡ุงุช
40
+
41
+ 11
42
+ 00:01:07,870 --> 00:01:13,850
43
+ ูƒู„ู‡ู… ููŠ ู…ุตููˆูุฉ ูˆุงู„ู…ุฌุงู‡ูŠู„ ุงู„ X ููŠ ู…ุตููˆูุฉ ูˆุงู„ุซูˆุงุจุท
44
+
45
+ 12
46
+ 00:01:13,850 --> 00:01:17,770
47
+ ููŠ ู…ุตููˆูุฉ ุฒูŠ ู…ุง ุงู†ุชูˆุง ุดุงูŠููŠู† ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
48
+
49
+ 13
50
+ 00:01:18,060 --> 00:01:22,200
51
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ system ู‚ุฏุฑุช ุงูƒุชุจ ุนู„ู‰ ุดูƒู„ ุญุงุตู„ ุถุฑุจ
52
+
53
+ 14
54
+ 00:01:22,200 --> 00:01:27,560
55
+ ู…ุตููุชูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุงู† ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุตููุฉ ุงู„ู…ุตููุฉ ู‡ุฐุง
56
+
57
+ 15
58
+ 00:01:27,560 --> 00:01:32,500
59
+ ุงูŠุด ูƒู†ุง ู†ุณู…ูŠู‡ุง ุจู†ุงุชุŸู…ุตูˆูุฉ ุงู„ู…ุนุงู…ู„ุงุช ุงู„ู€
60
+
61
+ 16
62
+ 00:01:32,500 --> 00:01:38,440
63
+ coefficient matrix ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ู…ุตูˆูุฉ ุงู„ู…ุฌุงู‡ูŠู„ ุงู„ู€
64
+
65
+ 17
66
+ 00:01:38,440 --> 00:01:43,620
67
+ unknown matrix ู‡ุฐู‡ ู…ุตูˆูุฉ ุงู„ุซูˆุงุจุช ุงู„ู€ constant
68
+
69
+ 18
70
+ 00:01:43,620 --> 00:01:47,920
71
+ matrix ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุตูˆูุฉ ุงู„ุซูˆุงุจุช ู‡ุฐู‡ ู…ุตูˆูุฉ ุงู„ู…ุฌุงู‡ูŠู„
72
+
73
+ 19
74
+ 00:01:47,920 --> 00:01:54,420
75
+ ู‡ุฐู‡ ู…ุตูˆูุฉ ุงู„ู…ุนุงู…ู„ุงุช ู„ูˆ ุถุฑุจู†ุง ู‡ุฏูˆู„ ููŠ ุจุนุถ ุจูŠุทู„ุน
76
+
77
+ 20
78
+ 00:01:54,420 --> 00:01:58,020
79
+ ุนู†ุฏู†ุง ู…ู†ุŸ ุจูŠุทู„ุน ุนู†ุฏู†ุง ุงู„ู„ูŠ ููˆู‚ ูƒูŠู ุนู…ู„ูŠุฉ ุงู„ุถุฑุจุŸ
80
+
81
+ 21
82
+ 00:01:58,040 --> 00:02:09,500
83
+ ุจุฏุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏูŠ ุงู„ุฃูˆู„ A11x1 A12x2 A13x3
84
+
85
+ 22
86
+ 00:02:09,500 --> 00:02:13,060
87
+ A14x4 A1nxn
88
+
89
+ 23
90
+ 00:02:18,190 --> 00:02:23,950
91
+ ูˆู‡ูƒุฐุง ุงู„ุงู† ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ู†ูุณ ุงู„ุนู…ูˆุฏ ุงู„ู„ู‰ ุนู†ุฏู†ุง
92
+
93
+ 24
94
+ 00:02:23,950 --> 00:02:28,790
95
+ ู‡ุฐุง ุจุทู„ุน ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… ุงุชู†ูŠู† ุงู„ุตู ุงู„ุชุงู„ุช ููŠ ู†ูุณ
96
+
97
+ 25
98
+ 00:02:28,790 --> 00:02:33,150
99
+ ุงู„ุนู…ูˆุฏ ุจุทู„ุน ุงู„ู…ุนุงุฏู„ุฉ ุงุชู†ูŠู† ุงู„ุตู ุฑู‚ู… M ููŠ ุงู„ุนู…ูˆุฏ
100
+
101
+ 26
102
+ 00:02:33,150 --> 00:02:39,170
103
+ ุจูŠุนุทูŠู†ุง ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… M ุงู„ู„ู‰ ุนู†ุฏู†ุง ุทูŠุจ ู‡ุฐุง ุจุฏูŠ ูŠุฎู„ูŠ
104
+
105
+ 27
106
+ 00:02:39,170 --> 00:02:47,130
107
+ ุนู†ุฏู†ุง ุดุฑุท ู…ุชู‰ ูŠู…ูƒู† ุถุฑุจ ู…ุตูˆูุชูŠู† ุชู…ุงู…ูŠู…ูƒู† ุถุฑุจู‡ุง ุชุงู†ูŠ
108
+
109
+ 28
110
+ 00:02:47,130 --> 00:02:53,370
111
+ ุงู„ู…ุตููˆู ุชุงู†ูŠ ุฅุฐุง ูƒุงู† ุนุฏุฏ ุฃุนู…ุฏุฉ ุงู„ู…ุตููˆู ุงู„ุฃูˆู„ู‰ ูŠุณูˆู‰
112
+
113
+ 29
114
+ 00:02:53,370 --> 00:02:59,290
115
+ ุนุฏุฏ ุตููˆู ุงู„ู…ุตููˆู ุงู„ุซุงู†ูŠ ุงุทู„ุน ู‡ุฏูˆู„ ุงู„ุฃุนู…ุฏุฉ ูƒู… ูˆุงุญุฏุŸ
116
+
117
+ 30
118
+ 00:02:59,290 --> 00:03:05,470
119
+ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ุงู† ุนุฏุฏ ุตููˆู ุงู„ุชุงู†ูŠุฉ ูˆุงุญุฏ
120
+
121
+ 31
122
+ 00:03:05,470 --> 00:03:11,730
123
+ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ุงู† ูŠุจู‚ู‰ ุชุณุงูˆู‰ ุนุฏุฏ ุฃุนู…ุฏุฉ ุงู„ุฃูˆู„ู‰
124
+
125
+ 32
126
+ 00:03:11,730 --> 00:03:18,180
127
+ ู…ุน ุนุฏุฏ ุตููˆูุงู„ุซุงู†ูŠุฉ ุฅุฐุง ูŠู…ูƒู† ุฃู† ุชุชู… ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ
128
+
129
+ 33
130
+ 00:03:18,180 --> 00:03:25,660
131
+ ูˆุงู„ู†ุงุชุฌ ู‡ูˆ ู…ุตููˆูุฉ ุนุจุงุฑุฉ ุนู† ุนุฏุฏ ุตููˆู ุงู„ู…ุตููˆูุฉ
132
+
133
+ 34
134
+ 00:03:25,660 --> 00:03:33,050
135
+ ุงู„ุฃูˆู„ู‰ ูˆุฃุนู…ุฏุฉ ู…ู† ุงู„ู…ุตููˆูุฉ ุงู„ุซุงู†ูŠุฉ ูˆู‡ูƒุฐุงู‡ุฐุง ุงู„ูƒู„ุงู…
136
+
137
+ 35
138
+ 00:03:33,050 --> 00:03:36,130
139
+ ุงู„ู„ูŠ ุฃู†ุง ุจู‚ูˆู„ู‡ ุจุฏู†ุง ู†ุญุทู‡ ููŠ ุตูŠุบุฉ ุงู„ู€ definition
140
+
141
+ 36
142
+ 00:03:36,130 --> 00:03:40,590
143
+ ุงู„ุชุงู„ูŠ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู†ุง ุงู„ definition ุจูŠู‚ูˆู„ ู…ุง
144
+
145
+ 37
146
+ 00:03:40,590 --> 00:03:48,290
147
+ ูŠุงุชูŠ F ุงู„ A is an ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† M ููŠ N matrix ูŠุจู‚ู‰
148
+
149
+ 38
150
+ 00:03:48,290 --> 00:03:54,030
151
+ ู…ุตููˆูุฉ ุงู„ size ุชุจุนู‡ุง M ููŠ N ุนุฏุฏ ุงู„ุตููˆู M ุนุฏุฏ
152
+
153
+ 39
154
+ 00:03:54,030 --> 00:04:01,250
155
+ ุงู„ุฃุนู…ุฏุฉ Nูˆ B ูƒุงู†ุช ุนุจุงุฑุฉ ุนู† matrix ู„ N ููŠ K ูŠุจู‚ู‰
156
+
157
+ 40
158
+ 00:04:01,250 --> 00:04:06,170
159
+ ุนุฏุฏ ุงู„ุตููˆู ูŠุณุงูˆูŠ N ูˆุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ูŠุณุงูˆูŠ K ูŠุจู‚ู‰ ุนุฏุฏ
160
+
161
+ 41
162
+ 00:04:06,170 --> 00:04:11,410
163
+ ุงู„ุตููˆู ู‡ู†ุง ูŠุณุงูˆูŠ ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ู‡ู†ุง ุจุงู„ุถุจุท ุชู…ุงู…ุง ุฅุฐุง
164
+
165
+ 42
166
+ 00:04:11,410 --> 00:04:17,150
167
+ ูŠู…ูƒู† ุฃู† ุชุชู… ุนู…ู„ูŠุฉ ุงู„ุถุฑุจthen we define the
168
+
169
+ 43
170
+ 00:04:17,150 --> 00:04:20,730
171
+ multiplication matrix ุงู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌุฉ ู…ู† ุนู…ู„ูŠุฉ
172
+
173
+ 44
174
+ 00:04:20,730 --> 00:04:26,390
175
+ ุถุฑุจ ุจุฏูŠ ุงุนุทูŠู‡ุง ุงู„ุฑู…ุฒ capital C ูˆู‡ูŠ ุชุณุงูˆูŠ A ููŠ B
176
+
177
+ 45
178
+ 00:04:26,390 --> 00:04:33,070
179
+ with size M ููŠ K ูŠุนู†ูŠ ูŠุง ุจู†ุงุช ุงู„ู…ุตููˆูุฉ ุงู„ุฃูˆู„ู‰ M ููŠ
180
+
181
+ 46
182
+ 00:04:33,070 --> 00:04:42,400
183
+ N ูˆุงู„ุชุงู†ูŠุฉ N ููŠ K ุงู„ุจุดุทุฉ ุจู‡ุฐู‡ ูˆู‡ุฐู‡ ุจูŠุธู„ M ููŠ KูŠุจู‚ู‰
184
+
185
+ 47
186
+ 00:04:42,400 --> 00:04:48,420
187
+ ุงู„ู…ุตุญูˆูุฉ ุงู„ู†ุงุชุฌุฉ ุจุฏ ูŠูƒูˆู† ููŠู‡ุง M ู…ู† ุงู„ุตููˆู ูˆ K ู…ู†
188
+
189
+ 48
190
+ 00:04:48,420 --> 00:04:53,300
191
+ ุงู„ุฃุนู…ู„ ูˆุงุถุญ ูƒู„ุงู…ู†ุง ูƒู…ุŸ ู…ุฑุฉ ุชุงู†ูŠุฉ ุจู‚ูˆู„ ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏ
192
+
193
+ 49
194
+ 00:04:53,300 --> 00:04:58,760
195
+ ุงู„ู…ุตุญูˆูุฉ ุงู„ุฃูˆู„ู‰ ู†ุธุงู…ู‡ุง M ููŠ Nุงู„ู…ุตูˆูุฉ ุงู„ุชุงู†ูŠุฉ
196
+
197
+ 50
198
+ 00:04:58,760 --> 00:05:04,080
199
+ ู†ุธุงู…ู‡ุง N ููŠ K ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ููŠ ุงู„ุฃูˆู„ู‰ ูŠุณูˆู‰ ุนุฏุฏ
200
+
201
+ 51
202
+ 00:05:04,080 --> 00:05:09,380
203
+ ุงู„ุตููˆู ููŠ ุงู„ุซุงู†ูŠุฉ ุฅุฐุง ูŠู…ูƒู† ุฃู† ู†ู‚ูˆู… ุจุนู…ู„ูŠุฉ ุงู„ุถุบุท ุทุจ
204
+
205
+ 52
206
+ 00:05:09,380 --> 00:05:14,560
207
+ ุถุฑุจู†ุง ุดูˆ ุดูƒู„ ุงู„ู…ุตูˆูุฉ ุงู„ู†ุงุชุฌุฉ ุดูƒู„ู‡ุง ูˆู…ุตูˆูู‡ุง ููŠู‡ุง M
208
+
209
+ 53
210
+ 00:05:14,560 --> 00:05:20,500
211
+ ู…ู† ุงู„ุตููˆู ูˆK ู…ู† ุงู„ุฃุนู…ุฏุฉ ู‡ุฐุง ูŠุฌุนู„ู†ูŠ ุฃุทุฑุญ ุงู„ุณุคุงู„
212
+
213
+ 54
214
+ 00:05:20,500 --> 00:05:28,850
215
+ ุงู„ุชุงู„ูŠ ุฃู†ุง ู‡ู†ุง ุถุฑุจุช A ููŠ B ู‡ู„ ู‡ุฐู‡ ู‡ูŠ B ููŠ AุŸุฅุชู†ูŠู†
216
+
217
+ 55
218
+ 00:05:28,850 --> 00:05:33,350
219
+ ู‡ู„ ูŠู…ูƒู† ุฃู† ุชุชู… ุนู…ู„ูŠุฉ ุงู„ู€ B ููŠ AุŸ ุจู‚ูˆู„ ูˆุงู„ู„ู‡ ู…ุงู‡ู†ุง
220
+
221
+ 56
222
+ 00:05:33,350 --> 00:05:38,810
223
+ ุนุงุฑููŠู† ุฅุฐุง ู„ูˆ ุฌูŠุช ุงู„ B ููŠ A ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ ุงู„ B ููŠ
224
+
225
+ 57
226
+ 00:05:38,810 --> 00:05:46,910
227
+ ุงู„ุฃูˆู„ ุงู„ B ุงู„ู„ูŠ ู‡ูŠ N ููŠ K ุงู„ุขู† A ู„ M ููŠ N ูŠุจู‚ู‰ M
228
+
229
+ 58
230
+ 00:05:46,910 --> 00:05:53,110
231
+ ููŠ N ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ู‡ู†ุง ู„ุง ูŠุณูˆู‰ ุนุฏุฏ ุงู„ุตููˆู ุฅุฐุง ู„ุง
232
+
233
+ 59
234
+ 00:05:53,110 --> 00:05:58,790
235
+ ูŠู…ูƒู† ุฃู† ุชุชู… ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ู‡ุฐู‡ุฅุฐุง ุจู†ุงุก ุฃู† ุนู„ูŠ ุจู‚ุฏุฑ
236
+
237
+ 60
238
+ 00:05:58,790 --> 00:06:05,450
239
+ ุงุณุชู†ุชุฌ ุฃู† ุงู„ A ููŠ ุงู„ B ู„ูŠู‡ ุชุณูˆู‰ B ููŠ AุŸ ูŠุจู‚ู‰ ุนู…ู„ูŠุฉ
240
+
241
+ 61
242
+ 00:06:05,450 --> 00:06:10,530
243
+ ุถุฑุจ ุงู„ู…ุตูˆูุงุช ู„ูŠุณุช ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉุŒ ุจุนูƒุณ ุงู„ุฌุงู…ุนุฉ
244
+
245
+ 62
246
+ 00:06:11,180 --> 00:06:16,000
247
+ ุงู„ุฌุงู…ุนุฉ ุงู„ู…ุตูˆูุฉ ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ ู„ูƒู† ุงู„ุถุฑุจ ุนู…ู„ูŠุฉ ู„ูŠุณุช
248
+
249
+ 63
250
+ 00:06:16,000 --> 00:06:20,440
251
+ ุฅุจุฏุงู„ูŠุฉ ูŠุจู‚ู‰ ุถุฑุจ ุงู„ุงุจุชูƒุงุดู† matrix is not
252
+
253
+ 64
254
+ 00:06:20,440 --> 00:06:26,280
255
+ commutative ู„ูŠุณุช ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ ุชุนุงู„ูˆุง ู†ุดูˆู ู‡ุฐุง
256
+
257
+ 65
258
+ 00:06:26,280 --> 00:06:29,960
259
+ ุงู„ูƒู„ุงู… ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน ุจุฃู…ุซู„ุฉ ู…ุฎุชู„ูุฉ
260
+
261
+ 66
262
+ 00:06:41,170 --> 00:06:46,570
263
+ ูŠุนู†ูŠ ุฅุฐุง ู…ุนุฑู ุจุฏูƒ ุชุถุฑุจ ู…ุด ู…ุนุฑู ุฎู„ุงุต ู…ุงููŠุด ุฏุงุนูŠ ู„ู‡ุง
264
+
265
+ 67
266
+ 00:06:46,570 --> 00:06:51,210
267
+ ูŠุดุบู„ ู†ู‚ุฏุฑุด ู†ุนู…ู„ู‡ุง ุดุบู„ู‡ุง ุฏูŠ for each of the full or
268
+
269
+ 68
270
+ 00:06:51,210 --> 00:06:53,770
271
+ for the following matrices ู„ูƒู„ ู…ู† ุงู„ู…ุตููˆูุงุช
272
+
273
+ 69
274
+ 00:06:53,770 --> 00:06:58,570
275
+ ุงู„ุชุงู„ูŠุฉ ูˆุทุงู†ูŠ ู†ู…ุฑุฉ A ูˆู†ู…ุฑุฉ B ู†ู…ุฑุฉ A ุณุคุงู„ ููŠ ุงู„ูƒุชุงุจ
276
+
277
+ 70
278
+ 00:06:58,570 --> 00:07:02,970
279
+ ูˆู†ู…ุฑุฉ B ุณุคุงู„ ุฃุฎุฑ ุฃุนุชู‚ุฏ ุณุชุฉ ูˆ ุชู…ุงู†ูŠุฉ ุฃูˆ ุณุชุฉ ูˆุชุณุนุฉ
280
+
281
+ 71
282
+ 00:07:02,970 --> 00:07:08,310
283
+ ุงู„ุฃูˆู„ ุณุชุฉ ูˆุงู„ุชุงู†ูŠ ุชุณุนุฉ ุฃุนุชู‚ุฏ ุชู…ุงู…ุŸุฅุฐุงู‹ ุจุชุฏุฌู„
284
+
285
+ 72
286
+ 00:07:08,310 --> 00:07:14,170
287
+ ุงู„ู…ุตุญูˆูุฉ ุฅูŠู‡ุŸ ุงู„ู…ุตุญูˆูุฉ ููŠู‡ุง ุตููŠู† ูˆ ูƒู… ุนู…ูˆุฏ ูŠุง
288
+
289
+ 73
290
+ 00:07:14,170 --> 00:07:20,850
291
+ ุจู†ุงุชุŸ ุชู„ุงุชุฉ ุงู„ู…ุตุญูˆูุฉ ุฏูŠ ููŠู‡ุง ุชู„ุช ุตููˆู ูˆ ุนู…ูˆุฏูŠู†ุŒ
292
+
293
+ 74
294
+ 00:07:20,850 --> 00:07:27,210
295
+ ู…ุธุจูˆุทุŸุฅุฐุงู‹ ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ู‡ู†ุง ูŠุณูˆู‰ ุนุฏุฏ ุงู„ุตููˆู ู‡ู†ุงุŒ
296
+
297
+ 75
298
+ 00:07:27,210 --> 00:07:33,490
299
+ ุฅุฐุงู‹ ู‡ุฐุง ุงู„ุถุฑุจ ู…ู…ูƒู† ุฃู† ูŠุญุฏุซ ูˆุงู„ู†ุชุฌ ู‡ูˆ ู…ุตูˆูุฉ ู†ุธุงู…ู‡ุง
300
+
301
+ 76
302
+ 00:07:33,490 --> 00:07:41,190
303
+ 2ร—2 ุจุณ ุตููŠู† ูˆุนู…ุฏูŠู† ูƒูŠู ุจุฏูŠ ุชู… ูƒุชุงู„ุฉุŸ ุทู„ุนูŠ ู„ูŠ ู‡ู†ุง
304
+
305
+ 77
306
+ 00:07:41,190 --> 00:07:48,040
307
+ ู†ู…ุฑุฉ AุจุฌูŠ ุจู‚ูˆู„ู‡ ุจูƒุชุจ ุงู„ู…ุตููˆูุฉ a ููŠ b ุฒูŠ ู…ุง ู‡ูˆ ู‚ุงู„
308
+
309
+ 78
310
+ 00:07:48,040 --> 00:07:54,140
311
+ ู‡ู†ุง a ููŠ b ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ a ุงู„ู‡ูŠ ุงุชู†ูŠู† ูˆุงุญุฏ
312
+
313
+ 79
314
+ 00:07:54,140 --> 00:08:00,800
315
+ ุฒูŠุฑูˆ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจูŠ ุงุชู†ูŠู† ุงุชู†ูŠู† ููŠ b ุงู„ู‡ูŠ ุงุชู†ูŠู†
316
+
317
+ 80
318
+ 00:08:00,800 --> 00:08:07,600
319
+ ุงุฑุจุน ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ุชู„ุงุชุฉ ูˆุงุญุฏ ุงู„ู†ุชุฌ ุจุฏูŠู‡ุง ุชุทู„ุน
320
+
321
+ 81
322
+ 00:08:07,600 --> 00:08:15,600
323
+ ู…ุตููˆูุฉ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูƒู…ุง ุฒุนู…ู†ุงู…ุธุจูˆุทูŠุจู‚ู‰ ุงู†ุง ุจู‚ุฏุฑ
324
+
325
+ 82
326
+ 00:08:15,600 --> 00:08:19,620
327
+ ุงุนุฑู ุฌุฏูŠุด ู‡ุฐุง ุงู„ุตููˆู ูˆ ู‡ุฐุง ุงู„ุนู…ู„ูŠุฉ ู‚ุจู„ ุงู† ุงู‚ูˆู…
328
+
329
+ 83
330
+ 00:08:19,620 --> 00:08:24,620
331
+ ุจุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ูƒูŠู ุจุฑูˆุญ ููŠ ุงู„ู‡ุงู…ุด ุจู‚ูˆู„ ุงู„ุงูˆู„ุฉ ุงุชู†ูŠู†
332
+
333
+ 84
334
+ 00:08:24,620 --> 00:08:30,420
335
+ ููŠ ุชู„ุงุชุฉ ูˆ ุงู„ุชุงู†ูŠุฉ ุชู„ุงุชุฉ ููŠ ุงุชู†ูŠู† ุงุฐุง ู…ู…ูƒู† ุงู† ุชุชู…
336
+
337
+ 85
338
+ 00:08:30,420 --> 00:08:34,320
339
+ ุงู„ุนู…ู„ูŠุฉ ูˆ ุจุธู‡ุฑ ุฌุฏูŠุด ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงู„ู…ุตูˆูุฉ
340
+
341
+ 86
342
+ 00:08:34,320 --> 00:08:38,440
343
+ ุงู„ู†ุชูŠุฌุฉ ุงู†ุง ุนุงุฑู ู๏ฟฝ๏ฟฝู‡ุง ุตููŠู† ูˆ ุนู…ูˆุฏูŠู† ู‚ุจู„ ุงู† ุงุจุฏุฃ
344
+
345
+ 87
346
+ 00:08:38,440 --> 00:08:44,390
347
+ ุงู„ุงู† ุนู…ู„ูŠุง ูƒูŠู ุณุชุชู… ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุดูˆู ูŠุง ู…ู†ุงู…ุจุฏูŠ
348
+
349
+ 88
350
+ 00:08:44,390 --> 00:08:50,830
351
+ ุจุถุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูƒู„ ุนู†ุตุฑ ู…ุน ู†ุธูŠุฑู‡
352
+
353
+ 89
354
+ 00:08:50,830 --> 00:08:57,930
355
+ ูˆุจุฌู…ุน ุงู„ู†ุงุชุฌ ุนู†ุตุฑ ุฃูˆู„ ููŠ ุงู„ู…ุตููˆูุฉ ุงู„ุฌุฏูŠุฏุฉ ุทู„ุน ู‡ู†ุง
356
+
357
+ 90
358
+ 00:08:57,930 --> 00:09:04,690
359
+ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ุงุฑุจุนุฉ ูˆุงุญุฏ ููŠ ูˆุงุญุฏ ูˆุงุญุฏ ูˆุงุฑุจุนุฉ ุฎู…ุณุฉ
360
+
361
+ 91
362
+ 00:09:04,690 --> 00:09:12,190
363
+ zero ูŠุจู‚ู‰ ุงู„ุนู†ุตุฑ ุงู„ุฃูˆู„ ุฎู…ุณุฉุงู„ู„ูŠ ุนู…ู„ุช ู„ู„ุนู…ูˆุฏูŠ ุงู„ุฃูˆู„
364
+
365
+ 92
366
+ 00:09:12,190 --> 00:09:18,230
367
+ ุจุฏุฑูˆุญ ุฃุนู…ู„ ู„ู„ุนู…ูˆุฏูŠ ุงู„ุชุงู†ูŠ ูŠุจู‚ู‰ 2ร—4 ุชู…ุงู†ูŠุฉ ูˆ ุณุงู„ุจ
368
+
369
+ 93
370
+ 00:09:18,230 --> 00:09:25,960
371
+ ูˆุงุญุฏ ุจุฏู„ ุณุจุนุฉ ูˆ ู‡ู†ุง zero ูŠุจู‚ู‰ ุณุจุนุฉุฎู„ุตู†ุง ุงู„ุตู ุงู„ุฃูˆู„
372
+
373
+ 94
374
+ 00:09:25,960 --> 00:09:32,760
375
+ ุจูŠุฌูŠ ู„ู„ุตู ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ุจุงุฌูŠ ู„ู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ
376
+
377
+ 95
378
+ 00:09:32,760 --> 00:09:38,340
379
+ ุงู„ุฃูˆู„ ูƒู„ ุนู†ุตุฑ ู…ุน ู†ุธูŠุฑู‡ ู‡ู†ุง ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ู‡ู†ุง ุณุงู„ุจ
380
+
381
+ 96
382
+ 00:09:38,340 --> 00:09:47,310
383
+ ุงุชู†ูŠู† ุณุงู„ุจ ุงุฑุจุนุฉ ุณุงู„ุจ ุงุฑุจุนุฉ ูˆ ุณุชุฉ ุจูŠุถู„ ุงุชู†ูŠู†ุงู„ุงู†
384
+
385
+ 97
386
+ 00:09:47,310 --> 00:09:52,430
387
+ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู„ุช ุณุงู„ุจ ุฃุฑุจุนุฉ ุฃู…ูˆุฌุฉ
388
+
389
+ 98
390
+ 00:09:52,430 --> 00:09:58,650
391
+ ุจุงุชู†ูŠู† ุจูŠุธู„ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ุงุชู†ูŠู† ุฃู…ูˆุฌุฉ ุจุงุชู†ูŠู†
392
+
393
+ 99
394
+ 00:09:58,650 --> 00:10:05,270
395
+ Zero ุชู…ุงู…ุŸ ุฃุธู† ู†ูุณ ุงู„ุดูŠ ุงู„ู„ูŠ ุงุชุนู„ู…ู†ุง ููŠ ุงู„ุซุงู†ูˆูŠุฉ
396
+
397
+ 100
398
+ 00:10:05,930 --> 00:10:10,950
399
+ ุจุบูŠุฑู†ุง ุดูˆูŠุฉ ู„ูƒู„ู…ุฉ ุนุงุฏูŠ ุฌุฏุง ุจุงุฌูŠ ุงู„ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุฃูˆู„
400
+
401
+ 101
402
+ 00:10:10,950 --> 00:10:14,230
403
+ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจุถุฑุจ ูƒู„ ุนู†ุตุฑ ููŠ ู†ุธูŠุฑู‡ ูˆุจุฌู…ุน ุจุชุทู„ุน
404
+
405
+ 102
406
+ 00:10:14,230 --> 00:10:19,790
407
+ ุงู„ุนู†ุตุฑ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุฎู…ุณุฉ ู†ูุณ ุงู„ุตู ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ
408
+
409
+ 103
410
+ 00:10:19,790 --> 00:10:24,350
411
+ ุจุฌูŠุจ ู„ู„ุนู†ุตุฑ ุงู„ุชุงู†ูŠ ุฎู„ุตุช ุงู„ุตู ุงู„ุฃูˆู„ ุถุฑุจุชู‡ ููŠ ูƒู„
412
+
413
+ 104
414
+ 00:10:24,350 --> 00:10:28,580
415
+ ุนู†ุงุตุฑ ุงู„ู…ุตูˆูุฉุจุนุฏ ุฐู„ูƒ ุจุฑูˆุญ ุจุงู„ุตู ุงู„ุซุงู†ูŠ ูˆ ุจุถุฑุจู‡ ููŠ
416
+
417
+ 105
418
+ 00:10:28,580 --> 00:10:32,960
419
+ ูƒู„ ุนู†ุงุตุฑ ูˆ ุจุถุฑุจู‡ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูˆ ุจุทู„ุน ู„ูŠู‡ ุงู„ุนู†ุตุฑ
420
+
421
+ 106
422
+ 00:10:32,960 --> 00:10:35,780
423
+ ุงู„ุฃูˆู„ ู…ู† ุงู„ุตู ุงู„ุซุงู†ูŠ ูˆ ุจุถุฑุจู‡ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ูˆ
424
+
425
+ 107
426
+ 00:10:35,780 --> 00:10:39,740
427
+ ุจุทู„ุนู‡ ู„ู„ุนู†ุตุฑ ุงู„ุซุงู†ูŠ ู…ู† ุงู„ุตู ุงู„ุซุงู†ูŠ ูˆ ุจูƒูˆู† ุฎู„ุตุช
428
+
429
+ 108
430
+ 00:10:39,740 --> 00:10:44,340
431
+ ูŠุจู‚ู‰ ู‡ูŠ ุทู„ุนุช ุฌุฏุงุด ู†ุธุงู…ู‡ุง ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูƒู…ุง ุงุฒุนู…ู†ุง
432
+
433
+ 109
434
+ 00:10:44,340 --> 00:10:50,960
435
+ ุงุญู†ุง ู‚ุจู„ ู‚ู„ูŠู„ ุชู…ุงู…ุŸ ุทูŠุจ ุจุฏูŠ ุงุฌูŠ ุงู„ุงู† ู„ B ููŠ A
436
+
437
+ 110
438
+ 00:10:50,960 --> 00:10:59,060
439
+ ุชุทู„ุนูŠู„ูŠ ู‡ู†ุง ุจุฏูŠ ุงุฌูŠ ู„ู„ B ููŠ Aand ูู‰ ุงูŠู‡ุŸ ู‚ุฏุงุด ู†ุธุงู…
440
+
441
+ 111
442
+ 00:10:59,060 --> 00:11:06,660
443
+ ุงู„ BุŸ ุชู„ุงุชุฉ ูู‰ ุงุชู†ูŠู† ุงุฐุง ู‡ุงุฏูŠ ุชู„ุงุชุฉ ูู‰ ุงุชู†ูŠู† ู‚ุฏุงุด
444
+
445
+ 112
446
+ 00:11:06,660 --> 00:11:14,240
447
+ ู†ุธุงู… ุงู„ AุŸ ุงุชู†ูŠู† ูู‰ ุชู„ุงุชุฉ ุงุชู†ูŠู† ูู‰ ุชู„ุงุชุฉ ุงุฐุง ูŠู…ูƒู†
448
+
449
+ 113
450
+ 00:11:14,240 --> 00:11:21,490
451
+ ุงู† ุชุชู… ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ูˆุงู„ู†ุงุชุฌ ุชู„ุงุช ุตููˆููˆุซู„ุงุซุฉ ุฃุนู…ุฏุฉุŒ
452
+
453
+ 114
454
+ 00:11:21,490 --> 00:11:26,850
455
+ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุซู„ุงุซุฉ ุตููˆู ูˆุซู„ุงุซุฉ ุฃุนู…ุฏุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠ
456
+
457
+ 115
458
+ 00:11:26,850 --> 00:11:31,570
459
+ ุฃู‚ูˆู„ู‡ ู‡ูŠูƒ ู…ุดุงู† ู…ุงุชูˆุด ูŠุง ุจู†ุงุช ุจุฑูˆุญ ุจุตูุทู‡ู… ุฌุงู†ุจ ุจุนุถ
460
+
461
+ 116
462
+ 00:11:31,570 --> 00:11:36,590
463
+ ูˆ ุจุนุฏ ุฐู„ูƒ ุจู‚ูˆู… ุจุนู…ู„ูŠุฉ ุถุฑุจ ู…ุด ุนู† ุบูŠุฑู‡ู… ูŠุจู‚ู‰ ุจุฌูŠ ู„ B
464
+
465
+ 117
466
+ 00:11:36,590 --> 00:11:43,530
467
+ ูˆ ุจูƒุชุจู‡ุง ูƒู…ุง ู‡ูŠ ุงุชู†ูŠู† ุงุฑุจุนุฉ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ุชู„ุงุชุฉ
468
+
469
+ 118
470
+ 00:11:43,530 --> 00:11:56,060
471
+ ูˆุงุญุฏ ุจุฏูŠ ุฃุฌูŠ ู„ A2 1 0 1 2 1 0 ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู†
472
+
473
+ 119
474
+ 00:11:56,060 --> 00:12:01,200
475
+ ุงุชู†ูŠู† ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุงู„ู†ุชุฌ ุจุฏูŠ ูŠูƒูˆู† ุชู„ุงุชุฉ
476
+
477
+ 120
478
+ 00:12:01,200 --> 00:12:06,520
479
+ ููŠ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ
480
+
481
+ 121
482
+ 00:12:06,520 --> 00:12:12,040
483
+ ุจุฏูŠ ุงุจุฏุฃ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุงุชู†ูŠู† ููŠ
484
+
485
+ 122
486
+ 00:12:12,040 --> 00:12:15,240
487
+ ุงุชู†ูŠู† ุงุฑุจุนุฉ ุงุฑุจุนุฉ ููŠ ุณุงู„ุจ ูˆุงุญุฏ
488
+
489
+ 123
490
+ 00:12:18,720 --> 00:12:24,140
491
+ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุงุชู†ูŠู† ูˆ ุณุงู„ุจ ุชู…ุงู†ูŠุฉ
492
+
493
+ 124
494
+ 00:12:24,140 --> 00:12:29,760
495
+ ุจุตูŠุฑ ุณุงู„ุจ ุณุชุฉ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู„ุช ุฒูŠุฑูˆ
496
+
497
+ 125
498
+ 00:12:29,760 --> 00:12:34,880
499
+ ูˆุฃุฑุจุนุฉ ููŠ ุงุชู†ูŠู† ุจุชู…ุงู†ูŠุฉ ุงู„ู„ุญุธุฉ ุงู„ุตู ุงู„ุฃูˆู„ ู…ูƒูˆู‘ู† ู…ู†
500
+
501
+ 126
502
+ 00:12:34,880 --> 00:12:39,400
503
+ ุชู„ุงุช ุนู†ุงุตุฑ ุฎู„ุตุช ุงู„ุตู ุงู„ุฃูˆู„ ุงู„ุขู† ุจุฏูŠ ุฃุฌูŠ ู„ู„ุตู
504
+
505
+ 127
506
+ 00:12:39,400 --> 00:12:45,210
507
+ ุงู„ุชุงู†ูŠ ูˆ ุฃุถุฑู‡ ููŠู‡ ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ู…ุตูˆูุฉ ุจุงู„ุชุฑุชูŠุจุงู„ุตู
508
+
509
+ 128
510
+ 00:12:45,210 --> 00:12:52,890
511
+ ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุงุชู†ูŠู† ูˆูˆุงุญุฏ ุชู„ุงุชุฉ ูŠุจู‚ู‰
512
+
513
+ 129
514
+ 00:12:52,890 --> 00:12:57,110
515
+ ู‡ุงูŠ ุชู„ุงุชุฉ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ู‡ุงูŠ ูˆุงุญุฏ
516
+
517
+ 130
518
+ 00:12:57,110 --> 00:13:03,750
519
+ ูˆุงุชู†ูŠู† ูƒู…ุงู† ุชู„ุงุชุฉ ุงู„ุตู ุงู„ุฃูˆู„ ูŠุจู‚ู‰ zero ูˆู‡ู†ุง ุณุงู„ูŠ
520
+
521
+ 131
522
+ 00:13:03,750 --> 00:13:08,710
523
+ ุจุงุชู†ูŠู† ุงู„ุขู† ุงู„ุตู ุงู„ุชุงู„ุช ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุชู„ุงุชุฉ ููŠ
524
+
525
+ 132
526
+ 00:13:08,710 --> 00:13:16,100
527
+ ุงุชู†ูŠู† ุณุชุฉ ูˆู†ุงู‚ุต ูˆุงุญุฏ ูŠุธู„ ุฎู…ุณุฉุงู„ุงู† ุจุงู„ุฏุงู„ูŠ ู„ู„ุตู
528
+
529
+ 133
530
+ 00:13:16,100 --> 00:13:21,680
531
+ ุงู„ุชุงู„ุช ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุชู„ุงุชุฉ ูˆ ู†ุงู‚ุต ุงุชู†ูŠู† ุจุถุงู„
532
+
533
+ 134
534
+ 00:13:21,680 --> 00:13:28,040
535
+ ู‚ุฏุงุด ูˆุงุญุฏ ุงู„ุตู ุงู„ุชุงู„ุช ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู„ุช zero ูˆ ู‡ู†ุง
536
+
537
+ 135
538
+ 00:13:28,040 --> 00:13:33,120
539
+ ุงุชู†ูŠู† ุจุงู„ุดูƒู„ ุงู†ู‡ ุฒูŠ ู…ุง ุงู†ุช ุดุงูŠูู‡ ู‡ุฐู‡ ุทู„ุนุช ุชู„ุงุชุฉ ููŠ
540
+
541
+ 136
542
+ 00:13:33,120 --> 00:13:39,290
543
+ ุชู„ุงุชุฉ ุฒูŠ ู…ุง ุงุญู†ุง ู‚ู„ู†ุง ู‡ู†ุง ู‚ุจู„ ู‚ู„ูŠู„ุฅุฐุงู‹ ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ
544
+
545
+ 137
546
+ 00:13:39,290 --> 00:13:45,890
547
+ ู…ู…ูƒู† ุฃู† ุชุชู… ุฎู„ุตู†ุง ู†ู…ุฑุฉ A ุจุฏุงุฌูŠ ู„ู†ู…ุฑุฉ B ู…ู† ุงู„ู…ุซู„ุฉ
548
+
549
+ 138
550
+ 00:13:45,890 --> 00:13:52,410
551
+ ุจุฑุถู‡ ุจูŠู…ู†ุนุทูŠู†ูŠ ู…ุตููˆูุฉ ุงู„ุฃูˆู„ู‰ ู‡ุฐู‡ ู†ุธุงู…ู‡ุง ุตู ูˆุงุญุฏ
552
+
553
+ 139
554
+ 00:13:52,410 --> 00:14:01,810
555
+ ูˆุซู„ุงุซุฉ ุฃุนู…ุฏุฉู‡ุฐู‡ ุซู„ุงุซุฉ ุตููˆู ูˆ ู‚ุฏุงุด ูˆ ุนู…ูˆุฏูŠู† ุนุฏุฏ
556
+
557
+ 140
558
+ 00:14:01,810 --> 00:14:07,650
559
+ ุงู„ุฃุนู…ุฏุฉ ูŠุณูˆู‰ ุนุฏุฏ ุงู„ุตููˆู ุฅุฐุง ู…ู…ูƒู† ูˆุงู„ู†ุชุฌ ู‡ูˆ ู…ุตููˆูุฉ
560
+
561
+ 141
562
+ 00:14:07,650 --> 00:14:12,370
563
+ ูˆุงุญุฏ ููŠ ุงุชู†ูŠู† ูŠุนู†ูŠ ููŠ ุงู„ุตู ูˆุงุญุฏ ูˆ ุนู…ูˆุฏูŠู† ูŠุนู†ูŠ ุจุณ
564
+
565
+ 142
566
+ 00:14:12,370 --> 00:14:16,030
567
+ ุนู†ุตุฑูŠู† ููŠู‡ุง ุดุงูŠู ู…ู† ุงู„ูƒุชุงุฑ ุงู„ู„ูŠ ุจูŠุทู„ุน ุจุณ ุนู†ุตุฑูŠู†
568
+
569
+ 143
570
+ 00:14:16,030 --> 00:14:27,250
571
+ ูƒูŠู ูƒุงู† ุงู„ุชุงู†ูŠ ูŠุจู‚ู‰ ุจุฏุงุดูŠ ุฃุฎุฏ ู‡ู†ุง FB ูŠุณูˆู‰FB 2 3-1
572
+
573
+ 144
574
+ 00:14:27,250 --> 00:14:34,330
575
+ FB 2 0 1 4-2 1
576
+
577
+ 145
578
+ 00:14:37,410 --> 00:14:42,450
579
+ ุจุฏูˆ ูŠุทู„ุน ุนู†ุฏูŠ ู…ุตููˆูุฉ ู‚ูˆู„ู†ุง ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ููŠ ุงุชู†ูŠู†
580
+
581
+ 146
582
+ 00:14:42,450 --> 00:14:52,270
583
+ ู…ุงููŠุด ุบูŠุฑู‡ุง ู„ูŠุดุŸ ู„ุฃู† ู‡ุฐู‡ ูˆุงุญุฏ ููŠ ุชู„ุงุชุฉ ูˆู‡ุฐู‡ ุชู„ุงุชุฉ
584
+
585
+ 147
586
+ 00:14:52,270 --> 00:14:57,170
587
+ ููŠ ุงุชู†ูŠู† ุงุฐุง ุชู„ุงุชุฉ ู…ุน ุชู„ุงุชุฉ ุจูŠุธู„ ูˆุงุญุฏ ูˆุงุชู†ูŠู† ุตู
588
+
589
+ 148
590
+ 00:14:57,170 --> 00:15:03,610
591
+ ูˆุงุญุฏ ูˆุนู…ูˆุฏูŠู† ูู‚ุท ู„ุง ุบูŠุฑ ุชุนุงู„ู‰ ู†ุถุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ุทุจุนุง
592
+
593
+ 149
594
+ 00:15:03,610 --> 00:15:09,780
595
+ ู…ุงููŠุด ุบูŠุฑู‡ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ู‡ุง ุทู„ุน ุงู„ุตู ุงู„ุฃูˆู„ ููŠ
596
+
597
+ 150
598
+ 00:15:09,780 --> 00:15:18,500
599
+ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ 2 ููŠ 2 ุฃุฑุจุนุฉ ูˆ 3 7 ูˆ 2 9 ูŠุจู‚ู‰
600
+
601
+ 151
602
+ 00:15:18,500 --> 00:15:25,140
603
+ ุงู„ุนู†ุตุฑ ุงู„ุฃูˆู„ 9 ูุด ุบูŠุฑู‡ ุงู„ุตู ู†ูุณู‡ ููŠ ุงู„ุนู…ูˆุฏูŠ ุงู„ุซุงู†ูŠ
604
+
605
+ 152
606
+ 00:15:25,140 --> 00:15:32,680
607
+ ูŠุจู‚ู‰ zero ูˆู‡ู†ุง 12 ูˆู‡ู†ุง ู†ุงู‚ุต ูˆุงุญุฏ ูŠุจู‚ู‰ 11 ููŠ ุบูŠุฑ
608
+
609
+ 153
610
+ 00:15:32,680 --> 00:15:38,860
611
+ ู‡ูŠูƒุŸุฒูŠ ู…ุง ุงู†ุช ุดุงูŠูู‡ุง ุตู ูˆุงุญุฏ ูˆ ุนู…ูˆุฏูŠู† ูู‚ุท ู‡ุฐุง a ููŠ
612
+
613
+ 154
614
+ 00:15:38,860 --> 00:15:46,720
615
+ b ุทุจ ุจุชุฌูŠ ู„ b ููŠ a ุชุนุงู„ู‰ b ููŠ a ู„ูˆ ุฌูŠุช ู‚ู„ุช ุงู„ b ู‡ูŠ
616
+
617
+ 155
618
+ 00:15:46,720 --> 00:15:51,700
619
+ ุนุจุงุฑุฉ ุนู† ุชู„ุงุชุฉ ููŠ ุงุชู†ูŠู† ููŠ ุงู„ู‡ุนู… ู…ุด ู‡ูŠูƒ ู‡ูŠ ุชู„ุงุชุฉ
620
+
621
+ 156
622
+ 00:15:51,700 --> 00:15:59,470
623
+ ููŠ ุงุชู†ูŠู†ูˆ ุฌูŠุช ู„ a ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ููŠ ุชู„ุงุชุฉ ุนุฏุฏ
624
+
625
+ 157
626
+ 00:15:59,470 --> 00:16:05,610
627
+ ุงู„ุฃุนู…ุฏุฉ ู„ุง ูŠุณุงูˆูŠ ุนุฏุฏ ุงู„ุตููˆู ุจุงู„ุชุงู„ูŠ ู„ุง ูŠู…ูƒู† ุฃู†
628
+
629
+ 158
630
+ 00:16:05,610 --> 00:16:18,070
631
+ ูŠุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ and ุงู„ b ููŠ a does not exist
632
+
633
+ 159
634
+ 00:16:19,440 --> 00:16:29,440
635
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุด ู…ู…ูƒู† ู†ู‚ูˆู„ู‡ ู„ูŠุดุŸ because the
636
+
637
+ 160
638
+ 00:16:29,440 --> 00:16:34,340
639
+ number of
640
+
641
+ 161
642
+ 00:16:34,340 --> 00:16:46,440
643
+ columns in ุงู„ู…ุตู‡ูˆูุฉ a ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ููŠ ุงู„ู…ุตู‡ูˆูุฉ a is
644
+
645
+ 162
646
+ 00:16:46,440 --> 00:16:48,680
647
+ three and
648
+
649
+ 163
650
+ 00:16:51,910 --> 00:17:05,530
651
+ the number of rows in B is ุนุฏุฏ ุงู„ุตููˆู ููŠ ุงู„ู…ุตููˆู
652
+
653
+ 164
654
+ 00:17:05,530 --> 00:17:08,850
655
+ ุจูŠ
656
+
657
+ 165
658
+ 00:17:08,850 --> 00:17:15,410
659
+ .. ุฅูŠุด ุงุญู†ุง ุจุฏู†ุง ุจูŠ ููŠ ุฅูŠู‡ุŸ ู„ุฃ ุจุฏู†ุง ููŠ ุจูŠุŒ ุงู„ุฃูˆู„ู‰
660
+
661
+ 166
662
+ 00:17:15,410 --> 00:17:25,130
663
+ ุนุฏุฏ ู…ู† ุจูŠููŠ ุจูŠ is three ูˆู‡ู†ุง ุนุฏุฏ ุงู„ุตููˆู is one
664
+
665
+ 167
666
+ 00:17:25,130 --> 00:17:33,790
667
+ ุงู„ุฃูˆู„ู‰ ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ููŠู‡ุง ุงุชู†ูŠู† ูˆุงู„ุชุงู†ูŠุฉ ูˆุงุญุฏ ูˆุฏูˆู„
668
+
669
+ 168
670
+ 00:17:33,790 --> 00:17:39,650
671
+ ุงุชู†ูŠู† are not equal ู…ู† ู‡ู†ุง ู„ุง ูŠู…ูƒู† ุงู† ุชุชู… ุนู…ู„ูŠุฉ
672
+
673
+ 169
674
+ 00:17:39,650 --> 00:17:40,370
675
+ ุงู„ุถุฑุจ
676
+
677
+ 170
678
+ 00:17:59,400 --> 00:18:09,360
679
+ ู…ุซุงู„ ุงุชู†ูŠู† example two write
680
+
681
+ 171
682
+ 00:18:09,360 --> 00:18:14,860
683
+ the system write the system
684
+
685
+ 172
686
+ 00:18:16,500 --> 00:18:23,840
687
+ ูƒุชุจูˆู„ู†ุง ุงู„ู€ system ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† X one ุฒุงุฆุฏ ุฎู…ุณุฉ X
688
+
689
+ 173
690
+ 00:18:23,840 --> 00:18:33,000
691
+ two ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุชู„ุงุชุฉ X one ู†ุงู‚ุต ุงุชู†ูŠู† X
692
+
693
+ 174
694
+ 00:18:33,000 --> 00:18:40,520
695
+ two ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆ X one ุฒุงุฆุฏ X two ุจุฏู‡ ูŠุณุงูˆูŠ
696
+
697
+ 175
698
+ 00:18:40,520 --> 00:19:00,770
699
+ ุชู„ุงุชุฉ in the formin the form ax ุจุฏูŠ ุดุงูˆูŠ b ูŠุจู‚ู‰
700
+
701
+ 176
702
+ 00:19:00,770 --> 00:19:06,560
703
+ ุจูŠู‚ูˆู„ูŠ ุงูƒุชุจู†ุธุงู… ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุฎุทูŠุฉ ุงู„ู„ู‰ ุนู†ุฏูƒ ุนู„ู‰
704
+
705
+ 177
706
+ 00:19:06,560 --> 00:19:11,980
707
+ ุงู„ุดูƒู„ ax ูŠุณุงูˆูŠ b ุนู„ู‰ ุดูƒู„ ู…ุตุฑูˆูุฉ ู…ุนุงู…ู„ุงุช ููŠ ู…ุตุฑูˆูุฉ
708
+
709
+ 178
710
+ 00:19:11,980 --> 00:19:16,940
711
+ ู…ุฌุงู‡ูŠู„ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุตุฑูˆูุฉ ุงู„ุซูˆุงุฑุซ ุจู‚ูˆู„ ู„ู‡ ูƒูˆูŠุณ ูุชุฏู‡ูŠ
712
+
713
+ 179
714
+ 00:19:16,940 --> 00:19:25,460
715
+ ู„ู…ุตุฑูˆูุฉ ุงู„ู…ุนุงู…ู„ุงุช ูŠุจู‚ู‰ ุงุชู†ูŠู† ุฎู…ุณุฉ ุชู„ุงุชุฉ ู†ู‚ุต ุงุชู†ูŠู†
716
+
717
+ 180
718
+ 00:19:25,460 --> 00:19:34,810
719
+ ูˆุงุญุฏ ูˆุงุญุฏุงู„ู…ุฌุงู‡ูŠู„ ูƒู… ูˆุงุญุฏุŸ ุงุชู†ูŠู† ูุด ุบูŠุฑู‡ู… ูŠุจู‚ู‰ X
720
+
721
+ 181
722
+ 00:19:34,810 --> 00:19:41,950
723
+ ูˆุงุญุฏ ูˆู‡ู†ุง X ุงุชู†ูŠู† ุจูŠุณูˆูŠ ู…ุตููˆูุฉ ุงู„ุซูˆุงุจุช ุณุงู„ุจ ูˆุงุญุฏ
724
+
725
+ 182
726
+ 00:19:41,950 --> 00:19:48,770
727
+ ุฒูŠุฑูˆ ุชู„ุชุฉ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุชุชู… ู‡ุฐู‡ ุงู„ุนู…ู„ูŠุฉ ุงู… ู„ุง ุชุนุงู„ู‰
728
+
729
+ 183
730
+ 00:19:48,770 --> 00:19:56,000
731
+ ู†ุดูˆู ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ู†ุธุงู…ู‡ุง ุชู„ุช ุตููˆู ูˆ ุนู…ูˆุฏูŠู†ุชู…ุงู… ุชู„ุช
732
+
733
+ 184
734
+ 00:19:56,000 --> 00:20:01,660
735
+ ุตููˆู ูˆ ุนู…ูˆุฏูŠู† ู‡ุฐู‡ ุงู„ู…ุตุฑูˆูุฉ ู†ุถุนู‡ุง ุตููŠู† ูˆ ุนู…ูˆุฏ ูˆุงุญุฏ
736
+
737
+ 185
738
+ 00:20:01,660 --> 00:20:07,840
739
+ ุชู…ุงู… ุฅุฐุง ุนุฏุฏ ุงู„ุฃุนู…ุฏุฉ ูŠุณูˆู‰ ุนุฏุฏ ุงู„ุตููˆู ูˆุถุน ุงู„ู…ุตุฑูˆูุฉ
740
+
741
+ 186
742
+ 00:20:07,840 --> 00:20:13,760
743
+ ุชู„ุช ุตููˆู ูˆ ุนู…ูˆุฏ ูˆุงุญุฏ ู‡ูŠ ุชู„ุงุชุฉ ููŠ ูˆุงุญุฏ ูŠุจู‚ู‰ ุชู„ุช
744
+
745
+ 187
746
+ 00:20:13,760 --> 00:20:18,560
747
+ ุตููˆู ูˆ ุนู…ูˆุฏ ูˆุงุญุฏ ุฅุฐุง ูƒู„ุงู…ูŠ ุตุญูŠุญ ุนู…ู„ู†ุง ุงู„ุถุฑุจ ู‡ุฐู‡
748
+
749
+ 188
750
+ 00:20:18,560 --> 00:20:23,690
751
+ ุจุชุชู…ูˆ ู„ูˆ ุถุฑุจุช ุจูŠุทู„ุน ุนู†ุฏ ู…ูŠู† ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ููˆู‚ ูŠุจู‚ู‰
752
+
753
+ 189
754
+ 00:20:23,690 --> 00:20:32,030
755
+ ูƒุชุงุจุชูŠ ุณู„ูŠู…ุฉ ู…ุงุฆุฉ ุจุงู„ู…ุงุฆุฉ example three ุจู‚ูˆู„
756
+
757
+ 190
758
+ 00:20:32,030 --> 00:20:39,830
759
+ find the system of equations find the system of
760
+
761
+ 191
762
+ 00:20:39,830 --> 00:20:48,370
763
+ equations that corresponding that corresponding
764
+
765
+ 192
766
+ 00:20:52,110 --> 00:21:03,410
767
+ that corresponding to the vector equation ax ุจุฏูŠ
768
+
769
+ 193
770
+ 00:21:03,410 --> 00:21:09,750
771
+ ุณุงูˆูŠ b where ุญูŠุซ
772
+
773
+ 194
774
+ 00:21:11,950 --> 00:21:25,810
775
+ where ุงู„ A ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุงู„ูŠ ุจ 2 1 3 ูˆ 3 0 1
776
+
777
+ 195
778
+ 00:21:25,810 --> 00:21:32,690
779
+ and ุงู„ B ุชุณุงูˆูŠ 0 0
780
+
781
+ 196
782
+ 00:21:48,030 --> 00:21:51,810
783
+ ุจู†ุฑุฌุน ู„ุณุคุงู„ู†ุง ู…ุฑุฉ ุชุงู†ูŠุฉ ุจูŠู‚ูˆู„ ู‡ุงุช ุงู„ system of
784
+
785
+ 197
786
+ 00:21:51,810 --> 00:21:53,990
787
+ equations that corresponding to the vector
788
+
789
+ 198
790
+ 00:21:53,990 --> 00:21:58,490
791
+ equation x ุจุงู„ุณุงูˆูŠุฉ ุจูŠู‡ ุญูŠุซ ุงู„ a ูˆ ุงู„ b ู…ุนุทูŠุงุช
792
+
793
+ 199
794
+ 00:21:58,490 --> 00:22:03,010
795
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ู‡ุง ูŠุนู†ูŠ ูƒุฃู†ู‡ ุจูŠู‚ูˆู„ ุงู…ุดูŠ ุนู…ู„ูŠุฉ ุนูƒุณูŠุฉ
796
+
797
+ 200
798
+ 00:22:03,010 --> 00:22:08,530
799
+ ู„ู…ู† ู„ุณุคุงู„ ุงู„ู„ูŠ ุฌุงุจู„ู‡ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ุงู†ุง ุนู†ุฏูŠ a ููŠ
800
+
801
+ 201
802
+ 00:22:08,530 --> 00:22:15,350
803
+ x ุจุฏู‡ ูŠุณุงูˆูŠ ุจูŠู‡ ุงู„ a ู‡ูŠ ู…ูˆุฌูˆุฏุฉูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู„ a
804
+
805
+ 202
806
+ 00:22:15,350 --> 00:22:21,310
807
+ ู…ูˆุฌูˆุฏุฉ ู‡ุฐุง ุงู„ a ููŠ ุงู„ x ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ
808
+
809
+ 203
810
+ 00:22:21,310 --> 00:22:30,530
811
+ ุงู„ a ุงู„ู„ูŠ ู‡ูŠุจู‚ู‰ ุฑุนู†ูŠู† ุณู„ุจ 2 1 3 ูˆุฏูŠ 3 0 1 ููŠ
812
+
813
+ 204
814
+ 00:22:30,530 --> 00:22:36,990
815
+ ู…ุตููˆูุฉ ู‡ู†ุง ู…ูŠู† ู‡ูŠ ุงู„ู„ู‡ ุฃุนู„ู… ุจุฏู‡ุง ุชุณุงูˆูŠ 0 ูˆ 0
816
+
817
+ 205
818
+ 00:22:38,870 --> 00:22:45,670
819
+ ุงู„ู…ุตูˆูุฉ ู‡ุฐู‡ ู†ุธุงู…ู‡ุง ูƒู…ุŸ ุงุชู†ูŠู† ููŠ ุชู„ุงุชุฉ ูƒูˆูŠุณ ุงู„ู…ุตูˆูุฉ
820
+
821
+ 206
822
+ 00:22:45,670 --> 00:22:51,930
823
+ ู‡ุฐู‡ ู†ุธุงู…ู‡ุง ุงุชู†ูŠู† ููŠ ูˆุงุญุฏ ุตููŠู† ูˆ ุนู…ูˆุฏ ู‡ุฐู‡ ู…ุดุงู†
824
+
825
+ 207
826
+ 00:22:51,930 --> 00:22:58,600
827
+ ุชู†ุถุฑุจ ุจุฏู‰ ูŠูƒูˆู† ุนู†ุฏู‰ ู‡ู†ุง ูƒู…ุŸุชู„ุงุชุฉ ุตููˆู ูˆ ุนู…ูˆุฏ ูˆุงุญุฏ
828
+
829
+ 208
830
+ 00:22:58,600 --> 00:23:03,800
831
+ ูŠุจู‚ู‰ ู‡ุฐุง ูŠุฑูŠุฏ ุชู„ุงุชุฉ ุตููˆู ูˆ ุนู…ูˆุฏ ูˆุงุญุฏ ุชู„ุงุชุฉ ุตููˆู
832
+
833
+ 209
834
+ 00:23:03,800 --> 00:23:09,300
835
+ ุงุฐุง ุงู†ุง ุจุงุฏุฑ ุงู‚ูˆู„ ุงูƒุณ ูˆุงุญุฏ ูˆ ุงูƒุณ ุงุชู†ูŠู† ูˆ ุงูƒุณ ุชู„ุงุชุฉ
836
+
837
+ 210
838
+ 00:23:09,300 --> 00:23:12,720
839
+ ู…ุธุจูˆุท ุงุฐุง ู‡ูˆ ุงู„ู„ูŠ ูŠู‚ูˆู„ find the system of
840
+
841
+ 211
842
+ 00:23:12,720 --> 00:23:18,440
843
+ equations ู‡ุงุชู„ูŠ ู†ุธุงู… ุงู„ู…ุนุงุฏู„ุฉ ุงูˆ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ูƒูˆู†ุฉ
844
+
845
+ 212
846
+ 00:23:18,440 --> 00:23:24,720
847
+ ู„ู†ุธุงู… ุงู„ู…ู†ุธุฑ ู„ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงุฐุง ุงู†ุง ุญุชู‰ ุงู„ุขู† ูƒุชุจุช
848
+
849
+ 213
850
+ 00:23:25,030 --> 00:23:29,330
851
+ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุตุฑููŠุฉ ูƒุชุจุชู‡ุง ุจุดูƒู„ ุฃุนุธู… ู„ู‡ุฐุง ุงู„
852
+
853
+ 214
854
+ 00:23:29,330 --> 00:23:34,310
855
+ system ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„
856
+
857
+ 215
858
+ 00:23:34,310 --> 00:23:38,930
859
+ ุจูŠุนุทูŠู†ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ู…ู† ู‡ุฐุง ุงู„ system ูŠุจู‚ู‰
860
+
861
+ 216
862
+ 00:23:38,930 --> 00:23:42,370
863
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰
864
+
865
+ 217
866
+ 00:23:42,370 --> 00:23:50,270
867
+ ู†ุงู‚ุต ุงุชู†ูŠู† x one ุฒุงุฆุฏ x two ุฒุงุฆุฏ ุชู„ุงุชุฉ x three
868
+
869
+ 218
870
+ 00:23:50,270 --> 00:23:59,640
871
+ ุจุฏูˆู† ุณูˆูŠู†ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู†ูŠุฉ ุชู„ุงุชุฉ ุงูƒุณ ูˆุงู† ุฒุงุฆุฏ ุงูƒุณ
872
+
873
+ 219
874
+ 00:23:59,640 --> 00:24:00,860
875
+ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ
876
+
877
+ 220
878
+ 00:24:00,860 --> 00:24:00,860
879
+ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ
880
+
881
+ 221
882
+ 00:24:00,860 --> 00:24:01,040
883
+ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ
884
+
885
+ 222
886
+ 00:24:01,040 --> 00:24:01,740
887
+ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ
888
+
889
+ 223
890
+ 00:24:01,740 --> 00:24:02,580
891
+ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ
892
+
893
+ 224
894
+ 00:24:02,580 --> 00:24:05,280
895
+ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ
896
+
897
+ 225
898
+ 00:24:05,280 --> 00:24:13,100
899
+ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ ุฒุงุฆุฏ ุงูƒุณ ุซุฑูŠ
900
+
901
+ 226
902
+ 00:24:19,640 --> 00:24:25,080
903
+ ุงู„ูˆ ุญู„ ุนู„ู‰ ุงู„ุฃู‚ู„ ุงู„ุญู„ ุงู„ุตูุฑูŠ ู…ุด ุดุบู„ุชู†ุง ู‡ุฐู‡ ุงู„ู…ู‡ู…
904
+
905
+ 227
906
+ 00:24:25,080 --> 00:24:30,060
907
+ ุงุญู†ุง ุจุฏู†ุง ู†ุนุฑู ู‡ุงู„ุดุบู„ ู‡ุฐุง ุทูŠุจ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ู„ุงุญุธุฉ ู…ุง
908
+
909
+ 228
910
+ 00:24:30,060 --> 00:24:36,420
911
+ ู†ูƒุชุจ ู‡ุฐู‡ ุงู„ู…ู„ุงุญุธุฉ ูˆู†ุญุงูˆู„ ู†ุณุชุฎุฏู…ู‡ุง ุงูˆ ู†ุนู…ู… ู…ุง ุณุจู‚
912
+
913
+ 229
914
+ 00:24:36,420 --> 00:24:46,580
915
+ ุงู„ุญุฏูŠุซ ุนู†ู‡ ูŠุจู‚ู‰ remark in general ุนู„ู‰
916
+
917
+ 230
918
+ 00:24:46,580 --> 00:24:56,480
919
+ ูˆุฌู‡ ุงู„ุนู…ูˆู…the product product
920
+
921
+ 231
922
+ 00:24:56,480 --> 00:25:03,380
923
+ of matrices of
924
+
925
+ 232
926
+ 00:25:03,380 --> 00:25:13,820
927
+ matrices is not commutative is not ูŠุนู†ูŠ
928
+
929
+ 233
930
+ 00:25:13,820 --> 00:25:18,280
931
+ ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตูˆูุงุช ู„ูŠุณุช ุฅุจุฏุงู„ูŠุฉ
932
+
933
+ 234
934
+ 00:25:20,320 --> 00:25:27,560
935
+ that is if ุงู„ู€
936
+
937
+ 235
938
+ 00:25:27,560 --> 00:25:39,560
939
+ A and ุงู„ B are matrices such
940
+
941
+ 236
942
+ 00:25:39,560 --> 00:25:52,360
943
+ that ุจุญูŠุซ ุฃู† ุงู„ A ููŠ ุงู„ B andุงู„ู€ B ููŠ ุงู„ A are
944
+
945
+ 237
946
+ 00:25:52,360 --> 00:26:06,400
947
+ both defined ูƒู„ุงู‡ู…ุง ู…ุนุฑู then it is not
948
+
949
+ 238
950
+ 00:26:06,400 --> 00:26:07,460
951
+ necessarily
952
+
953
+ 239
954
+ 00:26:19,130 --> 00:26:28,790
955
+ necessary that ุฃู† ุงู„ A ููŠ ุงู„ B ุจุฏูŠ ุณุงูˆูŠ ุงู„ B ููŠ ุงู„
956
+
957
+ 240
958
+ 00:26:28,790 --> 00:26:37,150
959
+ A example ู†ู…ุฑุฉ
960
+
961
+ 241
962
+ 00:26:37,150 --> 00:26:56,740
963
+ A show that ุจูŠู†ูŠู„ูŠ F ุงู„ A ุชุณุงูˆูŠ-2 5 1 4 and B
964
+
965
+ 242
966
+ 00:26:56,740 --> 00:27:11,620
967
+ ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ ุฃุฑุจุนุฉ then ุงู„
968
+
969
+ 243
970
+ 00:27:11,620 --> 00:27:25,380
971
+ A ููŠ B ู„ุง ูŠุณุงูˆูŠ ุงู„ B ููŠ ุงู„ ANimra B Show that if
972
+
973
+ 244
974
+ 00:27:25,380 --> 00:27:31,160
975
+ ุงู„ A ุชุณุงูˆูŠ ูˆุงุญุฏ
976
+
977
+ 245
978
+ 00:27:31,160 --> 00:27:40,080
979
+ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ Zero and ุงู„ B ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ
980
+
981
+ 246
982
+ 00:27:40,080 --> 00:27:46,560
983
+ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† then
984
+
985
+ 247
986
+ 00:27:48,780 --> 00:27:53,120
987
+ ุงู„ู€ A ููŠ ุงู„ู€ B ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ ุงู„ู€ A
988
+
989
+ 248
990
+ 00:28:24,260 --> 00:28:28,440
991
+ ุจู†ุฌูŠ ู„ู„ remark ุงู„ู„ูŠ ุงุญู†ุง ูƒุงุชุจูŠู†ู‡ ู‡ุฐุง ุจู‚ูˆู„ in
992
+
993
+ 249
994
+ 00:28:28,440 --> 00:28:33,760
995
+ general ุนู„ู‰ ูˆุฌู‡ ุงู„ุนู…ูˆู… the product of matrices is
996
+
997
+ 250
998
+ 00:28:33,760 --> 00:28:38,960
999
+ not commutative ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตุญูุงุช ู„ูŠุณุช ุนู…ู„ูŠุฉ
1000
+
1001
+ 251
1002
+ 00:28:38,960 --> 00:28:43,400
1003
+ ุฅุจุฏุงู„ูŠุฉ that is ู„ูˆ ูƒุงู† ุงู„ a ูˆ ุงู„ e are matrices
1004
+
1005
+ 252
1006
+ 00:28:43,400 --> 00:28:47,200
1007
+ ุจุญูŠุซ ุฃู† ุงู„ a ูˆ ุงู„ a ููŠ b ูˆ ุงู„ b ููŠ a are both
1008
+
1009
+ 253
1010
+ 00:28:47,200 --> 00:28:50,580
1011
+ defined ู„ูˆ ูƒุงู†ุช ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ู…ู† ุงู„ูŠู…ูŠู† ูˆ ู…ู† ุงู„ูŠ
1012
+
1013
+ 254
1014
+ 00:28:50,580 --> 00:28:56,470
1015
+ ุฃุณุงุฑ ู…ุนุฑูุฉthen it is not necessary ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู†
1016
+
1017
+ 255
1018
+ 00:28:56,470 --> 00:29:00,170
1019
+ ุงู„ A ููŠ ุงู„ B ุจุฏูˆุง ูŠุณูˆูˆุง ู…ูŠู†ุŒ B ููŠ ุงู„ A ูŠุนู†ูŠ ุนู…ู„ูŠุฉ
1020
+
1021
+ 256
1022
+ 00:29:00,170 --> 00:29:04,110
1023
+ ุถุฑุจ ุงู„ู…ุตุฑูุงุช ู„ูŠุณุช ุนู…ู„ูŠุฉ .. ู„ู…ุง ุฃู‚ูˆู„ in general ูŠุง
1024
+
1025
+ 257
1026
+ 00:29:04,110 --> 00:29:09,030
1027
+ ุจู†ุงุช ูŠุนู†ูŠ ุนู„ู‰ ูˆุฌู‡ ุงู„ุนูˆู… ูŠุนู†ูŠ ู‚ุฏ ุดูˆุฐ ุญุงู„ุฉ ุฃูˆ ุญุงู„ุชูŠู†
1028
+
1029
+ 258
1030
+ 00:29:09,030 --> 00:29:13,000
1031
+ ุฃูˆ ุชู„ุงุชุฉ ุนู† ู…ูŠู† ุนู† ู‡ุฐุง ุงู„ู†ุธุงู…ู„ูƒู† in general ุจู‚ูˆู„
1032
+
1033
+ 259
1034
+ 00:29:13,000 --> 00:29:17,780
1035
+ ุบูŠุฑ ู…ุง ุงู† ุทู„ุนุช ู…ุฑุฉ ูˆ ุงู„ู„ู‡ ู…ุฑุชูŠู† ูˆ ุงู„ู„ู‡ ุชู„ุงุชุฉ ูŠุญุฏุซ
1036
+
1037
+ 260
1038
+ 00:29:17,780 --> 00:29:23,140
1039
+ ุชุณูˆูŠ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู†ู‡ ู…ุด ุฏุงูŠู…ุง ู‡ูˆ ุจูŠุญุฏุซ ุชุณูˆูŠ ู„ูƒู† ุจู‚ุฏุฑ
1040
+
1041
+ 261
1042
+ 00:29:23,140 --> 00:29:28,390
1043
+ ุงู„ู„ู‡ ุทู„ุนุช ู…ุฑุชูŠู† ุงูˆ ู…ุฑุฉ ุงูˆ ุชู„ุงุชุฉุงู„ุขู† ุณุฃุนุทูŠูƒ ู…ุซุงู„
1044
+
1045
+ 262
1046
+ 00:29:28,390 --> 00:29:32,790
1047
+ ุฃุจูŠู‘ู„ูƒ ุฃู† ุถุฑุจ ุงู„ู…ุตูˆูุงุช ู„ูŠุณุช commutative ูˆุถุฑุจ
1048
+
1049
+ 263
1050
+ 00:29:32,790 --> 00:29:35,790
1051
+ ุงู„ุงูƒุชู†ุชุฑูˆู† ูˆุงุทู„ุนู‡ู… commutative ูŠุจู‚ู‰ ูŠุนุทูŠู†ุง ุงู„ู†ุชุฌ
1052
+
1053
+ 264
1054
+ 00:29:35,790 --> 00:29:41,330
1055
+ ููŠ ูƒู„ุงู…ู†ุง ูˆุจุงู„ุชุงู„ูŠ ุนู…ู„ูŠุฉ ุงู„ุชุณุงูˆูŠ ุบูŠุฑ ุตุญูŠุญุฉ ุจูŠู‚ูˆู„
1056
+
1057
+ 265
1058
+ 00:29:41,330 --> 00:29:46,290
1059
+ ู…ุซุงู„ show that ุฃู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู…ุตูˆูุฉ A ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
1060
+
1061
+ 266
1062
+ 00:29:46,290 --> 00:29:51,810
1063
+ ุนู†ุฏู†ุง ู‡ูˆ B ูŠุจู‚ู‰ ุงู„ A ููŠ B ู„ุง ูŠุณุงูˆูŠ ุงู„ B ููŠ A ุฅุฐุง
1064
+
1065
+ 267
1066
+ 00:29:51,810 --> 00:29:55,750
1067
+ ุฃู†ุง ุจุฑูˆุญ ุฃุฎุฏ ุงู„ A ููŠ ุงู„ B solution
1068
+
1069
+ 268
1070
+ 00:29:58,690 --> 00:30:03,490
1071
+ ูˆุจุฏุฃ ุฃุฎุฐ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุงู† ู‡ูˆ ุงู„ู…ุฑุฃุฉุจุฏุฃ ุฃุฎุฏ ุงู„ู€ a ููŠ
1072
+
1073
+ 269
1074
+ 00:30:03,490 --> 00:30:09,710
1075
+ ุงู„ู€ b ุจุฏุฃ ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ ุงุชู†ูŠู† ุฎู…ุณุฉ ูˆุงุญุฏ ุงุฑุจุน
1076
+
1077
+ 270
1078
+ 00:30:09,710 --> 00:30:15,130
1079
+ ููŠ b ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ุงุชู†ูŠู† ุณุงู„ุจ ุชู„ุงุชุฉ ุงุฑุจุน ูŠุจู‚ู‰
1080
+
1081
+ 271
1082
+ 00:30:15,130 --> 00:30:19,430
1083
+ ุงู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌ ูƒุงู„ุชุงู„ูŠ ุทุจุนุง ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูˆู‡ุฐุง
1084
+
1085
+ 272
1086
+ 00:30:19,430 --> 00:30:22,410
1087
+ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงู„ู†ุงุชุฌ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูƒุฐู„ูƒ
1088
+
1089
+ 273
1090
+ 00:30:22,410 --> 00:30:27,890
1091
+ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู†ุงู‚ุต ุณุชุฉ ูˆู†ุงู‚ุต
1092
+
1093
+ 274
1094
+ 00:30:27,890 --> 00:30:33,200
1095
+ ุฎู…ุณุชุงุดุฑ ุจู†ุงู‚ุต ูˆุงุญุฏ ูˆุนุดุฑูŠู†ูŠุจู‚ู‰ ู‡ุงูŠ ู†ุงู‚ุต ูˆุงุญุฏ ุนุดุฑูŠู†
1096
+
1097
+ 275
1098
+ 00:30:33,200 --> 00:30:38,640
1099
+ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏูŠ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ู†ุงู‚ุต ุฃุฑุจุนุฉ ูˆุนู†ุฏูƒ
1100
+
1101
+ 276
1102
+ 00:30:38,640 --> 00:30:45,200
1103
+ ู‡ู†ุง ุนุดุฑูŠู† ุจูŠุธู„ ู‚ุฏุงุด ุณุชุฉ ุนุดุฑ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏูŠ
1104
+
1105
+ 277
1106
+ 00:30:45,200 --> 00:30:51,720
1107
+ ุงู„ุฃูˆู„ ุชู„ุงุชุฉ ูˆ ู‡ู†ุง ู†ุงู‚ุต ุงุชู†ุงุดุฑ ุจูŠุธู„ ู‚ุฏุงุด ู†ุงู‚ุต ุชุณุนุฉ
1108
+
1109
+ 278
1110
+ 00:30:51,720 --> 00:30:56,480
1111
+ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏูŠ ุงู„ุชุงู†ูŠ ูŠุจู‚ู‰ ุงุชู†ูŠู† ูˆุณุชุงุด
1112
+
1113
+ 279
1114
+ 00:30:56,480 --> 00:31:03,400
1115
+ ุจุนุฏูŠู† ุงู…ูŠู†ุชู…ู†ุชุงุด ูŠุจู‚ู‰ ุซู…ุงู†ูŠุฉ ุนุดุฑ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
1116
+
1117
+ 280
1118
+ 00:31:03,400 --> 00:31:12,700
1119
+ ุทูŠุจ ุจุฏู†ุง ู†ูŠุฌูŠ B ููŠ A and ุงู„ B ููŠ ุงู„ A ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ูŠ
1120
+
1121
+ 281
1122
+ 00:31:12,700 --> 00:31:19,580
1123
+ ุชู„ุงุชุฉ ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ ุงุฑุจุนุฉ ููŠ ุณุงู„ุจ ุงุชู†ูŠู† ุฎู…ุณุฉ
1124
+
1125
+ 282
1126
+ 00:31:19,580 --> 00:31:25,290
1127
+ ูˆุงุญุฏ ุงุฑุจุนุฉุจูŠุฏู‡ ูŠุณุงูˆูŠ ุทุจุนุง ู‡ูŠุนุทูŠู†ูŠ ูƒู…ุงู† ู…ุตูˆูุฉ ู†ุธุงู…
1128
+
1129
+ 283
1130
+ 00:31:25,290 --> 00:31:29,370
1131
+ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„
1132
+
1133
+ 284
1134
+ 00:31:29,370 --> 00:31:35,970
1135
+ ุณุงู„ุจ ุณุชุฉ ูˆู…ูˆุฌุฉ ุจุงุชู†ูŠู† ูŠุธู„ ุณุงู„ุจ ุฃุฑุจุน ุงู„ู„ุญุธุฉ ุงุฎุชู„ู
1136
+
1137
+ 285
1138
+ 00:31:35,970 --> 00:31:40,030
1139
+ ู…ู† ุงู„ุจุฏุงูŠุฉ ู…ู† ุฃูˆู„ ุนู†ุตุฑ ู‚ุจู„ ู…ุง ุชูƒู…ู„ ูŠุจู‚ู‰ ุชุณุงูˆูŠ ุบูŠุฑ
1140
+
1141
+ 286
1142
+ 00:31:40,030 --> 00:31:46,850
1143
+ ุญุงุตู„ ุทูŠุจ ู†ูƒู…ู„ ูŠุจู‚ู‰ ุชู„ุงุชุฉ ููŠ ุฎู…ุณุฉ ุจุฎู…ุณุชุงุดุฑ ูˆุชู…ุงู†ูŠุฉ
1144
+
1145
+ 287
1146
+ 00:31:46,850 --> 00:31:54,050
1147
+ ุชู„ุงุชุฉ ูˆุนุดุฑูŠู†ุงู„ุงู† ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุณุชุฉ ูˆ
1148
+
1149
+ 288
1150
+ 00:31:54,050 --> 00:31:59,570
1151
+ ุฃุฑุจุนุฉ ุนุดุฑุฉ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุณุงู„ุจ
1152
+
1153
+ 289
1154
+ 00:31:59,570 --> 00:32:05,470
1155
+ ุฎู…ุณุชุงุด ูˆ ุนู†ุฏูƒ ุณุชุงุด ุจูŠุจู‚ู‰ ุงู„ู‚ุฏุงุด ูˆุงุญุฏ ูŠุจู‚ู‰ ู…ู†
1156
+
1157
+ 290
1158
+ 00:32:05,470 --> 00:32:12,810
1159
+ ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุจู‚ุฏุฑ ุงุณุชู†ุชุฌ ุงู† ุงู„ A B ู„ุง ูŠุณุงูˆูŠ ุงู„ B
1160
+
1161
+ 291
1162
+ 00:32:12,810 --> 00:32:13,570
1163
+ ููŠ ุงู„ A
1164
+
1165
+ 292
1166
+ 00:32:20,340 --> 00:32:28,320
1167
+ ุทูŠุจ ุจุฏูŠ ุงุฎุฏ ุงู„ a ููŠ ุงู„ b ูˆูŠุณุงูˆูŠ ูŠุจู‚ู‰ ูˆุงุญุฏ ุงุชู†ูŠู†
1168
+
1169
+ 293
1170
+ 00:32:28,320 --> 00:32:34,540
1171
+ ุณู„ุจ ูˆุงุญุฏ ุฒูŠุฑูˆ ูˆุงุญุฏ ุงุชู†ูŠู† ุณู„ุจ ูˆุงุญุฏ ุฒูŠุฑูˆ ููŠ b ุงู„ู„ูŠ
1172
+
1173
+ 294
1174
+ 00:32:34,540 --> 00:32:39,820
1175
+ ู‡ูˆ ู…ู† ุณู„ุจ ูˆุงุญุฏ ุงุชู†ูŠู† ุณู„ุจ ูˆุงุญุฏ ุณู„ุจ ุงุชู†ูŠู† ุณู„ุจ ูˆุงุญุฏ
1176
+
1177
+ 295
1178
+ 00:32:39,820 --> 00:32:45,840
1179
+ ุงุชู†ูŠู† ุณู„ุจ ูˆุงุญุฏ ุณู„ุจ ุงุชู†ูŠู† ูˆูŠุณุงูˆูŠุงู„ุตู ุงู„ุฃูˆู„ ููŠ
1180
+
1181
+ 296
1182
+ 00:32:45,840 --> 00:32:50,640
1183
+ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ูˆุณุงู„ุจ ุงุชู†ูŠู† ููŠ ุงู„ุฌุฏุงุฑ
1184
+
1185
+ 297
1186
+ 00:32:50,640 --> 00:32:55,280
1187
+ ุจุณุงู„ุจ ุชู„ุงุชุฉ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุงุชู†ูŠู†
1188
+
1189
+ 298
1190
+ 00:32:55,280 --> 00:33:00,840
1191
+ ูˆุณุงู„ุจ ุงุฑุจุนุฉ ุจุณุงู„ุจ ุงุชู†ูŠู† ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ
1192
+
1193
+ 299
1194
+ 00:33:00,840 --> 00:33:06,520
1195
+ ุงู„ุฃูˆู„ ุจูˆุงุญุฏ ุงู„ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุจุณุงู„ุจ
1196
+
1197
+ 300
1198
+ 00:33:06,520 --> 00:33:12,970
1199
+ ุงุชู†ูŠู†ุงู„ุงู† ุจุฏุงุฌูŠ ู„ู„ู€ B ููŠ ุงู„ู€ A ุงู„ู€ B ููŠ ุงู„ู€ A ูŠุจู‚ู‰
1200
+
1201
+ 301
1202
+ 00:33:12,970 --> 00:33:17,890
1203
+ ุณุงู„ุจ ูˆุงุญุฏ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ููŠ ูˆุงุญุฏ ุงุชู†ูŠู†
1204
+
1205
+ 302
1206
+ 00:33:17,890 --> 00:33:23,250
1207
+ ุณุงู„ุจ ูˆุงุญุฏ Zero ูˆูŠุณุงูˆูŠ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„
1208
+
1209
+ 303
1210
+ 00:33:23,250 --> 00:33:29,250
1211
+ ูŠุจู‚ู‰ ุณุงู„ุจ ูˆุงุญุฏ ูˆุณุงู„ุจ ุงุชู†ูŠู† ุจุณุงู„ุจ ุชู„ุงุชุฉ ุงู„ุตู ุงู„ุฃูˆู„
1212
+
1213
+ 304
1214
+ 00:33:29,250 --> 00:33:34,510
1215
+ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุณุงู„ุจ ุงุชู†ูŠู† ูˆุฐุงูƒ ุจ Zero ุงู„ุตู
1216
+
1217
+ 305
1218
+ 00:33:34,510 --> 00:33:40,520
1219
+ ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ูŠุจู‚ู‰ ู‡ุงูŠ ุนู†ุฏู‰ ุงู„ูˆุงู…ูŠู† ุจุณุงู„ุจ
1220
+
1221
+ 306
1222
+ 00:33:40,520 --> 00:33:47,480
1223
+ ูˆุงุญุฏ ุจุณุงู„ุจ ูˆุงุญุฏ ูˆู…ูˆุฌุฉ ุจุงุชู†ูŠู† ูŠุจู‚ู‰ ุจูˆุงุญุฏ ุงู„ุตู
1224
+
1225
+ 307
1226
+ 00:33:47,480 --> 00:33:52,180
1227
+ ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุจุณุงู„ุจ ุงุชู†ูŠู† ูˆุงู„ุงุฎุฑ ุจุฒูŠุฑูˆ
1228
+
1229
+ 308
1230
+ 00:33:52,340 --> 00:33:57,380
1231
+ ุฃุทู„ุน ุงู„ู†ุชูŠุฌุฉ ุทู„ุน a ุงู„ู…ุตูููŠู† ุจูŠุณุงูˆูˆุง ุจุนุถ ูŠุจู‚ู‰ ุจุงุฌูŠ
1232
+
1233
+ 309
1234
+ 00:33:57,380 --> 00:34:03,300
1235
+ ุจู‚ูˆู„ ุงู„ุณุงุนุฉ ุงู„ a ููŠ ุงู„ b ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ b ููŠ ุงู„ a
1236
+
1237
+ 310
1238
+ 00:34:03,300 --> 00:34:07,960
1239
+ ูŠุนู†ูŠ ูŠุง ุจู†ุงุช ู‚ุฏ ูŠุญุฏุซ ุงู„ุชุณุงูˆูŠ ูˆ ู‚ุฏ ู„ุง ูŠุญุฏุซ ู„ูƒู† ููŠ
1240
+
1241
+ 311
1242
+ 00:34:07,960 --> 00:34:14,490
1243
+ ุงู„ุบุงู„ุจู„ู† ูŠุญุฏุซ ู‡ุฐุง ุงู„ุชุณุงูˆูŠ ูŠุจู‚ู‰ in general ุนู„ู‰ ูˆุฌู‡
1244
+
1245
+ 312
1246
+ 00:34:14,490 --> 00:34:20,130
1247
+ ุงู„ุนู…ูˆู… ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตูˆูุงุช ู„ูŠุณุช ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ ุจู…ุนู†ู‰
1248
+
1249
+ 313
1250
+ 00:34:20,130 --> 00:34:25,450
1251
+ ุฃู† a ููŠ b ู„ุง ูŠุณุงูˆูŠ ุงู„ b ููŠ a ุงู„ุขู† ุฒูŠ ู…ุง ุฃุฎุฏู†ุง
1252
+
1253
+ 314
1254
+ 00:34:25,450 --> 00:34:30,390
1255
+ ู†ุธุฑูŠุฉ ุนู„ู‰ ุนู…ู„ูŠุฉ ุฌู…ุน ุงู„ู…ุตูˆูุงุช ุจู†ุงุฎุฏ ู†ุธุฑูŠุฉ ุนู„ู‰ ุนู…ู„ูŠุฉ
1256
+
1257
+ 315
1258
+ 00:34:30,390 --> 00:34:35,890
1259
+ ุถุฑุจ ุงู„ู…ุตูˆูุงุช ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ theorem
1260
+
1261
+ 316
1262
+ 00:34:43,300 --> 00:34:58,080
1263
+ ุจู‚ูˆู„ if c is a number ูƒุงู† ู‡ุฐุง ุนุฏุฏ ุญู‚ูŠู‚ูŠ and if ุงู„
1264
+
1265
+ 317
1266
+ 00:34:58,080 --> 00:35:11,140
1267
+ a will be and c and capital c ูˆุงู„ู„ู‡ if a ูˆ b ูˆ c
1268
+
1269
+ 318
1270
+ 00:35:13,350 --> 00:35:22,350
1271
+ and D are matrices
1272
+
1273
+ 319
1274
+ 00:35:22,350 --> 00:35:29,050
1275
+ ู…ุตููˆูุงุช such that
1276
+
1277
+ 320
1278
+ 00:35:29,050 --> 00:35:33,550
1279
+ the indicated
1280
+
1281
+ 321
1282
+ 00:35:33,550 --> 00:35:37,130
1283
+ sums
1284
+
1285
+ 322
1286
+ 00:35:37,130 --> 00:35:41,970
1287
+ and products
1288
+
1289
+ 323
1290
+ 00:35:43,980 --> 00:35:54,760
1291
+ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ู‡ูˆ ุงู„ุถุฑุจ are defined then ุงู„ู†ู‚ุทุฉ
1292
+
1293
+ 324
1294
+ 00:35:54,760 --> 00:36:06,880
1295
+ ุงู„ุฃูˆู„ู‰ C ููŠ A ููŠ B ุจุฏู‡ ูŠุณุงูˆูŠ A ููŠ CB ูŠุณุงูˆูŠ
1296
+
1297
+ 325
1298
+ 00:36:06,880 --> 00:36:10,020
1299
+ C ููŠ B
1300
+
1301
+ 326
1302
+ 00:36:14,240 --> 00:36:31,380
1303
+ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู†ู‚ุทุฉ
1304
+
1305
+ 327
1306
+ 00:36:31,380 --> 00:36:40,240
1307
+ ุงู„ุชุงู„ุชุฉ ุงู„ู„ูŠ ู‡ูˆ B ุฒุงุฆุฏ C ูƒู„ู‡ุง ููŠ D ุชุณุงูˆูŠ
1308
+
1309
+ 328
1310
+ 00:36:42,440 --> 00:36:52,360
1311
+ BD ุฒุงุฆุฏ C ููŠ D ุฒุงุฆุฏ
1312
+
1313
+ 329
1314
+ 00:36:52,360 --> 00:37:02,700
1315
+ C ููŠ D ุงู„ู†ู‚ุทุฉ ุงู„ุฑุงุจุนุฉ ุงู„ A ููŠ ุงู„ B ููŠ ุงู„ D ูŠุณุงูˆูŠ
1316
+
1317
+ 330
1318
+ 00:37:02,700 --> 00:37:06,780
1319
+ ุงู„ A ููŠ ุงู„ B ููŠ ุงู„ D
1320
+
1321
+ 331
1322
+ 00:37:09,610 --> 00:37:14,970
1323
+ ุทูŠุจ ู†ูŠุฌูŠ ู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุจูŠู‚ูˆู„ if c is a number ู„ูˆ ูƒุงู†
1324
+
1325
+ 332
1326
+ 00:37:14,970 --> 00:37:19,390
1327
+ c ุนุฏุฏ ุญู‚ูŠู‚ูŠ ูˆ ูƒุงู† ุงู„ a ูˆ ุงู„ b ูˆ ุงู„ c ูˆ d ุนุจุงุฑุฉ ุนู†
1328
+
1329
+ 333
1330
+ 00:37:19,390 --> 00:37:24,890
1331
+ ู…ุตุฑูุงุช ุจุญูŠุซ ุฃู† indicated sums and products ุนุงู…ู„ูŠู†
1332
+
1333
+ 334
1334
+ 00:37:24,890 --> 00:37:30,030
1335
+ ุงู„ุฌู…ุน ูˆุงู„ุถุฑุจ ุงู„ู…ูˆุถุญุฉ are defined ูŠุจู‚ู‰ ูƒู„ ุนู…ู„ูŠุฉ
1336
+
1337
+ 335
1338
+ 00:37:30,030 --> 00:37:35,680
1339
+ ุงู„ุถุฑุจ ูˆ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ู‡ู†ุง ู…ุนุฑูุฉูŠุจู‚ู‰ them ู„ูˆ ุถุฑุจุช
1340
+
1341
+ 336
1342
+ 00:37:35,680 --> 00:37:40,020
1343
+ constant ููŠ a ุชุทู„ุน ู…ุตู‡ูˆูุฉ ุฌุฏูŠุฏุฉ ู„ุฅู† ุงู„ c ุจุฏุฑุจู‡ ููŠ
1344
+
1345
+ 337
1346
+ 00:37:40,020 --> 00:37:46,180
1347
+ ุฌู…ูŠุน ุนู†ุงุตุฑ a ูˆุถุฑุจุช ุงู„ู†ุชุฌ ููŠ ุงู„ู…ุตู‡ูˆู b ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ
1348
+
1349
+ 338
1350
+ 00:37:46,180 --> 00:37:50,020
1351
+ ุถุฑุจุช ุงู„ constant ููŠ b ูˆ ุงู„ู„ูŠ ู†ุชุฌ ุถุฑุจุช ููŠ main
1352
+
1353
+ 339
1354
+ 00:37:50,020 --> 00:37:54,720
1355
+ ุงู„ู…ุตู‡ูˆู a ุฃูˆ ุถุฑุจุช ุงู„ู…ุตู‡ูˆููŠู† a ูˆ b ููŠ ุจุนุถ ูˆ ุงู„ู„ูŠ
1356
+
1357
+ 340
1358
+ 00:37:54,720 --> 00:37:59,800
1359
+ ู†ุชุฌ ุถุฑุจุชู‡ ููŠ main ููŠ c ุงู„ุซู„ุงุซ ู‚ูŠู… are the sameูŠุจู‚ู‰
1360
+
1361
+ 341
1362
+ 00:37:59,800 --> 00:38:02,880
1363
+ ุจุชูุฑุฌุด ุนู†ุฏูŠ ู„ุฅู†ูŠ ุจุถุฑุจ constant ููŠ ู…ุตููˆูุฉ ู…ุด
1364
+
1365
+ 342
1366
+ 00:38:02,880 --> 00:38:06,600
1367
+ ู…ุตููˆูุชูŠู† ููŠ ุจุนุถ ูŠุจู‚ู‰ constant ู…ุตููˆูุฉ ุชุถุฑุจ ูŠู…ูŠู† ุฃูˆ
1368
+
1369
+ 343
1370
+ 00:38:06,600 --> 00:38:11,160
1371
+ ุชุถุฑุจ ุดู…ุงู„ ูƒู†ุง ุจุฃุซุฑุด ุนู†ู‡ุง ุณุงุจู‚ุง ู†ุงุฎุฏู†ุงู‡ุง ุทูŠุจ ุงู„ู†ู‚ุทุฉ
1372
+
1373
+ 344
1374
+ 00:38:11,160 --> 00:38:15,880
1375
+ ุงู„ุซุงู†ูŠุฉ ุจุฏูŠ ุฃุถุฑุจ a ููŠ b ุฒุงุฆุฏ c ูŠุจู‚ู‰ ู‡ุฐูŠ ูƒู„ู‡ุง
1376
+
1377
+ 345
1378
+ 00:38:15,880 --> 00:38:21,860
1379
+ ู…ุตููˆูุงุช ูŠุจู‚ู‰ ูƒุฃู†ู‡ ุจุฏู‰ ูˆุฒุน ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุนู„ู‰ ุนู…ู„ูŠุฉ ู…ู†
1380
+
1381
+ 346
1382
+ 00:38:21,860 --> 00:38:28,040
1383
+ ุงู„ุฌุงู…ุน ูŠุจู‚ู‰ ูŠุณุงูˆูŠ a ููŠ b ุฒุงุฆุฏ a ููŠ c ู„ุญุธุฉ ุงู„ุถุฑุจ ู…ู†
1384
+
1385
+ 347
1386
+ 00:38:28,040 --> 00:38:35,620
1387
+ ูˆูŠู†ุŸู…ู† ุฌู‡ุชูŠ ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ a ููŠ b ุซู… a ููŠ c ุงู„ุชุฑุชูŠุจ
1388
+
1389
+ 348
1390
+ 00:38:35,620 --> 00:38:40,440
1391
+ ุถุฑูˆุฑูŠ ุฌุฏุง ู…ุด ู‡ุชู‚ูˆู„ูŠ ู„ูŠ a ููŠ b ุฒุงุฆุฏ c ููŠ a ู„ุฃ ุบู„ุท
1392
+
1393
+ 349
1394
+ 00:38:40,440 --> 00:38:44,300
1395
+ ูŠุจู‚ู‰ ุถุฑุจุชูŠ ู…ู† ุฌู‡ุชูŠ ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ ุถู„ูƒ ู…ุด ู‡ุชุถุฑุจ ู…ู†
1396
+
1397
+ 350
1398
+ 00:38:44,300 --> 00:38:49,940
1399
+ ุฌู‡ุชูŠ ุงู„ุดู…ุงู„ ุถุฑุจุชูŠ ู…ู† ุฌู‡ุชูŠ ุงู„ูŠู…ูŠู† b ุฒุงุฆุฏ c ููŠ d
1400
+
1401
+ 351
1402
+ 00:38:49,940 --> 00:38:56,820
1403
+ ูŠุจู‚ู‰ b ููŠ d ุฒุงุฆุฏ c ููŠ dูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ู… ุงู„ู€
1404
+
1405
+ 352
1406
+ 00:38:56,820 --> 00:39:02,700
1407
+ distributive law ุนู…ู„ูŠุฉ ุงู„ุชูˆุฒูŠุน ูˆู‡ู†ุง ุงู„ุฎุงุตูŠุฉ ุฑุงุจุนุฉ
1408
+
1409
+ 353
1410
+ 00:39:02,700 --> 00:39:10,160
1411
+ ุนู…ู„ูŠุฉ ุงู„ุฏู…ุฌ A ููŠ B ููŠ C ูŠุณูˆู‰ A ููŠ B ููŠ D ูŠุณูˆู‰ A ููŠ
1412
+
1413
+ 354
1414
+ 00:39:10,160 --> 00:39:16,080
1415
+ B ููŠ D ูŠุนู†ูŠ ุงูŠู‡ุŸูŠุนู†ูŠ ู„ูˆ ุถุฑุจุช B ููŠ D ุฃูˆู„ุง ู†ุชุฌุฉ
1416
+
1417
+ 355
1418
+ 00:39:16,080 --> 00:39:20,920
1419
+ ู…ุตุฑูˆูุฉ ุถุฑุจุชู‡ุง ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ููŠ A ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุถุฑุจุช
1420
+
1421
+ 356
1422
+ 00:39:20,920 --> 00:39:24,660
1423
+ A ููŠ B ููŠ ุจุนุถ ูˆุงู„ู†ุชุฌุฉ ุถุฑุจุชู‡ุง ููŠ D ูˆ ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ
1424
+
1425
+ 357
1426
+ 00:39:24,660 --> 00:39:30,920
1427
+ ุจุฌูŠู†ุง ู†ุณู…ูŠู‡ุง ุฎุงุตูŠุฉุงู„ุฏู…ุฌ ุงู„ associative law ุงู„ู„ูŠ ู‡ูˆ
1428
+
1429
+ 358
1430
+ 00:39:30,920 --> 00:39:35,100
1431
+ ู‚ุงู†ูˆู† ุงู„ุฏู…ุฌ ุงู„ู„ูŠ ุฌุงุจู„ู‡ ุงู„ distributive law ุงู„ู„ูŠ ู‡ูˆ
1432
+
1433
+ 359
1434
+ 00:39:35,100 --> 00:39:40,480
1435
+ ู‚ุงู†ูˆู† ุงู„ุชูˆุฒูŠุน ุชู…ุงู…ุŸ ุจู‚ุช ุนู†ุฏู†ุง ููŠ ู‡ุฐุง section
1436
+
1437
+ 360
1438
+ 00:39:40,480 --> 00:39:46,140
1439
+ ู…ู„ุงุญุธุฉ ุฃุฎุฑู‰ remark ูŠุจู‚ู‰
1440
+
1441
+ 361
1442
+ 00:39:46,140 --> 00:39:57,630
1443
+ remark ุจุชู‚ูˆู„ ู…ุง ุชู‚ูู„ AFุงู„ู€ a is an n by n matrix
1444
+
1445
+ 362
1446
+ 00:39:57,630 --> 00:40:06,930
1447
+ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู†ุช ู…ุตูˆูุฉ ู…ุฑุจุนุฉ is an m ููŠ n matrix m ููŠ
1448
+
1449
+ 363
1450
+ 00:40:06,930 --> 00:40:24,360
1451
+ n matrix and ุงู„ b and ุงู„ b is aninvp matrix ู…ุตููˆูุฉ
1452
+
1453
+ 364
1454
+ 00:40:24,360 --> 00:40:31,680
1455
+ ู†ุธุงู… invp then is
1456
+
1457
+ 365
1458
+ 00:40:31,680 --> 00:40:49,200
1459
+ written as is written as call vectors as followas
1460
+
1461
+ 366
1462
+ 00:40:49,200 --> 00:40:56,900
1463
+ follow ูƒุงู„ุชุงู„ูŠ ุจูŠ
1464
+
1465
+ 367
1466
+ 00:40:56,900 --> 00:41:11,600
1467
+ ุจุฏู‡ุง ุชุณุงูˆูŠ ู…ุซู„ุง ุจูŠ ูˆู† ุจูŠ ุชูˆ ุจูŠ ุจูŠ ุจูŠ and
1468
+
1469
+ 368
1470
+ 00:41:11,600 --> 00:41:24,280
1471
+ hence ูˆู…ู† ุซู…the product a
1472
+
1473
+ 369
1474
+ 00:41:24,280 --> 00:41:43,880
1475
+ ููŠ b is ุงู„ู„ูŠ ู‡ูˆ a b ู…ุฏุฑุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ a b1 a b2 a bp
1476
+
1477
+ 370
1478
+ 00:41:43,880 --> 00:41:50,640
1479
+ ุงู„ุดูƒู„ ุนู† ู‡ุฐุงุนูˆุงุฏุฉ ุจุชุฏุนูŠู‡ุง ุงู„ุฑู…ุฒ main ูˆุงู„ุฑู…ุฒ star
1480
+
1481
+ 371
1482
+ 00:41:50,640 --> 00:41:56,860
1483
+ example
1484
+
1485
+ 372
1486
+ 00:41:56,860 --> 00:42:02,360
1487
+ if
1488
+
1489
+ 373
1490
+ 00:42:02,360 --> 00:42:12,290
1491
+ ุงู„ a ุชุณุงูˆูŠุงุชู†ูŠู† ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ Zero ุงุชู†ูŠู† ุชู„ุงุชุฉ
1492
+
1493
+ 374
1494
+ 00:42:12,290 --> 00:42:26,050
1495
+ ูˆุงุญุฏ ู†ู‚ุต ุงุชู†ูŠู† Zero and ุงู„ B ุชุณุงูˆูŠ ูˆุงุญุฏ ูˆุงุญุฏ ุณุงู„ุจ
1496
+
1497
+ 375
1498
+ 00:42:26,050 --> 00:42:33,810
1499
+ ูˆุงุญุฏ ุชู„ุงุชุฉ ุงุชู†ูŠู† ูˆุงุญุฏ right then
1500
+
1501
+ 376
1502
+ 00:42:38,590 --> 00:42:52,510
1503
+ product AB as in the formula star ุฃูƒุชุจ ู‡ุงู„ูŠ ุฒูŠ ู…ุง
1504
+
1505
+ 377
1506
+ 00:42:52,510 --> 00:42:54,510
1507
+ ู‡ูŠ ููŠ ุงู„ formula star
1508
+
1509
+ 378
1510
+ 00:43:09,210 --> 00:43:11,890
1511
+ ุจู†ุฑุฌุน ุงู„ู€ remarkable ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆู†ุทุจู‚ ุนู„ูŠู‡ ู‡ุฐุง
1512
+
1513
+ 379
1514
+ 00:43:11,890 --> 00:43:17,630
1515
+ ุงู„ู…ุซุงู„ ุชุทุจูŠู‚ุง ู…ุจุงุดุฑุฉ ebf ุงู„ู„ูŠ is an m by n matrix
1516
+
1517
+ 380
1518
+ 00:43:17,630 --> 00:43:23,150
1519
+ ูˆ ุงู„ b ุนุจุงุฑุฉ ุนู† np matrix ุฅุฐุง ูŠู…ูƒู† ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ
1520
+
1521
+ 381
1522
+ 00:43:23,150 --> 00:43:29,070
1523
+ ุญุตู„ุฉ ุถุฑุจ a ููŠ b then ุงู„ b is written as convictors
1524
+
1525
+ 382
1526
+ 00:43:29,070 --> 00:43:33,870
1527
+ as follows ุงู„ b ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุญุณุจ ุนุฏุฏ ุงู„ุฃุนู…ุฏ ุงู„ู„ูŠ
1528
+
1529
+ 383
1530
+ 00:43:33,870 --> 00:43:39,600
1531
+ ููŠู‡ุง v1,v1,v2 ู„ุบุงูŠุฉ vpู‡ู†ุง ู†ุณู…ูŠู‡ุง ุจุงุณู… ุงู„ ุจูŠ ุจูŠ ูˆุงู†
1532
+
1533
+ 384
1534
+ 00:43:39,600 --> 00:43:42,040
1535
+ ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู†
1536
+
1537
+ 385
1538
+ 00:43:42,040 --> 00:43:44,260
1539
+ ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู†
1540
+
1541
+ 386
1542
+ 00:43:44,260 --> 00:43:45,480
1543
+ ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู†
1544
+
1545
+ 387
1546
+ 00:43:45,480 --> 00:43:51,800
1547
+ ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู†
1548
+
1549
+ 388
1550
+ 00:43:51,800 --> 00:43:52,920
1551
+ ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู†
1552
+
1553
+ 389
1554
+ 00:43:52,920 --> 00:43:52,980
1555
+ ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู†
1556
+
1557
+ 390
1558
+ 00:43:52,980 --> 00:43:53,380
1559
+ ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู† ุจูŠ ูˆุงู†
1560
+
1561
+ 391
1562
+ 00:43:53,380 --> 00:44:05,240
1563
+ ุจูŠ ูˆุงู† ุจูŠ ูˆุงู†
1564
+
1565
+ 392
1566
+ 00:44:05,240 --> 00:44:15,060
1567
+ ุจูŠ ูˆุงู†ุจุฏุฃุฌูŠ ุฃู‚ูˆู„ู‡ a ููŠ b ูŠุณุงูˆูŠ a ููŠ ุจูŠ ุจุฏู‡ุง ุงูƒุชุจู‡ุง
1568
+
1569
+ 393
1570
+ 00:44:15,060 --> 00:44:21,080
1571
+ ุจ b1 ูˆ b2 ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุฒูŠ ู…ุง ุงุญู†ุง
1572
+
1573
+ 394
1574
+ 00:44:21,080 --> 00:44:27,880
1575
+ ูƒุงุชุจูŠู†ู‡ ู‡ู†ุง ุชู…ุงู…ุง ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ุจู†ุงุช ุจุฏู‡ุง ุชุณุงูˆูŠ a ููŠ
1576
+
1577
+ 395
1578
+ 00:44:27,880 --> 00:44:38,780
1579
+ b1 ูˆ a ููŠ b2ูƒูˆูŠุณ ูŠุนู†ูŠ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ู‡ูŠ ู‡ู†ุง ุงู„ a
1580
+
1581
+ 396
1582
+ 00:44:38,780 --> 00:44:45,080
1583
+ ุจุฏู‡ุง ุญุทู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ุงุชู†ูŠู† ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ zero ุงุชู†ูŠู†
1584
+
1585
+ 397
1586
+ 00:44:45,080 --> 00:44:51,720
1587
+ ุชู„ุงุชุฉ ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู† zero ููŠ ู…ูŠู† ููŠ ุงู„ b one ุงู„ b
1588
+
1589
+ 398
1590
+ 00:44:51,720 --> 00:44:57,900
1591
+ one ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุงุชู†ูŠู† ูˆุงุญุฏ ุงู„ู…ุตูˆูุฉ a
1592
+
1593
+ 399
1594
+ 00:44:57,900 --> 00:45:01,480
1595
+ ู†ูุณู‡ุง ู„ูŠู‡ ุงุชู†ูŠู† ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ
1596
+
1597
+ 400
1598
+ 00:45:14,130 --> 00:45:24,710
1599
+ ูŠุจู‚ู‰ ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุชุทู„ุน ุงู„ู…ุตููˆูุฉ ุงู„ุชุงู„ูŠุฉ ูŠุจู‚ู‰ ุงู„ุตู
1600
+
1601
+ 401
1602
+ 00:45:24,710 --> 00:45:31,570
1603
+ ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุทู„ุน ุงู„ุนู†ุตุฑ ุงู„ุฃูˆู„ูŠุจู‚ู‰ ุงุชู†ูŠู†
1604
+
1605
+ 402
1606
+ 00:45:31,570 --> 00:45:37,030
1607
+ ูˆ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุณุงู„ุจ ุงุชู†ูŠู† ุงุชู†ูŠู† ูˆ ุณุงู„ุจ ุงุชู†ูŠู† ู…ุน
1608
+
1609
+ 403
1610
+ 00:45:37,030 --> 00:45:43,220
1611
+ ุงู„ุณู„ู…ุฉ ุจูŠุทู„ุน ูƒุฏู‡ุŸ ุณุงู„ุจ ูˆุงุญุฏ ุฎู„ุตู†ุง ู…ู†ู‡ุงู„ุงู† ุจุงู„ุฏุงู„ูŠ
1612
+
1613
+ 404
1614
+ 00:45:43,220 --> 00:45:49,700
1615
+ ู„ู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ู†ูุณู‡ ูŠุจู‚ู‰ zero ุณุงู„ูŠ ุจุงุชู†ูŠู†
1616
+
1617
+ 405
1618
+ 00:45:49,700 --> 00:45:54,620
1619
+ ูˆุฒุงุฆุฏ ุณุชุฉ ุจุถุงู„ ู‚ุฏุงุด ุฃุฑุจุนุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
1620
+
1621
+ 406
1622
+ 00:45:54,620 --> 00:45:58,680
1623
+ ุจูƒุชุจุด ููŠ ุงู„ุตู ู„ุฅู† ู…ุงุนู†ุฏูŠุด ุจูƒุชุจ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
1624
+
1625
+ 407
1626
+ 00:45:58,680 --> 00:46:05,010
1627
+ ู‡ุฐุง ูŠุจู‚ู‰ ู‡ู†ุง ูˆุงุญุฏูˆ ุณุงู„ุจ ุงุชู†ูŠู† ูŠุนู†ูŠ ุจุตูŠุฑ ุงุชู†ูŠู†
1628
+
1629
+ 408
1630
+ 00:46:05,010 --> 00:46:10,850
1631
+ ุชู„ุงุชุฉ ูˆ zero ูŠุจู‚ู‰ ู‡ู†ุง ูŠุงุด ุชู„ุงุชุฉ ู„ุญุธุฉ ุงู„ู…ุตููˆูุฉ
1632
+
1633
+ 409
1634
+ 00:46:10,850 --> 00:46:14,810
1635
+ ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ูˆู‡ุฐู‡ ุชู„ุงุชุฉ ููŠ ูˆุงุญุฏ ุจูŠุตูŠุฑ ุชู„ุงุชุฉ ููŠ
1636
+
1637
+ 410
1638
+ 00:46:14,810 --> 00:46:19,570
1639
+ ูˆุงุญุฏ ู‡ุฐู‡ ุชู„ุชุฉ ุตููˆู ูˆ ูˆุงุญุฏ ุฎู„ุตู†ุง ู‡ู†ุง ุจุฏุฃุฌูŠ ู„ู‡ุฐู‡
1640
+
1641
+ 411
1642
+ 00:46:19,570 --> 00:46:26,150
1643
+ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ุฎู…ุณุฉ ูˆ ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰
1644
+
1645
+ 412
1646
+ 00:46:26,150 --> 00:46:36,230
1647
+ ุงุฑุจุนุฉุงู„ู„ูŠ ุจุนุฏู‡ Zero ุณุชุฉ ูˆุชู„ุงุชุฉ ูŠุจู‚ู‰ ุชุณุนุฉ ุงู„ู„ูŠ ุจุนุฏู‡
1648
+
1649
+ 413
1650
+ 00:46:36,230 --> 00:46:43,430
1651
+ ูˆุงุญุฏ ูˆ ุณุงู„ุจ ุณุชุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุฎู…ุณุฉ ูˆ Zero ูŠุจู‚ู‰ ุณุงู„ุจ
1652
+
1653
+ 414
1654
+ 00:46:43,430 --> 00:46:49,640
1655
+ ุฎู…ุณุฉูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ุงู„ู†ุงุชุฌุฉ ู…ู† ุญุงุตู„ ุงู„ุถุฑุจ ูˆุตู„ู†ุง ู„
1656
+
1657
+ 415
1658
+ 00:46:49,640 --> 00:46:57,440
1659
+ exercises 2-5 ูŠุจู‚ู‰ exercises 2-5 ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ
1660
+
1661
+ 416
1662
+ 00:46:57,440 --> 00:47:09,330
1663
+ ุงู„ู„ูŠ ู‡ู…ูŠู† ุงุชู†ูŠู† ุชู„ุงุชุฉุฎู…ุณุฉุŒ ุณุจุนุฉุŒ ุชุณุนุฉุŒ ุนุดุฑุฉุŒ
1664
+
1665
+ 417
1666
+ 00:47:09,330 --> 00:47:17,530
1667
+ ุฃุญุฏุงุดุฑุŒ ุฃุชู†ุงุดุฑุŒ ุณุชุงุดุฑุŒ ุณุจุนุชุงุดุฑุŒ ุชุณุนุชุงุดุฑุŒ ูŠุนุทูŠูƒูˆุง
1668
+
1669
+ 418
1670
+ 00:47:17,530 --> 00:47:17,850
1671
+ ุงู„ุนุฌุจ
1672
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/_E3ug1jsGaY_raw.json ADDED
The diff for this file is too large to render. See raw diff
 
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/_O3Qrzgzn80.srt ADDED
@@ -0,0 +1,1355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:19,470 --> 00:00:23,070
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ุชูŠ ูุงุชุช ุฃู†ุช ูŠุง ุฃู†ุง
4
+
5
+ 2
6
+ 00:00:23,070 --> 00:00:26,350
7
+ ู…ู† section ุซู„ุงุซุฉ ุงุซู†ูŠู† ุงู„ุฐูŠ ูƒุงู† ูŠุชุญุฏุซ ุนู† ุงู„
8
+
9
+ 3
10
+ 00:00:26,350 --> 00:00:32,550
11
+ subspaces ุงู„ูุถุงุกุงุช ุงู„ุฌุฒุฆูŠุฉ ุงู„ุงุชุฌุงู‡ูŠุฉ ูˆุงู„ุขู† ู†ู†ุชู‚ู„
12
+
13
+ 4
14
+ 00:00:32,870 --> 00:00:38,350
15
+ ุฅู„ู‰ ุงู„ู…ูˆุถูˆุน ุงู„ุฌุฏูŠุฏ ุงู„ุฐูŠ ู‡ูˆ linear dependence ุงู„ุงุณุชู‚ู„ุงู„
16
+
17
+ 5
18
+ 00:00:38,350 --> 00:00:42,790
19
+ ุงู„ุฎุทูŠ ูˆููŠู‡ ูƒู…ุงู† linear independence ุงู„ุฐูŠ ู‡ูˆ
20
+
21
+ 6
22
+ 00:00:42,790 --> 00:00:46,870
23
+ ุงู„ุงุณุชู‚ู„ุงู„ ุงู„ุฎุทูŠ ูˆlinear dependence ุงู„ุงุนุชู…ุงุฏ ุงู„ุฎุทูŠ
24
+
25
+ 7
26
+ 00:00:46,870 --> 00:00:49,750
27
+ ูŠุจู‚ู‰ ุงู„ุนู†ูˆุงู† ุงู„ุฐูŠ ู†ุญู† ูƒุงุชุจูŠู†ู‡ ููˆู‚ linear
28
+
29
+ 8
30
+ 00:00:49,750 --> 00:00:54,870
31
+ dependence ุงู„ุงุนุชู…ุงุฏ ุงู„ุฎุทูŠ ูˆุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุงู„ุฐูŠ ู‡ูˆ
32
+
33
+ 9
34
+ 00:00:54,870 --> 00:00:56,370
35
+ linear independence
36
+
37
+ 10
38
+ 00:01:02,960 --> 00:01:08,080
39
+ ุณู†ุนุทูŠ ุชุนุฑูŠู ู„ูƒู„ ู…ู† ุงู„ุงุนุชู…ุงุฏ ุงู„ุฎุทูŠ ูˆุงู„ุงุณุชู‚ู„ุงู„ ุงู„ุฎุทูŠ
40
+
41
+ 11
42
+ 00:01:08,080 --> 00:01:14,360
43
+ ุซู… ุจุนุฏ ุฐู„ูƒ ู†ุฃุฎุฐ ุฃู…ุซู„ุฉ ุนู„ู‰ ุฐู„ูƒุŒ ุงู„ุชุนุฑูŠู ุงู„ุฃูˆู„ ูŠู‚ูˆู„
44
+
45
+ 12
46
+ 00:01:14,360 --> 00:01:21,220
47
+ let V be a vector space ูŠุจู‚ู‰ ู†ุญู† ููŠ ุนูŠู†ู†ุง ุถุงุฆุนูˆู†
48
+
49
+ 13
50
+ 00:01:21,220 --> 00:01:26,040
51
+ ููŠ ุงุชุฌุงู‡ VThe finite vectorsุŒ ุงู„ุนุฏุฏ ุงู„ู…ุญุฏูˆุฏ ู…ู†
52
+
53
+ 14
54
+ 00:01:26,040 --> 00:01:32,020
55
+ ุงู„ู…ุชุฌู‡ุงุช V1 ูˆV2 ูˆู„ุบุงูŠุฉ VM ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ VR6 ูŠูƒูˆู†
56
+
57
+ 15
58
+ 00:01:32,020 --> 00:01:37,160
59
+ linearly dependentุŒ ูŠู‚ูˆู„ ู…ุนุชู…ุฏุฉ ุนู„ู‰ ุจุนุถู‡ุง ุงุนุชู…ุงุฏุง
60
+
61
+ 16
62
+ 00:01:37,160 --> 00:01:44,890
63
+ ุฎุทูŠุงู‹ ุฅุฐุง ูˆุฌุฏุช ุซูˆุงุจุช C1 ูˆC2 ูˆCM ุฃูˆ ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉ
64
+
65
+ 17
66
+ 00:01:44,890 --> 00:01:48,650
67
+ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ set of real numbers not all zeros
68
+
69
+ 18
70
+ 00:01:48,650 --> 00:01:55,110
71
+ such that ุจุญูŠุซ ุฃู† C1 V1 ุฒุงุฆุฏ C2 V2 ุฒุงุฆุฏ CM VM ุจุฏู‡ุง
72
+
73
+ 19
74
+ 00:01:55,110 --> 00:02:00,630
75
+ ูŠุณุงูˆูŠ ุตูุฑ ุจุฏู‡ุง ุชุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุฃู†ุง ุฌุฆุช ุนู„ู‰ ุงู„
76
+
77
+ 20
78
+ 00:02:00,630 --> 00:02:05,790
79
+ vector space ุฃุฎุฐุช ู…ู†ู‡ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vectors ู‡ุฐู‡ ุงู„ู€
80
+
81
+ 21
82
+ 00:02:05,790 --> 00:02:11,490
83
+ vectors ุจู‚ูˆู„ ุนู†ู‡ุง ู…ุนุชู…ุฏุฉ ุนู„ู‰ ุจุนุถ ุงุนุชู…ุงุฏุง ุฎุทูŠุงู‹ ุฅุฐุง
84
+
85
+ 22
86
+ 00:02:11,490 --> 00:02:17,030
87
+ ุฌุฏุฑุช ุฃู„ุงู‚ูŠ ุซูˆุงุจุช ู„ูŠุณุช ูƒู„ู‡ุง zero ุนู„ู‰ ุงู„ุฃู‚ู„ ุจุฏู‡ุง ูŠูƒูˆู† ู„ูˆ
88
+
89
+ 23
90
+ 00:02:17,030 --> 00:02:22,990
91
+ ู…ู‚ุฏุงุฑ ุซุงุจุช ูˆุงุญุฏ ูŠูƒูˆู† ู„ุง ูŠุณุงูˆูŠ zero ุจุญูŠุซ C1V1 ุฒุงุฆุฏ
92
+
93
+ 24
94
+ 00:02:22,990 --> 00:02:29,430
95
+ C2V2 ุฒุงุฆุฏ CMVM ูƒู„ู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ุง ุชุณุงูˆูŠ zero ุทุจุนุงู‹
96
+
97
+ 25
98
+ 00:02:29,430 --> 00:02:32,670
99
+ ุณุฃุนูˆุฏ ู„ู‡ุฐุง ุงู„ุชุนุฑูŠู ู…ุฑุฉ ุซุงู†ูŠุฉุŒ ุจุณ ุฎู„ูŠู†ุง ู†ุฃุฎุฐ ุงู„ุชุนุฑูŠู
100
+
101
+ 26
102
+ 00:02:32,670 --> 00:02:37,530
103
+ ุงู„ุซุงู†ูŠ ุญุชู‰ ู†ู„ุงุญุธ ุงู„ูุฑู‚ ู…ุง ุจูŠู† ุงู„ุงุซู†ูŠู†ุŒ ุงู„ุชุนุฑูŠู
104
+
105
+ 27
106
+ 00:02:37,530 --> 00:02:41,290
107
+ ุงู„ุซุงู†ูŠ ูŠู‚ูˆู„ the finite vectors ู…ู† V1 ู„ุบุงูŠุฉ VM
108
+
109
+ 28
110
+ 00:02:41,290 --> 00:02:45,530
111
+ ุงู„ุชูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ vector space V ุจู‚ูˆู„ ุนู†ู‡ู…
112
+
113
+ 29
114
+ 00:02:45,530 --> 00:02:51,190
115
+ linearly independent ูŠุจู‚ู‰ ู…ุณุชู‚ู„ุฉ ุนู† ุจุนุถู‡ุง ุงุณุชู‚ู„ุงู„ุงู‹
116
+
117
+ 30
118
+ 00:02:51,190 --> 00:02:58,300
119
+ ุฎุทูŠุงู‹ ุฅุฐุง ูƒุงู† ุนู†ุฏูŠ C1 V1 ุฒุงุฆุฏ C2 V2 ุฒุงุฆุฏ Cm Vm ุจุฏู‡ุง
120
+
121
+ 31
122
+ 00:02:58,300 --> 00:03:03,280
123
+ ุชุณุงูˆู‰ ุตูุฑ We must have ู„ุงุฒู… ุฃู„ุงู‚ูŠ ุฃู†ู‡ C1 ูŠุณุงูˆูŠ C2
124
+
125
+ 32
126
+ 00:03:03,280 --> 00:03:08,920
127
+ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ Cm ุจุฏู‡ุง ุชุณุงูˆูŠ ุตูุฑุŒ ุฎู„ูŠู†ูŠ ุฃุณุฃู„ ุงู„ุชุณุงุคู„
128
+
129
+ 33
130
+ 00:03:08,920 --> 00:03:16,360
131
+ ุงู„ุชุงู„ูŠ: ู‡ู„ ู‡ู†ุงูƒ ูุฑู‚ ุจูŠู† ุงู„ุชุนุฑูŠููŠู† ุงู„ู…ูƒุชูˆุจ ุฃู…ุงู…ูŠุŸ
132
+
133
+ 34
134
+ 00:03:16,360 --> 00:03:19,800
135
+ ุจุงู„ุชุฃูƒูŠุฏ ููŠ ูุฑู‚ ุจูŠู† ุงู„ุงุซู†ูŠู†ุŒ ูˆุงู„ุขู† ู…ู† ูƒุฑุฑ ุชูƒุฑุงุฑ
136
+
137
+ 35
138
+ 00:03:23,050 --> 00:03:29,250
139
+ ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ู„ู„ุงุนุชู…ุงุฏ ุงู„ุฎุทูŠ ู„ู„ู…ุชุฌู‡ุงุช ุจู‚ูˆู„
140
+
141
+ 36
142
+ 00:03:29,250 --> 00:03:35,660
143
+ ูŠุนุชู…ุฏูˆุง ุนู„ู‰ ุจุนุถ ุฎุทูŠุงู‹ ู„ูˆ ู‚ุฏุฑุช ุฃู„ุงู‚ูŠ ุซูˆุงุจุชุŒ ู…ู…ูƒู† ูŠูƒูˆู†
144
+
145
+ 37
146
+ 00:03:35,660 --> 00:03:40,280
147
+ ุจุนุถู‡ุง ุฃุตูุงุฑุŒ ูˆู…ู…ูƒู† ูŠูƒูˆู† ุจุนุถู‡ุง ู„ูŠุณ ุฃุตูุงุฑุŒ ูˆู…ู…ูƒู† ูŠูƒูˆู† ู„ูŠุณ ููŠู‡
148
+
149
+ 38
150
+ 00:03:40,280 --> 00:03:44,440
151
+ ููŠู‡ู… ูˆู„ุง Zero ุจุญูŠุซ ุฃุถุฑุจ constant ููŠ ุงู„ุฃูˆู„ ุฒุงุฆุฏ
152
+
153
+ 39
154
+ 00:03:44,440 --> 00:03:46,460
155
+ constant ููŠ ุงู„ุซุงู†ูŠุฉ ุฒุงุฆุฏ constant ููŠ ุงู„ุซุงู†ูŠุฉ ูŠุทู„ุน
156
+
157
+ 40
158
+ 00:03:46,460 --> 00:03:51,160
159
+ ุงู„ู†ุชุฌ ูŠุณุงูˆูŠ ุตูุฑุŒ ุฅู† ุญุฏุซ ุฐู„ูƒ ุจู‚ูˆู„ ู‡ุฐู‡ ุงู„ vectors ู…ู†
160
+
161
+ 41
162
+ 00:03:51,160 --> 00:03:56,520
163
+ v1 ู„ุบุงูŠุฉ vm are linearly dependent ูŠุนู†ูŠ ู…ุนุชู…ุฏุฉ
164
+
165
+ 42
166
+ 00:03:56,520 --> 00:04:01,220
167
+ ุนู„ู‰ ุจุนุถ ุฎุทูŠุงู‹ุŒ ู‡ุฐุง ุชุนุฑูŠู ุงู„ุฃูˆู„ุŒ ุงู„ุชุนุฑูŠู ุงู„ุซุงู†ูŠ ู„ูˆ ุฌุฆุช
168
+
169
+ 43
170
+ 00:04:01,220 --> 00:04:05,900
171
+ ุนู„ู‰ ุงู„ vectors ูˆุฌุจุช ุซูˆุงุจุช ูˆุถุฑุจุชู‡ุง ููŠู‡ู… ูˆุฌู…ุนุช
172
+
173
+ 44
174
+ 00:04:05,900 --> 00:04:11,560
175
+ ู„ุฌูŠุช ุงู„ู†ุชุฌ ูŠุณุงูˆูŠ zero ุฅ๏ฟฝ๏ฟฝ ู‚ุฏุฑุช ุฃุซุจุช ุฃู† c1 ูŠุณุงูˆูŠ c2
176
+
177
+ 45
178
+ 00:04:11,560 --> 00:04:16,060
179
+ ูŠุณุงูˆูŠ cm ูŠุณุงูˆูŠ zero ุฅุฐุง ุจูŠูƒูˆู† ู‡ุฐูˆู„ ู…ุณุชู‚ู„ุงุช ุนู† ุจุนุถ
180
+
181
+ 46
182
+ 00:04:16,060 --> 00:04:21,200
183
+ ุฎุทูŠุงู‹ linearly independentุŒ ู„ูƒู† ุฅุฐุง ู„ุฌูŠุช ูˆู„ุง ูˆุงุญุฏ
184
+
185
+ 47
186
+ 00:04:21,200 --> 00:04:27,020
187
+ ููŠู‡ู… ูŠุณุงูˆูŠ zero ุฅุฐุง ู‡ุฐูˆู„ ู…ุนุชู…ุฏุงุช ูˆู„ูŠุณุช ู…ุณุชู‚ู„ุงุช ุนู†
188
+
189
+ 48
190
+ 00:04:27,020 --> 00:04:31,400
191
+ ุจุนุถู‡ุงุŒ ูˆุงุถุญ ูƒู„ุงู…ูŠุŸ ูŠุจู‚ู‰ ุฃู†ุง ู„ูˆ ุฃุนุทุงู†ูŠ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„
192
+
193
+ 49
194
+ 00:04:31,400 --> 00:04:34,440
195
+ vectors ูˆู‚ุงู„ ู„ูŠ ุดูˆู ู„ูŠ ู‡ุฏูˆู„ are linearly dependent
196
+
197
+ 50
198
+ 00:04:34,440 --> 00:04:38,840
199
+ ูˆู„ุง linearly independentุŒ ุจุฏูŠ ุฃุถุฑุจ ูƒู„ ุตู†ุฏูˆู‚ ููŠ
200
+
201
+ 51
202
+ 00:04:38,840 --> 00:04:41,600
203
+ ุงู„ุฃูˆู„ ูˆูƒู„ ุตู†ุฏูˆู‚ ููŠ ุงู„ุซุงู†ูŠ ูˆ .. ูˆ .. ูˆ .. ูƒู„ ุตู†ุฏูˆู‚
204
+
205
+ 52
206
+ 00:04:41,600 --> 00:04:47,600
207
+ ููŠ ุงู„ุฃุฎูŠุฑ ูˆุฃุฌู…ุน ูˆุฃุฑูˆุญ ุฃุฌูŠุจ ู‚ูŠู… ู‡ุฐู‡ ุงู„ุซูˆุงุจุชุŒ ุชุทู„ุน
208
+
209
+ 53
210
+ 00:04:47,600 --> 00:04:53,760
211
+ ู‚ูŠู… ู‡ุฐู‡ ุงู„ุซูˆุงุจุช ู„ูŠุณุช ุฃุตูุงุฑุŒ ูŠุนู†ูŠ ู„ูŠุณุช ูƒู„ู‡ุง ุฃุตูุงุฑุŒ ูŠุจู‚ู‰
212
+
213
+ 54
214
+ 00:04:53,760 --> 00:04:56,500
215
+ ุจูŠุตูŠุฑูˆุง ุงู„ vectors ู‡ุฐู‡ linearly independent
216
+
217
+ 55
218
+ 00:04:56,500 --> 00:05:00,720
219
+ ูˆุงู†ุทู„ุนุช ุงู„ุซูˆุงุจุช ูƒู„ู‡ุง ุฃุตูุงุฑุŒ ูŠุจู‚ู‰ ูŠู‚ูˆู„ linearly
220
+
221
+ 56
222
+ 00:05:00,720 --> 00:05:05,750
223
+ independentุŒ ุทูŠุจ ุชุนุงู„ ู†ุดูˆู Determine whether the
224
+
225
+ 57
226
+ 00:05:05,750 --> 00:05:08,810
227
+ following vectors are linearly-dependent or
228
+
229
+ 58
230
+ 00:05:08,810 --> 00:05:13,390
231
+ linearly-independentุŒ Ld ุงุฎุชุตุงุฑ ู„ู€ linearly
232
+
233
+ 59
234
+ 00:05:13,390 --> 00:05:18,390
235
+ -dependentุŒ ูˆLi ุงุฎุชุตุงุฑ ู„ู€ linearly-independent
236
+
237
+ 60
238
+ 00:05:18,390 --> 00:05:22,710
239
+ ูˆู…ุนุทูŠู†ูŠ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vectorsุŒ ุงู„ุฃูˆู„ู‰ ู…ูˆุฌูˆุฏุฉ ููŠ R3
240
+
241
+ 61
242
+ 00:05:22,710 --> 00:05:28,150
243
+ ูˆู…ุฌู…ูˆุนุฉ ุซุงู†ูŠุฉ ู…ูˆุฌูˆุฏุฉ ููŠ R4ุŒ ูŠุจู‚ู‰ ู‡ุฐูˆู„ ูƒุงู†ูˆุง ู…ุณุฃู„ุชูŠู†
244
+
245
+ 62
246
+ 00:05:28,150 --> 00:05:34,420
247
+ ู…ุณุชู‚ู„ูŠู† ุนู† ุจุนุถ ุฎุทุฆูŠู†ุŒ ู‡ู„ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฃูˆู„ู‰ ู…ุณุชู‚ู„ุฉ ุนู†
248
+
249
+ 63
250
+ 00:05:34,420 --> 00:05:40,060
251
+ ุจุนุถ ุฎุทูŠุงู‹ุŸ ูˆุงู„ู„ู‡ ู…ุนุชู…ุฏุฉ ุนู„ู‰ ุจุนุถ ุฎุทูŠุงู‹ุŒ ูุจู‚ู‰ ุฃู‚ูˆู„ ู„ู‡
252
+
253
+ 64
254
+ 00:05:40,060 --> 00:05:44,720
255
+ assume that
256
+
257
+ 65
258
+ 00:05:44,720 --> 00:05:56,110
259
+ there exist c1 ูˆ c2 ูˆ c3 in R such that ุจุญูŠุซ ุฃู† ุงู„ู€
260
+
261
+ 66
262
+ 00:05:56,110 --> 00:06:04,930
263
+ C1 V1 ุฒุงุฆุฏ C2 V2 ุฒุงุฆุฏ C3 V3 ุจุฏู‡ุง ุชุณุงูˆูŠ 0ุŒ ูˆุงู„ุขู† ุจุนุฏ
264
+
265
+ 67
266
+ 00:06:04,930 --> 00:06:11,830
267
+ ู‡ูŠูƒ ุจุชุฑูˆุญ ุงุจุญุซ ู‚ูŠู… C1 ูˆC2 ูˆC3ุŒ ุงู„ุชูŠ ูˆุงู„ู„ู‡ ูŠุทู„ุน
268
+
269
+ 68
270
+ 00:06:11,830 --> 00:06:17,400
271
+ ูƒู„ู‡ุง ุฃุตูุงุฑุŒ ุจู‚ูˆู„ ู‡ุฐูˆู„ linearly independentุŒ ุจุทู„ุน ุจู‚ูŠู…
272
+
273
+ 69
274
+ 00:06:17,400 --> 00:06:20,820
275
+ ุนุฏุฏูŠุฉุŒ ุจู‚ูˆู„ linearly dependent ูˆุจุงู„ุชุงู„ูŠ ุจูƒูˆู†
276
+
277
+ 70
278
+ 00:06:20,820 --> 00:06:25,660
279
+ ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ุณุคุงู„ุŒ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุถุฑุจ C ููŠ V ูˆุงุญุฏ
280
+
281
+ 71
282
+ 00:06:25,660 --> 00:06:30,300
283
+ ูŠุจู‚ู‰ C ูˆุงุญุฏ V ูˆุงุญุฏ ุฒุงุฆุฏ C ุงุซู†ูŠู† V ุงุซู†ูŠู† ุฒุงุฆุฏ C
284
+
285
+ 72
286
+ 00:06:30,300 --> 00:06:35,020
287
+ ุซู„ุงุซุฉ V ุซู„ุงุซุฉ ูŠุณุงูˆูŠุŒ ุจุฏูŠ ุฃุถุฑุจ C ูˆุงุญุฏ ููŠ ุงู„ู‚ูˆุณ ุงู„ุฃูˆู„
288
+
289
+ 73
290
+ 00:06:35,020 --> 00:06:42,020
291
+ ูŠุจู‚ุงุด ุจุตูŠุฑุŒ ุฃู†ุง ุจู†ู‚ุทุน ุงุซู†ูŠู†ุŒ C ูˆุงุญุฏ ูˆ C ูˆุงุญุฏ ูˆุณุงู„ุจ
292
+
293
+ 74
294
+ 00:06:42,020 --> 00:06:52,460
295
+ C ูˆุงุญุฏ ุฒุงุฆุฏ ุงู„ุซุงู†ูŠ ุจุฏูŠ ุฃุถุฑุจ ููŠู‡ C2 ูŠุจู‚ู‰ 2C2 ูˆ-3C2 ูˆ
296
+
297
+ 75
298
+ 00:06:52,460 --> 00:07:02,180
299
+ -2C2 ุฒุงุฆุฏ ุงู„ู‚ูˆุณ ุงู„ุซุงู„ุซ ุงู„ุฐูŠ ู‡ูˆ 2C3
300
+
301
+ 76
302
+ 00:07:02,180 --> 00:07:05,260
303
+ ูˆ3C3
304
+
305
+ 77
306
+ 00:07:06,040 --> 00:07:12,020
307
+ ุซู„ุงุซุฉ C ุซู„ุงุซุฉ ูˆุณุจุนุฉ C ุซู„ุงุซุฉุŒ ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุฌุจ ุฃู†
308
+
309
+ 78
310
+ 00:07:12,020 --> 00:07:17,440
311
+ ูŠุณุงูˆูŠ ูƒู…ุŸ ูŠุฌุจ ุฃู† ูŠุณุงูˆูŠ ZeroุŒ ู‡ุคู„ุงุก ุงู„ู…ุฌู…ูˆุน ุซู„ุงุซุฉ
312
+
313
+ 79
314
+ 00:07:17,440 --> 00:07:22,360
315
+ ุนู†ุงุตุฑุŒ ูŠุฌุจ ุฃู† ุฃุฌู…ุนู‡ู… ูˆุฃุฌุนู„ู‡ู… ุนู†ุตุฑุงู‹ ูˆุงุญุฏุงู‹ุŒ ูŠุจู‚ู‰ ู„ูˆ
316
+
317
+ 80
318
+ 00:07:22,360 --> 00:07:27,600
319
+ ุฃุฌุนู„ู‡ู… ุนู†ุตุฑุงู‹ ูˆุงุญุฏุงู‹ ูŠุตูŠุฑ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุงุซู†ูŠู† C
320
+
321
+ 81
322
+ 00:07:27,600 --> 00:07:32,700
323
+ ูˆุงุญุฏุŒ ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ู…ุฑูƒุจุฉ
324
+
325
+ 82
326
+ 00:07:32,700 --> 00:07:40,570
327
+ ุงู„ุฃูˆู„ู‰ุŒ ู‡ู†ุงูƒุŒ ุจุนุฏ ุฐู„ูƒ ุงู„ู…ุฑูƒุจุฉ ุงู„ุซุงู†ูŠุฉุŒ C1-3C2
328
+
329
+ 83
330
+ 00:07:40,570 --> 00:07:52,490
331
+ ุฒุงุฆุฏ 3C3ุŒ ุงู„ู…ุฑูƒุจุฉ ุงู„ุซุงู„ุซุฉ ู†ุงู‚ุต C1 ูˆู†ุงู‚ุต C1 ู†ุงู‚ุต
332
+
333
+ 84
334
+ 00:07:52,490 --> 00:08:02,780
335
+ 2C2 ุฒุงุฆุฏ 7C3ุŒ ุฌู…ุนู†ุง ูƒู„ู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ 000ุŒ ุงู„ุขู† ู†ุนู…ู„
336
+
337
+ 85
338
+ 00:08:02,780 --> 00:08:07,120
339
+ ู…ู‚ุงุฑู†ุฉ ู…ุง ุจูŠู† ุงู„ุทุฑููŠู†ุŒ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจุตูŠุฑ ุงุซู†ูŠู† C
340
+
341
+ 86
342
+ 00:08:07,120 --> 00:08:11,400
343
+ ูˆุงุญุฏุŒ ุงุซู†ูŠู† C ุงุซู†ูŠู†ุŒ ุงุซู†ูŠู† C ุซู„ุงุซุฉุŒ ูŠุณุงูˆูŠ Zero
344
+
345
+ 87
346
+ 00:08:11,400 --> 00:08:16,860
347
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ุŒ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉุŒ C ูˆุงุญุฏ ู†ู‚ุต ุซู„ุงุซุฉ
348
+
349
+ 88
350
+ 00:08:16,860 --> 00:08:21,880
351
+ C ุงุซู†ูŠู† ุฒุงุฆุฏ ุซู„ุงุซุฉ C ุซู„ุงุซุฉ ูŠุณุงูˆูŠ ZeroุŒ ุงู„ู…ุนุงุฏู„ุฉ
352
+
353
+ 89
354
+ 00:08:21,880 --> 00:08:28,860
355
+ ุงู„ุซุงู„ุซุฉุŒ ุณุงู„ุจ C ูˆุงุญุฏุŒ ุณุงู„ุจ ุงุซู†ูŠู† C ุงุซู†ูŠู† ุฒุงุฆุฏ ุณุจุนุฉ C
356
+
357
+ 90
358
+ 00:08:28,860 --> 00:08:35,700
359
+ ุซู„ุงุซุฉ ูƒู„ู‡ ูŠุณุงูˆูŠ 100 ูŠุณุงูˆูŠ 0ุŒ ู‡ุฐุง ุงู„ system ู„ุง ู†ุณู…ูŠู‡
360
+
361
+ 91
362
+ 00:08:35,700 --> 00:08:40,860
363
+ homogeneous systemุŒ ูŠู…ูƒู† ู†ู†ุชู‚ู„ ุงู„ุขู† ู…ู† vectors ุฅู„ู‰
364
+
365
+ 92
366
+ 00:08:40,860 --> 00:08:44,360
367
+ homogeneous systemุŒ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฏูˆุฑ ุนู„ู‰ ุญู„ ุงู„
368
+
369
+ 93
370
+ 00:08:44,360 --> 00:08:47,860
371
+ homogeneous system ู‡ุฐุง ุจุฃูŠ ุทุฑูŠู‚ุฉ ู…ู† ุงู„ุทุฑู‚ ุงู„ุชูŠ
372
+
373
+ 94
374
+ 00:08:47,860 --> 00:08:52,700
375
+ ุณุจู‚ุช ุฏุฑุงุณุชู‡ุงุŒ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ุฐุง ุงู„ system ุจู‚ุฏุฑ ุฃูƒุชุจู‡
376
+
377
+ 95
378
+ 00:08:52,700 --> 00:08:57,500
379
+ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠุŒ ููŠ ู…ุดูƒู„ุฉ ู„ูˆ ุถุฑุจุช ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰
380
+
381
+ 96
382
+ 00:08:57,500 --> 00:09:05,520
383
+ ุนู„ู‰ ุงุซู†ูŠู†ุŒ ุงู„ุฃูˆู„ู‰ ุถุฑุจุชู‡ุง ูƒู„ู‡ุง ููŠ ุญุงุฌุฉ ู…ุง ููŠุด ู…ุดูƒู„ุฉ ุฅุฐุง
384
+
385
+ 97
386
+ 00:09:05,520 --> 00:09:10,600
387
+ ุจู‚ุฏุฑ ุฃูƒุชุจ ุงู„ system ู‡ุฐุง ู…ุฑุฉ ุฃุฎุฑู‰ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
388
+
389
+ 98
390
+ 00:09:10,600 --> 00:09:20,660
391
+ C1 ุฒุงุฆุฏ C2 ุฒุงุฆุฏ C3 ูŠุณุงูˆูŠ ZeroุŒ C1 ู†ู‚ุต 3 C2 ุฒุงุฆุฏ 3
392
+
393
+ 99
394
+ 00:09:20,660 --> 00:09:30,000
395
+ C3 ูŠุณุงูˆูŠ ZeroุŒ ู†ู‚ุต C1 ู†ู‚ุต 2 C2 ุฒุงุฆุฏ 7 C3 ูŠุณุงูˆูŠ Zero
396
+
397
+ 100
398
+ 00:09:31,520 --> 00:09:36,280
399
+ ุฃุฑูŠุฏ ุฃู† ุฃุญู„ ู‡ุฐุง ุงู„ู€ system ุจุงู„ู€ row echelon form
400
+
401
+ 101
402
+ 00:09:36,280 --> 00:09:40,620
403
+ ู…ุซู„ุงู‹ุŒ ุชู…ุงู…ุŸ ุฅุฐุง ุฃุฐู‡ุจ ูˆุฃุญุตู„ ุนู„ู‰ ุงู„ู€ augmented
404
+
405
+ 102
406
+ 00:09:40,620 --> 00:09:45,840
407
+ matrixุŒ ุฅุฐุง ุฌุฆุช ุฅู„ู‰ ุงู„ู€ augmented matrixุŒ ูˆุงุญุฏ ูˆุงุญุฏ
408
+
409
+ 103
410
+ 00:09:45,840 --> 00:09:53,040
411
+ ูˆุงุญุฏ ูˆู‡ู†ุง ZeroุŒ ุงู„ุฐูŠ ุจุนุฏู‡ ูˆุงุญุฏ ู†ุงู‚ุต ุซู„ุงุซุฉ ุซู„ุงุซุฉ
412
+
413
+ 104
414
+ 00:09:53,040 --> 00:10:00,260
415
+ ZeroุŒ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุซู†ูŠู† ุณุจุนุฉ ZeroุŒ ุจุงู„ุดูƒู„ ุงู„ุฐูŠ
416
+
417
+ 105
418
+ 00:10:00,260 --> 00:10:07,850
419
+ ุนู†ุฏู†ุง ู‡ู†ุงุŒ ุฅุฐุง ุฃู†ุง ู…ู…ูƒู† ุฃุนู…ู„ ู…ุง ูŠุฃุชูŠ: ู†ุงู‚ุต R1 to R2
420
+
421
+ 106
422
+ 00:10:07,850 --> 00:10:10,950
423
+ ูˆR1
424
+
425
+ 107
426
+ 00:10:10,950 --> 00:10:19,670
427
+ to R3ุŒ ู†ุญุตู„ ุนู„ู‰ ู…ุง ูŠุฃุชูŠุŒ ู‡ุงูŠ ูˆุงุญุฏ ูˆุงุญุฏ ูˆุงุญุฏ ZeroุŒ ุตู
428
+
429
+ 108
430
+ 00:10:19,670 --> 00:10:27,410
431
+ ุงู„ุฐูŠ ุจุนุฏู‡ ZeroุŒ ุณุงู„ุจ ุฃุฑุจุนุฉ ู‡ู†ุง ุถุฑุจู†ุง ููŠ ุณุงู„ุจ ูˆุงุญุฏ
432
+
433
+ 109
434
+ 00:10:27,410 --> 00:10:35,060
435
+ ุจุถุฑุจ ุฌุฏูˆุด ุงุซู†ูŠู†ุŒ ู‡ู†ุง Zero ูƒู…ุง ู‡ูˆ ุฅุถุงูุฉ ูŠุจู‚ู‰ Zero
436
+
437
+ 110
438
+ 00:10:35,060 --> 00:10:41,560
439
+ ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง ุซู…ุงู†ูŠุฉ ูˆู‡ู†ุง Zero ุจุงู„ุดูƒู„ ุงู„ุฐูŠ
440
+
441
+ 111
442
+ 00:10:41,560 --> 00:10:45,460
443
+ ุนู†ุฏู†ุง ุฏู‡ ุงู„ุขู†
444
+
445
+ 112
446
+ 00:10:45,460 --> 00:10:51,560
447
+ ู…ุถุงุฌูŠ ุฅู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ู‡ู†ุง ุซู„ุงุซุฉ ูˆู‡ู†ุง
448
+
449
+ 113
450
+ 00:10:51,560 --> 00:11:02,140
451
+ ู…ุธุจูˆุท ุตุญูŠุญุŒ ูŠุจู‚ู‰ ุฃู†ุง ู‡ู†ุง ู…ู…ูƒู† ุฃุฑุชุจ ุงู„ุฃุฑูˆุงุญุŒ ุทูŠุจ ุชูŠุฌูŠ
452
+
453
+ 114
454
+ 00:11:02,140 --> 00:11:10,700
455
+ ุจุชู†ูุน ุชู†ูุน ู„ูŠุด ู„ุงุŸ ูˆู„ุง ู‡ู… ู‡ุงูŠ R ุซู„ุงุซุฉ ู„ R ูˆุงุญุฏุŒ ุทุจ
456
+
457
+ 115
458
+ 00:11:10,700 --> 00:11:16,940
459
+ ุฃู†ุง ู…ู…ูƒู† ุขุฎุฐ ู†ุตู ู‡ุฐู‡ ุฃูˆ ุขุฎุฐ ู†ุงู‚ุต ู†ุตู ููŠ ุงู„ุฃูˆู„ ูŠุนู†ูŠ
460
+
461
+ 116
462
+ 00:11:16,940 --> 00:11:23,180
463
+ ู…ู…ูƒู† ุฃู‚ูˆู„ ุจุฏูŠ ุขุฎุฐ ู†ุงู‚ุต ู†ุตูุŒ ุนุงุฑูŠุฉ ุงุซู†ูŠู†ุŒ ุงู„ุดูƒู„ ุงู„ุฐูŠ
464
+
465
+ 117
466
+ 00:11:23,180 --> 00:11:29,850
467
+ ุนู†ุฏู†ุง ู‡ู†ุงุŒ ูŠุจู‚ู‰ ูŠุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠุŒ ุฑุงุจุน ู†ุงู‚ุต ุฑุงุจุน
468
+
469
+ 118
470
+ 00:11:29,850 --> 00:11:33,990
471
+ ุฃู‚ุฑุงุฑูŠ ุงุซู†ูŠู†ุŒ ูŠุจู‚ู‰ ู„ูˆ ุฃุฎุฐุช ู†ุงู‚ุต ุฑุงุจุน ุฃู‚ุฑุงุฑูŠ ุงุซู†ูŠู†
472
+
473
+ 119
474
+ 00:11:33,990 --> 00:11:41,330
475
+ ุจุตูŠุฑ ูˆุงุญุฏ ูˆุงุญุฏ ุฒูŠุฑูˆ ูˆู‡ู†ุง ุฒูŠุฑูˆ ูˆู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ู†ุงู‚ุต
476
+
477
+ 120
478
+ 00:11:41,330 --> 00:11:48,370
479
+ ู†ุตู ูˆู‡ู†ุง ุฒูŠุฑูˆ ูˆู‡ู†ุง ุฒูŠุฑูˆ ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ุซู…ุงู†ูŠุฉ ูˆู‡ูŠ
480
+
481
+ 121
482
+ 00:11:48,370 --> 00:11:54,630
483
+ ุฒูŠุฑูˆุŒ ุงู„ุขู† ุฃุนู…ู„ ู…ุง ูŠุฃุชูŠุŒ ุฃู‚ูˆู„ ู‡ุฐุง ุงู„ุณู‡ู… ุงู„ุฐูŠ ุนู†ุฏู†ุง
484
+
485
+ 122
486
+ 00:11:54,630 --> 00:12:05,550
487
+ ุฅุฐุง ุจุฏูŠ ุขุฎุฐ ู†ุงู‚ุต R2 to R1 ูˆุจุฏูŠ ุขุฎุฐ R2 to R3 ู…ุฑุฉ
488
+
489
+ 123
490
+ 00:12:05,550 --> 00:12:13,170
491
+ ูˆุงุญุฏุฉ ู„ู€ R3ุŒ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุญุตู„ ู…ุง ูŠุฃุชูŠุŒ ู‡ุฐุง ูˆุงุญุฏ ูˆู‡ู†ุง
492
+
493
+ 124
494
+ 00:12:13,170 --> 00:12:20,590
495
+ zero ูˆู‡ู†ุง ุจูŠุตูŠุฑ ุฐุงุช ุจูŠุตูŠุฑ ู‡ุฐุง ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู† ูˆู‡ู†ุง
496
+
497
+ 125
498
+ 00:12:20,590 --> 00:12:28,890
499
+ Zero ูˆู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ู†ุงู‚ุต ู†ุตู ูˆู‡ู†ุง Zero ูˆู‡ู†ุง Zero
500
+
501
+ 126
502
+ 00:12:28,890 --> 00:12:34,070
503
+ ูˆู‡ู†ุง ุณุจุนุฉ ุนู„ู‰ ุงุซู†ูŠู†ุŒ ูŠุนู†ูŠ ุฎู…ุณุฉ ุนุดุฑ ุนู„ู‰ ุงุซู†ูŠู†ุŒ ุณุจุนุฉ ูˆ
504
+
505
+ 127
506
+ 00:12:34,070 --> 00:12:40,970
507
+ ู†ุตูุŒ ูŠุนู†ูŠ ุฎู…ุณุฉ ุนุดุฑ ุนู„ู‰ ุงุซู†ูŠู† ูˆู‡ู†ุง Zero Zero Zero
508
+
509
+ 128
510
+ 00:12:40,970 --> 00:12:49,830
511
+ ุจุงู„ุดูƒู„ ุงู„ุฐูŠ ุนู†ุฏู†ุงุŒ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ู…ู†
512
+
513
+ 129
514
+ 00:12:49,830 --> 00:12:58,580
515
+ ู‡ุฐู‡ ุฎู„ุงุตุŒ ูŠุนู†ูŠ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ู†ุง ุงู„ุฐูŠ ู‡ูˆ ุฎู…ุณุฉ ุนุดุฑ ุนู„ู‰
516
+
517
+ 130
518
+ 00:12:58,580 --> 00:13:04,060
519
+ ุงุซู†ูŠู† C ุซู„ุงุซุฉ ุจุฏู‡ุง ุชุณุงูˆูŠ ZeroุŒ ูŠุจู‚ู‰ C ุซู„ุงุซุฉ ุจุฏู‡ุง
520
+
521
+ 131
522
+ 00:13:04,060 --> 00:13:11,440
523
+ ุชุณุงูˆูŠ ZeroุŒ ุงู„ุขู† C ุงุซู†ูŠู† ู†ุงู‚ุต ู†ุตู C ุซู„ุงุซุฉ ุจุฏู‡ุง ุชุณุงูˆูŠ
524
+
525
+ 132
526
+ 00:13:11,440 --> 00:13:16,960
527
+ ู…ูŠู†ุŸ ุจุฏู‡ุง ุชุณุงูˆูŠ ZeroุŒ C ุซู„ุงุซุฉ ุจ ZeroุŒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู†ู‡
528
+
529
+ 133
530
+ 00:13:16,960 --> 00:13:23,300
531
+ C ุงุซู†ูŠู† ุจุฏู‡ุง ุชุณุงูˆูŠ ZeroุŒ ุงู„ุขู† C ูˆุงุญุฏ ุฒุงุฆุฏ ุซู„ุงุซุฉ ุนู„ู‰
532
+
533
+ 134
534
+ 00:13:23,300 --> 00:13:28,500
535
+ ุงุซู†ูŠู† C ุซู„ุงุซุฉ ุจุฏู‡ุง ุชุณุงูˆูŠ ZeroุŒ ู‡ุฐุง ุจุฏูŠ ุฃุฎุจุฑูƒ ุฃู† C
536
+
537
+ 135
538
+ 00:13:28,500 --> 00:13:36,240
539
+ ูˆุงุญุฏ ุจุฏู‡ุง ุชุณุงูˆูŠ ZeroุŒ ูŠุจุฏูˆ
540
+
541
+ 136
542
+ 00:13:36,240 --> 00:13:41,740
543
+ ููŠ ุฎุทุฃ ุนู†ุฏู†ุง ูŠุง ุจู†ุงุช ุงุณุชู†ูŠ ุดูˆูŠุฉ ู‡ู†ุง ู‡ุฐุง ูˆุงุญุฏุŒ ุณุงู„ุจ
544
+
545
+ 137
546
+ 00:13:41,740 --> 00:13:48,520
547
+ ู‡ู†ุง ูˆุงุญุฏุŒ ู…ู† ูˆูŠู† ุฌุชู†ูŠ ุงู„ู†ุงู‚ุต ู‡ุฐู‡ุŸ ู‡ุฐู‡
548
+
549
+ 138
550
+ 00:13:50,060 --> 00:14:02,380
551
+ ู‡ุฐู‡ ู†ุงู‚ุต C1ุŒ ู‡ุฐู‡ ู†ุงู‚ุต C1ุŒ ู‡ุฐู‡ ู†ุงู‚ุต C1ุŒ ู‡ุฐู‡ ู†ุงู‚ุต C1
552
+
553
+ 139
554
+ 00:14:02,380 --> 00:14:11,800
555
+ ู‡ุฐู‡ ู†ุงู‚ุต C1ุŒ ู‡ุฐู‡ ู†ุงู‚ุต
556
+
557
+ 140
558
+ 00:14:11,800 --> 00:14:17,880
559
+ C1ุŒ ู‡ุฐู‡ ู†ุงู‚ุต C1ุŒ ู‡ุฐู‡ ู†ุงู‚ุต C1ุŒ ูˆุงู„ู„ู‡ ูŠุตู„ุญูˆู‡ ูŠุง ุจู†ุงุช
560
+
561
+ 141
562
+ 00:14:17,880 --> 00:14:25,180
563
+ ุงุซู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ ูˆุงุญุฏุŒ ูˆุงู„ุฐูŠ ุจุนุฏู‡ ุงุซู†ูŠู† ู‡ูˆ ู†ุงู‚ุต
564
+
565
+ 142
566
+ 00:14:25,180 --> 00:14:31,500
567
+ ุซู„ุงุซุฉ ู†ุงู‚ุต ุงุซู†ูŠู† ุงุซู†ูŠู†ุŒ ุซู„ุงุซุฉ ุณุจุนุฉุŒ ุจู†ุงุก ุนู„ูŠู‡ ูŠุตูŠุฑ
568
+
569
+ 143
570
+ 00:14:31,500 --> 00:14:41,920
571
+ ู‡ุฐู‡ ุจู…ุง ูŠุฃุชูŠ ุงุซู†ูŠู† ูˆู‡ุฐู‡ ู†ุงู‚ุต C ูˆุงุญุฏุŒ ูŠุจู‚ู‰ ู†ุงู‚ุต C1
572
+
573
+ 144
574
+ 00:14:41,920 --> 00:14:48,000
575
+ ูˆุฒุงุฆุฏ C1ุŒ ูˆุงู„ุจุงู‚ูŠ ูƒู„ู‡ ุณู„ูŠู…ุŒ ู„ู…ุง ุฌูŠู†ุง ุฌู…ุนู†ุง ุตุงุฑ ุงุซู†ูŠู†
576
+
577
+ 145
578
+ 00:14:48,000 --> 00:14:58,360
579
+ C1ุŒ ูŠุจู‚ู‰ ุตุงุฑ ู‡ุฐู‡ ุงู„ุซุงู†ูŠุฉ ุงู„ุชูŠ ู‡ูˆ ุณุงู„ุจ C1 ูˆุณุงู„ุจ
580
+
581
+ 146
582
+ 00:14:58,360 --> 00:15:08,520
583
+ ุซู„ุงุซุฉ C2 ุฒุงุฆุฏ ุซู„ุงุซุฉ C3ุŒ ู…ุธุจูˆุทุŒ ูˆุงู„ุฐูŠ ุจุนุฏู‡ ู…ูˆุฌุจ C1
584
+
585
+ 147
586
+ 00:15:08,520 --> 00:15:14,300
587
+ ูˆุงู„ุจุงู‚ูŠ ุณู„ูŠู…ุŒ ุฎู„ูŠ ุจุงู„ูƒูˆุง ู‡ู†ุง ุตุงุฑุช ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ 2 2
588
+
589
+ 148
590
+ 00:15:14,300 --> 00:15:21,980
591
+ 2ุŒ ู…ุธุจูˆุทุฉุŒ ู‡ุฐู‡ ู†ุงู‚ุต C1 ูˆู‡ุฐู‡ ู†ุงู‚ุต 3 ูˆู‡ุฐู‡ ุฒุงุฆุฏ 3ุŒ ูˆุงู„ุฐูŠ
592
+
593
+ 149
594
+ 00:15:21,980 --> 00:15:31,520
595
+ ุจุนุฏู‡ุง ุฒุงุฆุฏ C1 ู†ุงู‚ุต 2 C2 ุฒุงุฆุฏ 7 C3ุŒ ุฅุฐุง ุตุงุฑุช ู‡ุฐู‡ ุฒูŠ
596
+
597
+ 150
598
+ 00:15:31,520 --> 00:15:39,320
599
+ ู…ุง ู‡ูŠ ู‡ุฐู‡ุŒ ู†ุงู‚ุต ู‡ุฐู‡ ู†ุงู‚ุต ูˆู‡ุฐู‡ ู†ุงู‚ุต ูˆู‡ุฐู‡ ุซู„ุงุซุฉ ูˆู‡ุฐู‡
600
+
601
+ 151
602
+ 00:15:39,320 --> 00:15:46,340
603
+ ุฒุงุฆุฏ C ูˆุงุญุฏ ูˆู‡ุฐู‡ ุฒูŠ ู…ุง ู‡ูŠุŒ ุชู…ุงู…ุŒ ุทูŠุจ ุฅุฐุง ุจุฏู†ุง ู†ูŠุฌูŠ
604
+
605
+ 152
606
+ 00:15:46,340 --> 00:15:51,820
607
+ ุงู„ู…ุนุงุฏู„ุฉ ูˆุงุญุฏ ูˆุงุญุฏ ูˆุงุญุฏุŒ ู…ุธุจูˆุทุฉุŒ ู‡ุฐู‡ ู†ุงู‚ุต ู†ุงู‚ุต ุฒุงุฆุฏ
608
+
609
+ 153
610
+ 00:15:51,820 --> 00:15:59,970
611
+ ู‡ุฐู‡ ุฒุงุฆุฏุŒ ูˆุงู„ุฐูŠ ุจุนุฏู‡ุง ูƒู…ุง ู‡ูˆุŒ ุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ุฃู‚ูˆู„ ู‡ู†ุง
612
+
613
+ 154
614
+ 00:15:59,970 --> 00:16:08,790
615
+ R1 to R2 ูˆุณุงู„ุจ R1 to R3ุŒ ุจุฏูŠ ุฃุตุจุญ ุฃู† ู‡ุฐุง ู…ุธุจูˆุท
616
+
617
+ 155
618
+ 00:16:08,790 --> 00:16:14,570
619
+ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ ุฃุถูŠูู‡ุŒ ุจุฏูŠ ุฃุตุจุญ ู‡ุฐุง ุณุงู„ุจ 2ุŒ ู„ู…ุง ุฃุถูŠู
620
+
621
+ 156
622
+ 00:16:14,570 --> 00:16:22,270
623
+ ุฅุถุงูุฉุŒ ูˆู‡ุฐุง ุณูŠุตุจุญ ุฃุฑุจุนุฉ ูˆู‡ุฐุง ุฒูŠุฑูˆุŒ ู‡ุฐุง ุณูŠุตุจุญ ุณุงู„ุจ ุฃูˆ
624
+
625
+ 157
626
+ 00:16:22,270 --> 00:16:27,030
627
+ ุฃุฑุจุนุฉ ุฃูˆ ุงุซู†ูŠู† ุซู„ุงุซุฉุŒ ุฒูŠุฑูˆุŒ ุณุงู„ุจ ุณูŠุตุจุญ ู‡ุฐุง ุณุงู„ุจ
628
+
629
+ 158
630
+ 00:16:27,030 --> 00:16:36,970
631
+ ุซู„ุงุซุฉุŒ ูˆู‡ุฐุง ุณูŠุตุจุญ ุณุชุฉุŒ ู‡ุฐู‡ ุณุชุฉุŒ ูˆุงู„ุจุงู‚ูŠ ุฒูŠุฑูˆุŒ ู‡ุฐุง ุจุฏู„
632
+
633
+ 159
634
+ 00:16:36,970 --> 00:16:44,920
635
+ ุงู„ุฑุจุน ู†ุงู‚ุต ู†ุตูุŒ ู†ุงู‚ุต ู†ุตูุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุฒูŠ ู…ุง ู‡ูˆุŒ ูˆู‡ุฐุง ูŠุตุจุญ
636
+
637
+ 160
638
+ 00:16:44,920 --> 00:16:52,660
639
+ ูˆุงุญุฏุŒ ูˆู‡ุฐุง ู†ุงู‚ุต ุงุซู†ูŠู† ู„ุฃู† ุฃู†ุง ุฃุฎุฐู†ุง ู†ุงู‚ุต ู†ุตูุŒ ูŠุจู‚ู‰
640
+
641
+ 161
642
+ 00:16:52,660 --> 00:16:57,920
643
+ ู‡ุฐุง ู†ุงู‚ุต ุงุซู†ูŠู†ุŒ ูˆู‡ุฐุง ุฒูŠุฑูˆุŒ ูˆุงู„ุจุงู‚ูŠ ูƒู…ุง ู‡ูˆุŒ ู…ุง ุนุฏุง ู‡ุฐุง
644
+
645
+ 162
646
+ 00:16:57,920 --> 00:17:04,960
647
+ ูŠุตุจุญ ุณุงู„ุจ ุซู„ุงุซุฉุŒ ูˆู‡ุฐุง ูŠุตุจุญ ุณุชุฉุŒ ูŠุจู‚ู‰ ุงูŠุด ุจุฏู‡ุง ุชุตูŠุฑ
648
+
649
+ 163
650
+ 00:17:04,960 --> 00:17:12,600
651
+ ุนู†ุฏู†ุง ุงู„ุขู†ุŸ ุจุฏู‡ุง ุฃุถูŠู ุณุงู„ุจ R2 to R1ุŒ ู…ุธุจูˆุทุŒ ูˆุซู„ุงุซุฉ
652
+
653
+ 164
654
+ 00:17:12,600 --> 00:17:19,280
655
+ R2 to R3ุŒ ู…ุงุดูŠ ุงู„ุญุงู„ุŒ ูŠุจู‚ู‰ ุงูŠุด ุจุฏู‡ุง ุชุตูŠุฑ ุนู†ุฏู†ุงุŸ ุจุฏู‡ุง
656
+
657
+ 165
658
+ 00:17:19,280 --> 00:17:26,350
659
+ ุชุตูŠุฑ ูƒุงู„ุชุงู„ูŠุŒ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุฒูŠ ู…ุง ู‡ูˆุŒ ูˆุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ
660
+
661
+ 166
662
+ 00:17:26,350 --> 00:17:32,250
663
+ ุณุงู„ุจ ุณูŠุตุจุญ ููˆู‚ 0ุŒ ูˆุงู„ุฐูŠ ุชุญุช 3 ุณูŠุตุจุญ 0ุŒ ุงู„ุนู…ูˆุฏ
664
+
665
+ 167
666
+ 00:17:32,250 --> 00:17:42,560
667
+ ุงู„ุซุงู„ุซ ุงู„ุขู†ุŒ ุณุงู„ุจ R2 to R1 ุณูŠุตุจุญ ู‡ู†ุง 3 ูˆู‡ู†ุง ุณุงู„ุจ
668
+
669
+ 168
670
+ 00:17:42,560 --> 00:17:48,120
671
+ ุงุซู†ูŠู† ุฒูŠ ู…ุง ู‡ูŠุŒ ูˆู‡ู†ุง ุจุฏูŠ ุฃุถูŠู ุซู„ุงุซุฉ ููŠ ุงุซู†ูŠู† ุณุงู„ุจ
672
+
673
+ 169
674
+ 00:17:48,120 --> 00:17:55,540
675
+ ุณุชุฉ ุจูŠุตูŠุฑ zeroุŒ ูˆู‡ุฐู‡ ูƒู…ุงู† zeroุŒ ู…ุธุจูˆุท 100%ุŒ ุฅุฐุง ุชุบ
676
+
677
+ 201
678
+ 00:22:20,350 --> 00:22:25,770
679
+ ุฒุงุฆุฏ C3 ุฒุงุฆุฏ
680
+
681
+ 202
682
+ 00:22:25,770 --> 00:22:34,410
683
+ C3 ุฒุงุฆุฏ
684
+
685
+ 203
686
+ 00:22:34,410 --> 00:22:44,280
687
+ C3 ุฒุงุฆุฏ ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ C2 ุฒุงุฆุฏ C3 ุจุฏู‡ ูŠุณุงูˆูŠ 0
688
+
689
+ 204
690
+ 00:22:44,280 --> 00:22:53,420
691
+ ุงู„ุซุงู„ุซ C1 ุฒุงุฆุฏ C2 ุฒุงุฆุฏ C3 ุจุฏู‡ ูŠุณุงูˆูŠ 0 ุงู„ุซุงู„ุซ 2C1
692
+
693
+ 205
694
+ 00:22:53,420 --> 00:23:01,220
695
+ 2C2 + 3C3 ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจ๏ฟฝ๏ฟฝู‡ ูŠุณุงูˆูŠ 0
696
+
697
+ 206
698
+ 00:23:03,560 --> 00:23:09,920
699
+ ุทูŠุจ ู„ูˆ ุฌูŠู†ุง ุถุฑุจู†ุง ูŠุง ุจู†ุงุช ู‡ุฐูˆู„ ุงู„ู…ุนุงุฏู„ุชูŠู† ููŠ ุณุงู„ุจ
700
+
701
+ 207
702
+ 00:23:09,920 --> 00:23:16,660
703
+ ุจุฅุซู†ูŠู† ูŠุจู‚ุงุด ุจุตูŠุฑ ุณุงู„ุจ ุจุฅุซู†ูŠู† C ูˆุงุญุฏ ุณุงู„ุจ ุณุงู„ุจ
704
+
705
+ 208
706
+ 00:23:16,660 --> 00:23:21,900
707
+ ุงู„ู„ูŠ ู‡ูˆ 2C2 ุณุงู„ุจ ุจุฅุซู†ูŠู† C3 ุจุฏู‡ ูŠุณุงูˆูŠ
708
+
709
+ 209
710
+ 00:23:21,900 --> 00:23:27,480
711
+ Zero ู‡ู†ุง 2C1 ุฒุงุฆุฏ 2C2 ุฒูŠ
712
+
713
+ 210
714
+ 00:23:27,480 --> 00:23:32,180
715
+ 3C3 ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆุฌู…ุนู†ุง ู‡ุฏูˆู„ ู…ุน
716
+
717
+ 211
718
+ 00:23:32,180 --> 00:23:38,680
719
+ ุงู„ุณู„ุงู…ุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุธู„ ุนู†ุฏูŠ C3 ู„ุญุงู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ Zero
720
+
721
+ 212
722
+ 00:23:38,680 --> 00:23:45,020
723
+ ู„ู…ุง C3 ูŠุณุงูˆูŠ Zero C2 ุจู‚ุฏ ุฅูŠุด ุจ Zero ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง
724
+
725
+ 213
726
+ 00:23:45,020 --> 00:23:53,580
727
+ ุฃู†ู‡ C2 ูŠุณุงูˆูŠ Zero ู„ู…ุง C3 ูŠุณุงูˆูŠ Zero ูˆูƒุฐู„ูƒ C1 ุจุฏู‡
728
+
729
+ 214
730
+ 00:23:53,580 --> 00:23:57,080
731
+ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุฃุตุจุญ C1
732
+
733
+ 215
734
+ 00:24:13,010 --> 00:24:16,730
735
+ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุซุงู„ ุนู„ู‰ ุงู„ู€ linearly dependent ูˆุงู„ู€
736
+
737
+ 216
738
+ 00:24:16,730 --> 00:24:19,610
739
+ linearly independent vectors
740
+
741
+ 217
742
+ 00:24:53,500 --> 00:24:57,140
743
+ ุจู†ุฌูŠ ุงู„ุขู† ู„ู†ุธุฑูŠุฉ ุนู„ู‰ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง
744
+
745
+ 218
746
+ 00:24:57,140 --> 00:25:03,400
747
+ ูŠุฃุชูŠ theorem the
748
+
749
+ 219
750
+ 00:25:03,400 --> 00:25:07,620
751
+ set ุงู„ู„ูŠ
752
+
753
+ 220
754
+ 00:25:07,620 --> 00:25:20,980
755
+ ู‡ูŠ V1 ูˆ V2 ูˆ VM is linearly dependent if and only
756
+
757
+ 221
758
+ 00:25:20,980 --> 00:25:28,400
759
+ if at least one
760
+
761
+ 222
762
+ 00:25:28,400 --> 00:25:35,100
763
+ element of
764
+
765
+ 223
766
+ 00:25:35,100 --> 00:25:44,760
767
+ the set is a linear combination
768
+
769
+ 224
770
+ 00:25:48,820 --> 00:25:51,460
771
+ ู…ุนุธู… ุงู„ุขุฎุฑูŠู†
772
+
773
+ 225
774
+ 00:26:10,130 --> 00:26:14,770
775
+ ู†ุฑุฌุน ู„ู†ุต ุงู„ู†ุธุฑูŠุฉ ุซุงู†ูŠุฉ ู†ู‚ุฑุฃ ุงู„ู†ุต ู†ุญุงูˆู„ ู†ูู‡ู… ู‡ุฐุง
776
+
777
+ 226
778
+ 00:26:14,770 --> 00:26:20,410
779
+ ุงู„ู†ุต ูุงู‡ู…ุงู‹ ุตุญูŠุญุงู‹ ุซู… ู†ุฐู‡ุจ ุฅู„ู‰ ุจุฑู‡ู†ุฉ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ
780
+
781
+ 227
782
+ 00:26:20,410 --> 00:26:25,710
783
+ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ the set of vectors V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ
784
+
785
+ 228
786
+ 00:26:25,710 --> 00:26:29,790
787
+ VM ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ vector space V linearly
788
+
789
+ 229
790
+ 00:26:29,790 --> 00:26:34,990
791
+ dependent if and only if at least one element of
792
+
793
+ 230
794
+ 00:26:34,990 --> 00:26:39,370
795
+ the set is a linear combination of the others ูŠุจู‚ู‰
796
+
797
+ 231
798
+ 00:26:39,370 --> 00:26:43,150
799
+ ุงุญู†ุง ุฌูŠู†ุง ุนู„ู‰ vector space ุฃุฎุฐู†ุง ู…ู†ู‡ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„
800
+
801
+ 232
802
+ 00:26:43,150 --> 00:26:47,870
803
+ vectors ู‡ูŠู‡ุง ู‚ุฏุงู…ูŠ ุงู„ุจุฑู‡ุงู† ุจุฏูŠ ูŠุตูŠุฑ ููŠ ุงุชุฌุงู‡ูŠู† ู„ุฃู†
804
+
805
+ 233
806
+ 00:26:47,870 --> 00:26:52,510
807
+ ููŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ ุฅูŠุด if and only if ูŠุนู†ูŠ ู„ูˆ ูƒุงู† ู‡ุฐุง
808
+
809
+ 234
810
+ 00:26:52,510 --> 00:26:56,570
811
+ ู…ุนุทูŠุงุช ู‡ุฐุง ู…ุทู„ูˆุจ ูˆุงู„ุนูƒุณ ู„ูˆ ูƒุงู† ู‡ุฐุง ู…ุทู„ูˆุจ ุจุฏูŠ ูŠูƒูˆู†
812
+
813
+ 235
814
+ 00:26:56,570 --> 00:27:00,550
815
+ ู‡ุฐุง ุฅูŠู‡ ู…ุนุทูŠุงุช ุฅูŠู‡ ุฏู‡ ุงู„ุจุฑู‡ุงู† ุจุฏูŠ ูŠุตูŠุฑ ููŠ ุงุชุฌุงู‡ูŠู†
816
+
817
+ 236
818
+ 00:27:00,550 --> 00:27:05,700
819
+ ูŠุจู‚ู‰ ุจุฏูŠ ุฃูุชุฑุถ ุฃูˆู„ุงู‹ ุฅู† ู‡ุฏูˆู„ ู…ุง ู„ู‡ู… Linearly
820
+
821
+ 237
822
+ 00:27:05,700 --> 00:27:10,760
823
+ Dependent ูˆู…ู† ุฎู„ุงู„ู‡ู… ุงุฑูˆุญ ุฃุซุจุช ุฃู†ู‡ ุฃูŠ vector ู…ู†
824
+
825
+ 238
826
+ 00:27:10,760 --> 00:27:15,600
827
+ ู‡ุฏูˆู„ Linear Combination ู„ู„ุขุฎุฑูŠู† ูŠุนู†ูŠ ุฃูŠ vector ู…ู†
828
+
829
+ 239
830
+ 00:27:15,600 --> 00:27:19,780
831
+ ู‡ุฏูˆู„ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ ุนู„ู‰ ุตูŠุบุฉ Linear Combination ู…ู†
832
+
833
+ 240
834
+ 00:27:19,780 --> 00:27:25,640
835
+ ุจุงู‚ูŠุฉ ู…ู† ุงู„ vectors ุงู„ุฃุฎุฑู‰ ุชุจุนุงุช ู‡ุฐู‡ ุงู„ุณุช ูŠุจู‚ู‰ ุจุฏุฃ
836
+
837
+ 241
838
+ 00:27:25,640 --> 00:27:32,740
839
+ ุฃู…ุดูŠ ุงู„ุงุชุฌุงู‡ ุงู„ุฃูˆู„ ุจุฏุงุฌูŠ ุฃู‚ูˆู„ ุงุณูŠูˆู… ุงู„ุฐุงุช ุงู„ู„ูŠ ู‡ูˆ
840
+
841
+ 242
842
+ 00:27:32,740 --> 00:27:40,660
843
+ V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ ุงู„ VM are linearly dependent
844
+
845
+ 243
846
+ 00:27:42,680 --> 00:27:46,080
847
+ ุจุงู„ุฏุฑุฌุฉ ุนู„ู‰ ุชุนุฑูŠู linearly dependent ู…ุนู†ุงุชู‡ there
848
+
849
+ 244
850
+ 00:27:46,080 --> 00:27:54,100
851
+ exist scalars C1 ูˆC2 ูˆCM ู…ูˆุฌูˆุฏุงุช ูŠุง ุฑูŠุช not all zero
852
+
853
+ 245
854
+ 00:27:54,100 --> 00:27:59,420
855
+ ู…ุด ูƒู„ู‡ู… zero ุจุญูŠุซ ูŠูƒูˆู† ู…ุฌู…ูˆุนู‡ู… ูŠุณูˆูŠ ู‚ุฏ ุฅูŠุด zero ูŠุจู‚ู‰
856
+
857
+ 246
858
+ 00:27:59,420 --> 00:28:09,010
859
+ ู‡ุฐุง ู…ุนู†ุงุชู‡ there exist scalars ุงู„ู„ูŠ ู‡ู… ู…ูŠู†ุŸ C1 ูˆC2
860
+
861
+ 247
862
+ 00:28:09,010 --> 00:28:23,050
863
+ ูˆCm in R not all zero ู…ุด ูƒู„ู‡ู… ุฒูŠุฑูˆ such that ุจุญูŠุซ
864
+
865
+ 248
866
+ 00:28:23,050 --> 00:28:33,130
867
+ ุฃู† C1 V1 ุฒุงุฆุฏ C2 V2 ุฒุงุฆุฏ ุฒุงุฆุฏ Cm Vm ุฏูŠ ุณุงูˆูŠ ู‚ุฏ ุฅูŠุดุŸ
868
+
869
+ 249
870
+ 00:28:33,130 --> 00:28:39,150
871
+ ุฏูŠ ุณุงูˆูŠ Zero ูŠุนู†ูŠ ุงู„ุณู„ุณู„ุงุช ูŠุง ุจู†ุงุช ู…ู…ูƒู† ูŠูƒูˆู† ุจุนุถู‡ู…
872
+
873
+ 250
874
+ 00:28:39,150 --> 00:28:44,230
875
+ ุฃุตูุงุฑ ูˆู…ู…ูƒู† ูŠูƒูˆู† ุจุนุถู‡ู… ู…ุด ุฃุตูุงุฑ ู„ูƒู† ูƒู„ู‡ู… ุฃุตูุงุฑ
876
+
877
+ 251
878
+ 00:28:44,230 --> 00:28:50,550
879
+ ู…ู…ู†ูˆุน ุนู„ู‰ ุงู„ุฃู‚ู„ ุนู†ุฏูŠ ูˆู„ุง ูˆุงุญุฏ ูู‚ุท ุจูŠูƒูˆู† ู‡ู†ุง ู„ุง
880
+
881
+ 252
882
+ 00:28:50,550 --> 00:28:57,690
883
+ ูŠุณุงูˆูŠ ุงู„ Zero ุชู…ุงู…ุŸ ุฅุฐุง ุจุฑูˆุญ ุขุฎุฏ ูˆุงุญุฏ ู…ู†ู‡ู… ูˆุฃุซุจุช
884
+
885
+ 253
886
+ 00:28:57,690 --> 00:29:03,970
887
+ ุฃู†ูŠ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ ุจุฏู„ุงู„ุฉ ู…ู†ุŸ ุจุฏู„ุงู„ุฉ ุงู„ุขุฎุฑูŠู† ูุจุงุฌูŠ
888
+
889
+ 254
890
+ 00:29:03,970 --> 00:29:14,960
891
+ ุจู‚ูˆู„ ู‡ู†ุง C I ู…ูˆุฌูˆุฏ ๏ฟฝ๏ฟฝูŠ R and CI not equal to zero
892
+
893
+ 255
894
+ 00:29:14,960 --> 00:29:30,000
895
+ then the vector ุงู„ู„ูŠ ู‡ูˆ CI VI ุจุฏู‡ ูŠุณุงูˆูŠ is ุฏู‡
896
+
897
+ 256
898
+ 00:29:30,000 --> 00:29:38,670
899
+ ูŠุงุฎุฏ CI VI ูƒูŠู ูŠุนู†ูŠุŸ ูŠุนู†ูŠ ุงูุชุฑุถ ุฃู† CIV ุงุฌุงู†ูŠ ู‡ู†ุง
900
+
901
+ 257
902
+ 00:29:38,670 --> 00:29:44,230
903
+ ููŠ ู‡ุฐุง ุงู„ู…ูƒุงู† ูŠุจู‚ู‰ ุจุฏู‡ ูŠุฎู„ูŠู‡ ููŠ ู…ูƒุงู†ู‡ ูˆุงู„ุจุงู‚ูŠุฉ ูƒู„ู‡
904
+
905
+ 258
906
+ 00:29:44,230 --> 00:29:47,950
907
+ ุจุฏู‡ ูŠูˆุฏูŠู‡ ูˆูŠู†ุŸ ุนู„ู‰ ุงู„ุดุฌุฑุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุฅูŠุด ุจุฏู‡
908
+
909
+ 259
910
+ 00:29:47,950 --> 00:29:58,270
911
+ ูŠุตูŠุฑ ู‡ู†ุงุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ C1 V1 ุณุงู„ุจ C2 V2 ุณุงู„ุจ ูˆู†ุธู„
912
+
913
+ 260
914
+ 00:29:58,270 --> 00:30:05,890
915
+ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ู…ุง ู†ูˆุตู„ ู„ุณุงู„ุจ C I minus 1 V I
916
+
917
+ 261
918
+ 00:30:05,890 --> 00:30:11,050
919
+ minus ุงู„ one ู…ู† ุงู„ู„ูŠ ุจูŠุฌูŠ ุจุนุฏู‡ C I V I ู‡ูŠูˆุง ุจุฑุง
920
+
921
+ 262
922
+ 00:30:11,550 --> 00:30:18,750
923
+ ูŠุจู‚ู‰ ุงู„ู„ูŠ ุจุฏู‡ ูŠุฌูŠ ุจุนุฏู‡ ู†ุงู‚ุต c i plus 1 v i plus
924
+
925
+ 263
926
+ 00:30:18,750 --> 00:30:25,770
927
+ one ุฒุงุฆุฏ ุฒุงุฆุฏ ู„ุบุงูŠุฉ ู…ุง ู†ูˆุตู„ ู„ุขุฎุฑ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ c m v m
928
+
929
+ 264
930
+ 00:30:27,070 --> 00:30:30,570
931
+ ูŠุนู†ูŠ ุงู„ู„ูŠ ููŠ ุงู„ู†ุต ู‡ุฐุง ู…ุง ุจูŠู† ุงู„ุฅุซู†ูŠู† ุฎู„ูŠุชู‡
932
+
933
+ 265
934
+ 00:30:30,570 --> 00:30:34,830
935
+ ูˆุงู„ุจุงู‚ูŠ ู†ุฌู„ุชู‡ ูˆูŠู†ุŸ ุนู„ู‰ ุงู„ุดุฌุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ุขู† ุฃู†ุง ุฌุงูŠ
936
+
937
+ 266
938
+ 00:30:34,830 --> 00:30:39,590
939
+ ู„ู‡ุฐุง ุงู„ู„ูŠ ู„ุง ูŠุณุงูˆูŠ zero ุฅุฐุง ุจู‚ุฏุฑ ุฃุฌุณู… ุนู„ูŠู‡ ุตุญูŠุญ
940
+
941
+ 267
942
+ 00:30:39,590 --> 00:30:45,870
943
+ ูˆู„ุง ู„ุฃุŸ ุฅุฐุง ู„ูˆ ุฌุณู…ุช ุนู„ูŠู‡ ุจุญุตู„ ุนู„ู‰ VI ุฏูŠ ุณุงูˆูŠ ุณุงู„ุจ
944
+
945
+ 268
946
+ 00:30:45,870 --> 00:30:55,520
947
+ C1 ุนู„ู‰ CI ููŠ V1 ุณุงู„ุจ C2 ุนู„ู‰ CI ููŠ V2 ุณุงู„ุจ ุณุงู„ุจ ุงู„ู„ูŠ
948
+
949
+ 269
950
+ 00:30:55,520 --> 00:31:04,740
951
+ ู‡ูˆ CI minus 1 ุนู„ู‰ CI ููŠ VI minus 1 ุณุงู„ุจ CI plus 1
952
+
953
+ 270
954
+ 00:31:04,740 --> 00:31:12,060
955
+ ุนู„ู‰ CI ููŠ VI plus 1 ุทุจุนุงู‹ ู‡ู†ุง ู…ุด ุฒุงุฆุฏ ู†ุงู‚ุต ูŠุง ุจู†ุงุช
956
+
957
+ 271
958
+ 00:31:12,060 --> 00:31:20,570
959
+ ูƒู„ู‡ ู‡ู†ุง ู†ุงู‚ุต ูŠุจู‚ู‰ ู‡ู†ุง ู†ุงู‚ุต ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู†ุงู‚ุต cm ุนู„ู‰
960
+
961
+ 272
962
+ 00:31:20,570 --> 00:31:28,030
963
+ ci ููŠ ุงู„ VM ุทุจ ุฅูŠุด ุฑุฃูŠูƒู… ู‡ุฐุง ู…ู‚ุฏุงุฑ ุซุงุจุช ูŠุง ุจู†ุงุช ูˆ
964
+
965
+ 273
966
+ 00:31:28,030 --> 00:31:35,150
967
+ ู‡ุฐุง ู…ู‚ุฏุงุฑ ุซุงุจุช ูŠุนู†ูŠ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐุง a1v1 ุฒุงุฆุฏ a2v2
968
+
969
+ 274
970
+ 00:31:35,150 --> 00:31:49,600
971
+ ุฒุงุฆุฏ AI-1VI-1 ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ AI plus 1 VI plus 1
972
+
973
+ 275
974
+ 00:31:49,600 --> 00:31:55,900
975
+ ุฒุงุฆุฏ ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ AMVM
976
+
977
+ 276
978
+ 00:31:55,900 --> 00:32:02,780
979
+ ุฅูŠุด ุชูุณูŠุฑูƒ ู„ู‡ุฐุง ุฃู† VI linear combination ู…ู†
980
+
981
+ 277
982
+ 00:32:02,780 --> 00:32:11,460
983
+ ุงู„ุขุฎุฑูŠู† ุฃุธู† ู‡ูˆ ุงู„ู…ุถุทุจ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู‡ู†ุง this means
984
+
985
+ 278
986
+ 00:32:11,460 --> 00:32:24,260
987
+ that ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ vi is a linear combination of
988
+
989
+ 279
990
+ 00:32:24,260 --> 00:32:34,300
991
+ the others ุทูŠุจ
992
+
993
+ 280
994
+ 00:32:34,950 --> 00:32:39,990
995
+ ุจู†ุนู…ู„ ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ุจู†ุฃุฎุฐ ูˆุงุญุฏ ููŠู‡ู… linear
996
+
997
+ 281
998
+ 00:32:39,990 --> 00:32:44,490
999
+ combination ู…ู† ุงู„ุขุฎุฑูŠู† ูˆู†ุซุจุช ุฃู† ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ
1000
+
1001
+ 282
1002
+ 00:32:44,490 --> 00:32:49,390
1003
+ linearly dependent ุชู…ุงู… ูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ ุฃู‚ูˆู„ ู„ู‡
1004
+
1005
+ 283
1006
+ 00:32:49,390 --> 00:32:59,830
1007
+ conversely conversely ูŠุนู†ูŠ ุจุงู„ุนูƒุณ assume that
1008
+
1009
+ 284
1010
+ 00:33:00,820 --> 00:33:13,440
1011
+ VK is a linear combination of
1012
+
1013
+ 285
1014
+ 00:33:13,440 --> 00:33:27,220
1015
+ the vectors V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ VK-1 ูˆ VK plus 1
1016
+
1017
+ 286
1018
+ 00:33:27,820 --> 00:33:34,900
1019
+ ูˆ ุงู†ุธุฑ ู„ู…ุดูŠ ู„ุบุงูŠุฉ ุงู„ VM ู‡ุฐุง
1020
+
1021
+ 287
1022
+ 00:33:34,900 --> 00:33:41,740
1023
+ Linear Combination ู…ู† ู…ู†ุŸ ู…ู† ู‡ุฐูˆู„ ุชู…ุงู… ุงู„ุขู† ุฃู†ุง
1024
+
1025
+ 288
1026
+ 00:33:41,740 --> 00:33:46,940
1027
+ ูุฑุถุช ุฃู† ุงู„ vector ุฑู‚ู… K ู…ู† ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐุง
1028
+
1029
+ 289
1030
+ 00:33:46,940 --> 00:33:51,700
1031
+ ู…ุงู„ู‡ ู‡ูˆ vector ุฑู‚ู… K ู‡ูˆ linear combination ู…ู†
1032
+
1033
+ 290
1034
+ 00:33:51,700 --> 00:33:57,320
1035
+ ุงู„ุขุฎุฑูŠู† ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ู‡ูŠ is a linear combination of
1036
+
1037
+ 291
1038
+ 00:33:57,320 --> 00:34:01,940
1039
+ the other ุจุฏูŠ ุฃุซุจุช ุฃู† ู‡ุฐู‡ ุงู„ vector ูƒู„ู‡ุง ุจู…ุง ููŠู‡ุง
1040
+
1041
+ 292
1042
+ 00:34:01,940 --> 00:34:07,520
1043
+ ุงู„ V ูˆK are linearly dependent ุชู…ุงู… ูŠุจู‚ู‰ assume
1044
+
1045
+ 293
1046
+ 00:34:07,520 --> 00:34:11,180
1047
+ that linear combination of the vectors ูŠุจู‚ู‰ ู‡ุฐุง
1048
+
1049
+ 294
1050
+ 00:34:11,180 --> 00:34:21,880
1051
+ ู…ุนู†ุงุชู‡ ุฃู† there exist c1 ูˆ c2 ูˆ ู„ุบุงูŠุฉ cm in R such
1052
+
1053
+ 295
1054
+ 00:34:21,880 --> 00:34:22,500
1055
+ that
1056
+
1057
+ 296
1058
+ 00:34:25,350 --> 00:34:40,530
1059
+ ุจุญูŠุซ ุฃู† ุงู„ VK ุจุฏู‡ ูŠุณุงูˆูŠ C1 V1 ุฒุงุฆุฏ C2 V2 ุฒุงุฆุฏ CK-1 ููŠ
1060
+
1061
+ 297
1062
+ 00:34:40,530 --> 00:34:53,590
1063
+ VK-1 ุฒุงุฆุฏ CK plus 1 ููŠ VK plus 1 ุฒุงุฆุฏ ุฒุงุฆุฏ CMVM
1064
+
1065
+ 298
1066
+ 00:34:58,080 --> 00:35:04,220
1067
+ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุฃู†ุง ุญุทูŠุช ู‚ูŠูˆุฏ ุนู„ู‰ ุงู„ุณูŠู‡ุงุช ู‡ุฐู‡ุŸ ู‚ู„ุช
1068
+
1069
+ 299
1070
+ 00:35:04,220 --> 00:35:07,840
1071
+ ุฃุตูุงุฑ ูˆู„ุง ุบูŠุฑ ุฃุตูุงุฑุŸ ุฃุจุฏุงู‹ุŒ linear cum ุฃุตูุงุฑ ูˆู„ุง
1072
+
1073
+ 300
1074
+ 00:35:07,840 --> 00:35:11,360
1075
+ ุบูŠุฑ ุฃุตูุงุฑุŸ ุจู‡ู„ู†ูŠุฑุŒ ุฅู†ู…ุง ุฏูˆู„ scalars ู…ูˆุฌูˆุฏุงุช ููŠ
1076
+
1077
+ 301
1078
+ 00:35:11,360 --> 00:35:15,280
1079
+ ุฃุฑุถ ูˆุญู‚ู‚ูˆุง ู„ู…ูŠู† ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุงุŒ ุทุจ ุดูˆ ุฑุฃูŠูƒู…
1080
+
1081
+ 302
1082
+ 00:35:15,280 --> 00:35:20,290
1083
+ ุฃุนู…ู„ู‡ุง ู…ุนุงุฏู„ุฉ ุตูุฑูŠุฉ ุจู†ูุนุŸ ุจู†ูุน ุทูŠุจ ูŠุจู‚ู‰ ู„ูˆ ุฑูˆุญุช
1084
+
1085
+ 303
1086
+ 00:35:20,290 --> 00:35:28,330
1087
+ ุนู…ู„ุชู‡ุง ู…ุนุงุฏู„ุฉ ุตูุฑูŠุฉ ุจุตูŠุฑ ูƒูŠู C1 C1 ุฒุงุฆุฏ C2 V2 ุฒุงุฆุฏ
1088
+
1089
+ 304
1090
+ 00:35:28,330 --> 00:35:36,110
1091
+ ุฒุงุฆุฏ CK-1 VK-1 ู‡ุฐุง ุงู„ู„ูŠ ุจุฏูŠ ุฃุฌูŠุจู‡ ุนู„ู‰ ุงู„ุดูƒ ุงู„ุซุงู†ูŠ
1092
+
1093
+ 305
1094
+ 00:35:36,110 --> 00:35:42,530
1095
+ ูŠุง ุจู†ุงุช ุจุฏูŠ ูŠุฌูŠ ุจุดุฑุฉ ุฌุฏูŠุฉ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุงู„ VK ูŠุจู‚ู‰
1096
+
1097
+ 306
1098
+ 00:35:42,530 --> 00:35:52,660
1099
+ ู‡ุฐุง ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุงู„ VK ุฒุงุฆุฏ ck plus 1 vk plus 1
1100
+
1101
+ 307
1102
+ 00:35:52,660 --> 00:36:02,900
1103
+ ุฒุงุฆุฏ ุฒุงุฆุฏ cm vm ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ zero ุทูŠุจ ุงู„ุญูŠู† ู„ุฌูŠุช
1104
+
1105
+ 308
1106
+ 00:36:02,900 --> 00:36:07,920
1107
+ ุฅูŠุด ู„ุฌูŠุช constants not all zero ู…ุด ุนุงุฑู ุฃู†ู‡ not
1108
+
1109
+ 309
1110
+ 00:36:07,920 --> 00:36:13,540
1111
+ all zero ุจู‚ูˆู„ูƒ ุงู‡ ู‡ุงูŠ ูˆุงุญุฏ ููŠู‡ู… ุจู‚ุฏ ุฅูŠุด ุจุณุงู„ุจ ูˆุงุญุฏ
1112
+
1113
+ 310
1114
+ 00:36:13,540 --> 00:36:23,840
1115
+ ูŠุจู‚ู‰ ู‡ู†ุง so there exist constants in
1116
+
1117
+ 311
1118
+ 00:36:23,840 --> 00:36:29,380
1119
+ cnr not all zero
1120
+
1121
+ 312
1122
+ 00:36:34,070 --> 00:36:42,530
1123
+ ุจุงู„ุชุงู„ูŠ CK-1 ูŠุจู‚ู‰ ู‡ู†ุงูƒ ุฅุฐุง ุฃุตู„ุงู‹ ูƒุงู†ุช ู†ู‚ุทุฉ ุฃูˆ ุฒูŠุฑูˆ
1124
+
1125
+ 313
1126
+ 00:36:42,530 --> 00:36:57,200
1127
+ ู„ุฃู† ู‡ุฐุง such that ุจุญูŠุซ ุฃู† c1v1 ุฒุงุฆุฏ c2v2 ุฒุงุฆุฏ cmvm
1128
+
1129
+ 314
1130
+ 00:36:57,200 --> 00:37:05,380
1131
+ ุจุฏู‡ ูŠุณุงูˆูŠ zero ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† v1 ูˆv2 ูˆvm are
1132
+
1133
+ 315
1134
+ 00:37:05,380 --> 00:37:11,340
1135
+ linearly dependent ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุญุฏ ููŠูƒู… ุจุชุญุจ ุชุณุฃู„
1136
+
1137
+ 316
1138
+ 00:37:11,340 --> 00:37:13,240
1139
+ ุฃูŠ ุณุคุงู„ ููŠ ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ
1140
+
1141
+ 317
1142
+ 00:37:16,490 --> 00:37:20,770
1143
+ ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉุŒ ุญุฏ ุจุชุญุจ ุชุณุฃู„ ุฃูŠ ุณุคุงู„ุŸ ุฅุฐุง ู…ุง ูƒู†ุชุด
1144
+
1145
+ 318
1146
+ 00:37:20,770 --> 00:37:25,250
1147
+ ุชุณุฃู„ ูˆุฃู†ุง ุจุฏูŠ ุฃุณุฃู„ุŒ ุงู‡ุŒ ุฃูŠูˆู‡
1148
+
1149
+ 319
1150
+ 00:37:30,360 --> 00:37:34,180
1151
+ ุญุทูŠู†ุง ุฅูŠุดุŸ ู…ุด ุฎู„ูŠู†ุง ูˆุงุญุฏ ููŠ ู†ุงุญูŠุฉ ูˆุงู„ุจุงู‚ูŠ ููŠ
1152
+
1153
+ 320
1154
+ 00:37:34,180 --> 00:37:39,980
1155
+ ู†ุงุญูŠุฉ ุซุงู†ูŠุฉ ูƒู†ุง ู†ุฌู„ู†ุงู‡ู… ูŠุนู†ูŠ ุจู„ุบุฉ ุงุจุชุฏุงุฆูŠ ุฃุถูู†ุง
1156
+
1157
+ 321
1158
+ 00:37:39,980 --> 00:37:46,020
1159
+ ุงู„ู…ุนูƒูˆุณ ุงู„ุฌู…ุนูŠ ู„ูƒู„ ู…ู† ุงู„ vectors ุฅู„ู‰ ุงู„ุทุฑููŠู†ุŒ
1160
+
1161
+ 322
1162
+ 00:37:46,020 --> 00:37:49,620
1163
+ ุชู…ุงู…ุŸ ูˆุนู„ู‰ ุงู„ุณุฑูŠุน ุจู‚ูˆู„ู†ุง ู†ุฌู„ู†ุงู‡ู… ุนู„ุดุงู† ุฌุชู†ุง ุจุชุฌูŠ
1164
+
1165
+ 323
1166
+ 00:37:49,620 --> 00:37:56,020
1167
+ ุจุดุงุฑุฉ ู…ุฎุงู„ูุฉุŒ ู…ุด ู‡ูŠูƒุŸ ููŠ ูƒู…ุงู† ุชุณุฃู„ุŸ ุทูŠุจุŒ ุจุฏุฃ ุฃุณุฃู„
1168
+
1169
+ 324
1170
+ 00:37:56,020 --> 00:38:00,060
1171
+ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ูŠุชุชู„ูŠ ุฃู† ู„ูˆ ุนู†ุฏูŠ ููŠู‡ two vectors ูŠุง ุจู†ุงุช
1172
+
1173
+ 325
1174
+ 00:38:00,060 --> 00:38:05,100
1175
+ ูˆุงุญุฏ ู…ุถุงุนูุงุช ุงู„ุซุงู†ูŠ ูˆุงุญุฏ ู†ุตู ุงู„ุซุงู†ูŠ ุฌุฏู‡ ู…ุฑุชูŠู† ุฌุฏู‡
1176
+
1177
+ 326
1178
+ 00:38:05,100 --> 00:38:13,240
1179
+ ุซู„ุช ู…ุฑุงุช ุฌุฏู‡ ุนุดุฑ ู…ุฑุงุช ู‚ูˆู„ูŠ ุจุฑูƒูˆุง ูƒูˆูŠุณ ูŠุนู†ูŠ C1 ูŠุณุงูˆูŠ
1180
+
1181
+ 327
1182
+ 00:38:13,240 --> 00:38:20,620
1183
+ ู…ุซู„ุงู‹ ุฎู…ุณุฉ C2 V1 ูŠุณุงูˆูŠ ุฎู…ุณุฉ V2 ู‡ู„ ุงู„ V1 ูˆ V2 are
1184
+
1185
+ 328
1186
+ 00:38:20,620 --> 00:38:24,980
1187
+ linearly dependent ูˆู„ุง linearly independentุŸ
1188
+
1189
+ 329
1190
+ 00:38:27,080 --> 00:38:29,620
1191
+ ุงู„ู„ูŠ ุจุชุนุฑู ุชุฑูุน ุฃูŠุถุง ููˆู‚ ุจุณ ู…ุด ู‡ู†ุชู†ุงู‚ุด ุฃู†ุง ูˆ
1192
+
1193
+ 330
1194
+ 00:38:29,620 --> 00:38:37,340
1195
+ ุงู„ุจุงู‚ูŠ ูŠูู‡ู… ุฃู†ุง ุนู†ุฏูŠ V1 ุจุฏู‡ ูŠุณุงูˆูŠ ุฎู…ุณุฉ V2 ุณุคุงู„ูŠ ู‡ูˆ
1196
+
1197
+ 331
1198
+ 00:38:37,340 --> 00:38:41,840
1199
+ ุงู„ V1 ูˆ ุงู„ V2 ู‡ุฐุง linearly dependent ูˆู„ุง linearly
1200
+
1201
+ 332
1202
+ 00:38:41,840 --> 00:38:44,420
1203
+ independent ุฏู‡ ุงู„ู„ูŠ ุจุชุนุฑู ุชุฑูุน ุฃูŠุถุง ููˆู‚ ู…ุด ู‡ู†ุชู†ุงู‚ุด
1204
+
1205
+ 333
1206
+ 00:38:44,420 --> 00:38:49,300
1207
+ ุงุญู†ุง ูˆูŠุงู‡ ุฃูŠูˆู‡ linearly dependent ู„ูŠุดุŸ ู„ุฃู† ู†ู‚ุฏุฑ
1208
+
1209
+ 334
1210
+ 00:38:49,300 --> 00:38:55,380
1211
+ ู†ุฃุฎุฐ ุฎู…ุณุฉ V1 ู†ู‚ุฏุฑ ู†ุฎู„ุฏ V1 ู†ุนู…ู„ ุชูƒุชุฑ ุซุงู†ูŠ ุฎู…ุณุฉ V1
1212
+
1213
+ 335
1214
+ 00:38:56,290 --> 00:39:01,550
1215
+ ู„ุฃู†ู‡ ู…ู…ูƒู† ู†ู†ุฌู„ู‡ุง ุนู„ู‰ ุงู„ุดุฌุฉ ุงู„ุซุงู†ูŠุฉ ูˆูŠุตูŠุฑ V1 ู†ุงู‚ุต
1216
+
1217
+ 336
1218
+ 00:39:01,550 --> 00:39:07,050
1219
+ ุฎู…ุณุฉ V2 ูŠุณุงูˆูŠ ูƒู…ุŸ Zero. ุจูŠุตูŠุฑ ู…ุนุงู…ู„ ุงู„ V1 ู‡ูˆ V1
1220
+
1221
+ 337
1222
+ 00:39:07,050 --> 00:39:12,450
1223
+ ูˆู…ุนุงู…ู„ ุงู„ V2 ู‡ูˆ ุณุงู„ุจ ุฎู…ุณุฉ ูˆุงุซู†ูŠู† not zero ูˆุจุงู„ุชุงู„ูŠ
1224
+
1225
+ 338
1226
+ 00:39:12,450 --> 00:39:17,610
1227
+ ู‡ุฐูˆู„ ุงุซู†ูŠู† linearly dependent ูŠุจู‚ู‰ ูŠุง ุจู†ุงุช any two
1228
+
1229
+ 339
1230
+ 00:39:17,610 --> 00:39:21,810
1231
+ vectors ูˆุงุญุฏ ู…ุถุงุนูุงุช ุงู„ู†ุต ูˆุงู„ุซู„ุช ูˆุงู„ุฑุจุน ูˆู†ุงู‚ุต ุฎู…ุณุฉ
1232
+
1233
+ 340
1234
+ 00:39:21,810 --> 00:39:26,050
1235
+ ุฌุฏ ูˆุฎู…ุณูŠู† ู…ุฑุฉ ูƒู„ู‡ are linearly dependent ู‡ูƒุชุจู‡ุง
1236
+
1237
+ 341
1238
+ 00:39:26,050 --> 00:39:30,910
1239
+ ู„ูƒ ุจุตูŠุบุฉ ุงู„ remark ุงู„ุชุงู„ูŠุฉ ูŠุจู‚ู‰ ุฎู„ูŠู†ูŠ ุงู…ุณุญ ุงู„ุดุฌุฉ
1240
+
1241
+ 342
1242
+ 00:39:30,910 --> 00:39:33,510
1243
+ ู‡ุฐู‡ ูˆู†ูƒุชุจ ู‡ุฐู‡ ุงู„ remark
1244
+
1245
+ 343
1246
+ 00:39:58,520 --> 00:40:05,460
1247
+ remark let v
1248
+
1249
+ 344
1250
+ 00:40:05,460 --> 00:40:19,020
1251
+ be a vector space then v1
1252
+
1253
+ 345
1254
+ 00:40:19,020 --> 00:40:28,800
1255
+ ูˆ v2 ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ v are linearly dependent if and
1256
+
1257
+ 346
1258
+ 00:40:28,800 --> 00:40:41,400
1259
+ only if if and only if one is a multiple of
1260
+
1261
+ 347
1262
+ 00:40:41,400 --> 00:40:49,900
1263
+ the other ูˆุงุญุฏ ููŠู‡ู… ูƒุงู† ู…ุถุงุนูุงุช ุงู„ุซุงู†ูŠ that is
1264
+
1265
+ 348
1266
+ 00:40:53,870 --> 00:41:00,650
1267
+ V1 ุจูŠุณุงูˆูŠ CV2 ูˆุงู„ู€ C ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ set of real
1268
+
1269
+ 349
1270
+ 00:41:00,650 --> 00:41:05,410
1271
+ numbers ุทุจุนุงู‹ ู„ูŠุดุŸ ุฃู‚ูˆู„ ู„ูˆ ู†ุฌู„ุช ู‡ุฐู‡ ุนู„ู‰ ุงู„ุดุฌุฉ ู‡ุฐู‡ ูˆ
1272
+
1273
+ 350
1274
+ 00:41:05,410 --> 00:41:10,970
1275
+ ุงู„ู„ู‡ ู‡ุฐู‡ ุนู„ู‰ ุงู„ุดุฌุฉ ู‡ุฐู‡ ุจุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุฃุญุฏ ุงู„ู…ุนุงู…ู„ุงุช
1276
+
1277
+ 351
1278
+ 00:41:10,970 --> 00:41:15,510
1279
+ ู„ุง ูŠุณุงูˆูŠ zero C ุฃู†ุง ู…ุด ุนุงุฑู ู…ู†ู‡ ู‚ุฏ ูŠูƒูˆู† zero ูˆู‚ุฏ
1280
+
1281
+ 352
1282
+ 00:41:15,510 --> 00:41:19,670
1283
+ ู„ุง ูŠูƒูˆู† zero ุจุณ ู…ุนุงู…ู„ ุงู„ V ู‡ูˆ ู‚ุฏ ุฅูŠุด ูˆุงุญุฏ ุตุญูŠุญ
1284
+
1285
+ 353
1286
+ 00:41:19,670 --> 00:41:22,810
1287
+ ูˆุจุงู„ุชุงู„ูŠ enough not all zero ูŠุจู‚ู‰ ู‡ุฏูˆู„ linearly
1288
+
1289
+ 354
1290
+ 00:41:22,810 --> 00:41:33,150
1291
+ dependent ู†ุนุทูŠ ู…ุซุงู„ examples example one ู„ุฃู† ุจูŠู‚ูˆู„
1292
+
1293
+ 355
1294
+ 00:41:33,150 --> 00:41:36,930
1295
+ little v determine whether the vectors
1296
+
1297
+ 356
1298
+ 00:41:50,760 --> 00:41:57,360
1299
+ these are the vectors ุงู„ู„ูŠ ู‡ูˆ V1 ุจุฏู‡ ูŠุณุงูˆูŠ 2
1300
+
1301
+ 357
1302
+ 00:41:57,360 --> 00:42:09,340
1303
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆ Zero ูˆุงุญุฏ and V2 ุจุฏู‡ ูŠุณุงูˆูŠ V2 ุจุฏู‡
1304
+
1305
+ 358
1306
+ 00:42:09,340 --> 00:42:18,040
1307
+ ูŠุณุงูˆูŠ 6 ูˆู†ุงู‚ุต 3 ูˆ Zero 3 are linearly
1308
+
1309
+ 359
1310
+ 00:42:18,040 --> 00:42:27,440
1311
+ dependent or linearly independent solution ูŠุจู‚ู‰
1312
+
1313
+ 360
1314
+ 00:42:27,440 --> 00:42:31,520
1315
+ ุจู†ุฑุฌุน ู„ุณุคุงู„ ู‡ุฐุง ู…ุฑุฉ ุซุงู†ูŠุฉ ูˆุจู†ู‚ูˆู„ determine
1316
+
1317
+ 361
1318
+ 00:42:31,520 --> 00:42:34,800
1319
+ whether the two vectors ู‡ุฏูˆู„ are linearly
1320
+
1321
+ 362
1322
+ 00:42:34,800 --> 00:42:39,480
1323
+ dependent ูˆู„ุง linearly independent ู„ูˆ ุฑูˆุญุช ุฏู‚ูŠู‚ุฉ
1324
+
1325
+ 363
1326
+ 00:42:39,480 --> 00:42:44,150
1327
+ ุงู„ู†ุธุฑ ููŠ ุงู„ two vectors ูŠุง ุจู†ุงุช ุฅูŠุด ุจุชู„ุงุญุธูŠู†ุŸ ูˆ ุฃุญุฏ
1328
+
1329
+ 364
1330
+ 00:42:44,150 --> 00:42:52,060
1331
+ ุซู„ุงุซุฉ ุฃู…ุซุงู„ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงุซู†ูŠู† ู…ุงู„ู‡ู…ุŸ ูŠุจู‚ู‰ ุจุงุฌูŠ
1332
+
1333
+ 365
1334
+ 00:42:52,060 --> 00:42:59,740
1335
+ ุจู‚ูˆู„ ู„ู‡ ุงู„ V2 ูŠุณุงูˆูŠ 6 ุณุงู„ุจ 3 ูˆ Zero 3 ู„ูˆ
1336
+
1337
+ 366
1338
+ 00:42:59,740 --> 00:43:04,740
1339
+ ุฃุฎุฐู†ุง 3 ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุตูŠุฑ ุนู†ุฏู†ุง ู‡ู†ุง 2 ูˆ
1340
+
1341
+ 367
1342
+ 00:43:04,740 --> 00:43:11,160
1343
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆ Zero ูˆ 1 ู‡ุฐุง ู…ู† ู‡ูˆ V1 ูŠุจู‚ู‰ ู‡ุฐุง
1344
+
1345
+ 368
1346
+ 00:43:11,160 --> 00:43:19,610
1347
+ ูŠุณุงูˆูŠ 3 V1 ูŠุจู‚ู‰ ุตุงุฑ ุนู†ุฏู†ุง ู‡ู†ุง V2
1348
+
1349
+ 369
1350
+ 00:43:19,610 --> 00:43:33,250
1351
+ is a multiple of V1 ู‡ุฐุง ู…ุนู†ุงุชู‡ ุฃู† V1 ูˆ V2 are
1352
+
1353
+ 370
1354
+ 00:43:33,250 --> 00:43:38,550
1355
+ linearly dependent ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุซุงู„
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/_O3Qrzgzn80_postprocess.srt ADDED
@@ -0,0 +1,1480 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:19,470 --> 00:00:23,070
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ู„ู‰ ูุงุช ุงู†ุช ูŠุง ุงู†ุง
4
+
5
+ 2
6
+ 00:00:23,070 --> 00:00:26,350
7
+ ู…ู† section ุชู„ุงุชู‡ ุงุชู†ูŠู† ุงู„ู„ู‰ ูƒุงู† ุจุชุญุฏุซ ุนู† ุงู„
8
+
9
+ 3
10
+ 00:00:26,350 --> 00:00:32,550
11
+ subspaces ุงู„ูุถุงุกุงุช ุงู„ุฌุฒุฆูŠุฉ ุงู„ุงุชุฌุงู‡ูŠุฉ ูˆุงู„ุงู† ุจู†ู†ุชู‚ู„
12
+
13
+ 4
14
+ 00:00:32,870 --> 00:00:38,350
15
+ ุงู„ู…ูˆุถูˆุน ุงู„ุฌุฏูŠุฏ ุงู„ู„ูŠ ู‡ูˆ linear dependence ุงู„ุงุณุชู‚ู„ุงู„
16
+
17
+ 5
18
+ 00:00:38,350 --> 00:00:42,790
19
+ ุงู„ุฎุทูŠ ูˆููŠู‡ ูƒู…ุงู† linear independence ุงู„ู„ูŠ ู‡ูˆ
20
+
21
+ 6
22
+ 00:00:42,790 --> 00:00:46,870
23
+ ุงู„ุงุณุชู‚ู„ุงู„ ุงู„ุฎุทูŠ ูˆlinear dependence ุงู„ุงุนุชู…ุงุฏ ุงู„ุฎุทูŠ
24
+
25
+ 7
26
+ 00:00:46,870 --> 00:00:49,750
27
+ ูŠุจู‚ู‰ ุงู„ุนู†ูˆุงู† ุงู„ู„ูŠ ุงุญู†ุง ูƒุงุชุจูŠู†ู‡ ููˆู‚ linear
28
+
29
+ 8
30
+ 00:00:49,750 --> 00:00:54,870
31
+ dependence ุงู„ุงุนุชู…ุงุฏ ุงู„ุฎุทูŠ ูˆุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ
32
+
33
+ 9
34
+ 00:00:54,870 --> 00:00:56,370
35
+ linear independence
36
+
37
+ 10
38
+ 00:01:02,960 --> 00:01:08,080
39
+ ู‡ู†ุนุทูŠ ุชุนุฑูŠู ู„ูƒู„ ู…ู† ุงู„ุงุนุชู…ุงุฏ ุงู„ุฎุทูŠ ูˆุงู„ุงุณุชู‚ู„ุงู„ ุงู„ุฎุทูŠ
40
+
41
+ 11
42
+ 00:01:08,080 --> 00:01:14,360
43
+ ุซู… ุจุนุฏ ุฐู„ูƒ ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุนู„ู‰ ุฐู„ูƒ ุงู„ุชุนุฑูŠู ุงู„ุฃูˆู„ ุจู‚ูˆู„
44
+
45
+ 12
46
+ 00:01:14,360 --> 00:01:21,220
47
+ let VBA vector space ูŠุจู‚ู‰ ุงุญู†ุง ููŠ ุนูŠู†ู†ุง ูˆุถุงุฆุน
48
+
49
+ 13
50
+ 00:01:21,220 --> 00:01:26,040
51
+ ุงุชุฌุงู‡ VThe finite vectorsุŒ ุงู„ุนุฏุฏ ุงู„ู…ุญุฏูˆุฏ ู…ู†
52
+
53
+ 14
54
+ 00:01:26,040 --> 00:01:32,020
55
+ ุงู„ู…ุชุฌู‡ุงุช V1 ูˆV2 ูˆู„ุบุงูŠุฉ VM ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ VR6 ุจูŠูƒูˆู†
56
+
57
+ 15
58
+ 00:01:32,020 --> 00:01:37,160
59
+ linearly dependentุŒ ุจูŠู‚ูˆู„ ู…ุนุชู…ุฏุงุช ุนู„ู‰ ุจุนุถู‡ู… ุงุนุชู…ุฏุง
60
+
61
+ 16
62
+ 00:01:37,160 --> 00:01:44,890
63
+ ู‚ุทูŠุงุฅุฐุง ุฌุฏุฑุช ู„ุงุฌูŠ ุซูˆุงุจ C1 ูˆC2 ูˆCM ุฃูˆ ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉ
64
+
65
+ 17
66
+ 00:01:44,890 --> 00:01:48,650
67
+ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ set of real numbers not all zeros
68
+
69
+ 18
70
+ 00:01:48,650 --> 00:01:55,110
71
+ such that ุจุญูŠุซ ุงู† C1 V1 ุฒูŠ C2 V2 ุฒูŠ ุฒูŠ CM VM ุจุฏูŠูˆุง
72
+
73
+ 19
74
+ 00:01:55,110 --> 00:02:00,630
75
+ ูŠุณุงูˆูŠ ู…ู‡ู… ุจุฏูŠูˆุง ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุฃู†ุง ุฌูŠุช ุนู„ู‰ ุงู„
76
+
77
+ 20
78
+ 00:02:00,630 --> 00:02:05,790
79
+ vector space ุฃุฎุฏุช ู…ู†ู‡ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vectorsู‡ุฐู‡ ุงู„ู€
80
+
81
+ 21
82
+ 00:02:05,790 --> 00:02:11,490
83
+ vectors ุจู‚ูˆู„ ุนู†ู‡ุง ู…ุนุชู…ุฏุฉ ุนู„ู‰ ุจุนุถ ุงุนุชู…ุงุฏุง ู‚ุทูŠุฉ ุฅุฐุง
84
+
85
+ 22
86
+ 00:02:11,490 --> 00:02:17,030
87
+ ุฌุฏุฑุช ุฃู„ุงู‚ูŠ ุซูˆุงุจุช ู…ุด ูƒู„ู‡ุง zero ุนู„ู‰ ุงู„ุฃู‚ู„ ุจุฏูŠ ูˆ ู„ูˆ
88
+
89
+ 23
90
+ 00:02:17,030 --> 00:02:22,990
91
+ ู…ู‚ุฏุงุฑ ุซุงุจุช ูˆุงุญุฏ ูŠูƒูˆู† ู„ุง ูŠุณุงูˆูŠ zero ุจุญูŠุซ C1V1 ุฒูŠ
92
+
93
+ 24
94
+ 00:02:22,990 --> 00:02:29,430
95
+ C2V2 ุฒูŠ CMVM ูƒู„ู‡ ุจุฏูŠ ุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏูŠ ุณุงูˆูŠ zeroุทุจุนุง
96
+
97
+ 25
98
+ 00:02:29,430 --> 00:02:32,670
99
+ ู‡ุฑุฌุน ู„ู‡ุฐุง ุงู„ุชุนุฑูŠู ู…ุฑุฉ ุซุงู†ูŠุฉ ุจุณ ุฎู„ูŠู†ุง ู†ุงุฎุฏ ุงู„ุชุนุฑูŠู
100
+
101
+ 26
102
+ 00:02:32,670 --> 00:02:37,530
103
+ ุงู„ุชุงู†ูŠ ุญุชู‰ ู†ู„ุงุญุธ ุงู„ูุฑู‚ ู…ุง ุจูŠู† ุงู„ุงุชู†ูŠู† ุงู„ุชุนุฑูŠู
104
+
105
+ 27
106
+ 00:02:37,530 --> 00:02:41,290
107
+ ุงู„ุซุงู†ูŠ ุจูŠู‚ูˆู„ the finite vectors ู…ู† V1 ู„ุบุงูŠุฉ VM
108
+
109
+ 28
110
+ 00:02:41,290 --> 00:02:45,530
111
+ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ vector space V ุจู‚ูˆู„ ุนู†ู‡ู…
112
+
113
+ 29
114
+ 00:02:45,530 --> 00:02:51,190
115
+ linearly independent ูŠุจู‚ู‰ ู…ุณุชู‚ู„ุฉ ุนู† ุจุนุถู‡ู… ุงุณุชู‚ู„ุงู„ุง
116
+
117
+ 30
118
+ 00:02:51,190 --> 00:02:58,300
119
+ ุฎุงุทูŠุงุฅุฐุง ูƒุงู† ุนู†ุฏูŠ C1 V1 ุฒูŠ C2 V2 ุฒูŠ Cm Vm ุจุฏู‡
120
+
121
+ 31
122
+ 00:02:58,300 --> 00:03:03,280
123
+ ูŠุณุงูˆูŠ Zero We must have ู„ุงุฒู… ุฃู„ุงู‚ูŠ ุงู†ู‡ C1 ูŠุณุงูˆูŠ C2
124
+
125
+ 32
126
+ 00:03:03,280 --> 00:03:08,920
127
+ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ Cm ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุฎู„ูŠู†ูŠ ุฃุชุณุฃู„ ุงู„ุชุณุงุคู„
128
+
129
+ 33
130
+ 00:03:08,920 --> 00:03:16,360
131
+ ุงู„ุชุงู„ูŠ ู‡ู„ ู‡ู†ุงูƒ ูุฑู‚ ุจูŠู† ุงู„ุชุนุฑูŠููŠู† ุงู„ู…ูƒุชูˆุจ ู‚ุฏุงู…ูŠ
132
+
133
+ 34
134
+ 00:03:16,360 --> 00:03:19,800
135
+ ุนู„ูˆุฉ ููŠ ูุฑู‚ ุจูŠู† ุงู„ุงุชู†ูŠู† ูˆุงู„ู„ุญุธุฉ ู…ู† ูƒุฑุฑ ุชูƒุฑุงุฑ
136
+
137
+ 35
138
+ 00:03:23,050 --> 00:03:29,250
139
+ ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ู„ุงุนุชู…ุงุฏ ุงู„ุฎุท ุฅู„ู‰ ุงู„ู…ุชุฌุงุช ุจู‚ูˆู„
140
+
141
+ 36
142
+ 00:03:29,250 --> 00:03:35,660
143
+ ูŠุนุชู…ุฏูˆุง ุนู„ู‰ ุจุนุถ ุฎุทูŠุง ู„ูˆ ู‚ุฏุฑุช ุฃู„ุงู‚ูŠ ุซูˆุงุจุชู…ู…ูƒู† ูŠูƒูˆู†
144
+
145
+ 37
146
+ 00:03:35,660 --> 00:03:40,280
147
+ ุจุนุถู‡ู… ุฃุณูุงุฑ ูˆู…ู…ูƒู† ูŠูƒูˆู† ุจุนุถ ู…ุด ุฃุณูุงุฑ ูˆู…ู…ูƒู† ูŠูƒูˆู† ููŠุด
148
+
149
+ 38
150
+ 00:03:40,280 --> 00:03:44,440
151
+ ููŠู‡ู… ูˆู„ุง zero ุจุญูŠุซ ุฃุถุฑุจ constant ููŠ ุงู„ุฃูˆู„ ุฒุงุฏ
152
+
153
+ 39
154
+ 00:03:44,440 --> 00:03:46,460
155
+ constant ููŠ ุงู„ุชุงู†ูŠุฉ ุฒุงุฏ constant ููŠ ุงู„ุชุงู†ูŠุฉ ูŠุทู„ุน
156
+
157
+ 40
158
+ 00:03:46,460 --> 00:03:51,160
159
+ ุงู„ู†ุชุฌ ูŠุณุงูˆูŠ ุตูุฑ ุฅู† ุญุฏุซ ุฐู„ูƒ ุจู‚ูˆู„ ู‡ุฐู‡ ุงู„ vectors ู…ู†
160
+
161
+ 41
162
+ 00:03:51,160 --> 00:03:56,520
163
+ v1 ู„ุบุงูŠุฉ vm are linearly dependent ูŠุนู†ูŠ ู…ุนุชู…ุฏุงุช
164
+
165
+ 42
166
+ 00:03:56,520 --> 00:04:01,220
167
+ ุนู„ู‰ ุจุนุถ ุฎุทูŠุฆุฉู‡ุฐู‡ ุชุนุฑูŠู ุงู„ุฃูˆู„ ุงู„ุชุนุฑูŠู ุงู„ุชุงู†ูŠ ู„ูˆ ุฌุฆุช
168
+
169
+ 43
170
+ 00:04:01,220 --> 00:04:05,900
171
+ ุนู„ู‰ ุงู„ vectors ูˆ ุฌุจุช ุซูˆุงุจุช ูˆ ุถุฑุจุชู‡ู… ููŠู‡ู… ูˆ ุฌู…ุนุช
172
+
173
+ 44
174
+ 00:04:05,900 --> 00:04:11,560
175
+ ู„ุฌูŠุช ุงู„ู†ุชุฌ ูŠุณุงูˆูŠ zero ุงู† ู‚ุฏุฑุช ุฃุซุจุช ุงู† c1 ูŠุณุงูˆูŠ c2
176
+
177
+ 45
178
+ 00:04:11,560 --> 00:04:16,060
179
+ ูŠุณุงูˆูŠ cm ูŠุณุงูˆูŠ zero ุฅุฐุง ุจูŠูƒูˆู† ู‡ุฐูˆู„ ู…ุณุชู‚ู„ุงุช ุนู† ุจุนุถ
180
+
181
+ 46
182
+ 00:04:16,060 --> 00:04:21,200
183
+ ุฎุทูŠุฆุฉ linearly independent ู„ูƒู† ุฅุฐุง ู„ุฌูŠุช ูˆู„ุง ูˆุงุญุฏ
184
+
185
+ 47
186
+ 00:04:21,200 --> 00:04:27,020
187
+ ููŠู‡ู… ูŠุณุงูˆูŠ zero ุฅุฐุง ู‡ุฐูˆู„ ู…ุนุชู…ุฏุงุช ูˆ ู„ูŠุณุช ู…ุณุชู‚ู„ุงุช ุนู†
188
+
189
+ 48
190
+ 00:04:27,020 --> 00:04:31,400
191
+ ุจุนุถู‡ู…ูˆุงุถุญ ูƒู„ุงู…ูŠุŸ ูŠุจู‚ู‰ ุงู†ุง ู„ูˆ ุงุนุทุงู†ูŠ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„
192
+
193
+ 49
194
+ 00:04:31,400 --> 00:04:34,440
195
+ vectors ูˆู‚ุงู„ ู„ูŠ ุดูˆู ู„ูŠ ู‡ุฏูˆู„ are linearly dependent
196
+
197
+ 50
198
+ 00:04:34,440 --> 00:04:38,840
199
+ ูˆู„ุง linearly independent ุจุฏูŠ ุงุถุฑุจ ูƒู„ ุตู†ุฏูˆู‚ ููŠ
200
+
201
+ 51
202
+ 00:04:38,840 --> 00:04:41,600
203
+ ุงู„ุฃูˆู„ ูˆูƒู„ ุตู†ุฏูˆู‚ ููŠ ุงู„ุชุงู†ูŠ ูˆ .. ูˆ .. ูˆ .. ูƒู„ ุตู†ุฏูˆู‚
204
+
205
+ 52
206
+ 00:04:41,600 --> 00:04:47,600
207
+ ููŠ ุงู„ุฃุฎูŠุฑ ูˆ ุฃุฌู…ุน ูˆ ุฃุฑูˆุญ ุฃุฌูŠุจ ู‚ูŠู… ู‡ุฐู‡ ุงู„ุซูˆุงุจุชุงู†ุทู„ุน
208
+
209
+ 53
210
+ 00:04:47,600 --> 00:04:53,760
211
+ ู‚ูŠู… ู‡ุฐู‡ ุซูˆุงุจุช ู„ูŠุณุช ุงุณูุงุฑุง ูŠุนู†ูŠ ู…ุด ูƒู„ู‡ุง ุงุณูุงุฑุง ูŠุจู‚ู‰
212
+
213
+ 54
214
+ 00:04:53,760 --> 00:04:56,500
215
+ ุจูŠุตูŠุฑูˆุง ุงู„ vectors ู‡ุฐู‡ linearly independent
216
+
217
+ 55
218
+ 00:04:56,500 --> 00:05:00,720
219
+ ูˆุงู†ุทู„ุนูˆุง ุงู„ุซูˆุงุจุช ูƒู„ู‡ู… ุงุณูุงุฑุง ูŠุจู‚ู‰ ุจูŠู‚ูˆู„ linearly
220
+
221
+ 56
222
+ 00:05:00,720 --> 00:05:05,750
223
+ independent ุทูŠุจ ุชุนุงู„ู‰ ู†ุดูˆูDetermine whether the
224
+
225
+ 57
226
+ 00:05:05,750 --> 00:05:08,810
227
+ following vectors are linearly-dependent or
228
+
229
+ 58
230
+ 00:05:08,810 --> 00:05:13,390
231
+ linearly-independent Ld ุงุฎุชุตุงุฑ ู„ู€ linearly
232
+
233
+ 59
234
+ 00:05:13,390 --> 00:05:18,390
235
+ -dependent ูˆLi ุงุฎุชุตุงุฑ ู„ู€ linearly-independent
236
+
237
+ 60
238
+ 00:05:18,390 --> 00:05:22,710
239
+ ูˆู…ุนุทูŠู†ูŠ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vectors ุงู„ุฃูˆู„ู‰ ู…ูˆุฌูˆุฏุฉ ููŠ R3
240
+
241
+ 61
242
+ 00:05:22,710 --> 00:05:28,150
243
+ ูˆู…ุฌู…ูˆุนุฉ ุซุงู†ูŠุฉ ู…ูˆุฌูˆุฏุฉ ููŠ R4 ูŠุจู‚ู‰ ู‡ุฐูˆู„ ูƒุงู†ูˆุง ู…ุณุคุงู„ูŠู†
244
+
245
+ 62
246
+ 00:05:28,150 --> 00:05:34,420
247
+ ู…ุณุชู‚ู„ูŠู† ุนู† ุจุนุถ ุฎุงุทุฆูŠู†ู‡ู„ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฃูˆู„ู‰ ู…ุณุชู‚ู„ุฉ ุนู†
248
+
249
+ 63
250
+ 00:05:34,420 --> 00:05:40,060
251
+ ุจุนุถ ุฎุทูŠุงุŸ ูˆ ุงู„ู„ู‡ ู…ุนุชู…ุฏุฉ ุนู„ู‰ ุจุนุถ ุฎุทูŠุง ูุจู‚ู‰ ุงู‚ูˆู„ ู„ู‡
252
+
253
+ 64
254
+ 00:05:40,060 --> 00:05:44,720
255
+ assume that
256
+
257
+ 65
258
+ 00:05:44,720 --> 00:05:56,110
259
+ there exist c1 ูˆ c2 ูˆ c3 in R such thatุจุญูŠุซ ุงู† ุงู„ู€
260
+
261
+ 66
262
+ 00:05:56,110 --> 00:06:04,930
263
+ C1 V1 ุฒุงุฆุฏ C2 V2 ุฒุงุฆุฏ C3 V3 ุจุฏู‡ ูŠุณุงูˆูŠ 0 ูˆุงู„ุงู† ุจุนุฏ
264
+
265
+ 67
266
+ 00:06:04,930 --> 00:06:11,830
267
+ ู‡ูŠูƒ ุจุชุฑูˆุญ ุงุจุญุซ ู‚ูŠู… C1 ูˆC2 ูˆC3 ุงู„ู„ูŠ ูˆ ุงู„ู„ู‡ ูŠุทู„ุน
268
+
269
+ 68
270
+ 00:06:11,830 --> 00:06:17,400
271
+ ูƒู„ู‡ู… ุฃุณูุงุฑ ุจู‚ูˆู„ ู‡ุฏูˆู„ linearly independentุจุทู„ุน ุจู‚ูŠู…
272
+
273
+ 69
274
+ 00:06:17,400 --> 00:06:20,820
275
+ ุนุฏุฏูŠุฉ ุจู‚ูˆู„ linearly dependent ูˆุจุงู„ุชุงู„ูŠ ุจูƒูˆู†
276
+
277
+ 70
278
+ 00:06:20,820 --> 00:06:25,660
279
+ ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ุณุคุงู„ ูŠุจู‚ู‰ ุงู†ุง ุจุฏูŠ ุงุถุฑุจ C ููŠ V ูˆุงุญุฏ
280
+
281
+ 71
282
+ 00:06:25,660 --> 00:06:30,300
283
+ ูŠุจู‚ู‰ C ูˆุงุญุฏ V ูˆุงุญุฏ ุฒุงุฆุฏ C ุงุชู†ูŠู† V ุงุชู†ูŠู† ุฒุงุฆุฏ C
284
+
285
+ 72
286
+ 00:06:30,300 --> 00:06:35,020
287
+ ุชู„ุงุชุฉ V ุชู„ุงุชุฉ ูŠุณุงูˆูŠ ุจุฏูŠ ุงุถุฑุจ C ูˆุงุญุฏ ููŠ ุงู„ุฌูˆุณ ุงู„ุฃูˆู„
288
+
289
+ 73
290
+ 00:06:35,020 --> 00:06:42,020
291
+ ูŠุจู‚ุงุด ุจุตูŠุฑ ุงู†ุง ุจู†ู‚ุทุน ุงุชู†ูŠู† C ูˆุงุญุฏ ูˆ C ูˆุงุญุฏ ูˆ ุณุงู„ุจ
292
+
293
+ 74
294
+ 00:06:42,020 --> 00:06:52,460
295
+ C ูˆุงุญุฏ ุฒุงุฆุฏุงู„ุชุงู†ูŠ ุจุฏูŠ ุฃุถุฑุจ ููŠู‡ C2 ูŠุจู‚ู‰ 2C2 ูˆ-3C2 ูˆ
296
+
297
+ 75
298
+ 00:06:52,460 --> 00:07:02,180
299
+ -2C2 ุฒุงุฆุฏ ุงู„ู‚ูˆุณ ุงู„ุชุงู„ุช ุงู„ู„ูŠ ู‡ูˆ 2C3
300
+
301
+ 76
302
+ 00:07:02,180 --> 00:07:05,260
303
+ ูˆ3C3
304
+
305
+ 77
306
+ 00:07:06,040 --> 00:07:12,020
307
+ ุชู„ุงุชุฉ C ุชู„ุงุชุฉ ูˆุณุจุนุฉ C ุชู„ุงุชุฉ ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุฌุจ ุฃู†
308
+
309
+ 78
310
+ 00:07:12,020 --> 00:07:17,440
311
+ ูŠุณุงูˆูŠ ูƒู…ุŸ ูŠุฌุจ ุฃู† ูŠุณุงูˆูŠ Zero ู‡ุคู„ุงุก ุงู„ู…ุฌู…ูˆุน ุชู„ุงุช
312
+
313
+ 79
314
+ 00:07:17,440 --> 00:07:22,360
315
+ ุนู†ุงุตุฑ ูŠุฌุจ ุฃู† ุฃุฌู…ุนู‡ู… ูˆ ุฃุฌุนู„ู‡ู… ุนู†ุตุฑุง ูˆุงุญุฏุง ูŠุจู‚ู‰ ู„ูˆ
316
+
317
+ 80
318
+ 00:07:22,360 --> 00:07:27,600
319
+ ุฃุฌุนู„ู‡ู… ุนู†ุตุฑุง ูˆุงุญุฏุง ูŠุตูŠุฑ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุงุชู†ูŠู† C
320
+
321
+ 81
322
+ 00:07:27,600 --> 00:07:32,700
323
+ ูˆุงุญุฏ ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ู…ุฑูƒุจุฉ
324
+
325
+ 82
326
+ 00:07:32,700 --> 00:07:40,570
327
+ ุงู„ุฃูˆู„ู‰ ู‡ู†ุงูƒุจุนุฏ ุฐู„ูƒ ุงู„ู…ุฑูƒุจุฉ ุงู„ุชุงู†ูŠุฉ C1-3C2
328
+
329
+ 83
330
+ 00:07:40,570 --> 00:07:52,490
331
+ ูˆุฒุงุฆุฏ 3C3 ุงู„ู…ุฑูƒุจุฉ ุงู„ุชุงู„ุชุฉ ู†ุงู‚ุต C1 ูˆ ู†ุงู‚ุต C1 ู†ุงู‚ุต
332
+
333
+ 84
334
+ 00:07:52,490 --> 00:08:02,780
335
+ 2C2 ุฒุงุฆุฏ 7C3 ุฌูู„ู†ุง ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ 000ุงู„ุงู† ู†ุนู…ู„
336
+
337
+ 85
338
+ 00:08:02,780 --> 00:08:07,120
339
+ ู…ู‚ุงุฑู†ุฉ ู…ุง ุจูŠู† ุงู„ุทุฑููŠู† ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจุตูŠุฑ ุงุชู†ูŠู† C
340
+
341
+ 86
342
+ 00:08:07,120 --> 00:08:11,400
343
+ ูˆุงุญุฏ ุงุชู†ูŠู† C ุงุชู†ูŠู† ุงุชู†ูŠู† C ุชู„ุงุชุฉ ูŠุณุงูˆูŠ Zero
344
+
345
+ 87
346
+ 00:08:11,400 --> 00:08:16,860
347
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู†ูŠุฉ C ูˆุงุญุฏ ู†ู‚ุต ุชู„ุงุชุฉ
348
+
349
+ 88
350
+ 00:08:16,860 --> 00:08:21,880
351
+ C ุงุชู†ูŠู† ุฒุงุฆุฏ ุชู„ุงุชุฉ C ุชู„ุงุชุฉ ูŠุณุงูˆูŠ Zero ุงู„ู…ุนุงุฏู„ุฉ
352
+
353
+ 89
354
+ 00:08:21,880 --> 00:08:28,860
355
+ ุงู„ุชุงู„ุชุฉ ุณุงู„ุจ C ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† C ุงุชู†ูŠู† ุฒุงุฆุฏ ุณุจุนุฉ C
356
+
357
+ 90
358
+ 00:08:28,860 --> 00:08:35,700
359
+ ุชู„ุงุชุฉ ูƒู„ู‡ ูŠุณุงูˆูŠ 100ูŠุณุงูˆูŠ 0 ู‡ุฐุง ุงู„ system ู…ุด ุจู†ุณู…ูŠู‡
360
+
361
+ 91
362
+ 00:08:35,700 --> 00:08:40,860
363
+ homogeneous system ูŠู…ูƒู† ุงู†ุชู‚ู„ ุชู„ุงู† ู…ู† vectors ุฅู„ู‰
364
+
365
+ 92
366
+ 00:08:40,860 --> 00:08:44,360
367
+ homogeneous system ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฏูˆุฑ ุนู„ู‰ ุญู„ ุงู„
368
+
369
+ 93
370
+ 00:08:44,360 --> 00:08:47,860
371
+ homogeneous system ู‡ุฐุง ุจุฃูŠ ุทุฑูŠู‚ุฉ ู…ู† ุงู„ุทุฑู‚ ุงู„ุชูŠ
372
+
373
+ 94
374
+ 00:08:47,860 --> 00:08:52,700
375
+ ุณุจู‚ุช ุฏุฑุงุณุชู‡ุง ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ุฐุง ุงู„ system ุจู‚ุฏุฑ ุฃูƒุชุจู‡
376
+
377
+ 95
378
+ 00:08:52,700 --> 00:08:57,500
379
+ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ููŠ ู…ุดูƒู„ุฉ ู„ูˆ ุฌุณู…ุช ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰
380
+
381
+ 96
382
+ 00:08:57,500 --> 00:09:05,520
383
+ ุนู„ู‰ ุงุชู†ูŠู†ุงู„ุฃูˆู„ู‰ ุฌุณู…ุช ูƒู„ู‡ุง ููŠ ุญุงุฌุฉ ู…ุงููŠุด ู…ุดูƒู„ุฉ ุฅุฐุง
384
+
385
+ 97
386
+ 00:09:05,520 --> 00:09:10,600
387
+ ุจู‚ุฏุฑ ุฃูƒุชุจ ุงู„ system ู‡ุฐุง ู…ุฑุฉ ุฃุฎุฑู‰ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
388
+
389
+ 98
390
+ 00:09:10,600 --> 00:09:20,660
391
+ C1 ุฒุงุฆุฏ C2 ุฒุงุฆุฏ C3 ูŠุณุงูˆูŠ Zero C1 ู†ู‚ุต 3 C2 ุฒุงุฆุฏ 3
392
+
393
+ 99
394
+ 00:09:20,660 --> 00:09:30,000
395
+ C3 ูŠุณุงูˆูŠ Zero ู†ู‚ุต C1 ู†ู‚ุต 2 C2 ุฒุงุฆุฏ 7 C3 ูŠุณุงูˆูŠ Zero
396
+
397
+ 100
398
+ 00:09:31,520 --> 00:09:36,280
399
+ ุฃุฑูŠุฏ ุฃู† ุฃุญู„ ู‡ุฐุง ุงู„ู€ system ุจุงู„ู€ row echelon form
400
+
401
+ 101
402
+ 00:09:36,280 --> 00:09:40,620
403
+ ู…ุซู„ุงู‹ ุชู…ุงู…ุŸ ุฅุฐุง ุฃุฐู‡ุจ ูˆุฃุญุตู„ ุนู„ู‰ ุงู„ู€ augmented
404
+
405
+ 102
406
+ 00:09:40,620 --> 00:09:45,840
407
+ matrix ุฅุฐุง ุฌุฆุช ุฅู„ู‰ ุงู„ู€ augmented matrix ูˆุงุญุฏ ูˆุงุญุฏ
408
+
409
+ 103
410
+ 00:09:45,840 --> 00:09:53,040
411
+ ูˆุงุญุฏ ูˆู‡ู†ุง Zero ุงู„ู„ูŠ ุจุนุฏู‡ ูˆุงุญุฏ ู†ุงู‚ุต ุชู„ุงุชุฉ ุชู„ุงุชุฉ
412
+
413
+ 104
414
+ 00:09:53,040 --> 00:10:00,260
415
+ Zero ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† ุณุจุนุฉ Zero ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
416
+
417
+ 105
418
+ 00:10:00,260 --> 00:10:07,850
419
+ ุนู†ุฏู†ุง ู‡ู†ุงุฅุฐุง ุฃู†ุง ู…ู…ูƒู† ุฃุนู…ู„ ู…ุง ูŠุฃุชูŠ ู†ุงู‚ุต R1 to R2
420
+
421
+ 106
422
+ 00:10:07,850 --> 00:10:10,950
423
+ ูˆR1
424
+
425
+ 107
426
+ 00:10:10,950 --> 00:10:19,670
427
+ to R3 ู†ุญุตู„ ุนู„ู‰ ู…ุง ูŠุฃุชูŠ ู‡ุงูŠ ูˆุงุญุฏ ูˆุงุญุฏ ูˆุงุญุฏ Zero ุตู
428
+
429
+ 108
430
+ 00:10:19,670 --> 00:10:27,410
431
+ ุงู„ู„ูŠ ุจุนุฏู‡ Zero ุณุงู„ุจ ุฃุฑุจุนุฉ ู‡ู†ุง ุถุฑุจู†ุง ููŠ ุณุงู„ุจ ูˆุงุญุฏ
432
+
433
+ 109
434
+ 00:10:27,410 --> 00:10:35,060
435
+ ุจุถุงู„ ุฌุฏูˆุด ุงุชู†ูŠู†ู‡ู†ุง Zero ูƒู…ุง ู‡ูˆ ุฅุถุงูุฉ ูŠุจู‚ู‰ Zero
436
+
437
+ 110
438
+ 00:10:35,060 --> 00:10:41,560
439
+ ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง ุชู…ุงู†ูŠุฉ ูˆู‡ู†ุง Zero ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
440
+
441
+ 111
442
+ 00:10:41,560 --> 00:10:45,460
443
+ ุนู†ุฏู†ุง ุฏู‡ ุงู„ุขู†
444
+
445
+ 112
446
+ 00:10:45,460 --> 00:10:51,560
447
+ ู…ุถุงุฌูŠ ุงู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ู‡ู†ุง ุชู„ุงุชุฉ ูˆู‡ู†ุง
448
+
449
+ 113
450
+ 00:10:51,560 --> 00:11:02,140
451
+ ู…ุธุจูˆุท ุตุญูŠุญ ูŠุจู‚ู‰ ุฃู†ุง ู‡ู†ุง ู…ู…ูƒู† ุงุฑุชู„ุช ุงู„ุฃุฑูˆุงุญุทูŠุจ ุชูŠุฌูŠ
452
+
453
+ 114
454
+ 00:11:02,140 --> 00:11:10,700
455
+ ุจุชู†ูุน ุชู†ูุน ู„ูŠุด ู„ุงุŸ ูˆู„ุง ู‡ู… ู‡ุงูŠ R ุชู„ุงุชุฉ ู„ R ูˆุงุญุฏ ุทุจ
456
+
457
+ 115
458
+ 00:11:10,700 --> 00:11:16,940
459
+ ุงู†ุง ู…ู…ูƒู† ุงุฎุฏ ู†ุต ู‡ุฐู‡ ุงูˆ ุงุฎุฏ ู†ุงู‚ุต ู†ุต ููŠ ุงู„ุฃูˆู„ ูŠุนู†ูŠ
460
+
461
+ 116
462
+ 00:11:16,940 --> 00:11:23,180
463
+ ู…ู…ูƒู† ุงู‚ูˆู„ ุจุฏูŠ ุงุฎุฏ ู†ุงู‚ุต ู†ุต ุนุงุฑูŠุฉ ุงุชู†ูŠู† ุงู„ุดูƒู„ ุงู„ู„ูŠ
464
+
465
+ 117
466
+ 00:11:23,180 --> 00:11:29,850
467
+ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ุญุตูŠุฑ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูุฑุงุจุน ู†ุงู‚ุต ุฑุงุจุน
468
+
469
+ 118
470
+ 00:11:29,850 --> 00:11:33,990
471
+ ุงู‚ุงุฑูŠ ุงุชู†ูŠู† ูŠุจู‚ู‰ ู„ูˆ ุงุฎุฏุช ู†ุงู‚ุต ุฑุงุจุน ุงู‚ุงุฑูŠ ุงุชู†ูŠู†
472
+
473
+ 119
474
+ 00:11:33,990 --> 00:11:41,330
475
+ ุจุตูŠุฑ ูˆุงุญุฏ ูˆุงุญุฏ ุฒูŠุฑูˆ ูˆู‡ู†ุง ุฒูŠุฑูˆ ูˆู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ู†ุงู‚ุต
476
+
477
+ 120
478
+ 00:11:41,330 --> 00:11:48,370
479
+ ู†ุต ูˆู‡ู†ุง ุฒูŠุฑูˆ ูˆู‡ู†ุง ุฒูŠุฑูˆ ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ุชู…ุงู†ูŠุฉ ูˆู‡ูŠ
480
+
481
+ 121
482
+ 00:11:48,370 --> 00:11:54,630
483
+ ุฒูŠุฑูˆ ุงู„ุขู† ุจุนู…ู„ ู…ุง ูŠุฃุชูŠุจู‚ูˆู„ ู‡ุฐุง ุงู„ุณู‡ู… ุงู„ู„ูŠ ุนู†ุฏู†ุง
484
+
485
+ 122
486
+ 00:11:54,630 --> 00:12:05,550
487
+ ุฅุฐุง ุจุฏูŠ ุฃุฎุฏ ู†ุงู‚ุต R2 to R1 ูˆ ุจุฏูŠ ุฃุฎุฏ R2 to R3 ู…ุฑุฉ
488
+
489
+ 123
490
+ 00:12:05,550 --> 00:12:13,170
491
+ ูˆุงุญุฏุฉ ู„ู€ R3 ูŠุจู‚ู‰ ุจุฏูŠ ุฃุญุตู„ ู…ุง ูŠุงุชูŠ ู‡ุฐุง ูˆุงุญุฏ ูˆ ู‡ู†ุง
492
+
493
+ 124
494
+ 00:12:13,170 --> 00:12:20,590
495
+ zeroูˆู‡ู†ุง ุจูŠุตูŠุฑ ุฐุงุช ุจูŠุตูŠุฑ ู‡ุฐุง ุชู„ุงุชุฉ ุนู„ู‰ ุงุชู†ูŠู† ูˆู‡ู†ุง
496
+
497
+ 125
498
+ 00:12:20,590 --> 00:12:28,890
499
+ Zero ูˆู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ู†ุงู‚ุต ู†ุต ูˆู‡ู†ุง Zero ูˆู‡ู†ุง Zero
500
+
501
+ 126
502
+ 00:12:28,890 --> 00:12:34,070
503
+ ูˆู‡ู†ุง ุณุจุนุฉ ุนู„ู‰ ุงุชู†ูŠู† ูŠุนู†ูŠ ุฎู…ุณุชุงุดุฑ ุนู„ู‰ ุงุชู†ูŠู† ุณุจุนุฉ ูˆ
504
+
505
+ 127
506
+ 00:12:34,070 --> 00:12:40,970
507
+ ู†ุต ูŠุนู†ูŠ ุฎู…ุณุชุงุดุฑ ุนู„ู‰ ุงุชู†ูŠู† ูˆู‡ู†ุง Zero Zero Zero
508
+
509
+ 128
510
+ 00:12:40,970 --> 00:12:49,830
511
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงุจู†ุงุก ุนู„ูŠู‡ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ู…ู†
512
+
513
+ 129
514
+ 00:12:49,830 --> 00:12:58,580
515
+ ู‡ุฐู‡ุฎู„ุงุต ูŠุนู†ูŠ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุฎู…ุณ ุทุนุดุฉ ุนู„ู‰
516
+
517
+ 130
518
+ 00:12:58,580 --> 00:13:04,060
519
+ ุงุชู†ูŠู† C ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ C ุชู„ุงุชุฉ ุจุฏู‡
520
+
521
+ 131
522
+ 00:13:04,060 --> 00:13:11,440
523
+ ูŠุณุงูˆูŠ Zero ุงู„ุงู† C ุชู†ูŠู† ู†ุงู‚ุต ู†ุต C ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ
524
+
525
+ 132
526
+ 00:13:11,440 --> 00:13:16,960
527
+ ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ Zero C ุชู„ุงุชุฉ ุจ Zero ู‡ุฐุง ู…ุนู†ุงุชู‡ ุงู†ู‡
528
+
529
+ 133
530
+ 00:13:16,960 --> 00:13:23,300
531
+ C ุชู†ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุงู„ุงู† C ูˆุงุญุฏุฒุงุฆุฏ ุชู„ุงุชุฉ ุนู„ู‰
532
+
533
+ 134
534
+ 00:13:23,300 --> 00:13:28,500
535
+ ุงุชู†ูŠู† C ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ู‡ุฐุง ุจุฏูŠ ุงุฎุจุฑูƒ ุงู† C
536
+
537
+ 135
538
+ 00:13:28,500 --> 00:13:36,240
539
+ ูˆุงุญุฏ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูŠุจุฏูˆ
540
+
541
+ 136
542
+ 00:13:36,240 --> 00:13:41,740
543
+ ููŠ ุฎุทุฃ ุนู†ุฏู†ุง ูŠุง ุจู†ุงุช ุงุณุชู†ู‰ ุดูˆูŠุฉ ู‡ู†ุง ู‡ุฐุง ูˆุงุญุฏ ุณุงู„ุจ
544
+
545
+ 137
546
+ 00:13:41,740 --> 00:13:48,520
547
+ ู‡ู†ุง ูˆุงุญุฏ ู…ู† ูˆูŠู† ุฌุชู†ูŠ ุงู„ู†ู‚ุต ู‡ุฐู‡ุŸ ู‡ุฐู‡
548
+
549
+ 138
550
+ 00:13:50,060 --> 00:14:02,380
551
+ ู‡ุฐู‡ ู†ุงู‚ุต C1 ู‡ุฐู‡ ู†ุงู‚ุต C1 ู‡ุฐู‡ ู†ุงู‚ุต C1 ู‡ุฐู‡ ู†ุงู‚ุต C1
552
+
553
+ 139
554
+ 00:14:02,380 --> 00:14:11,800
555
+ ู‡ุฐู‡ ู†ุงู‚ุต C1 ู‡ุฐู‡ ู†ุงู‚ุต
556
+
557
+ 140
558
+ 00:14:11,800 --> 00:14:17,880
559
+ C1 ู‡ุฐู‡ ู†ุงู‚ุต C1 ู‡ุฐู‡ ู†ุงู‚ุต C1ูˆุงู„ู„ู‡ ูŠุตู„ุญูˆู‡ ูŠุง ุจู†ุงุช
560
+
561
+ 141
562
+ 00:14:17,880 --> 00:14:25,180
563
+ ุงุชู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ ูˆุงุญุฏ ูˆุงู„ู„ูŠ ุจุนุฏู‡ ุงุชู†ูŠู† ู‡ูˆ ู†ุงู‚ุต
564
+
565
+ 142
566
+ 00:14:25,180 --> 00:14:31,500
567
+ ุชู„ุงุชุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ุงุชู†ูŠู† ุชู„ุงุชุฉ ุณุจุนุฉ ุจู†ุงุก ุนู„ูŠู‡ ูŠุตูŠุฑ
568
+
569
+ 143
570
+ 00:14:31,500 --> 00:14:41,920
571
+ ู‡ุฐูŠ ุจู…ุง ูŠุฃุชูŠ ุงุชู†ูŠู† ูˆู‡ุฐู‡ ู†ุงู‚ุต C ูˆุงุญุฏูŠุจู‚ู‰ ู†ุงู‚ุต C1
572
+
573
+ 144
574
+ 00:14:41,920 --> 00:14:48,000
575
+ ูˆุฒุงุฆุฏ C1 ูˆุงู„ุจุงู‚ูŠ ูƒู„ู‡ ุณู„ูŠู… ู„ู…ุง ุฌูŠู†ุง ุฌู…ุนู†ุง ุตุงุฑ ุงุชู†ูŠู†
576
+
577
+ 145
578
+ 00:14:48,000 --> 00:14:58,360
579
+ C1 ูŠุจู‚ู‰ ุตุงุฑ ู‡ุฐู‡ ุงู„ุชุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ C1 ูˆ ุณุงู„ุจ
580
+
581
+ 146
582
+ 00:14:58,360 --> 00:15:08,520
583
+ ุชู„ุงุชุฉ C2 ุฒุงุฆุฏ ุชู„ุงุชุฉ C3 ู…ุธุจูˆุท ูˆุงู„ู„ูŠ ุจุนุฏู‡ ู…ูˆุฌุจ C1
584
+
585
+ 147
586
+ 00:15:08,520 --> 00:15:14,300
587
+ ูˆุงู„ุจุงู‚ูŠ ุณู„ูŠู…ุฎู„ู‘ูŠ ุจุงู„ูƒูˆุง ู‡ู†ุง ุตุงุฑุช ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ 2 2
588
+
589
+ 148
590
+ 00:15:14,300 --> 00:15:21,980
591
+ 2 ู…ุธุจูˆุทุฉ ู‡ุฐู‡ ู†ุงู‚ุต C1 ูˆู‡ุฐู‡ ู†ุงู‚ุต 3 ูˆู‡ุฐู‡ ุฒุงุฆุฏ 3 ูˆุงู„ู„ูŠ
592
+
593
+ 149
594
+ 00:15:21,980 --> 00:15:31,520
595
+ ุจุนุฏู‡ุง ุฒุงุฆุฏ C1 ู†ุงู‚ุต 2 C2 ุฒุงุฆุฏ 7 C3 ุฅุฐุง ุตุงุฑุช ู‡ุฐู‡ ุฒูŠ
596
+
597
+ 150
598
+ 00:15:31,520 --> 00:15:39,320
599
+ ู…ุง ู‡ูŠ ู‡ุฐู‡ ู†ุงู‚ุตู‡ุฐู‡ ู†ุงู‚ุต ูˆู‡ุฐู‡ ู†ุงู‚ุต ูˆู‡ุฐู‡ ุชู„ุงุชุฉ ูˆู‡ุฐู‡
600
+
601
+ 151
602
+ 00:15:39,320 --> 00:15:46,340
603
+ ุฒุงุฆุฏ C ูˆุงุญุฏ ูˆู‡ุฐู‡ ุฒูŠ ู…ุง ู‡ูŠ ุชู…ุงู… ุทูŠุจ ุฅุฐุง ุจุฏู†ุง ู†ูŠุฌูŠ
604
+
605
+ 152
606
+ 00:15:46,340 --> 00:15:51,820
607
+ ุงู„ู…ุนุงุฏู„ุฉ ูˆุงุญุฏ ูˆุงุญุฏ ูˆุงุญุฏ ู…ุธุจูˆุทุฉ ู‡ุฐู‡ ู†ุงู‚ุต ู†ุงู‚ุต ุฒุงุฆุฏ
608
+
609
+ 153
610
+ 00:15:51,820 --> 00:15:59,970
611
+ ู‡ุฐู‡ ุฒุงุฆุฏ ูˆุงู„ู„ูŠ ุจุนุฏู‡ุง ูƒู…ุง ู‡ูŠุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ุฃู‚ูˆู„ ู‡ู†ุง
612
+
613
+ 154
614
+ 00:15:59,970 --> 00:16:08,790
615
+ R1 to R2 ูˆ ุณุงู„ุจ R1 to R3 ุจุฏูŠ ุฃุตุจุญ ุฃู† ู‡ุฐุง ู…ุธุจูˆุท
616
+
617
+ 155
618
+ 00:16:08,790 --> 00:16:14,570
619
+ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ ุฃุถูŠูู‡ ุจุฏูŠ ุฃุตุจุญ ู‡ุฐุง ุณุงู„ุจ 2ู„ู…ุง ุฃุถูŠู
620
+
621
+ 156
622
+ 00:16:14,570 --> 00:16:22,270
623
+ ุฅุถุงูุฉ ูˆู‡ุฐุง ุณูŠุตุจุญ ุงุฑุจุนุฉ ูˆู‡ุฐุง ุฒูŠุฑูˆ ู‡ุฐุง ุณูŠุตุจุญ ุณุงู„ุจ ุงูˆ
624
+
625
+ 157
626
+ 00:16:22,270 --> 00:16:27,030
627
+ ุงุฑุจุนุฉ ุงูˆ ุงุชูˆุงุฑ ุซู„ุงุซุฉ ุฒูŠุฑูˆ ุณุงู„ุจ ุณูŠุตุจุญ ู‡ุฐุง ุณุงู„ุจ
628
+
629
+ 158
630
+ 00:16:27,030 --> 00:16:36,970
631
+ ุชู„ุงุชุฉ ูˆู‡ุฐุง ุณูŠุตุจุญ ุณุชุฉ ู‡ุฐู‡ ุณุชุฉ ูˆุงู„ุจุงู‚ูŠ ุฒูŠุฑูˆ ู‡ุฐุง ุจุฏู„
632
+
633
+ 159
634
+ 00:16:36,970 --> 00:16:44,920
635
+ ุงู„ุฑุจุน ู†ุงู‚ุต ู†ุตู†ุงู‚ุต ู†ุต ูŠุจู‚ู‰ ู‡ุฐุง ุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ุฐุง ูŠุตุจุญ
636
+
637
+ 160
638
+ 00:16:44,920 --> 00:16:52,660
639
+ ูˆุงุญุฏ ูˆู‡ุฐุง ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุงู† ุงู†ุง ุงุฎุฏู†ุง ู†ุงู‚ุต ู†ุต ูŠุจู‚ู‰
640
+
641
+ 161
642
+ 00:16:52,660 --> 00:16:57,920
643
+ ู‡ุฐุง ู†ุงู‚ุต ุงุชู†ูŠู† ูˆู‡ุฐุง ุฒูŠุฑูˆ ูˆุงู„ุจุงู‚ูŠ ูƒู…ุง ู‡ูˆ ู…ุง ุนุฏุง ู‡ุฐุง
644
+
645
+ 162
646
+ 00:16:57,920 --> 00:17:04,960
647
+ ูŠุตุจุญ ุณุงู„ุจ ุชู„ุงุชุฉ ูˆู‡ุฐุง ูŠุตุจุญ ุณุชุฉูŠุจู‚ู‰ ุงูŠุด ุจุฏู‡ ูŠุตูŠุฑ
648
+
649
+ 163
650
+ 00:17:04,960 --> 00:17:12,600
651
+ ุนู†ุฏู†ุง ุงู„ุงู†ุŸ ุจุฏู‡ ุงุถูŠู ุณุงู„ุจ R2 to R1 ู…ุธุจูˆุท ูˆ ุชู„ุงุชุฉ
652
+
653
+ 164
654
+ 00:17:12,600 --> 00:17:19,280
655
+ R2 to R3 ู…ุงุดูŠ ุงู„ุญุงู„ ูŠุจู‚ู‰ ุงูŠุด ุจุฏู‡ ูŠุตูŠุฑ ุนู†ุฏู†ุงุŸ ุจุฏู‡
656
+
657
+ 165
658
+ 00:17:19,280 --> 00:17:26,350
659
+ ูŠุตูŠุฑ ูƒุงู„ุชุงู„ูŠุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุฒูŠ ู…ุง ู‡ูˆ ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ
660
+
661
+ 166
662
+ 00:17:26,350 --> 00:17:32,250
663
+ ุณุงู„ุจ ุณูŠุตุจุญ ููˆู‚ 0 ูˆ ุงู„ู„ูŠ ุชุญุช 3 ุณูŠุตุจุญ 0 ุงู„ุนู…ูˆุฏ
664
+
665
+ 167
666
+ 00:17:32,250 --> 00:17:42,560
667
+ ุงู„ุชุงู„ุฏ ุงู„ุงู† ุณุงู„ุจ R2 to R1 ุณูŠุตุจุญ ู‡ู†ุง 3ูˆู‡ู†ุง ุณุงู„ุจ
668
+
669
+ 168
670
+ 00:17:42,560 --> 00:17:48,120
671
+ ุงุชู†ูŠู† ุฒูŠ ู…ุง ู‡ูŠ ูˆู‡ู†ุง ุจุฏูŠ ุงุถูŠู ุชู„ุงุชุฉ ููŠ ุงุชู†ูŠู† ุณุงู„ุจ
672
+
673
+ 169
674
+ 00:17:48,120 --> 00:17:55,540
675
+ ุณุชุฉ ุจูŠุตูŠุฑ zero ูˆู‡ุฐู‡ ูƒู…ุงู† zero ู…ุธุจูˆุท100% ุฅุฐุง ุชุบูŠุฑ
676
+
677
+ 170
678
+ 00:17:55,540 --> 00:18:02,980
679
+ ูˆุถุน ุงู„ู…ุนุงุฏู„ุงุช ูƒุงู„ุชุงู„ูŠ ูŠุจู‚ู‰ ุจุตูŠุฑ ุงู†ู‡ ุงูŠุด C1 ุฒุงุฆุฏ 3
680
+
681
+ 171
682
+ 00:18:02,980 --> 00:18:13,260
683
+ C3 ุจุฏู‡ ูŠุณูˆูŠ 0 ูˆC2 ู†ุงู‚ุต 2 C3 ุจุฏู‡ ูŠุณูˆูŠ 0 ุฅุฐุง ู†ู†ู‚ู„ุจ
684
+
685
+ 172
686
+ 00:18:13,260 --> 00:18:16,740
687
+ ูˆุถุน ุงู„ู…ุนุงุฏู„ุฉ ุดูˆููŠ ู…ู† linearly independent ุจุฏู‡ ูŠุตูŠุฑ
688
+
689
+ 173
690
+ 00:18:16,740 --> 00:18:21,080
691
+ linearly independent ู…ุดุงู† ุบู„ุทู†ุง ุจุณ ููŠ ุฅุดุงุฑุฉ ูˆุงุญุฏุฉ
692
+
693
+ 174
694
+ 00:18:21,360 --> 00:18:26,720
695
+ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ู‡ุฏูˆู„ ู…ุนุงุฏู„ุชูŠู† ููŠ
696
+
697
+ 175
698
+ 00:18:26,720 --> 00:18:31,920
699
+ ุซู„ุงุซุฉ ู…ุฌุงู‡ูŠู„ ู„ุง ูŠู…ูƒู† ุญู„ู‡ู… ุฅู„ุง ุฅุฐุง ูุฑุทุช ุฃุญุฏ
700
+
701
+ 176
702
+ 00:18:31,920 --> 00:18:39,890
703
+ ุงู„ู…ุฌุงู‡ูŠู„ ู…ู† ุนู†ุฏูŠ ุฅุฐุง ู„ูˆ ุฌูŠุช ู‚ู„ุช ู…ุซู„ุง FC3 ุชุณุงูˆูŠ A
704
+
705
+ 177
706
+ 00:18:39,890 --> 00:18:51,650
707
+ ุซู… C1 ุชุณุงูˆูŠ ู†ู‚ุต 3A ุซู… C2 ุชุณุงูˆูŠ 2A ูŠุจู‚ู‰ ุฃุตุจุญ
708
+
709
+ 178
710
+ 00:18:51,650 --> 00:19:00,450
711
+ solution is C1 ูˆC2 ูˆC3
712
+
713
+ 179
714
+ 00:19:10,180 --> 00:19:14,400
715
+ ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ู‡ ู„ุง ูŠุณุงูˆูŠ
716
+
717
+ 180
718
+ 00:19:31,850 --> 00:19:32,030
719
+ ุงู„ุณู„ุงู… ุนู„ูŠูƒู…
720
+
721
+ 181
722
+ 00:19:50,970 --> 00:19:56,590
723
+ ูŠุจู‚ู‰ ุฃู…ู†ุงุช ุฃู†ุง ูุฑุท c1 ูˆ c2 ูˆ c3 ู…ู† ุนู†ุฏู‰ ู…ุฌุงู‡ู„
724
+
725
+ 182
726
+ 00:19:56,590 --> 00:20:01,350
727
+ ุถุฑุจุชู‡ู… ูู‰ ุงู„ vectors ุทู„ุนูˆุง ู‡ุฏูˆู„ ุซูˆุงุจุช ูˆ ู„ูŠุณูˆุง
728
+
729
+ 183
730
+ 00:20:01,350 --> 00:20:05,730
731
+ ุฃุณูุงุฑุง ุทุจุนุง ูŠุนู†ู‰ ุทู„ุนูˆุง ุฃุฑู‚ุงู… ูˆ ู„ูŠุณูˆุง ุฃุณูุงุฑุง
732
+
733
+ 184
734
+ 00:20:05,730 --> 00:20:08,470
735
+ ูˆุจุงู„ุชุงู„ูŠ ุตุงุฑ ุงู„ three vectors are linearly
736
+
737
+ 185
738
+ 00:20:08,470 --> 00:20:12,730
739
+ dependent ุงู„ุขู† ุจู†ูุณ ุงู„ููƒุฑุฉ ุจุฅู† ุฃู†ุง ุงุฌู‰ ู„ู„ู…ุทู…ูˆุจ
740
+
741
+ 186
742
+ 00:20:12,730 --> 00:20:18,110
743
+ ุงู„ุซุงู†ู‰ Nimra VูŠู…ูƒู†ู†ุง ู†ู…ุฑ ุจูŠู‡ ุจุฏุงูŠุฉ ุงู‚ูˆู„ ู„ู‡ assume
744
+
745
+ 187
746
+ 00:20:18,110 --> 00:20:29,830
747
+ ุงูุชุฑุถ assume that there exist c1 ูˆ c2 ูˆ c3 in a
748
+
749
+ 188
750
+ 00:20:29,830 --> 00:20:37,690
751
+ set of real numbers such that ุจุญูŠุซ ุงู† c1, v1, c2,
752
+
753
+ 189
754
+ 00:20:37,910 --> 00:20:47,790
755
+ v2ุฒุงุฆุฏ C ุชู„ุงุชุฉ V ุชู„ุงุชุฉ ุฒุงุฆุฏ C ุชู„ุงุชุฉ V ุชู„ุงุชุฉ ุฒุงุฆุฏ C
756
+
757
+ 190
758
+ 00:20:47,790 --> 00:20:53,690
759
+ ุชู„ุงุชุฉ V ุชู„ุงุชุฉ ุฒุงุฆุฏ C ุชู„ุงุชุฉ V ุชู„ุงุชุฉุชู„ุงุชุฉ vector
760
+
761
+ 191
762
+ 00:20:53,690 --> 00:20:58,330
763
+ ูŠุจู‚ู‰ ุจุฏู‘ุงู‡ ุฏูŠ ุงุถุฑุจ ููŠ ุงู„ vector ุฃูˆู„ุงู†ูŠ ุจุฏู‡ ูŠุตูŠุฑ
764
+
765
+ 192
766
+ 00:20:58,330 --> 00:21:08,070
767
+ ุงู„ุฌุซู‡ ุงู„ุฃูˆู„ C1 ูˆ 0 ูˆ C1 ูˆ 2 C1 ุงู„ู„ูŠ ุจุนุฏู‡ ุถุฑุจุชู‡ ููŠ
768
+
769
+ 193
770
+ 00:21:08,070 --> 00:21:19,010
771
+ C2 ุจุฏู‡ ูŠุตูŠุฑ 0 ูˆ C2 ูˆ C2ูˆ2C2 ุฒุงุฆุฏ ุงู„ู„ูŠ ุจุนุฏู‡ ุถุฑุจุชู‡
772
+
773
+ 194
774
+ 00:21:19,010 --> 00:21:32,010
775
+ ููŠ C3 C3 ูˆC3 ูˆC3 ูˆ3C3 ุณุงูˆูŠุฉ 0ุจุชุฌู…ุนู‡ู… ู…ุน ุจุนุถ ูŠุจู‚ู‰
776
+
777
+ 195
778
+ 00:21:32,010 --> 00:21:42,910
779
+ C1 ุฒุงุฆุฏ C3 ุงู„ู„ูŠ ุจุนุฏู‡ C2 ุฒุงุฆุฏ C3 ูŠุจู‚ู‰ C1 ุฑุงุญ ู‡ุฐุง
780
+
781
+ 196
782
+ 00:21:42,910 --> 00:21:48,550
783
+ ุฑุงุญ ู‡ุฐุง ุจุธู„ C3 ุงู„ู„ูŠ ุจุนุฏู‡ Zero ุจุฑูˆุญ ุจุธู„ C2 ุฒุงุฆุฏ C3
784
+
785
+ 197
786
+ 00:21:49,090 --> 00:22:00,590
787
+ ุงู„ู„ูŠ ุจุนุฏู‡ ุจูŠุตูŠุฑ c1 ุฒุงุฆุฏ c2 ุฒุงุฆุฏ c3 ุงู„ู„ูŠ ุจุนุฏู‡ ุงุชู†ูŠู†
788
+
789
+ 198
790
+ 00:22:00,590 --> 00:22:09,590
791
+ c1 ุฒุงุฆุฏ ุงุชู†ูŠู† c2 ุฒุงุฆุฏ ุชู„ุงุชุฉ c3 ุจุฏู‡ ุณุงูˆูŠ zero ูŠุจู‚ู‰
792
+
793
+ 199
794
+ 00:22:09,590 --> 00:22:15,370
795
+ ู‡ุฐุง ูƒูƒู„ ุฌูˆุฒ ุจุฏู‡ ุณุงูˆูŠ zero ูˆ zero ูˆ zero ุจุงู„ุดูƒู„
796
+
797
+ 200
798
+ 00:22:15,370 --> 00:22:20,350
799
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงู†ุนู…ู„ ู…ู‚ุงุฑู†ุฉ ู…ุง ุจูŠู† ุงู„ุทุฑููŠู† ูŠุจู‚ู‰ C1
800
+
801
+ 201
802
+ 00:22:20,350 --> 00:22:25,770
803
+ ุฒุงุฆุฏ C3 ุฒุงุฆุฏ
804
+
805
+ 202
806
+ 00:22:25,770 --> 00:22:34,410
807
+ C3 ุฒุงุฆุฏ
808
+
809
+ 203
810
+ 00:22:34,410 --> 00:22:44,280
811
+ C3 ุฒุงุฆุฏุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ C2 ุฒุงุฆุฏ C3 ุจุฏู‡ ูŠุณุงูˆูŠ 0
812
+
813
+ 204
814
+ 00:22:44,280 --> 00:22:53,420
815
+ ุงู„ุชุงู„ุช C1 ุฒุงุฆุฏ C2 ุฒุงุฆุฏ C3 ุจุฏู‡ ูŠุณุงูˆูŠ 0 ุงู„ุชุงู„ุช 2C1
816
+
817
+ 205
818
+ 00:22:53,420 --> 00:23:01,220
819
+ 2C2 3C3 ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ 0
820
+
821
+ 206
822
+ 00:23:03,560 --> 00:23:09,920
823
+ ุทูŠุจ ู„ูˆ ุฌูŠู†ุง ุถุฑุจู†ุง ูŠุง ุจู†ุงุช ู‡ุฐูˆู„ ุงู„ู…ุนุงุฏู„ุชูŠู† ููŠ ุณุงู„ูŠ
824
+
825
+ 207
826
+ 00:23:09,920 --> 00:23:16,660
827
+ ุจุฅุชู†ูŠู† ูŠุจู‚ุงุด ุจุตูŠุฑ ุณุงู„ูŠ ุจุฅุชู†ูŠู† C ูˆุงุญุฏ ุณุงู„ุจ ุณุงู„ุจ
828
+
829
+ 208
830
+ 00:23:16,660 --> 00:23:21,900
831
+ ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† C ุงุชู†ูŠู† ุณุงู„ูŠ ุจุฅุชู†ูŠู† C ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณูˆูŠ
832
+
833
+ 209
834
+ 00:23:21,900 --> 00:23:27,480
835
+ Zero ู‡ู†ุง ุงุชู†ูŠู† C ูˆุงุญุฏ ุฒูŠุฏูŠ ุงุชู†ูŠู† C ุงุชู†ูŠู† ุฒูŠ
836
+
837
+ 210
838
+ 00:23:27,480 --> 00:23:32,180
839
+ ุงู„ุชู„ุงุชุฉ C ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณูˆูŠ Zero ูˆุฌู…ุนู†ุง ู‡ุฏูˆู„ ู…ุน
840
+
841
+ 211
842
+ 00:23:32,180 --> 00:23:38,680
843
+ ุงู„ุณู„ุงู…ุฉูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุธู„ ุนู†ุฏู‰ C3 ู„ุญุงู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ Zero
844
+
845
+ 212
846
+ 00:23:38,680 --> 00:23:45,020
847
+ ู„ู…ุง C3 ูŠุณุงูˆูŠ Zero C2 ุจู‚ุฏุงุด ุจ Zero ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง
848
+
849
+ 213
850
+ 00:23:45,020 --> 00:23:53,580
851
+ ุงู†ู‡ C2 ูŠุณุงูˆูŠ Zero ู„ู…ุง C3 ูŠุณุงูˆูŠ Zero ูˆูƒุฐู„ูƒ C1 ุจุฏู‡
852
+
853
+ 214
854
+ 00:23:53,580 --> 00:23:57,080
855
+ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุฃุตุจุญ C1
856
+
857
+ 215
858
+ 00:24:13,010 --> 00:24:16,730
859
+ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุซุงู„ ุนู„ู‰ ุงู„ู€ linearly dependent ูˆ ุงู„
860
+
861
+ 216
862
+ 00:24:16,730 --> 00:24:19,610
863
+ linearly independent vectors
864
+
865
+ 217
866
+ 00:24:53,500 --> 00:24:57,140
867
+ ุจู†ุฌูŠ ุงู„ุขู† ู„ู†ุธุฑูŠุฉ ุนู„ู‰ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง
868
+
869
+ 218
870
+ 00:24:57,140 --> 00:25:03,400
871
+ ูŠุฃุชูŠ theorem the
872
+
873
+ 219
874
+ 00:25:03,400 --> 00:25:07,620
875
+ set ุงู„ู„ูŠ
876
+
877
+ 220
878
+ 00:25:07,620 --> 00:25:20,980
879
+ ู‡ูŠ V1 ูˆ V2 ูˆ VM islinearly dependent if and only
880
+
881
+ 221
882
+ 00:25:20,980 --> 00:25:28,400
883
+ if at least one
884
+
885
+ 222
886
+ 00:25:28,400 --> 00:25:35,100
887
+ element of
888
+
889
+ 223
890
+ 00:25:35,100 --> 00:25:44,760
891
+ the set is a linear combination
892
+
893
+ 224
894
+ 00:25:48,820 --> 00:25:51,460
895
+ ู…ุนุธู… ุงู„ุงุฎุฑูŠู†
896
+
897
+ 225
898
+ 00:26:10,130 --> 00:26:14,770
899
+ ู†ุฑุฌุน ู„ู†ุต ุงู„ู†ุธุฑูŠุฉ ุชุงู†ูŠุฉ ู†ู‚ุฑุฃ ุงู„ู†ุต ู†ุญุงูˆู„ ู†ูู‡ู… ู‡ุฐุง
900
+
901
+ 226
902
+ 00:26:14,770 --> 00:26:20,410
903
+ ุงู„ู†ุต ูุงู‡ู…ุง ุตุญูŠุญุง ุซู… ู†ุฐู‡ุจ ุฅู„ู‰ ุจุฑู‡ู†ุฉ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ
904
+
905
+ 227
906
+ 00:26:20,410 --> 00:26:25,710
907
+ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ the set of vectors V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ
908
+
909
+ 228
910
+ 00:26:25,710 --> 00:26:29,790
911
+ VM ุงู„ู„ูŠ ๏ฟฝ๏ฟฝูˆุฌูˆุฏุฉ ููŠ vector space V linearly
912
+
913
+ 229
914
+ 00:26:29,790 --> 00:26:34,990
915
+ dependent if and only if at least one element of
916
+
917
+ 230
918
+ 00:26:34,990 --> 00:26:39,370
919
+ the set is a linear combination of the otherูŠุจู‚ู‰
920
+
921
+ 231
922
+ 00:26:39,370 --> 00:26:43,150
923
+ ุงุญู†ุง ุฌูŠู†ุง ุนู„ู‰ vector space ุฃุฎุฏู†ุง ู…ู†ู‡ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„
924
+
925
+ 232
926
+ 00:26:43,150 --> 00:26:47,870
927
+ vectors ู‡ูŠู‡ุง ู‚ุฏุงู…ูŠ ุงู„ุจุฑู‡ุงู† ุจุฏูŠ ูŠุตูŠุฑ ููŠ ุงุชุฌุงู‡ูŠู† ู„ุฅู†
928
+
929
+ 233
930
+ 00:26:47,870 --> 00:26:52,510
931
+ ููŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ ุฅูŠุด if and only if ูŠุนู†ูŠ ู„ูˆ ูƒุงู† ู‡ุฐุง
932
+
933
+ 234
934
+ 00:26:52,510 --> 00:26:56,570
935
+ ู…ุนุทูŠุงุช ู‡ุฐุง ู…ุทู„ูˆุจ ูˆุงู„ุนูƒุณ ู„ูˆ ูƒุงู† ู‡ุฐุง ู…ุทู„ูˆุจ ุจุฏูŠ ูŠูƒูˆู†
936
+
937
+ 235
938
+ 00:26:56,570 --> 00:27:00,550
939
+ ู‡ุฐุง ุฅูŠู‡ ู…ุนุทูŠุงุช ุฅูŠู‡ ุฏู‡ ุงู„ุจุฑู‡ุงู† ุจุฏูŠ ูŠุตูŠุฑ ููŠ ุงุชุฌุงู‡ูŠู†
940
+
941
+ 236
942
+ 00:27:00,550 --> 00:27:05,700
943
+ ูŠุจู‚ู‰ ุจุฏูŠ ุฃูุชุฑุถ ุฃูˆู„ุง ุฅู† ู‡ุฏูˆู„ ู…ุง ู„ู‡ู…Linearly
944
+
945
+ 237
946
+ 00:27:05,700 --> 00:27:10,760
947
+ Dependent ูˆู…ู† ุฎู„ุงู„ู‡ู… ุงุฑูˆุญ ุงุซุจุช ุงู†ู‡ ุงูŠ vector ู…ู†
948
+
949
+ 238
950
+ 00:27:10,760 --> 00:27:15,600
951
+ ู‡ุฏูˆู„ Linear Combination ู„ู„ุงุฎุฑูŠู† ูŠุนู†ูŠ ุงูŠ vector ู…ู†
952
+
953
+ 239
954
+ 00:27:15,600 --> 00:27:19,780
955
+ ู‡ุฏูˆู„ ุจู‚ุฏุฑ ุงูƒุชุจู‡ ุนู„ู‰ ุตูŠุบุฉ Linear Combination ู…ู†
956
+
957
+ 240
958
+ 00:27:19,780 --> 00:27:25,640
959
+ ุจุงู‚ูŠุฉ ู…ู† ุงู„ vectors ุงู„ุฃุฎุฑู‰ ุชุจุนุงุช ู‡ุฐู‡ ุงู„ุณุช ูŠุจู‚ู‰ ุจุฏุฃ
960
+
961
+ 241
962
+ 00:27:25,640 --> 00:27:32,740
963
+ ุงู…ุดูŠ ุงู„ุงุชุฌุงู‡ ุงู„ุฃูˆู„ ุจุฏุงุฌูŠ ุงู‚ูˆู„ ุงุณูŠูˆู…ุงู„ุฐุงุช ุงู„ู„ูŠ ู‡ูˆ
964
+
965
+ 242
966
+ 00:27:32,740 --> 00:27:40,660
967
+ V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ ุงู„ VM are linearly dependent
968
+
969
+ 243
970
+ 00:27:42,680 --> 00:27:46,080
971
+ ุจุงู„ุฏุฑุฌุฉ ุนู„ู‰ ุชุนุฑูŠู linearly dependent ู…ุนู†ุงุชู‡ there
972
+
973
+ 244
974
+ 00:27:46,080 --> 00:27:54,100
975
+ exist scholars C1 ูˆC2 ูˆCM ู…ูˆุฌูˆุฏุงุช ูŠุงุฑ not all zero
976
+
977
+ 245
978
+ 00:27:54,100 --> 00:27:59,420
979
+ ู…ุด ูƒู„ู‡ู… zero ุจุญูŠุซ ูŠูƒูˆู† ู…ุฌู…ูˆุนู‡ู… ูŠุณูˆูŠ ู‚ุฏุงุด zero ูŠุจู‚ู‰
980
+
981
+ 246
982
+ 00:27:59,420 --> 00:28:09,010
983
+ ู‡ุฐุง ู…ุนู†ุงุชู‡ there exist scholarsุงู„ู„ูŠ ู‡ู… ู…ูŠู†ุŸ C1 ูˆC2
984
+
985
+ 247
986
+ 00:28:09,010 --> 00:28:23,050
987
+ ูˆCm ุงู† ุงุฑ not all zero ู…ุด ูƒู„ู‡ู… ุฒูŠุฑูˆ such that ุจุญูŠุซ
988
+
989
+ 248
990
+ 00:28:23,050 --> 00:28:33,130
991
+ ุงู† C1 V1 ุฒุงุฆุฏ C2 V2 ุฒุงุฆุฏ ุฒุงุฆุฏ Cm Vm ุฏูŠ ุณุงูˆูŠ ุฌุฏุงุดุŸ
992
+
993
+ 249
994
+ 00:28:33,130 --> 00:28:39,150
995
+ ุฏูŠ ุณุงูˆูŠ ุฒูŠุฑูˆูŠุนู†ูŠ ุงู„ุณู„ุณู„ุงุช ูŠุง ุจู†ุงุช ู…ู…ูƒู† ูŠูƒูˆู† ุจุนุถู‡ู…
996
+
997
+ 250
998
+ 00:28:39,150 --> 00:28:44,230
999
+ ุฃุณูุงุฑ ูˆู…ู…ูƒู† ูŠูƒูˆู† ุจุนุถู‡ู… ู…ูˆุงุดูŠ ุฃุณูุงุฑ ู„ูƒู† ูƒู„ู‡ู… ุฃุณูุงุฑ
1000
+
1001
+ 251
1002
+ 00:28:44,230 --> 00:28:50,550
1003
+ ู…ู…ู†ูˆุน ุนู„ู‰ ุงู„ุฃู‚ู„ ุนู†ุฏูŠ ูˆู„ุง ูˆุงุญุฏ ูู‚ุท ุจูŠูƒูˆู† ู‡ู†ุง ู„ุง
1004
+
1005
+ 252
1006
+ 00:28:50,550 --> 00:28:57,690
1007
+ ูŠุณุงูˆูŠ ุงู„ุฒูŠุฑ ุชู…ุงู…ุŸ ุฅุฐุง ุจุฑูˆุญ ุฃุฎุฏ ูˆุงุญุฏ ู…ู†ู‡ู… ูˆ ุฃุซุจุช
1008
+
1009
+ 253
1010
+ 00:28:57,690 --> 00:29:03,970
1011
+ ุฃู†ูŠ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ ุจุฏู„ุงู„ุฉ ู…ู†ุŸ ุจุฏู„ุงู„ุฉ ุงู„ุขุฎุฑูŠู† ูุจุงุฌูŠ
1012
+
1013
+ 254
1014
+ 00:29:03,970 --> 00:29:14,960
1015
+ ุจู‚ูˆู„ ู‡ู†ุง FCI ู…ูˆุฌูˆุฏ ููŠ R and CI not equal to zero
1016
+
1017
+ 255
1018
+ 00:29:14,960 --> 00:29:30,000
1019
+ then the vector ุงู„ู„ูŠ ู‡ูˆ CI VI ุจุฏู‡ ูŠุณุงูˆูŠ is ุฏู‡
1020
+
1021
+ 256
1022
+ 00:29:30,000 --> 00:29:38,670
1023
+ ูŠุงุฎุฏ CI VIูƒูŠู ูŠุนู†ูŠุŸ ูŠุนู†ูŠ ุงูุชุฑุถ ุงู†ู‡ CIV ุงูŠุงุฌุงู†ูŠ ู‡ู†ุง
1024
+
1025
+ 257
1026
+ 00:29:38,670 --> 00:29:44,230
1027
+ ููŠ ู‡ุฐุง ุงู„ู…ูƒุงู† ูŠุจู‚ู‰ ุจุฏู‡ ูŠุฎู„ูŠู‡ ููŠ ู…ูƒุงู†ู‡ ูˆุงู„ุจุงู‚ูŠุฉ ูƒู„ู‡
1028
+
1029
+ 258
1030
+ 00:29:44,230 --> 00:29:47,950
1031
+ ุจุฏู‡ ูŠูˆุฏูŠู‡ ูˆูŠู†ุŸ ุนู„ู‰ ุงู„ุดุฌุฑุฉ ุงู„ุชุงู†ูŠุฉ ูŠุจู‚ู‰ ุงูŠุด ุจุฏู‡
1032
+
1033
+ 259
1034
+ 00:29:47,950 --> 00:29:58,270
1035
+ ูŠุตูŠุฑ ู‡ู†ุงุŸ ุจุฏู‡ ูŠุณุงูˆูŠุณุงู„ุจ C1 V1 ุณุงู„ุจ C2 V2 ุณุงู„ุจ ูˆู†ุธู„
1036
+
1037
+ 260
1038
+ 00:29:58,270 --> 00:30:05,890
1039
+ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ู…ุง ู†ูˆุตู„ ู„ุณุงู„ุจ C I minus ุงู„ one V I
1040
+
1041
+ 261
1042
+ 00:30:05,890 --> 00:30:11,050
1043
+ minus ุงู„ one ู…ู† ุงู„ู„ูŠ ุจูŠุฌูŠ ุจุนุฏู‡ C I V I ู‡ูŠูˆุง ุจุฑุง
1044
+
1045
+ 262
1046
+ 00:30:11,550 --> 00:30:18,750
1047
+ ูŠุจู‚ู‰ ุงู„ู„ูŠ ุจุฏู‡ ูŠุฌูŠ ุจุนุฏู‡ ู†ุงู‚ุต c i plus one v i plus
1048
+
1049
+ 263
1050
+ 00:30:18,750 --> 00:30:25,770
1051
+ one ุฒุงุฆุฏ ุฒุงุฆุฏ ู„ุบุงูŠุฉ ู…ุงูˆุตู„ ุขุฎุฑ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ c m v m
1052
+
1053
+ 264
1054
+ 00:30:27,070 --> 00:30:30,570
1055
+ ูŠุนู†ูŠ ุงู„ู„ูŠ ููŠ ุงู„ู†ุต ู‡ุฐุง ู…ุง ุจูŠู† ุงู„ุงุชู†ูŠู† ุฎู„ู‘ูŠุชู‡
1056
+
1057
+ 265
1058
+ 00:30:30,570 --> 00:30:34,830
1059
+ ูˆุงู„ุจุงู‚ูŠ ู†ุฌู„ุชู‡ ูˆูŠู†ุŸ ุนู„ู‰ ุงู„ุดุฌุฉ ุงู„ุชุงู†ูŠุฉ ุงู„ุงู† ุฃู†ุง ุฌุงูŠ
1060
+
1061
+ 266
1062
+ 00:30:34,830 --> 00:30:39,590
1063
+ ู„ู‡ุฐุง ุงู„ู„ูŠ ู„ุง ูŠุณุงูˆูŠ zero ุฅุฐุง ุจู‚ุฏุฑ ุฃุฌุณู… ุนู„ูŠู‡ ุตุญูŠุญ
1064
+
1065
+ 267
1066
+ 00:30:39,590 --> 00:30:45,870
1067
+ ูˆู„ุง ู„ุฃุŸ ุฅุฐุง ู„ูˆ ุฌุณู…ุช ุนู„ูŠู‡ ุจุญุตู„ ุนู„ู‰ VI ุฏูŠ ุณุงูˆูŠ ุณุงู„ุจ
1068
+
1069
+ 268
1070
+ 00:30:45,870 --> 00:30:55,520
1071
+ C1 ุนู„ู‰ CI ููŠ V1ุณุงู„ุจ C2 ุนู„ู‰ CI ููŠ V2 ุณุงู„ุจ ุณุงู„ุจ ุงู„ู„ูŠ
1072
+
1073
+ 269
1074
+ 00:30:55,520 --> 00:31:04,740
1075
+ ู‡ูˆ CI minus 1 ุนู„ู‰ CI ููŠ VI minus 1 ุณุงู„ุจ CI plus 1
1076
+
1077
+ 270
1078
+ 00:31:04,740 --> 00:31:12,060
1079
+ ุนู„ู‰ CI ููŠ VI plus 1 ุทุจุนุง ู‡ู†ุง ู…ุด ุฒุงุฏ ู†ุงู‚ุต ูŠุง ุจู†ุงุช
1080
+
1081
+ 271
1082
+ 00:31:12,060 --> 00:31:20,570
1083
+ ูƒู„ู‡ูˆู‡ู†ุง ู†ุงู‚ุต ูŠุจู‚ู‰ ู‡ู†ุง ู†ุงู‚ุต ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู†ุงู‚ุต cm ุนู„ู‰
1084
+
1085
+ 272
1086
+ 00:31:20,570 --> 00:31:28,030
1087
+ ci ููŠ ุงู„ VM ุทุจ ุงูŠุด ุฑุงูŠูƒูˆุง ู‡ุฐุง ู…๏ฟฝ๏ฟฝุฏุงุฑ ุซุงุจุช ูŠุง ุจู†ุงุช ูˆ
1088
+
1089
+ 273
1090
+ 00:31:28,030 --> 00:31:35,150
1091
+ ู‡ุฐุง ู…ู‚ุฏุงุฑ ุซุงุจุช ูŠุนู†ูŠ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ุฐุง a1v1 ุฒุงุฆุฏ a2v2
1092
+
1093
+ 274
1094
+ 00:31:35,150 --> 00:31:49,600
1095
+ ุฒุงุฆุฏAI-1VI-1 ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ AI plus one VI plus one
1096
+
1097
+ 275
1098
+ 00:31:49,600 --> 00:31:55,900
1099
+ ุฒุงุฆุฏ ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ AMVM
1100
+
1101
+ 276
1102
+ 00:31:55,900 --> 00:32:02,780
1103
+ ุงูŠุด ุชูุณูŠุฑูƒ ู„ู‡ุฐุง ุงู†ู‡ VI linear combination ู…ู†
1104
+
1105
+ 277
1106
+ 00:32:02,780 --> 00:32:11,460
1107
+ ุงู„ุขุฎุฑูŠู† ุงุธู† ู‡ูˆ ุงู„ู…ุถุทุจ ุงู„ุฃูˆู„ูŠุจู‚ู‰ ู‡ู†ุง this means
1108
+
1109
+ 278
1110
+ 00:32:11,460 --> 00:32:24,260
1111
+ that ู‡ุฐุง ูŠุนู†ูŠ ุงู† ุงู„ vi is a linear combination of
1112
+
1113
+ 279
1114
+ 00:32:24,260 --> 00:32:34,300
1115
+ the others ุทูŠุจ
1116
+
1117
+ 280
1118
+ 00:32:34,950 --> 00:32:39,990
1119
+ ุจู†ุนู…ู„ ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ุจู†ุงุฎุฏ ูˆุงุญุฏ ููŠู‡ู… linear
1120
+
1121
+ 281
1122
+ 00:32:39,990 --> 00:32:44,490
1123
+ combination ู…ู† ุงู„ุขุฎุฑูŠู† ูˆู†ุซุจุช ุฃู† ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ
1124
+
1125
+ 282
1126
+ 00:32:44,490 --> 00:32:49,390
1127
+ linearly dependent ุชู…ุงู… ูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ ุฃู‚ูˆู„ ู„ู‡
1128
+
1129
+ 283
1130
+ 00:32:49,390 --> 00:32:59,830
1131
+ conversely conversely ูŠุนู†ูŠ ุจุงู„ุนูƒุณ assume that
1132
+
1133
+ 284
1134
+ 00:33:00,820 --> 00:33:13,440
1135
+ VK is a linear combination of
1136
+
1137
+ 285
1138
+ 00:33:13,440 --> 00:33:27,220
1139
+ the vectors V1 ูˆ V2 ูˆ ู„ุบุงูŠุฉ VK-L1 ูˆ VK plus one
1140
+
1141
+ 286
1142
+ 00:33:27,820 --> 00:33:34,900
1143
+ ูˆุงู†ุธุฑ ู„ู…ุดูŠ ู„ุบุงูŠุฉ ุงู„ VM ู‡ุฐุง
1144
+
1145
+ 287
1146
+ 00:33:34,900 --> 00:33:41,740
1147
+ Linear Combination ู…ู† ู…ู†ุŸ ู…ู† ู‡ุฐูˆู„ ุชู…ุงู…ุงู„ุงู† ุงู†ุง
1148
+
1149
+ 288
1150
+ 00:33:41,740 --> 00:33:46,940
1151
+ ูุฑุถุช ุงู† ุงู„ vector ุฑู‚ู… K ู…ู† ุงู„ู…ุฌู…ูˆุน ุงู„ู„ูŠ ุนู†ุฏู‰ ู‡ุฐุง
1152
+
1153
+ 289
1154
+ 00:33:46,940 --> 00:33:51,700
1155
+ ู…ุงู„ู‡ ู‡ูˆ vector ุฑู‚ู… K ู‡ูˆ linear combination ู…ู†
1156
+
1157
+ 290
1158
+ 00:33:51,700 --> 00:33:57,320
1159
+ ุงู„ุฃุฎุฑูŠู† ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ู‡ู‰ is a linear combination of
1160
+
1161
+ 291
1162
+ 00:33:57,320 --> 00:34:01,940
1163
+ the other ุจุฏูŠ ุงุซุจุช ุงู† ู‡ุฐู‡ ุงู„ vector ูƒู„ู‡ุง ุจู…ุง ููŠู‡ุง
1164
+
1165
+ 292
1166
+ 00:34:01,940 --> 00:34:07,520
1167
+ ุงู„ V ูˆK are linearly dependent ุชู…ุงู… ูŠุจู‚ู‰ assume
1168
+
1169
+ 293
1170
+ 00:34:07,520 --> 00:34:11,180
1171
+ that linear combination of the vectorsูŠุจู‚ู‰ ู‡ุฐุง
1172
+
1173
+ 294
1174
+ 00:34:11,180 --> 00:34:21,880
1175
+ ู…ุนู†ุงุชู‡ ุงู† there exist c1 ูˆ c2 ูˆ ู„ุบุงูŠุฉ cm in R such
1176
+
1177
+ 295
1178
+ 00:34:21,880 --> 00:34:22,500
1179
+ that
1180
+
1181
+ 296
1182
+ 00:34:25,350 --> 00:34:40,530
1183
+ ุจุญูŠุซ ุงู† ุงู„ VK ุจุฏู‡ ุณุงูˆูŠ C1 V1 ุฒุงุฏ C2 V2 ุฒุงุฏ CK-1 ููŠ
1184
+
1185
+ 297
1186
+ 00:34:40,530 --> 00:34:53,590
1187
+ VK-1 ุฒุงุฏ CK plus 1 ููŠ VK plus 1 ุฒุงุฏ ุฒุงุฏ CMVM
1188
+
1189
+ 298
1190
+ 00:34:58,080 --> 00:35:04,220
1191
+ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุฃู†ุง ุญุทูŠุช ู‚ูŠูˆุฏ ุนู„ู‰ ุงู„ุณูŠู‡ุงุช ู‡ุฐู‡ุŸ ู‚ูˆู„ุช
1192
+
1193
+ 299
1194
+ 00:35:04,220 --> 00:35:07,840
1195
+ ุฃุณูุงุฑ ูˆู„ุง ุบูŠุฑ ุฃุณูุงุฑุŸ ุฃุจุฏุงุŒ linear cum ุฃุณูุงุฑ ูˆู„ุง
1196
+
1197
+ 300
1198
+ 00:35:07,840 --> 00:35:11,360
1199
+ ุบูŠุฑ ุฃุณูุงุฑุŸ ุจู‡ู„ู†ูŠุฑุŒ ุฅู†ู…ุง ุฏูˆู„ scholars ู…ูˆุฌูˆุฏุงุช ููŠ
1200
+
1201
+ 301
1202
+ 00:35:11,360 --> 00:35:15,280
1203
+ ุฃุฑุถ ูˆุญู‚ู‚ูˆุง ู„ู…ูŠู† ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุงุŒ ุทุจ ุดูˆ ุฑุฃูŠูƒูˆุง
1204
+
1205
+ 302
1206
+ 00:35:15,280 --> 00:35:20,290
1207
+ ุฃุนู…ู„ู‡ุง ู…ุนุงุฏู„ุฉ ุณูุฑูŠุฉ ุจู†ูุนุŸุจู†ูุน ุทูŠุจ ูŠุจู‚ู‰ ู„ูˆ ุฑูˆุญุช
1208
+
1209
+ 303
1210
+ 00:35:20,290 --> 00:35:28,330
1211
+ ุนู…ู„ุชู‡ุง ู…ุนุงุฏู„ุฉ ุตูุฑูŠุฉ ุจุตูŠุฑ ูƒูŠู C1 C1 ุฒุงุฏ C2 V2 ุฒุงุฏ
1212
+
1213
+ 304
1214
+ 00:35:28,330 --> 00:35:36,110
1215
+ ุฒุงุฏ CK-1 VK-1 ู‡ุฐุง ุงู„ู„ูŠ ุจุฏูŠ ุฃุฌูŠุจู‡ ุนู„ู‰ ุงู„ุดูƒ ุงู„ุชุงู†ูŠ
1216
+
1217
+ 305
1218
+ 00:35:36,110 --> 00:35:42,530
1219
+ ูŠุง ุจู†ุงุช ุจุฏูŠ ูŠุฌูŠ ุจุดุฑุฉ ุฌุฏูŠุฉ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุงู„ VK ูŠุจู‚ู‰
1220
+
1221
+ 306
1222
+ 00:35:42,530 --> 00:35:52,660
1223
+ ู‡ุฐุง ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุงู„ VKุฒุงุฆุฏ ck plus one vk plus one
1224
+
1225
+ 307
1226
+ 00:35:52,660 --> 00:36:02,900
1227
+ ุฒุงุฆุฏ ุฒุงุฆุฏ cm vm ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ zeroุทูŠุจ ุงู„ุญูŠู† ู„ุฌูŠุช
1228
+
1229
+ 308
1230
+ 00:36:02,900 --> 00:36:07,920
1231
+ ุงูŠุด ู„ุฌูŠุช constants not all zero ู…ุด ุนุงุฑู ุงู†ู‡ not
1232
+
1233
+ 309
1234
+ 00:36:07,920 --> 00:36:13,540
1235
+ all zero ุจู‚ูˆู„ูƒ ุงู‡ ู‡ุงูŠ ูˆุงุญุฏ ููŠู‡ู… ุจุฌุฏุงุด ุจุณุงู„ุจ ูˆุงุญุฏ
1236
+
1237
+ 310
1238
+ 00:36:13,540 --> 00:36:23,840
1239
+ ูŠุจู‚ู‰ ู‡ู†ุง so there exist constants in
1240
+
1241
+ 311
1242
+ 00:36:23,840 --> 00:36:29,380
1243
+ cnr not all zero
1244
+
1245
+ 312
1246
+ 00:36:34,070 --> 00:36:42,530
1247
+ ุจุงู„ุชุงู„ูŠ CK-1 ูŠุจู‚ู‰ ู‡ู†ุงูƒ ุฅุฐุง ุฃุตู„ุง ูƒุงู†ุช ู†ู‚ุทุฉ ุงูˆ ุฒูŠุฑูˆ
1248
+
1249
+ 313
1250
+ 00:36:42,530 --> 00:36:57,200
1251
+ ู„ุฃู† ู‡ุฐุง such thatุจุญูŠุซ ุงู† c1v1 ุฒุงุฏ c2v2 ุฒุงุฏ cmvm
1252
+
1253
+ 314
1254
+ 00:36:57,200 --> 00:37:05,380
1255
+ ุจุฏู‡ ูŠุณุงูˆูŠ zero ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† v1 ูˆv2 ูˆvm are
1256
+
1257
+ 315
1258
+ 00:37:05,380 --> 00:37:11,340
1259
+ linearly dependent ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุญุฏ ููŠูƒู… ุจุชุญุจ ุชุณุฃู„
1260
+
1261
+ 316
1262
+ 00:37:11,340 --> 00:37:13,240
1263
+ ุฃูŠ ุณุคุงู„ ููŠ ุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ
1264
+
1265
+ 317
1266
+ 00:37:16,490 --> 00:37:20,770
1267
+ ุจุฑู‡ุงุก ุงู„ู†ุธุฑูŠุฉุŒ ุญุฏ ุจุชุญุจ ุชุณุฃู„ ุงูŠ ุณุคุงู„ุŸ ุงุฐุง ู…ุงูƒู†ุชุด
1268
+
1269
+ 318
1270
+ 00:37:20,770 --> 00:37:25,250
1271
+ ุชุณุฃู„ ูˆุงู†ุง ุจุฏูŠ ุงุณุฃู„ุŒ ุงู‡ุŒ ุงูŠูˆุฉ
1272
+
1273
+ 319
1274
+ 00:37:30,360 --> 00:37:34,180
1275
+ ุญุทูŠู†ุง ุฅูŠุดุŸ ู…ุด ุฎู„ู‘ูŠู†ุง ูˆุงุญุฏ ููŠ ู†ุงุญูŠุฉ ูˆ ุงู„ุจุงู‚ูŠ ููŠ
1276
+
1277
+ 320
1278
+ 00:37:34,180 --> 00:37:39,980
1279
+ ู†ุงุญูŠุฉ ุชุงู†ูŠุฉ ูƒู†ุง ู†ุฌู„ู†ุงู‡ู… ูŠุนู†ูŠ ุจู„ุบุฉ ู„ุจุชุฏุงุฆูŠ ุฃุถุงูู†ุง
1280
+
1281
+ 321
1282
+ 00:37:39,980 --> 00:37:46,020
1283
+ ุงู„ู…ุนูƒูˆุณ ุงู„ุฌุงู…ุนูŠ ู„ูƒู„ ๏ฟฝ๏ฟฝู† ุงู„ vectors ุฅู„ู‰ ุงู„ุทุฑููŠู†ุŒ
1284
+
1285
+ 322
1286
+ 00:37:46,020 --> 00:37:49,620
1287
+ ุชู…ุงู…ุŸ ูˆุนู„ู‰ ุงู„ุณุฑูŠุน ุจู‚ูˆู„ู†ุง ู†ุฌู„ู†ุงู‡ู… ุนู„ุดุงู† ุฌุชู†ุง ุจุชุฌูŠ
1288
+
1289
+ 323
1290
+ 00:37:49,620 --> 00:37:56,020
1291
+ ุจุดุฑู‚ุฉ ู…ุฎุงู„ูุฉุŒ ู…ุด ู‡ูŠูƒุŸ ููŠ ูƒู…ุงู† ุชุณุฃู„ุŸ ุทูŠุจุŒ ุจุฏุฃ ุฃุณุฃู„
1292
+
1293
+ 324
1294
+ 00:37:56,020 --> 00:38:00,060
1295
+ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ูŠุชุชู„ูŠ ุฃู†ุงู„ูˆ ุนู†ุฏ ููŠู‡ two vectors ูŠุงู…ู†ุงุช
1296
+
1297
+ 325
1298
+ 00:38:00,060 --> 00:38:05,100
1299
+ ูˆุงุญุฏ ู…ุถุงุนูุงุช ุงู„ุชุงู†ูŠ ูˆุงุญุฏ ู†ุต ุงู„ุชุงู†ูŠ ุฌุฏู‡ ู…ุฑุชูŠู† ุฌุฏู‡
1300
+
1301
+ 326
1302
+ 00:38:05,100 --> 00:38:13,240
1303
+ ุชู„ุช ู…ุฑุงุช ุฌุฏู‡ ุนุดุฑ ู…ุฑุงุช ู‚ู„ูŠ ุจุฑูƒูˆุง ูƒูˆูŠุณ ูŠุนู†ูŠ C1 ูŠุณุงูˆูŠ
1304
+
1305
+ 327
1306
+ 00:38:13,240 --> 00:38:20,620
1307
+ ู…ุซู„ุง ุฎู…ุณุฉ C2 V1 ูŠุณุงูˆูŠ ุฎู…ุณุฉ V2 ู‡ู„ ุงู„ V1 ูˆ V2 are
1308
+
1309
+ 328
1310
+ 00:38:20,620 --> 00:38:24,980
1311
+ linearly dependent ูˆู„ุง linearly independentุŸ
1312
+
1313
+ 329
1314
+ 00:38:27,080 --> 00:38:29,620
1315
+ ุงู„ู„ูŠ ุจุชุนุฑู ุชุฑูุน ุฃูŠุถุง ููˆู‚ ุจุณ ู…ุด ู‡ู†ุชู†ุงู‚ุด ุงู†ุง ูˆ
1316
+
1317
+ 330
1318
+ 00:38:29,620 --> 00:38:37,340
1319
+ ุงู„ุจุงู‚ูŠ ูŠูู‡ู… ุงู†ุง ุนู†ุฏูŠ V1 ุจุฏู‡ ุณุงูˆูŠ ุฎู…ุณุฉ V2 ุณุคุงู„ูŠ ู‡ูˆ
1320
+
1321
+ 331
1322
+ 00:38:37,340 --> 00:38:41,840
1323
+ ุงู„ V1 ูˆ ุงู„ V2 ู‡ุฐุง linearly dependent ูˆู„ุง linearly
1324
+
1325
+ 332
1326
+ 00:38:41,840 --> 00:38:44,420
1327
+ independent ุฏู‡ ุงู„ู„ูŠ ุจุชุนุฑู ุชุฑูุน ุฃูŠุถุง ููˆู‚ ู…ุด ู‡ู†ุชู†ุงู‚ุด
1328
+
1329
+ 333
1330
+ 00:38:44,420 --> 00:38:49,300
1331
+ ุงุญู†ุง ูˆูŠุงู‡ ุงูŠูˆุฉ linearly dependent ู„ูŠุดุŸ ู„ุฃู† ู†ู‚ุฏุฑ
1332
+
1333
+ 334
1334
+ 00:38:49,300 --> 00:38:55,380
1335
+ ู†ุงุฎุฏ ุฎู…ุณุฉ V1 ู†ู‚ุฏุฑ ู†ุฎู„ุฏ V1 ู†ุนู…ู„ ุชูƒุชุฑ ุซุงู†ูŠ ุฎู…ุณุฉ V1
1336
+
1337
+ 335
1338
+ 00:38:56,290 --> 00:39:01,550
1339
+ ู„ุฃู†ู‡ ู…ู…ูƒู† ู†ู†ุฌู„ู‡ุง ุนู„ู‰ ุงู„ุดุฌุฉ ุงู„ุชุงู†ูŠุฉ ูˆูŠุตูŠุฑ V1 ู†ุงู‚ุต
1340
+
1341
+ 336
1342
+ 00:39:01,550 --> 00:39:07,050
1343
+ ุฎู…ุณุฉ V2 ูŠุณุงูˆูŠ ูƒู…ุŸ Zero. ุจูŠุตูŠุฑ ู…ุนุงู…ู„ ุงู„ V1 ู‡ูˆ V1
1344
+
1345
+ 337
1346
+ 00:39:07,050 --> 00:39:12,450
1347
+ ูˆู…ุนุงู…ู„ ุงู„ V2 ู‡ูˆ ุณุงู„ุจ ุฎู…ุณุฉ ูˆุงุซู†ูŠู† not zero ูˆุจุงู„ุชุงู„ูŠ
1348
+
1349
+ 338
1350
+ 00:39:12,450 --> 00:39:17,610
1351
+ ู‡ุฐูˆู„ ุงุชู†ูŠู† linearly dependentูŠุจุฌู‰ ุงุจู†ุงุช any two
1352
+
1353
+ 339
1354
+ 00:39:17,610 --> 00:39:21,810
1355
+ vectors ูˆุงุญุฏ ู…ุถุงุนูุงุช ุงู„ู†ุต ูˆ ุชู„ุช ูˆ ุฑุจุน ูˆ ู†ุงู‚ุต ุฎู…ุณุฉ
1356
+
1357
+ 340
1358
+ 00:39:21,810 --> 00:39:26,050
1359
+ ุฌุฏ ูˆ ุฎู…ุณูŠู† ู…ุฑุฉ ูƒู„ู‡ are linearly dependent ู‡ูƒุชุจู‡ุง
1360
+
1361
+ 341
1362
+ 00:39:26,050 --> 00:39:30,910
1363
+ ู„ูƒ ุจุตูŠุบุฉ ุงู„ remark ุงู„ุชุงู„ูŠุฉ ูŠุจุฌู‰ ุฎู„ูŠู†ูŠ ุงู…ุณุญ ุงู„ุดุฌุฉ
1364
+
1365
+ 342
1366
+ 00:39:30,910 --> 00:39:33,510
1367
+ ู‡ุฐู‡ ูˆ ู†ูƒุชุจ ู‡ุฐู‡ ุงู„ remark
1368
+
1369
+ 343
1370
+ 00:39:58,520 --> 00:40:05,460
1371
+ remark let v
1372
+
1373
+ 344
1374
+ 00:40:05,460 --> 00:40:19,020
1375
+ be a vector space then v1
1376
+
1377
+ 345
1378
+ 00:40:19,020 --> 00:40:28,800
1379
+ ูˆv2 ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ vare linearly dependent if and
1380
+
1381
+ 346
1382
+ 00:40:28,800 --> 00:40:41,400
1383
+ only if if and only if one is a multiple of
1384
+
1385
+ 347
1386
+ 00:40:41,400 --> 00:40:49,900
1387
+ the other ูˆุงุญุฏ ููŠู‡ู… ูƒุงู† ู…ุถุนูุงุช ุงู„ุซุงู†ูŠ that is
1388
+
1389
+ 348
1390
+ 00:40:53,870 --> 00:41:00,650
1391
+ V1 ุจูŠุณุงูˆูŠ CV2 ูˆุงู„ู€ C ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ set of real
1392
+
1393
+ 349
1394
+ 00:41:00,650 --> 00:41:05,410
1395
+ numbers ุทุจุนุง ู„ูŠุดุŸ ุฃู‚ูˆู„ ู„ูˆ ู†ุฌู„ุช ู‡ุฐู‡ ุนู„ู‰ ุงู„ุดุฌุฉ ู‡ุฐู‡ ูˆ
1396
+
1397
+ 350
1398
+ 00:41:05,410 --> 00:41:10,970
1399
+ ุงู„ู„ู‡ ู‡ุฐู‡ ุนู„ู‰ ุงู„ุดุฌุฉ ู‡ุฐู‡ ุจุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุฃุญุฏ ุงู„ู…ุนุงู…ู„ุงุช
1400
+
1401
+ 351
1402
+ 00:41:10,970 --> 00:41:15,510
1403
+ ู„ุง ูŠุณุงูˆูŠ zero C ุฃู†ุง ู…ุด ุนุงุฑู ู…ู†ู‡ ู‚ุฏ ูŠูƒูˆู† zero ูˆ ู‚ุฏ
1404
+
1405
+ 352
1406
+ 00:41:15,510 --> 00:41:19,670
1407
+ ู„ุง ูŠูƒูˆู† zero ุจุณ ู…ุนุงู…ู„ ุงู„ V ู‡ูˆ ุฌุฏุงุด ูˆุงุญุฏ ุตุญูŠุญ
1408
+
1409
+ 353
1410
+ 00:41:19,670 --> 00:41:22,810
1411
+ ูˆุจุงู„ุชุงู„ูŠ enough all zeroูŠุจู‚ู‰ ู‡ุฏูˆู„ linearly
1412
+
1413
+ 354
1414
+ 00:41:22,810 --> 00:41:33,150
1415
+ dependent ู†ุนุทูŠ ู…ุซุงู„ examples example one ู„ุงู† ุจูŠู‚ูˆู„
1416
+
1417
+ 355
1418
+ 00:41:33,150 --> 00:41:36,930
1419
+ little v determine whether the vectors
1420
+
1421
+ 356
1422
+ 00:41:50,760 --> 00:41:57,360
1423
+ these are the vectors ุงู„ู„ูŠ ู‡ูˆ V1 ุจุฏู‡ ูŠุณุงูˆูŠ ุงุชู†ูŠู†
1424
+
1425
+ 357
1426
+ 00:41:57,360 --> 00:42:09,340
1427
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆ Zero ูˆุงุญุฏ and V2 ุจุฏู‡ ูŠุณุงูˆูŠ V2 ุจุฏู‡
1428
+
1429
+ 358
1430
+ 00:42:09,340 --> 00:42:18,040
1431
+ ูŠุณุงูˆูŠ ุณุชุฉ ูˆู†ุงู‚ุต ุชู„ุงุชุฉ ูˆ Zero ุชู„ุงุชุฉ areLinearly
1432
+
1433
+ 359
1434
+ 00:42:18,040 --> 00:42:27,440
1435
+ dependent or linearly independent solution ูŠุจู‚ู‰
1436
+
1437
+ 360
1438
+ 00:42:27,440 --> 00:42:31,520
1439
+ ุจู†ุฑุฌุน ู„ุณุคุงู„ ู‡ุฐุง ู…ุฑุฉ ุซุงู†ูŠุฉ ูˆ ุจู†ู‚ูˆู„ determine
1440
+
1441
+ 361
1442
+ 00:42:31,520 --> 00:42:34,800
1443
+ whether the two vectors ู‡ุฏูˆู„ are linearly
1444
+
1445
+ 362
1446
+ 00:42:34,800 --> 00:42:39,480
1447
+ dependent ูˆู„ุง linearly independent ู„ูˆ ุฑูˆุญุช ุฏู‚ูŠู‚ุฉ
1448
+
1449
+ 363
1450
+ 00:42:39,480 --> 00:42:44,150
1451
+ ุงู„ู†ุธุฑ ููŠ ุงู„ two vectors ูŠุง ู…ุงู†ุช ุฅูŠุด ุจุชู„ุงุญุธู†ูŠุŸูˆ ุฃุญุฏ
1452
+
1453
+ 364
1454
+ 00:42:44,150 --> 00:42:52,060
1455
+ ุซู„ุงุซุฉ ุฃู…ุซุงู„ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงุชู†ูŠู† ู…ุงู„ู‡ู…ุŸูŠุจู‚ู‰ ุจุงุฌูŠ
1456
+
1457
+ 365
1458
+ 00:42:52,060 --> 00:42:59,740
1459
+ ุจู‚ูˆู„ู‡ ุงู„ V2 ูŠุณุงูˆูŠ ุณุชุฉ ุณุงู„ุจ ุชู„ุงุชุฉ ูˆ Zero ุชู„ุงุชุฉ ู„ูˆ
1460
+
1461
+ 366
1462
+ 00:42:59,740 --> 00:43:04,740
1463
+ ุฃุฎุฏู†ุง ุชู„ุงุชุฉ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุตูŠุฑ ุนู†ุฏู†ุง ู‡ู†ุง ุงุชู†ูŠู† ูˆ
1464
+
1465
+ 367
1466
+ 00:43:04,740 --> 00:43:11,160
1467
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆ Zero ูˆ ูˆุงุญุฏ ู‡ุฐุง ู…ู† ู‡ูˆ V1 ูŠุจู‚ู‰ ู‡ุฐุง
1468
+
1469
+ 368
1470
+ 00:43:11,160 --> 00:43:19,610
1471
+ ูŠุณุงูˆูŠ ุชู„ุงุชุฉ V1ูŠุจู‚ู‰ ุตุงุฑุน ู‡ู†ุง V2
1472
+
1473
+ 369
1474
+ 00:43:19,610 --> 00:43:33,250
1475
+ is a multiple of V1 ู‡ุฐุง ู…ุนู†ุงุชู‡ ุงู† V1 ูˆ V2 are
1476
+
1477
+ 370
1478
+ 00:43:33,250 --> 00:43:38,550
1479
+ linearly dependent ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุซู„
1480
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/bP46PxbK2bE_postprocess.srt ADDED
@@ -0,0 +1,1804 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:19,740 --> 00:00:24,020
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุนูˆุฏ ู„ ุงู„ section ุงุจุชุฏุฃู†ุง
4
+
5
+ 2
6
+ 00:00:24,020 --> 00:00:29,360
7
+ ููŠ ุงู„ูุชุฑุฉ ุงู„ุตุจุงุญูŠุฉ ูˆ ู†ุฌูŠ ู†ูƒู…ู„ ุนู„ูŠู‡ ูŠุจู‚ู‰ ููŠู‡ุง ุจุนุถ
8
+
9
+ 3
10
+ 00:00:29,360 --> 00:00:34,020
11
+ ุงู„ุชุนุฑูŠูุงุช ุงู„ุฌุฏูŠุฏุฉ ู…ุซู„ ุงู„ singular matrix ูˆ ุงู„ non
12
+
13
+ 4
14
+ 00:00:34,020 --> 00:00:38,440
15
+ singular matrix ุงู„ู…ุตุฑูˆูุฉ ุงู„ู…ุฑุจุนุฉ ุจู‚ูˆู„ ุนู†ู‡ุง
16
+
17
+ 5
18
+ 00:00:38,440 --> 00:00:44,500
19
+ singular ู„ูˆ ุฌูŠุช ุฃุฎุฏุช ุงู„ู…ุญุฏุฏ ู„ู‡ุง ูˆ ู„ุฌูŠุชู‡ ูŠุณุงูˆูŠ
20
+
21
+ 6
22
+ 00:00:44,500 --> 00:00:50,760
23
+ ุงู„ุตูุฑnon singular ู„ูˆ ุฃุฎุฏุช ุงู„ู…ุญุฏุฏ ู„ู‡ ูˆุฌุฏุช ุงู„ู‚ูŠู…ุฉ ู„ุง
24
+
25
+ 7
26
+ 00:00:50,760 --> 00:00:54,280
27
+ ุชุณุงูˆูŠ zero singular ุจู‚ู‰ singular ุจุงู„ุนุฑุจูŠ ูŠุนู†ูŠ
28
+
29
+ 8
30
+ 00:00:54,280 --> 00:00:59,800
31
+ ุจุชุฑุฌู…ูˆู‡ุง ู…ุตู‡ูˆูุฉ ุดุงุฐุฉ ู…ุตู‡ูˆูุฉ ู…ู†ูุฑุฏุฉ ู…ุตู‡ูˆูุฉ ู…ู†ุนุฒู„ุฉ
32
+
33
+ 9
34
+ 00:00:59,800 --> 00:01:03,900
35
+ ุงู„ุชุฑุฌู…ุฉ ุงู„ู„ูŠ ุจุฏูƒูŠู‡ุง ุจุงุฎุชู„ุงู ุงู„ุชุฑุฌู…ุฉ ู…ู† ุฏูˆู„ุชูŠู†
36
+
37
+ 10
38
+ 00:01:04,000 --> 00:01:08,500
39
+ ุงู„ุฃุฎุฑู‰ ู„ูƒู† ุฏุฑุฌุฉ ุงู†ู‡ุง ู…ุตูˆูุฉ ุดุงุฐุฉ ูŠุจู‚ู‰ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ
40
+
41
+ 11
42
+ 00:01:08,500 --> 00:01:13,940
43
+ ู…ุญุฏุฏู‡ุง ูŠุณุงูˆูŠ zero ุจุณู…ูŠู‡ุง singular matrix ูˆุงู„ู…ุตูˆูุฉ
44
+
45
+ 12
46
+ 00:01:13,940 --> 00:01:18,280
47
+ ุงู„ู„ูŠ ู…ุญุฏุฏู‡ุง ู„ุง ูŠุณุงูˆูŠ zero ุจุณู…ูŠู‡ุง non singular
48
+
49
+ 13
50
+ 00:01:18,280 --> 00:01:24,260
51
+ matrix ูŠุนู†ูŠ ู…ุตูˆูุฉ ุบูŠุฑ ุดุงุฐุฉ ุฃูˆ ุบูŠุฑ ู…ู†ุนุฒู„ุฉุจู†ุฌูŠ ุงู„ุงู†
52
+
53
+ 14
54
+ 00:01:24,260 --> 00:01:30,300
55
+ ู„ู…ุดุชู‚ุฉ ุงู„ู…ุญุฏุฏ ูƒูŠู ุจู†ุญุตู„ ุนู„ู‰ ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ู„ู…ุญุฏุฏ
56
+
57
+ 15
58
+ 00:01:30,300 --> 00:01:34,360
59
+ ู…ุง ุจู†ุญุท ุงู„ุชุนุฑูŠู ูƒุงู„ุชุงู„ูŠ ู„ูˆ ูƒุงู† ุงู„ determinant ู„ุฅูŠู‡
60
+
61
+ 16
62
+ 00:01:34,360 --> 00:01:38,280
63
+ ู‡ูˆ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ุจุฏู†ุง ู…ุดุชู‚ุฉ ุงู„
64
+
65
+ 17
66
+ 00:01:38,280 --> 00:01:42,360
67
+ determinant ู„ุฅูŠู‡ ุฃูˆ ุงู„ determinant ู„ุฅูŠู‡ prime
68
+
69
+ 18
70
+ 00:01:42,360 --> 00:01:46,760
71
+ ุดูˆููˆุด ุจู†ุนู…ู„ ุจู†ุฌูŠ ุนู„ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ุงู„ู„ูŠ ุจู†ุดุชู‚ู‡ ูˆ
72
+
73
+ 19
74
+ 00:01:46,760 --> 00:01:52,110
75
+ ุจู†ุซุจุช ุจุงู‚ูŠ ุงู„ุตููˆูุจู†ุถูŠู ู„ู‡ ุจุซุจุช ุงู„ุตู ุงู„ุฃูˆู„ ูˆ ุจุดุชู‚
76
+
77
+ 20
78
+ 00:01:52,110 --> 00:01:57,070
79
+ ุงู„ุตู ุงู„ุซุงู†ูŠ ูˆ ุจุซุจุช ุจุงู‚ูŠ ุงู„ุตููˆู ุจุฑูˆุญ ุฒุงุฏ ุนู„ู‰ ุงู„ุตู
80
+
81
+ 21
82
+ 00:01:57,070 --> 00:02:00,590
83
+ ุงู„ุชุงู„ุช ูˆ ุจุดุชู‚ู‡ ุจุซุจุช ุงู„ุตููŠู† ุงู„ู„ูŠ ุฌุงุจู„ู‡ ูˆ ุจุงู‚ูŠ
84
+
85
+ 22
86
+ 00:02:00,590 --> 00:02:05,030
87
+ ุงู„ุตููˆู ุงู„ู„ูŠ .. ูˆ ุจุถู„ ู…ุณุชู…ุฑ ุนู„ู‰ ุงู„ุดุบู„ ู‡ุฐู‡ ู„ู…ุง ู†ุบุงูŠุฉ
88
+
89
+ 23
90
+ 00:02:05,030 --> 00:02:12,150
91
+ ู…ุง ุฃูˆุตู„ ู„ู„ู…ุญุฏุฏ ุฑู‚ู… N ุงู„ู„ูŠ ุจุซุจุช ูƒู„ ุงู„ุตููˆู ู…ู† ุฃุนู„ู‰
92
+
93
+ 24
94
+ 00:02:12,150 --> 00:02:17,620
95
+ ุนุฏู‰ ุงู„ุตู ุงู„ุฃุฎูŠุฑ ุจุฌูˆู† ุจุดุชู‚ู‡ุจุฌู…ุน ุจููƒุฑ ู…ุญุฏุฏุฉ ูˆ ุจุฌูŠุจ
96
+
97
+ 25
98
+ 00:02:17,620 --> 00:02:23,320
99
+ ุงู„ู†ุชุฌ ุจูƒูˆู† ุญุตู„ุช ุนู„ู‰ ู…ุดุชู‚ุฉ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ุงุทู„ุน ู‡ู†ุง
100
+
101
+ 26
102
+ 00:02:23,320 --> 00:02:28,300
103
+ ุงุดุชู‚ุช ุงู„ุตู ุงู„ุฃูˆู„ ูˆ ุซุจุช ุจุงู‚ ุงู„ุตู ุงู„ุฒุงุฆุฏ ุงุดุชู‚ุช ุงู„ุตู
104
+
105
+ 27
106
+ 00:02:28,300 --> 00:02:33,080
107
+ ุซุงู†ูŠ ูˆ ุซุจุช ุงู„ู„ูŠ ู‚ุจู„ู‡ ูˆ ุงู„ู„ูŠ ุจุนุฏู‡ุฒุงุฆุฏ ุฒุงุฆุฏ ู„ุบุงูŠุฉ ู…ุง
108
+
109
+ 28
110
+ 00:02:33,080 --> 00:02:38,020
111
+ ูˆุตู„ ู„ู…ูŠู† ู„ุขุฎุฑ ู…ุญุฏุฏ ุซุจุช ุงู„ุตููˆู ุงู„ุฃูˆู„ู‰ ูƒู„ู‡ุง ูˆุงุดุชู‚ุช
112
+
113
+ 29
114
+ 00:02:38,020 --> 00:02:43,680
115
+ ุงู„ุตู ุงู„ุฃุฎูŠุฑุฉ ู…ุฌู…ูˆุน ู‡ุฐูˆู„ ูƒู„ู‡ ู…ุน ุจุนุถ ุจูŠุนุทูŠู†ูŠ ู‚ูŠู…ุฉ
116
+
117
+ 30
118
+ 00:02:43,680 --> 00:02:49,710
119
+ ู…ุดุชู‚ุฉ ู‡ุฐุง ุงู„ู…ุญุฏุฏุฌุงู„ูŠ ู…ุซุงู„ ู„ูˆ ูƒุงู† ุนู†ุฏู†ุง ู…ุญุฏุฏ ุซู„ุงุซูŠ
120
+
121
+ 31
122
+ 00:02:49,710 --> 00:02:53,650
123
+ ุจุงู„ุดูƒู„ ู‡ุฐุง ูˆ ุฒูŠ ู…ุง ุงู†ุช ุดุงูŠูู‡ ุฏูˆุงู„ ุฌุงู„ูŠ ู‡ุงุชู„ูŠ
124
+
125
+ 32
126
+ 00:02:53,650 --> 00:03:00,550
127
+ determinant ู„ู„ A prime ูŠุนู†ูŠ ู…ุดุชู‚ุฉ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ุจู‚ูˆู„ู‡
128
+
129
+ 33
130
+ 00:03:00,550 --> 00:03:06,290
131
+ ุจุณูŠุทุฉ ุงู„ุญู„ ูƒุงู† ุชุงู„ูŠุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู„ determinant ู„ุฅูŠู‡
132
+
133
+ 34
134
+ 00:03:06,290 --> 00:03:11,490
135
+ ู„ูƒู„ prime ูŠุณุงูˆูŠ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ูŠ ุงู„ู…ุญุฏุฏ ุจุงุฌูŠ ุนู„ู‰ ุงู„ุตู
136
+
137
+ 35
138
+ 00:03:11,490 --> 00:03:16,690
139
+ ุงู„ุฃูˆู„ ู…ุดุชู‚ุฉ ุงู„ X ุชุฑุจูŠุฉ ุจู‚ุฏุงุด ุจุงุชู†ูŠู† X ู…ุดุชู‚ุฉ
140
+
141
+ 36
142
+ 00:03:16,690 --> 00:03:21,010
143
+ ุงู„ุชุงู†ูŠุฉ ุจูˆุงุญุฏ ู…ุดุชู‚ุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ X
144
+
145
+ 37
146
+ 00:03:21,010 --> 00:03:21,470
147
+ ุชุฑุจูŠุฉ
148
+
149
+ 38
150
+ 00:03:34,440 --> 00:03:39,820
151
+ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ุจุนุฏู‡ ุจุซุจุช ุงู„ุตู ุงู„ุฃูˆู„ ุฒูŠ ู…ุง ู‡ูˆุงู„ู„ูŠ ู‡ูˆ X
152
+
153
+ 39
154
+ 00:03:39,820 --> 00:03:44,960
155
+ ุชุฑุจูŠุฉ ูˆ X ู‡ูˆ ูˆุงุญุฏ ุนู„ู‰ X ุงู„ุตู ุงู„ุซุงู†ูŠ ุจุฏูŠ ุฃุดุชุงู‚ู‡
156
+
157
+ 40
158
+ 00:03:44,960 --> 00:03:49,100
159
+ ู…ุดุชุงู‚ุฉ ุงู„ E ูˆ ุงู„ six ุจุงู„ E ูˆ ุงู„ six ุงู„ุณู„ู… ู…ุดุชุงู‚ุฉ
160
+
161
+ 41
162
+ 00:03:49,100 --> 00:03:53,340
163
+ ุงู„ zero ุจุงู„ zero ูˆ ู…ุดุชุงู‚ุฉ ุงุชู†ูŠู† ุจุงู„ zero ุงู„ุตู
164
+
165
+ 42
166
+ 00:03:53,340 --> 00:04:03,140
167
+ ุงู„ุซุงู„ุซ ุฒูŠ ู…ุง ู‡ูˆุชุงู† ุงู„ X ุฎู…ุณุฉ X ุตูŠู† ุงู„ X ุฌูู„ู†ุง ุฒุงุฆุฏ
168
+
169
+ 43
170
+ 00:04:03,140 --> 00:04:09,480
171
+ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุฏุฏ ุงู„ุชุงู„ุช ุงู„ุตู ุงู„ุฃูˆู„ ุฒูŠ ู…ุง ู‡ูˆ ุจุฏูˆู†
172
+
173
+ 44
174
+ 00:04:09,480 --> 00:04:15,680
175
+ ุชุบูŠูŠุฑ ุงู„ุตู ุงู„ุซุงู†ูŠ ุฒูŠ ู…ุง ู‡ูˆ ุจุฏูˆู† ุชุบูŠูŠุฑ ุงู„ุตู ุงู„ุชุงู„ุช
176
+
177
+ 45
178
+ 00:04:15,680 --> 00:04:21,840
179
+ ุจุฏูŠ ุฃุดุชู‚ู‡ู…ู…ุดุชู‚ุฉ ุงู„ุชุงู† ุจุงู„ุณูƒุชุฑ ุจูŠู‡ุง ุงู„ู€ X ู…ุดุชู‚ุฉ
180
+
181
+ 46
182
+ 00:04:21,840 --> 00:04:28,240
183
+ ุฎู…ุณุฉ X ุจุฎู…ุณุฉ ู…ุดุชู‚ุฉ ุงู„ู€ sine ุจูŠู‡ุง ุงู„ู€ cosine X ุฑูˆุญ
184
+
185
+ 47
186
+ 00:04:28,240 --> 00:04:31,680
187
+ ูŠููƒุฑ ูƒู„ ู…ุญุฏุฏ ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุฏุซุฉ ูˆูŠุฌู…ุน ูŠูƒูˆู† ุญุตู„ู†ุง
188
+
189
+ 48
190
+ 00:04:31,680 --> 00:04:36,500
191
+ ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ู…ุดุชู‚ุฉ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุซุงู„ ุนู…ู„ูŠ ุนู„ู‰ ูƒููŠุฉ
192
+
193
+ 49
194
+ 00:04:36,500 --> 00:04:41,320
195
+ ุงู„ุญุตูˆู„ ุนู„ู‰ ู…ุดุชู‚ุฉ ู…ุญุฏุฏุฉ ุถุงูŠู‚ ู„ุฃู† ููŠ ู‡ุฐู‡ ุงู„ section
196
+
197
+ 50
198
+ 00:04:41,320 --> 00:04:48,700
199
+ ู‡ุฐู‡ ุงู„ู…ู„ุงุญุธุฉ A ุงู„ุชุงู„ูŠุฉูŠุจู‚ู‰ ุจุงุฌูŠ ุงู„ู‰ remark remark
200
+
201
+ 51
202
+ 00:04:48,700 --> 00:04:52,320
203
+ ุจุชู‚ูˆู„
204
+
205
+ 52
206
+ 00:04:52,320 --> 00:04:59,540
207
+ the value of a determinant the value of a
208
+
209
+ 53
210
+ 00:04:59,540 --> 00:05:13,690
211
+ determinant determinant of an upper ุงูˆ lowerุฃุนู„ู‰
212
+
213
+ 54
214
+ 00:05:13,690 --> 00:05:14,590
215
+ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ
216
+
217
+ 55
218
+ 00:05:14,590 --> 00:05:16,650
219
+ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ
220
+
221
+ 56
222
+ 00:05:16,650 --> 00:05:22,830
223
+ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ
224
+
225
+ 57
226
+ 00:05:22,830 --> 00:05:23,190
227
+ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ
228
+
229
+ 58
230
+ 00:05:23,190 --> 00:05:23,290
231
+ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ
232
+
233
+ 59
234
+ 00:05:23,290 --> 00:05:23,850
235
+ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ
236
+
237
+ 60
238
+ 00:05:23,850 --> 00:05:24,770
239
+ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ
240
+
241
+ 61
242
+ 00:05:24,770 --> 00:05:26,610
243
+ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ
244
+
245
+ 62
246
+ 00:05:26,610 --> 00:05:34,730
247
+ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ
248
+
249
+ 63
250
+ 00:05:34,730 --> 00:05:41,070
251
+ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ ุฃุนู„ู‰ ุฃูˆ
252
+
253
+ 64
254
+ 00:05:46,710 --> 00:05:54,890
255
+ ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช
256
+
257
+ 65
258
+ 00:05:54,890 --> 00:05:57,450
259
+ ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู†
260
+
261
+ 66
262
+ 00:05:57,450 --> 00:05:58,170
263
+ ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช
264
+
265
+ 67
266
+ 00:05:58,170 --> 00:06:00,430
267
+ ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู†
268
+
269
+ 68
270
+ 00:06:00,430 --> 00:06:00,510
271
+ ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช
272
+
273
+ 69
274
+ 00:06:00,510 --> 00:06:09,830
275
+ ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช ุงู„ูˆุญูŠุฏุฉ ู…ู† ุงู„ุดุฑูƒุงุช
276
+
277
+ 70
278
+ 00:06:15,470 --> 00:06:21,010
279
+ show that ุจูŠู‘ู„ู‘ูŠ
280
+
281
+ 71
282
+ 00:06:21,010 --> 00:06:30,330
283
+ ุฃู† ุงู„ู…ุญุฏุฏ ุชุจุน ุงุชู†ูŠู† ูˆุงุญุฏ ุณุงู„ุจ ุชู„ุงุชุฉ Zero ุณุงู„ุจ ูˆุงุญุฏ
284
+
285
+ 72
286
+ 00:06:30,330 --> 00:06:40,700
287
+ ุชู„ุงุชุฉzero zero ุณุงู„ุจ ุงุชู†ูŠู† ูŠุณุงูˆูŠ ุงู„ู…ุญุฏุฏ ุชุจุน ุงุชู†ูŠู†
288
+
289
+ 73
290
+ 00:06:40,700 --> 00:06:49,520
291
+ zero zero zero ุณุงู„ุจ ูˆุงุญุฏ zero zero zero ุณุงู„ุจ ุงุชู†ูŠู†
292
+
293
+ 74
294
+ 00:06:49,520 --> 00:06:56,980
295
+ ูŠุณุงูˆูŠ ุงุชู†ูŠู† zero zero ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ zero zero
296
+
297
+ 75
298
+ 00:06:56,980 --> 00:07:02,770
299
+ ุชู„ุงุชุฉ ุณุงู„ุจ ู†ุฑุฌุน ู„ู„ remark ุงู„ู„ูŠ ุงุญู†ุง ูƒุงุชุจูŠู†ู‡ุจู‚ูˆู„ ู„ูŠ
300
+
301
+ 76
302
+ 00:07:02,770 --> 00:07:08,170
303
+ ู‚ูŠู…ุฉ ู…ุญุฏุฏ ุงู„ู€ Upper Triangle Matrix ุฃูˆ ุงู„ู€ Lower
304
+
305
+ 77
306
+ 00:07:08,170 --> 00:07:12,430
307
+ Triangle Matrix Upper Triangle Matrix ูŠุจู‚ู‰ ุงู„ุนู†ุงุตุฑ
308
+
309
+ 78
310
+ 00:07:12,430 --> 00:07:16,350
311
+ ุชุญุช ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุฃุณูุฑุงู‹ Lower Triangle Matrix
312
+
313
+ 79
314
+ 00:07:16,350 --> 00:07:21,730
315
+ ูŠุจู‚ู‰ ุงู„ุนู†ุงุตุฑ ุฃุนู„ู‰ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุฃุณูุฑุงู‹ ุงู„ู…ุตูˆูุชูŠู†
316
+
317
+ 80
318
+ 00:07:21,730 --> 00:07:26,800
319
+ ุงู„ุฃุซู†ูŠู† ู‡ุฏูˆู„ ุฃูˆ ุงู„ู€ Diagonal Matrixุงู„ู…ุตูˆูุฉ ุงู„ู‚ุทุฑูŠุฉ
320
+
321
+ 81
322
+ 00:07:26,800 --> 00:07:30,460
323
+ ูŠุนู†ูŠ ุงู„ู„ูŠ ุนู†ุงุตุฑู‡ุง ุฃุนู„ู‰ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูˆ ุฃุณูุฑ ุงู„ู‚ุทุฑ
324
+
325
+ 82
326
+ 00:07:30,460 --> 00:07:34,680
327
+ ุงู„ุฑุฆูŠุณูŠ ูƒู„ู‡ ุฃุณูุฑุงู†ุŒ ุดูˆ ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐุงุŸ is the
328
+
329
+ 83
330
+ 00:07:34,680 --> 00:07:37,080
331
+ product of the interest of the mind ูŠู‚ูˆู„ ุฅู† ู‡ูˆ
332
+
333
+ 84
334
+ 00:07:37,080 --> 00:07:43,160
335
+ ุญุงุตู„ ุถุฑุจ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูŠุนู†ูŠ ุงู„ู…ุตูˆูุงุช ุงู„ุชู„ุงุชุฉ
336
+
337
+ 85
338
+ 00:07:43,160 --> 00:07:48,400
339
+ ุจุฏู„ ุงู„ู…ุฌุนุฏ ุฃุญุณุจ ุงู„ู…ุญุฏุฏ ู„ูƒู„ ูˆุนุฏุฉ ููŠู‡ู… ุฃู‚ูˆู„ ููƒ
340
+
341
+ 86
342
+ 00:07:48,400 --> 00:07:51,800
343
+ ุจุงุณุชุฎุฏุงู… ูƒุฐุง ูˆ ู„ุง ู„ุฃ ุจุตุฏุฑ ุจุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูˆุฎู„
344
+
345
+ 87
346
+ 00:07:51,800 --> 00:07:55,950
347
+ ุนู†ูƒ ูŠุนู†ูŠุงู„ู„ูŠ ู‚ุงู„ ู„ูˆ ุจุฏูŠ ุฃุฌูŠ ู„ู…ุญุฏุฏ ุงู„ู…ุตูˆุฑุฉ ุฏูŠ ุจุฏูŠ
348
+
349
+ 88
350
+ 00:07:55,950 --> 00:07:58,890
351
+ ุฃู‚ูˆู„ ู„ู‡ ุงุชู†ูŠู† ููŠ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุณุงู„ุจ ุงุชู†ูŠู† ูŠุจู‚ู‰
352
+
353
+ 89
354
+ 00:07:58,890 --> 00:08:03,210
355
+ ุงู„ุฌูˆุงุจ ู‚ุฏุงุดุฑุŸ ุงุฑุจุน ู‡ู†ุง ุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡ ุงุชู†ูŠู† ููŠ ุณุงู„ุจ
356
+
357
+ 90
358
+ 00:08:03,210 --> 00:08:06,610
359
+ ูˆุงุญุฏ ููŠ ุณุงู„ุจ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุจุฑุถู‡ ุงุฑุจุน ูˆู‡ู†ุง ุงุชู†ูŠู† ููŠ
360
+
361
+ 91
362
+ 00:08:06,610 --> 00:08:10,490
363
+ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุณุงู„ุจ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ุงุฑุจุน ู‡ูŠูƒ ุจุฏูŠ
364
+
365
+ 92
366
+ 00:08:10,490 --> 00:08:16,110
367
+ ุฃู‚ูˆู„ู‡ ุจุณ ุฃู†ุง ุจุฏูŠ ุฃุจูŠู† ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ู‚ุจู„ ูƒู„ ุดูŠุก
368
+
369
+ 93
370
+ 00:08:16,430 --> 00:08:22,170
371
+ ูŠุจู‚ู‰ ุงู†ุง ู„ูˆ ุฌูŠุช ุงุญู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจู‚ูˆู„ ุงู„ุญู„ ูƒุชุงู„ูŠ
372
+
373
+ 94
374
+ 00:08:22,170 --> 00:08:28,150
375
+ ูŠุจู‚ู‰ solution ุจุฏุง ุงุฌูŠ ู„ู„ู…ุญุฏุฏ ุงู„ุฃูˆู„ ุงู†ูŠ ุงุชุฃุญุณู† ุงููƒู‡
376
+
377
+ 95
378
+ 00:08:28,150 --> 00:08:34,230
379
+ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุฃูˆู„ ูˆู„ุง ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ุงู„ุนู…ูˆุฏ
380
+
381
+ 96
382
+ 00:08:34,230 --> 00:08:38,070
383
+ ุงู„ุฃูˆู„ ู„ูŠุด ููŠ ุงู„ู†ุตู ุตูุฑูŠู† ุจุญุชุงุฌ ู‡ุฌู…ุน ูŠุจู‚ู‰ ุจู‚ูˆู„ ุฒูŠ
384
+
385
+ 97
386
+ 00:08:38,070 --> 00:08:43,550
387
+ Zero ุฒูŠ Zero ุฎู„ุงุตู†ุง ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ุฐุง ุงุชู†ูŠู† ูˆ
388
+
389
+ 98
390
+ 00:08:43,550 --> 00:08:49,230
391
+ ุจุงุฌูŠ ุจุดุทุจ ุตูู‡ ูˆ ุนู…ูˆุฏู‡ ุจุถุงู„ ู‚ุฏุงุด ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุฏุฏ
392
+
393
+ 99
394
+ 00:08:49,230 --> 00:08:56,300
395
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุตุญุŸูŠุจู‚ู‰ ุงู„ุฑุฆูŠุณูŠ ู†ุงู‚ุตูŠ ุซุงู†ูˆูŠ ูŠุจู‚ู‰
396
+
397
+ 100
398
+ 00:08:56,300 --> 00:09:03,720
399
+ ุงู„ุฑุฆูŠุณูŠ ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ู…ูŠู† ููŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต Zero
400
+
401
+ 101
402
+ 00:09:03,720 --> 00:09:08,900
403
+ ูŠุจู‚ู‰ ุฌุฏุงุด ูŠุชุทู„ุน ูŠุญุตู„ ุถุฑุจ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูˆู„ุง
404
+
405
+ 102
406
+ 00:09:08,900 --> 00:09:15,960
407
+ ู„ุงู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ุฐุง ุฌุฏุงุด ุจุฏู‡ ุณุงูˆูŠ ุจุฏู‡ ุณุงูˆูŠ ุฃุฑุจุนุฉ ุทุจุนุง
408
+
409
+ 103
410
+ 00:09:15,960 --> 00:09:20,520
411
+ ุงู„ู„ูŠ ุจุนุฏู‡ Zero ููŠ ู…ุญุฏุฏู‡ Zero ููŠ ู…ุญุฏุฏู‡ Zero ูŠุจู‚ู‰
412
+
413
+ 104
414
+ 00:09:20,520 --> 00:09:25,520
415
+ ู‡ู†ุง ุจุฏูŠ ุฃู‚ูˆู„ู‡ ู‡ุฐุง ุฌุงุจู„ ู‡ูŠูƒ ูŠุจู‚ู‰ ู‡ุฐุง ู†ุงู‚ุต Zero ุงู„ู„ูŠ
416
+
417
+ 105
418
+ 00:09:25,520 --> 00:09:32,260
419
+ ุจุนุฏู‡ ู†ุงู‚ุต Zero ุฒุงุฆุฏ Zero ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุจุชุณุงูˆูŠ ุฌุฏุงุด
420
+
421
+ 106
422
+ 00:09:32,260 --> 00:09:40,580
423
+ ุฃุฑุจุนุฉุจุนุฏ ุฐู„ูƒ ุจุงู„ุฏุงุฌูŠ ู„ู„ู…ุญุฏุฏ ุงู„ุชุงู†ูŠ ุจุงุณุชุฎุฏุงู… ุงู„ุตู
424
+
425
+ 107
426
+ 00:09:40,580 --> 00:09:44,580
427
+ ุงู„ุฃูˆู„ ูˆ ุงู„ู„ู‡ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุณูŠุงู† ู…ุด ูƒู„ู‡ ู†ูุณ ุงู„ุดูŠุก
428
+
429
+ 108
430
+ 00:09:44,580 --> 00:09:51,870
431
+ ูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ ุงู‚ูˆู„ ู„ู‡ ู‡ุฐุง ุงุชู†ูŠู† freeุฃูˆุดุท ุจุตูู‡ ูˆ
432
+
433
+ 109
434
+ 00:09:51,870 --> 00:09:57,330
435
+ ุนู…ูˆุฏู‡ ุจุธู„ ุนู†ุฏู†ุง ุงู„ุฑุฆูŠุณูŠ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุณุงู„ุจ ุงุชู†ูŠู†
436
+
437
+ 110
438
+ 00:09:57,330 --> 00:10:05,300
439
+ ู†ุงู‚ุต Zero ูˆุงู„ู„ูŠ ุจุนุฏู‡ ู†ุงู‚ุต Zero ุฒุงุฆุฏ ZeroูŠุจู‚ู‰ ูƒุฏู‡
440
+
441
+ 111
442
+ 00:10:05,300 --> 00:10:11,080
443
+ ุฃุดู‡ุฏู‡ ุจุฏูŠ ูŠุนุทูŠู†ูŠุŸ ูƒุฐู„ูƒ ุฃุฑุจุนุฉ ุงู„ู„ูŠ ุจุนุฏู‡ ุงู„ุชุงู„ุช ูŠุจู‚ู‰
444
+
445
+ 112
446
+ 00:10:11,080 --> 00:10:16,740
447
+ ุจุฏุงุฌูŠ ุฃููƒู‡ ุจุงุณุชุฎุฏุงู… ุฃุตุฑ ุงู„ุตู ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู‡ุฐุง ุงุชู†ูŠู†
448
+
449
+ 113
450
+ 00:10:16,740 --> 00:10:21,880
451
+ ููŠู‡ ุทุงู„ ุงู„ู„ูŠู„ุฉ ู„ูˆุดุท ุจุตู ูˆุนู…ุฏ ุจูŠุธู„ ู†ุงู‚ุต ูˆุงุญุฏ ูู†ุงู‚ุต
452
+
453
+ 114
454
+ 00:10:21,880 --> 00:10:28,600
455
+ ุงุชู†ูŠู† ู†ุงู‚ุต ุฒูŠุฑูˆ ูŠุจู‚ู‰ ู†ุงู‚ุต ูˆุงุญุฏ ูู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต
456
+
457
+ 115
458
+ 00:10:28,600 --> 00:10:32,950
459
+ ุฒูŠุฑูˆ ูƒู„ ุงู„ู„ูŠ ุจุนุฏู‡ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„
460
+
461
+ 116
462
+ 00:10:32,950 --> 00:10:34,550
463
+ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„
464
+
465
+ 117
466
+ 00:10:34,550 --> 00:10:43,550
467
+ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„
468
+
469
+ 118
470
+ 00:10:43,550 --> 00:10:49,330
471
+ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„
472
+
473
+ 119
474
+ 00:10:49,330 --> 00:10:54,270
475
+ ู†ู‚ู„ ู†ู‚ู„ ู†ู‚ู„
476
+
477
+ 120
478
+ 00:10:55,520 --> 00:11:00,220
479
+ ูŠุจู‚ู‰ ุฅุฐุง ูƒุงู†ุช ุงู„ู…ุตูˆูุฉ diagonal matrix ุฃูˆ upper and
480
+
481
+ 121
482
+ 00:11:00,220 --> 00:11:04,680
483
+ lower triangle matrix ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ู…ุด ุชู‚ุนุฏ ุชูƒุชุจ ูˆ
484
+
485
+ 122
486
+ 00:11:04,680 --> 00:11:08,560
487
+ ู‡ุชู‚ูˆู„ูŠ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ ุญุตู„ ุถุฑุจ ุนู†ู‡ุง ุณู‚ูˆุท ุฑุฆูŠุณูŠ ูˆ
488
+
489
+ 123
490
+ 00:11:08,560 --> 00:11:11,680
491
+ ุจุชุฑูˆุญ ุชุถุฑุจ ุนู†ู‡ุง ุณู‚ูˆุท ุฑุฆูŠุณูŠ ููŠ ุจุนุถ ูˆ ุฎู„ุงุต ูŠุนู†ูŠ
492
+
493
+ 124
494
+ 00:11:11,680 --> 00:11:14,720
495
+ ุจูŠุจู‚ู‰ ุชู‚ูˆู„ูŠ ู„ูŠ ู‡ู†ุง ุงุชู†ูŠู† ููŠ ุณู„ุจ ูˆุงุญุฏ ุณู„ุจ ุงุชู†ูŠู† ูˆ
496
+
497
+ 125
498
+ 00:11:14,720 --> 00:11:17,860
499
+ ู…ุงุชูƒุชุจูŠุด ู„ุง ู…ุญุฏุฏุงุช ูˆู„ุง .. ุจุชู‚ูˆู„ูŠ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ
500
+
501
+ 126
502
+ 00:11:17,860 --> 00:11:24,160
503
+ ูƒุฐุง ู‡ุฐุง ู„ูˆ ูƒุงู†ุช upper triangleุฃูˆ Lower Triangle ุฃูˆ
504
+
505
+ 127
506
+ 00:11:24,160 --> 00:11:30,740
507
+ Diagonal Matrix ูู‚ุท ู„ุบูŠุฑ ู…ุง ุฎู„ ุฐู„ูƒ ูƒู„ุงู…ู†ุง ุบูŠุฑ ุตุญูŠุญ
508
+
509
+ 128
510
+ 00:11:30,740 --> 00:11:37,380
511
+ ูˆู‡ุฐุง ู„ุง ูŠูƒูˆู† ุฅู„ุง ู„ู…ุตููˆูุฉ ู…ุฑุจุนุฉ ุชู…ุงู… ุฅู„ู‰ ู‡ู†ุง stop
512
+
513
+ 129
514
+ 00:11:37,380 --> 00:11:42,200
515
+ intersection ู„ูŠูƒู† ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ exercises 2 ุชู…ุงู†ูŠุฉ
516
+
517
+ 130
518
+ 00:11:42,200 --> 00:11:49,570
519
+ ูŠุจู‚ู‰ exercises 2 ุชู…ุงู†ูŠุฉ ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉุงู„ุณุคุงู„
520
+
521
+ 131
522
+ 00:11:49,570 --> 00:11:58,500
523
+ ุงู„๏ฟฝ๏ฟฝูˆู„ ูˆุงู„ุณุคุงู„ ุงู„ุซุงู†ูŠ D ูˆF ูˆGูˆุจุนุฏ ุฐู„ูƒ ุฅุณุฑุงุฆูŠู„ูŠ
524
+
525
+ 132
526
+ 00:11:58,500 --> 00:12:07,760
527
+ ุงู„ุชุงู„ุช C ูˆD ูˆE ุจุนุฏ ุฐู„ูƒ ุฅุณุฑุงุฆูŠู„ูŠ ุงู„ุณุงุฏุณ ูˆุฅุณุฑุงุฆูŠู„ูŠ
528
+
529
+ 133
530
+ 00:12:07,760 --> 00:12:19,880
531
+ ุงู„ุณุงุจุน B ูˆC ูˆุจุนุฏ ุฐู„ูƒ ุฅุณุฑุงุฆูŠู„ูŠ ุงู„ุซุงู…ู† A ูˆD ูˆุจุนุฏ ุฐู„ูƒ
532
+
533
+ 134
534
+ 00:12:19,880 --> 00:12:26,620
535
+ ู…ู† ุชุณุนุฉ ู„ุบุงูŠุฉ ุชู„ุชุงุดุฑูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุซุงู„ ู…ุทู„ูˆุจ ุชุชุฏุฑุจูŠ
536
+
537
+ 135
538
+ 00:12:26,620 --> 00:12:34,600
539
+ ุนู„ูŠู‡ุง ู…ู† ุงู„ูƒุชุงุจ ุจู†ุฌูŠ ู„ section 2 9 ุงู„ู„ูŠ ู‡ูˆ ุงู„
540
+
541
+ 136
542
+ 00:12:34,600 --> 00:12:39,860
543
+ properties of
544
+
545
+ 137
546
+ 00:12:39,860 --> 00:12:45,000
547
+ determinants
548
+
549
+ 138
550
+ 00:12:47,900 --> 00:12:51,880
551
+ ูŠุจู‚ู‰ ุฎูˆุงุตุฉ ุงู„ู…ุญุฏุฏุงุช ุทุจุนุง ู‡ุฐู‡ ุงู„ุฎูˆุงุตุฉ ุฎุฏุชู‡ุง ููŠ
552
+
553
+ 139
554
+ 00:12:51,880 --> 00:12:55,700
555
+ ุงู„ุซุงู†ูˆูŠุฉ ุงู„ุนุงู…ุฉ ุจุณ ุจุงู„ุนุฑุจูŠ ุงุญู†ุง ุจุฏู†ุง ู†ูƒุฑุฑ ู‡ุฐู‡
556
+
557
+ 140
558
+ 00:12:55,700 --> 00:13:01,620
559
+ ุงู„ุฎูˆุงุตุฉ ุซู…ุงู†ูŠุฉ ู…ุฑุฉ ุซุงู†ูŠุฉ ุจุณ ุจุฏู†ุง ู†ูƒุชุจู‡ุง ุจุงู„ุงู†ุฌู„ูŠุฒูŠ
560
+
561
+ 141
562
+ 00:13:01,620 --> 00:13:06,420
563
+ ุทุจุนุง ุจุนุถ ุจู†ุงุช ุงุณุชุบุฑุจูˆุง ุชู…ุงู† ุฎูˆุงุตุฉ ุชู…ุงู† ุฎูˆุงุตุฉ ูˆูŠู…ูƒู†
564
+
565
+ 142
566
+ 00:13:06,420 --> 00:13:09,580
567
+ ูŠูƒูˆู†ูˆุง ูŠูุฑุถูˆู‡ู… ูˆูŠุฎู„ูˆู‡ู… ุนุดุฑุฉ ููŠ ุงู„ุซุงู†ูˆูŠุฉ ู„ูƒู† ุงุญู†ุง
568
+
569
+ 143
570
+ 00:13:09,580 --> 00:13:15,310
571
+ ุจู†ุฎุชุตุฑู‡ู… ููŠ ุซู…ุงู†ูŠ ุฎูˆุงุตุฉ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ูุจุงู„ูŠ ุจูŠุฌูŠ
572
+
573
+ 144
574
+ 00:13:15,310 --> 00:13:24,870
575
+ ุจู‚ูˆู„ ูุงู„ู€ A is a square matrix ู…ุตููˆูุฉ ู…ุฑุจุนุฉ ุฐูŠู†
576
+
577
+ 145
578
+ 00:13:24,870 --> 00:13:31,770
579
+ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ุงู„ determinant ู„ู„ู€ A transpose
580
+
581
+ 146
582
+ 00:13:31,770 --> 00:13:40,510
583
+ ูŠุณุงูˆูŠ ุงู„ determinant ู„ู…ูŠู† ู„ู„ู€ A for
584
+
585
+ 147
586
+ 00:13:40,510 --> 00:13:41,150
587
+ example
588
+
589
+ 148
590
+ 00:13:45,320 --> 00:13:51,240
591
+ ุงู„ู…ุญุฏุฏ ู„ู…ุตููˆูุฉ ุงูŠู‡ุŸ ุจุฏูŠ ุงุญุท ู…ุซู„ุง ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ
592
+
593
+ 149
594
+ 00:13:51,240 --> 00:13:57,860
595
+ ูŠุจู‚ู‰ ุงุจู†ุงุช ู‡ู†ุงูƒ ูŠู„ุง ุงุชู†ูŠู† ุชู„ุงุชุฉ ุซุงู„ุซ ูˆุงุญุฏ ุฒูŠุฑูˆ
596
+
597
+ 150
598
+ 00:13:57,860 --> 00:14:06,260
599
+ ูˆุงุญุฏ ุงุชู†ูŠู† ุงุฑุจุน ุฒูŠุฑูˆ ุฒูŠุฑูˆ ุชู…ุงู…ุŸ ู‡ุฐุง ู…ุญุฏุฏุจุฏูŠ ุฃุฌูŠุจ
600
+
601
+ 151
602
+ 00:14:06,260 --> 00:14:10,500
603
+ ู„ู‡ determined ุจุฏูŠ ุฃุฌูŠุจ ู„ู‡ ุงู„ transpose ุชุจุนู‡ ูˆ ุฃุฎุฏ
604
+
605
+ 152
606
+ 00:14:10,500 --> 00:14:16,000
607
+ ู„ู‡ ุงู„ู…ุญุฏุฏ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ transpose ุงู„ุตู ุงู„ุฃูˆู„ ุจุฏูŠ
608
+
609
+ 153
610
+ 00:14:16,000 --> 00:14:21,080
611
+ ูŠุตูŠุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุงู„ุตู ุงู„ุซุงู†ูŠ ุจุฏูŠ ูŠุตูŠุฑ ุงู„ุนู…ูˆุฏ
612
+
613
+ 154
614
+ 00:14:21,080 --> 00:14:27,520
615
+ ุงู„ุชุงู†ูŠ ุงู„ุตู ุงู„ุชุงู„ุช ุจุฏูŠ ูŠุตูŠุฑ ู…ุนู„ู‡ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู„ุซ
616
+
617
+ 155
618
+ 00:14:27,520 --> 00:14:33,680
619
+ ู‡ุฏูˆู„ ุงู„ู…ุญุฏุฏูŠู† ุงู„ุงุชู†ูŠู† are equal ุจู†ู‚ุฏุฑ ู†ุณุชู†ุชุฌ ุจู…ุฌุฑุฏ
620
+
621
+ 156
622
+ 00:14:33,680 --> 00:14:38,090
623
+ ุงู„ู†ุธุฑุฅู† ู‡ุฏูˆู„ ุงู„ู…ุญุฏุฏูŠู† ู…ุง ุฒูŠ ูƒูŠูุŸ ู„ูˆ ุจุฏุฃ ููƒ ู‡ุฐุง
624
+
625
+ 157
626
+ 00:14:38,090 --> 00:14:41,750
627
+ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุตู ููŠ ุงู„ุชุงู„ุช ุทุจุนุงู‹ Zero ููŠ ุงู„ู…ุญุฏุฏ
628
+
629
+ 158
630
+ 00:14:41,750 --> 00:14:45,050
631
+ ูˆ Zero ุจู€ Zero ุจูŠุถุงู„ ุฃุฑุจุนุฉ ุจุณ ููŠ ุงู„ู…ุญุฏุฏ ูˆุงุด ุจูŠุถู„
632
+
633
+ 159
634
+ 00:14:45,050 --> 00:14:50,990
635
+ ุตู ูˆ ุนู…ูˆุฏ ุจูŠุถู„ ู…ูŠู†ุŸ ุจูŠุถู„ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ู…ุธุจูˆุทุŸ ุฃุฑุจุนุฉ
636
+
637
+ 160
638
+ 00:14:50,990 --> 00:14:55,470
639
+ ููŠ ู‚ูŠู…ุฉ ู‡ุฐุง ู†ุฌูŠ ู‡ุฐุง ู„ูˆ ุฑูˆุญุช ูƒุชุจ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ
640
+
641
+ 161
642
+ 00:14:55,470 --> 00:15:01,810
643
+ ุงู„ุนู…ูˆุฏูŠ ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ุฃุฑุจุนุฉ ูˆ ู†ุดุท ุจุตู ูˆ ุนู…ูˆุฏ ุจูŠุถู„
644
+
645
+ 162
646
+ 00:15:01,810 --> 00:15:07,860
647
+ ู‡ุฐุง ุชู…ุงู…ุŸุทูŠุจ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ููŠ ุงุชู†ูŠู†
648
+
649
+ 163
650
+ 00:15:07,860 --> 00:15:13,780
651
+ ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุจู‚ู‰ ุณุจุนุฉ ููŠ ุงุฑุจุนุฉ ูˆูŠู† ุณุจุนุฉ ููŠ ุงุฑุจุนุฉ
652
+
653
+ 164
654
+ 00:15:13,780 --> 00:15:19,400
655
+ ุจุชู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ู†ุฌูŠ ู„ู‡ุง ุฏู‡ ู‡ูŠ ุงุฑุจุนุฉ ู‡ูŠ ุณุชุฉ ูˆุฒุงุฆุฏ
656
+
657
+ 165
658
+ 00:15:19,400 --> 00:15:22,980
659
+ ูˆุงุญุฏ ุณุจุนุฉ ููŠ ุงุฑุจุนุฉ ุจุชู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ูŠุจู‚ู‰ ุนู„ู‰ ูƒู„
660
+
661
+ 166
662
+ 00:15:22,980 --> 00:15:28,500
663
+ ุงู„ุฃู…ุฑ ูƒู„ู‡ ุชู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู†ูŠุจู‚ู‰ ุงู„ู€ A ู‡ูˆ ุงู„ู€
664
+
665
+ 167
666
+ 00:15:28,500 --> 00:15:31,560
667
+ determinant ู„ู„ู€ A transpose ู‡ูˆ ุงู„ู€ determinant
668
+
669
+ 168
670
+ 00:15:31,560 --> 00:15:35,780
671
+ ู„ู…ูŠู† ู„ู„ู€ A ูŠุนู†ูŠ ู„ูˆ ุฌูŠู†ุง ุงู„ู…ุตููˆูุฉ ูˆ ุฌูŠู†ุง ู…ุฏูˆุฑ
672
+
673
+ 169
674
+ 00:15:35,780 --> 00:15:40,940
675
+ ุงู„ู…ุตููˆูุฉ ูˆ ุฃุฎุฏู†ุง ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ A ูˆ ู…ุญุฏุฏ ู…ุฏูˆุฑ
676
+
677
+ 170
678
+ 00:15:40,940 --> 00:15:46,060
679
+ ุงู„ู…ุตููˆูุฉ ุจู„ุงุฌ ุงู„ุฃุชู†ูŠู† are equal ู„ุงุชุชุบูŠุฑ ู‡ุฐู‡
680
+
681
+ 171
682
+ 00:15:46,060 --> 00:15:56,180
683
+ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ุงู„ุฎุงุตูŠุฉ ุงู„ุซุงู†ูŠุฉ if every elementุฅุฐุง
684
+
685
+ 172
686
+ 00:15:56,180 --> 00:16:11,180
687
+ ูƒุงู† ูƒู„ ุนู†ุตุฑ in a row ููŠ ุฃูŠ ุตูุฑ ุฃูˆ ู‚ู„ู… ููŠ ุตูุฑ ุฃูˆ
688
+
689
+ 173
690
+ 00:16:11,180 --> 00:16:18,620
691
+ ุนู…ูˆุฏ of a is zero then
692
+
693
+ 174
694
+ 00:16:21,770 --> 00:16:27,650
695
+ ุงู„ู€ determinant ู„ู„ู€ A ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ 0
696
+
697
+ 175
698
+ 00:16:27,650 --> 00:16:37,730
699
+ for exampleูƒู…ุซุงู„ ุนู„ู‰ ุฐู„ูƒ ู„ูˆ ุฃุฎุฏุช ุจุฏูŠ ุฃุฎู„ูŠ ุฃุญุฏ
700
+
701
+ 176
702
+ 00:16:37,730 --> 00:16:44,290
703
+ ุงู„ุตููˆู ุฃูˆ ุฃุญุฏ ุงู„ุฃุนู…ุฏุฉ ุฃุตูุฑุง ูŠุจู‚ู‰ ุจุฏุงู„ูŠ ุงู‚ูˆู„ ุงุชู†ูŠู†
704
+
705
+ 177
706
+ 00:16:44,290 --> 00:16:52,670
707
+ ุฒูŠุฑูˆ ุชู„ุงุชุฉ ูˆุงุญุฏ ุฒูŠุฑูˆ ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต ุชู„ุงุชุฉ ุฒูŠุฑูˆ
708
+
709
+ 178
710
+ 00:16:52,670 --> 00:17:00,230
711
+ ุงุชู†ูŠู† ูƒุฏู‡ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ู‡ุฐุงุŸุตูุฑ ู„ุฃู† ุฃุญุฏ ุงู„ุฃุนู…ุฏุฉ ูƒุงู†
712
+
713
+ 179
714
+ 00:17:00,230 --> 00:17:04,410
715
+ ุฃุตูุฑ ูŠุจู‚ู‰ ุฅุฐุง ูƒุงู† ุฃุญุฏ ุงู„ุตููˆู ุฃุตูุฑ ุฃูˆ ุฃุญุฏ ุงู„ุฃุนู…ุฏุฉ
716
+
717
+ 180
718
+ 00:17:04,410 --> 00:17:10,230
719
+ ุฃุตูุฑ ูู‚ูŠู…ุฉ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ zero ุจุชุนุฑููˆุง ู„ูŠุดุŸู„ุงู†
720
+
721
+ 181
722
+ 00:17:10,230 --> 00:17:14,210
723
+ ุงู†ุง ุจุฏูŠ ุงููƒุฑ ุงู„ู…ุญุฏุฏ ุจุงุณุชุฎุฏุงู… ุงู„ุนู…ูˆุฏูŠ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰
724
+
725
+ 182
726
+ 00:17:14,210 --> 00:17:18,090
727
+ zero ููŠ ู…ุญุฏุฏู‡ ู†ุงู‚ุต zero ููŠ ู…ุญุฏุฏู‡ ุฒุงุฆุฏ zero ูˆู…ุญุฏุฏ
728
+
729
+ 183
730
+ 00:17:18,090 --> 00:17:22,770
731
+ ูƒู„ู‡ ุจ zero ูŠุจู‚ู‰ ุฎู„ุงุต ุงู„ู†ุชูŠุฌุฉ ุชุณุงูˆูŠ zero ุงู„ุฎุงุตูŠุฉ
732
+
733
+ 184
734
+ 00:17:22,770 --> 00:17:25,150
735
+ ุซุงู„ุซุฉ ุทุจุนุง ุงู†ุง ุงุฎุฏุชู‡ุง ููŠ ุงู„ุซุงู†ูˆูŠุฉ ูŠุจู‚ู‰ ุงุญู†ุง ุจุณ
736
+
737
+ 185
738
+ 00:17:25,150 --> 00:17:34,290
739
+ ุจู†ุนูŠุฏ ุงูˆ ุจู†ุฐูƒุฑ ุจู‡ุง ุชุฐูƒุฑ if if every element ุงุฐุง
740
+
741
+ 186
742
+ 00:17:34,290 --> 00:17:38,610
743
+ ูƒุงู† ูƒู„ ุนู†ุตุฑ in one
744
+
745
+ 187
746
+ 00:17:39,970 --> 00:17:50,310
747
+ raw ุฃูˆ call ููŠ ุฃูŠ ุตูู‚ุฉ ุฃูˆ ููŠ ุนู…ูˆุฏูŠ of a is
748
+
749
+ 188
750
+ 00:17:50,310 --> 00:17:59,310
751
+ multiplied ู„ูˆ
752
+
753
+ 189
754
+ 00:17:59,310 --> 00:18:08,070
755
+ ุถุฑุจู†ุงู‡ by the number c
756
+
757
+ 190
758
+ 00:18:11,190 --> 00:18:19,670
759
+ then the determinant of
760
+
761
+ 191
762
+ 00:18:19,670 --> 00:18:30,790
763
+ the resulting matrix ู…ุญุฏุฏ
764
+
765
+ 192
766
+ 00:18:30,790 --> 00:18:37,850
767
+ ุงู„ู…ุตูˆูุฉ ุงู„ู†ุงุชุฌุฉ equals to
768
+
769
+ 193
770
+ 00:18:39,320 --> 00:18:45,940
771
+ C ููŠ ุงู„ู€ determinant ู„ู„ู€ A ูŠุจู‚ู‰ C ููŠ ุงู„
772
+
773
+ 194
774
+ 00:18:45,940 --> 00:18:59,340
775
+ determinant ู„ู„ู€ A for example ู…ุซู„ุง
776
+
777
+ 195
778
+ 00:18:59,340 --> 00:19:06,730
779
+ ู‚ูˆู„ูŠ ุชู„ุงุชุฉ ููŠ ุงู„ู…ุญุฏุฏู†ุงุฎุฏ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ููˆู‚ ูˆู„ุง ุจุณ
780
+
781
+ 196
782
+ 00:19:06,730 --> 00:19:12,030
783
+ ู†ุบูŠุฑ ุงู„ุฃุตูุฑ ุฃูŠ ูˆุงุญุฏ ู…ู† ุงู„ู„ูŠ ููˆู‚ ูŠุจู‚ู‰ ู„ูˆ ู‚ู„ุช ุงุชู†ูŠู†
784
+
785
+ 197
786
+ 00:19:12,030 --> 00:19:19,450
787
+ ุชู„ุงุชุฉ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ zero ุงุชู†ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ ูˆุงุญุฏ
788
+
789
+ 198
790
+ 00:19:19,450 --> 00:19:21,790
791
+ ู†ุงู‚ุต ุงุชู†ูŠู† ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
792
+
793
+ 199
794
+ 00:19:24,560 --> 00:19:30,680
795
+ ุฅุฐุง ุจุฏู‰ ุฃุถุฑุจ ู‡ุฐุง ุงู„ุฑู‚ู… ููŠู‡ ู…ุญุฏุฏุด ุจู‚ูˆู„ ุฅุฐุง ูƒุงู† ูƒู„
796
+
797
+ 200
798
+ 00:19:30,680 --> 00:19:35,360
799
+ ุงู„ .. ุฅุฐุง ูƒุงู† every element in one row ุฃูˆูƒู† of A
800
+
801
+ 201
802
+ 00:19:35,360 --> 00:19:40,520
803
+ is multiplied by a number C ูŠุนู†ูŠ ุถุฑุจู†ุง C ููŠ ุฃุญุฏ
804
+
805
+ 202
806
+ 00:19:40,520 --> 00:19:44,160
807
+ ุงู„ุตููˆู ูŠุนู†ูŠ ููŠ ุฌู…ูŠุน ุงู„ุนู†ุงุตุฑ ุงู„ู„ู‰ ู…ูˆุฌูˆุฏุฉ ููŠู‡ุง
808
+
809
+ 203
810
+ 00:19:44,160 --> 00:19:48,760
811
+ ุงู„ุตููˆู ุฃูˆ ุฃุญุฏ ุงู„ุฃุนู…ุฏุฉ ููŠ ุฌู…ูŠุน ุนู†ุงุตุฑ ุฃุญุฏ ุงู„ุฃุนู…ุฏุฉ
812
+
813
+ 204
814
+ 00:19:49,090 --> 00:19:53,850
815
+ then the determinant of the resulting matrix ู…ุญุฏุฏ
816
+
817
+ 205
818
+ 00:19:53,850 --> 00:19:58,230
819
+ ุงู„ู…ุตูˆูุฉ ุงู„ู†ุงุชุฌุฉ equal to C ููŠ ุงู„ determinant ู„A
820
+
821
+ 206
822
+ 00:19:58,230 --> 00:20:02,430
823
+ ูƒุงู†ูˆุง ุจูŠู‚ูˆู„ูˆุง ูŠุฎู„ูˆุง ุงู„ C ุจุฑุง ูˆ ูŠุฌูŠุจูˆุง ุงู„ู…ุญุฏุฏ ู„ุญุงู„ู‡
824
+
825
+ 207
826
+ 00:20:02,430 --> 00:20:06,890
827
+ ูˆ ูŠุถุฑุจูˆุง ููŠ ุงู„ C ุงู‡ ุงูŠุด ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงุณุชู†ูˆุง
828
+
829
+ 208
830
+ 00:20:06,890 --> 00:20:13,070
831
+ ุดูˆูŠุฉู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ู‡ ู„ูˆ ุถุฑุจุช ุฑู‚ู… ููŠู‡ ู…ุญุฏุฏ ูŠุจู‚ู‰
832
+
833
+ 209
834
+ 00:20:13,070 --> 00:20:18,410
835
+ ู‡ุฐุง ุงู„ุฑู‚ู… ุจุฏูŠ ุฃุถุฑุจู‡ ููŠ ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ู…ุญุฏุฏ ูˆู„ุง ุจุณ ููŠ
836
+
837
+ 210
838
+ 00:20:18,410 --> 00:20:19,750
839
+ ุตู ุฃูˆ ุนู…ูˆุฏ
840
+
841
+ 211
842
+ 00:20:23,270 --> 00:20:27,930
843
+ ููŠ ุตูุฉ ุฃูˆ ุนู…ูˆุฏ ุจุณ ููŠ ุงู„ู…ุตููˆูุฉ ุฅุฐุง ุฑุจุท ุฑู‚ู… ููŠ
844
+
845
+ 212
846
+ 00:20:27,930 --> 00:20:32,310
847
+ ู…ุตููˆูุฉ ุจุถุบุท ููŠู‡ ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ู…ุตููˆูุฉ ุจู„ุง ุงุณุชุซู†ุงุก
848
+
849
+ 213
850
+ 00:20:32,310 --> 00:20:36,830
851
+ ู„ูƒู† ููŠ ุญุงู„ุฉ ุงู„ู…ุญุฏุฏุฉ ุจุชุถุฑุจ ุฑู‚ู… ููŠ ู…ุญุฏุฏ ุจุชุถุฑุจู‡ ูู‚ุท
852
+
853
+ 214
854
+ 00:20:36,830 --> 00:20:42,210
855
+ ููŠ ุฃุญุฏ ุงู„ุตููˆู ุฃูˆ ุฃุญุฏ ุงู„ุฃุนู…ุฏ ุงู„ู„ูŠ ูŠุนุฌุจูƒ ููŠู‡ู…
856
+
857
+ 215
858
+ 00:20:42,210 --> 00:20:46,890
859
+ ูˆุจุงู„ุชุงู„ูŠ ู…ุงุนู†ุฏู‡ุงุด ู…ุดูƒู„ุฉ ูˆุจุงู„ุชุงู„ูŠ ู„ูˆ ุนู†ุฏูŠ ู…ู‚ุฏุงุฑ
860
+
861
+ 216
862
+ 00:20:46,890 --> 00:20:51,470
863
+ ู…ุดุชุฑูƒ ุฃูˆ ุฑู‚ู… ู…ุดุชุฑูƒ ุจูŠู† ุนู†ุงุตุฑ ุฃูŠ ุตู ุฃูˆ ุนู†ุงุตุฑ ุฃูŠ
864
+
865
+ 217
866
+ 00:20:51,470 --> 00:20:55,690
867
+ ุนู…ูˆุฏ ููŠุฌุจ ู†ู‚ูˆู„ู‡ ุฎุฏู‡ ุจุฑุงุจุตูŠุฑ ูƒุฃู†ู‡ ู…ุถุฑูˆุจ ููŠ ูƒู„
868
+
869
+ 218
870
+ 00:20:55,690 --> 00:21:02,950
871
+ ุงู„ู…ุญุฏุฏ ุงู‡ ูŠุนู†ูŠ ู‡ุฐุง ุจู‚ุฏุฑ ุงูƒุชุจู‡ ูŠุณุงูˆูŠ ุงูŠู‡ ุงู„ู…ุญุฏุฏุŸ
872
+
873
+ 219
874
+ 00:21:02,950 --> 00:21:07,690
875
+ ุงูŠู‡ ุฑุฃูŠูƒ ู†ุถุฑุจู‡ ููŠ ุงู„ุตูุฉ ุงู„ุชุงู†ูŠุฉุŸุชุงู†ู‰ ุงูˆ ุงู„ุนู…ูˆุฏ
876
+
877
+ 220
878
+ 00:21:07,690 --> 00:21:10,690
879
+ ุงู„ุชุงู„ุช ุงูˆ ุงู„ุนู…ูˆุฏ ุงู„ุงูˆู„ ุงูˆ ุงุตู„ุง ุงูŠู‡ ุงู„ู„ูŠ ุจุฏูŠู‡ ูƒูŠู‡ ูˆ
880
+
881
+ 221
882
+ 00:21:10,690 --> 00:21:14,550
883
+ ุงูŠู‡ ูƒู„ ูˆุงุญุฏุฉ ุชุถุฑุจ ููŠ ุตูŠู†ุชู‡ ู‡ุฐุง ุจูŠุนุชุจุฑ ุชู„ุช ุงุตูˆู„ ุชู„ุช
884
+
885
+ 222
886
+ 00:21:14,550 --> 00:21:18,350
887
+ ุนู…ู„ูŠุฉ ุณุชุฉ ูƒู„ ูˆุง๏ฟฝ๏ฟฝุฏุฉ ุชุถุฑุจ ุดูƒู„ ูˆ ุชุทู„ุน ุงู„ู†ุชุฌ ู‡ุชู„ุงู‚ูŠ
888
+
889
+ 223
890
+ 00:21:18,350 --> 00:21:23,050
891
+ ูƒู„ู‡ู… ูŠุณูˆูˆุง ุจุนุถ ุชู…ุงู…ุŸ ุงุฐุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณูˆูŠ ู„ูˆ
892
+
893
+ 224
894
+ 00:21:23,050 --> 00:21:27,850
895
+ ุถุฑุจุช ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุงูˆู„ ุจูŠุตูŠุฑ ุณุชุฉ ุณุงู„ุจ ุชู„ุงุชุฉ ุณุงู„ุจ
896
+
897
+ 225
898
+ 00:21:27,850 --> 00:21:32,630
899
+ ุชุณุนุฉ ูˆ ู‡ู†ุง ุชู„ุงุชุฉ ุฒูŠุฑูˆุง ูˆุงุญุฏ ูˆุงุญุฏ ุงุชู†ูŠู† ุณุงู„ุจ ุงุชู†ูŠู†
900
+
901
+ 226
902
+ 00:21:32,630 --> 00:21:41,060
903
+ ุดูƒู„ ุงู†ุงูŠุจู‚ู‰ ู„ูˆ ุถุฑุจุช ุฑู‚ู… ููŠู‡ ู…ุญุฏุฏ ู‡ุฐุง ุจุถุฑุจู‡ ููŠ ุฃุญุฏ
904
+
905
+ 227
906
+ 00:21:41,060 --> 00:21:45,100
907
+ ุงู„ุตููˆู ุฃูˆ ุฃุญุฏ ุงู„ุฃุนู…ุฏุฉ ุงู„ู„ูŠ ูŠุฌูŠ ููŠ ุจุงู„ูƒ ุถุฑุจู‡ ููŠู‡
908
+
909
+ 228
910
+ 00:21:45,100 --> 00:21:52,320
911
+ ูˆููŠ ุงู„ู…ู‚ุงุจู„ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠู† ุฃุญุฏ ุงู„ุฃุนู…ุฏุฉ
912
+
913
+ 229
914
+ 00:21:52,320 --> 00:21:57,120
915
+ ุฃูˆ ุฃุญุฏ ุงู„ุตููˆู ุจู‚ุฏุฑ ุฃุนู…ู„ ู…ุดุชุฑูƒ ุฃุทู„ุนู‡ ุจุฑุง ุงู„ู…ุญุฏุฏ
916
+
917
+ 230
918
+ 00:21:57,120 --> 00:22:01,340
919
+ ูู…ุซู„ุง ู„ูˆ ุฃู†ุง ู†ุงุณ ู‡ู†ุง ู…ุงุนูŠุด ุฎุจุฑ ู‡ุฐูŠ ูˆุฌู‡ุช ู‡ุฐูŠ ููŠ
920
+
921
+ 231
922
+ 00:22:01,340 --> 00:22:07,080
923
+ ุจูŠู†ู‡ู… ุนุงู…ู„ ู…ุดุชุฑูƒ ููŠ ุชู„ุงุชุฉูˆููŠ ุณุงู„ุจ ุชู„ุงุชุฉ ูƒู…ุงู† ูŠุนู†ูŠ
924
+
925
+ 232
926
+ 00:22:07,080 --> 00:22:11,320
927
+ ุงู†ุง ู…ู…ูƒู† ุจุฏู„ ุชู„ุงุชุฉ ุงุฎุฏ ุณุงู„ุจ ุชู„ุงุชุฉ ูˆุงุฑูˆุญ ุงู‚ูˆู„ูƒ ู‡ุฐุง
928
+
929
+ 233
930
+ 00:22:11,320 --> 00:22:17,580
931
+ ูŠุณุงูˆูŠ ุณุงู„ุจ ุชู„ุงุชุฉ ููŠ ุงู„ู…ุญุฏุฏ ุจูŠุธู„ ู‡ู†ุง ูƒุฏู‡ุด ุณุงู„ุจ
932
+
933
+ 234
934
+ 00:22:17,580 --> 00:22:23,340
935
+ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ ุจูŠุธู„ ู‡ู†ุง ูˆุงุญุฏ ูˆ ุจูŠุธู„ ู‡ู†ุง zero
936
+
937
+ 235
938
+ 00:22:23,340 --> 00:22:29,120
939
+ ุงุชู†ูŠู† ูˆ ุจูŠุธู„ ู‡ู†ุง ุชู„ุงุชุฉ ูˆ ู‡ู†ุง ูˆุงุญุฏ ูˆ ู‡ู†ุง ุณุงู„ุจ ุงุชู†ูŠู†
940
+
941
+ 236
942
+ 00:22:29,680 --> 00:22:34,840
943
+ ู‡ูŠ ุนู†ุฏูƒ ุชู„ุงุช ู…ุญุฏุฏุงุช ููŠ ุงู„ูƒู‡ุงุฏุฉ ู„ุญุฏ ููŠ ุงู„ูƒู‡ุงุฏุฉ ู„ุญุฏ
944
+
945
+ 237
946
+ 00:22:34,840 --> 00:22:38,120
947
+ ูˆุถุฑุจูŠู‡ ุชู„ุงุชุฉ ููŠ ุงู„ูƒู‡ุงุฏุฉ ูˆุถุฑุจูŠู‡ ููŠ ุณู„ุจ ุชู„ุงุชุฉ ูƒู„ู‡
948
+
949
+ 238
950
+ 00:22:38,120 --> 00:22:43,480
951
+ ุจุฏูŠ ุฃุทู„ุน ู†ูุณูŠ ุงู„ุฅุฌุงุจุฉ ูŠุจู‚ู‰ ุฅุฐุง ุถุฑุจุช ุนุฏุฏ ููŠ ู…ุญุฏุฏ
952
+
953
+ 239
954
+ 00:22:43,480 --> 00:22:47,660
955
+ ุจุถุฑุจ ุจุณ ููŠ ุฃุญุฏ ุงู„ุตููˆู ุฃูˆ ุฃุญุฏ ุงู„ุฃุนู…ุฏุฉ ุฅุฐุง ุจุฏูŠ ุฃุนู…ู„
956
+
957
+ 240
958
+ 00:22:47,660 --> 00:22:52,500
959
+ ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ู„ูˆ ููŠ ุนู…ู„ ู…ุดุชุฑูƒ ู…ู† ุฃุญุฏ ุงู„ุตููˆู ุฃูˆ
960
+
961
+ 241
962
+ 00:22:52,500 --> 00:22:57,500
963
+ ุฃุญุฏ ุงู„ุฃุนู…ุฏุฉ ุจุงุฎุฏู‡ ุจุฑุง ุฃูŠู‡ ุนุดุงู† ุจุฑุง ุงู„ู…ุญุฏุฏ ุฏูŠ .. ุฏูŠ
964
+
965
+ 242
966
+ 00:22:57,500 --> 00:22:57,980
967
+ ุขูŠุฉ
968
+
969
+ 243
970
+ 00:23:01,080 --> 00:23:05,440
971
+ ุนุงู…ู„ ู…ุดุชุฑูƒ ูˆุถุฑุจุชู‡ ููŠ ุตูุฉ ุนู…ูˆุฏ ูŠุนู†ูŠ ูˆุงุญุฏ ุชุงู†ูŠ ุบูŠุฑ
972
+
973
+ 244
974
+ 00:23:05,440 --> 00:23:08,540
975
+ ุงู† ุงู†ุง ุงุฎุฏ ู…ู†ู‡ ุฑุงุญ ูŠุทู„ุน ู†ูุณ ุงู„ุงุดูŠ ุตุญูŠุญ ุจุชู‚ูˆู„
976
+
977
+ 245
978
+ 00:23:08,540 --> 00:23:13,080
979
+ ุฒู…ู„ุชูƒู… ู…ุง ูŠุงุชูŠ ุงูุชุฑุถ ุงู†ูŠ ุงุฎุฏุช ุงู†ุง ุนุงู…ู„ ู…ุดุชุฑูƒ ู‡ู†ุง
980
+
981
+ 246
982
+ 00:23:13,080 --> 00:23:17,860
983
+ ุงุฎุฏุชู‡ ู…ู† ู…ูŠู† ุงุฎุฏุชู‡ ู…ู† ุงู„ุนู…ูˆุฏ ุงู„ุงูˆู„ ุจุฏุฑูˆุญ ุงุถุฑุจู‡ ููŠ
984
+
985
+ 247
986
+ 00:23:17,860 --> 00:23:23,230
987
+ ุงู„ุตูุฉ ุงู„ุชุงู†ูŠุฉุชุถุฑุจ ููŠ ุงู„ุตู ุงู„ุชุงู†ูŠุŒ ู…ุธุจูˆุท ูˆู„ุง ู„ุงุŸ ู‡ู„
988
+
989
+ 248
990
+ 00:23:23,230 --> 00:23:27,470
991
+ ุณุชุชุบูŠุฑ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏุŸ ู„ุงุŒ ุงุถุฑุจ ููŠ ุฃูŠ ุตูุฉ ูŠุนู…ุฏ ุงู„ู„ูŠ
992
+
993
+ 249
994
+ 00:23:27,470 --> 00:23:31,150
995
+ ุจุฏูƒูŠุงุŒ ูƒู„ ูˆุงุญุฏุฉ ุชุถุฑุจ ุงู„ุดูƒู„ ูˆุฑูˆุญ ุฃุญุณุจ ุงู„ู†ุชุฌ ุฒูŠ ู…ุง
996
+
997
+ 250
998
+ 00:23:31,150 --> 00:23:38,170
999
+ ูƒู†ุง ุจู†ุญุณุจู‡ ู‚ุจู„ ู‚ู„ูŠู„ุŒ ูƒู„ู‡ ุณูŠุนุทูŠู†ูŠ ู†ูุณ ุงู„ู†ุชูŠุฌุฉ ู†ู†ุชู‚ู„
1000
+
1001
+ 251
1002
+ 00:23:38,170 --> 00:23:46,370
1003
+ ุงู„ุขู† ุฅู„ู‰ ุงู„ุฎุงุตูŠุฉ ุงู„ุฑุงุจุนุฉุŒ ุงู„ุฎุงุตูŠุฉ ุงู„ุฑุงุจุนุฉ ุจุชู‚ูˆู„
1004
+
1005
+ 252
1006
+ 00:23:46,370 --> 00:23:46,630
1007
+ F
1008
+
1009
+ 253
1010
+ 00:23:50,880 --> 00:24:02,560
1011
+ two rows ุงูˆ columns ุงุฐุง ุนู†ุฏูŠ ุตููŠู† ุงูˆ ุนู…ูˆุฏูŠู† ุงุฐุง
1012
+
1013
+ 254
1014
+ 00:24:02,560 --> 00:24:08,280
1015
+ ุนู†ุฏูŠ ุตููŠู† ุงูˆ ุนู…ูˆุฏูŠู† ุงุฐุง ุนู†ุฏูŠ ุตููŠู† ุงูˆ ุนู…ูˆุฏูŠู† ุงุฐุง
1016
+
1017
+ 255
1018
+ 00:24:08,280 --> 00:24:08,300
1019
+ ุนู†ุฏูŠ ุตููŠู† ุงูˆ ุนู…ูˆุฏูŠู† ุงุฐุง ุนู†ุฏูŠ ุตููŠู† ุงูˆ ุนู…ูˆุฏูŠู† ุงุฐุง
1020
+
1021
+ 256
1022
+ 00:24:08,300 --> 00:24:08,540
1023
+ ุนู†ุฏูŠ ุตููŠู† ุงูˆ ุนู…ูˆุฏูŠู† ุงุฐุง ุนู†ุฏูŠ ุตููŠู† ุงูˆ ุนู…ูˆุฏูŠู† ุงุฐุง
1024
+
1025
+ 257
1026
+ 00:24:08,540 --> 00:24:15,840
1027
+ ุนู†ุฏูŠ ุตููŠู† ุงูˆ ุนู…ูˆุฏูŠู† ุงุฐุง ุนู†ุฏูŠ ุตููŠู† ุงูˆ ุนู…
1028
+
1029
+ 258
1030
+ 00:24:21,140 --> 00:24:34,280
1031
+ determinant of the resulting matrix ู…ุญุฏุฏ ุงู„ู…ุตูˆูุฉ
1032
+
1033
+ 259
1034
+ 00:24:34,280 --> 00:24:40,380
1035
+ ุงู„ู†ุชูŠุฌุฉ equals equals
1036
+
1037
+ 260
1038
+ 00:24:40,380 --> 00:24:48,920
1039
+ to minus the determinant ู„ู„ A for example
1040
+
1041
+ 261
1042
+ 00:25:11,730 --> 00:25:17,970
1043
+ ุงู„ุฎุงุตูŠุฉ ุฏูŠ ูŠุง ุจู†ุงุช ุจุชู‚ูˆู„ู„ูˆ ุจุฏู„ุช ุตู ู…ูƒุงู† ุตู ุฃูˆ ุนู…ูˆุฏ
1044
+
1045
+ 262
1046
+ 00:25:17,970 --> 00:25:22,810
1047
+ ู…ูƒุงู† ุนู…ูˆุฏ ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจุชุชูุถู„ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ูƒู…
1048
+
1049
+ 263
1050
+ 00:25:22,810 --> 00:25:28,530
1051
+ ู‡ูŠ ุจุณ ุจุชุฌูŠู† ุงู…ูŠู† ุงุดุงุฑุฉ ุณุงู„ุจ ูู‚ุท ู„ุง ุบูŠุฑ ุทู„ุนูŠ ู„ูŠ ู‡ู†ุง
1052
+
1053
+ 264
1054
+ 00:25:28,530 --> 00:25:33,790
1055
+ ู‡ุงูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ุณุชุฉ ุฎู…ุณ ู‡ู†ุจุฏู„ ุงูŠ ุตู ุจุฏูƒูŠุง ุงูˆ ุงูŠ
1056
+
1057
+ 265
1058
+ 00:25:33,790 --> 00:25:39,150
1059
+ ุนู…ูˆุฏ ุญุจ ู†ุจุฏู„ ุงูŠ ุตู ูˆู„ุง ุงูŠ ุนู…ูˆุฏ ุตู ูˆู„ุง ุนู…ูˆุฏ ุตู ุตู
1060
+
1061
+ 266
1062
+ 00:25:39,150 --> 00:25:40,490
1063
+ ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู
1064
+
1065
+ 267
1066
+ 00:25:40,490 --> 00:25:43,750
1067
+ ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู
1068
+
1069
+ 268
1070
+ 00:25:43,750 --> 00:25:44,640
1071
+ ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตู ุตูุจุชุงู†ูŠ
1072
+
1073
+ 269
1074
+ 00:25:44,640 --> 00:25:49,580
1075
+ ูˆู…ูŠู†ุŸ ูˆ ุงู„ุชุงู„ุช .. ุงู„ุชุงู†ูŠ ูˆ ุงู„ุชุงู„ุช ูŠุจู‚ู‰ ู‡ุฐุง ุจุงู„ุถุจุท
1076
+
1077
+ 270
1078
+ 00:25:49,580 --> 00:25:55,040
1079
+ ุจุฏูŠ ูŠุณูˆูŠ ุณู„ุจ ุงู„ุฃูˆู„ ุฒูŠ ู…ุง ู‡ูˆ ู‡ูŠ ุณุชุฉ ุฎู…ุณุฉ ูˆู‡ูŠ ุงุชู†ูŠู†
1080
+
1081
+ 271
1082
+ 00:25:55,040 --> 00:26:01,060
1083
+ ู†ุงู‚ุต ุฎู…ุณุฉ ูˆุงุญุฏ ูˆู‡ูŠ ูˆุงุญุฏ ุฒูŠุฑ ูˆ ุชู„ุงุชุฉ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ู‡ูˆ
1084
+
1085
+ 272
1086
+ 00:26:01,060 --> 00:26:05,600
1087
+ ู†ูุณ ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ุนู†ุฏู‡ุง ุฏูŠ ุจุณ ุจุฅุดุงุฑุฉ ุณุงู„ุจ ุทุจ ูƒูŠู ุจุฏูŠ
1088
+
1089
+ 273
1090
+ 00:26:05,600 --> 00:26:12,850
1091
+ ุฃุชุฃูƒุฏุŸgood exercise ู„ูƒ ุฑูˆุญ ุงุณู…ู‡ ู„ู„ู…ุญุฏุฏ ู‡ุฐุง ูˆุงู„ู…ุญุฏุฏ
1092
+
1093
+ 274
1094
+ 00:26:12,850 --> 00:26:18,770
1095
+ ุงู„ุชุงู†ูŠ ู‡ุชู„ุงู‚ูŠ ู†ูุณ ุงู„ู‚ูŠู…ุฉ ุจุณ ุจุฅุดุงุฑุฉ ู…ุฎุงู„ูุฉ ุทูŠุจ
1096
+
1097
+ 275
1098
+ 00:26:18,770 --> 00:26:28,090
1099
+ ุงู„ู†ู‚ุทุฉ ุงู„ุฎุงู…ุณุฉ ุงู„ู†ู‚ุทุฉ ุงู„ุฎุงู…ุณุฉ if two rows if two
1100
+
1101
+ 276
1102
+ 00:26:28,090 --> 00:26:36,790
1103
+ rows ุงูˆ columns ุงุฐุง ูƒุงู† ุนู†ุฏ ุตููŠู† ุงูˆ ุนู…ูˆุฏูŠู† of
1104
+
1105
+ 277
1106
+ 00:27:01,180 --> 00:27:11,940
1107
+ ุงู„ู…ุญุฏุฏ ุซู„ุงุซ ุงุฑุจุน ูˆุงุญุฏ ุฒูŠุฑูˆุฃูˆ ู‡ู†ุง zero ุนู„ู‰ ู‡ุฐุง
1108
+
1109
+ 278
1110
+ 00:27:11,940 --> 00:27:20,820
1111
+ ุงู„ุชู„ุชุฉ ู‡ู†ุง zero ู‡ู†ุง ุงุชู†ูŠู† ู‡ู†ุง zero ูˆุงุญุฏ ุฎู…ุณุฉ ูˆุงุญุฏ
1112
+
1113
+ 279
1114
+ 00:27:25,720 --> 00:27:31,400
1115
+ ู…ุงุดูŠ ุจู‚ูˆู„ ู„ูŠู‡ุŸ ุจู‚ูˆู„ ุฅุฐุง ุชุณุงูˆู‰ ุตูุงู†ูŠ ุฃูˆ ุนู…ูˆุฏุงู† ูุฅู†
1116
+
1117
+ 280
1118
+ 00:27:31,400 --> 00:27:36,780
1119
+ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ุชุณุงูˆูŠ zero ูู‰ ุนู†ุฏู‰ ุตููŠู† ู…ุชุณุงูˆูŠู† ุฃูˆ
1120
+
1121
+ 281
1122
+ 00:27:36,780 --> 00:27:41,980
1123
+ ุนู…ูˆุฏูŠู† ู…ุชุณุงูˆูŠุฉุŸ ุขู‡ ุนู†ุฏู†ุง ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูˆุงู„ุนู…ูˆุฏ
1124
+
1125
+ 282
1126
+ 00:27:41,980 --> 00:27:47,260
1127
+ ุงู„ุซุงู„ุซ ู‡ุฐุง ุงู„ุนู…ูˆุฏ ูˆู‡ุฐุง ุงู„ุนู…ูˆุฏ ู‡ุฐูˆู„ ุงุชู†ูŠู† ู…ุงู„ู‡ู…
1128
+
1129
+ 283
1130
+ 00:27:47,260 --> 00:27:57,780
1131
+ ุจุณุงูˆูˆุง ุจุนุถ ุฅุฐุง ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ zero ู†ุชูƒุฏู„ุฃ ู…ูƒููƒ
1132
+
1133
+ 284
1134
+ 00:27:57,780 --> 00:28:03,360
1135
+ ุณู†ุฉ ู‚ุจู„ ู‡ุฐุง ุฏูˆุฑูŠ ูŠุจู‚ู‰ ุจุฏุฃ ุฃููƒู‡ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ
1136
+
1137
+ 285
1138
+ 00:28:03,360 --> 00:28:08,840
1139
+ ุงู„ุตูุฉ ุงู„ุซุงู†ูŠุฉ ู„ูŠุด ุงู† ููŠู‡ุง ุตูุงุฑ ูƒุชูŠุฑ ูŠุจู‚ู‰ ุจู‚ูˆู„ู‡ ู‡ุงูŠ
1140
+
1141
+ 286
1142
+ 00:28:08,840 --> 00:28:15,560
1143
+ ุณุงู„ุจ zero ุงู„ุฃูˆู„ุงู†ูŠ ุงู„ู„ูŠ ุจุนุฏู‡ ุฒุงุฆุฏ ุงุชู†ูŠู† ููŠู‡ ุฃุดุท
1144
+
1145
+ 287
1146
+ 00:28:15,560 --> 00:28:23,690
1147
+ ุจุตูู‡ ูˆ ุฃุดุท ุจุนู…ูˆุถู‡ ุจูŠุธู„ ุชู„ุงุชุฉ ู†ุงู‚ุต ุชู„ุงุชุฉูŠุจู‚ู‰ ุชู„ุงุชุฉ
1148
+
1149
+ 288
1150
+ 00:28:23,690 --> 00:28:28,330
1151
+ ู†ุงู‚ุต ุชู„ุงุชุฉ ูˆุงู„ู„ูŠ ุจุนุฏู‡ ู†ุงู‚ุต ุฒูŠุฑูˆ ููŠ ู…ุญุฏุฏ ุจุฒูŠุฑูˆ ูŠุจู‚ู‰
1152
+
1153
+ 289
1154
+ 00:28:28,330 --> 00:28:33,750
1155
+ ุงู„ุฌูˆุงุจ ูƒุฏู‡ุŸ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูŠุจู‚ู‰ ุฅุฐุง ุชุณุงูˆู‰ ุตูุงู†ูŠ ุฃูˆ
1156
+
1157
+ 290
1158
+ 00:28:33,750 --> 00:28:39,310
1159
+ ุนู…ูˆุฏุงู†ูŠ ููŠ ู…ุญุฏุฏ ูุฅู† ู‚ูŠู…ุฉ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ุชุณุงูˆูŠ ุตูุฑุง
1160
+
1161
+ 291
1162
+ 00:28:39,310 --> 00:28:43,890
1163
+ ุงู„ุฎุงุตูŠุฉ ุงู„ุณุงุฏุณุฉ ุจู‚ูˆู„ any determinant
1164
+
1165
+ 292
1166
+ 00:28:52,120 --> 00:28:59,480
1167
+ can be written as
1168
+
1169
+ 293
1170
+ 00:28:59,480 --> 00:29:14,000
1171
+ some ูƒู…ุฌู…ูˆุน of two determinants ูƒู…ุฌู…ูˆุน
1172
+
1173
+ 294
1174
+ 00:29:14,000 --> 00:29:17,100
1175
+ ู…ุญุฏุฏูŠู† for example
1176
+
1177
+ 295
1178
+ 00:29:21,530 --> 00:29:35,450
1179
+ ู„ูˆ ุนู†ุฏูŠ ุงู„ู…ุญุฏุฏ a b ุฒุงุฆุฏ ุงุชู†ูŠู† c x y ู†ุงู‚ุต ูˆุงุญุฏ z l
1180
+
1181
+ 296
1182
+ 00:29:35,450 --> 00:29:44,030
1183
+ m ุฒุงุฆุฏ ุชู„ุงุชุฉ k ูŠุจู‚ู‰ ุฏุง ูŠุณุงูˆูŠ
1184
+
1185
+ 297
1186
+ 00:29:46,960 --> 00:29:51,980
1187
+ ู‡ุฐุง ู…ุญุฏุฏ ุจู‚ุฏุฑ ุงูƒุชุจ ุนู„ู‰ ุดูƒู„ ู…ุฌู…ูˆุน ู…ุญุฏุฏ ูƒูŠู ูƒุงู†
1188
+
1189
+ 298
1190
+ 00:29:51,980 --> 00:30:10,240
1191
+ ุงู„ุชุงู„ูŠ a b c x y z l l m k z ุงู„ุนู…ูˆุฏูŠู† ู‡ุฐูˆู„ ุฒูŠ ู…ุง
1192
+
1193
+ 299
1194
+ 00:30:10,240 --> 00:30:18,710
1195
+ ู‡ู…ุงุงูŠุด ุฒูŠ ู…ู‡ู…ุฉ ูŠุนู†ูŠ axl ุงู„ุนู…ูˆุฏูŠ ุชุงู†ูŠ ูŠู†ุธู„ ุงุชู†ูŠู† ู‡ูˆ
1196
+
1197
+ 300
1198
+ 00:30:18,710 --> 00:30:23,570
1199
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุงุชู†ูŠู† ูˆ ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุชู„ุงุชุฉ
1200
+
1201
+ 301
1202
+ 00:30:23,570 --> 00:30:30,230
1203
+ ู„ุจุนุฏู‡ czk ุงูŠุด
1204
+
1205
+ 302
1206
+ 00:30:30,230 --> 00:30:37,490
1207
+ ู‚ุตุฏูƒ ุชู‚ูˆู„ู‚ุตุฏ ุงู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุทุงู„ุนู„ูŠูƒ ูƒูˆูŠุณ ุงู† ู„ูˆ ุนู†ุฏูŠ
1208
+
1209
+ 303
1210
+ 00:30:37,490 --> 00:30:45,050
1211
+ ู…ุญุฏุฏ ุจู‚ุฏุฑ ุงูƒุชุจู‡ ุนู„ู‰ ุดูƒู„ ู…ุฌู…ูˆุน ู…ุญุฏุฏูŠู† ุจู…ุณูƒ ุงูŠ ุนู…ูˆุฏ
1212
+
1213
+ 304
1214
+ 00:30:45,050 --> 00:30:50,530
1215
+ ู…ู†ู‡ู… ุงูˆ ุงูŠ ุตู ูˆ ุจุฌุฒุก ุงู„ู‰ ุฌุฒุฑูŠู† ูˆ ุงู„ุตููŠู† ุงู„ุชุงู†ูŠุงุช
1216
+
1217
+ 305
1218
+ 00:30:50,530 --> 00:30:55,730
1219
+ ุงูˆ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠูŠู† ุจุธู„ูˆุง ุซุงุจุชูŠู† ู„ุง ูŠุชุบูŠุฑูˆุง ูŠุนู†ูŠ
1220
+
1221
+ 306
1222
+ 00:30:55,730 --> 00:30:58,730
1223
+ ุงู†ุง ู…ุณูƒุชู‡ ูˆ ุญุงุทุท ุงูŠู‡ ุจุณ ูŠุนู†ูŠ ู„ูˆ ู‚ู„ุชู„ูƒ ู…ุซู„ุง ุงุนุทูŠุชู‡
1224
+
1225
+ 307
1226
+ 00:30:58,730 --> 00:31:05,930
1227
+ ุงุฑู‚ุงู…ุฃุฑู‚ุงู… ูˆู„ูŠุณ ุฒูŠ ู…ุง ู†ูƒุชุจ ูŠุนู†ูŠ ู…ุซู„ุง ู„ูˆ ุฌูŠุช ู‚ู„ุชู„ูƒ
1228
+
1229
+ 308
1230
+ 00:31:05,930 --> 00:31:12,010
1231
+ ุงู†ุง ุนู†ุฏูŠ ุงู„ู…ุญุฏุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ Zero ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ
1232
+
1233
+ 309
1234
+ 00:31:12,010 --> 00:31:20,790
1235
+ ุฎู…ุณุฉ ุชู„ุงุชุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ูˆู‡ูŠ Zero ูƒูˆูŠุณุŸ ุจุฏูŠ ุงูƒุชุจู‡ ุนู„ู‰
1236
+
1237
+ 310
1238
+ 00:31:20,790 --> 00:31:27,990
1239
+ ุดูƒู„ ู…ุฌู…ูˆุน ู…ุญุฏุฏูŠู† ุงู‡ ุจู‚ุฏุฑ ุงูƒุชุจู‡ ูŠุณุงูˆูŠ ุชุฎุชุงุฑ ุงู† ู†ูุตู„
1240
+
1241
+ 311
1242
+ 00:31:27,990 --> 00:31:33,510
1243
+ ู…ูŠู†ุŸ ู…ูŠู† ู…ู† ุงู„ุฃุนู…ุฏ ู‡ุฐู‡ุŸุงู„ุฃูˆู„ ู…ุง .. ุงู„ุชุงู†ูŠ ุงู„ุชุงู†ูŠ
1244
+
1245
+ 312
1246
+ 00:31:33,510 --> 00:31:36,670
1247
+ ูŠุง ุนุฒูŠุฒูŠ ู…ุง ู†ุจุฏูŠุด ุงู‚ุงุฑู† ุงุฎู„ูŠู‡ ุงุฒุงูŠ ุจุงู„ุญุฑู ุงู„ูˆุงุญุฏ
1248
+
1249
+ 313
1250
+ 00:31:36,670 --> 00:31:39,750
1251
+ ูŠุนู†ูŠ ุงู„ู‚ุฑุขู† ู„ุง ุงูŠ ูˆุงุญุฏ ู…ู† ุงู„ุงุนู…ู„ ุงุฎุฏ ุงู„ู„ูŠ ุจุฏูŠ ุงูƒุชุฑ
1252
+
1253
+ 314
1254
+ 00:31:39,750 --> 00:31:45,310
1255
+ ูุชุฑุถูŠ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ุงู„ุฃูˆู„ ุจุฏูŠ ุงูƒุชุจ ูˆุงุญุฏ ูˆ ุชู„ุงุชุฉ ูˆ
1256
+
1257
+ 315
1258
+ 00:31:45,310 --> 00:31:52,470
1259
+ zero ูˆ ูˆุงุญุฏ ูˆ ู†ุงู‚ุต ูˆุงุญุฏ ูˆ ุฎู…ุณุฉ ูˆ ู‡ุฐุง ูˆุงุญุฏ ู…ุซู„ุง ูˆ
1260
+
1261
+ 316
1262
+ 00:31:52,470 --> 00:31:57,890
1263
+ ู†ุงู‚ุต ุงุชู†ูŠู† ูˆ zeroูŠุจู‚ู‰ ุงู„ุนู…ูˆุฏูŠู† ุงู„ุชุงู†ูŠุฉ ุชุซุจุชู‡ู… ูƒู…ุง
1264
+
1265
+ 317
1266
+ 00:31:57,890 --> 00:32:03,170
1267
+ ู‡ู… ูŠุจู‚ู‰ ุฒุงุฏ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ู‡ุฐุง ุงุชู†ูŠู† ุฎุงุช ู…ู† ูˆุงุญุฏ ุฌุฏุด
1268
+
1269
+ 318
1270
+ 00:32:03,170 --> 00:32:08,710
1271
+ ุจุธุงู„ ูˆุงุญุฏ ุงู„ุตููŠู† ุงู„ุนู…ูˆุฏูŠู† ุงู„ุชุงู†ูŠุฉ ุฒูŠ ู…ุง ู‡ู…ุง ู‡ุฐุง
1272
+
1273
+ 319
1274
+ 00:32:08,710 --> 00:32:13,200
1275
+ ุฎุงุช ู…ู† ูˆุงุญุฏ ุฌุฏุด ุจุธุงู„ ูˆุงุญุฏูˆุงุญุฏ ุฃุฎุฏุช ู…ู† ูˆุงุญุฏ ุจูŠุธู„
1276
+
1277
+ 320
1278
+ 00:32:13,200 --> 00:32:18,620
1279
+ ูƒุฏู‡ุŸ ุจูŠุธู„ Zero ุชู…ุงู… ุณุงู„ุจ ูˆุงุญุฏ ูˆุฎู…ุณ ุฒูŠ ู…ุง ู‡ูˆ
1280
+
1281
+ 321
1282
+ 00:32:18,620 --> 00:32:24,160
1283
+ ุงู„ุชู„ุงุชุฉ ุฃุฎุฏุช ู…ู† ูˆุงุญุฏ ูƒุฏู‡ุŸ ุจูŠุธู„ ุงุชู†ูŠู† ู†ุงู‚ุต ุงุชู†ูŠู†
1284
+
1285
+ 322
1286
+ 00:32:24,160 --> 00:32:29,420
1287
+ Zero ุงุญุณ ุจู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ูˆุงุญุณ ุจู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏูŠู†
1288
+
1289
+ 323
1290
+ 00:32:29,420 --> 00:32:34,400
1291
+ ุงุชู†ูŠู† ุงู„ุชุงู†ูŠุงุช ุจุชู„ุงู‚ูŠ ุงู„ุงุชู†ูŠู† are the same ุฃูˆ ูƒู…ุง
1292
+
1293
+ 324
1294
+ 00:32:34,400 --> 00:32:38,260
1295
+ ู‚ุงู„ุช ุฅุญุฏู‰ ูƒู†ุง ู‚ุจู„ ู‚ู„ูŠู„ Good exercise
1296
+
1297
+ 325
1298
+ 00:32:41,750 --> 00:32:46,990
1299
+ ุฃู†ุง ุจู‡ู…ู† ุชุนุฑู ุงู„ุฎุงุตูŠุฉ ูˆู„ูŠุณ ุชุนุฑู ุชุฌูŠุจ ู…ุซุงู„ ุนู„ูŠู‡ุง
1300
+
1301
+ 326
1302
+ 00:32:46,990 --> 00:32:53,650
1303
+ ุฃู†ุง ุจู‡ู…ู† ุงู„ุฎุงุตูŠุฉ in general ูŠุจู‚ู‰ ุฏูŠ ูƒุงู†ุช ุงู„ุฎุงุตูŠุฉ
1304
+
1305
+ 327
1306
+ 00:32:53,650 --> 00:32:59,230
1307
+ ุงู„ุณุงุฏุณุฉ ู†ูŠุฌูŠ ู„ู„ุฎุงุตูŠุฉ ุงู„ุณุงุจุนุฉ ุงู„ุฎุงุตูŠุฉ ุงู„ุณุงุจุนุฉ ุจุชู‚ูˆู„
1308
+
1309
+ 328
1310
+ 00:32:59,230 --> 00:33:04,490
1311
+ ู…ุง ูŠุฃุชูŠ ุจุชู‚ูˆู„ if a multiple of
1312
+
1313
+ 329
1314
+ 00:33:11,300 --> 00:33:19,440
1315
+ one row ุงูˆ column ุงุฐุง ูƒุงู† ู…ุถุงุนูุงุช ุงูŠ ุตูุฑ ุนู…ูˆู„ of a
1316
+
1317
+ 330
1318
+ 00:33:19,440 --> 00:33:37,320
1319
+ matrix A of a matrix A is added is added ุนุถูู†ุง to
1320
+
1321
+ 331
1322
+ 00:33:37,320 --> 00:33:37,880
1323
+ another
1324
+
1325
+ 332
1326
+ 00:33:43,990 --> 00:33:48,770
1327
+ to produce ู…ุดุงู†
1328
+
1329
+ 333
1330
+ 00:33:48,770 --> 00:34:01,530
1331
+ ูŠู†ุชุฌูˆุง ุนู†ุฏู†ุง a matrix B then determinant
1332
+
1333
+ 334
1334
+ 00:34:01,530 --> 00:34:05,030
1335
+ ู„ู„ู€A ุจุฏู‰ ูŠุณูˆูŠ determinant ู„ู„ู€B
1336
+
1337
+ 335
1338
+ 00:34:15,310 --> 00:34:21,410
1339
+ ุฃุฌุฑุงุก ุงู„ุฎุงุตูŠุฉ ูƒูˆูŠุณุฃุธู† ูƒู†ุง ุจู†ุนู…ู„ ู‡ุฐู‡ ููŠ ุนู…ู„ูŠุฉ ุงู„ุตู
1340
+
1341
+ 336
1342
+ 00:34:21,410 --> 00:34:26,870
1343
+ ุงู„ุจุณูŠุทุฉ ุจู†ู‚ูˆู„ ู„ุง ูŠุชุบูŠุฑ ุญู„ ุงู„ system ู…ุธุจูˆุทุŸ ุจุฌูŠ
1344
+
1345
+ 337
1346
+ 00:34:26,870 --> 00:34:31,250
1347
+ ู†ุถุฑุจ ุฃูŠ ู…ุนุงุฏู„ุฉ ููŠ ุฑู‚ู… ูˆ ู†ุถูŠูู‡ ู„ุตู ุชุงู†ูŠ ูˆุจุงู„ุชุงู„ูŠ
1348
+
1349
+ 338
1350
+ 00:34:31,250 --> 00:34:36,590
1351
+ ู…ุงูƒุงู†ุด ุจูŠุญุตู„ ู„ู†ุง ุฃูŠ ุชุบูŠุฑ ุฏูŠ ุจูŠุฌูŠ ู†ู‚ูˆู„ ุฅุฐุง ุถุฑุจุช ุฃูŠ
1352
+
1353
+ 339
1354
+ 00:34:36,590 --> 00:34:41,850
1355
+ ุตู ุฃูˆ ุฃูŠ ุนู…ูˆุฏ ููŠ ุฑู‚ู… ูˆ ุฃุถูุชู‡ ุฅู„ู‰ ุตู ุซุงู†ูŠ ุฃูˆ ุนู…ูˆุฏ
1356
+
1357
+ 340
1358
+ 00:34:41,850 --> 00:34:48,930
1359
+ ุซุงู†ูŠ ูู„ุง ุชุชุบูŠุฑ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏุทู„ุน ู„ูŠ ู‡ู†ุงุด ุจู‚ูˆู„ if a
1360
+
1361
+ 341
1362
+ 00:34:48,930 --> 00:34:54,270
1363
+ multiple of one row ุงูˆ ูƒู„ ุงุฐุง ูƒุงู† ู…ุถุงุนูุงุช ุงูŠ ุตู ุฃูˆ
1364
+
1365
+ 342
1366
+ 00:34:54,270 --> 00:34:57,950
1367
+ ุนู…ูˆุฏ ุถุฑุจู†ุง ููŠ ุงุชู†ูŠู† ููŠ ุชู„ุงุชุฉ ููŠ ุนุดุฑุฉ ููŠ ู†ุงู‚ุต ุฎู…ุณุฉ
1368
+
1369
+ 343
1370
+ 00:34:57,950 --> 00:35:03,570
1371
+ ุฒูŠ ู…ุง ุจุฏูƒ of a matrix is added to another ูŠุนู†ูŠ ุงู†ุง
1372
+
1373
+ 344
1374
+ 00:35:03,570 --> 00:35:07,250
1375
+ ุฌูŠุช ุนู„ู‰ ุงู„ู…ุตููˆู ูˆู…ุณูƒุช ุงุญุฏ ุงู„ุตููˆู ูˆุถุฑุจุช ููŠ ุฑู‚ู…
1376
+
1377
+ 345
1378
+ 00:35:07,250 --> 00:35:12,370
1379
+ ุงูˆุงุญุฏ ุงู„ู„ูŠ ุนู…ุฏู‡ ูˆุถุฑุจุช ููŠ ุฑู‚ู… ูˆุงุถูุชู‡ ุงู„ู‰ ุตู ุงุฎุฑ ุงูˆ
1380
+
1381
+ 346
1382
+ 00:35:12,370 --> 00:35:17,670
1383
+ ุนู…ูˆุฏ ุงุฎุฑูŠุชุจู‚ู‰ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ุชุจุน ุงู„ู…ุตูˆูุฉ ุงู„ุฃุตู„ูŠุฉ
1384
+
1385
+ 347
1386
+ 00:35:17,670 --> 00:35:22,750
1387
+ ูˆุงู„ู…ุตูˆูุฉ ุงู„ุฌุฏูŠุฏุฉ ุงุชู†ูŠู† ุฒูŠ ุจุนุถ ูŠ added to another
1388
+
1389
+ 348
1390
+ 00:35:22,750 --> 00:35:27,410
1391
+ ูŠุนู†ูŠ ุฅุฐุง ุถุฑุจุช ููŠ ุตูู ุจุถูŠูู‡ ู„ุตูู ุขุฎุฑ ู„ูŠุณ ุจุถุฑูˆุฑุฉ
1392
+
1393
+ 349
1394
+ 00:35:27,410 --> 00:35:30,470
1395
+ ุงู„ุตูู ุงู„ู„ูŠ ุจุนุฏู‡ ูˆ ุงู„ู„ูŠ ุจุนุฏู‡ ูŠู…ูƒู† ุงู„ู„ูŠ ุจุนุฏู‡ ุจุนุฏู‡ ุฃูˆ
1396
+
1397
+ 350
1398
+ 00:35:30,470 --> 00:35:34,610
1399
+ ู…ุง ุจุนุฏู‡ ุจุนุฏู‡ ุญูŠูุง ุชู…ุงู… ูŠุจู‚ู‰ ู„ูŠุณ ุงู„ู„ูŠ ูˆุฑุงู‡ ู…ุจุงุดุฑุฉ
1400
+
1401
+ 351
1402
+ 00:35:34,610 --> 00:35:40,650
1403
+ ู…ู…ูƒู† ุชุจุนุฏ ุดูˆูŠุฉ ู…ุงุนู†ุงุด ู…ุดูƒู„ุฉMatrix A is added to
1404
+
1405
+ 352
1406
+ 00:35:40,650 --> 00:35:45,110
1407
+ another to produce A number B then determinant ู„ A
1408
+
1409
+ 353
1410
+ 00:35:45,110 --> 00:35:51,070
1411
+ ุจุฏู‡ ูŠุณูˆูŠ determinant ู„ B ูŠุจู‚ู‰ ู…ุญุฏุฏ ุงู„ู…ุตุญูˆู A ูŠุณูˆูŠ
1412
+
1413
+ 354
1414
+ 00:35:51,070 --> 00:35:56,850
1415
+ ู…ุญุฏุฏ B ูŠุนู†ูŠ ุถุฑุจ ุฃูŠ ุตู ููŠ ุฑู‚ู… ูˆุฅุถุงูุชู‡ ุฅู„ู‰ ุตู ุขุฎุฑ ุฃูˆ
1416
+
1417
+ 355
1418
+ 00:35:56,850 --> 00:36:01,580
1419
+ ุถุฑุจ ุฃูŠ ุนู…ูˆุฏ ููŠ ุฑู‚ู… ูˆุฅุถุงูุชู‡ ุฅู„ู‰ ุนู…ูˆุฏ ุขุฎุฑู„ุง ูŠุบูŠุฑ ู…ู†
1420
+
1421
+ 356
1422
+ 00:36:01,580 --> 00:36:06,720
1423
+ ู‚ูŠู…ุฉ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ุงู„ู†ุงุชุฌุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ุจุชู‚ูˆู„ู‡ ู‡ุฐู‡
1424
+
1425
+ 357
1426
+ 00:36:06,720 --> 00:36:13,140
1427
+ ุงู„ุฎุงุตูŠุฉ ุงู„ุฎุงุตูŠุฉ ุงู„ุซุงู…ู†ุฉ ูˆุงู„ุงุฎูŠุฑุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ
1428
+
1429
+ 358
1430
+ 00:36:13,140 --> 00:36:26,320
1431
+ ุจุชู‚ูˆู„ if ุงู„ a and ุงู„ b are both matrices are both
1432
+
1433
+ 359
1434
+ 00:36:27,020 --> 00:36:35,600
1435
+ matrices ูƒุงู†ุช ุชู†ุชู‡ูŠ ู…ู† ุตููˆูุงุช of order n ุงุชู†ูŠู†
1436
+
1437
+ 360
1438
+ 00:36:35,600 --> 00:36:45,440
1439
+ ู…ุฑุงุช ุจุงู†ูˆู†ูŠุฉ then determinant ู„ู„ a ููŠ ุงู„ b ูŠุณุงูˆูŠ
1440
+
1441
+ 361
1442
+ 00:36:45,440 --> 00:36:53,880
1443
+ ุงู„ determinant ู„ู„ a ููŠ ุงู„ determinant ู„ู„ b for
1444
+
1445
+ 362
1446
+ 00:36:53,880 --> 00:37:06,790
1447
+ exampleูƒู…ุซุงู„ ุนู„ู‰ ุฐู„ูƒ if ุงู„ a ุชุณุงูˆูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ู†ุงู‚ุต
1448
+
1449
+ 363
1450
+ 00:37:06,790 --> 00:37:17,030
1451
+ ุงุชู†ูŠู† ุชู„ุงุชุฉ and ุงู„ b ุจุฏู‡ุง ุชุณุงูˆูŠ zero ุชู„ุงุชุฉ ู†ุงู‚ุต
1452
+
1453
+ 364
1454
+ 00:37:17,030 --> 00:37:20,430
1455
+ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ then
1456
+
1457
+ 365
1458
+ 00:37:29,180 --> 00:37:33,840
1459
+ ุฎู„ู‘ูŠ ุจุงู„ูƒุงู…ู„ ูŠุจู‚ู‰ ุงู„ุฎุงุตูŠุฉ ุจุชู‚ูˆู„ ู„ูŠุด ุจุชู‚ูˆู„ ู„ูˆ ุนู†ุฏูŠ
1460
+
1461
+ 366
1462
+ 00:37:33,840 --> 00:37:38,000
1463
+ ู…ุตูˆููŠู† A ูˆB ู…ู† ู†ูุณ ุงู„ู†ุธุงู… ุฃูˆ ู…ู† ู†ูุณ ุงู„ size ุงู„
1464
+
1465
+ 367
1466
+ 00:37:38,000 --> 00:37:41,500
1467
+ order ู„ู‡ู… ูŠุณุงูˆูŠ in then determinant ู„ู„ A ููŠ B
1468
+
1469
+ 368
1470
+ 00:37:41,500 --> 00:37:45,700
1471
+ ุจูŠุจู‚ู‰ ูŠุณุงูˆูŠ determinant ู„ู„ A ููŠ B ูŠุนู†ูŠ ู…ุญุฏุฏ ุญุงุตู„
1472
+
1473
+ 369
1474
+ 00:37:45,700 --> 00:37:52,520
1475
+ ุถุฑุจ ู…ุตูˆููŠู† ูŠุณุงูˆูŠ ุญุงุตู„ ุถุฑุจ ุงู„ู…ุญุฏุฏ ุฏุงูŠู…ุง ุชู…ุงู…ุง ูŠุจู‚ู‰
1476
+
1477
+ 370
1478
+ 00:37:52,520 --> 00:37:58,430
1479
+ ู„ูˆ ุฃู†ุง ุฌูŠุช ุฃุฎุฏุช ุงู„ A ููŠ ุงู„ BูŠุจู‚ู‰ ุจุงู„ุฏุงุฌุฉ ุงู‚ูˆู„ ู„ู‡
1480
+
1481
+ 371
1482
+ 00:37:58,430 --> 00:38:03,990
1483
+ ูˆุงุญุฏ ุงุชู†ูŠู† ู†ุงู‚ุต ุงุชู†ูŠู† ุชู„ุงุชุฉ ููŠ ุจูŠู‡ ุงู„ zero ุชู„ุงุชุฉ
1484
+
1485
+ 372
1486
+ 00:38:03,990 --> 00:38:08,750
1487
+ ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ูˆุงุญุฏ ูŠุณุงูˆูŠ ูŠุจู‚ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ
1488
+
1489
+ 373
1490
+ 00:38:08,750 --> 00:38:13,910
1491
+ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ zero ุณุงู„ุจ ุงุชู†ูŠู† ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ
1492
+
1493
+ 374
1494
+ 00:38:13,910 --> 00:38:19,470
1495
+ ุงู„ุชุงู†ูŠ ุชู„ุงุชุฉ ูˆุณุงู„ุจ ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏุตู ุงู„ุซุงู†ูŠ ููŠ
1496
+
1497
+ 375
1498
+ 00:38:19,470 --> 00:38:25,670
1499
+ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจู€-3 ุตู ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ุจู€-6
1500
+
1501
+ 376
1502
+ 00:38:25,670 --> 00:38:35,790
1503
+ ูˆ-3 ุจู€ 9ุงู„ุงู† ุจุฏุงุด ูŠุงุฎุฏ ุงู„ determinant ู„ู„ a ููŠ b
1504
+
1505
+ 377
1506
+ 00:38:35,790 --> 00:38:42,610
1507
+ ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุณูˆูŠ ุงู„ู…ุญุฏุฏ ุณู„ุจ ุงุชู†ูŠู† ุณู„ุจ ุชู„ุงุชุฉ ุณู„ุจ ุชุณุนุฉ
1508
+
1509
+ 378
1510
+ 00:38:42,610 --> 00:38:50,690
1511
+ ูŠุจู‚ู‰ ุงู„ุฑุฆูŠุณูŠ ู†ุงู‚ุตูŠ ุซุงู†ูˆูŠ ุงุชู†ูŠู† ููŠ ุชุณุนุฉ ุจู‚ุฏุงุด ุชู…ุงู…
1512
+
1513
+ 379
1514
+ 00:38:53,690 --> 00:38:59,450
1515
+ ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ุชู„ุงุชุฉ ุจุชู„ุงุชุฉ ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ูƒุฏู‡ุŸ ูˆุงุญุฏ
1516
+
1517
+ 380
1518
+ 00:38:59,450 --> 00:39:05,990
1519
+ ูˆุนุดุฑูŠู†ุŒ ุชู…ุงู…ุŸ ุงู„ุฑุฆูŠุณูŠ ู†ุงู‚ุต ุงู„ุซุงู†ูˆูŠุŒ ุงู„ุซุงู†ูˆูŠ ุญุงุตู„ูŠ
1520
+
1521
+ 381
1522
+ 00:39:05,990 --> 00:39:10,330
1523
+ ุถุฑุจู‡ ู†ุงู‚ุต ูŠุจู‚ู‰ ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฆุฏุŒ ุจุงู„ุฏุงุฌูŠ ู„ู„
1524
+
1525
+ 382
1526
+ 00:39:10,330 --> 00:39:19,100
1527
+ determinant ู„ู„ุฅูŠู‡ุŸDeterminant ู„ู…ู†ุŸ ู„ู€B ูˆูŠุณูˆูŠ ู…ุญุฏุฏ
1528
+
1529
+ 383
1530
+ 00:39:19,100 --> 00:39:31,830
1531
+ ุงู„ู…ุตูˆูุฉ 1-2-3 ููŠ ู…ุญุฏุฏ ุงู„ู…ุตูˆูุฉ B03-1-1ู‡ุฐุง ุงู„ูƒู„ุงู…
1532
+
1533
+ 384
1534
+ 00:39:31,830 --> 00:39:37,430
1535
+ ูŠุณุงูˆูŠ ุงู„ู…ุตูˆูุฉ ุงู„ุฃูˆู„ุงู†ูŠุฉ ุงู„ุฑุฆูŠุณูŠ ู†ุงู‚ุตูŠ ุงู„ุซุงู†ูˆูŠ
1536
+
1537
+ 385
1538
+ 00:39:37,430 --> 00:39:43,590
1539
+ ุงู„ุฑุฆูŠุณูŠ ุจู‚ุฏุงุด ูŠุง ุจู†ุงุช ุชู„ุงุชุฉ ูˆุงู„ุซุงู†ูˆูŠ ุจู‚ุฏุงุด ุฃุฑุจุนุฉ
1540
+
1541
+ 386
1542
+ 00:39:43,590 --> 00:39:51,470
1543
+ ููŠ ุงู„ู…ุญุฏุฏ ุงู„ุชุงู†ูŠ ุงู„ุฑุฆูŠุณูŠ Zero ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุชู„ุงุชุฉ
1544
+
1545
+ 387
1546
+ 00:39:51,470 --> 00:39:57,730
1547
+ ุจูŠุตูŠุฑ ุฒุงุฆุฏ ุชู„ุงุชุฉ ุชู…ุงู… ุงู„ู†ุชูŠุฌุฉ ุชุณุงูˆูŠ ุชู„ุงุชุฉ ูˆุฃุฑุจุนุฉ
1548
+
1549
+ 388
1550
+ 00:39:58,490 --> 00:40:06,230
1551
+ 7ร—3 ู‡ูˆ 21 ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ 21 ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‡ู†ุง ูŠุจู‚ู‰
1552
+
1553
+ 389
1554
+ 00:40:06,230 --> 00:40:09,250
1555
+ ุฏุงุฆู…ุง ูˆุงุจู‚ู‰ ุชุงุฎุฏู‡ุง ู‚ุงุนุฏุฉ ู…ู† ุงู„ุขู† ูุตุงุนุฏุง
1556
+
1557
+ 390
1558
+ 00:40:09,250 --> 00:40:15,090
1559
+ determinant ู„ู„ู€A ููŠ ุงู„ู€B ูŠุณุงูˆูŠ determinant ู„ู€A ููŠ
1560
+
1561
+ 391
1562
+ 00:40:15,090 --> 00:40:22,570
1563
+ determinant ู„ู€B ุฎุฏูŠู„ู‡ุง ุงู„ูุฑุถูŠุฉ ุงู„ู…ุณุงุนุฏุฉ ู†ุณู…ูŠู‡ุง ู„ู…
1564
+
1565
+ 392
1566
+ 00:40:30,350 --> 00:40:46,070
1567
+ ุจู‚ูˆู„ F to adjacent elements F to adjacent elements
1568
+
1569
+ 393
1570
+ 00:40:46,070 --> 00:40:51,830
1571
+ elements
1572
+
1573
+ 394
1574
+ 00:40:51,830 --> 00:40:57,130
1575
+ in a permutation
1576
+
1577
+ 395
1578
+ 00:40:59,530 --> 00:41:07,490
1579
+ and a permutation are interchange
1580
+
1581
+ 396
1582
+ 00:41:07,490 --> 00:41:15,910
1583
+ then
1584
+
1585
+ 397
1586
+ 00:41:15,910 --> 00:41:23,010
1587
+ the parity of
1588
+
1589
+ 398
1590
+ 00:41:23,010 --> 00:41:23,990
1591
+ the permutation
1592
+
1593
+ 399
1594
+ 00:41:30,600 --> 00:41:38,320
1595
+ of the permutation even or
1596
+
1597
+ 400
1598
+ 00:41:38,320 --> 00:41:44,480
1599
+ odd ู‡ุฏูŠ ูˆ ู‡ุฏูŠ as it changed
1600
+
1601
+ 401
1602
+ 00:42:17,050 --> 00:42:23,270
1603
+ example consider the
1604
+
1605
+ 402
1606
+ 00:42:23,270 --> 00:42:28,070
1607
+ set ู„ูˆุงุญุฏ
1608
+
1609
+ 403
1610
+ 00:42:28,070 --> 00:42:38,410
1611
+ ูˆุงุชู†ูŠู† ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ุฎู…ุณุฉ take the permutation take
1612
+
1613
+ 404
1614
+ 00:42:38,410 --> 00:42:39,510
1615
+ the
1616
+
1617
+ 405
1618
+ 00:42:42,670 --> 00:42:57,490
1619
+ Permutation ุฎู„ู‘ู‰ ุงู„ permutation ุนู„ูŠ
1620
+
1621
+ 406
1622
+ 00:42:57,490 --> 00:43:02,050
1623
+ ุจุงู„ูƒ ู‡ู†ุง ุงุญู†ุง ุงู„ุงู† ู…ุงุฎุฏูŠู† ุงู„ permutation ุงู„ู„ู‰
1624
+
1625
+ 407
1626
+ 00:43:02,050 --> 00:43:06,130
1627
+ ุนู†ุฏู†ุง ุจุฏู‰ ุงุฎุฏ ุชุจุฏูŠู„ุฉ ู…ู†ู‡ุง ุงุฎุชุงุฑ ุงู„ุชุจุฏูŠู„ุฉ ุงู„ู„ู‰ ุจุฏูƒ
1628
+
1629
+ 408
1630
+ 00:43:06,130 --> 00:43:11,540
1631
+ ุงูŠุงู‡ุงูŠู„ุง ูˆุงุญุฏ ุงู‚ูˆู„ูŠ ุงู„ุชุจุฏูŠู„ ุงู„ู„ูŠ ุชุนุฌุจูƒ ูŠู„ุง ู‡ูŠ
1632
+
1633
+ 409
1634
+ 00:43:11,540 --> 00:43:16,380
1635
+ ุงู„ุฃุฑู‚ุงู… ู‚ุฏุงู…ูƒ ุจุฏู„ ุฒูŠ ู…ุง ุจุฏูƒ ุชู„ุงุชุฉ ุงูŠูˆุฉ ุชู„ุงุชุฉ ูˆ
1636
+
1637
+ 410
1638
+ 00:43:16,380 --> 00:43:24,120
1639
+ ูˆุงุญุฏ ูˆุงุญุฏ ุฎู…ุณุฉ ุฎู…ุณุฉ ุงูŠูˆุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ
1640
+
1641
+ 411
1642
+ 00:43:24,120 --> 00:43:24,220
1643
+ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ
1644
+
1645
+ 412
1646
+ 00:43:24,220 --> 00:43:24,380
1647
+ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ
1648
+
1649
+ 413
1650
+ 00:43:24,380 --> 00:43:26,060
1651
+ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ
1652
+
1653
+ 414
1654
+ 00:43:26,060 --> 00:43:32,020
1655
+ ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุงุฑุจุนุฉ
1656
+
1657
+ 415
1658
+ 00:43:32,020 --> 00:43:40,040
1659
+ ุงุฑุจุนุฉ ุงุฑุจุนุฉin a permutation are interchange ูŠุนู†ูŠ
1660
+
1661
+ 416
1662
+ 00:43:40,040 --> 00:43:44,660
1663
+ ุจุฏู„ุช ุงุชู†ูŠู† ู‡ุฏูˆู„ ู…ูƒุงู† ุจุนุถ ูˆ ุงู„ุจุงู‚ูŠ ุจุงู‚ูŠุฉ ูƒู…ุง ู‡ูˆ
1664
+
1665
+ 417
1666
+ 00:43:44,660 --> 00:43:48,680
1667
+ then the parity of the permutation even ูˆ ู„ุง odd
1668
+
1669
+ 418
1670
+ 00:43:48,680 --> 00:43:52,040
1671
+ is exchanged ูŠุนู†ูŠ ุงูŠุดุŸ ุงุฐุง ูƒุงู†ุช ุงู„ permutation
1672
+
1673
+ 419
1674
+ 00:43:52,040 --> 00:43:56,200
1675
+ ุงู„ุฃุตู„ูŠุฉ even ู„ุฌุฏูŠุฏุฉุŒ odd ูˆ ุงุฐุง ูƒุงู†ุช ุงู„ุฃุตู„ูŠุฉ odd
1676
+
1677
+ 420
1678
+ 00:43:56,200 --> 00:44:00,260
1679
+ ู„ุฌุฏูŠุฏุฉุŒ even ุฏุนูˆู†ุง ู†ุดูˆู ุงู„ุญูŠู† ุฃุฎุฏู†ุง ุงู„
1680
+
1681
+ 421
1682
+ 00:44:00,260 --> 00:44:03,800
1683
+ permutationุŒ ู‡ุจุชุฏ ุฃุนุฑู ู‡ุฐูŠ even ูˆ ู„ุง oddุŸูŠุจู‚ู‰
1684
+
1685
+ 422
1686
+ 00:44:03,800 --> 00:44:10,600
1687
+ ุจุชุฑูˆุญ ุฃุฎุฏู„ู‡ Alpha 1 ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ 2 ูŠุจู‚ู‰ ุฃุฎุฏู„ู‡ Alpha
1688
+
1689
+ 423
1690
+ 00:44:10,600 --> 00:44:16,580
1691
+ 2 ุจู€ 0 ูŠุจู‚ู‰ ุฃุฎุฏู„ู‡ Alpha 3 ุจู€ 2 ูŠุจู‚ู‰ ุฃุฎุฏู„ู‡ Alpha 4
1692
+
1693
+ 424
1694
+ 00:44:16,580 --> 00:44:23,640
1695
+ ุจู€ 1 ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุฃู† Alpha 1 ุฒูŠ Alpha 2 ุฒูŠ
1696
+
1697
+ 425
1698
+ 00:44:23,640 --> 00:44:31,780
1699
+ Alpha 3 ุฒูŠ Alpha 4 ูŠุณุงูˆูŠ 2 ุฒูŠ 0 ุฒูŠ 2 ุฒูŠ 1 ูŠุณุงูˆูŠ 5
1700
+
1701
+ 426
1702
+ 00:44:32,590 --> 00:44:38,230
1703
+ ูŠุจู‚ู‰ ุงู„ permutation ู‡ุฐูŠ ุฅูŠุดุŸ odd ูŠุจู‚ู‰ ู‡ุฐูŠ odd
1704
+
1705
+ 427
1706
+ 00:44:38,230 --> 00:44:43,730
1707
+ permutation ุทูŠุจ
1708
+
1709
+ 428
1710
+ 00:44:43,730 --> 00:44:48,990
1711
+ ุฑูˆุญ ุงุฎุชุฑูŠู„ูƒ ุฃูŠ ุฑู‚ู…ูŠู† ู…ู†ู‡ุง ุจุณ ุงุชู†ูŠู† ุจุดุฑุท ูŠูƒูˆู†ูˆุง ูˆุฑุง
1712
+
1713
+ 429
1714
+ 00:44:48,990 --> 00:44:53,290
1715
+ ุจุนุถ ู…ุด ู‡ุฌูŠุจ ูˆุงุญุฏ ู…ู† ุงู„ุฃูˆู„ ูˆูˆุงุญุฏ ู…ู† ุงู„ุขุฎุฑ ู…ูŠู†ุŸ
1716
+
1717
+ 430
1718
+ 00:44:55,160 --> 00:44:59,420
1719
+ ุฎู…ุณุฉ ูˆุงุฑุจุนุฉ ุจุชู‚ูˆู„ ุฒู…ูŠู„ุชูƒูˆุง ุจุชุงุฎุฏูˆุง ุงู„ุฑู‚ู…ูŠู† ู‡ุฏูˆู„
1720
+
1721
+ 431
1722
+ 00:44:59,420 --> 00:45:04,700
1723
+ ุจู‚ูˆู„ู‡ุง ูƒูˆูŠุณ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ and ุงู„ permutation
1724
+
1725
+ 432
1726
+ 00:45:04,700 --> 00:45:08,320
1727
+ ุชู„ุงุชุฉ ูˆุงุญุฏ ุงุฑุจุนุฉ ุฎู…ุณ ุงุชู†ูŠู†
1728
+
1729
+ 433
1730
+ 00:45:12,700 --> 00:45:18,340
1731
+ ุจุนุฏ ุงู„ุชู„ุงุชุฉ ูŠุจู‚ู‰ ูˆุงุญุฏ ูˆุงุชู†ูŠู† ู…ุงููŠุด ุบูŠุฑ ุงุชู†ูŠู† Alpha
1732
+
1733
+ 434
1734
+ 00:45:18,340 --> 00:45:24,640
1735
+ 2 ุชุณุงูˆูŠ Zero Alpha 3 ุชุณุงูˆูŠ ูˆุงุญุฏ Alpha 4 ุชุณุงูˆูŠ ูˆุงุญุฏ
1736
+
1737
+ 435
1738
+ 00:45:25,980 --> 00:45:31,280
1739
+ ูŠุจู‚ู‰ ุงู„ุฃู† ุจุงู„ุฏุงุฌูŠ ู„ู‡ุฏูˆู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ
1740
+
1741
+ 436
1742
+ 00:45:31,280 --> 00:45:36,780
1743
+ ุฃุฎุฏ ุฃู„ู ูˆุงุญุฏ ุฒุงุฏ ุฃู„ู ุงุชู†ูŠู† ุฒุงุฏ ุฃู„ู ุชู„ุงุชุฉ ุฒุงุฏ ุฃู„ู
1744
+
1745
+ 437
1746
+ 00:45:36,780 --> 00:45:41,220
1747
+ ุงุฑุจุนุฉ ุงุชู†ูŠู† ุฒุงุฏ ุฒูŠุฑูˆ ุฒุงุฏ ูˆุงุญุฏ ุฒุงุฏ ูˆุงุญุฏ ูŠุณูˆูŠ ูƒุฏู‡ุŸ
1748
+
1749
+ 438
1750
+ 00:45:41,220 --> 00:45:45,480
1751
+ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุฃุตุจุญุช ุงู„ permutation ู‡ุฐู‡
1752
+
1753
+ 439
1754
+ 00:45:51,670 --> 00:45:57,790
1755
+ ุงู„ู„ูŠ ู‡ูŠ ุชู„ุงุชุฉ ุฃูˆ ูˆุงุญุฏ ุฃูˆ ุฃุฑุจุนุฉ ุฃูˆ ุฎู…ุณ ุฃูˆ ุงุชู†ูŠู† is
1756
+
1757
+ 440
1758
+ 00:45:57,790 --> 00:46:03,870
1759
+ even ูŠุจู‚ู‰ ูŠุง ุจู†ุงุช ู„ูˆ ุบูŠุฑุชูŠ ุจุณ ุนู†ุตุฑ ูŠูƒูˆู†ูˆุง ุงุชู†ูŠู†
1760
+
1761
+ 441
1762
+ 00:46:03,870 --> 00:46:10,670
1763
+ ูˆุฑุง ุจุนุถ ุบูŠุฑุชูŠู‡ู… ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ุจุตูŠุฑ ุงูŠุดุŸ ุจุตูŠุฑ ุงู„ู‚ุฏุฑ
1764
+
1765
+ 442
1766
+ 00:46:10,670 --> 00:46:15,130
1767
+ ุจุชู†ู‚ู„ุจ even ูˆ ู„ูˆ ูƒุงู†ุช even ุจุชู†ู‚ู„ุจ odd ุถุงูŠู„ ุนู„ูŠู†ุง
1768
+
1769
+ 443
1770
+ 00:46:15,130 --> 00:46:22,080
1771
+ ุณุทุฑ ูˆุงุญุฏ ูู‚ุท ู„ุบูŠุฑ ุงู„ู…ู„ุงุญุธุฉ ุงู„ุชุงู„ูŠุฉุจู‚ูˆู„ remember
1772
+
1773
+ 444
1774
+ 00:46:22,080 --> 00:46:30,740
1775
+ that ุชุฐูƒุฑ
1776
+
1777
+ 445
1778
+ 00:46:30,740 --> 00:46:42,280
1779
+ ุฃู† if ุงู„ู€ A is an n by n matrix ู…ุตู…ูˆู… ู…ุฑุจุน ู†ุธุงู…ู‡ุง
1780
+
1781
+ 446
1782
+ 00:46:42,280 --> 00:46:49,260
1783
+ n ููŠ m ุจุณ ุจุดุฑุท upper or lower
1784
+
1785
+ 447
1786
+ 00:46:52,570 --> 00:47:03,210
1787
+ A triangle A triangle matrix then
1788
+
1789
+ 448
1790
+ 00:47:03,210 --> 00:47:06,450
1791
+ determinant
1792
+
1793
+ 449
1794
+ 00:47:06,450 --> 00:47:18,650
1795
+ ู„ู„ A ุจุฏู‡ ูŠุณุงูˆูŠ A11 A22 A3 A3 ANN
1796
+
1797
+ 450
1798
+ 00:47:24,450 --> 00:47:29,590
1799
+ ู„ุง ูŠุฒุงู„ ุนู†ุฏู†ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฃู…ุซู„ุฉ ู„ู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ู†ุนุทูŠ
1800
+
1801
+ 451
1802
+ 00:47:29,590 --> 00:47:33,830
1803
+ ู‡ุฐู‡ ุงู„ุฃู…ุซู„ุฉ ูˆู†ู†ู‡ูŠ ู‡ุฐุง ุงู„ section ูŠุนุทูŠูƒู… ุงู„ุนุงู…ุฉ
1804
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/czq6xxZJyIg_raw.json ADDED
The diff for this file is too large to render. See raw diff
 
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/eSiXtXR8S5g_raw.json ADDED
The diff for this file is too large to render. See raw diff
 
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/eSiXtXR8S5g_raw.srt ADDED
@@ -0,0 +1,1172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:21,010 --> 00:00:25,750
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู†ุชู‡ูŠู†ุง ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู…ู†
4
+
5
+ 2
6
+ 00:00:25,750 --> 00:00:31,490
7
+ chapter 4 ุงู„ู„ู‰ ูƒุงู† ุจุชุญุฏุซ ุนู† diagonalization ูˆุงู„ุงู†
8
+
9
+ 3
10
+ 00:00:31,490 --> 00:00:35,870
11
+ ุจู†ู†ุชู‚ู„ ู…ู† ู…ูˆุถูˆุน ุงู„ุฌุจุฑ ุงู„ุฎุทู‰ ู„ู…ูˆุถูˆุน ุงู„ู…ุนุงุฏู„ุงุช
12
+
13
+ 4
14
+ 00:00:35,870 --> 00:00:40,250
15
+ ุงู„ุชูุงุถู„ูŠุฉ ูˆู‡ูˆ ุฃูˆู„ chapter ุงุจุชุฏุฃู†ุง ุจู‡ ู‡ุฐุง ุงู„ู…ู‚ุฑุฑ
16
+
17
+ 5
18
+ 00:00:40,250 --> 00:00:43,750
19
+ ุฃุฎุฏู†ุง ุฃูˆู„ chapter ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ูˆ ุจุนุฏูŠู†
20
+
21
+ 6
22
+ 00:00:43,750 --> 00:00:48,480
23
+ three chapters ูƒู„ู‡ู… ูƒุงู† ููŠ ุงู„ุฌุจุฑ ุงู„ุฎุทู‰ุงู„ุงู† ู†ุนูˆุฏ
24
+
25
+ 7
26
+ 00:00:48,480 --> 00:00:52,740
27
+ ู„ู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ ู„ูƒู† ุณู†ุฑุจุทู‡ุง ุฒูŠ ู…ุง ุงู†ุชูˆุง ุดุงูŠููŠู†
28
+
29
+ 8
30
+ 00:00:52,740 --> 00:00:57,600
31
+ ู…ู† ุฎู„ุงู„ ูƒู„ู…ุฉ ุฌุฏุงู…ู†ุง ุจู…ูˆุถูˆุน ุงู„ุฌุจุฑ ุงู„ุฎุทูŠ ุฅู„ู‰ ุญุฏ ู…ุง
32
+
33
+ 9
34
+ 00:00:57,600 --> 00:01:02,200
35
+ ุงู„ section ุงู„ู„ูŠ ุจูŠู† ุงูŠุฏูŠู†ุง ุจูŠู‚ูˆู„ linear
36
+
37
+ 10
38
+ 00:01:02,200 --> 00:01:06,800
39
+ differential equations ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ
40
+
41
+ 11
42
+ 00:01:06,800 --> 00:01:11,160
43
+ ุงู„ุฎุทูŠุฉ ุทุจุนุง ุงุญู†ุง ุฐูƒุฑู†ุง ู‚ุจู„ ุฐู„ูƒ ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ
44
+
45
+ 12
46
+ 00:01:11,160 --> 00:01:16,340
47
+ ุงู„ุฎุทูŠุฉ ู„ูƒู† ูƒุงู†ุช ู…ู† ุงู„ุฑุชุจุฉุงู„ุฃูˆู„ู‰ ูู‚ุท ุงู„ุงู† ุจู†ุชู‚ู„ ู…ู†
48
+
49
+ 13
50
+ 00:01:16,340 --> 00:01:22,520
51
+ ุงู„ุฑุชุจุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู‰ ุงู„ุฑุชุจุฉ ุงู„ู†ูˆู†ูŠุฉ ูุจู‚ูˆู„ุด a linear
52
+
53
+ 14
54
+ 00:01:22,520 --> 00:01:26,020
55
+ differential equation of order in ุงู„ู…ุนุงุฏู„ุฉ
56
+
57
+ 15
58
+ 00:01:26,020 --> 00:01:30,820
59
+ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ุฎุทูŠุฉ ู…ู† ุงู„ุฑุชุจุฉ in ุงูˆ ู…ู† ุงู„ุฑุชุจุฉ ุงู„ู†ูˆู†ูŠุฉ
60
+
61
+ 16
62
+ 00:01:30,820 --> 00:01:35,240
63
+ ู‡ูŠ ู…ุนุงุฏู„ุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ a node of x y to the
64
+
65
+ 17
66
+ 00:01:35,240 --> 00:01:41,290
67
+ derivative nุฒุงุฆุฏ a1xy to the derivative n-1 ุฒุงุฆุฏ
68
+
69
+ 18
70
+ 00:01:41,290 --> 00:01:48,150
71
+ ุฒุงุฆุฏ a n-1 of x y prime ุฒุงุฆุฏ ุงู„ any ุจุฏู‡ ูŠุณูˆูŠ
72
+
73
+ 19
74
+ 00:01:48,150 --> 00:01:53,190
75
+ capital F of x ู„ุงุญุธูˆุง ุงู† ุงู„ู…ุดุชู‚ุฉ ุจุฏุช ู…ู† ุนู†ุฏ ุงู„ n ูˆ
76
+
77
+ 20
78
+ 00:01:53,190 --> 00:01:57,310
79
+ ุจุฏุช ุชู†ุฒู„ n ู†ุงู‚ุต ูˆุงุญุฏ n ู†ุงู‚ุต ุงุชู†ูŠู† ู„ุบุงูŠุฉ ู…ุง ูˆุตู„ู†ุง
80
+
81
+ 21
82
+ 00:01:57,310 --> 00:02:02,010
83
+ ู„ู„ู…ุดุชู‚ุฉ ุงู„ุงูˆู„ู‰ ูˆ y ุจุฏูˆู† ุงุดุชู‚ุงู‚ ุจุฏู‡ ูŠุณูˆูŠ ู…ู† capital
84
+
85
+ 22
86
+ 00:02:02,010 --> 00:02:07,860
87
+ F of x ูˆุณู…ูŠู†ุงู‡ุง ุงู„ู…ุนุงุฏู„ุฉ starุงู„ุงู† ุงู„ู…ุนุงู…ู„ุงุช ุงู„ู„ูŠ
88
+
89
+ 23
90
+ 00:02:07,860 --> 00:02:12,000
91
+ ู‚ุจู„ ุงู„ Y's ุงู„ู„ูŠ ู‡ูŠ A0 ูˆ A1 ูˆ A2 ูˆ A3 ูˆ A4 ูˆ A5 ูˆ
92
+
93
+ 24
94
+ 00:02:12,000 --> 00:02:12,560
95
+ A6 ูˆ A7 ูˆ A8 ูˆ A9 ูˆ A10 ูˆ A11 ูˆ A12 ูˆ A12 ูˆ A13 ูˆ
96
+
97
+ 25
98
+ 00:02:12,560 --> 00:02:16,920
99
+ A13 ูˆ A14 ูˆ A14 ูˆ A15 ูˆ A16 ูˆ A17 ูˆ A18 ูˆ A19 ูˆ
100
+
101
+ 26
102
+ 00:02:16,920 --> 00:02:20,360
103
+ A20 ูˆ A21 ูˆ A22 ูˆ A22 ูˆ A22 ูˆ A22 ูˆ A22 ูˆ A21 ูˆ
104
+
105
+ 27
106
+ 00:02:20,360 --> 00:02:20,840
107
+ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ
108
+
109
+ 28
110
+ 00:02:20,840 --> 00:02:22,240
111
+ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ
112
+
113
+ 29
114
+ 00:02:22,240 --> 00:02:22,500
115
+ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ
116
+
117
+ 30
118
+ 00:02:22,500 --> 00:02:22,500
119
+ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ
120
+
121
+ 31
122
+ 00:02:22,500 --> 00:02:24,420
123
+ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆ A21 ูˆุจู†ุนุทูŠ ุชุนุฑูŠู ุฃุฎุฑ
124
+
125
+ 32
126
+ 00:02:24,420 --> 00:02:29,660
127
+ ู„ูˆ ูƒุงู†ุช ุงู„ F of X ู‡ุฐู‡ ุชุณุงูˆูŠ Zero ูŠุนู†ูŠ ุดูŠู„ู†ุง ุงู„ F
128
+
129
+ 33
130
+ 00:02:29,660 --> 00:02:33,120
131
+ of X ูˆุนุทูŠู†ุง ู…ูƒุงู†ู‡ุง ุงู„ุตูุฑ ุงู„ differential equation
132
+
133
+ 34
134
+ 00:02:33,120 --> 00:02:37,500
135
+ of the star is called homogeneous ูŠุจู‚ู‰ ู…ุง ู†ุณู…ูŠู‡ุง
136
+
137
+ 35
138
+ 00:02:37,500 --> 00:02:41,240
139
+ ู…ุนุงุฏู„ุฉ ู…ุชุฌุงู†ุณุฉ ุฏูŠ ู„ุจุงู„ูƒ ู…ุด ุงู„ homogeneous ุทุจุน ุงู„
140
+
141
+ 36
142
+ 00:02:41,240 --> 00:02:46,100
143
+ first order ู‡ู†ุงูƒ ู„ุฃ ุจู‚ู‰ ู‡ู†ุง ู†ู‚ูˆู„ ุฅุฐุง ุจู†ู‚ุฏุฑ ู†ุญุท ุนู„ู‰
144
+
145
+ 37
146
+ 00:02:46,100 --> 00:02:51,060
147
+ ุตูŠุบุฉ Y ุนู„ู‰ X ุฃูˆ X ุนู„ู‰ Y ุจู‚ูˆู„ ุนู†ู‡ุง homogeneous ุจุณ
148
+
149
+ 38
150
+ 00:02:51,060 --> 00:02:55,020
151
+ ู‡ู†ุง ู„ุฃู„ูˆ ูƒุงู†ุช ุงู„ู…ุนุงุฏู„ุฉ ูƒู„ู‡ุง ุชุณุงูˆูŠ 0 ุจู‚ู‰ ุจู‚ูˆู„ ู‡ุฐูŠ
152
+
153
+ 39
154
+ 00:02:55,020 --> 00:02:59,520
155
+ homogeneous differential equation ู„ูƒู† ุฅุฐุง ูƒุงู† ุงู„ F
156
+
157
+ 40
158
+ 00:02:59,520 --> 00:03:04,760
159
+ of X ู„ุง ูŠุณุงูˆูŠ 0 ูŠุนู†ูŠ ุฃุนุทุชู†ูŠ ุฃูŠ ุฏุงู„ุฉ ููŠ X ุจุณู…ูŠู‡ุง
160
+
161
+ 41
162
+ 00:03:04,760 --> 00:03:08,180
163
+ non homogeneous differential equation ู…ุนุงุฏู„ุฉ
164
+
165
+ 42
166
+ 00:03:08,180 --> 00:03:13,800
167
+ ุชูุงุถู„ูŠุฉ ุบูŠุฑ ู…ุชุฌุงู†ุณุฉ ูˆู„ุง ุชุดุจูŠู‡ ุฒูŠ ู…ุง ูƒู†ุง ู†ู‚ูˆู„
168
+
169
+ 43
170
+ 00:03:13,800 --> 00:03:19,580
171
+ homogeneous system ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุฎุทูŠุฉ
172
+
173
+ 44
174
+ 00:03:19,580 --> 00:03:21,060
175
+ ู†ู‡ุงุฆุชู‡ู… Zero
176
+
177
+ 45
178
+ 00:03:23,900 --> 00:03:28,860
179
+ ู…ุนุงุฏู„ุฉ ุฎุทูŠุฉ ู…ุฌู…ูˆุนุฉ ู„ูƒู† ุงู„ู†ุชุงุฆุฌ ุชุจุนุช ุงู„ุทุฑู ุงู„ูŠู…ูŠู†
180
+
181
+ 46
182
+ 00:03:28,860 --> 00:03:33,140
183
+ ุงู„ู„ูŠ ู„ุง ูŠุณุงูˆูŠ 0 ู‚ุฏ ูŠุณุงูˆูŠ ุจุนุถู‡ 0 ู„ูƒู† ุนู„ู‰ ุงู„ุฃู‚ู„ ุจุฏูŠ
184
+
185
+ 47
186
+ 00:03:33,140 --> 00:03:37,560
187
+ ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ู„ุง ุชุณุงูˆูŠ 0 ุนุดุงู† ุฃู‚ูˆู„ ุนู†ู‡ุง non
188
+
189
+ 48
190
+ 00:03:37,560 --> 00:03:42,540
191
+ homogeneousูŠุจู‚ู‰ ุฅุฐุง ูƒุงู† ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ุฒูŠุฑูˆ ุจุณู…ูŠู‡ุง
192
+
193
+ 49
194
+ 00:03:42,540 --> 00:03:46,280
195
+ homogeneous differential equation ุฅุฐุง non zero ุฃูŠ
196
+
197
+ 50
198
+ 00:03:46,280 --> 00:03:50,120
199
+ ุฏุงู„ุฉ ููŠูƒ ุชุจู‚ู‰ ุจุณู…ูŠู‡ุง non homogeneous differential
200
+
201
+ 51
202
+ 00:03:50,120 --> 00:03:53,720
203
+ equation ููŠ ุนู†ุฏู†ุง ุจุนุถ ุงู„ู…ู„ุงุญุธุงุช ุงู„ homogeneous
204
+
205
+ 52
206
+ 00:03:53,720 --> 00:03:57,520
207
+ differential equation ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุชุณุงูˆูŠ
208
+
209
+ 53
210
+ 00:03:57,520 --> 00:04:03,000
211
+ ุฒูŠุฑูˆ ู…ุงู„ู‡ุง ุจู‚ุฏุฑ ุงูƒุชุจู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ L of Y
212
+
213
+ 54
214
+ 00:04:03,000 --> 00:04:07,420
215
+ ุชุณุงูˆูŠ ุฒูŠุฑูˆ ุงุฎุชุตุงุฑุง ุจุฏู„ ุงู„ุดูƒู„ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ูŠู…ูŠู† ู‡ูˆ
216
+
217
+ 55
218
+ 00:04:07,420 --> 00:04:13,380
219
+ ุงู„ Lุงู„ู€ L ุจุณู…ูŠู‡ ู…ุคุซุฑ ุชูุงุถู„ูŠ ูŠุนู†ูŠ ู‡ูˆ ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰
220
+
221
+ 56
222
+ 00:04:13,380 --> 00:04:17,240
223
+ ูˆุงู„ุชุงู†ูŠุฉ ูˆุงู„ุชุงู„ุชุฉ ูˆุงู„ุฑุจุนุฉ ูˆุงู„ู†ูˆู†ูŠุฉ ูƒู„ู‡ู… ู…ุน ุจุนุถ
224
+
225
+ 57
226
+ 00:04:17,240 --> 00:04:22,000
227
+ ู…ุฌู…ูˆุนุงุช ุจุณู…ูŠู‡ู… main ุงู„ู„ูŠ ู‡ูˆ L ูŠุจู‚ู‰ ุงุฎุชุตุงุฑุง ู‡ูƒุชุจ
228
+
229
+ 58
230
+ 00:04:22,000 --> 00:04:26,200
231
+ ุจุงู„ุดูƒู„ ู‡ุฐุง ูˆุฒูŠ ู…ุง ุชุงูŠููŠุง ู‚ุงู„ุช ู„ูƒ ุงู„ L is a linear
232
+
233
+ 59
234
+ 00:04:26,200 --> 00:04:33,310
235
+ differential operator ูŠุจู‚ู‰ ู‡ูˆ ู…ุคุซุฑ ุชูุงุถู„ูŠ ุฎุทูŠู‡ุฐุง
236
+
237
+ 60
238
+ 00:04:33,310 --> 00:04:36,630
239
+ ุงู„ู…ู„ุงุญุธุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู…ู„ุงุญุธุฉ ุงู„ุชุงู†ูŠุฉ ู„ูˆ ุฃุฎุฏุช element
240
+
241
+ 61
242
+ 00:04:36,630 --> 00:04:42,950
243
+ ู…ูˆุฌูˆุฏ ููŠ ุงู„ vector space ุทุจุนุง ู‚ุจู„ ุฐู„ูƒ ู‚ู„ู†ุง vector
244
+
245
+ 62
246
+ 00:04:42,950 --> 00:04:50,410
247
+ space ูƒู„ ุงู„ function ุงู„ู„ูŠ ู„ู‡ุง ู…ุดุชู‚ุงุช ู†ูˆู†ูŠุฉ ุชู…ุงู… is
248
+
249
+ 63
250
+ 00:04:50,410 --> 00:04:55,830
251
+ a solution of ุงู„ L of Y ุงู„ุณูˆู‰ Zero ุฅุฐุง ูƒุงู† ุงู„ F
252
+
253
+ 64
254
+ 00:04:55,830 --> 00:05:03,190
255
+ ุงู„ู„ูŠ ุฃุฎุฏุชู‡ุง ู‡ุฐู‡ ุญู‚ู‚ุช ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ
256
+
257
+ 65
258
+ 00:05:03,190 --> 00:05:08,070
259
+ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ู‰ ุจุดูƒู„ ุงู„ุฎุทุจ ุงู„ู…ุคุซุฑ ู‡ุฐุง ู‡ู‡ู‡ ุงู„ู„ู‰
260
+
261
+ 66
262
+ 00:05:08,070 --> 00:05:13,750
263
+ ุนู†ุฏู†ุง ู‡ุฐู‡ ู…ุงู„ู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ู„ูˆ ุฃุฎุฏุช element ู…ูˆุฌูˆุฏ
264
+
265
+ 67
266
+ 00:05:13,750 --> 00:05:16,770
267
+ ููŠ ุงู„ vector space ุงู„ู„ู‰ ุนู†ุฏู†ุง ูˆ ุงู„ู„ู‰ ุฌูŠุชู‡ ู‡ูˆ
268
+
269
+ 68
270
+ 00:05:16,770 --> 00:05:22,150
271
+ solution ุงู„ element ุงู„ู„ู‰ ุฃุฎุฏุชู‡ ู„ู‡ุฐุง ุงู„ system ูŠุจู‚ู‰
272
+
273
+ 69
274
+ 00:05:22,150 --> 00:05:28,240
275
+ ุจู‚ุฏุฑ ุฃูƒุชุจ ุงู† ุงู„ L of F ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ูŠุณุงูˆูŠ Zeroุชู…ุงู…
276
+
277
+ 70
278
+ 00:05:28,240 --> 00:05:33,100
279
+ ูŠุนู†ูŠ ูƒู„ ุงู„ F ุงู„ุชูŠ ุชุญู‚ู‚ ุงู„ homogenous system ุจู‚ุฏุฑ
280
+
281
+ 71
282
+ 00:05:33,100 --> 00:05:37,600
283
+ ุงูƒุชุจู‡ุง ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุชู„ุงุชุฉ the set of all
284
+
285
+ 72
286
+ 00:05:37,600 --> 00:05:42,660
287
+ solutions of ุงู„ L of Y ุจุฏู„ ุณูˆู‰ Zero is the kernel
288
+
289
+ 73
290
+ 00:05:42,660 --> 00:05:48,060
291
+ of L ูŠุจู‚ู‰ ู„ูˆ ุงุนุชุจุฑุช ุงู† ุงู„ L ู‡ูŠLinear
292
+
293
+ 74
294
+ 00:05:48,060 --> 00:05:53,280
295
+ Transformation ุฃูˆ Function ุฃูˆ ุดูŠุก ู…ู† ู‡ุฐุง ุงู„ู‚ุจูŠู„
296
+
297
+ 75
298
+ 00:05:53,280 --> 00:05:59,180
299
+ ู…ุนู†ุงุชู‡ ุฅู„ู‡ุง ูƒูŠุฑู†ู„ุŒ ู…ูŠู† ู‡ูˆ ุงู„ูƒูŠุฑู†ู„ุŸ ูƒู„ ุงู„ functions
300
+
301
+ 76
302
+ 00:05:59,180 --> 00:06:04,160
303
+ ุงู„ุชูŠ ุชุญู‚ู‚ ู…ู† ุงู„ homogenous linear differential
304
+
305
+ 77
306
+ 00:06:04,160 --> 00:06:08,450
307
+ equationsูŠุจู‚ู‰ ู‡ูˆ ุงู„ูƒูŠุฑู†ู„ ุชุจุน ุงู„ู€L and hence these
308
+
309
+ 78
310
+ 00:06:08,450 --> 00:06:14,070
311
+ solutions is a subspace of ุงู„ู€FN. ู„ูŠุด ู‚ุงู„ ุนู†ู‡ุง
312
+
313
+ 79
314
+ 00:06:14,070 --> 00:06:19,490
315
+ subspaceุŸ ู„ุฃู†ู‡ ุฃุซุจุชู†ุง ููŠ chapter ุชู„ุงุชุฉ ุฃู† ุงู„ูƒูŠุฑู†ู„
316
+
317
+ 80
318
+ 00:06:19,490 --> 00:06:25,310
319
+ ู„ุฃูŠ linear transformation ู‡ูˆsubspace ู…ู…ุชุงุฒ ุฌุฏุง
320
+
321
+ 81
322
+ 00:06:25,310 --> 00:06:30,350
323
+ ูŠุจู‚ู‰ ุงู„ูƒูŠุฑู† ู„ู‡ุฐุง ุงู„ operator ุนุจุงุฑุฉ ุนู† ู…ูŠู† ุนุจุงุฑุฉ ุนู†
324
+
325
+ 82
326
+ 00:06:30,350 --> 00:06:36,170
327
+ subspace ู…ู† ุงู„ set of all continuous functions
328
+
329
+ 83
330
+ 00:06:36,170 --> 00:06:41,290
331
+ ุงู„ู„ูŠ ุงู„ู…ุดุชู‚ุงุช ุงู„ู†ูˆู†ูŠุฉ ุชุจุนุชู‡ุง ูƒู„ ู…ุง ู„ุง ูƒู„ู‡ุง exist
332
+
333
+ 84
334
+ 00:06:41,290 --> 00:06:46,950
335
+ ู…ุง ุนู„ูŠู†ุง ู…ุฌุฑุฏ ุชุณู…ูŠุงุช ุฒูŠ ู…ุง ุงู†ุช ุดุงูŠูู‡ุง ูˆู…ุฌุฑุฏ ุฑุจุท
336
+
337
+ 85
338
+ 00:06:46,950 --> 00:06:51,330
339
+ ู„linear differential equations ุจู…ูŠู† ุจุงู„ linear
340
+
341
+ 86
342
+ 00:06:51,330 --> 00:06:55,850
343
+ algebraู†ุฃุฎุฏ ุจุนุถ ุงู„ุฎูˆุงุต ู„ู„ู€ homogeneous
344
+
345
+ 87
346
+ 00:06:55,850 --> 00:07:00,530
347
+ differential equation ุงู„ู„ู‰ ู…ูƒุชูˆุจุฉ ุจุดูƒู„ ุงู„ operator
348
+
349
+ 88
350
+ 00:07:00,530 --> 00:07:07,910
351
+ L of Y ุงุฎุชุตุงุฑุง ุชุณุงูˆูŠ Zero ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ุจู‚ูˆู„ ู„ูˆ
352
+
353
+ 89
354
+ 00:07:07,910 --> 00:07:12,710
355
+ ุฃุฎุฏุช element ู…ูˆุฌูˆุฏ ููŠ set of real number ูˆ ุฃุฎุฏุช
356
+
357
+ 90
358
+ 00:07:12,710 --> 00:07:16,770
359
+ element ู‡ุฐุง ุงู„ element ู‡ุฐุง ุญู‚ู‚ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ููˆู‚
360
+
361
+ 91
362
+ 00:07:16,770 --> 00:07:23,090
363
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ element ุตุงุฑ solution ู„ู„ู…ุนุงุฏู„ุฉ ูŠุจู‚ู‰ cf
364
+
365
+ 92
366
+ 00:07:23,090 --> 00:07:27,610
367
+ is a solution ุงูŠุด ูŠุนู†ูŠ ูŠุนู†ูŠ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ ุญู„
368
+
369
+ 93
370
+ 00:07:27,610 --> 00:07:32,490
371
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ูˆ ุถุฑุจุชู‡ุง ููŠ ูƒู†ุณุชุงู† ุงู„ู†ุชูŠุฌุฉ ูƒุฐู„ูƒ
372
+
373
+ 94
374
+ 00:07:32,490 --> 00:07:37,820
375
+ ุญู„ ูˆ ู‡ุฐุง ูƒู†ุง ุจุฑุถู‡ ุจู†ุณุชุฎุฏู…ู‡ ูŠุนู†ูŠููŠ ุงู„ุดุจุชุฑ ุงู„ุฃูˆู„
376
+
377
+ 95
378
+ 00:07:37,820 --> 00:07:41,540
379
+ ูŠุจู‚ู‰ ู…ุง ุงู†ุทุจู‚ ุนู„ู‰ ุงู„ุดุจุชุฑ ุงู„ุฃูˆู„ ูŠู†ุทุจู‚ ู‡ู†ุง ุนุงู„ู…ูŠุง
380
+
381
+ 96
382
+ 00:07:41,540 --> 00:07:45,060
383
+ ุนู„ู‰ ู‡ุฐุง ุงู„ุดุจุชุฑ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ function ูˆ ุงู„ function
384
+
385
+ 97
386
+ 00:07:45,060 --> 00:07:49,320
387
+ ู‡ุฐู‡ solution ู„ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูŠุจู‚ู‰ ุถุฑุจ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ
388
+
389
+ 98
390
+ 00:07:49,320 --> 00:07:55,740
391
+ ู„ู„ุญู„ ููŠ constant ุจูŠุฌูŠุจู„ูŠ ุญู„ ุฃุฎุฑ ู„ู…ูŠู† ู„ู„ู…ุนุงุฏู„ุฉ
392
+
393
+ 99
394
+ 00:07:55,740 --> 00:07:59,700
395
+ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ุนู…ู†ุงู‡ุงุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ
396
+
397
+ 100
398
+ 00:07:59,700 --> 00:08:03,740
399
+ ุญุงู„ูŠู† ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ homogenous ูŠุจู‚ู‰
400
+
401
+ 101
402
+ 00:08:03,740 --> 00:08:10,000
403
+ ู…ุฌู…ูˆุนู‡ู…ุง ูƒุฐู„ูƒ ุนุจุงุฑุฉ ุนู† ุญู„ ุงู„ุญุงู„ุฉ ุงู„ุชุงู„ุชุฉ ู‡ูŠ ุชุนู…ูŠู…
404
+
405
+ 102
406
+ 00:08:10,000 --> 00:08:13,680
407
+ ู„ู„ุญุงู„ุฉ ุงู„ุชุงู†ูŠุฉ ุจุฏู„ ู…ุง ู‡ู…ุง ุงุชู†ูŠู† ุจุฏุงุฎู„ูŠู‡ู… ุชู„ุงุชุฉ
408
+
409
+ 103
410
+ 00:08:13,680 --> 00:08:17,280
411
+ ุงุฑุจุนุฉ ุฎู…ุณุฉ ุนุดุฑ ุนุดุฑูŠู† ู‚ุฏ ู…ุง ูŠูƒูˆู†ูˆุง ุงู† ู‡ู…ุง ูŠูƒูˆู†ูˆุง
412
+
413
+ 104
414
+ 00:08:17,280 --> 00:08:23,250
415
+ finite ุนุฏุฏ ู…ุญุฏูˆุฏูŠุจู‚ู‰ ู„ูˆ ูƒุงู† F1 ูˆ F2 ูˆ ู„ุบุงูŠุฉ Fn
416
+
417
+ 105
418
+ 00:08:23,250 --> 00:08:28,250
419
+ solutions ู„ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูˆุนู†ุฏูŠ scholars ู…ูˆุฌูˆุฏุฉ ููŠ R
420
+
421
+ 106
422
+ 00:08:28,250 --> 00:08:34,710
423
+ ูŠุจู‚ู‰ C1 F1 C2 F2 ุฒูŠ ุฒูŠ C ูƒุฐู„ูƒ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุญู„ ู…ูŠู†
424
+
425
+ 107
426
+ 00:08:34,710 --> 00:08:40,030
427
+ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ูŠุจู‚ู‰ ู„ูˆ ุนู†ุฏูŠ ุญู„ูŠู†ุจู‚ูŠู†ุง ู†ู‚ูˆู„ ุงู„
428
+
429
+ 108
430
+ 00:08:40,030 --> 00:08:44,010
431
+ general solution constant ููŠ ุงู„ุฃูˆู„ ุฒุงุฆุฏ constant
432
+
433
+ 109
434
+ 00:08:44,010 --> 00:08:48,650
435
+ ููŠ ุงู„ุชุงู†ูŠ ูˆูŠู…ุซู„ ู…ู† ุงู„ุญู„ ุงู„ุนุงู… ุตุญูŠุญ ูˆู„ุง ู„ุฃ ุทูŠุจ ู„ูˆ
436
+
437
+ 110
438
+ 00:08:48,650 --> 00:08:51,630
439
+ ูƒุงู†ูˆุง ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ constant ููŠ ุงู„ุฃูˆู„ constant
440
+
441
+ 111
442
+ 00:08:51,630 --> 00:08:54,550
443
+ ููŠ ุงู„ุชุงู†ูŠ constant ููŠ ุงู„ุชุงู„ุช constant ููŠ ุงู„ุฑุงุจุน
444
+
445
+ 112
446
+ 00:08:54,550 --> 00:09:00,750
447
+ constant ููŠ ุฑู‚ู… n ูˆ ุฃุฌู…ุนู‡ู… ุจูŠุนุทูŠู†ูŠ ูƒุฐู„ูƒ ุญู„ ุฌุฏูŠุฏ
448
+
449
+ 113
450
+ 00:09:00,750 --> 00:09:04,810
451
+ ู„ู…ู† ู„ูˆ ุจูŠุนุทูŠู†ูŠ ุงู„ general solution ู„ู…ู† ู„ู„
452
+
453
+ 114
454
+ 00:09:04,810 --> 00:09:12,380
455
+ homogeneous systemู‡ุฐู‡ ุงู„ุฎูˆุงุต ู…ุญู‚ู‚ุฉ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ู„ู„
456
+
457
+ 115
458
+ 00:09:12,380 --> 00:09:17,280
459
+ linear differential equations ู„ูƒู† ุงู„ non linear
460
+
461
+ 116
462
+ 00:09:17,280 --> 00:09:22,380
463
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ุง ูŠุญู‚ู‚ู‡ุง ูŠุนู†ูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ุงู„ุฎูˆุงุต
464
+
465
+ 117
466
+ 00:09:22,380 --> 00:09:26,980
467
+ ุงู„ุชู„ุงุชุฉ ุตุญูŠุญ ุนู„ู‰ ุงู„ linear differential equations
468
+
469
+ 118
470
+ 00:09:26,980 --> 00:09:30,940
471
+ ู„ูƒู† ุนู„ู‰ ุงู„ non linear ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุง ู‡ูˆุด ุตุญูŠุญ
472
+
473
+ 119
474
+ 00:09:30,940 --> 00:09:37,840
475
+ ู†ุนุทูŠูƒูŠ ุดุบู„ุฉ ุจุณูŠุทุฉ ู„ูˆ ุนู†ุฏูŠNon-linear differential
476
+
477
+ 120
478
+ 00:09:37,840 --> 00:09:44,740
479
+ equation ูŠุนู†ูŠ ุฒูŠ ุงูŠุดุŸ ุฒูŠ ู…ุง ู†ู‚ูˆู„ ู…ุซู„ุง ุฏู„ู‘ุฉ ููŠ X ููŠ
480
+
481
+ 121
482
+ 00:09:44,740 --> 00:09:51,960
483
+ Y double prime ุฒุงุฆุฏ ุฏู„ู‘ุฉ ููŠ X ููŠ Y prime ู„ูƒู„ ุชุฑุจูŠุฉ
484
+
485
+ 122
486
+ 00:09:53,900 --> 00:09:58,580
487
+ ูŠุจู‚ู‰ ุฒุงุฆุฏ ุฏู„ู‘ุฉ ููŠ x ููŠ y ุชุณุงูˆูŠ zero ู‡ู„ ู‡ุฐู‡ linearุŸ
488
+
489
+ 123
490
+ 00:09:58,580 --> 00:10:02,520
491
+ ู„ุฃ ู„ุฅู† ุงู„ y' ุฑูˆุญู†ุง ุชู‚ูˆู„ู†ุง ุชุฑุจูŠุฉ ูŠุนู†ูŠ ู…ุนุฑูุฉ ุนู„ู‰
492
+
493
+ 124
494
+ 00:10:02,520 --> 00:10:07,720
495
+ ุงู„ุฃุณ ุงุชู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ non linear ูˆุจุงู„ุชุงู„ูŠ constant
496
+
497
+ 125
498
+ 00:10:07,720 --> 00:10:10,880
499
+ ููŠ ุงู„ุฃูˆู„ ูˆ constant ููŠ ุงู„ุชุงู†ูŠ ูˆ constant ููŠ ูƒุฏู‡ ู„ุง
500
+
501
+ 126
502
+ 00:10:10,880 --> 00:10:16,140
503
+ ูŠูƒูˆู† ุญู„ ู„ู…ุซู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉุจู†ุฌูŠ ู„ู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง
504
+
505
+ 127
506
+ 00:10:16,140 --> 00:10:21,140
507
+ ุจูŠู‚ูˆู„ ู„ูŠ ุงู„ู…ุนุงู…ู„ุงุช ุชุจุนุงุช ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู‰ star
508
+
509
+ 128
510
+ 00:10:21,140 --> 00:10:26,920
511
+ ู„ a0 of x ูˆ a1 of x ูˆ ู„ุบุงูŠุฉ a1 of x are continuous
512
+
513
+ 129
514
+ 00:10:26,920 --> 00:10:34,060
515
+ with ุงู„ู„ูŠ ู‡ูˆ a0 of x ู„ุง ูŠุณุงูˆูŠ 0 ุทุจ ุงุณุชู†ู‰ ุดูˆูŠุฉ ู„ูŠุด
516
+
517
+ 130
518
+ 00:10:34,060 --> 00:10:41,340
519
+ ู‚ุงู„ ู„ูŠ ุงู† ุงู„ a0 of x ู„ุง ุชุณุงูˆูŠ 0ุŸ ู„ูŠุด ุงุดุชุฑุช ุงู† ู‡ุฐู‡
520
+
521
+ 131
522
+ 00:10:41,340 --> 00:10:48,310
523
+ ู„ุง ุชุณุงูˆูŠ 0ุŸุทู„ุน ููŠ ุงู„ู…ู‚ุงุฏุฑุฉ ุจุชุนุฑู ุฅู„ู‰ ุญุงู„ูƒุŒ ู„ูˆ ูƒุงู†ุช
524
+
525
+ 132
526
+ 00:10:48,310 --> 00:10:53,370
527
+ ู‡ุฐู‡ ุจุงู„ู€ zeroุŒ ุฅูŠุด ุจุฏูŠ ูŠุญุตู„ุŸุชู†ุฒู„ ุงู„ุฑุชุจุฉ ู…ู† ุงู„ู†ูˆู†ูŠุฉ
528
+
529
+ 133
530
+ 00:10:53,370 --> 00:10:56,990
531
+ ุงู‚ู„ ุดูˆูŠุฉ ู„ุฃ ุงู†ุง ุจุฏูŠ ุงุญุงูุธ ุนู„ู‰ ุงู„ุฑุชุจุฉ ุงู„ู†ูˆู†ูŠุฉ ู„ูˆ
532
+
533
+ 134
534
+ 00:10:56,990 --> 00:11:00,930
535
+ ุงู„ู„ูŠ ุจุนุฏู‡ุง ูƒู„ู‡ู… ูƒุงู†ูˆุง ุงุตุญุงุฑ ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ู„ูŠุด ุงู†ุง
536
+
537
+ 135
538
+ 00:11:00,930 --> 00:11:06,490
539
+ ุจุถู„ู‡ุง ู…ู† ุงู„ุฑุชุจุฉ ุงู„ู†ูˆู†ูŠุฉ ุชู…ุงู…ุŸ ุงุฐุง ู‡ูˆ ู„ู…ุง ุงุดุชุฑุท ุงู†
540
+
541
+ 136
542
+ 00:11:06,490 --> 00:11:10,490
543
+ ู‡ุฐู‡ ู„ุง ูŠุณุชูˆูŠ Zero ุงู„ู‡ุฏู ู…ู† ุฐู„ูƒ ุงู† ุชุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ ู…ู†
544
+
545
+ 137
546
+ 00:11:10,490 --> 00:11:14,670
547
+ ุงู„ุฑุชุจุฉ ุงู„ู†ูˆู†ูŠุฉ ู„ูƒู† ู„ูˆ ุงูŠ term ู…ู† ุงู„ู„ูŠ ุจุนุฏู‡ุง ุทุงุฑ
548
+
549
+ 138
550
+ 00:11:14,670 --> 00:11:18,720
551
+ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ูŠุทูŠุฑูˆุง ูƒู„ู‡ู…ุจุชุจู‚ู‰ ูƒุฐู„ูƒ ู…ู†
552
+
553
+ 139
554
+ 00:11:18,720 --> 00:11:23,500
555
+ ุงู„ุฑุชุจุฉ ุงู„ู†ูˆู†ูŠุฉ ูŠุจู‚ู‰ ุจูŠู‚ูˆู„ุงุด ุงู„ู€ homogeneous
556
+
557
+ 140
558
+ 00:11:23,500 --> 00:11:27,020
559
+ differential ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
560
+
561
+ 141
562
+ 00:11:27,020 --> 00:11:27,180
563
+ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
564
+
565
+ 142
566
+ 00:11:27,180 --> 00:11:27,200
567
+ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
568
+
569
+ 143
570
+ 00:11:27,200 --> 00:11:28,140
571
+ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
572
+
573
+ 144
574
+ 00:11:28,140 --> 00:11:28,360
575
+ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
576
+
577
+ 145
578
+ 00:11:28,360 --> 00:11:28,760
579
+ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
580
+
581
+ 146
582
+ 00:11:28,760 --> 00:11:29,260
583
+ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
584
+
585
+ 147
586
+ 00:11:29,260 --> 00:11:29,440
587
+ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
588
+
589
+ 148
590
+ 00:11:29,440 --> 00:11:29,700
591
+ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
592
+
593
+ 149
594
+ 00:11:29,700 --> 00:11:30,020
595
+ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
596
+
597
+ 150
598
+ 00:11:30,020 --> 00:11:30,540
599
+ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
600
+
601
+ 151
602
+ 00:11:30,540 --> 00:11:35,500
603
+ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
604
+
605
+ 152
606
+ 00:11:35,500 --> 00:11:42,240
607
+ ุงู„ .. ุงู„
608
+
609
+ 153
610
+ 00:11:43,720 --> 00:11:48,600
611
+ Linear operator L ู‡ูˆ ุนุจุงุฑุฉ ุนู† vector space of
612
+
613
+ 154
614
+ 00:11:48,600 --> 00:11:54,260
615
+ dimension N ูŠุจู‚ู‰ ู…ุฌู…ูˆุนุฉ ูƒู„ ุงู„ุญู„ูˆู„ ู„ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู‡ูˆ
616
+
617
+ 155
618
+ 00:11:54,260 --> 00:11:58,780
619
+ vector space of dimension L ูŠุณุงูˆูŠ N ุฎู„ูŠู†ูŠ ุฃุณุฃู„ูƒู…
620
+
621
+ 156
622
+ 00:11:58,780 --> 00:12:07,470
623
+ ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠ ู„ูˆ ู‡ุฐู‡ ูƒุงู†ุช ุชุณุงูˆูŠ Zeroู‡ุฐุง ุงู„ุชุฑู… ูŠุจู‚ู‰
624
+
625
+ 157
626
+ 00:12:07,470 --> 00:12:13,910
627
+ ุนุทุงุฑ ูŠุจู‚ู‰ ุตู„ุฉ ุงู„ู…ุนุงุฏู„ุฉ ุจุงู„ุดูƒู„ ู‡ุฐู‡ ู‡ู„ ู‡ุฐู‡ ู…ู…ูƒู†ุฉ ุงู„
628
+
629
+ 158
630
+ 00:12:13,910 --> 00:12:19,990
631
+ dimension ู‡ูŠูƒูˆู† Nู„ุง ูŠู…ูƒู† ูŠูƒูˆู† ุงูƒุซุฑ ู…ุง ูŠู…ูƒู† ุงู†
632
+
633
+ 159
634
+ 00:12:19,990 --> 00:12:24,810
635
+ minus one ุชู…ุงู… ุงุฐุง ู„ู…ุง ุญุทู„ ุงู„ุดุฑุท ู‡ุฐุง ู‡ูˆ ูŠู‚ุตุฏู‡
636
+
637
+ 160
638
+ 00:12:24,810 --> 00:12:29,850
639
+ ุจุนูŠู†ู‡ ุงู† ู‡ุฐู‡ ุจุฏุฃุช ุชุจู‚ู‰ ู…ูˆุฌูˆุฏุฉ ูˆุจุงู„ุชุงู„ูŠ ู…ุฌู…ูˆุนุฉ
640
+
641
+ 161
642
+ 00:12:29,850 --> 00:12:35,750
643
+ ุงู„ุญู„ูˆู„ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ kernel ู„ู„
644
+
645
+ 162
646
+ 00:12:35,750 --> 00:12:41,870
647
+ operator ุงู„ dimension L ูŠุณุงูˆูŠ N ุงูŠุด ูŠุนู†ูŠ ูŠุนู†ูŠ ููŠ
648
+
649
+ 163
650
+ 00:12:41,870 --> 00:12:48,530
651
+ ุนู†ุฏูŠ N ู…ู† ุงู„ุญู„ูˆู„ ุงู„ู…ุณุชู‚ู„ุฉูˆู„ุง ูˆุงุญุฏ ููŠู‡ู… ูŠุนุชู…ุฏ ุนู„ู‰
652
+
653
+ 164
654
+ 00:12:48,530 --> 00:12:54,310
655
+ ุงู„ุซุงู†ูŠ ู…ุด vector space ู‡ุฐุง ูˆุงู„ dimension ู„ู‡ ู†ุชุฌ ุนู†
656
+
657
+ 165
658
+ 00:12:54,310 --> 00:12:58,870
659
+ basis ูˆุงู„ basis ุดุฑูˆุทู‡ุง ุงู† ูŠูƒูˆู†ูˆุง ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
660
+
661
+ 166
662
+ 00:12:58,870 --> 00:13:02,490
663
+ ููŠ ุงู„ business are linearly independent ูŠุจู‚ู‰ ู‡ุฐู‡
664
+
665
+ 167
666
+ 00:13:02,490 --> 00:13:08,930
667
+ ุงู„ู…ุนุงุฏู„ุฉ ู„ู‡ุง N ู…ู† ุงู„ุญู„ูˆู„ูˆูƒู„ ู‡ุฐู‡ ุงู„ุญู„ูˆู„ are
668
+
669
+ 168
670
+ 00:13:08,930 --> 00:13:15,930
671
+ linearly independent ูˆุนุฏุฏู‡ุง ูŠุณุงูˆูŠ N ุทูŠุจ ู‚ุจู„ ุฃู†
672
+
673
+ 169
674
+ 00:13:15,930 --> 00:13:21,370
675
+ ู†ุจุฏุฃ ุงู„ุฃู…ุซู„ุฉ ููŠ ุญุฏ ุจุชุณุฃู„ ุฃูŠ ุณุคุงู„ ู‡ู†ุง ู‚ุจู„ ุฃู† ู†ู…ุณุญ
676
+
677
+ 170
678
+ 00:13:23,200 --> 00:13:28,860
679
+ ุทูŠุจ ููŠู‡ุง ุงู†ุง remark ู‚ุจู„ ุงู† ู†ุจุฏุฃ ุงู„ุฃู…ุซู„ุฉ ูˆุจู†ุงุก ุนู„ู‰
680
+
681
+ 171
682
+ 00:13:28,860 --> 00:13:34,480
683
+ ู‡ุฐู‡ ุงู„ remark ุจุฏู†ุง ู†ุงุฎุฏ ุงูŠู‡ ุฃู…ุซู„ุฉ ุชูˆุถูŠุญูŠุฉ ุนู„ู‰
684
+
685
+ 172
686
+ 00:13:34,480 --> 00:13:42,560
687
+ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุงุญู†ุง ุจู†ู‚ูˆู„ู‡ ู‡ุฐุง ุงู„
688
+
689
+ 173
690
+ 00:13:42,560 --> 00:13:48,060
691
+ remark ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ remark
692
+
693
+ 174
694
+ 00:13:56,200 --> 00:14:05,760
695
+ from the above theorem ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐู‡
696
+
697
+ 175
698
+ 00:14:05,760 --> 00:14:18,220
699
+ if ุงู„ y1 ูˆ ุงู„ y2 ูˆ ุงู„ yn are linearly independent
700
+
701
+ 176
702
+ 00:14:18,220 --> 00:14:20,880
703
+ solutions
704
+
705
+ 177
706
+ 00:14:24,890 --> 00:14:41,490
707
+ of L of Y equal to zero then that's it Y1 Y2 YN
708
+
709
+ 178
710
+ 00:14:41,490 --> 00:14:50,730
711
+ ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง form a basis form a basis
712
+
713
+ 179
714
+ 00:14:53,430 --> 00:15:01,090
715
+ ุฃุตุจุญ ู…ุคุณุณุฉ ู„ูƒุฑู†ู„
716
+
717
+ 180
718
+ 00:15:01,090 --> 00:15:17,210
719
+ ู„ู€ L ูˆ ู…ู† ู‡ู†ุง ุงูŠ
720
+
721
+ 181
722
+ 00:15:17,210 --> 00:15:17,490
723
+ ุญู„
724
+
725
+ 182
726
+ 00:15:22,720 --> 00:15:32,180
727
+ and hence any solution of L of Y equal to zero has
728
+
729
+ 183
730
+ 00:15:32,180 --> 00:15:37,480
731
+ the form ุจูŠุงุฎุฏ
732
+
733
+ 184
734
+ 00:15:37,480 --> 00:15:50,920
735
+ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ Y ุชุณุงูˆ C1 Y1 C2 Y2 ุฒุงุฆุฏ CN YN this
736
+
737
+ 185
738
+ 00:15:50,920 --> 00:15:51,740
739
+ solution
740
+
741
+ 186
742
+ 00:15:56,740 --> 00:16:05,180
743
+ ู‡ุฐุง ุงู„ุญู„ ู‡ูˆ ุงู„ู€
744
+
745
+ 187
746
+ 00:16:05,180 --> 00:16:15,920
747
+ general solution
748
+
749
+ 188
750
+ 00:16:15,920 --> 00:16:20,460
751
+ of L of Y
752
+
753
+ 189
754
+ 00:16:33,090 --> 00:16:43,770
755
+ ู…ุซุงู„ ุงู…ุฑูŠูƒุง show that
756
+
757
+ 190
758
+ 00:16:43,770 --> 00:16:59,390
759
+ the functions if one of x ูŠุณูˆู‰ cosine x andf2 of x
760
+
761
+ 191
762
+ 00:16:59,390 --> 00:17:12,650
763
+ ูŠุณุงูˆูŠ ุตูŠู† ุงู„ X form a basis for
764
+
765
+ 192
766
+ 00:17:12,650 --> 00:17:18,610
767
+ the space of
768
+
769
+ 193
770
+ 00:17:18,610 --> 00:17:30,580
771
+ solutions space of solutions ofThe differential
772
+
773
+ 194
774
+ 00:17:30,580 --> 00:17:41,820
775
+ equation y double prime ุฒุงุฆุฏ y ุชุณุงูˆูŠ Zero ู†ู…ุฑุฃ ุจูŠู‡
776
+
777
+ 195
778
+ 00:17:41,820 --> 00:17:51,180
779
+ Find a solution Of
780
+
781
+ 196
782
+ 00:17:51,180 --> 00:17:56,640
783
+ the initial value problem
784
+
785
+ 197
786
+ 00:17:59,660 --> 00:18:08,440
787
+ Y double prime ุฒุงุฆุฏ Y ุชุณุงูˆูŠ Zero ูˆ Y ุนู†ุฏ ุงู„ by
788
+
789
+ 198
790
+ 00:18:08,440 --> 00:18:18,480
791
+ ุชุณุงูˆูŠ Zero ูˆ Y prime ุนู†ุฏ ุงู„ by ุชุณุงูˆูŠ ุณุงู„ุจ ุงุชู†ูŠู†
792
+
793
+ 199
794
+ 00:18:18,480 --> 00:18:23,160
795
+ ู†ุฌูŠ
796
+
797
+ 200
798
+ 00:18:23,160 --> 00:18:24,580
799
+ ู„ ุงู„ remark ู…ุฑุฉ ุซุงู†ูŠุฉ
800
+
801
+ 201
802
+ 00:18:27,550 --> 00:18:31,390
803
+ ุจูŠู‚ูˆู„ from the above theorem ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
804
+
805
+ 202
806
+ 00:18:31,390 --> 00:18:35,930
807
+ ู‚ุฏุงู…ู†ุง ูŠุนู†ูŠ ุทุจุนุง ุจู†ุฐูƒุฑู‡ุง ู‚ุจู„ ู…ุง ู†ุจุฏุฃ ู‚ูˆู„ู†ุง ู„ูˆ
808
+
809
+ 203
810
+ 00:18:35,930 --> 00:18:40,930
811
+ ุงู„ู…ุนุงู…ู„ุฉ ุงู„ุฏูˆุงุก ุงู„ู…ุชุงุตู„ ุฃูˆ ุงูŠ node of x ู„ุง ูŠุณุงูˆูŠ
812
+
813
+ 204
814
+ 00:18:40,930 --> 00:18:47,530
815
+ zero ูŠุจู‚ู‰ ุงู„ kernel ู„ู…ูŠู†ุŸ ุงู„ linear operator ูŠู…ุซู„
816
+
817
+ 205
818
+ 00:18:47,530 --> 00:18:52,630
819
+ vector space ุงู„ dimension ู„ู‡ ูŠุณุงูˆูŠ nุงู„ู€ remark
820
+
821
+ 206
822
+ 00:18:52,630 --> 00:18:56,850
823
+ ุจุชู‚ูˆู„ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู„ูˆ ูƒุงู† ุนู†ุฏูŠ ู…ุฌู…ูˆุนุฉ ู…ู†
824
+
825
+ 207
826
+ 00:18:56,850 --> 00:19:01,830
827
+ ุงู„ุญู„ูˆู„ ูˆู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ are linearly independent
828
+
829
+ 208
830
+ 00:19:01,830 --> 00:19:06,490
831
+ solutions ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐู‡ ูŠุจู‚ู‰ ู‡ุฐู‡
832
+
833
+ 209
834
+ 00:19:06,490 --> 00:19:08,530
835
+ ุงู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุญู„ูˆู„
836
+
837
+ 210
838
+ 00:19:12,530 --> 00:19:18,550
839
+ ู…ุฌู…ูˆุนุฉ ุงู„ุญู„ูˆู„ ุงู„ู„ูŠู†ูŠุงุฑู„ูŠ independent ุจุชูƒูˆู‘ู„ ุฃุณุงุณ
840
+
841
+ 211
842
+ 00:19:18,550 --> 00:19:30,540
843
+ ู„ูƒู„ ุญู„ูˆู„ ุงู„ู…ุนุงุฏู„ุฉ L of Y ูŠุณุชูˆูŠ 0ุจุงู„ุชุงู„ูŠ ุฃูŠ ุญู„ ูŠูƒูˆู†
844
+
845
+ 212
846
+ 00:19:30,540 --> 00:19:36,980
847
+ ู…ุจู†ูŠ ุนู„ู‰ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุญู„ูˆู„ ูŠุนู†ูŠ ุจุฏูŠ ูŠูƒูˆู† ุงูŠ
848
+
849
+ 213
850
+ 00:19:36,980 --> 00:19:41,840
851
+ ุญู„ ู‡ูˆ linear combination ู…ู† ู‡ุฐู‡ ุงู„ุญู„ูˆู„ ุงู†ู‡ุง ุฏูˆู„
852
+
853
+ 214
854
+ 00:19:41,840 --> 00:19:48,370
855
+ basisูŠุจู‚ู‰ ุฃูŠ ุญู„ ุณูŠูƒูˆู† ุนู„ู‰ ุงู„ุตูˆุฑุฉ c1y1 ุฒูŠ c2y2 ุฒูŠ
856
+
857
+ 215
858
+ 00:19:48,370 --> 00:19:55,130
859
+ cnyn ู‡ุฐุง ุงู„ุญู„ ุจุณู…ูŠู‡ ุงู„ุญู„ ุงู„ุนุงู… ู„ู„ู…ุนุงุฏู„ุฉ main ุงู„ู„ูŠ
860
+
861
+ 216
862
+ 00:19:55,130 --> 00:20:02,140
863
+ ุนู†ุฏู†ุง ุงู„ู„ุฐูŠ ูŠุดุชู…ู„ ุนู„ู‰ ุฃูŠ ุญู„ ุขุฎุฑู†ุจุฏุฃ ู†ุงุฎุฏ ุงู…ุชู„ุฉ ู‚ุงู„
864
+
865
+ 217
866
+ 00:20:02,140 --> 00:20:07,480
867
+ ู„ูŠ ุทุจุนุง ู‡ุฐุง ู†ู…ุฑ ุงูŠู‡ุŸ ู‡ุฐุง ุงู„ุณุคุงู„ ุงุชู†ูŠู† ู…ู† ุงู„ูƒุชุงุจ
868
+
869
+ 218
870
+ 00:20:07,480 --> 00:20:14,140
871
+ ุฑู‚ู… ุงูŠู‡ุŸ ูˆู‡ุฐุง ุงู„ุณุคุงู„ ุชู„ุงุชุฉ ู…ู† ุงู„ูƒุชุงุจ ุฑู‚ู… ุงูŠู‡ ูƒุฐู„ูƒุŸ
872
+
873
+ 219
874
+ 00:20:15,840 --> 00:20:19,300
875
+ ุงู„ุณุคุงู„ ุงู„ุงุชู†ูŠู† ุงู„ุฑู‚ู… ุงูŠู‡ุŸ ุจูŠู‚ูˆู„ ู„ูŠ ุจูŠูŠู„ ู„ูŠ ุงู†
876
+
877
+ 220
878
+ 00:20:19,300 --> 00:20:25,980
879
+ ุงู„ุฏุงู„ุชูŠู† ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุจูŠูƒูˆู†ูˆู„ูŠ basis ู„ู…ุงู… ู„ู„ space
880
+
881
+ 221
882
+ 00:20:25,980 --> 00:20:29,900
883
+ ุชุจุน ุงู„ solutions ุชุจุน ุงู„ differential equation ุงู„ู„ูŠ
884
+
885
+ 222
886
+ 00:20:29,900 --> 00:20:33,340
887
+ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู…ุดุงู† ุฃุซุจุช ู„ู‡ ุงู† ู‡ุฏูˆู„ ุจูŠูƒูˆู†ูˆู„ูŠ basis
888
+
889
+ 223
890
+ 00:20:33,340 --> 00:20:41,150
891
+ ุฃูˆู„ุง ุจุฏูŠ ุฃุซุจุช ุงู†ู‡ู… ุญุงู„ูŠู†ุจุนุฏ ู…ุง ุฃุซุจุช ุฅู†ู‡ู… ุญุงู„ูŠู† ุจุฏุฃ
892
+
893
+ 224
894
+ 00:20:41,150 --> 00:20:45,570
895
+ ุฃุซุจุช ุฅู†ู‡ู… linearly independent ุจุนุฏ ุฐู„ูƒ ู„ู…ุง ุฃุตุจุญูˆุง
896
+
897
+ 225
898
+ 00:20:45,570 --> 00:20:48,890
899
+ linearly independent ูŠุจู‚ู‰ ุฃูŠ ุญู„ ุจูŠูƒูˆู† ู‡ูˆ linear
900
+
901
+ 226
902
+ 00:20:48,890 --> 00:20:52,810
903
+ combination ุฃูˆ ุงู„ general solution ู‡ูˆ linear
904
+
905
+ 227
906
+ 00:20:52,810 --> 00:20:58,060
907
+ combination ู…ู† ุงู„ุญุงู„ูŠู† ุงู„ุฃุชู†ูŠู†ูˆุจุงู„ุชุงู„ูŠ ู‡ุฏูˆู„ ูƒูˆู‘ู†ูˆุง
908
+
909
+ 228
910
+ 00:20:58,060 --> 00:21:05,700
911
+ ู„ุฅูŠู‡ุŸ Basis ู„ู…ู†ุŸ ู„ู„ูƒูŠุฑู† ุฃูˆ ู„ู…ุฌู…ูˆุนุฉ ุงู„ุญู„ูˆู„ ุชุจุน ู‡ุฐู‡
912
+
913
+ 229
914
+ 00:21:05,700 --> 00:21:10,580
915
+ ุงู„ู…ุนุงุฏู„ุฉ ุจุนุฏ ู…ุง ุฎู„ุต ุจุฑูˆุญ ู„ู„ู†ู…ุฑ ุจูŠู‡ ู‚ุงู„ ู„ูŠ ู‡ุงุชู„ูŠ ุงู„
916
+
917
+ 230
918
+ 00:21:10,580 --> 00:21:14,220
919
+ solution ู„ ุงู„ initial problem ู‡ุฐู‡ ุทุจุนุง ู‡ูŠ ู†ูุณ
920
+
921
+ 231
922
+ 00:21:14,220 --> 00:21:18,420
923
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ููˆู‚ ุจุณ ุฑูˆุญู†ุง ุฃุถูู†ุง ุนู„ูŠู‡ุง ู…ูŠู† ุงู„ุดุฑูˆุท
924
+
925
+ 232
926
+ 00:21:18,420 --> 00:21:23,480
927
+ ุจู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุนู…ู„ ููŠู‡ุง ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ solution
928
+
929
+ 233
930
+ 00:21:25,720 --> 00:21:30,600
931
+ ุฃูˆู„ ุดูŠ ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„ู€cos x ูˆ sin x ู‡ูŠ ุนุจุงุฑุฉ ุนู†
932
+
933
+ 234
934
+ 00:21:30,600 --> 00:21:41,350
935
+ ู…ูŠู† ุงู„ุญู„ ูŠุจู‚ู‰ f1 of x ูŠุณุงูˆูŠ cos xู‡ู†ุง ุจู„ุฒู…ู†ุง
936
+
937
+ 235
938
+ 00:21:41,350 --> 00:21:48,250
939
+ ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุงุฐุง ู‡ุฐุง ุจุฏู‡ ูŠุฎู„ูŠู†ูŠ ุงุฌูŠุจ ุงู„ู…ุดุชู‚ุฉ
940
+
941
+ 236
942
+ 00:21:48,250 --> 00:21:55,350
943
+ ุงู„ุงูˆู„ู‰ f1 prime of x ุชูุงุถู„ cosine ู…ู‚ุฏุงุด ุจุณุงู„ุจ sin
944
+
945
+ 237
946
+ 00:21:55,350 --> 00:22:00,730
947
+ x ู‡ุฐุง ุจุฏู‡ ูŠุฎู„ูŠู†ูŠ ุงุฌูŠุจ ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ as a
948
+
949
+ 238
950
+ 00:22:00,730 --> 00:22:08,020
951
+ function of x ูŠุจู‚ู‰ ุณุงู„ุจ cosine xุงู„ุงู† ุจุฏุฃุช ูŠุงุฎุฏ ุงู„
952
+
953
+ 239
954
+ 00:22:08,020 --> 00:22:15,860
955
+ yw prime ุฒุงุฆุฏ y ูŠุณุงูˆูŠ zero implies ุฅู† ูƒุงู† ู‡ุฐุง ุญู„
956
+
957
+ 240
958
+ 00:22:15,860 --> 00:22:21,200
959
+ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‰ ูŠุญู‚ู‚ู‡ุง ูˆุฅุฐุง ู…ุด ุญู„ ู„ูŠู‡ ูŠู…ูƒู† ุฃู† ูŠุญู‚ู‚ู‡ุง
960
+
961
+ 241
962
+ 00:22:21,390 --> 00:22:29,410
963
+ ูŠุจู‚ู‰ Y W' ู…ุฑุชุจ ู‚ูŠู…ุฉ ุงู„ุฅู…ุงู… ุณุงู„ุจ cosine X ูŠุจู‚ู‰ ุณุงู„ุจ
964
+
965
+ 242
966
+ 00:22:29,410 --> 00:22:36,930
967
+ cosine X ูˆY ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ุญู„ ุงู„ุฐูŠ ุฒุงุฆุฏ cosine X ูƒู…
968
+
969
+ 243
970
+ 00:22:36,930 --> 00:22:49,190
971
+ ุฌู…ุนู‡ู… ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† F1 of X ุณูˆู‰ cosine X is a
972
+
973
+ 244
974
+ 00:22:49,190 --> 00:22:50,790
975
+ solution
976
+
977
+ 245
978
+ 00:23:02,730 --> 00:23:09,770
979
+ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ู„ูˆ ุฌูŠุช ู„ู„ุตูŠู† ู†ูุณ ุงู„ู†ุชูŠุฌุฉ similar ุจู†ูุณ
980
+
981
+ 246
982
+ 00:23:09,770 --> 00:23:20,520
983
+ ุงู„ุทุฑูŠู‚ุฉSimilarly, F2 ุชุณุงูˆูŠ ุตูŠู† ุงู„ X is a solution
984
+
985
+ 247
986
+ 00:23:20,520 --> 00:23:28,550
987
+ of equation starูŠุจู‚ู‰ ุตุงุฑูˆุง ู‡ุฏูˆู„ ุนุจุงุฑุฉ ุนู† ุงูŠุดุŸ
988
+
989
+ 248
990
+ 00:23:28,550 --> 00:23:33,730
991
+ ุนุจุงุฑุฉ ุนู† ุญุงู„ูŠู† ุฌุงู„ ูŠุจูŠู†ู†ูŠ ุงู† ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุจูŠูƒูˆู†ูˆู„ูŠ
992
+
993
+ 249
994
+ 00:23:33,730 --> 00:23:39,570
995
+ basis ู„ู„ vector space ูˆ ู‡ุฏูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ vector
996
+
997
+ 250
998
+ 00:23:39,570 --> 00:23:44,170
999
+ space ูŠุณุงูˆูŠ ู…ุฌู…ูˆุนุฉ ุงู„ุนู„ูˆู„ ุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ุงุดูˆู ู‡ู„
1000
+
1001
+ 251
1002
+ 00:23:44,170 --> 00:23:52,950
1003
+ ุงู„ุญุงู„ูŠู† linearly dependent ูˆ ุงู„ู„ู‡ linearlyู…ู† ู‡ู†ุง
1004
+
1005
+ 252
1006
+ 00:23:52,950 --> 00:23:59,790
1007
+ ุจุฏุฃ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ู†ู…ุฑ ุฅูŠู‡ุŸ ุจุฏุฃ ุฃุฎุฏ ุงู„ู€Runskin as a
1008
+
1009
+ 253
1010
+ 00:23:59,790 --> 00:24:06,430
1011
+ function of X ุญู„ ุงู„ุฃูˆู„ cos X ุญู„ ุงู„ุซุงู†ูŠ sin X
1012
+
1013
+ 254
1014
+ 00:24:06,430 --> 00:24:15,410
1015
+ ู…ุดุชู‚ุชู‡ ุณุงู„ุจ sin X ู…ุดุชู‚ุชู‡ cos Xู†ููƒ ุงู„ู…ุญุฏุฏ ูŠุจู‚ู‰
1016
+
1017
+ 255
1018
+ 00:24:15,410 --> 00:24:20,110
1019
+ cosine ุชุฑุจูŠุน ุงู„ X ุฒุงุฆุฏ sin ุชุฑุจูŠุน ุงู„ X ุงู„ู„ูŠ ูŠุจู‚ู‰
1020
+
1021
+ 256
1022
+ 00:24:20,110 --> 00:24:25,970
1023
+ ุงู„ุฏุงุดุฑ ูˆุงู„ูˆุงุญุฏ ู…ุงู„ู‡ ู„ุง ูŠุณุงูˆูŠ Zero ู…ุฏุงู… ุงู„ ุฑูˆู†ุณูƒูŠู†
1024
+
1025
+ 257
1026
+ 00:24:25,970 --> 00:24:28,610
1027
+ ู„ุง ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ R
1028
+
1029
+ 258
1030
+ 00:24:31,250 --> 00:24:42,570
1031
+ ูŠุจู‚ู‰ ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ุญู„ ุงู„ุฃูˆู„ cos x ูˆ ุงู„ุญู„ ุงู„ุซุงู†ูŠ
1032
+
1033
+ 259
1034
+ 00:24:42,570 --> 00:24:47,830
1035
+ sin x ู‡ู… ู…ุณุชู‚ู„ูŠู†
1036
+
1037
+ 260
1038
+ 00:24:49,550 --> 00:24:55,190
1039
+ ุทูŠุจ ู‡ุงู„ูŠ ููŠ ุงู„ remark ุฅูŠุด ุจุชู‚ูˆู„ ุจุชู‚ูˆู„ ู„ูˆ ูƒุงู†ูˆุง
1040
+
1041
+ 261
1042
+ 00:24:55,190 --> 00:25:00,390
1043
+ ู‡ุฏูˆู„ linearly independent solutions ู„ู„ู…ุนุงุฏู„ุฉ ูŠุจู‚ู‰
1044
+
1045
+ 262
1046
+ 00:25:00,390 --> 00:25:06,810
1047
+ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุชูƒูˆู† basis ู„ู…ู† ู„ู„ูƒูŠุฑู„ ูŠุนู†ูŠ ู„ู…ุฌู…ูˆุนุฉ
1048
+
1049
+ 263
1050
+ 00:25:06,810 --> 00:25:17,090
1051
+ ุงู„ุญู„ูˆู„ ูŠุจู‚ู‰ ู‡ู†ุง ุณ ุฃ cosine ุงู„ X and sine ุงู„ X ูˆ
1052
+
1053
+ 264
1054
+ 00:25:17,090 --> 00:25:25,470
1055
+ ู„ู†ุญุท ุนู„ูŠูƒ ุนู„ู‰ ุดูƒู„ setthe set ุงู„ูŠู…ูŠู† cosine ุงู„ X
1056
+
1057
+ 265
1058
+ 00:25:25,470 --> 00:25:35,810
1059
+ ูˆูƒุฐู„ูƒ sine ุงู„ X form a basis for
1060
+
1061
+ 266
1062
+ 00:25:35,810 --> 00:25:46,070
1063
+ the vector space of solutions
1064
+
1065
+ 267
1066
+ 00:25:46,070 --> 00:25:48,810
1067
+ of
1068
+
1069
+ 268
1070
+ 00:25:49,440 --> 00:25:57,860
1071
+ the equation start ู…ุง ุฏูˆู„ ู‡ุฏูˆู„ ุจูŠุธู„ ูŠุจู‚ู‰ ุฃูŠ ุญู„
1072
+
1073
+ 269
1074
+ 00:25:57,860 --> 00:26:04,920
1075
+ ุจู‚ุฏุฑ ุงูƒุณุจู‡ ุจุฏู„ุงู„ุชู‡ ูŠุจู‚ู‰ ู‡ู†ุง ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ูŠ there
1076
+
1077
+ 270
1078
+ 00:26:04,920 --> 00:26:13,300
1079
+ exist constant C1 ูˆC2 ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ุฃุฑุถ such that
1080
+
1081
+ 271
1082
+ 00:26:13,300 --> 00:26:26,320
1083
+ ุจุญูŠุซ ุงู† any solution ofEquation star is in the
1084
+
1085
+ 272
1086
+ 00:26:26,320 --> 00:26:35,980
1087
+ form Y ูŠุณูˆู‰ C1 Cos X ุฒุงุฆุฏ C2 Sin X
1088
+
1089
+ 273
1090
+ 00:26:46,550 --> 00:26:49,950
1091
+ ู„ุญุฏ ู‡ู†ุง ุงู†ุชู‡ูŠู†ุง ู…ู† ู…ูŠู†ุŸ ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„
1092
+
1093
+ 274
1094
+ 00:26:49,950 --> 00:26:53,850
1095
+ ู‚ุงู„ ู„ูŠ ุจูŠุจูŠู†ู„ูŠ ุงู† ุงู„ู†ุงุณ ุจูŠูƒูˆู†ูˆู„ูŠ basis ู„ู„
1096
+
1097
+ 275
1098
+ 00:26:53,850 --> 00:26:57,130
1099
+ solutions ุจูŠุจูŠู†ู„ู‡ ุงู†ู‡ ุจูŠุจูŠู†ู„ูŠ solutions ูˆ ุฌูŠุจู†ุง
1100
+
1101
+ 276
1102
+ 00:26:57,130 --> 00:27:01,390
1103
+ ุงู„ุดูƒู„ ุงู„ุญู„ ุงู„ุนุงู… ุงู„ู…ุทู„ูˆุจ ุงู„ุชุงู†ูŠ ู‚ุงู„ ู„ูŠ ุญู„ ุงู„
1104
+
1105
+ 277
1106
+ 00:27:01,390 --> 00:27:07,650
1107
+ initial value problem ู…ุด ุงู„ุญู„ ู‡ูˆ ู‡ุฐุง ุตุญ ูˆู„ุง ู„ุฃุŸ
1108
+
1109
+ 278
1110
+ 00:27:07,650 --> 00:27:11,090
1111
+ ูŠุจู‚ู‰ ู…ุด ุงู† ุงุฌูŠุจู„ูŠ ุงู„ solutions ุจุฏูŠ ุงุฑูˆุญ ุงุฌูŠุจูŠ
1112
+
1113
+ 279
1114
+ 00:27:11,090 --> 00:27:18,350
1115
+ ุงู„ู…ุดุชู‚ุฉุงู„ุฃูˆู„ู‰ ูˆุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ูˆุงุฑูˆุญ ุงุนูˆุถ ููŠู‡ู… ููŠ
1116
+
1117
+ 280
1118
+ 00:27:18,350 --> 00:27:22,970
1119
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ู‰ ุนู†ุฏู†ุง ุงู†ุง ูŠุจู‚ู‰ ุงุญู†ุง ู‡ู†ุง ุนู†ุฏู†ุง ู…ูŠู†
1120
+
1121
+ 281
1122
+ 00:27:22,970 --> 00:27:34,710
1123
+ ุนู†ุฏู†ุง ู†ู…ุฑุฉ ุจูŠู‡ ุนู†ุฏูƒ y ุชุณุงูˆูŠ c1cos x ุฒุงุฆุฏ c2sin x
1124
+
1125
+ 282
1126
+ 00:27:34,710 --> 00:27:47,110
1127
+ ู„ูˆ ุงุดุชู‚ุช ู‡ู„ุด ุจุชุนุทูŠู†ูŠy' ุณุงู„ุจ c1 sin x ุฒุงุฆุฏ c2 ููŠ
1128
+
1129
+ 283
1130
+ 00:27:47,110 --> 00:27:53,550
1131
+ cos x ุงู„ condition ุงู„ุฃูˆู„ุงู†ูŠ ุงู„ู…ุนุทู‰ ุงู„ู„ูŠ ู‡ูˆ ุจูŠู‚ูˆู„
1132
+
1133
+ 284
1134
+ 00:27:53,550 --> 00:28:01,430
1135
+ ู„ูŠ ู…ูŠู† y ุนู†ุฏ ุงู„ by ุชุณุงูˆูŠ ู‚ุฏุงุด ุชุณุงูˆูŠ zero implies y
1136
+
1137
+ 285
1138
+ 00:28:01,430 --> 00:28:09,520
1139
+ ูŠุณุงูˆูŠ ูƒุตุงู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู†ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ ุณุงู„ุจ C1 ุตูŠู†
1140
+
1141
+ 286
1142
+ 00:28:09,520 --> 00:28:17,280
1143
+ ู…ูŠุฉ ูˆุชู…ุงู†ูŠู† ูŠุจู‚ู‰ ุฒุงุฆุฏ Zero ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† C1 ูŠุณุงูˆูŠ
1144
+
1145
+ 287
1146
+ 00:28:17,280 --> 00:28:27,700
1147
+ ZeroY' ุชุณูˆูŠ ูƒุฏู‡ุŸ ุณุงู„ูŠ ุจุงุชู†ูŠู† ูŠุณุงูˆูŠ Sine 180 ุจุฒูŠุฑูˆ
1148
+
1149
+ 288
1150
+ 00:28:27,700 --> 00:28:36,000
1151
+ ูˆ Sine 180 ุจุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ ุณุงู„ุจ C2 ูŠุจู‚ู‰ C2 ูŠุณุงูˆูŠ
1152
+
1153
+ 289
1154
+ 00:28:36,000 --> 00:28:41,940
1155
+ ุงุชู†ูŠู† ูˆ C1 ูŠุณุงูˆูŠ ูˆุงุญุฏ ูŠุจู‚ู‰ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ู‡ู†ุง The
1156
+
1157
+ 290
1158
+ 00:28:41,940 --> 00:28:42,860
1159
+ solution
1160
+
1161
+ 291
1162
+ 00:28:45,370 --> 00:28:55,590
1163
+ Solution of the initial value problem is Y ุชุณุงูˆูŠ
1164
+
1165
+ 292
1166
+ 00:29:10,750 --> 00:29:15,730
1167
+ ู„ุงุฒู„ู†ุง ููŠ ู†ูุณ ุงู„ section ูˆ ู„ู…ุง ู†ู†ุชู‡ูŠ ุจุนุฏ ู„ู„ู…ุฑุฉ
1168
+
1169
+ 293
1170
+ 00:29:15,730 --> 00:29:17,630
1171
+ ุงู„ู‚ุงุฏู…ุฉ ุงู† ุดุงุก ุงู„ู„ู‡
1172
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/i9JeLMWGd-k_postprocess.srt ADDED
@@ -0,0 +1,1600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,690 --> 00:00:25,190
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู†ุชู‡ูŠู†ุง ู…ู† chapter 3 ุงู„ู„ู‰
4
+
5
+ 2
6
+ 00:00:25,190 --> 00:00:29,510
7
+ ุจุชุญุฏุซ ุนู† ู…ูˆุถูˆุนูŠู† ุงู„ู„ู‰ ู‡ูˆ ุงู„ vector spaces ูˆ ุงู„
8
+
9
+ 3
10
+ 00:00:29,510 --> 00:00:34,130
11
+ linear transformations ูˆุงู†ุชู‚ู„ู†ุง ุงู„ุงู† ุงู„ู‰ chapter 4
12
+
13
+ 4
14
+ 00:00:34,130 --> 00:00:39,150
15
+ ูˆ ู‡ูˆ ุงู„ chapter ุงู„ุซุงู„ุซ ู…ู† ุงู„ linear algebra ู„ุฃู†
16
+
17
+ 5
18
+ 00:00:39,150 --> 00:00:43,670
19
+ ุงู„ู…ุงุฏุฉ ุงู„ู„ู‰ ู…ุนุงู†ุง ู…ุนุงุฏู„ุงุช ุชูุงุถู„ูŠุฉ ูˆุฌุจุฑ ุฎุทูŠ ูŠุจู‚ู‰
20
+
21
+ 6
22
+ 00:00:43,670 --> 00:00:49,110
23
+ ู‡ุฐุง ู‡ูˆ ุงู„ chapter ุงู„ุซุงู„ุซ ูˆุงู„ุงุฎูŠุฑ ู…ู† ุงู„ุฌุจุฑ ุงู„ุฎุทูŠููŠ
24
+
25
+ 7
26
+ 00:00:49,110 --> 00:00:53,330
27
+ ู‡ุฐุง ุงู„ุดูุฑ ุจุฏู†ุง ู†ุงุฎุฏ two sections ู‡ุฐุง ุฃูˆู„ section
28
+
29
+ 8
30
+ 00:00:53,330 --> 00:00:57,250
31
+ ุจูŠู† ุฅูŠุฏูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ characteristic values
32
+
33
+ 9
34
+ 00:00:57,250 --> 00:01:01,750
35
+ ูˆุงู„section ุงู„ุชุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ diagonalization ุฎู„ูŠู†ุง
36
+
37
+ 10
38
+ 00:01:01,750 --> 00:01:03,990
39
+ ุงู„ุขู† ู…ุน ุงู„ section ุงู„ุฃูˆู„ ุฃุฑุจุนุฉ ูˆ ูˆุงุญุฏุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„
40
+
41
+ 11
42
+ 00:01:03,990 --> 00:01:10,970
43
+ characteristic values ูŠุนู†ูŠ ุงู„ู‚ูŠู… ุงู„ู…ู…ูŠุฒุฉ ุฃูˆ ุงู„ู‚ูŠู…
44
+
45
+ 12
46
+ 00:01:10,970 --> 00:01:16,730
47
+ ุงู„ู…ู…ูŠุฒุฉุงูŠุด ุงู„ู‚ูŠู… ุงู„ู…ู…ูŠุฒุฉุŸ ุทุจุนุง ุงู„ู‚ูŠู… ุงู„ู…ู…ูŠุฒุฉ
48
+
49
+ 13
50
+ 00:01:16,730 --> 00:01:22,670
51
+ ู„ู…ุตููˆูุฉ ู…ุง ู‡ูŠ ุงู„ู…ู‚ุตูˆุฏ ููŠู‡ุง ุงู„ุชุนุฑูŠู ุจูŠู‚ูˆู„ ู…ุง ูŠุงุชูŠ
52
+
53
+ 14
54
+ 00:01:22,670 --> 00:01:31,410
55
+ ู‡ุงุนุทูŠ ุชุนุฑูŠู ู„ู‚ูŠู… ุงู„ู…ู…ูŠุฒุฉ ูˆุงู„ู…ุชุฌู‡ุงุช ุงู„ู…ู…ูŠุฒุฉ ู„ู…ุตููˆูุฉ
56
+
57
+ 15
58
+ 00:01:32,200 --> 00:01:39,160
59
+ ุงู„ุชุนุฑูŠู ุงู„ุฃูˆู„ ู‡ูˆ ุงู„ู‚ูŠู… ุงู„ู…ู…ูŠุฒุฉ ู„ู…ุตููˆูุฉ ุจูŠู‚ูˆู„ ุงูุชุฑุถ
60
+
61
+ 16
62
+ 00:01:39,160 --> 00:01:45,360
63
+ ุงู„ A ู‡ูŠ ู…ุตููˆูุฉ ู…ุฑุจุนุฉ ู†ุธุงู…ู‡ุง N ููŠ M number lambda
64
+
65
+ 17
66
+ 00:01:45,360 --> 00:01:50,920
67
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุนุฏุฏ ู‡ูˆ real numberุงู„ุนุฏุฏ ู‡ุฐุง ู‚ุฏ ูŠูƒูˆู† ุนุฏุฏ
68
+
69
+ 18
70
+ 00:01:50,920 --> 00:01:57,540
71
+ ุญู‚ูŠู‚ูŠ ูˆู‚ุฏ ูŠูƒูˆู† ุนุฏุฏ ุชุฎูŠู„ูŠ complex number ูŠุจู‚ู‰ ุณูˆุงุก
72
+
73
+ 19
74
+ 00:01:57,540 --> 00:02:01,140
75
+ ูƒุงู† ุนุฏุฏ ุญู‚ูŠู‚ูŠ ูˆ ุทุจุนุง ู‡ู†ุนุทูŠ ุฃู…ุซู„ุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุนู„ู‰
76
+
77
+ 20
78
+ 00:02:01,140 --> 00:02:06,520
79
+ ู„ู†ุฏู† ุชุทู„ุน ู…ุฑุฉ ู‚ูŠู…ุฉ ุญู‚ูŠู‚ูŠุฉ ูˆ ู…ุฑุฉ ู‚ูŠู…ุฉ ุชุฎูŠู„ูŠุฉูŠูˆุฌุฏ
80
+
81
+ 21
82
+ 00:02:06,520 --> 00:02:11,120
83
+ ุฑู…ุจุฑ ู„ุงู…ุถุฉ real or complex ูŠุนู†ูŠ ูŠุง ุฅู…ุง ุนุฏุฏ ุญู‚ูŠู‚ูŠ
84
+
85
+ 22
86
+ 00:02:11,120 --> 00:02:15,800
87
+ ูŠุง ุฅู…ุง ุนุฏุฏ ู…ูุฑูƒู‘ุจ is called an eigenvalue ุจุณู…ูŠู‡
88
+
89
+ 23
90
+ 00:02:15,800 --> 00:02:20,180
91
+ ุงู„ู€ eigenvalue ุฃูˆ ุงู„ู€ characteristic value ุงู„ู‚ูŠู…ุฉ
92
+
93
+ 24
94
+ 00:02:20,180 --> 00:02:25,160
95
+ ุงู„ู…ู…ูŠุฒุฉ ู„ู…ู†ุŸ ู„ู„ู…ุตููˆูุฉ ุฅูŠู‡ุŸ if there exists a non
96
+
97
+ 25
98
+ 00:02:25,160 --> 00:02:31,200
99
+ -zero vector x ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ RMูŠุจู‚ู‰ ุงู„ X ุฏู‡ non
100
+
101
+ 26
102
+ 00:02:31,200 --> 00:02:34,560
103
+ -zero ุนู…ุฑู‡ ู…ุง ู‡ูŠุณุงูˆูŠ zero ุฏู„ูˆู‚ุช ุฏุฑูˆุง ุจุงู„ูƒู… non
104
+
105
+ 27
106
+ 00:02:34,560 --> 00:02:41,160
107
+ -zero vector X ู…ูˆุฌูˆุฏ ููŠ Rn ุจุญูŠุซ ุฃู† ุงู„ A ููŠ ุงู„ X
108
+
109
+ 28
110
+ 00:02:41,160 --> 00:02:45,560
111
+ ูŠุณุงูˆูŠ ุงู„ land ุฏู‡ ููŠ X ุงู„ land ูŠุง ุจู†ุงุช A ู…ุตููˆูุฉ
112
+
113
+ 29
114
+ 00:02:45,560 --> 00:02:51,450
115
+ ู†ุธุงู…ู‡ุง N ููŠ N ูˆุงู„ X ู‡ุฐูŠ vector ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸูู‰ RN
116
+
117
+ 30
118
+ 00:02:51,450 --> 00:02:57,630
119
+ ูŠุนู†ูŠ ูƒุฃู†ู‡ ู…ุตููˆูุฉ ููŠู‡ุง N ู…ู† ุงู„ุตููˆู ูˆุนู…ูˆุฏ ูˆุงุญุฏ ู„ูˆ
120
+
121
+ 31
122
+ 00:02:57,630 --> 00:03:03,870
123
+ ุถุฑุจุช ุงุชู†ูŠู† ููŠ ุจุนุถ ูŠูู„ุน ู…ุตููˆูุฉ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ูŠู…ูƒู†
124
+
125
+ 32
126
+ 00:03:03,870 --> 00:03:08,410
127
+ ุงู„ู„ุงุฌุฆ ุจูŠู† ุฌู…ูŠุน ุฃู†ุตุงุฑู‡ุง ุนุงู…ู„ ู…ุดุชุฑูƒ ุงุฎุฏู‡ ุจุฑุง ุงุฎุฏู‡
128
+
129
+ 33
130
+ 00:03:08,410 --> 00:03:13,690
131
+ ุจุฑุง ู…ูŠู† ู‡ูˆ ู„ู†ุฏู† ู„ู†ุฏู† ุจูŠุถู„ ูู‰ ุงู„ vector X ุงู† ุญุฏุซ
132
+
133
+ 34
134
+ 00:03:13,690 --> 00:03:20,050
135
+ ุฐู„ูƒ ุจู‚ูˆู„ ูŠุจู‚ู‰ ู„ู†ุฏู† ู‡ูŠ ู‚ูŠู…ุฉ ู…ู…ูŠุฒุฉ ู„ู„ู…ุตููˆูุฉ AูŠุจู‚ู‰
136
+
137
+ 35
138
+ 00:03:20,050 --> 00:03:24,650
139
+ ู„ุงู†ุฏุง ุงู„ู„ูŠ ุนู†ุฏู‰ ู‡ุฐู‡ ุนุฏุฏ ู„ูƒู† X ู‡ุฐุง vector ูŠุนู†ูŠ
140
+
141
+ 36
142
+ 00:03:24,650 --> 00:03:31,730
143
+ ู…ุตููˆูุฉ ุชุชูƒูˆู† ู…ู† N ู…ู† ุงู„ุตููˆู ูˆุนู…ูˆุฏ ูˆุงุญุฏ ุชู…ุงู… ุฅุฐุง
144
+
145
+ 37
146
+ 00:03:31,730 --> 00:03:35,730
147
+ ุฌุฏุฑุช ุฃูƒุชุจ ู‡ุฐู‡ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู„ุงู†ุฏุง
148
+
149
+ 38
150
+ 00:03:35,730 --> 00:03:43,640
151
+ ู‡ุฐู‡ ู…ุงู„ู‡ุง ุดูˆ ุงุณู…ู‡ุงEigenvalue ุงูˆ characteristic
152
+
153
+ 39
154
+ 00:03:43,640 --> 00:03:52,200
155
+ value ุจุดุฑุท ุงู„ X non zero vector ู†ุฌูŠ
156
+
157
+ 40
158
+ 00:03:52,200 --> 00:03:57,330
159
+ ุงู„ุชุนุฑูŠู ุงู„ุชุงู†ูŠEvery non-zero vector x ุงู„ู…ูˆุฌูˆุฏ ููŠ
160
+
161
+ 41
162
+ 00:03:57,330 --> 00:04:02,450
163
+ Rn satisfy the question ุจุญู‚ู‚ ู„ู‡ุฐุง ุงู„ู‡ุฏู is called
164
+
165
+ 42
166
+ 00:04:02,450 --> 00:04:05,890
167
+ the eigenvector ุงูˆ ุงู„ characteristic vector
168
+
169
+ 43
170
+ 00:04:12,430 --> 00:04:16,970
171
+ ุฃูŠูˆุฉ ูŠุนู†ูŠ ู†ูุณ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ู‰ ุนู†ุฏู†ุง ู‡ูŠ ู†ูุณ ุงู„ู…ุนุงุฏู„ุฉ
172
+
173
+ 44
174
+ 00:04:16,970 --> 00:04:22,770
175
+ ู‡ุฐู‡ ูŠุจู‚ู‰ ุงู„ X ุงู„ู„ู‰ ู‚ู„ู†ุง ุนู„ูŠู‡ non zero vector ุงู„ X
176
+
177
+ 45
178
+ 00:04:22,770 --> 00:04:27,630
179
+ ุงู„ู„ู‰ ู‡ูˆ non zero vector ุงู„ู„ู‰ ุจุญู‚ู‚ ุงู„ู…ุนุงุฏ๏ฟฝ๏ฟฝุฉ ู‡ุฐู‡
180
+
181
+ 46
182
+ 00:04:27,630 --> 00:04:34,670
183
+ ุจุณู…ูŠู‡ ุงู„ู…ุชุฌู‡ ุงู„ู…ู…ูŠุฒ ูŠุจู‚ู‰ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ู…ู…ูƒู† ู„ู„
184
+
185
+ 47
186
+ 00:04:34,670 --> 00:04:37,890
187
+ characteristic vector ููŠ ูŠูˆู… ู…ู† ุงู„ุฃูŠุงู… ูŠูƒูˆู† ุงู„
188
+
189
+ 48
190
+ 00:04:37,890 --> 00:04:43,870
191
+ zero vectorููŠ ุงู„ุดู…ูƒุงู†ูŠุฉ ู‚ุงู„ non-zero vector ูŠุจู‚ู‰
192
+
193
+ 49
194
+ 00:04:43,870 --> 00:04:49,430
195
+ ู„ุง ูŠู…ูƒู† ุงู„ู…ุชุฌู‡ ุงู„ุตูุฑูŠ ุฃู† ูŠูƒูˆู† eigenvector ูŠุจู‚ู‰ ุงู„
196
+
197
+ 50
198
+ 00:04:49,430 --> 00:04:53,870
199
+ eigenvalue ูŠุง ุจู†ุงุช ู‡ูˆ ุนุฏุฏ ุญู‚ูŠู‚ูŠ ุฃูˆ ุนุฏุฏ ุชุฎูŠู„ูŠ ู„ูƒู†
200
+
201
+ 51
202
+ 00:04:53,870 --> 00:04:58,750
203
+ ุงู„ eigenvector ู‡ูˆ ู…ุตููˆูุฉ ู…ูƒูˆู†ุฉ ู…ู† N ู…ู† ุงู„ุตููˆู ู…ุซู„ุง
204
+
205
+ 52
206
+ 00:04:58,750 --> 00:05:04,720
207
+ ุงูˆ M ู…ู† ุงู„ุตููˆู ูˆุนู…ูˆุฏ ูˆุงุญุฏู‡ูˆ ุงู„ู„ู‰ ุจูŠุญู‚ู‚ ู…ูŠู† ุจูŠุญู‚ู‚
208
+
209
+ 53
210
+ 00:05:04,720 --> 00:05:07,940
211
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ู‰ ุนู†ุฏู†ุง ู‡ุฐู‡ ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ูŠุงุจุง
212
+
213
+ 54
214
+ 00:05:07,940 --> 00:05:12,520
215
+ ุงูƒุชุจู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ุงูˆ ุงู„ุดูƒู„ ู‡ุฐุง ุงูˆ ุงู„ุดูƒู„ ู‡ุฐุง ุงู„ุดูƒู„
216
+
217
+ 55
218
+ 00:05:12,520 --> 00:05:16,140
219
+ ู‡ุฐุง ู…ู† ูˆูŠู† ุงุฌุง ู‡ุฐู‡ ุงู„ุจู†ุงุช ู„ูˆ ุฌูŠุจุชู‡ุง ุนู„ู‰ ุงู„ุดุฌุฑุฉ
220
+
221
+ 56
222
+ 00:05:16,140 --> 00:05:23,120
223
+ ุชู†ู‚ุด ุจุงู„ุตุบูŠุฑู„ุงู†ุฏุง ุงูƒุณ ู†ุงู‚ุต ax ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูŠุนู†ูŠ ููŠ
224
+
225
+ 57
226
+ 00:05:23,120 --> 00:05:29,060
227
+ ุงู„ู‡ุง ู…ุด ู‡ูŠูƒ ู„ูˆ ุฌูŠุช ู‚ูˆู„ุช ู„ุงู†ุฏุง ุงูƒุณ ู†ุงู‚ุต ax ุจุฏูŠ ุณุงูˆูŠ
228
+
229
+ 58
230
+ 00:05:29,060 --> 00:05:33,460
231
+ ู…ูŠู† ุจุฏูŠ ุณุงูˆูŠ ุฒูŠุฑูˆ ููŠ ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู…ูƒู† ู†ุงุฎุฏู‡ ู…ู†ู‡ู…
232
+
233
+ 59
234
+ 00:05:33,460 --> 00:05:38,780
235
+ ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ X ุทุจ ุฃุฎุฏู‡ ุจุฑุง ูˆู„ุง ุฃุฎุฏู‡ ูŠุนู†ูŠ
236
+
237
+ 60
238
+ 00:05:38,780 --> 00:05:44,420
239
+ ุฃุฎุฏู‡ ุนู„ู‰ ุงู„ูŠู…ูŠู† ูˆู„ุง ุฃุฎุฏู‡ ุนู„ู‰ ุงู„ุฅุดู…ุงู„ ุฃุดู…ุงู„
240
+
241
+ 61
242
+ 00:05:44,420 --> 00:05:49,210
243
+ ูŠุนู†ูŠ ุฃุฎุฏู‡ ู‡ู†ุง ุจุฑุงุชุงุฎุฏูˆุง ุนู„ู‰ ุงู„ูŠู…ูŠู† ู„ูŠุดุŸ ุงู† ุนุฑู…ุงู„ูŠุฉ
244
+
245
+ 62
246
+ 00:05:49,210 --> 00:05:55,550
247
+ ุถุฑุจ ุงู„ู…ุตูˆูุงุช ู„ูŠุณุช ุฅุจุฏุงู„ูŠุฉุŒ ุฏูŠ ู…ุด ุจู…ุฒุงุฌ ูŠู…ูŠู† ูˆุดู…ุงู„ุŒ
248
+
249
+ 63
250
+ 00:05:55,550 --> 00:05:59,770
251
+ ุฅุฌุจุงุฑูŠ ู‡ูˆ ุนู„ู‰ ุงู„ูŠู…ูŠู†ุŒ ุฌุงูŠ ุจูŠุจู‚ู‰ ุจุชุฎู„ูŠู‡ ุนู„ู‰ ุงู„ูŠู…ูŠู†ุŒ
252
+
253
+ 64
254
+ 00:05:59,770 --> 00:06:03,430
255
+ ุฅุฐุง ู„ูˆ ุฃุฎุฏุชูˆุง ุนุงู…ู„ ู…ุดุชุฑูƒุŒ ุจูŠุธู„ ูŠู…ูŠู† ู‡ู†ุง ุนู†ุฏู†ุง
256
+
257
+ 65
258
+ 00:06:03,430 --> 00:06:06,790
259
+ ู„ู†ุฏุงุŒ ู„ู†ุฏุง ุจุณ ูˆู„ุง ู„ู†ุฏุง ..
260
+
261
+ 66
262
+ 00:06:13,110 --> 00:06:19,530
263
+ ู‡ู„ ูŠู…ูƒู† ุงู„ุฑู‚ู… ุฃู†ูŠ ุฃุทุฑุญู‡ ู…ู† ุงู„ู…ุตูˆูุฉ ููŠ ุงู„ุดู…ูƒุงู†ูŠุฉ
264
+
265
+ 67
266
+ 00:06:19,530 --> 00:06:24,610
267
+ ูŠุจู‚ู‰ ุจุทุฑุญ ู…ุตูˆูุฉ ู…ู† ุงู„ู…ุตูˆูุฉ ูŠุจู‚ู‰ lambda I ู†ุงู‚ุต ุงู„ A
268
+
269
+ 68
270
+ 00:06:24,610 --> 00:06:29,190
271
+ ูƒู„ู‡ ููŠ X ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ู‡ุงูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ููˆู‚
272
+
273
+ 69
274
+ 00:06:29,190 --> 00:06:35,070
275
+ ุงู„ู„ูŠ ุงุญู†ุง ุฌุงูŠู„ูŠู† ุนู„ูŠู‡ุงุทุจุนุง ูŠุงู…ุง ู‡ู†ูƒุชุจู‡ุง ุฎู„ุงู„ ุดุบู„ู†ุง
276
+
277
+ 70
278
+ 00:06:35,070 --> 00:06:39,210
279
+ ููŠ ู‡ุฐุง ุงู„ chapter ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุชู…ุงู…
280
+
281
+ 71
282
+ 00:06:39,210 --> 00:06:43,470
283
+ ูŠุจู‚ู‰ ู‡ูŠ ุนุฑูู†ุง ุงู„ eigen value ูˆุงู„ eigen vectors
284
+
285
+ 72
286
+ 00:06:43,470 --> 00:06:48,910
287
+ ุจุฏู†ุง ู†ุจุฏุฃ ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุนู„ู‰ ุฐู„ูƒ ู†ุจุฏุฃ ุจุฃูˆู„ ู…ุซุงู„ ุฃูˆู„
288
+
289
+ 73
290
+ 00:06:48,910 --> 00:06:56,290
291
+ ู…ุซุงู„ ู…ุซุงู„ ุจุณูŠุท ูŠุจู‚ู‰ example one example one ุจูŠู‚ูˆู„
292
+
293
+ 74
294
+ 00:06:56,290 --> 00:07:05,110
295
+ ู…ุง ูŠุงุชูŠ Fุงู„ู…ุตูˆูุฉ ุงูŠู‡ุŸ ู‡ูŠ ุงู„ identity matrix ุงู„ู„ูŠ
296
+
297
+ 75
298
+ 00:07:05,110 --> 00:07:13,950
299
+ ู‡ูŠ the identity matrix ู„ูˆ ูƒุงู†ุช ู‡ุฐู‡ ู…ุตูˆูุฉ ุงู„ูˆุญุฏุฉ
300
+
301
+ 76
302
+ 00:07:13,950 --> 00:07:26,170
303
+ then the only the only eigen value eigen
304
+
305
+ 77
306
+ 00:07:26,170 --> 00:07:36,000
307
+ valueis one and
308
+
309
+ 78
310
+ 00:07:36,000 --> 00:07:42,320
311
+ hence every
312
+
313
+ 79
314
+ 00:07:42,320 --> 00:07:54,700
315
+ non zero vector every non zero vector X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
316
+
317
+ 80
318
+ 00:07:54,700 --> 00:08:04,500
319
+ ููŠ RN isand eigen vector
320
+
321
+ 81
322
+ 00:08:04,500 --> 00:08:12,820
323
+ ุงู„ุณุจุจ because ุงู†
324
+
325
+ 82
326
+ 00:08:12,820 --> 00:08:19,020
327
+ ุงู„ I ููŠ ุงู„ X ูŠุณูˆู‰
328
+
329
+ 83
330
+ 00:08:21,030 --> 00:08:26,090
331
+ ุฃุญู†ุง ู‚ู„ู†ุง ุงู„ X ู‡ุฏู‰ ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ุงู„ R N ูŠุจู‚ู‰ X ู‡ุฏู‰
332
+
333
+ 84
334
+ 00:08:26,090 --> 00:08:30,550
335
+ vector X ูˆุงุญุฏ X ุงุชู†ู‰ ู„ุบุงูŠุฉ X N ู…ุถุฑูˆุจ ููŠ ู…ุตููˆูุฉ
336
+
337
+ 85
338
+ 00:08:30,550 --> 00:08:35,090
339
+ ุงู„ูˆุงุญุฏู‡ุงุด ุจูŠุนุทูŠู†ู‰ ุงู„ู…ุตููˆูุฉ X ุจุงู„ุดูƒู„ ุงู„ู„ู‰ ุนู†ุฏู†ุง ู‡ุฏู‰
340
+
341
+ 86
342
+ 00:08:35,090 --> 00:08:41,290
343
+ ุงู„ู„ู‰ ุจู‚ุฏุฑ ุงูƒุชุจู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ูˆุงุญุฏ ู…ุถุฑูˆุจ ููŠ ู…ูŠู† ููŠ X
344
+
345
+ 87
346
+ 00:08:41,290 --> 00:08:45,810
347
+ ูˆู…ู† ู‡ู†ุง ุงู„ Eigen value ุงู„ู„ู‰ ุนู†ุฏู†ุง ู…ูŠู† ุงู„ู„ู‰ ู‡ู‰
348
+
349
+ 88
350
+ 00:08:45,810 --> 00:08:52,200
351
+ ุงู„ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฏู‰ ุฃุชูุฉ ุฃู†ูˆุงุน ู…ูŠู† ุงู„ุฃู…ุซู„ุฉูŠุจู‚ู‰ ู„ูˆ ูƒุงู†ุช
352
+
353
+ 89
354
+ 00:08:52,200 --> 00:08:58,140
355
+ ุงู„ a ู‡ูŠ ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„
356
+
357
+ 90
358
+ 00:08:58,140 --> 00:09:03,610
359
+ eigen value ู‡ูŠุงู„ูˆุงุญุฏ ุงู„ุตุญูŠ ู…ููŠุด ุบูŠุฑู‡ ู„ูƒู† ุงู„
360
+
361
+ 91
362
+ 00:09:03,610 --> 00:09:08,690
363
+ eigenvectors ุฃูƒุชุฑ ูƒู„ู‡ู… eigenvectors ู…ุน ุนุฏู…ูŠู† ุงู„
364
+
365
+ 92
366
+ 00:09:08,690 --> 00:09:12,890
367
+ zero vector ุฑูˆุญ ู†ู‚ูˆู„ ุฃู‡ู†ุณ every non zero vector
368
+
369
+ 93
370
+ 00:09:12,890 --> 00:09:17,490
371
+ ู…ูˆุฌูˆุฏ ููŠ ุงู„ RN ุนุจุงุฑุฉ ุนู† eigenvector ู‡ุฐุง ุงู„ุดุบู„
372
+
373
+ 94
374
+ 00:09:17,490 --> 00:09:24,250
375
+ ุงู„ุจุณูŠุท ุทูŠุจ ู†ุดุชุบู„ ุดุบู„ ุฃุญุณู† ู…ู† ู‡ู†ุง ูŠุจู‚ู‰ example two
376
+
377
+ 95
378
+ 00:09:31,250 --> 00:09:37,990
379
+ LED ุงู„ู…ุตูˆูุฉ ุงูŠู‡ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุณุชุฉ ุฎู…ุณ
380
+
381
+ 96
382
+ 00:09:37,990 --> 00:09:40,910
383
+ ุงุชู†ูŠู† ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง
384
+
385
+ 97
386
+ 00:09:43,790 --> 00:09:50,570
387
+ ุงู„ X ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ vector ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ ุณุชุฉ ูˆู†ุงู‚ุต
388
+
389
+ 98
390
+ 00:09:50,570 --> 00:09:57,690
391
+ ุฎู…ุณุฉ ูˆ ุงู„ Y ู‡ูˆ ุงู„ vector ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ ุซู„ุงุซุฉ ูˆุณู„ุจ
392
+
393
+ 99
394
+ 00:09:57,690 --> 00:10:04,110
395
+ ุงุชู†ูŠู† ูƒู„ ู‡ุฐุง ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ููŠ R2 ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„
396
+
397
+ 100
398
+ 00:10:04,110 --> 00:10:12,990
399
+ ุจูŠู‚ูˆู„ูŠ find the eigen value
400
+
401
+ 101
402
+ 00:10:37,730 --> 00:10:42,430
403
+ ู‡ู„ ู‡ุฏูˆู„ ุจูŠูƒูˆู†ูˆุง eigenvectors of a ูˆู„ุง ู„ุฃ
404
+
405
+ 102
406
+ 00:10:53,800 --> 00:10:59,920
407
+ ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ุณุคุงู„ ุจูŠู‚ูˆู„ ู…ูŠุงุชูŠ ุนู†ุฏูŠ ู…ุตููˆูุฉ ู†ุธุงู…ู‡ุง
408
+
409
+ 103
410
+ 00:10:59,920 --> 00:11:05,320
411
+ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ุณู…ูŠุชู‡ุง ุงูŠู‡ุŸ ุงุฎุฏุช vector ู…ุงู‚ู„ุชุด ุนู†ู‡
412
+
413
+ 104
414
+ 00:11:05,320 --> 00:11:09,760
415
+ ู„ุง ุฅูŠู‡ ูƒุงู† ูˆ ู„ุง ุบูŠุฑู‡ vector ู…ูˆุฌูˆุฏ ููŠ ุงุนุฑุงุก ุงุชู†ูŠู†
416
+
417
+ 105
418
+ 00:11:09,760 --> 00:11:14,920
419
+ ุงู„ู„ูŠ ุจู‚ุฏุฑ ุงู‚ูˆู„ ุณุชุฉ ูˆ ุณุงู„ุจ ุฎู…ุณุฉ ุงูˆ ู…ุตููˆูุฉ ุนู…ูˆุฏูŠุฉ
420
+
421
+ 106
422
+ 00:11:14,920 --> 00:11:19,100
423
+ ุงู„ู„ูŠ ู‡ูŠ ุณุชุฉ ูˆ ุณุงู„ุจ ุฎู…ุณุฉ ูˆ vector ุชุงู†ูŠ ู…ูˆุฌูˆุฏ ููŠ
424
+
425
+ 107
426
+ 00:11:19,100 --> 00:11:23,050
427
+ ุงุนุฑุงุก ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ูˆ ุณุงู„ุจ ุงุชู†ูŠู†ู…ุทู„ุจูŠู†
428
+
429
+ 108
430
+ 00:11:23,050 --> 00:11:28,030
431
+ ุฌุงู„ูŠู‡ุงุช ู„ู„ eigenvalue ู„ู„ู…ุตูˆูุฉ ู…ู† a ู…ุทู„ุจ ุงู„ุฃูˆู„ ู…ุทู„ุจ
432
+
433
+ 109
434
+ 00:11:28,030 --> 00:11:32,070
435
+ ุงู„ุชุงู†ูŠ ุจูŠู‚ูˆู„ ู‡ู„ ุงู„ X ูˆ Y ู‡ุฏูˆู„ ุจูŠูƒูˆู†ูˆุง eigenvectors
436
+
437
+ 110
438
+ 00:11:32,070 --> 00:11:36,710
439
+ ุงู… ู„ุง ุทุจุนุง ูŠู…ูƒู† ูŠุทู„ุนูˆุง eigenvectors ูˆ ูŠู…ูƒู† ู…ุง
440
+
441
+ 111
442
+ 00:11:36,710 --> 00:11:41,010
443
+ ูŠุทู„ุนูˆุด ู„ู…ุง ู†ุดูˆู ู‡ู„ ุจู†ู‚ุฏุฑ ู†ูƒุชุจ ุนู„ู‰ ุงู„ุตูŠุบุฉ ุงู„ู„ูŠ
444
+
445
+ 112
446
+ 00:11:41,010 --> 00:11:45,610
447
+ ุนู†ุฏู†ุง ู‡ุฐู‡ ูˆู„ุง ู„ุฃ ูˆ ุจุนุฏ ู‡ูŠูƒ ูŠู…ูƒู† ูŠุฌูŠ ููŠ ุจุงู„ู†ุง ุชุณุงุคู„
448
+
449
+ 113
450
+ 00:11:45,610 --> 00:11:50,160
451
+ ุฎู„ูŠู‡ ู„ู…ุง ู†ูˆุตู„ู‡ ุจุตูŠุฑ ุฎูŠุฑูŠุจู‚ู‰ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ู‚ุงู„ู„ูŠ
452
+
453
+ 114
454
+ 00:11:50,160 --> 00:11:54,000
455
+ ู‡ุงุชู„ูŠ ุงู„ eigen value ู„ู…ูŠู† ู„ู„ู…ุตู…ู… ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุฃู†ุง
456
+
457
+ 115
458
+ 00:11:54,000 --> 00:11:59,660
459
+ ุจุฏูŠ ุฃุฎุฏ ุงู„ a ููŠ ุงู„ x ู‡ุดูˆู ุฅูŠุด ุจุชุนุทูŠู†ุง ูŠุจู‚ู‰ ุจุฏุงุฌูŠ
460
+
461
+ 116
462
+ 00:11:59,660 --> 00:12:05,640
463
+ ุฃู‚ูˆู„ู‡ ุงู„ a ููŠ ุงู„ x ูŠุณุงูˆูŠ ุงู„ a ู…ูˆุฌูˆุฏุฉ ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ
464
+
465
+ 117
466
+ 00:12:05,640 --> 00:12:12,720
467
+ ุณุชุฉ ุฎู…ุณ ุงุชู†ูŠู† ุงู„ x ุนู†ุฏู†ุง ู‚ุฏุงุดุฑ ุณุชุฉ ู†ุงู‚ุต ุฎู…ุณุฉ
468
+
469
+ 118
470
+ 00:12:12,720 --> 00:12:13,740
471
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
472
+
473
+ 119
474
+ 00:12:19,890 --> 00:12:25,610
475
+ ู‡ู„ ุจู‚ุฏุฑ ุงูƒุชุจ ุงู„ุฑู‚ู… ููŠ ุงู„ vector ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูˆ
476
+
477
+ 120
478
+ 00:12:25,610 --> 00:12:31,490
479
+ ู„ุง ู„ุฃ ุญุณุจ ุงู„ definition ู‡ู„
480
+
481
+ 121
482
+ 00:12:31,490 --> 00:12:34,950
483
+ ุจู‚ุฏุฑ ุงูƒุชุจ ุงู„ุฑู‚ู… ููŠ ุงู„ vector ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูˆ ู„ุง
484
+
485
+ 122
486
+ 00:12:34,950 --> 00:12:39,150
487
+ ู„ุฃ ุญุณุจ ุงู„ definitionุชุนุงู„ูˆุง ู†ุถุฑุจ ุงู„ู…ุตูุชูŠู† ู‡ุฏูˆู„
488
+
489
+ 123
490
+ 00:12:39,150 --> 00:12:43,710
491
+ ูˆู†ุดูˆู ุฅูŠู‡ ุงู„ุดู†ุงุชูŠู† ูŠุจู‚ู‰ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„
492
+
493
+ 124
494
+ 00:12:43,710 --> 00:12:50,550
495
+ ูˆุงุญุฏ ููŠ ุณุชุฉ ุจุณุชุฉ ูˆู‡ู†ุง ู†ุงู‚ุต ุชู„ุงุชูŠู† ุจูŠุธู„ ุฌุฏุงุด ู†ุงู‚ุต
496
+
497
+ 125
498
+ 00:12:50,550 --> 00:12:54,960
499
+ ุฃุฑุจุนุฉ ูˆุนุดุฑูŠู†ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆู† ุงู„ุตู
500
+
501
+ 126
502
+ 00:12:54,960 --> 00:12:59,900
503
+ ุงู„ุซุงู†ูŠ ููŠ ุงู„ุนู…ูˆู† ุฎู…ุณุฉ ููŠ ุณุชุฉ ุจุชู„ุงุชูŠู† ู†ุงู‚ุต ุนุดุฑุฉ
504
+
505
+ 127
506
+ 00:12:59,900 --> 00:13:05,620
507
+ ุจูŠุธู„ ู‚ุฏุงุดุฑ ุนุดุฑูŠู† ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุจู†ู‚ุฏุฑ ู†ุงุฎุฏ
508
+
509
+ 128
510
+ 00:13:05,620 --> 00:13:09,760
511
+ ุนุงู…ู„ ู…ุดุชุฑูƒุŒ ุฅูŠุด ุงู„ุนุงู…ู„ ุงู„ู…ุดุชุฑูƒ ุงู„ู„ูŠ ู…ุงุจูŠู„ ูŠุชู†ุงู…ุŸ
512
+
513
+ 129
514
+ 00:13:11,370 --> 00:13:14,350
515
+ ุฃุฑุจุนุฉ ู„ูˆ ุฃุฎุฏุช ุฃุฑุจุนุฉ ุจูŠุตูŠุฑ ู‡ู†ุง ุณุงู„ุจ ุจุณ ุฃู†ุง ุนู†ุฏูŠ
516
+
517
+ 130
518
+ 00:13:14,350 --> 00:13:20,090
519
+ ุณุงู„ุจ ูˆูŠู†ุŸ ุชุญุช ูŠุจู‚ู‰ ุฎุฏ ุณุงู„ุจ ุฃุฑุจุนุฉ ู…ู† ุงู„ูƒู„ ูŠุจู‚ู‰ ุณุงู„ุจ
520
+
521
+ 131
522
+ 00:13:20,090 --> 00:13:26,850
523
+ ุฃุฑุจุนุฉ ุจูŠุธู„ ุนู†ุฏู†ุง ู‚ุฏุงุด ุณุชุฉ ูˆ ู‡ู†ุง ู‚ุฏุงุด ู†ุงู‚ุต ุฎู…ุณุฉ
524
+
525
+ 132
526
+ 00:13:26,850 --> 00:13:31,660
527
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ู‡ุฐุง X ูˆู„ุง ู„ุงุŸู…ุด ู‡ูˆ X
528
+
529
+ 133
530
+ 00:13:31,660 --> 00:13:37,440
531
+ ุงู„ู„ูŠ ุนู†ุฏู†ุงุŸ ุฅุฐุง ุญุตู„ ุถุฑุจ ู„ุฅุชู†ูŠู† ูƒุชุจุชู‡ ุนู„ู‰ ุตูŠุบุฉ ุฑู‚ู…
532
+
533
+ 134
534
+ 00:13:37,440 --> 00:13:43,460
535
+ ู…ุถุฑูˆุจ ููŠ ุงู„ู€ X ูŠุจู‚ู‰ Lambda ุจูƒู…ุŸ ุณุงู„ุจ ุฃุฑุจุนุฉ ูŠุจู‚ู‰
536
+
537
+ 135
538
+ 00:13:43,460 --> 00:13:52,640
539
+ ู‡ู†ุง Lambda ุชุณุงูˆูŠ ุงู„ุณุงู„ุจ ุฃุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูŠ is the eigen
540
+
541
+ 136
542
+ 00:13:52,640 --> 00:14:04,450
543
+ value ofthe matrix ุงู„ู…ูุนุทูŽุฑ ุทุจ ู„ูˆ ุบูŠุฑู†ุง ุงู„ู…ุตููˆู
544
+
545
+ 137
546
+ 00:14:04,450 --> 00:14:08,630
547
+ ู‡ุฐู‡ ุจู…ุตููˆูู‡ุง ุชุงู†ูŠุฉ ุจุถู„ ุงู„ land ู‡ุฐู‡ ูˆู„ุง ุจุชุชุบูŠุฑุŸ
548
+
549
+ 138
550
+ 00:14:10,080 --> 00:14:15,780
551
+ ุจุชุชุบูŠุฑ ู„ุฃู† ู‡ุฐู‡ ูƒู„ ูˆุงุญุฏุฉ ุฎุงุตุฉ ุจู…ุตููˆูุชู‡ุง ุฅุฐุง ู„ูˆ ุบูŠุฑุช
552
+
553
+ 139
554
+ 00:14:15,780 --> 00:14:19,940
555
+ ุงู„ู…ุตููˆูุฉ ุจุชุชุบูŠุฑ ู‚ูŠู…ุฉ land ูŠุนู†ูŠ ุจุชุจู‚ู‰ ุงุดุชุงุจ ุฏู‡ ู„ูŠุด
556
+
557
+ 140
558
+ 00:14:19,940 --> 00:14:23,400
559
+ ุงู†ุง ุงู‚ูˆู„ the eigen value of the matrix ุงูŠู‡ุŸ ุบูŠุฑุช
560
+
561
+ 141
562
+ 00:14:23,400 --> 00:14:28,660
563
+ ุงู„ matrix ุงุชุบูŠุฑ ู…ูŠู†ุŸ ุจุชุชุบูŠุฑ ู‚ูŠู…ุฉ ุงู„ land ูŠุจู‚ู‰ ู‡ุฐุง
564
+
565
+ 142
566
+ 00:14:28,660 --> 00:14:34,780
567
+ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ู†ู…ุฑุฉ a ู†ู…ุฑุฉ bู†ู…ุฑู‰ ุจูŠู‚ูˆู„ ู‡ู„
568
+
569
+ 143
570
+ 00:14:34,780 --> 00:14:39,120
571
+ ุงู„ X ูˆ ุงู„ Y Eigen Vectors ูˆู„ุง ู„ุงุŸ ุจุฏุฃ ุฃุณุฃู„ูƒูˆุง
572
+
573
+ 144
574
+ 00:14:39,120 --> 00:14:43,800
575
+ ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠ ู‡ู„ ุงู„ X Eigen Vector ูˆู„ุง ู„ุงุŸ ู„ูŠุด ู„ู‡
576
+
577
+ 145
578
+ 00:14:43,800 --> 00:14:49,320
579
+ non-zero ุงุชู†ูŠู† ุญู‚ู‚ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุตุญูŠุญ
580
+
581
+ 146
582
+ 00:14:49,320 --> 00:14:54,960
583
+ ูˆู„ุง ู„ุงุŸ ูŠุจู‚ู‰ ุจุงุฌูŠ ูŠู‚ูˆู„ is the Eigen Value and ุงู„ X
584
+
585
+ 147
586
+ 00:14:54,960 --> 00:15:02,980
587
+ ุจุฏู‡ ูŠุณุงูˆูŠ ุณุชุฉ ู†ุงู‚ุต ุฎู…ุณุฉ is an Eigen Vector
588
+
589
+ 148
590
+ 00:15:05,910 --> 00:15:10,650
591
+ ุงู„ู…ุตูˆูุฉ ุงูŠู‡ุŸ ุทุจ ุจุฏูŠ ุงุฌูŠ ู„ู†ู…ุฑ ุจูŠู‡ุŸ ุจุฏูŠ ุงุดุชุบู„ ู†ูุณูŠ
592
+
593
+ 149
594
+ 00:15:10,650 --> 00:15:18,120
595
+ ุงู„ุดุบู„ ูุงูŠุด ุจุฏูŠ ุงุฌูŠ ุงู‚ูˆู„ู‡ุŸ ุจุฏูŠ ุงุฎุฏ ุงู„ a ููŠ ุงู„ yุทุจุนุง
596
+
597
+ 150
598
+ 00:15:18,120 --> 00:15:23,540
599
+ ุฅุฐุง ู„ู…ุง ุฃุฎุฏ ุงู„ A ููŠ ุงู„ Y ุจุฏู‡ ุณุงูˆูŠ ุงู„ู…ุตูˆูุฉ ูˆุงุญุฏ ุณุชุฉ
600
+
601
+ 151
602
+ 00:15:23,540 --> 00:15:29,620
603
+ ุฎู…ุณุฉ ุงุชู†ูŠู† ูู…ูŠู† ููŠ ุงู„ Y ุนู†ุฏู‡ ุชู„ุงุชุฉ ูˆ ุณุงู„ุจูŠ ุงุชู†ูŠู†
604
+
605
+ 152
606
+ 00:15:29,620 --> 00:15:34,260
607
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ุชุงุน ู„ู†ุถุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ
608
+
609
+ 153
610
+ 00:15:34,260 --> 00:15:39,820
611
+ ุงู„ุนู…ูˆุฏ ูŠุจู‚ู‰ ุชู„ุงุชุฉ ูˆุนู†ุฏูŠ ู†ุงู‚ุต ุงุชู†ุงุด ููŠ ุถู„ุฌ ุงู„ุฏุฑุฌุฉ
612
+
613
+ 154
614
+ 00:15:49,280 --> 00:15:55,740
615
+ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุชุณุชุทูŠุน ุงู† ุชุฃุฎุฐ ุนุงู…ู„ ู…ุดุชุฑูƒ ูŠุทู„ุน ุนู†ุฏู†ุง
616
+
617
+ 155
618
+ 00:15:55,740 --> 00:15:57,100
619
+ ู‡ุฐุง ุงู„ vectorุŸ
620
+
621
+ 156
622
+ 00:15:59,630 --> 00:16:07,630
623
+ ูŠุจู‚ู‰ ู‡ุฐุง ู„ุง ูŠุณุงูˆูŠ ู„ุงู†ุฏุง ููŠ ู…ู†ุŸ ููŠ ุชู„ุงุชุฉ ุณุงู„ูŠ
624
+
625
+ 157
626
+ 00:16:07,630 --> 00:16:15,770
627
+ ุจุงุชู†ูŠู† for any number ู„ุงู†ุฏุง
628
+
629
+ 158
630
+ 00:16:15,770 --> 00:16:21,210
631
+ ู„ุฃูŠ number ู„ุงู†ุฏุง ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุด ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ู…ุนู†ุงุชู‡
632
+
633
+ 159
634
+ 00:16:21,210 --> 00:16:26,650
635
+ ู‡ุฐุง ุงู„ vector Eigen vectorูŠุจู‚ู‰ ู‡ุฐุง ู„ุง ูŠู…ูƒู† ุฃู† ูŠูƒูˆู†
636
+
637
+ 160
638
+ 00:16:26,650 --> 00:16:34,390
639
+ eigenvector ููŠ ูŠูˆู… ู…ู† ุงู„ุฃูŠุงู… ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ y ุชุณุงูˆูŠ
640
+
641
+ 161
642
+ 00:16:34,390 --> 00:16:45,170
643
+ ุชู„ุงุชุฉ ูˆุณู„ุจ ุงุชู†ูŠู† is not an eigenvector
644
+
645
+ 162
646
+ 00:16:46,610 --> 00:16:50,330
647
+ ูŠุจู‚ู‰ ู…ุนู†ุงุชู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู€Eigenvector ูŠุนุชู…ุฏ ุนู„ู‰
648
+
649
+ 163
650
+ 00:16:50,330 --> 00:16:53,970
651
+ ู…ูŠู† ุงู„ู€Eigenvalue ุฅุฐุง ุนู†ุฏูŠ ุฅูŠุด ููŠู‡ Eigenvalue
652
+
653
+ 164
654
+ 00:16:53,970 --> 00:16:57,010
655
+ ู…ุนู†ุงุชู‡ ููŠู‡ Eigenvector ู…ุงููŠุด Eigenvalue ูŠุจู‚ู‰ ู…ุงููŠุด
656
+
657
+ 165
658
+ 00:16:57,010 --> 00:17:04,490
659
+ Eigenvector ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุซุงู„ ุจุณูŠุท ูˆุงุถุญ ุฅู†ู‡ ู…ุนู†ู‰
660
+
661
+ 166
662
+ 00:17:04,490 --> 00:17:07,930
663
+ ุงู„ู€Eigenvalue ูˆุงู„ู€Eigenvector ุงู„ู„ูŠ ุฃุนุทูŠู†ุง
664
+
665
+ 167
666
+ 00:17:07,930 --> 00:17:12,830
667
+ ุชุนุฑูŠูุงุชู‡ู… ุฃูˆ ุชุนุฑูŠูุงุชู‡ู…ุง ู‚ุจู„ ู‚ู„ูŠู„
668
+
669
+ 168
670
+ 00:17:15,770 --> 00:17:21,710
671
+ ู†ุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ูƒูŠู ุจุฏู†ุง ู†ูˆุฌุฏ ุงู„ eigenvalues
672
+
673
+ 169
674
+ 00:17:21,710 --> 00:17:29,170
675
+ ู‡ุทุฑุญ ุญุฏ ุนู„ู‰ ุตูŠุบุฉ ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰ how to find
676
+
677
+ 170
678
+ 00:17:29,170 --> 00:17:38,970
679
+ ูƒูŠู ุจุฏูƒ ุชูˆุฌุฏ the eigen ุฃูˆ ุงู„ characteristic values
680
+
681
+ 171
682
+ 00:17:38,970 --> 00:17:40,990
683
+ of
684
+
685
+ 172
686
+ 00:17:44,020 --> 00:17:49,800
687
+ ู† ุจูŠ ู† ู…ุงุชุฑูŠูƒุณ
688
+
689
+ 173
690
+ 00:17:49,800 --> 00:17:55,820
691
+ ู…ุงุชุฑูŠูƒุณ
692
+
693
+ 174
694
+ 00:17:55,820 --> 00:18:06,520
695
+ A ู‡ุฐุง ู‡ูˆ ุงู„ุณุคุงู„ ุงู„ุฅุฌุงุจุฉ ูƒุงู„ุชุงู„ูŠ answer ุฎุทูˆุฉ
696
+
697
+ 175
698
+ 00:18:06,520 --> 00:18:09,200
699
+ ุงู„ุฃูˆู„ู‰ rewrite
700
+
701
+ 176
702
+ 00:18:12,220 --> 00:18:22,260
703
+ ุนุงุฏ ูƒุชุงุจุฉ ุงู„ู…ุนุงุฏู„ุฉ equation ax ูŠุณุงูˆูŠ lambda x in
704
+
705
+ 177
706
+ 00:18:22,260 --> 00:18:26,500
707
+ the form ููŠ
708
+
709
+ 178
710
+ 00:18:26,500 --> 00:18:34,900
711
+ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู„ูŠ ู‡ูˆ lambda I ู†ุงู‚ุต ุงู„ A ููŠ ุงู„ X
712
+
713
+ 179
714
+ 00:18:34,900 --> 00:18:42,620
715
+ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆุณู…ูŠู„ูŠ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… 6ุฎุทูˆุฉ
716
+
717
+ 180
718
+ 00:18:42,620 --> 00:18:49,740
719
+ ุงู„ุชุงู†ูŠุฉ since ุงู„ X does not equal to zero ูŠุจู‚ู‰ ุงู„
720
+
721
+ 181
722
+ 00:18:49,740 --> 00:18:54,340
723
+ system ูŠุจู‚ู‰
724
+
725
+ 182
726
+ 00:18:54,340 --> 00:19:00,720
727
+ ุงู„ system star has
728
+
729
+ 183
730
+ 00:19:00,720 --> 00:19:07,380
731
+ a non zero solution
732
+
733
+ 184
734
+ 00:19:10,280 --> 00:19:19,940
735
+ if and only if if and only if determinant ู„ lambda
736
+
737
+ 185
738
+ 00:19:19,940 --> 00:19:28,580
739
+ I ู†ุงู‚ุต ุงู„ A ุจุฏู‡ ูŠุณุงูˆูŠ zero ูˆ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… ูˆุงุญุฏ
740
+
741
+ 186
742
+ 00:19:28,580 --> 00:19:31,620
743
+ the
744
+
745
+ 187
746
+ 00:19:31,620 --> 00:19:46,390
747
+ solution the solution of thatEquation one ุจูŠุนุทูŠู†ุง
748
+
749
+ 188
750
+ 00:19:46,390 --> 00:19:56,530
751
+ ุงู„ู€ Eigen values ุงู„ู„ูŠ
752
+
753
+ 189
754
+ 00:19:56,530 --> 00:20:04,230
755
+ ู‡ูŠ ุงู„ู„ูŠ ุนู†ุฏู‡ุง command definition equation
756
+
757
+ 190
758
+ 00:20:07,100 --> 00:20:15,120
759
+ ุงู„ู…ุนุงุฏู„ุฉ determined ู„ lambda I ู†ุงู‚ุต ุงู„ A ุจุฏู‡ ูŠุณุงูˆูŠ
760
+
761
+ 191
762
+ 00:20:15,120 --> 00:20:20,600
763
+ Zero is called the
764
+
765
+ 192
766
+ 00:20:20,600 --> 00:20:31,560
767
+ characteristic equation ุงู„ู…ุนุงุฏู„ุฉ
768
+
769
+ 193
770
+ 00:20:31,560 --> 00:20:35,540
771
+ ุงู„ู…ู…ูŠุฒุฉ ุฃูˆ ุงู„ polynomial
772
+
773
+ 194
774
+ 00:20:40,780 --> 00:20:53,460
775
+ pronomial equation of a matrix a ู…ุตููˆูุฉ a that is
776
+
777
+ 195
778
+ 00:20:53,460 --> 00:21:05,410
779
+ in ุงู„ P of ู„ุงู†ุฏุง ุจุฏูŠ ุงุณุงูˆูŠ determinantู„ู„ุงู†ุฏุง ุงูŠ
780
+
781
+ 196
782
+ 00:21:05,410 --> 00:21:15,210
783
+ ู†ุงู‚ุต ุงู„ a ุงู„ู„ูŠ ู‡ูŠ ุจุฏุฃ ุชุณุงูˆูŠ ู„ุงู†ุฏุง ุฒูŠุฑูˆ ุฒูŠุฑูˆ ุฒูŠุฑูˆ
784
+
785
+ 197
786
+ 00:21:15,210 --> 00:21:23,870
787
+ ู„ุงู†ุฏุง ุฒูŠุฑูˆ ุฒูŠุฑูˆ ุฒูŠุฑูˆ ุฒูŠุฑูˆ ู„ุงู†ุฏุง ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
788
+
789
+ 198
790
+ 00:21:23,870 --> 00:21:32,470
791
+ ู‡ู†ุง ู†ุงู‚ุต a11 a12 a1n a21
792
+
793
+ 199
794
+ 00:21:44,090 --> 00:21:49,930
795
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูˆ ุงู„ู„ูŠ ุจู‚ุฏุฑ ุงู‚ูˆู„ ูˆุชุณุงูˆูŠ
796
+
797
+ 200
798
+ 00:21:49,930 --> 00:22:04,840
799
+ ู…ุตููˆูุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ู„ุงู†ุฏุง ู†ุงู‚ุต a11ู†ู‚ุต a12 ู†ุงู‚ุต a1n
800
+
801
+ 201
802
+ 00:22:09,510 --> 00:22:22,010
803
+ A21 ู†ุงู‚ุต A21 ูˆ ุจุนุฏูŠู† ู„ุงู†ุฏุง ู†ุงู‚ุต A22 ูˆ ู†ุงู‚ุต A2N ูˆ
804
+
805
+ 202
806
+ 00:22:22,010 --> 00:22:31,530
807
+ ู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ู†ุงู‚ุต AN1 ู†ุงู‚ุต AN2 ูˆ ู†ุธู„ ู…ุงุดูŠูŠู†
808
+
809
+ 203
810
+ 00:22:31,530 --> 00:22:35,750
811
+ ู„ุบุงูŠุฉ ู„ุงู†ุฏุง ู†ุงู‚ุต ANN
812
+
813
+ 204
814
+ 00:23:08,940 --> 00:23:10,340
815
+ ุงู…ู…ู…
816
+
817
+ 205
818
+ 00:23:17,590 --> 00:23:22,050
819
+ ุงู„ุงู† ุจู†ุทุฑุญ ุงู„ุณุคุงู„ ุงู„ู„ู‰ ุจูŠู† ุงุฏูŠู†ุง ู‡ุฐุง ูˆู†ุญุงูˆู„ ู†ุฌุงูˆุจ
820
+
821
+ 206
822
+ 00:23:22,050 --> 00:23:29,070
823
+ ุนู„ู‰ ู‡ุฐุง ุงู„ุณุคุงู„ ุจุฎุทูˆุชูŠู† ู„ุง ุซุงู„ุซุฉ ู„ู‡ู…ุง ุงู„ุณุคุงู„ ู‡ูˆ how
824
+
825
+ 207
826
+ 00:23:29,070 --> 00:23:33,690
827
+ to find the eigenvalues of an n by n matrix ุงูŠู‡
828
+
829
+ 208
830
+ 00:23:33,690 --> 00:23:38,110
831
+ ู…ุงู‡ูŠ ุงู„ูˆุณูŠู„ุฉ ุงู„ุนู…ู„ูŠุฉ ู…ุดุงู† ุฌูŠุจ ุงู„ eigenvalues
832
+
833
+ 209
834
+ 00:23:38,110 --> 00:23:44,140
835
+ ู„ู…ุตูˆูุฉ ู…ุน ู†ุธุงู…ู‡ุง n ููŠ nุงู„ู„ูŠ ุฌุงุจู‡ุง ููŠ ู†ู‚ุทุชู†ุง ุงู„ู†ู‚ุทุฉ
836
+
837
+ 210
838
+ 00:23:44,140 --> 00:23:49,020
839
+ ุงู„ุฃูˆู„ู‰ ุจูŠู‚ูˆู„ ูŠุง ู„ูŠู‡ุง write the equation AX ุจูŠุณุชูˆูŠ
840
+
841
+ 211
842
+ 00:23:49,020 --> 00:23:53,180
843
+ Lambda X in the form ู‚ุนุฏุช ูƒุชุงุจุฉ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ
844
+
845
+ 212
846
+ 00:23:53,180 --> 00:23:57,080
847
+ ุนู†ุฏู†ุง ุชุจุน ุชุนุฑูŠู ุงู„ Eigen value ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ
848
+
849
+ 213
850
+ 00:23:57,080 --> 00:24:01,240
851
+ ุนู†ุฏู†ุง ู‡ุฐุง ูˆ ู‡ุฐุง ุดูู†ุงู‡ุง ูƒูŠู ู‚ุจู„ ู‚ู„ูŠู„ ูƒุชุจู†ุงู‡ุง ุณู…ู†ู‡ุง
852
+
853
+ 214
854
+ 00:24:01,240 --> 00:24:05,280
855
+ ุงู„ู…ุนุงุฏู„ุฉ Star ุงู„ุขู† ุงู„ู…ุนุงุฏู„ุฉ Star ู‡ุฏู‰ homogeneous
856
+
857
+ 215
858
+ 00:24:05,280 --> 00:24:10,360
859
+ system ูˆู„ุง non homogeneous systemุŸู‡ูˆู…ูˆุฌูŠู†ูŠุง ุงู„
860
+
861
+ 216
862
+ 00:24:10,360 --> 00:24:13,880
863
+ system ู…ุฏุงู… ู‡ูˆู…ูˆุฌูŠู†ูŠุง ุงู„ system ูŠุง ุนู†ุฏู‰ ุงู„ trivial
864
+
865
+ 217
866
+ 00:24:13,880 --> 00:24:18,740
867
+ solution ูŠุง ุงู…ุง ุนู†ุฏู‰ ุนุฏุฏ ู„ู†ู‡ุงุฆู‰ ู…ู† ุงู„ุญู„ูˆู„ ุงู†ุง ุจุฏู‰
868
+
869
+ 218
870
+ 00:24:18,740 --> 00:24:22,540
871
+ ุงุณุชุจุนุฏ ู„ trivial solution ู„ุงู† ู‚ู„ุช ุงู„ููƒุชูˆุฑ ู‡ุฐุง non
872
+
873
+ 219
874
+ 00:24:22,540 --> 00:24:28,420
875
+ zero ููƒุชูˆุฑ ู…ุนู†ุงุชู‡ ุงู„ุญู„ ุงู„ุตูุฑูŠ ู…ุณุชุจุนุฏ ูุงูŠุด ู‚ุงู„ ู„ูŠู‡ุŸ
876
+
877
+ 220
878
+ 00:24:28,800 --> 00:24:32,860
879
+ ุจู…ุง ุฃู† ุงู„ู€ X ู„ุง ูŠู…ูƒู† ุฃู† ุชุณุงูˆูŠ 0 ูŠุนู†ูŠ ุงู„ุญู„ ุงู„ุตูุฑูŠ
880
+
881
+ 221
882
+ 00:24:32,860 --> 00:24:39,580
883
+ ู…ุณุชุจุนุฏ ูŠุจู‚ู‰ ุงู„ system has a non-zero solution ุฅุฐุง
884
+
885
+ 222
886
+ 00:24:39,580 --> 00:24:43,540
887
+ ูƒุงู† ุงู„ determinant ู‡ุฐุง ุจูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ Zero ุฅุฐุง
888
+
889
+ 223
890
+ 00:24:43,540 --> 00:24:48,080
891
+ ุงู„ู…ุญุฏุฏ ุชุจุน ุงู„ู…ุตูˆู ู‡ุฐุง ุจูŠุณุงูˆูŠ Zero ุจูŠูƒูˆู† ุนู†ุฏู‰ ุงู„ู„ูŠ
892
+
893
+ 224
894
+ 00:24:48,080 --> 00:24:54,040
895
+ ู‡ูˆ ุญู„ ุบูŠุฑ ุตูุฑูŠ ู„ู…ูŠู†ุŸ ู„ุณystem ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
896
+
897
+ 225
898
+ 00:24:57,620 --> 00:25:05,030
899
+ ุงู„ุญู„ ุชุจุน ุงู„ู…ุญุฏุฏ ู‡ุฐุงุจูŠุนุทูŠู†ูŠ ู‚ูŠู… ุงู„ eigenvalues ู„ูŠุดุŸ
900
+
901
+ 226
902
+ 00:25:05,030 --> 00:25:10,350
903
+ ู„ุฃู† ู‡ุฐู‡ ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุฃุนุฏุงุฏ ู‡ุฐู‡ ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ ุงู„ู…ุฌู‡ูˆู„
904
+
905
+ 227
906
+ 00:25:10,350 --> 00:25:14,710
907
+ ู…ู† ุนู†ุฏู‰ lambda ุฅุฐุง ุจููƒู‡ุง ุฏู‰ ูˆ ุจุฌูŠุจู„ู‡ ู‚ูŠู… lambda
908
+
909
+ 228
910
+ 00:25:14,710 --> 00:25:17,870
911
+ ูŠู…ูƒู† ุชุทู„ุน ู…ุนุงุฏู„ุฉ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุชุงู†ูŠุฉ ูŠู…ูƒู† ู…ู† ุงู„ุฏุฑุฌุฉ
912
+
913
+ 229
914
+ 00:25:17,870 --> 00:25:21,350
915
+ ุงู„ุชุงู„ุชูŠุฉ ูŠู…ูƒู† ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฑุงุจุนุฉ ุญุณุจ ู†ูˆุน ุงู„ู…ุตููˆูุฉ
916
+
917
+ 230
918
+ 00:25:21,350 --> 00:25:26,120
919
+ ุงู„ู„ู‰ ุนู†ุฏู‰ ูู„ูˆ ูƒุงู†ุช ุงู„ู…ุตููˆูุฉ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉูŠุจู‚ู‰
920
+
921
+ 231
922
+ 00:25:26,120 --> 00:25:29,840
923
+ automatic ู„ุงุฒู… ุชุทู„ุน ุงู„ู…ุนุงุฏู„ุฉ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ุฅุฐุง
924
+
925
+ 232
926
+ 00:25:29,840 --> 00:25:33,300
927
+ ุงู„ู…ุตูˆูุฉ ู†ุธุงู…ู‡ุง ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ุจุชุทู„ุน ู…ู† ุงู„ุฏุฑุฌุฉ
928
+
929
+ 233
930
+ 00:25:33,300 --> 00:25:38,960
931
+ ุงู„ุชุงู„ุชุฉ ูˆ ู‡ูƒุฐุง ุชู…ุงู… ุฅู„ู‰ ุขุฎุฑู‰ ุทูŠุจ ู…ุง ุนู„ูŠู†ุงู†ุฌูŠ
932
+
933
+ 234
934
+ 00:25:38,960 --> 00:25:42,940
935
+ ุงู„ุชุนุฑูŠู ุงู„ุชุงู†ูŠ ุจู‚ูˆู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุงู„ู„ูŠ
936
+
937
+ 235
938
+ 00:25:42,940 --> 00:25:46,860
939
+ ู‡ูˆ determinant ู„ู‡ุฐู‡ ุจูŠุณูˆูŠ zero ุจุณู…ูŠู‡ุง ุงู„
940
+
941
+ 236
942
+ 00:25:46,860 --> 00:25:50,460
943
+ characteristic equation ุงูˆ ุงู„ polynomial equation
944
+
945
+ 237
946
+ 00:25:50,460 --> 00:25:56,020
947
+ ูŠุจู‚ู‰ ูƒุซูŠุฑุฉ ุงู„ุญุฏูˆุฏ ุงูˆ ู…ุนุงุฏู„ุฉ ูƒุซูŠุฑุฉ ุงู„ุญุฏูˆุฏ ุงูˆ
948
+
949
+ 238
950
+ 00:25:56,020 --> 00:26:02,120
951
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ู…ูŠุฒุฉ ู„ู…ูŠู† ู„ู„ู…ุตูˆูุฉ ุงูŠู‡ that is ู…ูŠู† ู‡ูŠ
952
+
953
+ 239
954
+ 00:26:02,120 --> 00:26:09,120
955
+ ู„ู…ุง ุงู‚ูˆู„P of ู„ู†ุฏุง ูŠุนู†ูŠ ุฏุงู„ุฉ ููŠ ู„ู†ุฏุง ุจุชุทู„ุน ุจุฏู„ุงู„ุฉ
956
+
957
+ 240
958
+ 00:26:09,120 --> 00:26:13,100
959
+ ู„ู†ุฏุง ู…ู† ู‡ู‰ ู‡ู‰ ุงู„ determinant ู„ู„ู†ุฏุง ุงูŠู‡ ุงู„ู†ู‚ุต ุงูŠู‡
960
+
961
+ 241
962
+ 00:26:13,100 --> 00:26:17,480
963
+ ุงู„ู†ู‚ุต ุงูŠู‡ ูˆุงู† ุงู„ู„ู†ุฏุง ุงูŠู‡ ูŠุจู‚ู‰ ุงู„ู„ู†ุฏุง ู…ุถุฑูˆุจุฉ ููŠ ู…ูŠู†
964
+
965
+ 242
966
+ 00:26:17,480 --> 00:26:24,610
967
+ ููŠ ู…ุตูˆูุฉ ุงู„ูˆุญุฏุฉู†ุงู‚ุต ุงู„ู€A ูƒุชุจุชู‡ุง ุจุนู†ุงุตุฑู‡ุง ูŠุจู‚ู‰ ุจุฏูŠ
968
+
969
+ 243
970
+ 00:26:24,610 --> 00:26:29,370
971
+ ุฃุทุฑุญ ุงู„ู…ุตูุชูŠู† ู…ู† ุจุนุถ ุจูŠุตูŠุฑ ูƒู„ ุนู†ุตุฑ ุจุงุทุฑุญู‡ู… ู…ู†
972
+
973
+ 244
974
+ 00:26:29,370 --> 00:26:34,590
975
+ ู†ุธูŠุฑู‡ Zero ู†ุงู‚ุต ูŠุจู‚ู‰ ุงู„ุจุฌุฑ ุจูŠุตูŠุฑ ู†ุงู‚ุต ู…ุง ุนุฏุง ุนู†ุงุตุฑ
976
+
977
+ 245
978
+ 00:26:34,590 --> 00:26:37,270
979
+ ุงู„ู‚ุทุฉ ุงู„ุฑุฆูŠุณูŠุฉ ุงู„ู‚ุทุฉ ุงู„ุฑุฆูŠุณูŠุฉ ุจูŠุตูŠุฑ ู„ุงู†ุฏุง ู†ุงู‚ุต ุงูŠู‡
980
+
981
+ 246
982
+ 00:26:37,270 --> 00:26:42,380
983
+ one oneู„ุงู†ุฏุง ู†ุงู‚ุต a22 ู†ุงู‚ุต ู„ุงู†ุฏุง a33 ุงู„ุงุฎุฑ ุญุงุฌุฉ
984
+
985
+ 247
986
+ 00:26:42,380 --> 00:26:47,440
987
+ ู„ุงู†ุฏุง ู†ุงู‚ุต a ุงู† ุงู† ูˆุงู„ุจุงู‚ูŠ ุนู†ุงุตุฑ ุงู„ู…ุตููˆูุฉ ู‡ู… ู‡ู… ุจุณ
988
+
989
+ 248
990
+ 00:26:47,440 --> 00:26:53,380
991
+ ุจุบูŠุฑ ู…ูŠู† ุฅุดุงุฑุชู‡ู… ุงู„ุณุจุจ ุจุณุจุจ ุณุจู‚ ุงู„ู…ุตููˆูุฉ ุจู…ูŠู†
992
+
993
+ 249
994
+ 00:26:53,380 --> 00:26:58,500
995
+ ุจุฅุดุงุฑุฉ ุณุงู„ุจ ูŠุจู‚ู‰ ุงู„ุตูˆุฑุฉ ุงู„ุนุงู…ุฉ ู„ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุชุตุจุญ
996
+
997
+ 250
998
+ 00:26:58,500 --> 00:27:03,280
999
+ ุนู„ู‰ ุงู„ุตูˆุฑุฉ ุงู„ู„ูŠ ุนู†ุฏู‡ุง ู‡ูŠ ุงู„ู‚ุทุฑุฉ ุงู„ุฑุฆูŠุณูŠ ูƒู„ู‡ ู„ุงู†ุฏุง
1000
+
1001
+ 251
1002
+ 00:27:03,280 --> 00:27:07,690
1003
+ ู†ุงู‚ุต ุนู†ุงุตุฑ ุงู„ู‚ุทุฑุฉ ุงู„ุฑุฆูŠุณูŠูˆุงู„ุจุงู‚ูŠ ู‡ูŠ ุงู„ู…ุตูˆูุฉ A ุจุณ
1004
+
1005
+ 252
1006
+ 00:27:07,690 --> 00:27:12,090
1007
+ ุจุฅุดุงุฑุฉ ู…ู†ุŸ ุจุฅุดุงุฑุฉ set ุงู„ุขู† ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ู‡ุฐุง
1008
+
1009
+ 253
1010
+ 00:27:12,090 --> 00:27:16,970
1011
+ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุทุจู‚ู‡ ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน ูŠุจู‚ู‰ ู„ู…ุง ู†ูŠุฌูŠ ู†ุญุณุจ
1012
+
1013
+ 254
1014
+ 00:27:16,970 --> 00:27:22,010
1015
+ ู‚ูŠู…ุฉ lambda ู‡ู†ุง ูŠุง ุจู†ุงุช ูŠู…ูƒู† ุชุทู„ุน ุนุฏุฏ ุญู‚ูŠู‚ูŠ ูˆูŠู…ูƒู†
1016
+
1017
+ 255
1018
+ 00:27:22,010 --> 00:27:27,990
1019
+ ุชุทู„ุน ุนุฏุฏุชุฎูŠู„ูŠ ูƒู…ุง ุฐูƒุฑู†ุง ููŠ ุงู„ุชุนุฑูŠู ู‚ุจู„ ู‚ู„ูŠู„ ุชู…ุงู…
1020
+
1021
+ 256
1022
+ 00:27:27,990 --> 00:27:32,250
1023
+ ุฅุฐุง ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌุฑุจ ู†ุฎู„ูŠ ู…ุฑุฉ ูŠุทู„ุน ุนุฏุฏ ุญู‚ูŠู‚ูŠ ูˆ ู…ุฑุฉ
1024
+
1025
+ 257
1026
+ 00:27:32,250 --> 00:27:36,390
1027
+ ูŠุทู„ุน ุชุฎูŠู„ูŠ ูˆ ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุฌูŠุจ ุงู„ eigenvalues ูˆ
1028
+
1029
+ 258
1030
+ 00:27:36,390 --> 00:27:40,690
1031
+ ุงู„ eigenvectors ููŠ ู‡ุฐู‡ ุงู„ุญู„ู‚ุฉ ู‡ู†ุจุฏุฃ ุจุนุฏุฏ ุญู‚ูŠู‚ูŠ
1032
+
1033
+ 259
1034
+ 00:27:40,690 --> 00:27:44,070
1035
+ ู„ุฅู†ู‡ ุฃุณู„ู ุดูˆูŠุฉ ูˆ ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุจู†ุฌูŠุจ
1036
+
1037
+ 260
1038
+ 00:27:44,070 --> 00:27:52,110
1039
+ ุงู„ู„ุนู†ุฉ ุฏู‡ ุจุนุฏุฏ ุชุฎูŠู„ูŠ ูŠุจู‚ู‰ example oneexample one
1040
+
1041
+ 261
1042
+ 00:27:52,110 --> 00:27:59,610
1043
+ ู‡ุฐุง ุณุคุงู„ ูˆุงุญุฏ ู…ู† ุงู„ูƒุชุงุจ ุจู‚ูˆู„ find the eigenvalues
1044
+
1045
+ 262
1046
+ 00:27:59,610 --> 00:28:05,450
1047
+ find the eigenvalues
1048
+
1049
+ 263
1050
+ 00:28:05,450 --> 00:28:08,730
1051
+ and eigenvectors
1052
+
1053
+ 264
1054
+ 00:28:16,270 --> 00:28:21,330
1055
+ ูˆุงู„ู€ Eigenvectors of the
1056
+
1057
+ 265
1058
+ 00:28:21,330 --> 00:28:26,730
1059
+ matrix ู„ู„ู…ุตููˆูุฉ
1060
+
1061
+ 266
1062
+ 00:28:26,730 --> 00:28:29,930
1063
+ ุงู„ุชูŠ ุชุณุงูˆู‰
1064
+
1065
+ 267
1066
+ 00:28:41,860 --> 00:28:45,840
1067
+ ูŠุจู‚ู‰ ุจุฏู„ ุงู„ู€ Eigenvalues ูˆุงู„ู€ Eigenvectors ู„ู…ูŠู†ุŸ
1068
+
1069
+ 268
1070
+ 00:28:45,840 --> 00:28:47,740
1071
+ ู„ู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡
1072
+
1073
+ 269
1074
+ 00:28:53,790 --> 00:28:57,090
1075
+ ูƒูŠู ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ EigenvaluesุŸ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ
1076
+
1077
+ 270
1078
+ 00:28:57,090 --> 00:29:02,510
1079
+ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุฐู‡ุจ ู„ู…ูŠู† ู„ู€ lambda I ู†ุงู‚ุต A X
1080
+
1081
+ 271
1082
+ 00:29:02,510 --> 00:29:07,210
1083
+ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆ ุจุนุฏ ู‡ูŠูƒ ุฅุฐุง ู‚ู„ุช X non-zero ูŠุจู‚ู‰
1084
+
1085
+ 272
1086
+ 00:29:07,210 --> 00:29:10,890
1087
+ ุจุฏูŠ ุงู„ determinant ู„ู‡ุฐู‡ ูˆ ุฃุฎู„ูŠู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุงู„ Zero
1088
+
1089
+ 273
1090
+ 00:29:10,890 --> 00:29:17,690
1091
+ ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุฃุจุฏุฃ ุจุงู„ determinantู„ู…ูŠู†ุŸ ู„ุงู† ุฏู‡ I
1092
+
1093
+ 274
1094
+ 00:29:17,690 --> 00:29:23,070
1095
+ ู†ุงู‚ุต ุงู„ A ูƒู„ู‡ ูˆ ุงู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ
1096
+
1097
+ 275
1098
+ 00:29:23,070 --> 00:29:28,770
1099
+ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุทูŠุจ ู…ุดุงู† ู‡ูŠูƒ ุชุนุงู„ู‰ ู†ุดูˆู ู„ุงู† ุฏู‡ ููŠ I
1100
+
1101
+ 276
1102
+ 00:29:28,770 --> 00:29:33,550
1103
+ ูˆ ู†ุดูˆู ุงู„ AุŒ ุงู‡ ุงู„ A ู…ูˆุฌูˆุฏ ุนู†ุฏู‰ุฅุฐุง ุจู‚ุฏุฑ ุฃุนูˆุถ ุชุนูˆูŠุถ
1104
+
1105
+ 277
1106
+ 00:29:33,550 --> 00:29:37,470
1107
+ ู…ุจุงุดุฑ ููŠ ุงู„ุฃุฎูŠุฑุฉ ุงู„ู„ูŠ ุชุญุช ู‡ุฐู‡ ู…ุงู†ุฏูŠุด ุฃู‚ุนุฏ ุฃูƒู„
1108
+
1109
+ 278
1110
+ 00:29:37,470 --> 00:29:42,270
1111
+ ูƒุฃูƒุชูŠุฑ ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃูƒุชุจ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ูŠุจู‚ู‰ ู‡ุงูŠ
1112
+
1113
+ 279
1114
+ 00:29:42,270 --> 00:29:47,910
1115
+ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุงูŠ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู†ุงู‚ุต a11 a11
1116
+
1117
+ 280
1118
+ 00:29:47,910 --> 00:29:54,750
1119
+ ุจู‚ุฏุงุดุณุงู„ู ูˆุงุญุฏ ูŠุจู‚ู‰ ุจุตูŠุฑ ุฒุงุฆุฏ ูˆุงุญุฏ ู‡ุฐุง ู†ุงู‚ุต ูˆุงุญุฏ
1120
+
1121
+ 281
1122
+ 00:29:54,750 --> 00:30:00,450
1123
+ ุฒูŠ ู…ุง ู‡ูˆ ู‡ุฐุง ู†ุงู‚ุต ุงุฑุจุนุฉ ุฒูŠ ู…ุง ู‡ูˆ ู‡ุฐู‡ ู„ู†ุฏู† ู†ุงู‚ุต
1124
+
1125
+ 282
1126
+ 00:30:00,450 --> 00:30:03,990
1127
+ ุงุชู†ูŠู† ู‡ูŠุฌูู„ู†ุง ุงู„ุฌูˆุฒ ุชู…ุงู…ุŸ
1128
+
1129
+ 283
1130
+ 00:30:07,360 --> 00:30:13,640
1131
+ ู„ู„ุงู†ุฏุง ุงูŠ ู†ุงู‚ุต ุงู„ุงูŠ ู„ู‡ ุจุฏู‡ ุณุงูˆูŠ ุฒูŠุฑูˆ ูŠุนู†ูŠ ู…ุนู†ุงู‡
1132
+
1133
+ 284
1134
+ 00:30:13,640 --> 00:30:19,840
1135
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู†ู‡ ุนู†ุฏูŠ ุงู„ู…ุญุฏุฏ ู„ุงู†ุฏุง ุฒุงุฆุฏ ูˆุงุญุฏ ู†ุงู‚ุต
1136
+
1137
+ 285
1138
+ 00:30:19,840 --> 00:30:26,500
1139
+ ูˆุงุญุฏ ู†ุงู‚ุต ุงุฑุจุนุฉ ู„ุงู†ุฏุง ู†ุงู‚ุต ุงุชู†ูŠู† ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡
1140
+
1141
+ 286
1142
+ 00:30:26,500 --> 00:30:32,060
1143
+ ุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ ุณุงูˆูŠ ุฒูŠุฑูˆุฅุฐุง ู„ูˆ ููƒู‘ุช ุงู„ู…ุญุฏุฏ ู‡ุฐุง ุญุงุตู„
1144
+
1145
+ 287
1146
+ 00:30:32,060 --> 00:30:36,860
1147
+ ุถุฑุจ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู†ุงู‚ุต ุญุงุตู„ ุถุฑุจ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ
1148
+
1149
+ 288
1150
+ 00:30:36,860 --> 00:30:43,680
1151
+ ุงู„ุซุงู†ูˆูŠ ู‡ุฐุง ุจูŠุนุทูŠูƒ Lambda ุฒุงุฆุฏ ูˆุงุญุฏ ูLambda ู†ุงู‚ุต
1152
+
1153
+ 289
1154
+ 00:30:43,680 --> 00:30:49,580
1155
+ ุงุชู†ูŠู† ู†ุงู‚ุต ุฃุฑุจุนุฉ ุจูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจูŠุณุงูˆูŠ Zero ุทุจุนุง ู†ุงู‚ุต
1156
+
1157
+ 290
1158
+ 00:30:49,580 --> 00:30:53,040
1159
+ ูˆุงุญุฏ ูู†ุงู‚ุต ุฃุฑุจุนุฉ ุจูŠุฒุงูŠุฏ ุฃุฑุจุนุฉ ุงู„ุฑุฆูŠุณูŠ ู†ุงู‚ุต ุงู„ุซุงู†ูˆูŠ
1160
+
1161
+ 291
1162
+ 00:30:53,040 --> 00:30:56,440
1163
+ ุชุฌูŠู†ูŠ ูƒู…ุงู† ุฅุดุงุฑุฉ ู†ุงู‚ุต ูุจุตูŠุฑ ุงู„ู†ุงู‚ุต ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
1164
+
1165
+ 292
1166
+ 00:30:56,440 --> 00:31:01,360
1167
+ ุนู†ุฏู†ุง ู‡ุฐุงูŠุจู‚ู‰ ุงู†ุง ุนู†ุฏู‰ ู…ุนุงุฏู„ุฉ ู…ู† ุงู‰ ุฏุฑุฌุฉ ุซุงู†ูŠุฉ
1168
+
1169
+ 293
1170
+ 00:31:01,360 --> 00:31:05,400
1171
+ ูŠุจู‚ู‰ ุงู†ุง ุจุฏู‰ ุงุญู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ู…ุดุงู† ุงุญู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ
1172
+
1173
+ 294
1174
+ 00:31:05,400 --> 00:31:11,300
1175
+ ู‡ุฐู‡ ุจุฏู‰ ุงุฑูˆุญ ุงููƒู‡ุง ูŠุจู‚ู‰ ู‡ุฐู‡ ู„ุงู†ุฏุง ุชุฑุจูŠุฉ ุฒุงุฆุฏ ู„ุงู†ุฏุง
1176
+
1177
+ 295
1178
+ 00:31:11,300 --> 00:31:17,270
1179
+ ูˆู†ู‚ุต ุงุซู†ูŠู† ู„ุงู†ุฏุง ุจุทู„ุน ู‚ุฏุงุดู†ู‚ุต ู„ุงู†ุฏุง ูˆ ุนู†ุฏูƒ ู†ุงู‚ุต
1180
+
1181
+ 296
1182
+ 00:31:17,270 --> 00:31:23,190
1183
+ ุงุชู†ูŠู† ู†ุงู‚ุต ุงุฑุจุนุฉ ุจุฏู‡ ูŠุณุงูˆูŠ zero ุงูˆ ุจู…ุนู†ู‰ ุงุฎุฑ ุจุฏู‡
1184
+
1185
+ 297
1186
+ 00:31:23,190 --> 00:31:29,790
1187
+ ูŠุตูŠุฑ ู„ุงู†ุฏุง ุชุฑุจูŠุฉ ู†ุงู‚ุต ู„ุงู†ุฏุง ู†ุงู‚ุต ุณุชุฉ ูŠุณุงูˆูŠ zero ุงูˆ
1188
+
1189
+ 298
1190
+ 00:31:29,790 --> 00:31:36,960
1191
+ ู„ูˆ ุญู„ู„ุชู‡ุง ูƒุญุงุตู„ ุถุฑุจ ู‚ูˆุณูŠู† ูŠุณุงูˆูŠ zero ู‡ู†ุง ู„ุงู†ุฏุงูˆู‡ู†ุง
1192
+
1193
+ 299
1194
+ 00:31:36,960 --> 00:31:43,380
1195
+ ู„ุงู†ุฏุง ูˆู‡ู†ุง ุงุชู†ูŠู† ููŠ ุชู„ุงุชุฉ ุจุณุชุฉ ูˆูˆุงุญุฏุฉ ู†ุงู‚ุต ูˆูˆุงุญุฏุฉ
1196
+
1197
+ 300
1198
+ 00:31:43,380 --> 00:31:48,200
1199
+ ุฒุงูŠุฏ ุงุชู†ูŠู† ู„ุงู†ุฏุง ูˆู†ุงู‚ุต ุชู„ุงุชุฉ ุชุญู„ูŠู„ ู…ูŠุฉ ุงู„ู…ูŠุฉ ูŠุจู‚ู‰
1200
+
1201
+ 301
1202
+ 00:31:48,200 --> 00:31:54,560
1203
+ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ูˆู„ู‡ the eigen values
1204
+
1205
+ 302
1206
+ 00:31:54,560 --> 00:31:58,320
1207
+ are
1208
+
1209
+ 303
1210
+ 00:32:00,560 --> 00:32:06,900
1211
+ ุงู„ู„ูŠ ู‡ู… ู…ูŠู† ู„ุงู†ุฏุง ุชุณุงูˆูŠ ู†ุงู‚ุต ุงุชู†ูŠู† and ู„ุงู†ุฏุง ุชุณุงูˆูŠ
1212
+
1213
+ 304
1214
+ 00:32:06,900 --> 00:32:13,600
1215
+ ูƒุฏู‡ุด ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุฌูŠุจุช ุงู„ eigen vectors ุงู„ู„ูŠ ุนู†ุฏู†ุง
1216
+
1217
+ 305
1218
+ 00:32:14,480 --> 00:32:19,200
1219
+ ุฌุจุช ุงู„ eigenvectors ุงู„ู„ูŠ ุนู†ุฏู†ุง ุชู…ุงู… ูŠุจู‚ู‰ ุฌุจุช ุงู„
1220
+
1221
+ 306
1222
+ 00:32:19,200 --> 00:32:23,840
1223
+ eigenvalues ู„ุณู‡ ุงู„ eigenvectors ู…ุง ุฌุจุชู‡ู…ุด ุงู‡ ุชู…ุงู…
1224
+
1225
+ 307
1226
+ 00:32:23,840 --> 00:32:29,120
1227
+ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฏูˆุฑ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ eigenvectors ู„ูƒู„
1228
+
1229
+ 308
1230
+ 00:32:29,120 --> 00:32:33,280
1231
+ ู„ู†ุถุฉ ู…ู† ุงู„ู„ู†ุถุงุช ุงู„ุฃุชู†ูŠู† ู‡ุฏูˆู†ุฃู‡ ูŠุนู†ูŠ ูƒุงู†ูˆุง ุถุงูŠู„
1232
+
1233
+ 309
1234
+ 00:32:33,280 --> 00:32:38,040
1235
+ ุนู„ูŠู‡ ู„ุณู‡ ู…ุณุฃู„ุชูŠู† ู…ุด ู…ุณุฃู„ุฉ ูˆุงุญุฏุฉ ูƒู„ landa ู„ู‡ุง
1236
+
1237
+ 310
1238
+ 00:32:38,040 --> 00:32:43,040
1239
+ eigenvectors ุฎุงุตุฉ ุจู‡ุง ุชู…ุงู… ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃู…ุณูƒ ุฃูˆู„
1240
+
1241
+ 311
1242
+ 00:32:43,040 --> 00:32:48,300
1243
+ ูˆุงุญุฏุฉ ููŠู‡ู… ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง ุฅุฐุง ูƒุงู†ุช ุงู„ landa
1244
+
1245
+ 312
1246
+ 00:32:48,300 --> 00:32:51,480
1247
+ ุชุณุงูˆูŠ ุงู„ู†ุงู‚ุต ุงุชู†ูŠู† then
1248
+
1249
+ 313
1250
+ 00:32:54,310 --> 00:33:01,150
1251
+ ุฃุฎุฐ ุงู„ู€ land ููŠ ู‡ุฐุง ูƒู„ู‡ ู…ู† ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡
1252
+
1253
+ 314
1254
+ 00:33:01,150 --> 00:33:07,710
1255
+ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ูˆ ุงู„ X ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ู…ูˆุฌูˆุฏ ููŠ R2 ูŠุจู‚ู‰ X1
1256
+
1257
+ 315
1258
+ 00:33:07,710 --> 00:33:14,410
1259
+ ูˆ X2 ุงุดุนุฑููƒ R2 ู„ุฃู† ุงู„ู…ุตูˆูุฉ ู†ุธุงู…ู‡ุง 2 ููŠ 2 ูŠุจู‚ู‰ ุจุงุฌูŠ
1260
+
1261
+ 316
1262
+ 00:33:14,410 --> 00:33:18,670
1263
+ ุจู‚ูˆู„ ุจุฏุงุฌูŠ ุนู„ู‰ ุงู„ู…ุตูˆูุฉ ู‡ุฐู‡ ู‡ูŠ ูŠุง ุจู†ุงุช ุจุงู„ุชูุตูŠู„
1264
+
1265
+ 317
1266
+ 00:33:18,670 --> 00:33:26,000
1267
+ ุงู„ู…ุฑุฉ ู‡ุฐู‡ ูŠุจู‚ู‰ ู‡ูŠ ู†ุงู‚ุต 2 ุฒุงุฆุฏ 1ูˆู‡ูŠ ู†ุงู‚ุต ูˆุงุญุฏ ูˆู‡ูŠ
1268
+
1269
+ 318
1270
+ 00:33:26,000 --> 00:33:34,660
1271
+ ู†ุงู‚ุต ุงุฑุจุนุฉ ูˆู‡ูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุงุชู†ูŠู† ููŠ X ูˆุงุญุฏ X
1272
+
1273
+ 319
1274
+ 00:33:34,660 --> 00:33:41,340
1275
+ ุงุชู†ูŠู† ุจุฏู‡ ุณุงูˆูŠ Zero ูˆ ZeroูŠุจู‚ู‰ ุงู†ุง ุฑุงุฌุน ุงุชุนูˆุถ ููŠ
1276
+
1277
+ 320
1278
+ 00:33:41,340 --> 00:33:47,560
1279
+ ู…ูŠู†ุŸ ููŠ ุงู„ู…ุนุงุฏู„ุฉ star ุนู† ู…ูŠู†ุŸ ุนู† ู‚ูŠู… lambda ูˆุงุฎุฏ
1280
+
1281
+ 321
1282
+ 00:33:47,560 --> 00:33:52,360
1283
+ lambda ุงู„ุฃูˆู„ู‰ ุงุดูˆู ู‡ุฐู‡ ุงูŠุด ุจุฏู‡ุง ุชุฌูŠุจู„ูŠ ูŠุจู‚ู‰ ู‡ุฐู‡
1284
+
1285
+ 322
1286
+ 00:33:52,360 --> 00:33:58,900
1287
+ ู…ุนู†ุงู‡ ูŠุง ุจู†ุช ุงู„ู…ุตููˆูุฉ ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต
1288
+
1289
+ 323
1290
+ 00:33:58,900 --> 00:34:07,180
1291
+ ุงุฑุจุนุฉ ู†ุงู‚ุต ุงุฑุจุนุฉ X ูˆุงุญุฏ X ุงุชู†ูŠู† ูŠุณุงูˆูŠ Zero ูˆ Zero
1292
+
1293
+ 324
1294
+ 00:34:07,180 --> 00:34:11,710
1295
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงู‡ุฐู‡ ุงู„ุนู…ูˆุฏ ู„ูˆ ุฌูŠุช ููƒูŠุชู‡ุง ูŠุจู‚ุงุด
1296
+
1297
+ 325
1298
+ 00:34:11,710 --> 00:34:21,330
1299
+ ุจูŠุตูŠุฑ ู†ุงู‚ุต x1 ู†ุงู‚ุต x2 ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุชุงู†ูŠ ู†ุงู‚ุต 4x1
1300
+
1301
+ 326
1302
+ 00:34:21,330 --> 00:34:29,550
1303
+ ู†ุงู‚ุต 4x2 ู‡ูŠ ู‡ุฐู‡ ูƒู„ู‡ุง ุจุฏู‡ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ Zero ูˆ Zero
1304
+
1305
+ 327
1306
+ 00:34:29,550 --> 00:34:38,050
1307
+ ู‡ุฐุง ู…ุนู†ุงู‡ุงู†ู‡ ู†ุงู‚ุต X1 ู†ุงู‚ุต X2 ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆู†ุงู‚ุต
1308
+
1309
+ 328
1310
+ 00:34:38,050 --> 00:34:48,710
1311
+ 4X1 ู†ุงู‚ุต 4X2 ุจุฏู‡ ูŠุณุงูˆูŠ Zero ู‡ุฐู‡ ู„ูˆ ุฌูŠุช ุถุฑุจุช ุงู„ุฃูˆู„ู‰
1312
+
1313
+ 329
1314
+ 00:34:48,710 --> 00:34:56,450
1315
+ ููŠ ุณุงู„ุจ ูˆุงุญุฏ ุงูŠุด ุจูŠุตูŠุฑ X1 ุฒูŠุฏ X2 ูŠุณุงูˆูŠ Zero ู‡ุฐู‡ ู„ูˆ
1316
+
1317
+ 330
1318
+ 00:34:56,450 --> 00:35:03,640
1319
+ ุถุฑุจุชู‡ุง ููŠ ุณุงู„ุจ ุฑุงุจุนุจุตูŠุฑ ู†ูุณ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุตุญ ูˆู„ุง ู„ุฃ
1320
+
1321
+ 331
1322
+ 00:35:03,640 --> 00:35:07,660
1323
+ ูŠุจู‚ู‰ ุงู„ุชุงู† ุชุงู†ุฉ ุตุงุฑูˆุง ู…ุด ู…ุนุงุฏู„ุชูŠู† ู‡ุฐู‡ ู…ูŠู† ู…ุนุงุฏู„ุฉ
1324
+
1325
+ 332
1326
+ 00:35:07,660 --> 00:35:14,900
1327
+ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู†ู‡ x ูˆุงุญุฏ ูŠุณุงูˆูŠ ู‚ุฏุงุด ุณุงู„ุจ x
1328
+
1329
+ 333
1330
+ 00:35:14,900 --> 00:35:22,000
1331
+ ุงุชู†ูŠู† ุงุฐุง ู„ูˆ ูƒุงู†ุช x ุงุชู†ูŠู† ุจ a x ูˆุงุญุฏ ู‚ุฏุงุด ุณุงู„ุจ a
1332
+
1333
+ 334
1334
+ 00:35:22,000 --> 00:35:32,360
1335
+ ูŠุจู‚ู‰ ู‡ู†ุง ุจู‚ูˆู„ู‡ fุงู„ู€ X2 ุชุณุงูˆูŠ A ุซู… X1 ูŠุณุงูˆูŠ ุณุงู„ุจ A
1336
+
1337
+ 335
1338
+ 00:35:32,360 --> 00:35:43,060
1339
+ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ The Eigen vectors are in the form
1340
+
1341
+ 336
1342
+ 00:35:43,060 --> 00:35:46,880
1343
+ ูŠุจู‚ู‰
1344
+
1345
+ 337
1346
+ 00:35:46,880 --> 00:35:56,420
1347
+ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ X1 ุจู‚ุฏุฑุด ุนู†ุฏูŠ ุณุงู„ุจ Aูˆ ุงูƒุณ ุงุชู†ูŠู†
1348
+
1349
+ 338
1350
+ 00:35:56,420 --> 00:36:03,140
1351
+ ุชุจู‚ู‰ ุงูƒุณ
1352
+
1353
+ 339
1354
+ 00:36:03,140 --> 00:36:07,250
1355
+ ุงูƒุณ ุงูƒุณ ุงูƒุณ ุงูƒุณ ุงูƒุณ ุงูƒุณ ุงูƒุณ ุงูƒุณ ุงูƒุณูŠุจู‚ู‰ ู‡ูŠ ุฌูŠุจ ู„ู‡
1356
+
1357
+ 340
1358
+ 00:36:07,250 --> 00:36:12,370
1359
+ ุงู„ eigenvectors ูƒู„ ุงู„ vectors ุงู„ู„ูŠ ุจุชุจู‚ู‰ ุนู„ู‰ ุงู„ุดูƒู„
1360
+
1361
+ 341
1362
+ 00:36:12,370 --> 00:36:16,030
1363
+ ู‡ุฐุง ูŠุนู†ูŠ ุงู„ุฑู‚ู… ู…ู† ุงู„ set of real numbers ุงู„ู„ูŠ ู‡ูˆ a
1364
+
1365
+ 342
1366
+ 00:36:16,030 --> 00:36:20,610
1367
+ ู…ุถุฑูˆุจ ููŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆุงุญุฏ ุจูŠุฌูŠุจ ู„ู„ eigenvectors
1368
+
1369
+ 343
1370
+ 00:36:20,610 --> 00:36:27,170
1371
+ ุชุจุนุงุช ู…ูŠู† ุชุจุนุงุช lambda ุชุณุงูˆูŠ ุณู„ุจ ุงุชู†ูŠู† ูู‚ุทู„ุฃู†ู‡ ููŠ
1372
+
1373
+ 344
1374
+ 00:36:27,170 --> 00:36:30,030
1375
+ ุงู„ุณุคุงู„ ู‚ุงู„ ู‡ูŠ ุงุชู„ู‚ู‰ ูƒู„ ุงู„ eigenvalues ูˆ ุงู„
1376
+
1377
+ 345
1378
+ 00:36:30,030 --> 00:36:34,370
1379
+ eigenvectors ู„ู„ู…ุตูˆูุฉ ู‡ุฐู‡ ุงู†ุง ุฌุจุช ู„ุณู‡ ู„ lambda 2 ุฒูŠ
1380
+
1381
+ 346
1382
+ 00:36:34,370 --> 00:36:39,050
1383
+ ู…ุง ุฌุจุช ู„ lambda 2 ุจุชุฑูˆุญ ุงุฌูŠุจ ู„ู…ุงู… ู„ lambda 3 ูŠุจู‚ู‰
1384
+
1385
+ 347
1386
+ 00:36:39,050 --> 00:36:46,590
1387
+ ูƒู„ู‡ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ู‡ู†ุง ูƒู… ูˆุงุญุฏ ู‡ุฏูˆู„ุจุณ ุงู„ู…ุฑุงูƒุจุฉ ุงู„ุฃูˆู„ู‰
1388
+
1389
+ 348
1390
+ 00:36:46,590 --> 00:36:52,390
1391
+ ู‡ูŠ ุณุงู„ุจ ุงู„ู…ุฑุงูƒุจุฉ ุงู„ุซุงู†ูŠุฉ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ู‰ ุจุงู„ุดูƒู„
1392
+
1393
+ 349
1394
+ 00:36:52,390 --> 00:36:55,150
1395
+ ู‡ุฐุง ุจูŠูƒูˆู†ูˆุง eigenvectors ูˆุงุญู†ุง ุดูู†ุง ููŠ ุงู„ุณุคุงู„ ุงู„ู„ู‰
1396
+
1397
+ 350
1398
+ 00:36:55,150 --> 00:36:59,690
1399
+ ุฌุงุจู„ู‡ ู‚ุจู„ ู‚ู„ูŠู„ ู…ุด ูƒู„ vector ู‡ูˆ eigenvector ูŠุนู†ูŠ
1400
+
1401
+ 351
1402
+ 00:36:59,690 --> 00:37:04,120
1403
+ ุจุนุถู‡ู… ุจู†ูุน ูŠูƒูˆู† eigenvectors ูˆุจุนุถู‡ู…ุจู†ูุนู„ ูู‰ ุงู„ุณุคุงู„
1404
+
1405
+ 352
1406
+ 00:37:04,120 --> 00:37:07,280
1407
+ ุงู„ู„ู‰ ุฌุงุจู„ู‡ ุงู„ X ุทู„ุน Eigen vector ู„ูƒู† ุงู„ Y ุทู„ุน
1408
+
1409
+ 353
1410
+ 00:37:07,280 --> 00:37:11,980
1411
+ Eigen vector ุฅุฐุง ูŠุง ุจู†ุงุช ู…ุด ูƒู„ vector ุจู†ูุน ูŠูƒูˆู†
1412
+
1413
+ 354
1414
+ 00:37:11,980 --> 00:37:15,760
1415
+ Eigen vector ู„ู„ู…ุตุญูˆูุฉ ุงู„ู„ู‰ ู…ูˆุฌูˆุฏุฉ ุงู„ุจุนุถ ุจู†ูุน
1416
+
1417
+ 355
1418
+ 00:37:15,760 --> 00:37:19,980
1419
+ ูˆุงู„ุจุนุถ ุจู†ูุนุด ู…ูŠู† ุงู„ู„ู‰ ุจูŠู†ูุนู‡ ูู‰ ุงู„ุณุคุงู„ ู‡ุฐุง ูƒู„ ุงู„
1420
+
1421
+ 356
1422
+ 00:37:19,980 --> 00:37:23,700
1423
+ vectors ุงู„ู„ู‰ ุนู„ู‰ ุงู„ุดูƒู„ area number ู…ุถุฑูˆุจ ูู‰ ุณุงู„ุจ
1424
+
1425
+ 357
1426
+ 00:37:23,700 --> 00:37:28,320
1427
+ ูˆุงุญุฏ ูˆูˆุงุญุฏ ุทูŠุจ ู†ุฌู‰ ู„ู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ
1428
+
1429
+ 358
1430
+ 00:37:45,930 --> 00:37:51,970
1431
+ ุฃุฎุฐู†ุง ู„ุงู†ุฏุง ุชุณุงูˆูŠ ุณุงู„ุจ ุงุชู†ูŠู† ุจุฏุฃุช ูŠุงุฎุฏ ุงู„ุงู† F
1432
+
1433
+ 359
1434
+ 00:37:51,970 --> 00:37:57,370
1435
+ ู„ุงู†ุฏุง ุชุณุงูˆูŠ ุชู„ุงุชุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‚ูŠู…ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ
1436
+
1437
+ 360
1438
+ 00:37:57,370 --> 00:38:03,110
1439
+ ุทู„ุนู†ุงู‡ุง then ู„ุงู†ุฏุง
1440
+
1441
+ 361
1442
+ 00:38:03,110 --> 00:38:11,610
1443
+ I ู†ู‚ุต ุงู„ A ููŠ X ุจุฏุฃุช ุชุณุงูˆูŠ zero impliesุจุชุฌูŠ ู„ู†ูุณ
1444
+
1445
+ 362
1446
+ 00:38:11,610 --> 00:38:14,170
1447
+ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐูŠ ุจุฏูŠ ุฃุดูŠู„ ุงู„ู„ุงู†ุฏุฉ ูˆ ุฃุญุท
1448
+
1449
+ 363
1450
+ 00:38:14,170 --> 00:38:21,050
1451
+ ู…ูƒุงู†ู‡ุง ู…ุงู„ู‡ุง ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุชู„ุงุชุฉ ุฒุงุฆุฏ ูˆุงุญุฏ ูˆ ุณุงู„ุจ
1452
+
1453
+ 364
1454
+ 00:38:21,050 --> 00:38:29,290
1455
+ ูˆุงุญุฏ ูˆ ุณุงู„ุจ ุฃุฑุจุนุฉ ูˆ ุชู„ุงุชุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ู‡ุฐู‡ ูƒู„ู‡ุง ููŠ X
1456
+
1457
+ 365
1458
+ 00:38:29,290 --> 00:38:36,650
1459
+ ูˆุงุญุฏ X ุงุชู†ูŠู† ูƒู„ู‡ ุจุฏูŠ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ Zero ูˆ Zero ุชู„ุงุชุฉ
1460
+
1461
+ 366
1462
+ 00:38:36,650 --> 00:38:42,480
1463
+ ุฒุงุฆุฏ ูˆุงุญุฏ ูƒุฏู‡ุดุŸุฃุฑุจุนุฉ ูˆ ู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ูˆ ู‡ู†ุง ุณุงู„ุจ
1464
+
1465
+ 367
1466
+ 00:38:42,480 --> 00:38:49,920
1467
+ ุฃุฑุจุนุฉ ูˆ ู‡ู†ุง ูˆุงุญุฏ ูƒู„ู‡ x ูˆุงุญุฏ x ุงุชู†ูŠู† ุจุฏูŠ ูŠุณูˆู‰ ู…ู†
1468
+
1469
+ 368
1470
+ 00:38:49,920 --> 00:38:56,670
1471
+ Zero ูˆ Zeroู†ุถุฑุจ ุงู„ู…ุตุงูุชูŠู† ู‡ุฏูˆู„ ููŠ ุจุนุถ ูŠุจู‚ู‰ ุงู„ุตู
1472
+
1473
+ 369
1474
+ 00:38:56,670 --> 00:39:01,990
1475
+ ุงู„ุฃูˆู„ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุงุฑุจุนุฉ ุงูƒุณ ูˆุงุญุฏ ู†ุงู‚ุต ุงูƒุณ
1476
+
1477
+ 370
1478
+ 00:39:01,990 --> 00:39:09,430
1479
+ ุงุชู†ูŠู† ุตู ุงู„ุชุงู†ูŠ ู†ุงู‚ุต ุงุฑุจุนุฉ ุงูƒุณ ูˆุงุญุฏ ุฒุงุฆุฏ ุงูƒุณ ุงุชู†ูŠู†
1480
+
1481
+ 371
1482
+ 00:39:09,430 --> 00:39:15,760
1483
+ ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู†ุŸ Zero ูˆ Zeroุงู„ู„ูŠ ู‡ู†ุงุฎุฏ ู…ู‚ุงุฑู†ุฉ ุจูŠู†
1484
+
1485
+ 372
1486
+ 00:39:15,760 --> 00:39:21,160
1487
+ ุงู„ู…ูˆุตููŠู† ูŠุจู‚ู‰ ุงู„ุนู†ุงุตุฑ ุงู„ู…ุชู†ุธุฑุฉ ู…ุชุณุงูˆูŠุฉ ูŠุจู‚ู‰ ุงู„ุงุฑุจุน
1488
+
1489
+ 373
1490
+ 00:39:21,160 --> 00:39:26,960
1491
+ X ูˆุงุญุฏ ู†ุงู‚ุต X ุงุชู†ูŠู† ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ Zero ุงู„ู…ุนุงุฏู„ุฉ
1492
+
1493
+ 374
1494
+ 00:39:26,960 --> 00:39:33,340
1495
+ ุงู„ุชุงู†ูŠุฉ ู†ุงู‚ุต ุงุฑุจุน X ูˆุงุญุฏ ุฒูŠุฏ X ุงุชู†ูŠู† ูŠุณุงูˆูŠ Zero
1496
+
1497
+ 375
1498
+ 00:39:34,460 --> 00:39:37,680
1499
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุชุญุช ู„ูˆ ุถุฑุจู‡ุง ููŠ ุงู„ุณู„ุจ ุจุตูŠุฑ ู‡ูŠ
1500
+
1501
+ 376
1502
+ 00:39:37,680 --> 00:39:41,860
1503
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ููˆู‚ ุฅุฐุง ู‡ุฐูˆู„ ู…ุด ู…ุนุงุฏู„ุชูŠู† ูˆุฅู†ู…ุง ููŠ
1504
+
1505
+ 377
1506
+ 00:39:41,860 --> 00:39:46,440
1507
+ ุงู„ูˆุงู‚ุน ุนุจุงุฑุฉ ุนู† ู…ุนุงุฏู„ุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู†
1508
+
1509
+ 378
1510
+ 00:39:46,440 --> 00:39:52,480
1511
+ ุฃุฑุจุนุฉ ุงูƒุณ ูˆุงุญุฏ ู†ุงู‚ุต ุงูƒุณ ุงุชู†ูŠู† ูŠุณุงูˆูŠ Zero ุฅุฐุง ุงูƒุณ
1512
+
1513
+ 379
1514
+ 00:39:52,480 --> 00:39:58,390
1515
+ ุงุชู†ูŠู† ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุฃุฑุจุนุฉ ุงูƒุณ ูˆุงุญุฏูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู„ูˆ
1516
+
1517
+ 380
1518
+ 00:39:58,390 --> 00:40:05,350
1519
+ ูƒุงู†ุช ุงู„ X ูˆุงุญุฏ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ A then X ุงุชู†ูŠู† ุจุฏู‡
1520
+
1521
+ 381
1522
+ 00:40:05,350 --> 00:40:11,450
1523
+ ูŠุณุงูˆูŠ ุงุฑุจุนุฉ A ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุงุฌูŠุจ ุงู„ุดูƒู„ ุงู„ุนุงู… ู„ู„ Eigen
1524
+
1525
+ 382
1526
+ 00:40:11,450 --> 00:40:18,190
1527
+ vectors ุงุฐุง ุจู†ุงุก ุนู„ูŠู‡ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ the Eigen vectors
1528
+
1529
+ 383
1530
+ 00:40:18,190 --> 00:40:28,950
1531
+ are in the form ููŠ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ X
1532
+
1533
+ 384
1534
+ 00:40:28,950 --> 00:40:34,650
1535
+ ูˆุงุญุฏ ูˆุงู„ X ุงุชู†ูŠู† ุงู„ู„ูŠ ุฃู†ุง ู‚ู„ุช ุนู„ูŠู‡ู… ุงู„ุขู† A ูˆุงุญุฏ ุงูˆ
1536
+
1537
+ 385
1538
+ 00:40:34,650 --> 00:40:41,750
1539
+ X ูˆุงุญุฏ ู‡ูŠ A X ุงุชู†ูŠู† ู‡ูŠ ุงุฑุจุนุฉ A ูˆุงู„ู„ูŠ ู‡ูˆ A ููŠ ูˆุงุญุฏ
1540
+
1541
+ 386
1542
+ 00:40:41,750 --> 00:40:46,800
1543
+ ูˆู…ูŠู† ูˆุงุฑุจุนุฉูŠุจู‚ู‰ ุจุงู„ู†ุณุจุฉ ู„ู„ุงู†ุฏุฉ ุงู„ุชุงู†ูŠุฉ ุงู„ู„ู‰ ุชุณุงูˆูŠ
1544
+
1545
+ 387
1546
+ 00:40:46,800 --> 00:40:51,860
1547
+ ุงู„ุชู„ุงุชุฉ ุดูƒู„ ุงู„ eigenvectors ุฃูŠ real number ุจุณ
1548
+
1549
+ 388
1550
+ 00:40:51,860 --> 00:40:56,940
1551
+ ู…ุงูŠูƒูˆู†ุด ุตูุฑู‡ุง ุงูŠ real number ุบูŠุฑ ุงู„ zero ุจุฏูŠ ุงุถุฑุจู‡
1552
+
1553
+ 389
1554
+ 00:40:56,940 --> 00:41:00,740
1555
+ ููŠ ู…ู† ููŠ ุงู„ vector ูˆุงุญุฏ ูˆุงุฑุจุนุฉ ุจูŠุนุทูŠู†ูŠ ุงู„
1556
+
1557
+ 390
1558
+ 00:41:00,740 --> 00:41:06,300
1559
+ eigenvectors ู‚ุฏุงุด ู‡ุฏูˆู„ ุนุฏุฏู‡ู…ุŸู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ุฅุฐุง ุนู†ุฏูŠ
1560
+
1561
+ 391
1562
+ 00:41:06,300 --> 00:41:09,420
1563
+ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู…ู† ุงู„ู€EigenvectorsุŒ ูˆุฑุบู… ุฃู†
1564
+
1565
+ 392
1566
+ 00:41:09,420 --> 00:41:13,740
1567
+ ุงู„ู€Eigenvalues ุชู†ุชูŠู†ุŒ ู„ูƒู† ุงู„ู€Eigenvectors ุงู„ุชุงุจุนุฉ
1568
+
1569
+ 393
1570
+ 00:41:13,740 --> 00:41:17,020
1571
+ ู„ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู…ุŒ ุนุจุงุฑุฉ ุนู† ุงู„ุนุฏุฏ ู„ุง ู†ู‡ุงุฆูŠ ู…ู†
1572
+
1573
+ 394
1574
+ 00:41:17,020 --> 00:41:20,620
1575
+ ุงู„ู€EigenvectorsุŒ ูŠุจู‚ู‰ ู‡ูƒุฐุงุŒ ุฌู…ุชูˆุง ุงู„ู€Eigenvalues
1576
+
1577
+ 395
1578
+ 00:41:20,620 --> 00:41:25,760
1579
+ ูˆEigenvectorsุŒ ูˆู‡ุฐุง ูŠุนุชุจุฑ ู…ู† ุงู„ุฃุณุฆู„ุฉ ุงู„ุณู‡ู„ุฉุŒ ู„ุฃู†ู‡
1580
+
1581
+ 396
1582
+ 00:41:25,760 --> 00:41:32,460
1583
+ ู…ุง ููŠู‡ุงcomplex numbers ูŠุนู†ูŠ ู‡ุฐู‡ ู…ุงู„ู‡ุง ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉ
1584
+
1585
+ 397
1586
+ 00:41:32,460 --> 00:41:38,100
1587
+ real numbers ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉ ุทุจุนุง ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ุนู„ู‰
1588
+
1589
+ 398
1590
+ 00:41:38,100 --> 00:41:42,520
1591
+ ุณุคุงู„ ุงู„ complex ู„ูƒู† ุงู„ุณุคุงู„ ุฒูŠ ู…ุง ุงู†ุชูˆุง ุดุงูŠููŠู† at
1592
+
1593
+ 399
1594
+ 00:41:42,520 --> 00:41:47,040
1595
+ least ุจุฏู‡ ุฑุจุน ุณุงุนุฉ ุทุจุนุง ุฅุฐุง ู…ุงููŠุด ุฅู…ูƒุงู†ูŠุฉ ู„ู„ู…ุฑุฉ
1596
+
1597
+ 400
1598
+ 00:41:47,040 --> 00:41:51,400
1599
+ ุงู„ู‚ุงุฏู…ุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุจู†ูƒู…ู„ ุจูŠุนุทูŠูƒูˆุง ุงู„ุนููˆ
1600
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/ioT12D_ruOo_raw.json ADDED
The diff for this file is too large to render. See raw diff
 
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/nmLJemVXdy8.srt ADDED
@@ -0,0 +1,1491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:19,250 --> 00:00:23,930
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจุฏุฃู†ุง ููŠ
4
+
5
+ 2
6
+ 00:00:23,930 --> 00:00:29,500
7
+ section ุงู„ู€exact equations ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชุงู…ุฉ ูˆู‚ู„ู†ุง
8
+
9
+ 3
10
+ 00:00:29,500 --> 00:00:33,760
11
+ ุฅู† ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ M of X ูˆ Y ุฒุงุฆุฏ N of X ูˆ Y
12
+
13
+ 4
14
+ 00:00:33,760 --> 00:00:38,060
15
+ d Y ุนู„ู‰ d X ูŠุณุงูˆูŠ 0 ุจู‚ูˆู„ ุนู†ู‡ุง exactly ุฅุฐุง ูˆุฌุฏุช
16
+
17
+ 5
18
+ 00:00:38,060 --> 00:00:41,280
19
+ ูˆุฌุฏุช ุงู„ู€ function Phi of X ูˆ Y ุจุญูŠุซ ู…ุดุชู‚ุชู‡ุง
20
+
21
+ 6
22
+ 00:00:41,280 --> 00:00:46,740
23
+ ุจุงู„ู†ุณุจุฉ ู„ู€ X ูŠุณุงูˆูŠ M ูˆู…ุดุชู‚ุชู‡ุง ุจุงู„ู†ุณุจุฉ ู„ู€ Y ูŠุณุงูˆูŠ N
24
+
25
+ 7
26
+ 00:00:46,740 --> 00:00:51,810
27
+ ูู‚ูˆู„ู†ุง ุงู„ุตุนุจ ู†ูˆุฌุฏ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ูุฑูˆุญู†ุง ูˆ ุญุทูŠู†ุง ู†ุธุฑูŠุฉ
28
+
29
+ 8
30
+ 00:00:51,810 --> 00:00:57,130
31
+ ุซุงู†ูŠุฉ ู†ุธุฑูŠุฉ ู…ู† ุฎู„ุงู„ู‡ุง ุจู‚ุฏุฑ ุฃุญูƒู… ุนู„ู‰ ุฃุฏุงุก ุงู„ู…ุนุงุฏู„ุฉ
32
+
33
+ 9
34
+ 00:00:57,130 --> 00:01:02,010
35
+ ุงู„ุชูุงุถู„ูŠุฉ ู„ู€ exactly ุฃู… ู„ุง ูˆู‡ูŠ ุฃู†ู‡ ุชูุงุถู„ M ุจุงู„ู†ุณุจุฉ
36
+
37
+ 10
38
+ 00:01:02,010 --> 00:01:06,390
39
+ ุฅู„ู‰ Y ุฅุฐุง ุทู„ุน ูŠุณุงูˆูŠ ุชูุงุถู„ N ุจุงู„ู†ุณุจุฉ ู„ู€ X ุจู†ู‚ูˆู„
40
+
41
+ 11
42
+ 00:01:06,390 --> 00:01:10,570
43
+ ุงู„ู…ุนุงุฏู„ุฉ exact ูˆุจุงู„ุชุงู„ูŠ ู„ุงุฒู… ุฃู„ุงู‚ูŠ ุงู„ู€ function Phi
44
+
45
+ 12
46
+ 00:01:10,570 --> 00:01:15,970
47
+ of X ูˆY ุชุณุงูˆูŠ ูƒูˆู†ุณุชุงู†ู’ุช ุญุฏ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูˆุงุฎุฏู†ุง ุนู„ู‰
48
+
49
+ 13
50
+ 00:01:15,970 --> 00:01:22,060
51
+ ุฐู„ูƒ ู†ุชุงุฆุฌ ูˆุงุญุฏุฉ ูˆุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุฑู‚ู… 2
52
+
53
+ 14
54
+ 00:01:22,060 --> 00:01:25,860
55
+ ูุจู‚ูˆู„ Solve the differential equation Y ุชูƒุนูŠุจ
56
+
57
+ 15
58
+ 00:01:25,860 --> 00:01:31,620
59
+ ู†ุงู‚ุต Y ุชุฑุจูŠุน Sin X ู†ุงู‚ุต X ุฒุงุฆุฏ 3 X Y ุชุฑุจูŠุน ุฒุงุฆุฏ
60
+
61
+ 16
62
+ 00:01:31,620 --> 00:01:36,100
63
+ 2 Y Cos X d Y ุนู„ู‰ d X ุจูŠุณุงูˆูŠุŸ ุจูŠุณุงูˆูŠ
64
+
65
+ 17
66
+ 00:01:36,100 --> 00:01:40,420
67
+ Zero ุจุฏูŠ ุฃุญู„ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ุจุชุงุนุชู‡ุง ุทูˆู„ ุฅูŠู‡
68
+
69
+ 18
70
+ 00:01:40,420 --> 00:01:47,640
71
+ ูุจุฏูŠ ุฃุจุญุซ ุฃู† ู‡ูŠ exact ุฃู… ู…ุด exact ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง
72
+
73
+ 19
74
+ 00:01:47,640 --> 00:01:52,420
75
+ ุงู„ุฌุฒุก ู‡ูˆ ุงู„ู„ูŠ ุฃุทู„ู‚ู†ุง ุนู„ูŠู‡ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุงู„ุงุณู… M ูˆ
76
+
77
+ 20
78
+ 00:01:52,420 --> 00:01:58,720
79
+ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุฃุทู„ู‚ู†ุง ุนู„ูŠู‡ ุงู„ุงุณู… N ุทูŠุจ ุฅุฐุง ุจุฏูŠ ุฃุฎุฏ
80
+
81
+ 21
82
+ 00:01:58,720 --> 00:02:03,160
83
+ ุชูุงุถู„ ุงู„ู€ M ุจุงู„ู†ุณุจุฉ ู„ู€ Y ูˆุชูุงุถู„ ุงู„ู€ N ุจุงู„ู†ุณุจุฉ
84
+
85
+ 22
86
+ 00:02:03,160 --> 00:02:07,860
87
+ ู„ู€ X ูˆุฃุดูˆู ู‡ู„ ุจูŠุณุงูˆูˆุง ุจุนุถ ูˆู„ุง ุจูŠุณุงูˆูˆุด ุจุนุถ ูู„ู…ุง ุจุฏูŠ
88
+
89
+ 23
90
+ 00:02:07,860 --> 00:02:14,440
91
+ ุฃุฎุฏ partial M by partial Y ุจูŠุณุงูˆูŠ ุชูุงุถู„ Y ุชูƒุนูŠุจ ู„ู€
92
+
93
+ 24
94
+ 00:02:14,440 --> 00:02:24,600
95
+ 3Yยณ Sine X ุจุชุนุชุจุฑ ู…ู‚ุฏุงุฑ ุซุงุจุช ุฃู† ุชูุงุถู„ Yยณ ู†ุงู‚ุต 2Y ููŠ
96
+
97
+ 25
98
+ 00:02:24,600 --> 00:02:29,640
99
+ Sine X ู‡ุฐุง ูƒู„ู‡ ุจูŠุนุชุจุฑ ู…ู‚ุฏุงุฑ ุซุงุจุช ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ุฏู‡
100
+
101
+ 26
102
+ 00:02:29,640 --> 00:02:35,940
103
+ ู…ุดุชู‚ุชู‡ ุจู€ 0 ุจุงู„ู…ุซู„ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฎุฏ ุชูุงุถู„ N ุจุงู„ู†ุณุจุฉ
104
+
105
+ 27
106
+ 00:02:35,940 --> 00:02:42,330
107
+ ุฅู„ู‰ X ูŠุจู‚ู‰ 3 Y ุชุฑุจูŠุน ุจุชุนุชุจุฑ ู…ู‚ุฏุฑ ุซุงุจุชุฉ ุชูุงุถู„ X
108
+
109
+ 28
110
+ 00:02:42,330 --> 00:02:49,130
111
+ ุจูˆุงุญุฏ ูŠุจู‚ู‰ 3 Y ุชุฑุจูŠุน ุงู„ุขู† 2 Y ู…ู‚ุฏุงุฑ ุซุงุจุช
112
+
113
+ 29
114
+ 00:02:49,130 --> 00:02:55,810
115
+ ุชูุงุถู„ Cos X ูˆุณุงู„ุจ Sine X ูŠุจู‚ู‰ ุณุงู„ุจ 2 Y ููŠ Sine
116
+
117
+ 30
118
+ 00:02:55,810 --> 00:03:01,510
119
+ X ุจู†ู„ุงุญุธ ู…ู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุชูุงุถู„ M ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y
120
+
121
+ 31
122
+ 00:03:01,510 --> 00:03:09,980
123
+ ุจูŠุณุงูˆูŠ ุชูุงุถู„ N ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€
124
+
125
+ 32
126
+ 00:03:09,980 --> 00:03:13,740
127
+ differential equation ู‡ุฐู‡ ู„ูˆ ุณู…ูŠุชู‡ุง star ูŠุง ุจู†ุงุช
128
+
129
+ 33
130
+ 00:03:13,740 --> 00:03:21,460
131
+ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ differential equation ุงู„ู„ูŠ ู‡ูŠ
132
+
133
+ 34
134
+ 00:03:21,460 --> 00:03:29,460
135
+ star is exact ู…ุฏุงู… exact ู‡ุฐุง ู…ุนู†ุงู‡ there exists a
136
+
137
+ 35
138
+ 00:03:29,460 --> 00:03:39,730
139
+ function Phi of x,y ุจูŠุณุงูˆูŠ constant C1 such that ุจุญูŠุซ
140
+
141
+ 36
142
+ 00:03:39,730 --> 00:03:47,390
143
+ ุฃู† ุชูุงุถู„
144
+
145
+ 37
146
+ 00:03:47,390 --> 00:03:56,830
147
+ ุงู„ู€ Phi ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ x ุจุฏูŠ ูŠุณุงูˆูŠ M ุงู„ู„ูŠ ุนู†ุฏู†ุง Y ุชูƒุนูŠุจ
148
+
149
+ 38
150
+ 00:03:56,830 --> 00:04:05,130
151
+ ู†ุงู‚ุต Y ุชุฑุจูŠุน ู…ุถุฑูˆุจุฉ ููŠ Sin X ู†ุงู‚ุต X ูˆุชูุงุถู„ ุงู„ู€ Phi
152
+
153
+ 39
154
+ 00:04:05,130 --> 00:04:11,390
155
+ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ุจูŠุณุงูˆูŠ ุงู„ู€ N ุงู„ู„ูŠ ู‡ูŠ 3 X Y ุชุฑุจูŠุน
156
+
157
+ 40
158
+ 00:04:11,390 --> 00:04:15,630
159
+ ุฒุงุฆุฏ 2 Y Cos X
160
+
161
+ 41
162
+ 00:04:17,780 --> 00:04:22,740
163
+ ู…ุฑุฉ ุซุงู†ูŠุฉ ุฌุจู†ุง ู…ุดุชู‚ุฉ ุงู„ู€ N ุจุงู„ู†ุณุจุฉ ู„ู€ Y ูˆุฌุจู†ุง ู…ุดุชู‚ุฉ
164
+
165
+ 42
166
+ 00:04:22,740 --> 00:04:27,260
167
+ ุงู„ู€ N ุจุงู„ู†ุณุจุฉ ู„ู€ X ูˆุฌุฏุช ุงู„ู‚ูŠู…ุชูŠู† ู…ุชุณุงูˆูŠุชูŠู† ู…ุนู†ุงู‡
168
+
169
+ 43
170
+ 00:04:27,260 --> 00:04:31,500
171
+ ุชูุงุถู„ N ุจุงู„ู†ุณุจุฉ ู„ู€ Y ุจูŠุณุงูˆูŠ ุชูุงุถู„ N ุจุงู„ู†ุณุจุฉ ู„ู€ X ุทุจู‚
172
+
173
+ 44
174
+ 00:04:31,500 --> 00:04:34,320
175
+ ุงู„ู†ุธุฑูŠุฉ ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูŠุจู‚ู‰ differential
176
+
177
+ 45
178
+ 00:04:34,320 --> 00:04:39,670
179
+ equation star is exact ู…ุฏุงู… exactly ูŠุจู‚ู‰ ู„ุงุฒู… ุฃู„ุงู‚ูŠ
180
+
181
+ 46
182
+ 00:04:39,670 --> 00:04:44,530
183
+ function Phi of x y ุจูŠุณุงูˆูŠ ู…ู‚ุฏุงุฑุง ุซุงุจุชุง ุจุญูŠุซ ุฃู†
184
+
185
+ 47
186
+ 00:04:44,530 --> 00:04:48,930
187
+ ู…ุดุชู‚ุฉ ุงู„ู€ Phi ุจุงู„ู†ุณุจุฉ ู„ู€ x ุจุฏูŠ ุชุณุงูˆูŠ ุงู„ู€ M ูˆู…ุดุชู‚ุฉ ุงู„ู€
188
+
189
+ 48
190
+ 00:04:48,930 --> 00:04:54,820
191
+ Phi ุจุงู„ู†ุณุจุฉ ู„ู€ y ุจุฏูŠ ุชุณุงูˆูŠ ู…ูŠู† ุงู„ู€ N ุงู„ุขู† ุจุทู„ุน .. ุจุฏูŠ
192
+
193
+ 49
194
+ 00:04:54,820 --> 00:04:59,820
195
+ ุฃุญุตู„ ุนู„ู‰ Phi of X ูˆ Y ุจุฏูˆู† ู…ู‚ุฏุงุฑ ุซุงุจุช ูุจุงุฌูŠ ุจู‚ูˆู„
196
+
197
+ 50
198
+ 00:04:59,820 --> 00:05:03,460
199
+ .. ุจุทู„ุน ู„ุงุชู†ูŠู† .. ุฃู†ุง ุนู†ุฏูŠ ุงู„ู…ุดุชู‚ุฉ ุจุงู„ู†ุณุจุฉ ู„ู€ X ูˆ
200
+
201
+ 51
202
+ 00:05:03,460 --> 00:05:09,220
203
+ ุงู„ู…ุดุชู‚ุฉ ุจุงู„ู†ุณุจุฉ ู„ู€ Y ุจุฑูˆุญ ุจูƒุงู…ู„ ุฃุณู‡ู„ ูˆุงุญุฏุฉ ููŠู‡ู… ุงู„ุขู†
204
+
205
+ 52
206
+ 00:05:09,220 --> 00:05:15,190
207
+ ู„ูˆ ุจุฏูŠ ุฃูƒุงู…ู„ ู‡ุฐู‡ ุจุงู„ู†ุณุจุฉ ู„ู€ Y very easy ูˆู„ูˆ ุจุฏูŠ ุฃูƒุงู…ู„
208
+
209
+ 53
210
+ 00:05:15,190 --> 00:05:19,730
211
+ ู‡ุฐู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X ูƒู…ุงู† very easy ูŠุจู‚ู‰ ู…ุง ุนู†ุฏู†ุงุด
212
+
213
+ 54
214
+ 00:05:19,730 --> 00:05:23,610
215
+ ู…ุดูƒู„ุฉ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ู„ูƒู† ุงู„ู…ุซุงู„ ุงู„ุณุงุจู‚ ูƒู…ุงู„ ู‡ุฐู‡
216
+
217
+ 55
218
+ 00:05:23,610 --> 00:05:28,790
219
+ ู…ุธุจูˆุท ุฎู„ูŠู†ุง ุงู„ู…ุซุงู„ ู‡ุฐุง ู†ูƒุงู…ู„ู‡ ูˆู†ุดูˆู ู„ูƒู† ู„ูˆ ูƒุงู†
220
+
221
+ 56
222
+ 00:05:28,790 --> 00:05:32,390
223
+ ููŠู‡ู… ูˆุงุญุฏุฉ ุตุนุจุฉ ูˆูˆุงุญุฏุฉ ุณู‡ู„ุฉ ุจุณุจ ุงู„ุตุนุจุฉ ูˆุจุฑูˆุญ
224
+
225
+ 57
226
+ 00:05:32,390 --> 00:05:37,740
227
+ ุจูƒุงู…ู„ ุงู„ุณู‡ู„ุฉ ููŠู‡ู… ูŠุจู‚ู‰ ู‡ุฐู‡ ู„ูˆ ุฌูŠุช ุฃูƒุงู…ู„ู‡ุง ูุจุญุตู„ ุนู„ู‰
228
+
229
+ 58
230
+ 00:05:37,740 --> 00:05:43,340
231
+ Phi of X ูˆ Y ุจุฏูŠ ุฃูƒุงู…ู„ู‡ุง ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ูŠุจู‚ู‰ 3 X ูˆ
232
+
233
+ 59
234
+ 00:05:43,340 --> 00:05:48,180
235
+ ุจุชุนุชุจุฑ ู…ู‚ุฏุงุฑ ุซุงุจุช ูˆ Y ุชูƒุนูŠุจ ุนู„ู‰ 3 3 ู…ุน
236
+
237
+ 60
238
+ 00:05:48,180 --> 00:05:54,920
239
+ 3 ู…ุน ุงู„ุณู„ุงู…ุฉ ูŠุจู‚ู‰ X Y ุชูƒุนูŠุจ ู†ุฌูŠ ุงู„ุขู† ู†ูƒุงู…ู„ ู‡ุฐู‡
240
+
241
+ 61
242
+ 00:05:54,920 --> 00:05:59,160
243
+ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ุงู„ู€ Cos ู…ู‚ุฏุงุฑ ุซุงุจุช ูˆ 2 ุซุงุจุช
244
+
245
+ 62
246
+ 00:05:59,160 --> 00:06:04,240
247
+ ูŠุจู‚ู‰ ุชูƒุงู…ู„ ุงู„ู€ Y ู„ูˆ Y ุชุฑุจูŠุน ุนู„ู‰ ุงู„ู€ 2 ุจุชุฑูˆุญ ู…ุน
248
+
249
+ 63
250
+ 00:06:04,240 --> 00:06:09,700
251
+ 2 ูŠุจู‚ู‰ Y ุชุฑุจูŠุน ููŠ Cos X ุงุญู†ุง ูƒู…ู„ู†ุง
252
+
253
+ 64
254
+ 00:06:09,700 --> 00:06:14,820
255
+ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ูŠุจู‚ู‰ ุจุฏุง ุฃู‚ูˆู„ู‡ ุฒุงุฆุฏ ู…ู‚ุฏุงุฑ ุซุงุจุช
256
+
257
+ 65
258
+ 00:06:14,820 --> 00:06:21,920
259
+ ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช ุจุงุนุชุจุฑู‡ function ููŠ X ู„ุฃู† X ุจูŠุนุชุจุฑ
260
+
261
+ 66
262
+ 00:06:21,920 --> 00:06:28,770
263
+ ุซุงุจุช ุฃู†ุง ุจูƒุงู…ู„ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ุฒุงุฆุฏ Function of X ุจุนุฏ ุฐู„ูƒ
264
+
265
+ 67
266
+ 00:06:28,770 --> 00:06:34,710
267
+ ุงุดุชู‚ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ ู…ุงุฐุงุŸ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X ูˆ
268
+
269
+ 68
270
+ 00:06:34,710 --> 00:06:38,910
271
+ ุฃุณูˆูŠู‡ุง ุจู…ุงุฐุงุŸ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ุงุดุชู‚ุช ู‡ุฐู‡
272
+
273
+ 69
274
+ 00:06:38,910 --> 00:06:43,370
275
+ ุงู„ุฏุงู„ุฉ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X partial Phi ุนู„ู‰ partial X
276
+
277
+ 70
278
+ 00:06:43,370 --> 00:06:50,790
279
+ ุจูŠุณุงูˆูŠ ู‡ุง Y ุชูƒุนูŠุจ ูˆุชูุงุถู„ Cos ุจุณุงู„ุจ Sin ูŠุจู‚ู‰
280
+
281
+ 71
282
+ 00:06:50,790 --> 00:07:02,630
283
+ ุณุงู„ุจ Y ุชุฑุจูŠุน ููŠ Sin X ุฒุงุฆุฏ ุงู„ู€ F prime of X ุทูŠุจ
284
+
285
+ 72
286
+ 00:07:02,630 --> 00:07:08,530
287
+ ุงู„ุขู† ูŠุจู‚ู‰ ู‡ุฐู‡ ู‡ูŠ ู‡ุฐู‡ ุฅุฐุง ู…ู† ุงู„ุงุซู†ูŠู† ู‡ุฐูˆู„ ู…ุน ุจุนุถ ู…ุง
288
+
289
+ 73
290
+ 00:07:08,530 --> 00:07:14,310
291
+ ุจุณุชู†ุชุฌ ุฃู† ุงู„ุงุซู†ูŠู† ู‡ุฐูˆู„ ุจูŠุณุงูˆูˆุง ุจุนุถ ูŠุนู†ูŠ ู…ุนู†ุงู‡ ู‡ุฐุง
292
+
293
+ 74
294
+ 00:07:14,310 --> 00:07:21,590
295
+ ุงู„ูƒู„ุงู… ุฃู† Y ุชูƒุนูŠุจ ู†ุงู‚ุต Y ุชุฑุจูŠุน ููŠ Sin X ุฒุงุฆุฏ
296
+
297
+ 75
298
+ 00:07:21,590 --> 00:07:29,330
299
+ ุงู„ู€ F prime of X ุจุชุณุงูˆูŠ Y ุชูƒุนูŠุจ ู†ุงู‚ุต Y ุชุฑุจูŠุน ููŠ Sign
300
+
301
+ 76
302
+ 00:07:29,330 --> 00:07:35,410
303
+ X ู†ุงู‚ุต ู…ู† X ุฃุธู† ู„ูˆ ุฌูŠุจู†ุง ู‡ุฐู‡ ุนู†ุฏ ู‡ุฐู‡ ุจุฅุดุงุฑุฉ
304
+
305
+ 77
306
+ 00:07:35,410 --> 00:07:42,410
307
+ ู…ุฎุงู„ูุฉ ุจุชุฑูˆุญ ูˆู‡ุฐู‡ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ูŠุจู‚ู‰ ูŠุจู‚ู‰ ุนู†ุฏูŠ ุฃู†
308
+
309
+ 78
310
+ 00:07:42,410 --> 00:07:50,490
311
+ ุงู„ู€ F prime of X ุงู„ู€ F prime of X ุจุฏูŠ ูŠุณุงูˆูŠ ุณุงู„ุจ X
312
+
313
+ 79
314
+ 00:07:50,490 --> 00:07:57,990
315
+ ูŠุจู‚ู‰ ู„ูˆ ูƒุงู…ู„ุชู‡ุง ุจู‚ูˆู„ ูŠุจู‚ู‰ ุงู„ู€ F of X ุจูŠุณุงูˆูŠ ู†ุงู‚ุต X
316
+
317
+ 80
318
+ 00:07:57,990 --> 00:08:04,530
319
+ ุชุฑุจูŠุน ุนู„ู‰ 2 ุฒุงุฆุฏ ูƒูˆู†ุณุชุงู†ู’ุช ุซุงู†ูŠ C2 ุฅุฐุง ู‡ุฐู‡ ุงู„ู€
320
+
321
+ 81
322
+ 00:08:04,530 --> 00:08:09,610
323
+ Phi ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆูŠู† ุฑุงุญุช ู„ู…ุง ู†ูƒู…ู„ู‡ุง ู†ู‡ุงูŠุฉ ุจุณ ุจุฏูŠ
324
+
325
+ 82
326
+ 00:08:09,610 --> 00:08:14,850
327
+ ุฃุดูŠู„ ุงู„ู€ Function of X ูˆุฃุถุนู‡ุง ุจุชูƒูˆู† ุญุตู„ุช ุนู„ู‰ ู…ูŠู†
328
+
329
+ 83
330
+ 00:08:14,850 --> 00:08:21,510
331
+ ุนู„ู‰ ุงู„ุญู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ Solution
332
+
333
+ 84
334
+ 00:08:21,510 --> 00:08:24,650
335
+ of
336
+
337
+ 85
338
+ 00:08:24,650 --> 00:08:29,190
339
+ the differential equation
340
+
341
+ 86
342
+ 00:08:31,990 --> 00:08:39,810
343
+ Phi of X ูˆ Y ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ุทุงู„ุน ุนู†ุฏู†ุง ู‡ู†ุง X Y ุชูƒุนูŠุจ
344
+
345
+ 87
346
+ 00:08:39,810 --> 00:08:48,130
347
+ ุฒุงุฆุฏ Y ุชุฑุจูŠุน ููŠ Cos X ุฒุงุฆุฏ F of X ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต X
348
+
349
+ 88
350
+ 00:08:48,130 --> 00:08:55,510
351
+ ุชุฑุจูŠุน ุนู„ู‰ ุงู„ู€ 2 ุฒุงุฆุฏ C2 ูƒู„ู‡ ุณูŠุณุงูˆูŠ C1 ุฅุฐุง ู„ูˆ ุฌุจุช
352
+
353
+ 89
354
+ 00:08:55,510 --> 00:09:00,510
355
+ C2 ุนู† C1 ุจุชุตุจุญ Phi of X ูˆ Y
356
+
357
+ 90
358
+ 00:09:21,540 --> 00:09:26,800
359
+ ุทูŠุจ ูŠุง ุจู†ุงุช ู…ู…ูƒู† ู…ุง ุชูƒูˆู†ุด ๏ฟฝ๏ฟฝู„ู…ุซุงู„ ุฃูุถู„ M ุจุงู„ู†ุณุจุฉ ู„ู€ Y
360
+
361
+ 91
362
+ 00:09:26,800 --> 00:09:33,520
363
+ ุจุชุณุงูˆูŠ ุชูุงุถู„ N ุจุงู„ู†ุณุจุฉ ู„ู€ X ูŠู…ูƒู† ู…ุง ุชุตุจุญุด exact ู„ูƒู†
364
+
365
+ 92
366
+ 00:09:33,520 --> 00:09:39,680
367
+ ุจุนู…ู„ูŠุฉ ุจุณูŠุทุฉ ุจู€ trick ุจุณูŠุท ู…ู…ูƒู† ุฃุญูˆู„ ุงู„ู…ุนุงุฏู„ุฉ ุฅู„ู‰
368
+
369
+ 93
370
+ 00:09:39,680 --> 00:09:44,360
371
+ exact ุชู…ุงู… ูˆุจุงู„ุชุงู„ูŠ ู„ู…ุง ุฃุญูˆู„ู‡ุง exact ุจุญู„ู‡ุง ุฒูŠ ู…ุง
372
+
373
+ 94
374
+ 00:09:44,360 --> 00:09:49,900
375
+ ุญุฏุซุช ู…ุซุงู„ูŠู† ุงู„ุงุซู†ูŠู† ู‡ุฐูˆู„ ููŠ ุนู†ุฏูƒ ุดุบู„ุฉ ุชูˆุถุญ ู‡ุฐุง
376
+
377
+ 95
378
+ 00:09:49,900 --> 00:09:55,260
379
+ ุงู„ูƒู„ุงู… ุงู„ุฅุฌุงุจุฉ ู†ุนู… ูŠุนู†ูŠ ุฃู†ุง ู„ูˆ ุทู„ุน ููŠ ุงู„ู…ุนุงุฏู„ุฉ
380
+
381
+ 96
382
+ 00:09:55,260 --> 00:10:01,950
383
+ ู…ุงู‡ูŠ exact ู…ู…ูƒู† ุฃุถุฑุจ ุงู„ู…ุนุงุฏู„ุฉ ููŠ ุฏุงู„ุฉ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ
384
+
385
+ 97
386
+ 00:10:01,950 --> 00:10:06,810
387
+ ุชุญูˆู„ู‡ุง ุฅู„ู‰ ู…ูŠู†ุŸ ุฅู„ู‰ exact ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุถุฑุจ ููŠู‡ุง
388
+
389
+ 98
390
+ 00:10:06,810 --> 00:10:13,630
391
+ ุจูุณู…ูŠู‡ุง Integrating factor ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ุฅุฐุง ุจุฏู†ุง
392
+
393
+ 99
394
+ 00:10:13,630 --> 00:10:20,030
395
+ ู†ุญุงูˆู„ ู†ุนุทูŠ Definition ู„ุนู…ู„ ุงู„ุชูƒุงู…ู„ ูˆุจุนุฏ ู‡ูŠูƒ ู†ุฑูˆุญ
396
+
397
+ 100
398
+ 00:10:20,030 --> 00:10:27,140
399
+ ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุญุณุจ ู‡ุฐุง ุงู„ุนุงู…ู„ ูŠุจู‚ู‰ Integrating
400
+
401
+ 101
402
+ 00:10:27,140 --> 00:10:32,120
403
+ Factor ุนุงู…ู„
404
+
405
+ 102
406
+ 00:10:32,120 --> 00:10:43,440
407
+ ุงู„ุชูƒุงู…ู„ ู‡ุฃุนุทูŠู„ู‡ ุงู„ุชุนุฑูŠู ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰ Definition if
408
+
409
+ 103
410
+ 00:10:43,440 --> 00:10:50,700
411
+ ุงู„ู€ M as a function of X ูˆ Y ุฒุงุฆุฏ ุงู„ู€ N as a
412
+
413
+ 104
414
+ 00:10:50,700 --> 00:10:57,420
415
+ function of X ูˆ Y ููŠ d Y ุนู„ู‰ d X ุจูŠุณุงูˆูŠ Zero ูˆู‡ุฐู‡
416
+
417
+ 105
418
+ 00:10:57,420 --> 00:11:05,600
419
+ ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… 1 ู‡ุฐู‡ ูƒุงู†ุช is not exact ู„ูˆ ู‡ุฐู‡
420
+
421
+ 106
422
+ 00:11:05,600 --> 00:11:14,160
423
+ ู…ุง ูƒุงู†ุชุด exact But ูˆู„ูƒู† ุฏู‡ Differential Equation
424
+
425
+ 107
426
+ 00:11:14,160 --> 00:11:24,390
427
+ ูˆู„ูƒู† ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ู„ู€ Mu of X Y ููŠ M of X ูˆ Y
428
+
429
+ 108
430
+ 00:11:24,390 --> 00:11:35,870
431
+ ุฒุงุฆุฏ Mu of X ูˆ Y ููŠ N of X ูˆ Y ููŠ d Y ุนู„ู‰ d X
432
+
433
+ 109
434
+ 00:11:35,870 --> 00:11:43,650
435
+ ุจูŠุณุงูˆูŠ Zero is exact ู„ูˆ
436
+
437
+ 110
438
+ 00:11:43,650 --> 00:11:53,070
439
+ ูƒุงู†ุช ู‡ุฐู‡ exact Then Mu of X ูˆ Y ุงู„ู€ Mu of X Y is
440
+
441
+ 111
442
+ 00:11:53,070 --> 00:12:03,430
443
+ Called ู‡ู†ุฑูˆุญ ู†ุณู…ูŠู‡ุง An Integrating Factor
444
+
445
+ 112
446
+ 00:12:03,430 --> 00:12:13,590
447
+ ุจู†ุณู…ูŠู‡ุง ุนุงู…ู„ ุชูƒุงู…ู„ For The Differential
448
+
449
+ 113
450
+ 00:12:13,590 --> 00:12:17,830
451
+ Equation 1
452
+
453
+ 114
454
+ 00:12:51,870 --> 00:12:57,180
455
+ ู†ุฑุฌุน ู„ู„ุชุนุฑูŠู ุงู„ู„ูŠ ุงุญู†ุง ูƒุงุชุจูŠู†ู‡ ู‡ุฐุง ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„
456
+
457
+ 115
458
+ 00:12:57,180 --> 00:13:01,600
459
+ ู„ูˆ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ุงุชุนูˆุฏู†ุง ุนู„ูŠู‡ุง ููŠ
460
+
461
+ 116
462
+ 00:13:01,600 --> 00:13:05,380
463
+ ุงู„ู…ุซุงู„ ู‚ุจู„ ู‚ู„ูŠู„ ูˆู…ุซุงู„ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆุฌุฒุก ุงู„ู†ุธุฑูŠ
464
+
465
+ 117
466
+ 00:13:05,380 --> 00:13:09,440
467
+ ุชุจุนู‡ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ูƒุงู†ุช ู…ุงู‡ูŠุงุด exact ุงูŠุด ูŠุนู†ูŠ
468
+
469
+ 118
470
+ 00:13:09,440 --> 00:13:14,420
471
+ ู…ุงู‡ูŠุงุด exact ูŠุนู†ูŠ ุชูุงุถู„ M ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ู„ุง ูŠุณุงูˆูŠ
472
+
473
+ 119
474
+ 00:13:14,420 --> 00:13:20,460
475
+ ุชูุงุถู„ N ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X ุฅู† ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡
476
+
477
+ 120
478
+ 00:13:20,460 --> 00:13:26,230
479
+ ู„ูŠุณุช exact ุทูŠุจ ู„ูˆ ู‚ุฏุฑุช ุฃุฌูŠุจ ุฏุงู„ุฉ ุซุงู†ูŠุฉ ุฏุงู„ุฉ ุซุงู†ูŠุฉ
480
+
481
+ 121
482
+ 00:13:26,230 --> 00:13:32,530
483
+ ุจูุณู…ูŠู‡ุง ุงู„ู€ Mu of X Y ูˆุฃุฑูˆุญ ุฃุถุฑุจ ููŠู‡ุง ุงู„ู…ุนุงุฏู„ุฉ 1
484
+
485
+ 122
486
+ 00:13:32,530 --> 00:13:37,990
487
+ ูŠุจู‚ู‰ ุตุงุฑ ุงู„ู€ Mu ููŠ ุงู„ู€ M ุฒุงุฆุฏ ุงู„ู€ Mu ููŠ ุงู„ู€ N ููŠ ุงู„ู€ d Y
488
+
489
+ 123
490
+ 00:13:37,990 --> 00:13:42,850
491
+ ุนู„ู‰ d X ุจูŠุณุงูˆูŠ Zero ุตุงุฑุช ุงู„ู…ุนุงุฏู„ุฉ ุจุงู„ุดูƒู„ ู‡ุฐุง ุฅู† ุทู„ุนุช
492
+
493
+ 124
494
+ 00:13:42,850 --> 00:13:48,730
495
+ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ exact ูŠุจู‚ู‰ ุงู„ู€ Mu of X Y ุจูุณู…ูŠู‡ ุนุงู…ู„
496
+
497
+ 125
498
+ 00:13:48,730 --> 00:13:53,920
499
+ ุงู„ุชูƒุงู…ู„ ู„ู„ู…ุนุงุฏู„ุฉ ู…ู† ุงู„ุฃูˆู„ุงู†ูŠุฉ ู„ูŠุด ุณู…ูŠุชู‡ ุนุงู…ู„
500
+
501
+ 126
502
+ 00:13:53,920 --> 00:13:58,700
503
+ ุงู„ุชูƒุงู…ู„ ู„ุฃู† ุงุณุชุทุนุช ุฃู† ุฃุญูˆู„ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุฅู„ู‰ exact
504
+
505
+ 127
506
+ 00:13:58,700 --> 00:14:03,780
507
+ ูˆุจุงู„ุชุงู„ูŠ ุจูƒู…ู„ู‡ุง ุจุนุฏ ุดูˆูŠุฉ ูˆุจุญุตู„ ุนู„ู‰ ุดูƒู„ ุงู„ุญู„ ู„ู‡ุฐู‡
508
+
509
+ 128
510
+ 00:14:03,780 --> 00:14:09,020
511
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ูŠุจู‚ู‰ ุงู„ู€ Mu of X ูˆ Y ุถุฑุจุช
512
+
513
+ 129
514
+ 00:14:09,020 --> 00:14:15,020
515
+ ููŠู‡ุง ู‡ุฐู‡ ู‡ูŠ ุจุตูŠุฑ ู‡ูŠ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ุทุจุนุง ูƒุซูŠุฑ ู…ู†ูƒู…
516
+
517
+ 130
518
+ 00:14:15,020 --> 00:14:19,330
519
+ ู‡ูŠุณุฃู„ ูŠู‚ูˆู„ ุทุจ ู…ู† ูˆูŠู† ุจุฏู†ุง ู†ุฌูŠุจ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ูŠุนู†ูŠ
520
+
521
+ 131
522
+ 00:14:19,330 --> 00:14:26,250
523
+ ู†ู‚ุฏุฑ ู†ุญุฒุฑ ูˆู„ุง ู†ุญุฒุฑ ูˆู„ุง ู†ูุฒุฑ ู‡ู†ุญุท ุจุนุถ ุงู„ู‚ูˆุงุนุฏ ุงู„ู„ูŠ
524
+
525
+ 132
526
+ 00:14:26,250 --> 00:14:31,850
527
+ ูŠู…ูƒู† ุงุณุชุฎุฏุงู…ู‡ุง ููŠ ูƒูŠููŠุฉ ุฅูŠุฌุงุฏ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ุนู†ุฏูƒ ููŠ
528
+
529
+ 133
530
+ 00:14:31,850 --> 00:14:36,210
531
+ ุงู„ูƒุชุงุจ ู…ุงุชูŠูƒ ุจุนุถ ุงู„ู…ุณุงุฆู„ ูˆุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ู„ู‡ุง ูˆุจุนุฏ
532
+
533
+ 134
534
+ 00:14:36,210 --> 00:14:41,470
535
+ ู‡ูŠูƒ ุชุฎู„ูŠูƒ ุฃู†ุช ุชุญุณ ุจุนูˆุงู…ู„ ุงู„ุชูƒุงู…ู„ ุฅุฐุง ู…ุง ุฃุนุทุงู†ูŠ ุนูˆุงู…ู„
536
+
537
+ 135
538
+ 00:14:41,470 --> 00:14:45,290
539
+ ุงู„ุชูƒุงู…ู„ ุตุงุฑ ุดุบู„ ุฑูˆุชูŠู†ูŠ ุนุงุฏูŠ ุฌุฏุง ุงู„ู…ุนุงุฏู„ุฉ ุจุถุฑุจู‡ุง ููŠ
540
+
541
+ 136
542
+ 00:14:45,290 --> 00:14:49,350
543
+ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ุจุชุตูŠุฑ exact ูˆุจุดุชุบู„ ุฒูŠ ู…ุง ุงุดุชุบู„ุช ููŠ ุงู„ู…ุซุงู„ูŠู†
544
+
545
+ 137
546
+ 00:14:49,350 --> 00:14:54,090
547
+ ุงู„ุณุงุจู‚ูŠู† ู„ูƒู† ุงู„ู„ูŠ ุฃุตุนุจ ู…ู† ุฐู„ูƒ ุฃู†ู‡ ุฃู†ุง ุฃูˆุฌุฏ ุนุงู…ู„
548
+
549
+ 138
550
+ 00:14:54,090 --> 00:14:58,970
551
+ ุงู„ุชูƒุงู…ู„ ุฃูˆู„ุง ุซู… ุจุนุฏ ุฐู„ูƒ ุฃุฑูˆุญ ุฃุญู„ ุงู„ู…ุนุงุฏู„ุงุช
552
+
553
+ 139
554
+ 00:14:58,970 --> 00:15:06,480
555
+ ุงู„ุชูุงุถู„ูŠุฉ ู„ุฐู„ูƒ ุจุฏูŠ ุฃุนุทูŠูƒ ุจุนุถ ุนูˆุงู…ู„ ุงู„ุชูƒุงู…ู„ ู„ุจุนุถ
556
+
557
+ 140
558
+ 00:15:06,480 --> 00:15:11,580
559
+ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ ู…ุด ูƒู„ ุนูˆุงู…ู„ ุงู„ุชูƒุงู…ู„ ูŠุจู‚ู‰ ุจุฏุฃ
560
+
561
+ 141
562
+ 00:15:11,580 --> 00:15:17,060
563
+ ุฃูƒุชุจ ู‚ุงู†ูˆู† ุฌุงู†ุจูŠ Some Integrating Factors ูŠุจู‚ู‰
564
+
565
+ 142
566
+ 00:15:17,060 --> 00:15:22,760
567
+ ุจุฏู‘ุงู„ูŠ ู‡ู†ุง Some Integrating
568
+
569
+ 143
570
+ 00:15:22,760 --> 00:15:26,440
571
+ Factors
572
+
573
+ 144
574
+ 00:15:26,440 --> 00:15:34,580
575
+ ุจุนุถ ุนูˆุงู…ู„ ุงู„ุชูƒุงู…ู„ ุงู„ู…ุดู‡ูˆุฑุฉ ููŠ ูƒู„ ุงู„ูƒุชุจ ุฃูˆู„ ูˆุงุญุฏ ู…ู†
576
+
577
+ 145
578
+ 00:15:34,580 --> 00:15:44,500
579
+ ู‡ุฐู‡ ุงู„ุนูˆุงู…ู„ ุจูŠู‚ูˆู„ If The Differential Equation 1
580
+
581
+ 146
582
+ 00:15:44,500 --> 00:15:54,900
583
+ is not exact ู…ุงู‡ูŠุงุด exact And
584
+
585
+ 147
586
+ 00:15:54,900 --> 00:16:05,560
587
+ If ูˆุฅุฐุง ูƒุงู† ุชูุงุถู„ ุงู„ู€ M ุจุงู„ู†ุณุจุฉ ู„ู€ X ู†ุงู‚ุต ุชูุงุถู„ ุงู„ู€ N
588
+
589
+ 148
590
+ 00:16:05,560 --> 00:16:15,860
591
+ ุจุงู„ู†ุณุจุฉ ู„ู€ Y ุจูŠุณุงูˆูŠ ุงู„ู€ F of Y Where ุญูŠุซ ุงู„ู€ F of Y
592
+
593
+ 149
594
+ 00:16:15,860 --> 00:16:28,040
595
+ is a function of Y only Or Constant ุฃูˆ ู…ู‚ุฏุงุฑุง
596
+
597
+ 150
598
+ 00:16:28,040 --> 00:16:39,940
599
+ ุซุงุจุชุง Then The Integrating
600
+
601
+ 151
602
+ 00:16:39,940 --> 00:16:43,680
603
+ Factor
604
+
605
+ 152
606
+ 00:16:43,680 --> 00:16:49,420
607
+ The Integrating Factor As
608
+
609
+ 153
610
+ 00:16:49,420 --> 00:16:59,200
611
+ The Mu of Y ุจุฏู‡ุง ุชุณุงูˆูŠ E ุฃุณ ุชูƒุงู…ู„ F of Y d Y
612
+
613
+ 154
614
+ 00:17:04,680 --> 00:17:16,060
615
+ If The Differential Equation 1
616
+
617
+ 155
618
+ 00:17:16,060 --> 00:17:23,220
619
+ is not exact
620
+
621
+ 156
622
+ 00:17:23,220 --> 00:17:34,760
623
+ And If ูˆุฅุฐุง ูƒุงู† ุชูุงุถู„ ุงู„ู€ M ุจุงู„ู†ุณุจุฉ ู„ู€ Y ู†ุงู‚ุต ุชูุงุถู„
624
+
625
+ 157
626
+ 00:17:34,760 --> 00:17:42,600
627
+ ุงู„ู€ N ุจุงู„ู†ุณุจุฉ ู„ู€ X ูƒู„ู‡ ูŠุง ุจู†ุงุช ู‡ุฐุง ู†ุณูŠุช ู‡ุฐุง ูƒู„ู‡
628
+
629
+ 158
630
+ 00:17:42,600 --> 00:17:51,000
631
+ ู…ู‚ุณูˆู…ุง ุนู„ู‰ M ูˆู‡ุฐุง ูƒู„ู‡ ู…ู‚ุณูˆู…ุง ุนู„ู‰ N ุจุฏู‘ู‡ ูŠุณุงูˆูŠ
632
+
633
+ 159
634
+ 00:17:51,000 --> 00:18:05,110
635
+ Function of X Where ุงู„ู€ F of X Is A Function of X
636
+
637
+ 160
638
+ 00:18:05,110 --> 00:18:19,030
639
+ Only ูู‚ุท Or Constant ุฃูˆ ู…ู‚ุฏุงุฑุง ุซุงุจุชุง Then The
640
+
641
+ 161
642
+ 00:18:19,030 --> 00:18:22,090
643
+ Integrating
644
+
645
+ 162
646
+ 00:18:22,090 --> 00:18:35,810
647
+ Factor ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ Is The Mu of X ุจูŠุณุงูˆูŠ E ุฃุณ
648
+
649
+ 163
650
+ 00:18:35,810 --> 00:18:46,650
651
+ ุชูƒุงู…ู„ ู„ู€ F of X d X ุฑู…ุถุงู† 3 ู‚ุฏ ู„ุง ูŠูƒูˆู† ู„ุง ู‡ุฐุง
652
+
653
+ 164
654
+ 00:18:46,650 --> 00:18:57,930
655
+ ูˆู„ุง ุฐู„ูƒ F The Above Two Integrating
656
+
657
+ 165
658
+ 00:19:02,360 --> 00:19:10,420
659
+ Factors If The Above Two Integrating Factors Does
660
+
661
+ 166
662
+ 00:19:10,420 --> 00:19:22,380
663
+ Not Exist Does Not Exist Suppose
664
+
665
+ 167
666
+ 00:19:22,380 --> 00:19:26,600
667
+ That The Integrating Factor Suppose That
668
+
669
+ 168
670
+ 00:19:32,370 --> 00:19:42,390
671
+ The Integrating Factor ุทู„ุน ุฅู†ู‡ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ In The
672
+
673
+ 169
674
+ 00:19:42,390 --> 00:19:54,450
675
+ Form In The Form ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู€ Mu of X Y ุจูŠุณุงูˆูŠ X To
676
+
677
+ 170
678
+ 00:19:54,450 --> 00:20:05,220
679
+ The Power M Y To The Power N ูˆู†ูˆุฌุฏ
680
+
681
+ 171
682
+ 00:20:05,220 --> 00:20:12,520
683
+ ูˆู†ุฌุฏ ุงู„ู‚ูŠู… ู…ู†
684
+
685
+ 172
686
+ 00:20:12,520 --> 00:20:26,460
687
+ M ูˆ N ู‡ุฐุง ูŠุฌุนู„ ุงู„ู…ู‚ุงุฑู†ุฉ
688
+
689
+ 173
690
+ 00:20:26,460 --> 00:20:29,480
691
+ ูˆุงุญุฏุฉ
692
+
693
+ 174
694
+ 00:20:30,520 --> 00:20:48,840
695
+ As Exact ูŠุจู‚ู‰
696
+
697
+ 175
698
+ 00:20:48,840 --> 00:20:56,460
699
+ ูŠุง ุจู†ุงุช ููŠ ุนู†ุฏูŠ ุซู„ุงุซุฉ ู…ู† ุนูˆุงู…ู„ ุงู„ุชูƒุงู…ู„ ุจู†ู„ุฌุฃ ู„ู‡ู…
700
+
701
+ 176
702
+ 00:20:56,460 --> 00:21:00,740
703
+ ุฅุฐุง
704
+
705
+ 201
706
+ 00:22:55,430 --> 00:23:01,530
707
+ ุงูŠู‡ ูˆ ูŠุณุชูƒู…ู„ ุงู„ู€ f of x dx ุชู…ุงู… ุทุจ ูˆุงุญุฏุฉ ุจูŠู‚ูˆู„ ู„ูŠุด
708
+
709
+ 202
710
+ 00:23:01,530 --> 00:23:05,110
711
+ ุนุฑูู†ูŠ ุฃู† ู‡ุฐุง ูˆ ู„ุง ู‡ุฐูŠ ูŠุนู†ูŠ ุฃู†ุง ูƒูŠู ุจุฏูŠ ุฃู…ูŠุฒ ุจูŠู†ู‡ู…
712
+
713
+ 203
714
+ 00:23:05,590 --> 00:23:09,810
715
+ ู…ุด ู‡ุงู†ุง ุงู…ูŠุฒ ุจูŠู†ู‡ู… very easy ูƒุฏู‡ very easy ุฎู„ูŠู‡
716
+
717
+ 204
718
+ 00:23:09,810 --> 00:23:14,560
719
+ ุงูŠู‡ ุงู„ู„ูŠ ู‡ู†ุง ู‡ุฐู‡ ุฅุดุงุฑุฉ ุงู„ู…ู‚ุฏุงุฑ ู‡ูˆ ุงู„ู†ู‚ุต ุงู„ู…ู‚ุฏุงุฑูŠ
720
+
721
+ 205
722
+ 00:23:14,560 --> 00:23:18,720
723
+ ุงู„ุซุงู†ูŠ ู…ู‚ุณูˆู… ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุฃุจูˆ ุงู„ุฅุดุงุฑุฉ ุงู„ุณุงู„ุจุฉ
724
+
725
+ 206
726
+ 00:23:18,720 --> 00:23:23,840
727
+ ู…ู‚ุณูˆู… ุนู„ู‰ M ูˆ ุงู„ู†ุงุชุฌ ุจุฏูŠ ูŠูƒูˆู† function ููŠ ู…ูŠู† ููŠ Y
728
+
729
+ 207
730
+ 00:23:23,840 --> 00:23:30,360
731
+ ู‡ู†ุง ุฃุจูˆ ุงู„ุฅุดุงุฑุฉ ุงู„ุณุงู„ุจุฉ ุงู„ู„ูŠ ู‡ูˆ N ูŠุณู…ู‰ ุนู„ู‰ N ู‡ุฐุง
732
+
733
+ 208
734
+ 00:23:30,360 --> 00:23:35,280
735
+ ู…ุดุชู‚ ุจุงู„ู†ุณุจุฉ ู„ู€ y ุชุนุทูŠู†ูŠ function of X ู…ู† ู‡ู†ุง ุจู‚ุฏุฑ
736
+
737
+ 209
738
+ 00:23:35,280 --> 00:23:40,240
739
+ ุฃู…ูŠุฒ ู…ุง ุจูŠู† ุงู„ุฃุชู†ูŠู† ุนู„ู‰ ุทูˆู„ ุงู„ุฎูู‚ุฉ ู…ุด ุชุฑูˆุญ ุชุทู„ุน
740
+
741
+ 210
742
+ 00:23:40,240 --> 00:23:43,060
743
+ ู‡ุฏูˆู„ ู…ู† ุจุนุถ ูŠุทู„ุน function ููŠ X ูŠุทู„ุน function ุจูŠู‡
744
+
745
+ 211
746
+ 00:23:43,060 --> 00:23:46,740
747
+ ููŠ XุŸ ู…ุง ู†ูุนุด ุบูŠุฑ ู‡ุฐุง ูŠุทู„ุน function ููŠ X ูˆู‡ุฐุง ูŠุทู„ุน
748
+
749
+ 212
750
+ 00:23:46,740 --> 00:23:51,400
751
+ function ููŠ ู…ูŠู†ุŸ ููŠ Y ูŠุจู‚ู‰ ุจุฑูˆุญ ุจูƒุงู…ู„ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ
752
+
753
+ 213
754
+ 00:23:51,400 --> 00:23:56,440
755
+ ุจุฑูุนู‡ุง ูƒุฃุตู„ ุงู„ุนุฏุฏ E ุจูƒูˆู† ู‡ูˆ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ู„ู„ู…ุนุงุฏู„ุฉ
756
+
757
+ 214
758
+ 00:23:56,440 --> 00:24:01,360
759
+ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุทูŠุจ ุจุทู„ุน function ููŠ X ูˆู„ุง
760
+
761
+ 215
762
+ 00:24:01,360 --> 00:24:06,440
763
+ ุจุทู„ุน function ููŠ Y ูƒูŠู ุจู†ุญู„ ู‡ุงู„ู‚ุถูŠุฉุŸ ุจู‚ูˆู„ูƒ ุจุณูŠุทุฉ
764
+
765
+ 216
766
+ 00:24:06,440 --> 00:24:11,260
767
+ ุฌุฏุงุจูุชุฑุถ ุฃู† ุงู„ู€ Integrating factor ุงู„ู„ูŠ ุนู†ุฏูŠ ุนู„ู‰
768
+
769
+ 217
770
+ 00:24:11,260 --> 00:24:16,540
771
+ ุงู„ุดูƒู„ X to the power of M ููŠ Y to the power of N ูˆ
772
+
773
+ 218
774
+ 00:24:16,540 --> 00:24:20,840
775
+ ุงู„ู€ M ูˆ ุงู„ู€ N ุฃู†ุง ู…ุด ุนุงุฑู ุฌุฏุงุด ุฃุฑู‚ุงู… ุฌุฏุงุด ูŠุทู„ุนูˆุง
776
+
777
+ 219
778
+ 00:24:20,840 --> 00:24:26,460
779
+ ุงู„ู„ู‡ ุฃุนู„ู… ูŠุจู‚ู‰ ู„ูˆ ุงู„ู€ two integrative factors does
780
+
781
+ 220
782
+ 00:24:26,460 --> 00:24:30,640
783
+ not exist ูŠุนู†ูŠ ู…ุนูŠุด ู„ู„ุฃูˆู„ ูˆุงู„ุซุงู†ูŠ ุจุฑูˆุญ ุจูุชุฑุถ ุฃู† ุงู„
784
+
785
+ 221
786
+ 00:24:30,640 --> 00:24:34,910
787
+ integrative factor ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูˆ ุจู†ุฑูˆุญ
788
+
789
+ 222
790
+ 00:24:34,910 --> 00:24:39,850
791
+ ู†ุญุงูˆู„ ู†ูˆุฌุฏ ู‚ูŠู… M ูˆ N ุงู„ู„ูŠ ุจูŠุฎู„ูˆู„ูŠ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ
792
+
793
+ 223
794
+ 00:24:39,850 --> 00:24:45,230
795
+ exactly ูƒูŠู ุจุฏู†ุง ู†ูˆุฌุฏู‡ู… ุทุจุนุง ู‡ุฐุง ู…ุง ุณู†ุนุฑูู‡ ุจุนุฏ
796
+
797
+ 224
798
+ 00:24:45,230 --> 00:24:50,710
799
+ ู‚ู„ูŠู„ ุชูุตูŠู„ูŠุง ูˆุฅุฐุง ู„ู… ู†ู„ุญู‚ ููŠ ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู… ู…ุฑุญุจุง
800
+
801
+ 225
802
+ 00:24:50,710 --> 00:24:55,230
803
+ ุจูƒู… ููŠ ู…ุญุงุถุฑุฉ ุจุนุฏ ุงู„ุธู‡ุฑ ุจู…ุซุงู„ ุชูˆุถูŠุญูŠ ูƒูŠู ุจุฏู†ุง ู†ุญุณุจ
804
+
805
+ 226
806
+ 00:24:55,230 --> 00:25:00,230
807
+ ุงู„ M ูˆ ุงู„ N ูˆุฅุฐุง ุญุณุจู†ุงู‡ู… ุญู„ุช ู…ุดูƒู„ุชู†ุง ุฎุงุฑุฌ ุจุตูŠุฑ
808
+
809
+ 227
810
+ 00:25:00,230 --> 00:25:06,000
811
+ ู…ุณุฆู„ุชู†ุง ุจุณูŠุทุฉ ุฌุฏุงุทูŠุจ ุฅุฐุง ุงู„ุฃู† ุจุฏุฃ ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุนู„ู‰
812
+
813
+ 228
814
+ 00:25:06,000 --> 00:25:14,940
815
+ ูƒู„ integrating factor ู…ู† ู‡ุฐู‡ ุงู„ .. ู…ู† ู‡ุฐู‡ ุงู„ .. ู…ู†
816
+
817
+ 229
818
+ 00:25:14,940 --> 00:25:19,260
819
+ ู‡ุฐู‡ ุงู„ differential equation ูŠุจู‚ู‰ example one
820
+
821
+ 230
822
+ 00:25:19,260 --> 00:25:28,820
823
+ solve the differential equation ุญู„ ุงู„ู…ุนุงุฏู„ุฉ
824
+
825
+ 231
826
+ 00:25:28,820 --> 00:25:37,390
827
+ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุซุงู†ูŠ ุงู„ู…ุนุงุฏู„ุฉ
828
+
829
+ 232
830
+ 00:25:37,390 --> 00:25:48,270
831
+ ุจุชู‚ูˆู„ูŠ ูˆุงุญุฏ ู†ุงู‚ุต xy ููŠ ุงู„ y prime ููŠ ุงู„ y prime
832
+
833
+ 233
834
+ 00:25:48,270 --> 00:25:54,810
835
+ ุฒุงุฆุฏ y ุชุฑุจูŠุน ุฒุงุฆุฏ ุชู„ุงุชุฉ x
836
+
837
+ 234
838
+ 00:26:03,850 --> 00:26:11,210
839
+ ูŠุจู‚ู‰ ุจุงุฌุจ ุฃู‚ูˆู„ ุงู„ุญู„ ูƒุงู„ุชุงู„ูŠ ุจุฏูŠ ุฃุนูŠุฏ ุชุฑุชูŠุจูŠ ุงู„ู…ุซุงู„
840
+
841
+ 235
842
+ 00:26:11,210 --> 00:26:18,010
843
+ ุจู‡ุฐุง ุฃุฎู„ูŠู‡ุง M ุฒุงุฆุฏ N ููŠ Dy ุจDX ู‡ุฐุง ูƒู„ ุงู„ term
844
+
845
+ 236
846
+ 00:26:18,010 --> 00:26:23,170
847
+ ูŠุนุชุจุฑ ู…ุงุฐุงุŸ ูŠุจู‚ู‰ ู„ูˆ ู‚ุนุฏุช ุชุฑุชูŠุจุฉ ุจุณ ู…ุดุงู† ู…ุง ุฃุบู„ุทุด ูˆ
848
+
849
+ 237
850
+ 00:26:23,170 --> 00:26:26,150
851
+ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุงุฎู„ุชูŠู‡ ุฒู…ูŠู„ ูˆ ุงุดุชุบู„ุชูŠ ู…ุง ุนู†ุฏู‡ุงุด ู…ุดูƒู„ุฉ
852
+
853
+ 238
854
+ 00:26:26,150 --> 00:26:33,030
855
+ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุชูƒ ูˆ ู‚ู„ุช ู‡ุฐุง y ุชุฑุจูŠุน ุฒุงุฆุฏ ุชู„ุงุชุฉ x y ุชูƒุนูŠุจ
856
+
857
+ 239
858
+ 00:26:33,030 --> 00:26:38,750
859
+ ู„ุญุงู„ู‡ ุฒุงุฆุฏ ูˆุงุญุฏ ู†ุงู‚ุต x y ููŠ ุงู„ y prime ูŠุณุงูˆูŠ zero
860
+
861
+ 240
862
+ 00:26:38,750 --> 00:26:45,890
863
+ ูˆุฑูˆุญุช ุณู…ูŠุช ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ู…ุนุงุฏู„ุฉ start ุฃุฎุฏุช ูุถู„ ุงู„ m
864
+
865
+ 241
866
+ 00:26:45,890 --> 00:26:54,150
867
+ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ y ูŠุณุงูˆูŠ ูŠุจู‚ู‰ ู‡ุฐู‡ ูƒู„ู‡ุง ุงู„ู„ูŠ ุชุนุชุจุฑ M ูˆู‡ุฐุง
868
+
869
+ 242
870
+ 00:26:54,150 --> 00:27:00,410
871
+ ูƒู„ู‡ุง ุงู„ู„ูŠ ุชุนุชุจุฑ ู…ูŠู†ุŸ N ุจุฏูŠ ุงุดุชู‚ ู‡ุฐู‡ ุจุงู„ู†ุณุจุฉ ุงู„ู‰ Y
872
+
873
+ 243
874
+ 00:27:00,410 --> 00:27:11,350
875
+ ูŠุจู‚ู‰ 2Y ุฒุงุฆุฏ 9 X Y ุชุฑุจูŠุน ุจุฏูŠ ุงุดุชู‚ ู‡ุฐู‡ ุจุงู„ู†ุณุจุฉ ุงู„ู‰
876
+
877
+ 244
878
+ 00:27:11,350 --> 00:27:12,130
879
+ Y ูŠุจู‚ู‰ 2Y ุฒุงุฆุฏ 9 X Y ุชุฑุจูŠุน ุจุฏูŠ ุงุดุชู‚ ู‡ุฐู‡ ุจุงู„ู†ุณุจุฉ
880
+
881
+ 245
882
+ 00:27:12,130 --> 00:27:13,030
883
+ ุงู„ู‰ Y ูŠุจู‚ู‰ 2Y ุฒุงุฆุฏ 9 X Y ุชุฑุจูŠุน ุจุฏูŠ ุงุดุชู‚ ู‡ุฐู‡
884
+
885
+ 246
886
+ 00:27:13,030 --> 00:27:13,450
887
+ ุจุงู„ู†ุณุจุฉ ุงู„ู‰ Y ูŠุจู‚ู‰ 2Y ุฒุงุฆุฏ 9 X Y ุชุฑุจูŠุน ุจุฏูŠ ุงุดุชู‚
888
+
889
+ 247
890
+ 00:27:13,450 --> 00:27:18,310
891
+ ู‡ุฐู‡ ุจุงู„ู†ุณุจุฉ ุงู„ู‰ X ุชูุงุถู„ 1 ุจ Zero ุจู‚ุฏุฑุด ุจู†ุงู‚ุต Y
892
+
893
+ 248
894
+ 00:27:18,800 --> 00:27:23,320
895
+ ุงู„ุทุงู„ุนูŠู† ุงู„ู„ูŠ ุงุชู†ูŠู† ู‡ุฏูˆู„ ู‡ู„ ุจูŠุณุงูˆูˆุง ุจุนุถ ูŠุจู‚ู‰ ู‡ุฐุง
896
+
897
+ 249
898
+ 00:27:23,320 --> 00:27:29,820
899
+ ุจุฏูŠ ูŠุนุทูŠู†ูŠ ุงู†ู‡ ุชูุงุถู„ ุงู„ M ุจุงู„ู†ุณุจุฉ ู„ Y ู„ุง ูŠุณุงูˆูŠ
900
+
901
+ 250
902
+ 00:27:29,820 --> 00:27:35,280
903
+ ุชูุงุถู„ ุงู„ N ุจุงู„ู†ุณุจุฉ ู„ X ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ูŠ ุงู†ู‡ ุงู„
904
+
905
+ 251
906
+ 00:27:35,280 --> 00:27:44,480
907
+ differential equation star is not exact ุชู…ุงู… ุชู…ุงู…
908
+
909
+ 252
910
+ 00:27:44,870 --> 00:27:49,390
911
+ ู…ุฏู‰ ู…ุง ู‡ูŠุด exactly ุงุฐุง ุจุชุฑูˆุญ ุงุฏูˆุฑ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„
912
+
913
+ 253
914
+ 00:27:49,390 --> 00:27:55,310
915
+ integrating factor ุงุฐุง ุนู†ุฏูƒ ุฏู‚ุฉ ู†ุธุฑ ุจุชู‚ุฏุฑ ุชุนุฑููŠ ู‡ู„
916
+
917
+ 254
918
+ 00:27:55,310 --> 00:27:59,770
919
+ ุจุฏูŠ ุงุฎุฏ ุชูุงุถู„ N ุจุงู„ู†ุณุจุฉ ู„ Y ู†ู‚ุต ๏ฟฝ๏ฟฝูุงุถู„ N ุจุงู„ู†ุณุจุฉ ู„
920
+
921
+ 255
922
+ 00:27:59,770 --> 00:28:04,330
923
+ X ุงูˆ ุงู„ุนูƒุณ ูˆ ุงุฐุง ูƒุงู† ุบุงู„ุจุง ู…ุง ุงุฏูŠูƒูŠุด ุฏู‚ุฉ ู†ุธุฑ ุจุฑูˆุญู‡
924
+
925
+ 256
926
+ 00:28:04,330 --> 00:28:09,430
927
+ ุบู…ุถูŠ ูˆ ุงุชูˆูƒู„ ุนู„ู‰ ุงู„ู„ู‡ ูˆุดูˆู ุงูŠุด ุงู„ู†ุชูŠุฌุฉ ุจุชุทู„ุน ู…ุง ุถุจุทุด
928
+
929
+ 257
930
+ 00:28:09,430 --> 00:28:13,470
931
+ ุจุฌู„ุจ ูˆ ุจุดูˆู ุงู„ุชุงู†ูŠ ุจุณ ู‡ุฏุง ู‡ุชุงุฎุฏ ู…ู†ูƒ ุฏู‚ูŠู‚ุฉ ุฏู‚ูŠู‚ุชูŠู†
932
+
933
+ 258
934
+ 00:28:13,470 --> 00:28:21,350
935
+ ุฒูŠุงุฏุฉ ุงุฐุง ุฃู†ุง ู„ูˆ ุฌูŠุช ุฃุฎุฏุช ุชูุงุถู„ ุงู„ N ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X
936
+
937
+ 259
938
+ 00:28:21,350 --> 00:28:28,110
939
+ ู†ุงู‚ุต ุชูุงุถู„ ุงู„ M ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ูƒู„ู‡ุง ุฌูŠุช ุฌุณู…ุชู‡ุง ุนู„ู‰
940
+
941
+ 260
942
+ 00:28:28,110 --> 00:28:35,950
943
+ ุงู„ M ุชูุงุถู„ N ุจุงู„ู†ุณุจุฉ ู„ X ู‡ูŠ ู†ุงู‚ุต Y ู†ุงู‚ุต ุชูุงุถู„
944
+
945
+ 261
946
+ 00:28:35,950 --> 00:28:40,390
947
+ ุจุงู„ู†ุณุจุฉ ู„ Y ู‡ูŠ ู†ุงู‚ุต ุนู„ู‰ ูƒู„ term ู…ู† ุงู„ two terms
948
+
949
+ 262
950
+ 00:28:40,390 --> 00:28:47,480
951
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุจุตูŠุฑ ู†ุงู‚ุต ุงุชู†ูŠู† Y ู†ุงู‚ุต ุชุณุนุฉ X Y
952
+
953
+ 263
954
+ 00:28:47,480 --> 00:28:53,380
955
+ ุชุฑุจูŠุน ูƒู„ู‡ ู…ู‚ุณูˆู…ุง ุนู„ู‰ M ูˆูŠู† ุงู„ M ู‡ุฐู‡ ูŠุจู‚ู‰ ู…ู‚ุณูˆู…ุง
956
+
957
+ 264
958
+ 00:28:53,380 --> 00:29:03,260
959
+ ุนู„ู‰ Y ุชุฑุจูŠุน Y ุชุฑุจูŠุน ุฒุงุฆุฏ ุชู„ุงุชุฉ X Y ุชูƒุนูŠุจ ูˆ ูŠุณุงูˆูŠ ู‡ุฐู‡
960
+
961
+ 265
962
+ 00:29:03,260 --> 00:29:11,480
963
+ ูŠุง ุจู†ุงุช ุจุตูŠุฑ ุณุงู„ุจ ุชู„ุงุชุฉ Y ุณุงู„ุจ ุชุณุนุฉ X Y ุชุฑุจูŠุน ุนู„ู‰ y
964
+
965
+ 266
966
+ 00:29:11,480 --> 00:29:19,820
967
+ ุชุฑุจูŠุน ุฒุงุฆุฏ ุชู„ุงุชุฉ x y ุชูƒุนูŠุจ y ุงูŠุด ุฑุฃูŠูƒ ููŠ ุนุงู…ู„ ู…ุดุชุฑูƒ
968
+
969
+ 267
970
+ 00:29:19,820 --> 00:29:27,900
971
+ ููˆู‚ ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ ุชู„ุงุชุฉ y ุนุงู…ู„ ู…ุดุชุฑูƒ ุงุฐุง ุจู‚ุฏุฑ ุงู‚ูˆู„
972
+
973
+ 268
974
+ 00:29:27,900 --> 00:29:34,060
975
+ ู‡ูŠ ุณุงู„ุจ ุชู„ุงุชุฉ y ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุธู„ ุนู†ุฏูŠ ูˆุงุญุฏ ุฒุงุฆุฏ
976
+
977
+ 269
978
+ 00:29:34,060 --> 00:29:42,530
979
+ ุชู„ุงุชุฉ x y ุนู„ู‰ ููŠ ุนุงู…ู„ ู…ุดุชุฑูƒ ู‡ู†ุง ุนู†ุฏู†ุง y ุชุฑุจูŠุน ูŠุจู‚ู‰
980
+
981
+ 270
982
+ 00:29:42,530 --> 00:29:48,710
983
+ ู„ูˆ ุฃุฎุฏุช y ุชุฑุจูŠุน ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุฏูˆู† ูˆุงุญุฏ ุฒุงุฆุฏ ุชู„ุงุชุฉ xy
984
+
985
+ 271
986
+ 00:29:48,710 --> 00:29:55,130
987
+ ุฃุธู† ุจู‚ุฏุฑ ุงุฎุชุตุฑ ุฌูˆุณ ู…ุน ุฌูˆุณ ูˆ y ู…ุน y ุชุฑุจูŠุน ูŠุจู‚ู‰ ู‡ุฐุง
988
+
989
+ 272
990
+ 00:29:55,130 --> 00:30:01,990
991
+ ุงู„ูƒู„ุงู… ู…ุชุณุงูˆูŠ ู†ุงู‚ุต ุชู„ุงุชุฉ ุนู„ู‰ y ู†ุงู‚ุต ุชู„ุงุชุฉ ุนู„ู‰ y
992
+
993
+ 273
994
+ 00:30:01,990 --> 00:30:09,230
995
+ ุงูŠุด ุฑุฃูŠูƒ function ููŠ y only ูŠุจู‚ู‰ ู‡ุฐูŠ function ููŠ
996
+
997
+ 274
998
+ 00:30:09,230 --> 00:30:16,450
999
+ y only ุทุจ ุงุทู„ุนูŠ ู‡ู„ ุงู„ุดุบู„ ุงู„ุตุญ ูˆู„ุง ุบู„ุท ุชุนุงู„ู‰ ุชุดูˆู
1000
+
1001
+ 275
1002
+ 00:30:16,450 --> 00:30:20,510
1003
+ ููŠู‡ ุงู„ุฃุตู„ ุชูƒูˆู† function ููŠ y ูˆ ุงู„ู„ู‡ function ููŠ x
1004
+
1005
+ 276
1006
+ 00:30:20,510 --> 00:30:27,550
1007
+ ุงู„ู†ุงู‚ุต ู„ู…ู†ุŸ ู„ู„ M ูŠุจู‚ู‰ ุฌุณู…ุช ุนู„ู‰ ุงู„ M ุงู„ู†ุงุชุฌ ุทู„ุน
1008
+
1009
+ 277
1010
+ 00:30:27,550 --> 00:30:33,310
1011
+ function ููŠ ู…ู†ุŸ ูŠุจู‚ู‰ ุดุบู„ ุณู„ูŠู… ู…ุงุฆุฉ ุจุงู„ู…ุงุฆุฉ ุจุฏูŠ ุงุฌูŠ
1012
+
1013
+ 278
1014
+ 00:30:33,310 --> 00:30:44,350
1015
+ ุงุนุฑู ู…ุง ู‡ูˆ ุดูƒู„ ุงู„ integrating factor ูŠุจู‚ู‰
1016
+
1017
+ 279
1018
+ 00:30:44,350 --> 00:30:51,430
1019
+ ุดูƒู„ ุงู„ integrating factor ู„ู…ูŠูˆ of Y ุจุฏู‡ ูŠุณูˆูŠ E ุฃุณ
1020
+
1021
+ 280
1022
+ 00:30:51,430 --> 00:31:00,170
1023
+ ุชูƒุงู…ู„ F of Y Dy ูŠุนู†ูŠ E ุฃุณ ุชูƒุงู…ู„ ุงู„ู€ f of y ุนู†ุฏู†ุง
1024
+
1025
+ 281
1026
+ 00:31:00,170 --> 00:31:05,570
1027
+ ุงู„ู„ูŠ ูŠุจู‚ู‰ dash ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰ y ูŠุจู‚ู‰ ู†ุงู‚ุต ุซู„ุงุซุฉ
1028
+
1029
+ 282
1030
+ 00:31:05,570 --> 00:31:14,130
1031
+ ุนู„ู‰ y dy ูŠุจู‚ู‰ E ุฃุณ ู†ุงู‚ุต ุซู„ุงุซุฉ ู„ุฅู† ุงู„ y ูˆ constant
1032
+
1033
+ 283
1034
+ 00:31:14,130 --> 00:31:17,830
1035
+ ุชูƒุชุจู‡ูˆุด ู„ุฅู† ุจุตูŠุฑ E ุฃุณ constant ุจุนุฏ ุฐู„ูƒ ูŠุนู†ูŠ
1036
+
1037
+ 284
1038
+ 00:31:17,830 --> 00:31:22,930
1039
+ constant ู„ุง ูŠุบูŠุฑ ูˆู„ุง ูŠุจุฏู„ ู…ู† ุดูƒู„ man ู…ู† ุดูƒู„ ุงู„ุญู„
1040
+
1041
+ 285
1042
+ 00:31:23,380 --> 00:31:30,680
1043
+ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ู‡ุงุฏู‰ E ุฃุณ ู„ู† Y ูˆ ุงู„ุณุงู„ุจ ุชู„ุงุชุฉ ุงู„ E ูˆ
1044
+
1045
+ 286
1046
+ 00:31:30,680 --> 00:31:36,870
1047
+ ุงู„ู€ ู„ู† ุนูƒุณ ุจุนุถ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ู‚ุฏุงุด y ุฃุณุงู„ุจ ุชู„ุงุชุฉ ุงุฐุง ุนุงู…ู„
1048
+
1049
+ 287
1050
+ 00:31:36,870 --> 00:31:43,030
1051
+ ุงู„ุชูƒุงู…ู„ ู‡ูˆ y ุฃุณุงู„ุจ ุชู„ุงุชุฉ ุฅุฐุง ุจุชุงุฌูŠ ุนู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ
1052
+
1053
+ 288
1054
+ 00:31:43,030 --> 00:31:49,230
1055
+ star ู‡ุฐู‡ ูˆุถุฑุจู‡ุง ููŠ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ ุจุนุฏ ู…ุง ุถุฑุจู‡ุง ู„ุงุฒู…
1056
+
1057
+ 289
1058
+ 00:31:49,230 --> 00:31:54,990
1059
+ ุชุทู„ุน ุงู„ู…ุนุงุฏู„ุฉ ุนู† ู…ุงู„ู‡ุง ูˆุฅู„ุง ุจุตูŠุฑ ุดุบู„ูŠ ููŠ ุบู„ุท ุจุฏูŠ
1060
+
1061
+ 290
1062
+ 00:31:54,990 --> 00:31:59,090
1063
+ ุฃุฑูˆุญ ุฃุฏูˆุฑ ูˆ ุฃู†ุง ุงู„ุบู„ุทุฉ ูˆ ุฃุฑุฌุนู‡ุง ุฅุฐุง ุจุฏูŠ ุฃุฑูˆุญ ุฃุถุฑุจ
1064
+
1065
+ 291
1066
+ 00:31:59,090 --> 00:32:04,480
1067
+ ุงู„ู…ุนุงุฏู„ุฉ star ููŠ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„ y ุฃุณุงู„ุจ ุชู„ุงุชุฉ ูŠุจู‚ู‰
1068
+
1069
+ 292
1070
+ 00:32:04,480 --> 00:32:15,800
1071
+ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ multi if lie equation star by y ุงู„ุณุงู„ุจ
1072
+
1073
+ 293
1074
+ 00:32:15,800 --> 00:32:22,160
1075
+ ุซู„ุงุซ ูˆ ุฌุฏ ู†ุญุตู„ ุนู„ู‰ ุจุฏูŠ ุฃุถุฑุจ y ุงู„ุณู„ุจ ุชู„ุงุชุฉ ู‡ู†ุง ุจูŠุถู„
1076
+
1077
+ 294
1078
+ 00:32:22,160 --> 00:32:32,260
1079
+ ูƒุฏู‡ุŸ y ุงู„ุณู„ุจ ูˆุงุญุฏ ุตุญุŸ ูŠุจู‚ู‰ ู‡ุฐุง y ุงู„ุณู„ุจ ูˆุงุญุฏ ุจุฏูŠ
1080
+
1081
+ 295
1082
+ 00:32:32,260 --> 00:32:39,240
1083
+ ุงุถุฑุจ y ุฃุณุงู„ูŠุจ ุชู„ุงุชุฉ ู‡ู†ุง ุจุธู„ ุจุณ ุชู„ุงุชุฉ x ูŠุจู‚ู‰ ุฒุงุฆุฏ
1084
+
1085
+ 296
1086
+ 00:32:39,240 --> 00:32:46,160
1087
+ ุชู„ุงุชุฉ x ุฒุงุฆุฏ ู‡ู†ุง y ุฃุณุงู„ูŠุจ ุชู„ุงุชุฉ ููŠ ูˆุงุญุฏ ู๏ฟฝ๏ฟฝ y
1088
+
1089
+ 297
1090
+ 00:32:46,160 --> 00:32:55,870
1091
+ ุฃุณุงู„ูŠุจ ุชู„ุงุชุฉ ูˆู‡ู†ุง ุณุงู„ุจ x y ุฃุณุงู„ูŠุจ ุงุชู†ูŠู† ู…ุธุจูˆุท ุถุฑุจุช
1092
+
1093
+ 298
1094
+ 00:32:55,870 --> 00:33:00,990
1095
+ ููŠ y ุงู„ุณู„ุจ ุชู„ุงุชุฉ ูˆ ุงุชู†ูŠู†
1096
+
1097
+ 299
1098
+ 00:33:00,990 --> 00:33:05,830
1099
+ ูˆ ู‡ุงุฏ ุงู„ y prime ูƒู„ู‡ุง ุชุณุงูˆูŠ zero ูˆ ู‡ุงุฏ ุงู„ู…ุนุงุฏู„ุฉ ูŠุง
1100
+
1101
+ 300
1102
+ 00:33:05,830 --> 00:33:12,610
1103
+ ุจู†ุงุช ุณู…ูŠู‡ุง y double star ุฅุฐู† ูƒุฃู†ู‡ ุงู„ุขู† ุฃู†ุง ุณุจุช
1104
+
1105
+ 301
1106
+ 00:33:12,610 --> 00:33:18,370
1107
+ ุงู„ู…ุนุงุฏู„ุฉ star ูˆ ุญูˆู„ุชู‡ุง ุฅู„ู‰ ุดูƒู„ ุฌุฏูŠุฏ ุฅู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ y
1108
+
1109
+ 302
1110
+ 00:33:18,370 --> 00:33:22,550
1111
+ double star ุงู„ุขู† ุญุณุจ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู„ูŠ ุนู†ุฏูŠ ููŠ ุงู„ุฌุฒุก
1112
+
1113
+ 303
1114
+ 00:33:22,550 --> 00:33:26,330
1115
+ ุงู„ู†ุธุฑูŠ ุงู„ู„ูŠ ู„ุงุฒู… ุบุตุจ ุนู† ุงู„ู„ูŠ ู…ุง ูŠุฑุถู‰ ุงู„ู…ุนุงุฏู„ุฉ ุฏู‡
1116
+
1117
+ 304
1118
+ 00:33:26,330 --> 00:33:30,910
1119
+ ุชุทู„ุน ู…ุงู„ุฉ exact ู„ูˆ ู…ุง ุทู„ุนุชุด exact ููŠ ุฃุญุฏ ุงุญุชู…ุงู„ูŠู†
1120
+
1121
+ 305
1122
+ 00:33:31,140 --> 00:33:35,240
1123
+ ูŠุง ุฅู…ุง ุฅุดุชู‚ุงุทูƒ ุฎุทุฃ ูŠุง ุฅู…ุง ุญุณุงุจูƒ ููŠ ุงู„ integrating
1124
+
1125
+ 306
1126
+ 00:33:35,240 --> 00:33:40,180
1127
+ factor ุฎุทุฃ ุจุฏูŠูƒ ุชุฑูˆุญ ุชุฑุงุฌุน ูˆูŠู† ุงู„ุบู„ุทุฉ ูˆ ุชูƒุชุด ููŠู‡ุง
1128
+
1129
+ 307
1130
+ 00:33:40,180 --> 00:33:45,180
1131
+ ูˆ ุชุนุฏู„ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ู‚ุฏุฑูŠ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุฎุฏ ุชูุงุถู„ ุงู„
1132
+
1133
+ 308
1134
+ 00:33:45,180 --> 00:33:52,840
1135
+ M ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ูŠุจู‚ู‰ ู†ุงู‚ุต Y ุฃุณ ู†ุงู‚ุต 2 ูˆู‡ุฐู‡ ุชุจู‚ู‰
1136
+
1137
+ 309
1138
+ 00:33:52,840 --> 00:34:01,040
1139
+ ุงูŠู‡ุŸ Zero ุชู…ุงู…ุŸ ุจุฏูŠ ุฃุฎุฏ ุชูุงุถู„ ุงู„ N ุจุงู„ู†ุณุจุฉ ู„ X ู‡ุฐู‡
1140
+
1141
+ 310
1142
+ 00:34:01,040 --> 00:34:08,240
1143
+ ู…ุด ุบุชุจ ุฌุฏุงุด ุจ Zero ู†ุงู‚ุต ุชูุงุถู„ X ุจูˆุงุญุฏ ุจุธู„ ุงุต ู†ุงู‚ุต
1144
+
1145
+ 311
1146
+ 00:34:08,240 --> 00:34:14,100
1147
+ ุงุชู†ูŠู† ู…ุงุฐุง ุฑุฃูŠูƒ ุจุงู„ุฅุฌุงุจุชูŠู†ุŸ ู†ูุณ ุงู„ุดูŠุก ูŠุจู‚ู‰ ู‡ุฐุง
1148
+
1149
+ 312
1150
+ 00:34:14,100 --> 00:34:20,600
1151
+ ู…ุนู†ุงู‡ ุงู†ู‡ ุชูุงุถู„ ุงู„ M ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ูŠุณุงูˆูŠ ุชูุงุถู„ ุงู„
1152
+
1153
+ 313
1154
+ 00:34:20,600 --> 00:34:26,000
1155
+ M ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ differential
1156
+
1157
+ 314
1158
+ 00:34:26,000 --> 00:34:34,820
1159
+ equation W star is exact ู…ุฏุงู… exact ู‡ุฐุง ู…ุนู†ุงุชู‡
1160
+
1161
+ 315
1162
+ 00:34:34,820 --> 00:34:41,440
1163
+ that there exists a function y of x ูˆ y ุจุฏู‡ ูŠุณุงูˆูŠ
1164
+
1165
+ 316
1166
+ 00:34:41,440 --> 00:34:47,600
1167
+ constant c1 ู…ุซู„ุง such that ุจุญูŠุซ ุฃู†
1168
+
1169
+ 317
1170
+ 00:34:53,930 --> 00:34:59,910
1171
+ ุชูุงุถู„ ุงู„ู€ Phi ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X ุจุฏูŠ ูŠุณูˆูŠ M ู„ุฌุฏูŠุฏุฉ ู…ุด
1172
+
1173
+ 318
1174
+ 00:34:59,910 --> 00:35:04,370
1175
+ ุงู„ุนุชูŠู‚ุฉ ู„ุฅู† ุงุญู†ุง ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุนุชูŠู‚ุฉ ุญุทู†ุงู‡ุง ุจุงู„ุดูƒู„
1176
+
1177
+ 319
1178
+ 00:35:04,370 --> 00:35:10,510
1179
+ ุงู„ุฌุฏูŠุฏ ู‡ุฐุง ูŠุจู‚ู‰ ุตุงุฑ Y ุฃุณ ุณุงู„ุจ ูˆุงุญุฏ ุฒุงุฆุฏ ุชู„ุงุชุฉ X
1180
+
1181
+ 320
1182
+ 00:35:10,510 --> 00:35:18,270
1183
+ ูˆ ุชูุงุถู„ ุงู„ Phi ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ูŠุณูˆูŠ Y ุฃุณ ู†ุงู‚ุต ุชู„ุงุชุฉ
1184
+
1185
+ 321
1186
+ 00:35:18,270 --> 00:35:25,610
1187
+ ู†ุงู‚ุต X ูˆ Y ุฃุณ ู†ุงู‚ุต ุงุชู†ูŠู† ุฃุธู† ู‡ุฐู‡ ุฃุณู‡ู„ ููŠ ุงู„ุญุณุงุจุงุช
1188
+
1189
+ 322
1190
+ 00:35:25,610 --> 00:35:29,570
1191
+ ุงู„ุขู† ู„ู…ุง ู„ุง ูŠูˆุฌุฏ ููŠู‡ุง ุบูŠุฑ Y ูˆ ู„ุง ูŠูˆุฌุฏ ููŠู‡ุง ุบูŠุฑ X
1192
+
1193
+ 323
1194
+ 00:35:29,570 --> 00:35:34,290
1195
+ ูˆุงุญุฏุฉ ู‡ุฐู‡ ููŠู‡ุง Y ูˆู‡ุฐู‡ ููŠู‡ุง ูŠุนู†ูŠ ุจุฏุฃุช ูƒุงู…ู„ุฉ ุชู†ุชูŠู†
1196
+
1197
+ 324
1198
+ 00:35:34,290 --> 00:35:38,890
1199
+ ูˆู‡ุฐู‡ ุจุฏุฃุช ูƒุงู…ู„ุฉ ุชู†ุชูŠู† ุจุณ ู‡ุฐู‡ ู„ูŠุณุช ููŠู‡ุง Y ุฅุฐุง ุงู„ู€
1200
+
1201
+ 325
1202
+ 00:35:38,890 --> 00:35:44,710
1203
+ Phi of X ูˆ Y ู„ูˆ ูƒุงู…ู„ ุจุงู„ู†ุณุจุฉ ู„ X ุจูŠุตูŠุฑ Y ุฃุณุงู„ู
1204
+
1205
+ 326
1206
+ 00:35:44,710 --> 00:35:53,550
1207
+ ูˆุงุญุฏ X ูˆู‡ุฐู‡ ุฒุงุฆุฏ ุชู„ุงุชุฉ X ุชุฑุจูŠุน ุนู„ู‰ ุฅุชู†ูŠู† ูˆ ุฒุงุฆุฏ
1208
+
1209
+ 327
1210
+ 00:35:53,550 --> 00:36:01,830
1211
+ function of y ุชู…ุงู… ุจุชุฑูˆุญ ุงุดุชู‚ู‡ุง ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ y ูŠุจู‚ู‰
1212
+
1213
+ 328
1214
+ 00:36:01,830 --> 00:36:07,290
1215
+ ู„ูˆ ุงุดุชู‚ุชู‡ุง ุฅู„ู‰ y ุจุตูŠุฑ partial phi ุนู„ู‰ partial y
1216
+
1217
+ 329
1218
+ 00:36:07,290 --> 00:36:15,710
1219
+ ูŠุณุงูˆูŠ ู‡ุฐู‡ ุจุตูŠุฑ ุณุงู„ู y ูˆ ุณุงู„ู ุงุชู†ูŠู† ููŠ x
1220
+
1221
+ 330
1222
+ 00:36:21,120 --> 00:36:26,960
1223
+ ู…ุง ู‡ูˆ ุฑุฃูŠูƒ
1224
+
1225
+ 331
1226
+ 00:36:26,960 --> 00:36:28,680
1227
+ ููŠ ุงู„ุงุชู†ูŠู†ุŸ
1228
+
1229
+ 332
1230
+ 00:36:31,470 --> 00:36:37,070
1231
+ ุฅุฐุง ุจุฏุฑูˆุญ ุฃุณูˆูŠู‡ู… ุจุจุนุถ ูŠุจู‚ู‰ ู„ูˆ ุณูˆูŠุชู‡ู… ุจุจุนุถ ุจุตูŠู†ุง
1232
+
1233
+ 333
1234
+ 00:36:37,070 --> 00:36:45,150
1235
+ ู†ุงู‚ุต y ุฃุณ ู†ุงู‚ุต ุงุชู†ูŠู† x ุฒุงุฆุฏ f prime of y ูŠุจู‚ู‰ ูŠุณูˆูŠ
1236
+
1237
+ 334
1238
+ 00:36:45,150 --> 00:36:53,770
1239
+ y ุงู„ุณุงู„ุจ ุชู„ุงุชุฉ ู†ุงู‚ุต x y ุงู„ุณุงู„ุจ ุงุชู†ูŠู† ุฃุธู† ู‡ุฐู‡ ู‡ุฐู‡
1240
+
1241
+ 335
1242
+ 00:36:53,770 --> 00:37:05,450
1243
+ ุตุญ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฅู† ุงู„ F' of Y ูŠุณูˆูŠ Y ุงู„ุณู„ุจ ุชู„ุงุชุฉ
1244
+
1245
+ 336
1246
+ 00:37:05,660 --> 00:37:11,620
1247
+ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† F of Y ุจุฏูŠ ูƒุงู…ู„ ุจุงู„ู†ุณุจุฉ ู„ Y ูŠุจู‚ู‰
1248
+
1249
+ 337
1250
+ 00:37:11,620 --> 00:37:17,540
1251
+ ุจุฃุถูŠู ู„ู„ ุฃุณ ูˆุงุญุฏ ูˆ ุจู‚ุณู… ุนู„ู‰ ุงู„ุฃุณ ุงู„ุฌุฏูŠุฏ ูŠุจู‚ู‰ Y
1252
+
1253
+ 338
1254
+ 00:37:17,540 --> 00:37:24,820
1255
+ ุงู„ุณุงู„ุจ ุงุชู†ูŠู† ุนู„ู‰ ุณุงู„ุจ ุงุชู†ูŠู† ุฒุงุฆุฏ constant to C2
1256
+
1257
+ 339
1258
+ 00:37:24,820 --> 00:37:30,720
1259
+ ุฅุฐู† ุงู„ุญู„ ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ู‡ูˆ Phi ุงู„ู„ูŠ ุนู†ุฏู†ุง
1260
+
1261
+ 340
1262
+ 00:37:30,720 --> 00:37:43,300
1263
+ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุฐุง Solution is Phi of XY ูŠุณูˆูŠ Y
1264
+
1265
+ 341
1266
+ 00:37:43,300 --> 00:37:51,100
1267
+ ุงู„ุณู„ุจ ูˆุง๏ฟฝ๏ฟฝุฏ ููŠ ุงู„ X ุฒุงุฆุฏ ุชู„ุงุชุฉ X ุชุฑุจูŠุน ุนู„ู‰ ุงู„ุฅุชู†ูŠู†
1268
+
1269
+ 342
1270
+ 00:37:51,100 --> 00:38:00,200
1271
+ ุฒุงุฆุฏ F of Y ู‡ูŠู‡ุง ูŠุจู‚ู‰ ู†ุงู‚ุต Y ู†ุงู‚ุต ุฅุชู†ูŠู† ุนู„ู‰ ุงุชู†ูŠู†
1272
+
1273
+ 343
1274
+ 00:38:00,200 --> 00:38:07,400
1275
+ ูˆ ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠูƒูˆู† ุณุงูˆูŠ constant C ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุญู„
1276
+
1277
+ 344
1278
+ 00:38:07,400 --> 00:38:11,980
1279
+ ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุนู†ูŠ ุฃู†ุง ููŠ ุงู„ุฃูˆู„ ุจุฏูŠ ุฃุญูˆู„
1280
+
1281
+ 345
1282
+ 00:38:11,980 --> 00:38:17,560
1283
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู‰ exact ูˆ ู…ู† ุซู… ุจุฑูˆุญ ุฃุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ
1284
+
1285
+ 346
1286
+ 00:38:17,560 --> 00:38:24,180
1287
+ ุนู†ุฏู†ุง ู‡ุฐู‡ ุชู…ุงู… ู†ุฌูŠ ู†ุงุฎุฏ ูƒู…ุงู† ู…ุซุงู„ ุนู„ู‰ ู‡ุงู„ุดุบู„ ู‡ุฐูŠ
1288
+
1289
+ 347
1290
+ 00:38:24,180 --> 00:38:26,040
1291
+ ูˆ ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุญู„ู‡
1292
+
1293
+ 348
1294
+ 00:38:38,650 --> 00:38:52,930
1295
+ ุทูŠุจ example two solve
1296
+
1297
+ 349
1298
+ 00:38:52,930 --> 00:38:54,350
1299
+ the differential equation
1300
+
1301
+ 350
1302
+ 00:38:59,460 --> 00:39:11,040
1303
+ ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ xy ุฒุงุฆุฏ y ุชุฑุจูŠุน ุฒุงุฆุฏ y ูƒู„
1304
+
1305
+ 351
1306
+ 00:39:11,040 --> 00:39:21,140
1307
+ ู‡ุฐุง ู…ู‚ุฏุงุฑ ูˆุงุญุฏ ุฒุงุฆุฏ x ุฒุงุฆุฏ ุงุชู†ูŠู† y ููŠ dy by dx
1308
+
1309
+ 352
1310
+ 00:39:21,140 --> 00:39:26,200
1311
+ ูŠุณุงูˆูŠ zero ูˆู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ูŠู…ูŠู† ุงู„ู…ุนุงุฏู„ุฉ
1312
+
1313
+ 353
1314
+ 00:39:28,290 --> 00:39:34,930
1315
+ ู†ุนูˆุฏ ู„ู€ Solution ู†ุงุฎุฏ
1316
+
1317
+ 354
1318
+ 00:39:34,930 --> 00:39:43,410
1319
+ ุชูุงุถู„ M ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y Y ูŠุณุงูˆูŠ ุชูุงุถู„ M ุจุงู„ู†ุณุจุฉ ุฅู„ู‰
1320
+
1321
+ 355
1322
+ 00:39:43,410 --> 00:39:54,710
1323
+ Y ู‡ูˆ X ุฒุงุฆุฏ 2Y ุฒุงุฆุฏ 1 ูˆ ุชูุงุถู„ M ุจุงู„ู†ุณุจุฉ .. ุฃูˆู„ุง
1324
+
1325
+ 356
1326
+ 00:39:54,710 --> 00:40:03,360
1327
+ ุฎู„ูŠู‡ุง ุงู„ุณุทุฑ ุงู„ู„ูŠ ุจุนุฏู‡ ูˆ ุชูุงุถู„ ุงู„ M ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X
1328
+
1329
+ 357
1330
+ 00:40:03,360 --> 00:40:09,920
1331
+ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูˆ ุงู†ุช ู…ุน ุงู„ุณู„ุงู…ุฉ ุจุงู„ุฒูŠุฑุฉ ู…ู† ุงู„ุฃุซู†ูŠู† ู‡ุฐูˆู„
1332
+
1333
+ 358
1334
+ 00:40:09,920 --> 00:40:15,700
1335
+ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุฅุฐุง ุชูุงุถู„ ุงู„ M ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ Y ู„ุง ูŠุณุงูˆูŠ
1336
+
1337
+ 359
1338
+ 00:40:15,700 --> 00:40:19,840
1339
+ ุชูุงุถู„ ุงู„ N ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ X ุฅุฐุง ุงู„ู…ุนุงุฏู„ุฉ ุฃุณุชุฎุฏู…ู‡ุง
1340
+
1341
+ 360
1342
+ 00:40:19,840 --> 00:40:26,860
1343
+ ุฏูŠู…ุงู†ู‡ุง not exact ู‡ุฐุง ูŠู‚ุฏุฑ ูŠุนุทูŠู†ุง ุฐุงุช differential
1344
+
1345
+ 361
1346
+ 00:40:26,860 --> 00:40:36,520
1347
+ equation is not exact ู…ุฏุงู… ู…ุง ู‡ูŠุงุด exact ุชุฏุจุฑ ุญุงู„ูƒ
1348
+
1349
+ 362
1350
+ 00:40:36,520 --> 00:40:42,660
1351
+ ุฃู‚ูˆู„ู‡ ุจุณูŠุท ุงุฐุง ุฃู†ุง ุจุฏูŠ ุงุฑูˆุญ ุงุฏูˆุฑ ุนู„ู‰ ุนุงู…ู„ ุงู„ุชูƒุงู…ู„
1352
+
1353
+ 363
1354
+ 00:40:43,060 --> 00:40:49,860
1355
+ ู„ุฐู„ูƒ ุจุฑูˆุญ ุงุฎุฏ ุชูุงุถู„ ุงู„ N ุจุงู„ู†ุณุจุฉ ุงู„ู‰ Y ู†ุงู‚ุต ุชูุงุถู„
1356
+
1357
+ 364
1358
+ 00:40:49,860 --> 00:41:03,740
1359
+ ุงู„ N ุจุงู„ู†ุณุจุฉ ู„ X ู…ู‚ุณูˆู…ุง ุนู„ู‰ N ูŠุจู‚ู‰
1360
+
1361
+ 365
1362
+ 00:41:03,740 --> 00:41:07,760
1363
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‰ ูŠุณูˆูŠ ุชูุงุถู„ ุงู„ N ุจุงู„ู†ุณุจุฉ ุงู„ู‰ Y X
1364
+
1365
+ 366
1366
+ 00:41:07,760 --> 00:41:15,260
1367
+ ุฒุงุฆุฏ 2Y ุฒุงุฆุฏ 1 ู†ุงู‚ุต ุทุจ ูุงุถู„ ุงู† ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ y ุจูˆุงุญุฏ
1368
+
1369
+ 367
1370
+ 00:41:15,260 --> 00:41:24,040
1371
+ ุนู„ู‰ n .. n ุงู„ู„ูŠ ู‡ูˆ x ุฒุงุฆุฏ ุงุชู†ูŠู† y ูŠุจู‚ู‰ x ุฒุงุฆุฏ
1372
+
1373
+ 368
1374
+ 00:41:24,040 --> 00:41:30,180
1375
+ ุงุชู†ูŠู† y ุนู„ู‰ x ุฒุงุฆุฏ ุงุชู†ูŠู† y
1376
+
1377
+ 401
1378
+ 00:46:02,600 --> 00:46:11,300
1379
+ ูŠุจู‚ู‰ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ five of x y ูŠุณุงูˆูŠ e<sup>x</sup> ููŠ ุงู„ y
1380
+
1381
+ 402
1382
+ 00:46:11,300 --> 00:46:17,460
1383
+ ุฒุงุฆุฏ e<sup>x</sup> ููŠ ุงู„ y ุชุฑุจูŠุน ุนู„ู‰ ุงุชู†ูŠู† ู…ุน ุงุชู†ูŠู† ู…ุน
1384
+
1385
+ 403
1386
+ 00:46:17,460 --> 00:46:24,740
1387
+ ุงู„ ุณู„ุงู…ุฉ ุฒุงุฆุฏ f of x ูƒูˆู†ูŠ ูƒุงู…ู„ุช ุจุงู„ู†ุณุจุฉ ุงู„ู‰ y ูŠุจู‚ู‰
1388
+
1389
+ 404
1390
+ 00:46:24,740 --> 00:46:31,200
1391
+ ุจุงุนุชุจุฑ ู‡ุฐุง ู‡ูŠ function of x ุทุจ ุงู„ูุงุถู„ู‡ุง partial
1392
+
1393
+ 405
1394
+ 00:46:31,200 --> 00:46:39,200
1395
+ phi by partial x ูŠุณุงูˆูŠ ู‡ุฐุง ูŠุนุชุจุฑ ุญุตู„ ุถุฑุจ ุฏุงู„ูŠุชูŠู†
1396
+
1397
+ 406
1398
+ 00:46:39,200 --> 00:46:46,820
1399
+ ูŠุจู‚ู‰ ุชูุงุถู„ x ุจูˆุงุญุฏ ุจุตูŠุฑ e<sup>x</sup> ููŠ ุงู„ y ุชูุงุถู„ e<sup>x</sup> ุจุงู„
1400
+
1401
+ 407
1402
+ 00:46:46,820 --> 00:46:53,130
1403
+ e<sup>x</sup> itself ูŠุจู‚ู‰ e<sup>x</sup> ููŠ ุงู„ y ุฃูŠ ุชูุงุถู„ูŠุฒูŠ ุงู„ุฃูˆู„
1404
+
1405
+ 408
1406
+ 00:46:53,130 --> 00:46:59,710
1407
+ ุชูุงุถู„ูŠ ุงู„ุซุงู†ูŠ e<sup>x</sup> ุฒูŠ ู…ุง ู‡ูŠ ููŠ ุงู„ y ุชุฑุจูŠุน ุฒุงุฆุฏ
1408
+
1409
+ 409
1410
+ 00:46:59,710 --> 00:47:08,400
1411
+ ุงู„ F Prime of X ุฃู„ูŠุณ ุชู‡ุงุฏูŠ ู‡ูŠ ู‡ุงุฏูŠุŸ ุตุญุŸ ู…ุด ู‡ุฐู‡
1412
+
1413
+ 410
1414
+ 00:47:08,400 --> 00:47:10,840
1415
+ ุชูุงุถู„ five ุจุงู„ู†ุณุจุฉ ู„ูƒุชุฑ ุฃูˆ ุชูุงุถู„ five ุจุงู„ู†ุณุจุฉ ู„ูƒุชุฑ
1416
+
1417
+ 411
1418
+ 00:47:10,840 --> 00:47:17,000
1419
+ ุงุฐุง ุจุณูˆูˆุง ุงู„ุทุฑููŠู† ุงู„ุจุนุถ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงุฐุง ุงู„ e<sup>x</sup>
1420
+
1421
+ 412
1422
+ 00:47:17,000 --> 00:47:26,520
1423
+ ููŠ ุงู„ Y ุฒูŠ ุงู„ X e<sup>x</sup> ููŠ ุงู„ y ุฒูŠ
1424
+
1425
+ 413
1426
+ 00:47:26,520 --> 00:47:31,520
1427
+ ุงู„ .. ุงุญู†ุง .. ุงู‡ ุจุงู„ูุถู„ ุงุญู†ุง ู…ุธุจูˆุท ู„ุง ุงุญู†ุง ุจูŠุฌูŠุจ
1428
+
1429
+ 414
1430
+ 00:47:31,520 --> 00:47:38,550
1431
+ .. ู‡ุฐู‡ ู…ุธุจูˆุท ุงู„ e<sup>x</sup> ููŠ ุงู„ y ุฒุงุฆุฏ x ููŠ ุงู„ y
1432
+
1433
+ 415
1434
+ 00:47:38,550 --> 00:47:47,650
1435
+ ุฒุงุฆุฏ x ููŠ ุงู„ y ุชุฑุจูŠุน ุฒุงุฆุฏ F prime of X ูŠุณุงูˆูŠ
1436
+
1437
+ 416
1438
+ 00:47:47,650 --> 00:47:54,770
1439
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง x ููŠ ุงู„ y ุฒุงุฆุฏ x ููŠ ุงู„ y
1440
+
1441
+ 417
1442
+ 00:47:54,770 --> 00:48:01,390
1443
+ ุชุฑุจูŠุน ุฒุงุฆุฏ x ููŠ ุงู„ y ุฃุธู† ุงู„ term ู‡ุฐุง ู‡ูˆ ุงู„
1444
+
1445
+ 418
1446
+ 00:48:01,390 --> 00:48:08,720
1447
+ term ู‡ุฐุง ูˆ ุงู„ term ู‡ุฐุง ู‡ูˆ ุงู„ term ู‡ุฐุง ูˆ ุงู„ term ู‡ุฐุง
1448
+
1449
+ 419
1450
+ 00:48:08,720 --> 00:48:13,080
1451
+ ู‡ูˆ ุงู„ term ู‡ุฐุงุŒ ู…ุตุจูˆุญุŸ ูŠุจู‚ู‰ ุจูŠู†ู†ุง ูŠุนู†ูŠ ุจูŠุจู‚ู‰ ู„ู†ุง
1452
+
1453
+ 420
1454
+ 00:48:13,080 --> 00:48:19,100
1455
+ five F prime of X ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ูŠุณุงูˆูŠ zero ู…ุนู†ุงุชู‡ ุงู„
1456
+
1457
+ 421
1458
+ 00:48:19,100 --> 00:48:26,680
1459
+ F of X ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู„ ู…ุตุทู„ุญ ุชุงู†ูŠ ูˆู„ูŠูƒู† C2 ุฅุฐุง the
1460
+
1461
+ 422
1462
+ 00:48:26,680 --> 00:48:38,160
1463
+ solution of the Differential equation star S ุงู„ุชูŠ
1464
+
1465
+ 423
1466
+ 00:48:38,160 --> 00:48:47,140
1467
+ ุญุตู„ู†ุง ุนู„ูŠู‡ุง ููŠ ุงูƒุณ ูˆ Y ูŠุณุงูˆูŠ X ููŠ ุงู„ e<sup>x</sup> ููŠ Y
1468
+
1469
+ 424
1470
+ 00:48:47,140 --> 00:48:54,060
1471
+ ุฒุงุฆุฏ e<sup>x</sup> ููŠ Y ุชุฑุจูŠุน ูˆู‡ุฐุง ูƒู„ู‡ ูƒูˆู†ุณุชุงู† ูŠุจู‚ู‰ ู‡ุฐุง
1472
+
1473
+ 425
1474
+ 00:48:54,060 --> 00:49:00,330
1475
+ ูƒู„ู‡ ุณุงูˆูŠ ูƒูˆู†ุณุชุงู† C ู‡ุฐุง ู‡ูˆ ุงู„ุญู„ ู„ู…ุนุงุฏู„ุฉ
1476
+
1477
+ 426
1478
+ 00:49:00,330 --> 00:49:08,390
1479
+ ุงู„ุชูุงุถู„ูŠุฉ ุชู…ุงู… ู„ุญุฏ ู‡ู†ุง stop ู„ุง ูŠุฒุงู„ ุนู†ุฏู†ุง ู…ุซุงู„ ุจุณ
1480
+
1481
+ 427
1482
+ 00:49:08,390 --> 00:49:12,530
1483
+ ุงู„ู…ุซุงู„ ุทูˆูŠู„ ุดูˆูŠุฉ ุนุงู„ู…ูŠู† ุนู„ู‰ ุงู„ integrating factor
1484
+
1485
+ 428
1486
+ 00:49:12,530 --> 00:49:17,550
1487
+ ุซุงู„ุซ ุจู†ุฎู„ูŠู‡ ู„ู„ู…ุญุงุถุฑุฉ ุงู„ุณุงุนุฉ ุงุชู†ุงุดุฑ ุงู„ู„ูŠ ู‡ูŠ ุจุนุฏ
1488
+
1489
+ 429
1490
+ 00:49:17,550 --> 00:49:22,330
1491
+ ุงู„ุธู‡ุฑ ุงู† ุดุงุก ุงู„ู„ู‡ ุชุจุงุฑูƒ ูˆุชุนุงู„ู‰ ูŠุนุทูŠูƒูˆุง ุงู„ุนุงููŠุฉ
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/r9WgIkSN3M4.srt ADDED
@@ -0,0 +1,1498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,740 --> 00:00:25,060
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุฐูƒุฑ ุจุฃุฎุฑ ุญุงุฌุฉ ุฃุฎุฐู†ุงู‡ุง ุงู„ู…ุฑุฉ
4
+
5
+ 2
6
+ 00:00:25,060 --> 00:00:28,800
7
+ ุงู„ู„ูŠ ูุงุช ููŠ section ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ุจุฏุฃู†ุง ุจุงู„ุฑูˆู†ุณูƒูŠู†
8
+
9
+ 3
10
+ 00:00:28,800 --> 00:00:33,680
11
+ ูˆุนุฑูู†ุง ุฃู† ุงู„ุฑูˆู†ุณูƒูŠู† ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ุญุฏุฏ ุซู… ุงู†ุชู‚ู„ู†ุง ุฅู„ู‰
12
+
13
+ 4
14
+ 00:00:33,680 --> 00:00:38,780
15
+ ู†ุธุฑูŠุฉ ุฏูˆ ุดู‚ูŠู† ุงู„ุดู‚ ุงู„ุฃูˆู„ ูƒุงู† ุฅุฐุง ูƒุงู† ุนู†ุฏูŠ
16
+
17
+ 5
18
+ 00:00:38,780 --> 00:00:42,680
19
+ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vectors ูˆูƒุงู†ูˆุง linearly dependent
20
+
21
+ 6
22
+ 00:00:42,680 --> 00:00:48,580
23
+ ูŠุจู‚ู‰ ู„ุงุฒู… ุงู„ุฑูˆู†ุณูƒูŠู† ูŠุณุงูˆูŠ zero ุนู†ุฏ ูƒู„ X ู…ูˆุฌูˆุฏุฉ ููŠ
24
+
25
+ 7
26
+ 00:00:48,580 --> 00:00:53,670
27
+ interval ู…ุง ุฃุฎุฐู†ุง ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ุฃู†ู‡ ู„ูˆ ูƒุงู† ุงู„
28
+
29
+ 8
30
+ 00:00:53,670 --> 00:00:58,710
31
+ ุฑูˆู†ุณูƒูŠู† ู„ุง ูŠุณุงูˆูŠ 0 ูŠุจู‚ู‰ ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ุงู„ functions ุฃูˆ
32
+
33
+ 9
34
+ 00:00:58,710 --> 00:01:02,110
35
+ ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ุงู„ vectors are linearly independent
36
+
37
+ 10
38
+ 00:01:02,110 --> 00:01:08,310
39
+ ูˆุนุทูŠู†ุง ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ู…ุซู„ ุนู„ู‰ ุฃู†ู‡ ู…ู…ูƒู† ูŠูƒูˆู† ุงู„
40
+
41
+ 11
42
+ 00:01:08,310 --> 00:01:13,350
43
+ ุฑูˆู†ุณูƒูŠู† ูŠุณุงูˆูŠ 0 ู„ูƒู† ุงู„ two functions are not
44
+
45
+ 12
46
+ 00:01:13,350 --> 00:01:18,440
47
+ linearly dependent ุจุงู„ู€ Linearly Independent ู„ุฃู†ู‡
48
+
49
+ 13
50
+ 00:01:18,440 --> 00:01:24,120
51
+ ุนูƒุณ ุงู„ู†ุธุฑูŠุฉ ู…ุง ู‡ูˆูŽุด ุตุญูŠุญ ุชู…ุงู… ูŠุนุทูŠู†ุง ู…ุซุงู„ ูƒุงู† G1
52
+
53
+ 14
54
+ 00:01:24,120 --> 00:01:28,240
55
+ of X ุชุณุงูˆูŠ X ุชุฑุจูŠุน ูˆ G2 of X ู‡ูˆ X ููŠ absolute
56
+
57
+ 15
58
+ 00:01:28,240 --> 00:01:33,920
59
+ value ู„ู€ X ู†ู†ุชู‚ู„ ุฅู„ู‰ ู…ุซุงู„ ุฌุฏูŠุฏ ูŠู‚ูˆู„ ูŠุดูˆู ู„ูŠู‡ุง ุงู„
60
+
61
+ 16
62
+ 00:01:33,920 --> 00:01:37,280
63
+ functions ู‡ุฐู‡ ุงู„ูˆุงุญุฏ ูˆ X ุงู„ุณุงู„ุจ ูˆุงุญุฏ ูˆ X ุงู„ุณุงู„ุจ
64
+
65
+ 17
66
+ 00:01:37,280 --> 00:01:42,270
67
+ ุงุซู†ูŠู† ุนู„ู…ุงู‹ ุจุฃู† X ุฏุงุฆู…ุงู‹ ูˆ ุฃุจุฏุงู‹ ุชุฃุฎุฐ ู‚ูŠู…ุฉ ู…ูˆุฌุจุฉ ู‡ู„
68
+
69
+ 18
70
+ 00:01:42,270 --> 00:01:46,410
71
+ ู‡ุฏูˆู„ linearly dependent ูˆู„ุง linearly independent
72
+
73
+ 19
74
+ 00:01:46,410 --> 00:01:51,490
75
+ ูุจุฌูŠุจ ุฃู‚ูˆู„ ู„ูƒ ูƒูˆูŠุณ ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุขุฎุฐ ุฑูˆู†ุณูƒูŠู† as a
76
+
77
+ 20
78
+ 00:01:51,490 --> 00:01:56,830
79
+ function of X ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ุซุงู†ูŠุฉ
80
+
81
+ 21
82
+ 00:01:56,830 --> 00:02:02,980
83
+ ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ุซุงู„ุซุฉ ู…ุดุงู† ุฃูƒู…ู„ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ุจุฏูŠ ุฃุดุชู‚ ู…ุฑุฉ
84
+
85
+ 22
86
+ 00:02:02,980 --> 00:02:08,660
87
+ ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุงู„ู…ุดุชู‚ ู‡ุฐู‡ ุจู€ 0 ู‡ุฐู‡ ู†ุงู‚ุต X ุฃุณ ู†ุงู‚ุต 2 ู‡ุฐู‡
88
+
89
+ 23
90
+ 00:02:08,660 --> 00:02:16,620
91
+ ู†ุงู‚ุต 2 X ุฃุณ ู†ุงู‚ุต 3 ู†ุดุชู‚ ูƒู…ุงู† ู…ุฑุฉ ูŠุจู‚ู‰ Zero 2 X
92
+
93
+ 24
94
+ 00:02:16,620 --> 00:02:24,280
95
+ ุฃุณ ู†ุงู‚ุต 3 ู‡ุฐู‡ 6 X ุฃุณ ู†ุงู‚ุต 4 ูŠุจู‚ู‰ ู‡ูŠุดุชุบู„ู†ุง
96
+
97
+ 25
98
+ 00:02:24,280 --> 00:02:29,900
99
+ ุงู„ุฏูˆุงู„ ู…ุฑุชูŠู† ุชู…ุงู… ุงู„ุขู† ุจุฏูŠ ู‚ุฏุงุด ุฃุญุณุจ ู‚ูŠู…ุฉ ู‡ุฐุง
100
+
101
+ 26
102
+ 00:02:29,900 --> 00:02:34,680
103
+ ุงู„ุฑูˆู†ุณูƒูŠู† ูŠุจู‚ู‰ ู‡ููƒ ุงู„ู…ุญุฏุฏ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ
104
+
105
+ 27
106
+ 00:02:34,680 --> 00:02:42,250
107
+ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ููŠู‡ ุญุงุตู„ ุถุฑุจ
108
+
109
+ 28
110
+ 00:02:42,250 --> 00:02:49,250
111
+ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูŠุจู‚ู‰ ู†ุงู‚ุต 6 x ุฃุณ ู†ุงู‚ุต 6 ู†ุงู‚ุต
112
+
113
+ 29
114
+ 00:02:49,250 --> 00:02:58,130
115
+ ู…ุน ู†ุงู‚ุต ุฒุงุฆุฏ 4 x ุฃุณ ู†ุงู‚ุต 6 ู†ุงู‚ุต 0 ุฒุงุฆุฏ 0 ูŠุจู‚ู‰ ุจู†ุงุก
116
+
117
+ 30
118
+ 00:02:58,130 --> 00:03:04,890
119
+ ู‹ ุนู„ูŠู‡ ุฃุตุจุญ ู†ุงุชุฌ ูŠุณุงูˆูŠ ู†ุงู‚ุต 2 X ุฃุณ ู†ุงู‚ุต 6
120
+
121
+ 31
122
+ 00:03:04,890 --> 00:03:11,230
123
+ ุทุจุนุงู‹ ู‡ุฐุง ุงู„ูƒู„ุงู… ูƒู„ู‡ ู„ุง ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู„ูŠุดุŸ since ู„ุฃู†
124
+
125
+ 32
126
+ 00:03:11,230 --> 00:03:16,360
127
+ ุงู„ู€ X greater than zero ุฅุฐุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู„ุง ูŠู…ูƒู† ุฃู†
128
+
129
+ 33
130
+ 00:03:16,360 --> 00:03:22,120
131
+ ูŠุณุงูˆูŠ zero ููŠ ุฃูŠ ูŠูˆู… ู…ู† ุงู„ุฃูŠุงู… ูˆู„ุง ุนู†ุฏ ู†ู‚ุทุฉ ูˆู„ุง
132
+
133
+ 34
134
+ 00:03:22,120 --> 00:03:26,660
135
+ ุนู†ุฏ ูƒู„ ุงู„ู†ู‚ุงุท ู„ุฃู† x greater than zero ุจู†ุงุก ุนู„ูŠู‡
136
+
137
+ 35
138
+ 00:03:26,660 --> 00:03:32,940
139
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุนู†ูŠ ุฃู† ู‡ุฐู‡ ุงู„ functions ุชู„ุงุชุฉ are
140
+
141
+ 36
142
+ 00:03:32,940 --> 00:03:37,340
143
+ linearly dependent ูˆู„ุง linearly independent
144
+
145
+ 37
146
+ 00:03:38,180 --> 00:03:44,400
147
+ Linearly Independent ูŠุจู‚ู‰ ู‡ู†ุง since ุจู…ุง ุฃู†
148
+
149
+ 38
150
+ 00:03:44,400 --> 00:03:48,940
151
+ Wronskian as a function of x ู„ุง ูŠุณุงูˆูŠ zero
152
+
153
+ 39
154
+ 00:03:48,940 --> 00:03:56,420
155
+ ูŠุจู‚ู‰ the functions ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ูˆ x ุงู„ุณุงู„ุจ ูˆุงุญุฏ ูˆ x
156
+
157
+ 40
158
+ 00:03:56,420 --> 00:04:02,620
159
+ ุงู„ุณุงู„ุจ ุงุซู†ูŠู† are linearly independent functions
160
+
161
+ 41
162
+ 00:04:02,620 --> 00:04:14,460
163
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ุฏูˆุงู„ ู…ุณุชู‚ู„ุฉ ุนู† ุจุนุถ ุชู…ุงู… ู†ุฃุฎุฐ ู…ุซุงู„ ูŠุจู‚ู‰
164
+
165
+ 42
166
+ 00:04:14,460 --> 00:04:26,520
167
+ ู…ุซุงู„ ูƒุฐู„ูƒ show
168
+
169
+ 43
170
+ 00:04:26,520 --> 00:04:30,660
171
+ that ู…ุจูŠู†ูŠู†
172
+
173
+ 44
174
+ 00:04:30,660 --> 00:04:32,740
175
+ the functions
176
+
177
+ 45
178
+ 00:04:35,130 --> 00:04:46,210
179
+ ุงู„ู„ูŠ ู‡ู…ุง F1 of X ูŠุณุงูˆูŠ E ุฃูุณ R1 X ูˆ F2 of X ูŠุณุงูˆูŠ
180
+
181
+ 46
182
+ 00:04:46,210 --> 00:04:55,930
183
+ E R2 ุฃูุณ X ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ุงู„ FN of X ุจุฏู‡ ูŠุณุงูˆูŠ
184
+
185
+ 47
186
+ 00:04:55,930 --> 00:05:02,110
187
+ E ุฃูุณ RN of X ูˆ ุงู„RI
188
+
189
+ 48
190
+ 00:05:22,910 --> 00:05:29,240
191
+ ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ุนู† ุงู† ู…ู† ุงู„ functions
192
+
193
+ 49
194
+ 00:05:29,240 --> 00:05:35,640
195
+ f1 ูˆf2 ูˆf3 ู‡ุฐู‡ ุงู„ functions ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ูƒุชุจู†ุงู‡ุง
196
+
197
+ 50
198
+ 00:05:35,640 --> 00:05:39,580
199
+ ุจุฏู„ุงู„ุฉ ุงู„ exponential ูŠุจู‚ู‰ ุนู†ุฏู†ุง ุงู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ E
200
+
201
+ 51
202
+ 00:05:39,580 --> 00:05:44,780
203
+ ุฃุณ R1 X ุงู„ุฏุงู„ุฉ ุงู„ุซุงู†ูŠุฉ E ุฃุณ R2 X ุงู„ุฏุงู„ุฉ ุงู„ุซุงู„ุซุฉ E
204
+
205
+ 52
206
+ 00:05:44,780 --> 00:05:51,780
207
+ ุฃุณ R3 X ูˆู‡ูƒุฐุง ู„ุบุงูŠุฉ ู…ุง ู†ูƒู…ู„ ุจุงู‚ูŠ ุงู„ุฏูˆุงู„ ู„ุบุงูŠุฉ E ุฃุณ
208
+
209
+ 53
210
+ 00:05:51,780 --> 00:05:57,090
211
+ R N X ุงู„ุฏูˆุงู„ ู‡ุฏูˆู„ ู…ุง ู„ู‡ู…ุŸ ู‡ุคู„ุงุก ุงู„ู„ูŠ ุจุฏู†ุง ู†ุดูˆูู‡ ุฃูˆ
212
+
213
+ 54
214
+ 00:05:57,090 --> 00:06:01,470
215
+ ุจุฏู†ุง ู†ุซุจุช ุฃู†ู‡ู… linearly independent ุจุดุฑุท ุฑ ูˆุงุญุฏุฉ
216
+
217
+ 55
218
+ 00:06:01,470 --> 00:06:05,410
219
+ ู…ุชุณุงูˆูŠ ุฑ ุงุซู†ูŠู† ูˆู„ุง ุฑ ุชู„ุงุชุฉ ูˆู„ุง ุฑ ูˆู„ุง ูˆุงุญุฏุฉ ููŠู‡ู…
220
+
221
+ 56
222
+ 00:06:05,410 --> 00:06:11,570
223
+ ู…ุชุณุงูˆูŠ ุงู„ุซุงู†ูŠุฉ ุฑุงุญ ู‚ุงู„ ู„ูŠุด ุฃู† ุฑ ุงูŠ ู„ุง ุชุณุงูˆูŠ ุฑ ุฌูŠ
224
+
225
+ 57
226
+ 00:06:11,570 --> 00:06:16,230
227
+ ูŠุจู‚ู‰ ุงู„ุงุฑุงุช ู‡ุฏูˆู„ ุฃุณุงุณ ูˆู„ุง ูˆุงุญุฏุฉ ุฒูŠ ุงู„ุซุงู†ูŠุฉ ู„ูƒู„
228
+
229
+ 58
230
+ 00:06:16,230 --> 00:06:21,290
231
+ ุงูŠ ู„ุง ุชุณุงูˆูŠ ุฌูŠ ุจุฏุฃ ูŠุซุจุช ุฃู† ู‡ุฐู‡ ุงู„ functions ู‡ูŠ ุฑ
232
+
233
+ 59
234
+ 00:06:21,290 --> 00:06:27,330
235
+ linearly independent ู†ุจุฏุฃ ู…ู† ุฏู‡ ุทูŠุจ ู†ุจุฏุฃ ุจ .. ู„ูˆ ุจุฏู†ุง ู†ุฃุฎุฐู‡ุง
236
+
237
+ 60
238
+ 00:06:27,330 --> 00:06:31,530
239
+ ูƒู„ู‡ุง ู…ุฑุฉ ูˆุงุญุฏุฉ ุตุนุจุฉ ุฌุฏุงู‹ ูˆุงู„ุตุจุฑ ุชุงุนุชู†ุง ู…ุด ู‡ุชูƒููŠ
240
+
241
+ 61
242
+ 00:06:31,530 --> 00:06:37,690
243
+ ู„ู„ูƒุชุงุจุฉ ู„ูƒู† ู„ูˆ ุฌูŠู†ุง ู†ุณุชุฑุณู„ ูุจุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง solution
244
+
245
+ 62
246
+ 00:06:37,690 --> 00:06:45,950
247
+ ู„ูˆ ุฃุฎุฐุช ุงู„ู€ N ุชุณุงูˆูŠ 2 ู…ุซู„ุงู‹ ูŠุจู‚ู‰ ูƒู… function ุจูŠูƒูˆู†
248
+
249
+ 63
250
+ 00:06:45,950 --> 00:06:52,540
251
+ ุนู†ุฏูŠุŸ ูƒุฏู‡ุŸ ูƒู… ูุงู†ูƒุดู† ูŠูƒูˆู† ุนู†ุฏูŠ ุงุซู†ุชูŠู† ูŠุจู‚ู‰ ู…ุง ููŠุด
252
+
253
+ 64
254
+ 00:06:52,540 --> 00:06:56,960
255
+ ุบูŠุฑู‡ู… ุฎู„ูŠ ุจุงู„ูƒู… ู…ุนุงู†ุง ู‡ู†ุง ุจู‚ูˆู„ ุฎู„ูŠ ุจุงู„ูƒู… ู…ุนุงู†ุง ู‡ู†ุง
256
+
257
+ 65
258
+ 00:06:58,160 --> 00:07:03,920
259
+ ูŠุจู‚ู‰ ู„ู…ุง ู…ุง ุนู†ุฏูŠุด ูุงู†ูƒุดู† ุงุซู†ุชูŠู† ุงู† ูŠุณุงูˆูŠ ุงุซู†ูŠู† ูŠุจู‚ู‰
260
+
261
+ 66
262
+ 00:07:03,920 --> 00:07:10,820
263
+ ุจุชุฑูˆุญ ุชุฃุฎุฐ ุงู„ู€ runner skin of X ูŠุจู‚ู‰ ู‡ุฐุง E ุฃุณ R1 X E
264
+
265
+ 67
266
+ 00:07:10,820 --> 00:07:21,660
267
+ ุฃุณ R2 X ุจุฏูŠ ุฃุดุชู‚ ูŠุจู‚ู‰ R1 E ุฃุณ R1 X R2 E ุฃุณ R2 X
268
+
269
+ 68
270
+ 00:07:21,660 --> 00:07:28,260
271
+ ูˆ ูŠุณุงูˆูŠ ู…ู† ุฎูˆุงุต ุงู„ู…ุญุฏุฏุงุช ุฅุฐุง ููŠ ุนู†ุฏูŠ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุทู„ุน
272
+
273
+ 69
274
+ 00:07:28,260 --> 00:07:34,660
275
+ ุจุฑู‡ ูŠุจู‚ู‰ ู…ู† ุงู„ุนู…ูˆุฏูŠ ุงู„ุฃูˆู„ ุฅูŠุด ุนู†ุฏูŠุŸ ุนู†ุงุตุฑ E ุฃุณ R1 X
276
+
277
+ 70
278
+ 00:07:34,660 --> 00:07:42,460
279
+ ู…ู† ุงู„ุนู…ูˆุฏูŠ ุงู„ุซุงู†ูŠ E ุฃุณ R2 X ุจุธู„ ุงู„ู…ุญุฏุฏ ุนู†ุฏูŠ 1 1 R1
280
+
281
+ 71
282
+ 00:07:42,460 --> 00:07:51,150
283
+ R2 ูŠุจู‚ู‰ ู‡ุฐุง ู„ูˆ ููƒูŠุชู‘ู‡ ุจุฏู‡ ูŠุตูŠุฑ E ุฃุณ R1 ุฒุงุฆุฏ R2 ู‡ุฐุง
284
+
285
+ 72
286
+ 00:07:51,150 --> 00:07:59,950
287
+ ูƒู„ู‡ ููŠ X ูˆ ุจุฏุฃ ููƒ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูŠุจู‚ู‰ R2 - R1 ูƒู„ู‡ ุจุงู„ุดูƒู„
288
+
289
+ 73
290
+ 00:07:59,950 --> 00:08:04,470
291
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุงู„ู€ X ุจู†ู†ุดู„ ููŠ ุฃูŠ ูŠูˆู… ู…ู†
292
+
293
+ 74
294
+ 00:08:04,470 --> 00:08:06,950
295
+ ุงู„ุฃูŠุงู… ู…ู…ูƒู† ูŠุฃุฎุฐ ุงู„ู‚ูŠู…ุฉ ุงู„ุตูุฑุŸ
296
+
297
+ 75
298
+ 00:08:09,510 --> 00:08:14,670
299
+ ุงู„ู€ R2 ู†ุงู‚ุต R1 ู‡ู„ ูŠู…ูƒู† ุฃู† ูŠุฃุฎุฐ ุตูุฑุŸ ุฃุนุทุงู†ูŠ ุงู„ุดุฑุท
300
+
301
+ 76
302
+ 00:08:14,670 --> 00:08:19,650
303
+ ุงู„ุฃุณุงุณูŠ ุฃู† ุงู„ู€ RI ู„ุง ุชุณุงูˆูŠ RJ ู„ูƒู„ I ู„ุง ุชุณุงูˆูŠ J
304
+
305
+ 77
306
+ 00:08:25,030 --> 00:08:32,510
307
+ ุงุฎุชุตุงุฑุงู‹ ูŠุง ุจู†ุงุช ู…ู…ูƒู† ุฃูƒุชุจ ู‡ุฐู‡ E ุฃุณ R1 ุฒุงุฆุฏ R2 X ููŠ
308
+
309
+ 78
310
+ 00:08:32,510 --> 00:08:41,170
311
+ D2 ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ู„ุง ูŠุณุงูˆูŠ 0 ู…ู† D2 ู„ู€ R2 ู†ุงู‚ุต R1 ูŠุจู‚ู‰
312
+
313
+ 79
314
+ 00:08:41,170 --> 00:08:47,070
315
+ ู„ูˆ ูƒุงู†ุช ุงู„ู€ N ุจุชู†ูŠู† ู„ุง ูŠู…ูƒู† ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃู† ูŠุณุงูˆูŠ 0
316
+
317
+ 80
318
+ 00:08:47,070 --> 00:08:55,510
319
+ ู„ูˆ ุฌุฆุช ุฃุฎุฐุช F n ุชุณุงูˆูŠ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุฑูˆู†ุณูƒูŠู† of x ูŠุจู‚ู‰
320
+
321
+ 81
322
+ 00:08:55,510 --> 00:09:04,930
323
+ ูŠุณุงูˆูŠ ู‡ุฐู‡ E ุฃุณ R1 X E ุฃุณ R2 X E ุฃุณ R3 X ุงู„ู…ุดุชู‚ุฉ
324
+
325
+ 82
326
+ 00:09:04,930 --> 00:09:15,220
327
+ ุงู„ุฃูˆู„ู‰ R1 E ุฃุณ R1 X R2 E ุฃุณ R2 X R3 E ุฃุณ R3 X ุงู„ู„ูŠ
328
+
329
+ 83
330
+ 00:09:15,220 --> 00:09:22,440
331
+ ู‡ู… ุจุฏู†ุง ู†ุดุชุบู„ ูƒู…ุงู† ู…ุฑุฉ R1 ุชุฑุจูŠุน E ุฃุณ R1 X R2 ุชุฑุจูŠุน
332
+
333
+ 84
334
+ 00:09:22,440 --> 00:09:28,620
335
+ E ุฃุณ R2 X R3 ุชุฑุจูŠุน E ุฃุณ R3 X
336
+
337
+ 85
338
+ 00:09:32,580 --> 00:09:36,020
339
+ ุฅุฐุง ุฃู†ุง ู…ู…ูƒู† ุฃุนู…ู„ ุฒูŠ ุงู„ู„ูŠ ู‚ุจู„ู‡ ุจุงู„ุถุจุท ุฃุทู„ุน ุนุงู…ู„
340
+
341
+ 86
342
+ 00:09:36,020 --> 00:09:40,540
343
+ ู…ุดุชุฑูƒุฉ ู…ู† ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูˆุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ูˆุงู„ุนู…ูˆุฏ
344
+
345
+ 87
346
+ 00:09:40,540 --> 00:09:47,380
347
+ ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ E ุฃุณ R 1 X E ุฃุณ R
348
+
349
+ 88
350
+ 00:09:47,380 --> 00:09:56,380
351
+ 2 X E ุฃุณ R 3 X ูŠุจู‚ู‰ ุนู†ุฏู†ุง ุงู„ู…ุญุฏุฏ 1 1 1 R1
352
+
353
+ 89
354
+ 00:09:56,380 --> 00:10:04,580
355
+ R2 R3 R1 ุชุฑุจูŠุน R2 ุชุฑุจูŠุน R3 ุชุฑุจูŠุน ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
356
+
357
+ 90
358
+ 00:10:04,580 --> 00:10:13,060
359
+ ู‡ุฐุง ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ E ุฃุณ R1 ุฒุงุฆุฏ
360
+
361
+ 91
362
+ 00:10:13,060 --> 00:10:19,760
363
+ R2 ุฒุงุฆุฏ R3 ูƒู„ู‡ fixed ูˆ ุจุฏู‡ ุฃุฑูˆุญ ุฃููƒ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ู…ุซู„ุงู‹
364
+
365
+ 92
366
+ 00:10:19,760 --> 00:10:26,160
367
+ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู„ูˆ ููƒูŠุชู‡ ุจุงุณุชุฎุฏุงู…
368
+
369
+ 93
370
+ 00:10:26,160 --> 00:10:30,640
371
+ ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจุฏู‡ ูŠุฌูŠ ู‡ุฐุง ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ู‡ุฐุง ุงู„ูƒู„ุงู…
372
+
373
+ 94
374
+ 00:10:30,640 --> 00:10:36,460
375
+ ู…ุถุฑูˆุจ ููŠู‡ ูˆุงุญุฏ ููŠ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุงู„ู…ู†ุงุธุฑ ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ
376
+
377
+ 95
378
+ 00:10:36,460 --> 00:10:46,240
379
+ R2 R3 ุชุฑุจูŠุน ู†ุงู‚ุต R2 ุชุฑุจูŠุน R3 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ term
380
+
381
+ 96
382
+ 00:10:46,240 --> 00:10:52,850
383
+ ุงู„ุฃูˆู„ ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช ู†ุงู‚ุต R1 ูˆ ู‡ู†ุง ู†ูุดุทุจ ุงู„ุตู
384
+
385
+ 97
386
+ 00:10:52,850 --> 00:11:00,210
387
+ ุชุจุนู‡ ูˆุงู„ุนู…ูˆุฏ ุจูŠุตูŠุฑ R ุชู„ุงุชุฉ ุชุฑุจูŠุน ู†ุงู‚ุต R ุงุซู†ูŠู†
388
+
389
+ 98
390
+ 00:11:00,210 --> 00:11:06,210
391
+ ุชุฑุจูŠุน ุฌุฆู†ุง ู‡ู†ุง ุฒุงุฆุฏ R ูˆุงุญุฏ ุชุฑุจูŠุน ุฃูˆ square ุงุดุชุช
392
+
393
+ 99
394
+ 00:11:06,210 --> 00:11:11,610
395
+ ุจูŠุตูู‘ูˆุง ุนู…ูˆุฏู‡ ุจูŠุตูŠุฑ R ุชู„ุงุชุฉ ู†ุงู‚ุต R ุงุซู†ูŠู† ุฌูู„ู†ุง
396
+
397
+ 100
398
+ 00:11:11,610 --> 00:11:20,350
399
+ ุงู„ุฌูˆุฒ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ E ุฃุณ R1 ุฒุงุฆุฏ R2 ุฒุงุฆุฏ R3
400
+
401
+ 101
402
+ 00:11:20,350 --> 00:11:24,170
403
+ ูƒู„ู‡ ููŠ X ู‡ุฐุง ุงู„ูƒู„ุงู… ููŠ
404
+
405
+ 102
406
+ 00:11:53,070 --> 00:11:57,440
407
+ ู…ู…ูƒู† ุขุฎุฐ ู…ู† ู‡ุฐุง ุนุงู…ู„ ู…ุดุชุฑูƒ ุฃู†ุง ู…ู…ูƒู† ุขุฎุฐ R ุชู„ุงุชุฉ
408
+
409
+ 103
410
+ 00:11:57,440 --> 00:12:03,060
411
+ ู†ุงู‚ุต R ุงุซู†ูŠู† ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ูƒู„ ุงู„ู€ three terms ูŠุจู‚ู‰
412
+
413
+ 104
414
+ 00:12:03,060 --> 00:12:11,680
415
+ ู‡ุฐุง E ุฃุณ R ูˆุงุญุฏ ุฒุงุฆุฏ R ุงุซู†ูŠู† ุฒุงุฆุฏ R ุชู„ุงุชุฉ ูƒู„ู‡ ููŠ X ููŠ
416
+
417
+ 105
418
+ 00:12:11,680 --> 00:12:18,980
419
+ R ุชู„ุงุชุฉ ู†ุงู‚ุต R ุงุซู†ูŠู† ู…ูŠู† ุจูŠุถู„ ุนู†ุฏ ู‡ู†ุง R ุงุซู†ูŠู† R ุชู„ุงุชุฉ
420
+
421
+ 106
422
+ 00:12:19,660 --> 00:12:27,820
423
+ ูˆ ู‡ู†ุง ุจูŠุธู„ ู†ุงู‚ุต R1 R3 ู†ุงู‚ุต
424
+
425
+ 107
426
+ 00:12:27,820 --> 00:12:35,460
427
+ R1 R2 ู†ุงู‚ุต R1 ููŠ ุงู„ุฌูˆุฒ ุงู„ุซุงู†ูŠ ูŠุนู†ูŠ ู‡ุฏุงู†ูŠ ููƒู‘ุชู‡ ุฒุงุฆุฏ
428
+
429
+ 108
430
+ 00:12:35,460 --> 00:12:43,140
431
+ R1 ุชุฑุจูŠุน ู…ุง ููŠุด ุบูŠุฑู‡ุง ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุทูŠุจ ู‡ุฐุง
432
+
433
+ 109
434
+ 00:12:43,140 --> 00:12:51,100
435
+ ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ E ุฃุณ R1 ุฒุงุฆุฏ R2 ุฒุงุฆุฏ R3 ููŠ X ููŠ
436
+
437
+ 110
438
+ 00:12:51,100 --> 00:12:58,780
439
+ ุงู„ู€ R3 ู†ุงู‚ุต R2 ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ู†ุงู‚ุต R2 ู„ุฌูˆุฒ
440
+
441
+ 111
442
+ 00:12:58,780 --> 00:13:04,020
443
+ ุงู„ุฃูˆู„ ุดูˆ ุฑุฃูŠูƒู… ู‡ุฏูˆู„ ู…ู…ูƒู† ุขุฎุฐ ู…ู†ู‡ู… ุฅูŠู‡ ุนุดุงู† R3
444
+
445
+ 112
446
+ 00:13:04,020 --> 00:13:12,330
447
+ ุนุงู…ู„ ู…ุดุชุฑูƒ ูŠุจู‚ู‰ ู„ูˆ ุฃุฎุฐู†ุง R3 ุนุงู…ู„ ู…ุดุชุฑูƒ R3 ุจูŠุธู„ ู…ู†
448
+
449
+ 113
450
+ 00:13:12,330 --> 00:13:22,010
451
+ ุนู†ุฏูŠุŸ ุจูŠุธู„ ุนู†ุฏูŠ R2 ู†ุงู‚ุต R1 ูˆ ู‡ู†ุง ู„ูˆ ุฃุฎุฐู†ุง ู†ุงู‚ุต R1
452
+
453
+ 114
454
+ 00:13:22,010 --> 00:13:26,890
455
+ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุธู„ R2 ู†ุงู‚ุต R1
456
+
457
+ 115
458
+ 00:13:29,040 --> 00:13:37,440
459
+ ุทูŠุจ ู‡ู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง
460
+
461
+ 116
462
+ 00:13:37,440 --> 00:13:53,920
463
+ ุฃู†ุง
464
+
465
+ 117
466
+ 00:13:53,920 --> 00:13:56,600
467
+ ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง
468
+
469
+ 118
470
+ 00:13:56,600 --> 00:14:00,950
471
+ ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง ุฃู†ุง ู‡ู„ ูŠู…ูƒู† ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃู† ูŠุณุงูˆูŠ
472
+
473
+ 119
474
+ 00:14:00,950 --> 00:14:05,430
475
+ Zero ููŠ ูŠูˆู… ู…ู† ุงู„ุฃูŠุงู…ุŸ ููŠ ุฅู…ูƒุงู†ูŠุฉ ู„ูŠุดุŸ ู„ุฃู† ุงู„
476
+
477
+ 120
478
+ 00:14:05,430 --> 00:14:08,970
479
+ exponential ุฏุงุฆู…ุงู‹ ูˆ ุฃุจุฏุงู‹ positive greater than
480
+
481
+ 121
482
+ 00:14:08,970 --> 00:14:15,910
483
+ zero ุบูŠุฑ ู‡ูŠูƒ ูˆู„ุง ูˆุงุญุฏุฉ ู…ู† R ุชุณุงูˆูŠ R ุงู„ุซุงู†ูŠุฉ R I ู„ุง
484
+
485
+ 122
486
+ 00:14:15,910 --> 00:14:22,570
487
+ ูŠุณุงูˆูŠ R J ู„ูƒู„ ุงู„ู€ I ุงู„ุชูŠ ู„ุง ุชุณุงูˆูŠ J ูŠุจู‚ู‰ ู„ุง ูŠู…ูƒู†
488
+
489
+ 123
490
+ 00:14:22,570 --> 00:14:28,010
491
+ ู„ุฃูŠ ู‚ูˆุณ ู…ู† ู‡ุฐู‡ ุงู„ุฃู‚ูˆุงุณ ุฃู† ุชุณุงูˆูŠ zero ุฅุฐุง ุจุฑูˆุญ ุจู‚ูˆู„ู‡
492
+
493
+ 124
494
+ 00:14:28,010 --> 00:14:34,720
495
+ ู‡ุฐุง ู…ุง ู„ู‡ุŸ ู„ุง ูŠุณุงูˆูŠ 0 ุฃูˆ ุฅู† ุดุฆุชู… ูู‚ูˆู„ูˆุง ู‡ุฐุง ุฅูŠู‡ุŸ ุงุตุฑ
496
+
497
+ 125
498
+ 00:14:34,720 --> 00:14:43,440
499
+ ูˆุงุญุฏ ุฒุงุฆุฏ R2 ุฒุงุฆุฏ R3 ูƒู„ู‡ ููŠ X ููŠ D ุชู„ุงุชุฉ ู‡ุฐุง ูƒู„ู‡
500
+
501
+ 126
502
+ 00:14:43,440 --> 00:14:49,770
503
+ ู…ุง ู„ู‡ุŸ ู„ุง ูŠุณุงูˆูŠ 0 ุฅุฐุง ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ูƒุงู†ุช E ุฃุณ R1
504
+
505
+ 127
506
+ 00:14:49,770 --> 00:14:54,750
507
+ X ูˆ E ุฃุณ R2 X are linearly independent ููŠ ุงู„ุญุงู„ุฉ
508
+
509
+ 128
510
+ 00:14:54,750 --> 00:14:59,670
511
+ ุงู„ุซุงู†ูŠุฉ ุฃุตุจุญ E ุฃุณ R1 E ุฃุณ R2 E ุฃุณ R3 ุจุฑุถู‡ are
512
+
513
+ 129
514
+ 00:14:59,670 --> 00:15:06,290
515
+ linearly independent ุทูŠุจ ุงู„ุขู† ุจุฏู‡ ูŠุฌูŠ ุฃู‚ูˆู„ ู„ูˆ ูƒุงู†
516
+
517
+ 130
518
+ 00:15:06,290 --> 00:15:11,870
519
+ ุนู†ุฏูŠ ุฅูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ N ู…ู† ุงู„ functions ูŠุนู†ูŠ ุงุญู†ุง ุจุฏู†ุง
520
+
521
+ 131
522
+ 00:15:11,870 --> 00:15:16,150
523
+ ู†ุนู…ู‘ู… ุจุฏู„ ู…ุง ู†ู…ุดูŠ ุงุซู†ูŠู† ูˆ ุชู„ุงุชุฉ ูˆ ุฃุฑุจุนุฉ ุจุฏู†ุง ู†ุฑูˆุญ
524
+
525
+ 132
526
+ 00:15:16,150 --> 00:15:22,070
527
+ ุฅู„ู‰ N ูŠุจู‚ู‰ ุจุฏู‡ ูŠุฌูŠ ุขุฎุฐ ู‡ู†ุง also
528
+
529
+ 133
530
+ 00:15:23,870 --> 00:15:28,890
531
+ ู„ูˆ ุฃุฎุฐุช ุฑูˆู†ุณูƒูŠู† as a function of x ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡
532
+
533
+ 134
534
+ 00:15:28,890 --> 00:15:39,410
535
+ ูŠุณุงูˆูŠ E ุฃูุณ R1X E ุฃูุณ R2X ูˆุธู„ุช ู…ุณุชู…ุฑ ู„ุบุงูŠุฉ E ุฃูุณ RNX
536
+
537
+ 135
538
+ 00:15:40,000 --> 00:15:50,480
539
+ ุจุงู„ุถุจุท ุฃุดุชู‚ ูŠุจู‚ู‰ R1 E ุฃุณ R1 X R2 E ุฃุณ R2 X RN E
540
+
541
+ 136
542
+ 00:15:50,480 --> 00:16:01,650
543
+ ุฃุณ RN X ู†ุดุชู‚ ูƒู…ุงู† ู…ุฑุฉ ูŠุจู‚ู‰ R1 ุชุฑุจูŠุน E ุฃุณ R1 XR2
544
+
545
+ 137
546
+ 00:16:01,650 --> 00:16:11,070
547
+ ุชุฑุจูŠุน E ุฃูุณ R2 X ูˆู†ุธู„ ู…ุงุดูŠูŠู† R N ุชุฑุจูŠุน E ุฃูุณ R N X
548
+
549
+ 138
550
+ 00:16:11,070 --> 00:16:19,330
551
+ ู„ูˆ ุธู„ุช ู…ุณุชู…ุฑุฉ ูŠุง ุจู†ุงุช ุฃูˆุตู„ ู„ูˆูŠู† ู„ู„ู€ R1 ุฃูุณ N ู†ุงู‚ุต
552
+
553
+ 139
554
+ 00:16:19,330 --> 00:16:26,020
555
+ ูˆุงุญุฏ E ุฃูุณ R1 X ูŠุนู†ูŠ ู…ุง ุฃู‚ุตุฏุด ู„ู„ู…ุดุชู‚ุฉ ู‚ุงู†ูˆู†ูŠุงู‹ ูˆุฅู†ู…ุง
556
+
557
+ 140
558
+ 00:16:26,020 --> 00:16:31,000
559
+ ุฃู‚ู„ ู…ู† ุงู„ู…ุดุชู‚ุฉ ู‚ุงู†ูˆู†ูŠุงู‹ ุจู…ู‚ุฏุงุฑ ู„ุฃู† ุงู„ุตู ุงู„ุฃูˆู„ ู…ุง ููŠุด
560
+
561
+ 141
562
+ 00:16:31,000 --> 00:16:36,920
563
+ ููŠู‡ ุงุดุชู‚ุงุก ุทูŠุจ ุชู…ุงู… ุงู„ุซุงู†ูŠุฉ R2 to the power n
564
+
565
+ 142
566
+ 00:16:36,920 --> 00:16:45,760
567
+ minus ุงู„ู€ one E ุฃุณ R to X ู†ุธู„ ู…ุณุชู…ุฑูŠู† ู„ุบุงูŠุฉ RN ุฃุณ N
568
+
569
+ 143
570
+ 00:16:45,760 --> 00:16:53,900
571
+ ู†ุงู‚ุต ูˆุงุญุฏ E ุฃูุณ RN X ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุทูŠุจ ู„ูˆ
572
+
573
+ 144
574
+ 00:16:53,900 --> 00:16:59,140
575
+ ุฌุฆุชู‡ุง ุนู…ู„ุช ุฒูŠ ุงู„ู„ูŠ ู‚ุจู„ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุญูƒุช ุงู„ุชุงู„ูŠ ุจุฏูŠ
576
+
577
+ 145
578
+ 00:16:59,140 --> 00:17:09,000
579
+ ูŠุตูŠุฑ E ุฃูุณ R1 ุฒุงุฆุฏ R2 ุฒุงุฆุฏ R3 ุฒุงุฆุฏ RN ูƒู„ู‡ ููŠ X ููŠ
580
+
581
+ 146
582
+ 00:17:09,000 --> 00:17:17,760
583
+ ู…ูŠู† ูŠุง ุจู†ุงุชุŸ ููŠ ุงู„ DN D2 D3 DN ูˆู‡ุฐุง ูƒู„ู‡ ู„ุง ูŠุณุงูˆูŠ
584
+
585
+ 147
586
+ 00:17:17,760 --> 00:17:20,760
587
+ zero where ุญูŠุซ
588
+
589
+ 148
590
+ 00:17:23,060 --> 00:17:30,820
591
+ ุจู†ู†ุดู„ ู†ุดูˆู ู…ูŠู† ู‡ูŠ DN ู‡ุฐู‡ ุญูŠุซ ุงู„ DN ู‡ูŠ ุนุจุงุฑุฉ ุนู†
592
+
593
+ 149
594
+ 00:17:30,820 --> 00:17:43,210
595
+ ุงู„ู…ุญุฏุฏ 1 1 1 ู‡ู†ุง R1 R2 R3 RN ู‡ู†ุง R1 ุชุฑุจูŠุน
596
+
597
+ 150
598
+ 00:17:43,210 --> 00:17:52,090
599
+ R2 ุชุฑุจูŠุน R3 ุชุฑุจูŠุน RN ุชุฑุจูŠุน ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ R1
600
+
601
+ 151
602
+ 00:17:52,090 --> 00:17:59,020
603
+ ุฃุณ N ู†ุงู‚ุต ูˆุงุญุฏ R2 ุฃูุณ N ู†ุงู‚ุต ูˆุงุญุฏ R3 ุฃูุณ N ู†ุงู‚ุต
604
+
605
+ 152
606
+ 00:17:59,020 --> 00:18:06,540
607
+ ูˆุงุญุฏ RN ุฃูุณ N ู†ุงู‚ุต ูˆุงุญุฏ ูˆู‡ูŠ ุงู„ู…ุญุฏุฏ ูˆู‡ุฐุง ู…ุง ู„ู‡ุŸ ู„ุง
608
+
609
+ 153
610
+ 00:18:06,540 --> 00:18:13,810
611
+ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูƒุฐู„ูƒ ู…ุง ุฏุงู… ู„ุง ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูŠุจู‚ู‰ ุตุญ ุงู„ู„ูŠ
612
+
613
+ 154
614
+ 00:18:13,810 --> 00:18:21,270
615
+ ู‡ูŠ ุงู„ E ุฃุณ R one X ูˆ ุงู„ E ุฃุณ R two X ูˆู†ุธู„ ู…ุงุดูŠ ู„ุบุงูŠุฉ
616
+
617
+ 155
618
+ 00:18:21,270 --> 00:18:28,570
619
+ E ุฃุณ R in X are linearly independent ู„ูŠุดุŸ ู„ุฃู†
620
+
621
+ 156
622
+ 00:18:28,570 --> 00:18:35,050
623
+ ุงู„ู…ุญุฏุฏ ุชุจุนู‡ู… ูƒู„ู‡ ู„ุง ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูˆ ู‡ู†ุง stop ุงู†ุชู‡ู‰
624
+
625
+ 157
626
+ 00:18:35,050 --> 00:18:42,830
627
+ ู‡ุฐุง ุงู„ section ูˆุฅู„ู‰ ูŠูƒูˆู† ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ ู…ู† exercises
628
+
629
+ 158
630
+ 00:18:42,830 --> 00:18:50,210
631
+ ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ exercises ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ูˆุงุญุฏ ุงุซู†ูŠู†
632
+
633
+ 159
634
+ 00:18:50,210 --> 00:19:01,670
635
+ ุฃุฑุจุนุฉ ูˆ ู‡ู†ุง ุณุจุนุฉ ูˆ ู‡ู†ุง ุชู…ุงู†ูŠุฉ ุจุฏู†ุง
636
+
637
+ 160
638
+ 00:19:01,670 --> 00:19:09,520
639
+ ู†ุฃุชูŠ ุงู„ุขู† ู„ุฃู‡ู… section ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐุง ุงู„ chapter ุฃูˆ ู…ู†
640
+
641
+ 161
642
+ 00:19:09,520 --> 00:19:25,620
643
+ ุฃู‡ู… ุงู„ sections ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ู‡ุฐุง ุงู„ chapter ู‡ุฐุง
644
+
645
+ 162
646
+ 00:19:25,620 --> 00:19:32,390
647
+ ุงู„ู…ูˆุถูˆุน ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ section 3-5 ุชู„ุงุชุฉ ุฎู…ุณุฉ ุงู„ู„ูŠ ู‡ูˆ
648
+
649
+ 163
650
+ 00:19:32,390 --> 00:19:38,550
651
+ dimensions dimensions
652
+
653
+ 164
654
+ 00:19:38,550 --> 00:19:45,870
655
+ ู…ููุฑุถู‡ุง dimension ูŠุนู†ูŠ ุฃุจุนุงุฏ dimensions ูŠุนู†ูŠ ุฃุจุนุงุฏ
656
+
657
+ 165
658
+ 00:19:45,870 --> 00:19:52,230
659
+ ู†ูุนุทูŠ
660
+
661
+ 166
662
+ 00:19:52,230 --> 00:19:59,030
663
+ ุชุนุฑูŠููŠู† ูˆุจุนุฏ ู‡ูŠูƒ ู†ุจุฏุฃ ููŠ ุทุฑุญ ุงู„ุฃู…ุซู„ุฉ definition
664
+
665
+ 167
666
+ 00:20:01,970 --> 00:20:17,250
667
+ Let capital V Be A Vector Space Vector Space Then V
668
+
669
+ 168
670
+ 00:20:17,250 --> 00:20:25,530
671
+ Is Said To Be A Finite Dimensional Vector
672
+
673
+ 169
674
+ 00:20:39,370 --> 00:20:50,150
675
+ finite dimensional vector space F ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
676
+
677
+ 170
678
+ 00:20:50,150 --> 00:20:52,330
679
+ there exists a set
680
+
681
+ 171
682
+ 00:21:04,520 --> 00:21:18,660
683
+ of linearly
684
+
685
+ 201
686
+ 00:27:50,410 --> 00:27:54,930
687
+ If V is a vector space then V is said to be a finite
688
+
689
+ 202
690
+ 00:27:54,930 --> 00:27:59,010
691
+ dimensional vector space. F ุฅูŠุด ูŠุนู†ูŠ finite
692
+
693
+ 203
694
+ 00:27:59,010 --> 00:28:04,150
695
+ dimensional vector spaceุŸ finite ู…ุญุฏูˆุฏ ูˆ dimension
696
+
697
+ 204
698
+ 00:28:04,150 --> 00:28:09,060
699
+ ู‚ุตุฏู‡ุง ูŠุจู‚ู‰ ู„ู…ุง ุฃู‚ูˆู„ finite dimensional vector space
700
+
701
+ 205
702
+ 00:28:09,060 --> 00:28:15,680
703
+ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ vector space ู„ู‡ ุฃุจุนุงุฏ ู…ุญุฏูˆุฏุฉ ุชู…ุงู… ุฅุฐุง
704
+
705
+ 206
706
+ 00:28:15,680 --> 00:28:22,960
707
+ ุชุญู‚ู‚ ุดุฑุทุงู† ู…ุง ู‡ู…ุง ู‡ุฐุงู† ุงู„ุดุฑุทุงู†ุŸ ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุจูŠู‚ูˆู„ if
708
+
709
+ 207
710
+ 00:28:22,960 --> 00:28:28,440
711
+ there exists a set of n linearly independent vectors of V
712
+
713
+ 208
714
+ 00:28:28,440 --> 00:28:33,860
715
+ ู„ู‚ูŠุช ู„ูŠ two vectors ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ุฎู…ุณุฉ ู‚ุฏ ู…ุง ูŠูƒูˆู†
716
+
717
+ 209
718
+ 00:28:33,860 --> 00:28:38,900
719
+ ู‡ุฏูˆู„ ุงู„ู…ุฌู…ูˆุนุฉ are linearly independent. ุงู„ุดุฑุท ุงู„ุฃูˆู„
720
+
721
+ 210
722
+ 00:28:38,900 --> 00:28:44,820
723
+ ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ: every set of more than n elements is
724
+
725
+ 211
726
+ 00:28:44,820 --> 00:28:51,840
727
+ linearly dependent. ูŠุจู‚ู‰ ุฃู†ุง ู„ู‚ูŠุช ุนู†ุฏูŠ n ู…ู† ุงู„ู€
728
+
729
+ 212
730
+ 00:28:51,840 --> 00:28:55,640
731
+ linearly independent vectors ู„ูˆ ุญุทูŠุช ุนู„ูŠู‡ู… ูƒู…ุงู†
732
+
733
+ 213
734
+ 00:28:55,640 --> 00:29:01,660
735
+ ูˆุงุญุฏ ุจุตูŠุฑ ุงู„ุนุฏุฏ ู‡ู… ุฌุฏูŠุฏ ุงู† ุฒูŠุฏ ูˆุงุญุฏ ูŠุนู†ูŠ ุงู† ุฒูŠุฏ ูˆุงุญุฏ
736
+
737
+ 214
738
+ 00:29:01,660 --> 00:29:07,680
739
+ ูู…ุง ููˆู‚ู‡ ูŠุนุชุจุฑ linearly dependent. ู…ู…ุชุงุฒ ุฌุฏุง ูŠุจู‚ู‰ ุงู„
740
+
741
+ 215
742
+ 00:29:07,680 --> 00:29:13,060
743
+ vector space ุงู„ู„ูŠ ุงุณู…ู‡ V ุจู‚ูˆู„ ุนู†ู‡ finite dimensional ู…ุญุฏูˆุฏ
744
+
745
+ 216
746
+ 00:29:13,060 --> 00:29:18,800
747
+ ุฅุฐุง ู‚ุฏุฑุช ุฃุฌูŠุจ n ู…ู† ุงู„ linearly independent
748
+
749
+ 217
750
+ 00:29:18,800 --> 00:29:23,980
751
+ elements ุฃูŠ ุนุฏุฏ ุขุฎุฑ ุณูˆุงุก ุฅู† ุชุจุนุชูŠ ู‡ุฏูˆู„ ูˆ ุงุฒูŠุฏ
752
+
753
+ 218
754
+ 00:29:23,980 --> 00:29:28,560
755
+ ุนู„ูŠู‡ู… ูˆุงุญุฏ ุฃูˆ ู…ู† ุบูŠุฑู‡ู… ูŠุฌุจ ุฃู† ูŠูƒูˆู†ูˆุง ูƒู„ู‡ู… linearly
756
+
757
+ 219
758
+ 00:29:28,560 --> 00:29:33,320
759
+ dependent. ุฅู† ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุจู‚ูˆู„ ู‡ุฐุง finite
760
+
761
+ 220
762
+ 00:29:33,320 --> 00:29:38,900
763
+ dimensional vector space ูˆ ุงู„ dimension ุฅู„ู‡ ุงู„ุจุนุฏ
764
+
765
+ 221
766
+ 00:29:38,900 --> 00:29:43,100
767
+ ุชุจุนู‡ ุจุฏูŠ ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ุจุฏูŠ ูŠุณุงูˆูŠ n. ูŠุจู‚ู‰ in the above
768
+
769
+ 222
770
+ 00:29:43,100 --> 00:29:46,320
771
+ definition ููŠ ุงู„ุชุนุฑูŠูุฉ ู„ูˆ we say that ุจุฑูˆุญ ู†ู‚ูˆู„
772
+
773
+ 223
774
+ 00:29:46,320 --> 00:29:52,020
775
+ ุฅู†ู‡ ููŠ has dimension n ุฃู† ุงู„ุจุนุฏ ุชุจุน ู‡ุฐุง ุงู„ vector
776
+
777
+ 224
778
+ 00:29:52,020 --> 00:29:57,940
779
+ space ูŠุณุงูˆูŠ n. ุฃูˆ ุตูŠุงุบุฉ ุฃุฎุฑู‰ ุจู‚ูˆู„ ุฅู† ุงู„ V is n
780
+
781
+ 225
782
+ 00:29:57,940 --> 00:30:01,480
783
+ dimensional vector space. ุฅู† ู‚ู„ุช ุงู„ dimension ู„ู‡
784
+
785
+ 226
786
+ 00:30:01,480 --> 00:30:06,920
787
+ ุงู„ู„ูŠ ุนุฏุฏ ุงู„ุฃุจุนุงุฏ ุชุจุนู‡ ูŠุณุงูˆูŠ n ุฃูˆ ู‚ู„ุช ู‡ูˆ finite n
788
+
789
+ 227
790
+ 00:30:06,920 --> 00:30:10,140
791
+ dimensional vector space. ุงู„ุตูŠุงุบุฉ ู‡ุฐู‡ ุฃูˆ ุงู„ุตูŠุงุบุฉ
792
+
793
+ 228
794
+ 00:30:10,140 --> 00:30:15,460
795
+ ู‡ุฐู‡ ุงู„ุงุชู†ูŠู† are the same. ูŠุจู‚ูˆุง ู…ุชุนุจุฑูŠู† ุตุญ ู…ู† ุงู„ two
796
+
797
+ 229
798
+ 00:30:15,460 --> 00:30:21,080
799
+ definitions. ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุทุจ ุงู„ุณุคุงู„ ู‡ูˆ: ุทุจ ู„ูˆ ูƒุงู† ุงู„
800
+
801
+ 230
802
+ 00:30:21,080 --> 00:30:25,400
803
+ vector space ู‡ูˆ ุงู„ trivial ุงู„ vector space. ุดูˆ ุงู„ trivial
804
+
805
+ 231
806
+ 00:30:25,400 --> 00:30:28,200
807
+ ุงู„ vector spaceุŸ ูŠุนู†ูŠ ุงู„ vector space ุงู„ู„ูŠ ู„ุง
808
+
809
+ 232
810
+ 00:30:28,200 --> 00:30:34,240
811
+ ูŠุญุชูˆูŠ ุฅู„ุง ุนู„ู‰ ุนู†ุตุฑ ูˆุงุญุฏ ูˆ ุนู†ุตุฑ ุตูุฑูŠู†. ูŠุจู‚ู‰ ู‡ุฐุง ุจู‚ูˆู„
812
+
813
+ 233
814
+ 00:30:34,240 --> 00:30:38,920
815
+ ุงู„ dimension ู„ู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ูŠุณุงูˆูŠ zero ู„ุฃู†ู‡
816
+
817
+ 234
818
+ 00:30:38,920 --> 00:30:42,660
819
+ ู…ุง ุนู†ุฏูŠุด ุบูŠุฑ ุนู†ุตุฑ ุบูŠุฑ ุงู„ูˆุงุญุฏ ูˆ ู‡ุฐุง ู…ุง ููŠุด vectors
820
+
821
+ 235
822
+ 00:30:42,660 --> 00:30:50,340
823
+ ุฃุฎุฑู‰. ุฅุฐุง ู‡ูˆ ู…ุณุชู‚ู„ ูˆ ู‚ุงุฆู… ุจุฐุงุชู‡ ูŠุนู†ูŠ linearly ู„ูˆ
824
+
825
+ 236
826
+ 00:30:50,340 --> 00:30:55,060
827
+ ูˆุฌุฏู†ุง ูƒู„ู…ุฉ ุฃุฎุฑู‰ ููŠู‡ุง ุฃุฎุฑู‰ ู…ุง ููŠุด ู„ุฅู† ู‡ูˆ zero
828
+
829
+ 237
830
+ 00:30:55,060 --> 00:30:59,420
831
+ ู„ุญุงู„ู‡ ุชู…ุงู… ูŠุจู‚ู‰ ูƒุฃู†ู‡ ู‡ุฐุง ุจูŠู‚ูˆู„ูƒ ู„ูˆ ููŠู‡ ุจุฏูˆ ูŠูƒูˆู†ูˆุง
832
+
833
+ 238
834
+ 00:30:59,420 --> 00:31:03,960
835
+ linearly dependent ูŠุจู‚ู‰ ู‡ุฐุง ู…ุญู‚ู‚ ุจุงู„ุดุฑุทูŠู† ูŠุจู‚ู‰ ู‡ุฐุง
836
+
837
+ 239
838
+ 00:31:03,960 --> 00:31:09,740
839
+ ุงู„ dimension ู„ู‡ ูŠุณุงูˆูŠ zero. ุทูŠุจ ูƒูˆูŠุณ ู†ุฌูŠ ู„ู„ู…ู„ุงุญุธุฉ
840
+
841
+ 240
842
+ 00:31:09,740 --> 00:31:14,270
843
+ ุงู„ุชุงู†ูŠุฉ ุฃูˆ ุงู„ู€ Definition ุงู„ุชุงู†ูŠุฉ ุจูŠู‚ูˆู„ ุฅุฐุง vectors
844
+
845
+ 241
846
+ 00:31:14,270 --> 00:31:20,470
847
+ V1 ูˆ V2 ู„ุบุงูŠุฉ Vk ููŠ ุฅู† Vector Space V are said to
848
+
849
+ 242
850
+ 00:31:20,470 --> 00:31:26,610
851
+ form a basis for V. basis ูŠุนู†ูŠ ุฃุณุงุณ ูŠุจู‚ู‰ ู‡ุฏูˆู„ ู‡ู…
852
+
853
+ 243
854
+ 00:31:26,610 --> 00:31:32,250
855
+ ุงู„ุฃุณุงุณ ุจุงู„ู†ุณุจุฉ ู„ V ุฅุฐุง ุชุญู‚ู‚ ุดุฑุทุง. ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุฃู† ุงู„
856
+
857
+ 244
858
+ 00:31:32,250 --> 00:31:38,150
859
+ V ู‡ุฏูˆู„ span V. Span V ูŠุนู†ูŠ ุฅูŠุดุŸ ูŠุนู†ูŠ ุจูŠูˆู„ุฏูˆู„ูŠ ุฌู…ูŠุน
860
+
861
+ 245
862
+ 00:31:38,150 --> 00:31:43,890
863
+ ุนู†ุงุตุฑ ุงู„ vector space V ุจุงู„ุงุณุชู‚ู„ุงู„ ุจุงู„ุจู„ุฏูŠ ู‡ูŠูƒ ูŠุนู†ูŠ
864
+
865
+ 246
866
+ 00:31:43,890 --> 00:31:49,530
867
+ ุฃูŠ vector ููŠู‡ V ุจุฏูˆ ูŠูƒูˆู† linear combination ู…ู† ุงู„
868
+
869
+ 247
870
+ 00:31:49,530 --> 00:31:54,410
871
+ vectors ู…ู† V1 ู„ุบุงูŠุฉ Vk. ูŠุนู†ูŠ ุฃูŠ vector ููŠ ุงู„ vector
872
+
873
+ 248
874
+ 00:31:54,410 --> 00:31:59,850
875
+ space V ุจู‚ุฏุฑ ุงูƒุชุจู‡ ุนู„ู‰ ุดูƒู„ linear combination ู…ู†
876
+
877
+ 249
878
+ 00:31:59,850 --> 00:32:05,350
879
+ V1 ูˆ V2 ูˆ V3 ู„ุบุงูŠุฉ Vk ู„ุบุงูŠุฉ Vk. ู‡ุฐุง ุงู„ุดุฑุท ุงู„ุฃูˆู„.
880
+
881
+ 250
882
+ 00:32:05,350 --> 00:32:10,870
883
+ ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ: V1 ูˆ V2 ูˆ Vk are linearly independent.
884
+
885
+ 251
886
+ 00:32:10,870 --> 00:32:15,950
887
+ ูŠุจู‚ู‰ ุฃู†ุง ู…ุดุงู† ุงุฎุชุจุฑ ุฅู† ู‡ุฏูˆู„ ุจู†ูุน basis ู„ู„ vector
888
+
889
+ 252
890
+ 00:32:15,950 --> 00:32:21,000
891
+ space ูˆู„ุง ู„ุฃ ุจุฏูŠ ุฃู…ุฑูŠู†. ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„: ุฃุฑูŠุฏ ุฃู† ุฃุซุจุช ุฃู†
892
+
893
+ 253
894
+ 00:32:21,000 --> 00:32:23,380
895
+ ู‡ุคู„ุงุก ุงู„ูˆูƒุชูˆุฑุฒ ู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
896
+
897
+ 254
898
+ 00:32:23,380 --> 00:32:25,960
899
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
900
+
901
+ 255
902
+ 00:32:25,960 --> 00:32:29,000
903
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
904
+
905
+ 256
906
+ 00:32:29,000 --> 00:32:29,420
907
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
908
+
909
+ 257
910
+ 00:32:29,420 --> 00:32:32,080
911
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
912
+
913
+ 258
914
+ 00:32:32,080 --> 00:32:35,560
915
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
916
+
917
+ 259
918
+ 00:32:35,560 --> 00:32:42,580
919
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…
920
+
921
+ 260
922
+ 00:32:43,930 --> 00:32:47,090
923
+ ุจุฑูˆุญ ู„ู„ุดุฑุท ุงู„ุซุงู†ูŠ ููŠ ุงู„ุฃูˆู„ ุฃูุถู„ ู„ูŠุดุŸ ู„ุฃู†ู‡ ุฅู† ุทู„ุน
924
+
925
+ 261
926
+ 00:32:47,090 --> 00:32:51,410
927
+ linearly dependent ุจุฑูˆุญ ู„ู„ุดุฑุท ุงู„ุซุงู†ูŠ. ู„ูƒู† ู„ูˆ ุฅุฐุง
928
+
929
+ 262
930
+ 00:32:51,410 --> 00:32:55,010
931
+ ุนู…ู„ุช ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุจุฏุฃ ุฃุฑูˆุญ ุฃุฎุชุจุฑ ู…ู† ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ
932
+
933
+ 263
934
+ 00:32:55,010 --> 00:33:00,840
935
+ ุฅุฌุจุงุฑูŠ ูŠุจู‚ู‰ ุงู„ุฃูุถู„ ุฃู† ุฃุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ุดุฑุท ุงู„ุซุงู†ูŠ. ูŠุจู‚ู‰
936
+
937
+ 264
938
+ 00:33:00,840 --> 00:33:07,620
939
+ ูŠุง ุจู†ุงุช ู…ุดุงู† ูŠูƒูˆู† ุนู†ุฏูŠ basis ู„ู„ vector space ุจุฏูŠ
940
+
941
+ 265
942
+ 00:33:07,620 --> 00:33:12,800
943
+ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vectors ุงู„ู„ูŠ ุชุจู‚ู‰ basis ูŠุชุญู‚ู‚
944
+
945
+ 266
946
+ 00:33:12,800 --> 00:33:16,580
947
+ ููŠู‡ุง ุดุฑุทุง. ุงู„ุดุฑุท ู„ูˆ ุชุจู‚ู‰ ูƒู„ู‡ู… linearly independent
948
+
949
+ 267
950
+ 00:33:17,810 --> 00:33:21,650
951
+ ุฃูŠ vector ููŠ ุงู„ vector space ุจู‚ุฏุฑ ุฃูƒุชุจู‡ ุนู„ู‰ ุตูŠุบุฉ
952
+
953
+ 268
954
+ 00:33:21,650 --> 00:33:25,250
955
+ linear combination ู…ู† ู‡ุฐู‡ ุงู„ vectors. ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„
956
+
957
+ 269
958
+ 00:33:25,250 --> 00:33:30,250
959
+ vectors is span V ุจุชูˆู„ุฏ ู„ู„ vector V. ู†ุนุทูŠ ู…ุซุงู„ ุชูˆุถูŠุญูŠ.
960
+
961
+ 270
962
+ 00:33:30,250 --> 00:33:34,490
963
+ ู…ุซุงู„ ุจูŠู‚ูˆู„ ู…ุง ูŠู„ูŠ. ุจูŠู‚ูˆู„: show the vectors ูˆู…ุนุทูŠู†ูŠ
964
+
965
+ 271
966
+ 00:33:34,490 --> 00:33:40,890
967
+ ุฃุฑุจุนุฉ vectors ู…ูˆุฌูˆุฏุฉ ูˆูŠู†ู‡ุคู„ุงุก ูŠุซุจุช ู„ูŠ ุฅู† ู‡ุคู„ุงุก
968
+
969
+ 272
970
+ 00:33:40,890 --> 00:33:46,310
971
+ ุจูŠุดูƒู„ูˆุง basis ู„ู…ูŠู… ู„ ุงู„ vector space ุงู„ู„ูŠ ุนู†ุฏู†ุง.
972
+
973
+ 273
974
+ 00:33:46,310 --> 00:33:51,090
975
+ ุจู‚ูˆู„ ู„ู‡ ูˆุงู„ู„ู‡ ูƒูˆูŠุณ ุทูŠุจ ุชุนุงู„ู‰ ู†ุดูˆู ู‡ู„ ู‡ุคู„ุงุก ุจูŠุดูƒู„ูˆุง
976
+
977
+ 274
978
+ 00:33:51,090 --> 00:33:54,650
979
+ basis ูˆู„ุง ู„ุฃ ูŠุจู‚ู‰ ุจุฃูˆู„ ุฎุทูˆุฉ ุจุฏูŠ ุฃุซุจุช ุฅู† ู‡ู… ูŠุนูŠุดูŠู†
980
+
981
+ 275
982
+ 00:33:55,660 --> 00:34:00,300
983
+ Linearly Independent. ู„ูƒูŠ ุฃุซุจุชู‡ู… ุงู„ู„ูŠ ู‚ุจู„ ุงู„ู…ุงุถูŠ
984
+
985
+ 276
986
+ 00:34:00,300 --> 00:34:04,900
987
+ ุฃุฎุฏู†ุง ุดุบู„ุงุช
988
+
989
+ 277
990
+ 00:34:04,900 --> 00:34:08,960
991
+ ูƒุซูŠุฑุฉ ุจุฏุงูƒ ุนู† ุทุฑูŠู‚ ุงู„ู…ุญุฏุฏ. ู…ุงุดูŠ. ุจุฏุงูƒ ุชู‚ูˆู„ ุงู„
992
+
993
+ 278
994
+ 00:34:08,960 --> 00:34:12,620
995
+ constant ููŠ ุงู„ุฃูˆู„ ูˆุงู„ุซุงู„ุซ ูˆุงู„ุฑุงุจุน ูŠุชุณุงูˆูŠ ุฒูŠุฑูˆ
996
+
997
+ 279
998
+ 00:34:12,620 --> 00:34:16,640
999
+ ูˆุงู„ุฑูˆุญ ู†ูุณ ุงู„ุดูŠุก ููŠ ุงู„ุซุงู†ูŠุฉ ุฏูŠ ุงู„ constant ุจุฒูŠุฑูˆ ู…ุงุดูŠ ุจุณูŠุงู†
1000
+
1001
+ 280
1002
+ 00:34:16,640 --> 00:34:24,360
1003
+ ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ ุจุฃูŠ ูˆุณูŠู„ุฉ ุชู†ุดุง ูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ ุฃุดูˆู ุงู„ู„ูŠ
1004
+
1005
+ 281
1006
+ 00:34:24,360 --> 00:34:27,560
1007
+ ู‡ูˆ ู„ูˆ ู‚ู„ุช constant ููŠ ุงู„ุฃูˆู„ ูˆ constant ููŠ ุงู„ุซุงู†ูŠ ูˆ
1008
+
1009
+ 282
1010
+ 00:34:27,560 --> 00:34:30,840
1011
+ constant ููŠ ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ ุฃู‚ูˆู„ ู„ู‡ assume
1012
+
1013
+ 283
1014
+ 00:34:30,840 --> 00:34:41,800
1015
+ that there exists c1 ูˆ c2 ูˆ c3 ูˆ c4 in R such that
1016
+
1017
+ 284
1018
+ 00:34:42,190 --> 00:34:53,090
1019
+ ุจุญูŠุซ ุฅู† c1 V1 ุฒุงุฆุฏ c2 V2 ุฒุงุฆุฏ c3 V3 ุฒุงุฆุฏ c4 V4 ุจุฏู‡
1020
+
1021
+ 285
1022
+ 00:34:53,090 --> 00:34:55,170
1023
+ ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ุจุฏู‡ ูŠุณุงูˆูŠ zero.
1024
+
1025
+ 286
1026
+ 00:34:59,430 --> 00:35:11,530
1027
+ ู‡ุฐุง c1 zero c1 zero ุฒุงุฆุฏ zero c2 ุณุงู„ุจ c2 ุงุซู†ูŠู† c2
1028
+
1029
+ 287
1030
+ 00:35:11,530 --> 00:35:18,950
1031
+ ุฒุงุฆุฏ ุจุฏุง ูŠุฌูŠ c3 ูŠุจู‚ู‰ zero ุงุซู†ูŠู† c ุซู„ุงุซุฉ ุงุซู†ูŠู† c
1032
+
1033
+ 288
1034
+ 00:35:18,950 --> 00:35:25,750
1035
+ ุซู„ุงุซุฉ c ุซู„ุงุซุฉ ุฐุงุช ุงู„ vector ุงู„ุฑุงุจุน ูŠุจู‚ุงุด ุจุฏูˆ ูŠูƒูˆู†
1036
+
1037
+ 289
1038
+ 00:35:25,750 --> 00:35:34,450
1039
+ ุงู„ู„ูŠ ู‡ู…ูŠู† c4 ูŠุจู‚ู‰ c4 ูˆ zero ูˆ zero ูˆ c4 ูƒู„ ู‡ุฐุง
1040
+
1041
+ 290
1042
+ 00:35:34,450 --> 00:35:40,890
1043
+ ุงู„ูƒู„ุงู… ุจุฏูˆ ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ุจุฏูˆ ูŠุณุงูˆูŠ zero. ุชู…ุงู… ุชู…ุงู….
1044
+
1045
+ 291
1046
+ 00:35:57,300 --> 00:36:03,380
1047
+ ุนู† ุทุฑูŠู‚ ุงู„ูˆุตูˆู„
1048
+
1049
+ 292
1050
+ 00:36:03,380 --> 00:36:12,340
1051
+ ุฅู„ู‰ ุงู„ c1 ู…ุน ุงู„ุณู„ุงู…ุฉ ุฒุงุฆุฏ c4 ุงู„ู„ูŠ ุจุนุฏู‡ zero c2
1052
+
1053
+ 293
1054
+ 00:36:12,340 --> 00:36:23,460
1055
+ ุงู„ู„ูŠ ุจุนุฏู‡ 2c3 2c3 zero ู…ุน ุงู„ุณู„ุงู…ุฉ ุงู„ู„ูŠ ุจุนุฏู‡ c1-c2
1056
+
1057
+ 294
1058
+ 00:36:23,460 --> 00:36:26,720
1059
+ 2c3
1060
+
1061
+ 295
1062
+ 00:36:26,720 --> 00:36:35,180
1063
+ zero ู…ุน ุงู„ุณู„ุงู…ุฉ ุงู„ุนู†ุตุฑ ุงู„ุฑุงุจุน ุงู„ุฃูˆู„ ุฑุงุญ 2c2 ุฒุงุฆุฏ c3
1064
+
1065
+ 296
1066
+ 00:36:35,180 --> 00:36:42,120
1067
+ ุฒุงุฆุฏ c4 ูƒู„ู‡ ุจุฏูˆ ูŠุณุงูˆูŠ zero ูˆ zero ูˆ zero. ุดูƒู„ ุงู„ู„ูŠ
1068
+
1069
+ 297
1070
+ 00:36:42,120 --> 00:36:47,820
1071
+ ุนู†ุฏู†ุง ู‡ู†ุง ู†ุนู…ู„ ู…ู‚ุงุฑู†ุฉ ู…ุง ุจูŠู† ุงู„ุทุฑููŠู†. ูŠุจู‚ู‰ ุจู†ุงุก
1072
+
1073
+ 298
1074
+ 00:36:47,820 --> 00:36:57,540
1075
+ ุนู„ูŠู‡ c1 ุฒุงุฆุฏ c4 ุจุฏูˆ ูŠุณุงูˆูŠ zero ุงู„ู„ูŠ ุจุนุฏู‡ c2 ุฒุงุฆุฏ 2
1076
+
1077
+ 299
1078
+ 00:36:57,540 --> 00:37:07,820
1079
+ c3 ุจุฏูˆ ูŠุณุงูˆูŠ zero ุงู„ู„ูŠ ุจุนุฏู‡ c1 ู†ุงู‚ุต c2 ุฒุงุฆุฏ 2 c3
1080
+
1081
+ 300
1082
+ 00:37:07,820 --> 00:37:20,460
1083
+ ุจุฏูˆ ูŠุณุงูˆูŠ zero ุงู„ู„ูŠ ุจุนุฏู‡ 2c2 ุฒุงุฆุฏ c3 ุฒุงุฆุฏ c4 ูƒู„ู‡
1084
+
1085
+ 301
1086
+ 00:37:20,460 --> 00:37:27,600
1087
+ ุจุฏูˆ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏูˆ ูŠุณุงูˆูŠ zero. ุทูŠุจ ุจุฏู†ุง ู†ุฌุฑุจ ุงู„ุขู†
1088
+
1089
+ 302
1090
+ 00:37:27,600 --> 00:37:34,700
1091
+ ู†ุดูˆู ุดูˆ ุจุฏู†ุง ู†ุนู…ู„ ููŠ ู‡ุฐุง ุงู„ system ู…ุดุงู† ู†ุญ๏ฟฝ๏ฟฝ ู‡ุฐุง ุงู„
1092
+
1093
+ 303
1094
+ 00:37:34,700 --> 00:37:41,520
1095
+ system ู„ู‡ ุฃุฑุจุน ู…ุนุงุฏู„ุงุช ููŠ ุฃุฑุจุนุฉ ู…ุฌุงู‡ูŠู„. ุทูŠุจ ู„ูˆ
1096
+
1097
+ 304
1098
+ 00:37:41,520 --> 00:37:51,420
1099
+ ุถุฑุจู†ุง ู‡ุฐู‡ ููŠ ุณุงู„ุจ ุจูŠุทูŠุฑ ู‡ุฐู‡ ุจูŠุธู„ c1 ูˆ c2 ุทูŠุจ ู„ูˆ
1100
+
1101
+ 305
1102
+ 00:37:51,420 --> 00:38:00,630
1103
+ ุถุฑุจู†ุง ุงู„ุฃูˆู„ู‰ ููŠ ุณุงู„ุจ ุจุชุฑูˆุญ ู‡ุฐู‡ ูˆ ... ุฃูˆ ุนู† ุทุฑูŠู‚
1104
+
1105
+ 306
1106
+ 00:38:00,630 --> 00:38:05,130
1107
+ ุงู„ู…ุตููˆูุงุช ูŠุง ู…ุงู† ุงุชุณูŠุง ุงู„ู…ุตููˆูุงุช ุฃูˆ ุฅุฐุง ูƒุงู†ุช ุจุชูŠุฌูŠ
1108
+
1109
+ 307
1110
+ 00:38:05,130 --> 00:38:09,190
1111
+ ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุจูƒูˆู†ูŠ ูƒูˆูŠุณ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏูŠ ุฃุดูˆู ุจุณ ุจุชูŠุฌูŠ
1112
+
1113
+ 308
1114
+ 00:38:09,190 --> 00:38:17,550
1115
+ ูˆู„ุง ุจุชูŠุฌูŠุด. ูŠุจู‚ู‰ ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐู‡ ู„ูˆ ุฌู…ุนู†ุงู‡ู… ุจูŠุธู„
1116
+
1117
+ 309
1118
+ 00:38:17,550 --> 00:38:25,480
1119
+ c ุซู„ุงุซุฉ ู…ุง ููŠุด ุบูŠุฑู‡ู… ูˆ ู‡ุฏูˆู„ ุณุงู„ุจ ุทูŠุจ ุจุชุฑูˆุญ ู‡ุฏู‰ ุทูŠุจ ู„ูˆ
1120
+
1121
+ 310
1122
+ 00:38:25,480 --> 00:38:36,420
1123
+ ู‡ุฏู‰ ุงู„ุณุงู„ุจ ุจุชุฑูˆุญ ู…ุน ุณุงู„ุจ ุฃู†ุง c1 ูˆ c2 ูˆ c3 ู‡ุฏู‰ ุทูŠุจ
1124
+
1125
+ 311
1126
+ 00:38:36,420 --> 00:38:45,510
1127
+ ู‡ู†ุง ุงุซู†ูŠู† c2 ูˆ ู‡ุง ุฏูŠ c4 ูŠุจู‚ู‰ ูˆุงุถุญ ุฅู†ู‡ ุบูŠุฑ ู†ุดุชุบู„
1128
+
1129
+ 312
1130
+ 00:38:45,510 --> 00:38:57,410
1131
+ ุดุบู„ุชูŠู† ู…ุน ุจุนุถ ูˆ ู…ู†ู‡ู… ู†ุญุงูˆู„ ุงู‡ ุชุงู†ูŠ
1132
+
1133
+ 313
1134
+ 00:38:57,410 --> 00:39:04,330
1135
+ ุชุงู†ูŠ ู…ู† ุฃูˆู„ ุฌุฏูŠุฏ ุนู„ูŠ ุตูˆุชูƒ ุดูˆูŠุฉ ุตุญูŠุญ
1136
+
1137
+ 314
1138
+ 00:39:11,550 --> 00:39:13,830
1139
+ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ
1140
+
1141
+ 315
1142
+ 00:39:13,830 --> 00:39:14,690
1143
+ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ
1144
+
1145
+ 316
1146
+ 00:39:14,690 --> 00:39:18,270
1147
+ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ
1148
+
1149
+ 317
1150
+ 00:39:18,270 --> 00:39:19,890
1151
+ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ
1152
+
1153
+ 318
1154
+ 00:39:19,890 --> 00:39:20,410
1155
+ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ
1156
+
1157
+ 319
1158
+ 00:39:20,410 --> 00:39:20,850
1159
+ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ
1160
+
1161
+ 320
1162
+ 00:39:20,850 --> 00:39:21,570
1163
+ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ
1164
+
1165
+ 321
1166
+ 00:39:21,570 --> 00:39:23,510
1167
+ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ
1168
+
1169
+ 322
1170
+ 00:39:23,510 --> 00:39:33,050
1171
+ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ
1172
+
1173
+ 323
1174
+ 00:39:33,050 --> 00:39:41,580
1175
+ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ูˆ ุฌูŠุช ุฌู…ุงุนุฉ ูˆ ุฃุดูˆู ุทุจ
1176
+
1177
+ 324
1178
+ 00:39:41,580 --> 00:39:47,700
1179
+ ู‡ูŠ c1 ูˆ c2 ู‡ุฏูˆู„ ุจูŠุฌูŠุจูˆู„ูŠ ุงู„ุฃุฑุจุนุฉ ู‡ุฏูˆู„ ุจูŠุฌูŠุจูˆู„ูŠ
1180
+
1181
+ 325
1182
+ 00:39:47,700 --> 00:39:54,680
1183
+ ุซู„ุงุซุฉ ูˆ ุจุฌูŠุจ ูˆุงุญุฏ ุจุฏู„ุงู„ุชู‡ ุงู„ุซุงู†ูŠ ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ู†ูุณ
1184
+
1185
+ 326
1186
+ 00:39:54,680 --> 00:39:59,520
1187
+ ุงู„ู‚ุตุฉ ุนู„ู‰ ุฃูŠ ุญุงู„ ู…ุง ุนู†ุฏู†ุงุด ู…ุดูƒู„ุฉ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ู‚ู„ุช ู…ุง
1188
+
1189
+ 327
1190
+ 00:39:59,520 --> 00:40:05,870
1191
+ ูŠุงุชูŠ ุดูˆู ูŠุง ุจู†ุงุช ุฃู†ุง ุจุฏูŠ ุฃู‚ูˆู„ ู‡ุฐู‡ ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุจุฏูŠ
1192
+
1193
+ 328
1194
+ 00:40:05,870 --> 00:40:12,330
1195
+ ุฃุชุฑูƒ ุงู„ุฃูˆู„ู‰ ุฒูŠ ู…ุง ู‡ูŠ c1 ูˆ c4 ูˆ ู„ูˆ ุฅู†ู‡ ู„ูˆ ุถุฑุจู†ุงู‡ุง
1196
+
1197
+ 329
1198
+ 00:40:12,330 --> 00:40:18,070
1199
+ ุงู‡ ุจุฏูŠ ุฃุถุฑุจู‡ุง ููŠ ุณุงู„ุจ ูŠุจู‚ู‰ ุจุฏูŠ ุฃู‚ูˆู„ ู‡ุฐู‡ ุงู„ุณุงู„ุจ c1
1200
+
1201
+ 330
1202
+ 00:40:18,070 --> 00:40:24,490
1203
+ ูˆ ู‡ู†ุง ุงู„ุณุงู„ุจ c4 ุจุฏูˆ ูŠุณุงูˆูŠ zero. ุงู„ุซุงู†ูŠุฉ ู„ูˆ ุฎู„ุชู‡ุง ุฒูŠ
1204
+
1205
+ 331
1206
+ 00:40:24,490 --> 00:40:33,250
1207
+ ู…ุง ู‡ูŠ c2 ุฒุงุฆุฏ 2 c3 ุจุฏูˆ ูŠุณุงูˆูŠ zero. ุงู„ุซุงู„ุซุฉ ู„ูˆ ุถุฑุจุชู‡ุง
1208
+
1209
+ 332
1210
+ 00:40:33,250 --> 00:40:41,710
1211
+ ููŠ ุณุงู„ุจ ูŠุจู‚ู‰ ุงู„ุซุงู„ุซุฉ ู„ูˆ ุฑูˆุญุช ู‚ูˆู„ ุณุงู„ุจ c1 ูˆ ุฒุงุฆุฏ c2
1212
+
1213
+ 333
1214
+ 00:40:41,710 --> 00:40:54,830
1215
+ ูˆ ู†ุงู‚ุต 2 c3 ุจุฏูˆ ูŠุณุงูˆูŠ 0 ูˆ ู‡ู†ุง 2c2 ุฒุงุฆุฏ c3 ุฒุงุฆุฏ c4 ุจุฏูˆ
1216
+
1217
+ 334
1218
+ 00:40:54,830 --> 00:40:58,960
1219
+ ูŠุณุงูˆูŠ 0 ูŠุจู‚ู‰ ุถุฑุจุช ุงู„ุฃูˆู„ู‰ ูˆุงู„ุซุงู„ุซุฉ ููŠ ุณุงู„ุจ ูˆ ุงู„ุจุงู‚ูŠ
1220
+
1221
+ 335
1222
+ 00:40:58,960 --> 00:41:04,950
1223
+ ุฎู„ูŠุชู‡ ุฒูŠ ู…ุง ู‡ูˆ. ุฃูˆู„ ุดูŠุก ู‡ุงุฏูŠ ู‡ุชุฑูˆุญ ู…ุน ู‡ุงุฏูŠ. ุชู…ุงู…. ุงุซู†ูŠู†
1224
+
1225
+ 336
1226
+ 00:41:04,950 --> 00:41:11,630
1227
+ c ุซู„ุงุซุฉ ุจุงู„ุณุงู„ุจ ู…ุน ุงุซู†ูŠู† c ุซู„ุงุซุฉ ุจุงู„ู…ูˆุฌุจ. ุชู…ุงู…. ุจุถู„
1228
+
1229
+ 337
1230
+ 00:41:11,630 --> 00:41:19,490
1231
+ ุนู†ุฏ ู…ูŠู† c ูˆุงุญุฏ ูˆ c ุงุซู†ูŠู† ูˆ c ุซู„ุงุซุฉ. ูƒุฐู„ูƒ ู…ุด ู…ุดูƒู„ุฉ
1232
+
1233
+ 338
1234
+ 00:41:19,490 --> 00:41:25,470
1235
+ ูŠุจู‚ู‰ ุจุตูŠุฑ ุนู†ุฏูŠ ุณุงู„ุจ ุงุซู†ูŠู† c ูˆุงุญุฏ ุณุงู„ุจ ุงุซู†ูŠู† c ูˆุงุญุฏ
1236
+
1237
+ 339
1238
+ 00:41:25,470 --> 00:41:31,110
1239
+ ุฒุงุฆุฏ c ุงุซู†ูŠู† ูˆุงู„ู„ู‡ ุฒุงุฆุฏ ุซู„ุงุซุฉ c ุงุซู†ูŠู†
1240
+
1241
+ 340
1242
+ 00:41:36,440 --> 00:41:46,500
1243
+ ูŠุจู‚ู‰ ุฒุงุฆุฏ 4c2 ุฒุงุฆุฏ 4c2 ุฒุงุฆุฏ c3 ู…ุง ููŠุด ุบูŠุฑู‡ุง ูŠุจู‚ู‰
1244
+
1245
+ 341
1246
+ 00:41:46,500 --> 00:41:53,720
1247
+ ุฒุงุฆุฏ c3 ุจุฏูˆ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏูˆ ูŠุณุงูˆูŠ zero. ุชู…ุงู… ุชู…ุงู….
1248
+
1249
+ 342
1250
+ 00:41:53,720 --> 00:42:03,360
1251
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงุซู†ูŠู† ูˆ ู‡ุฐู‡ ุฃุฑุจุนุฉ ุทูŠุจ ู…ู†ู‡ุง ุจู‚ุฏุฑ ุฃุดูŠู„ c3
1252
+
1253
+ 343
1254
+ 00:42:03,360 --> 00:42:12,760
1255
+ ูˆุงุฎุชูŠุงุฑู‡ุง ุจุฏู„ ุงู„ c1 ูˆ c2. ุฅุฐุง ู‡ุฐู‡ c3 ุชุณุงูˆูŠ 2c1 ู†ุงู‚ุต
1256
+
1257
+ 344
1258
+ 00:42:12,760 --> 00:42:18,760
1259
+ 4c2. ุชู…ุงู… ู‡ุฐุง ุจุฏูˆ ูŠุนุทูŠู†ุง ุจ๏ฟฝ๏ฟฝูˆ ุขุฌูŠ ุฃุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ
1260
+
1261
+ 345
1262
+ 00:42:18,760 --> 00:42:28,680
1263
+ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุฅูŠุด ุจุตูŠุฑ ุนู†ุฏู†ุงุŸ ุจุตูŠุฑ ุนู†ุฏู†ุง c1-c2
1264
+
1265
+ 346
1266
+ 00:42:28,680 --> 00:42:37,140
1267
+ ุฒุงุฆุฏ 2c3 ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ุจุฃุฑุจุนุฉ c ูˆุงุญุฏ ู†ุงู‚ุต ุซู…ุงู†ูŠุฉ
1268
+
1269
+ 347
1270
+ 00:42:37,140 --> 00:42:42,380
1271
+ c2 ุจุฏูˆ ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ุจุฏูˆ ูŠุณุงูˆูŠ zero. ุฃูˆ ุฅู† ุดุทู‘ู‡ู…
1272
+
1273
+ 348
1274
+ 00:42:42,380 --> 00:42:51,260
1275
+ ูุฃู‚ูˆู„ูˆุง ุฃุฑุจุนุฉ ูˆุงุญุฏ ุฎู…ุณุฉ c ูˆุงุญุฏ ูˆู‡ู†ุง ู†ุงู‚ุต ุนุดุฑุฉ c2
1276
+
1277
+ 349
1278
+ 00:42:51,260 --> 00:42:59,000
1279
+ ู†ุงู‚ุต ุนุดุฑุฉ c2 ุณูŠูƒูˆู† zero. ู„ูˆ ู‚ุณู…ุช ุนู„ู‰ ูˆุงุญุฏ ุณูŠูƒูˆู† c1
1280
+
1281
+ 350
1282
+ 00:42:59,000 --> 00:43:11,850
1283
+ ูŠุณุงูˆูŠ 2c2. c1 ูŠุณุงูˆูŠ 2c2. ุชู…ุงู…. ู‡ุฐุง ู‡ูˆ ุฃูˆู„ ู…ุนู„ูˆู…ุฉ. ุชู…ุงู….
1284
+
1285
+ 351
1286
+ 00:43:11,850 --> 00:43:21,710
1287
+ ุฅุฐุง ู„ูˆ ุฌูŠุช ุฃู†ุง ู‡ูŠ c3 ุนุฑูุช c1 ุจุฏู„ุงู„ุฉ c2 ูˆุนุฑูู†ุง c3
1288
+
1289
+ 352
1290
+ 00:43:21,710 --> 00:43:32,810
1291
+ ุจุฏู„ุงู„ุฉ c1 ูˆ c2 ุจุฏู†ุง ู†ุฌูŠุจ c4 ูŠุจู‚ู‰ ุฃูŠูˆุฉ ู…ู† ุงู„ู„ูŠ ุจุชุญูƒูŠ
1292
+
1293
+ 353
1294
+ 00:43:32,810 --> 00:43:35,850
1295
+ ูƒูŠูุŸ ูˆ ุณุงู„ุจ ุชุณุนุฉ
1296
+
1297
+ 354
1298
+ 00:43:38,670 --> 00:43:41,550
1299
+ ุฎู…ุณุฉ c ูˆุงุญุฏ ู†ุงู‚ุต ุนุดุฑุฉ c ุงุซู†ูŠู†.
1300
+
1301
+ 355
1302
+ 00:43:44,370 --> 00:43:50,170
1303
+ ู‡ูŠ ุนู†ุฏูƒ ู†ุงู‚ุต ... ู‡ูŠ ุฃุฑุจุนุฉ c ูˆุงุญุฏ ูˆุฃุฑุจุนุฉ ... ุงู‡ ู‡ุฏู‰
1304
+
1305
+ 356
1306
+ 00:43:50,170 --> 00:43:56,420
1307
+ ูˆุงุญุฏ ูˆู‡ุฏู‰ ุชุณุนุฉ ุตุญูŠุญ. ุงู‡ ู‡ุฏู‰ ุชุณุนุฉ ู…ุนุงูƒ ุงู„ุญู‚. ู‡ุฐู‡
1308
+
1309
+ 357
1310
+ 00:43:56,420 --> 00:44:04,960
1311
+ ุชุณุนุฉ ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู† c1 ุจุฏูˆ ูŠุณุงูˆูŠ ุชุณุนุฉ c2
1312
+
1313
+ 358
1314
+ 00:44:04,960 --> 00:44:12,160
1315
+ ุนู„ู‰ ุฎู…ุณุฉ. ู…ุธุจูˆุท. ูŠุจู‚ู‰ ุฅูŠู‡ ุฌุจู†ุง c1 ุจุฏู„ุงู„ุฉ ุงู„ุขุฎุฑูŠู†
1316
+
1317
+ 359
1318
+ 00:44:12,160 --> 00:44:15,100
1319
+ ุจู‚ุฏุฑ ุฃุฌูŠุจ c4 ูƒุฐู„ูƒ
1320
+
1321
+ 360
1322
+ 00:44:18,620 --> 00:44:32,280
1323
+ c4 ุจุฏู‡ุง ุชุณุงูˆูŠ ุณุงู„ุจ ุชุณุนุฉ c2 ุนู„ู‰ ุฎู…ุณุฉ ูŠุจู‚ู‰
1324
+
1325
+ 361
1326
+ 00:44:32,280 --> 00:44:41,790
1327
+ ุฃู†ุง ุนู†ุฏูŠ c1 ุจุฏู„ุงู„ุฉ c2 ูˆุนู†ุฏูŠ c4 ุจุฏู„ุงู„ุฉ c2 ูˆุนู†ุฏูŠ c3
1328
+
1329
+ 362
1330
+ 00:44:41,790 --> 00:44:48,890
1331
+ ุจุฏู„ุงู„ุฉ a. ู…ู…ุชุงุฒ ู…ู…ุชุงุฒ ุงุชู†ู‰ ุดูˆูŠุฉ ุงู„ุญูŠู† ุฃู†ุง ุนู†ุฏูŠ ู„ูˆ
1332
+
1333
+ 363
1334
+ 00:44:48,890 --> 00:44:55,550
1335
+ ุฌูŠุช ุฃุฎุฏุช ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฑุงุจุนุฉ ุนู†ุฏูŠ c4 ุจุฏู„ุงู„ุฉ
1336
+
1337
+ 364
1338
+ 00:44:55,550 --> 00:45:08,110
1339
+ c2 ูˆุนู†ุฏูŠ c3 ุจุฏู„ุงู„ุฉ c1 ูˆ c2 ูˆุนู†ุฏูŠ c3 ูˆ c3 ุชุณุงูˆูŠ
1340
+
1341
+ 365
1342
+ 00:45:15,060 --> 00:45:22,340
1343
+ ุชุณุนุฉ c ุงุซู†ูŠู† ุนู„ู‰ ุฎู…ุณุฉ
1344
+
1345
+ 366
1346
+ 00:45:22,340 --> 00:45:30,210
1347
+ ู†ุงู‚ุต ุฃุฑุจุนุฉ c ุงุซู†ูŠู† ู‡ุฐุง ูƒู„ู‡ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุนุจุงุฑุฉ ุนู†
1348
+
1349
+ 367
1350
+ 00:45:30,210 --> 00:45:39,450
1351
+ ูƒู„ู‡ ุนู„ู‰ ุฎู…ุณุฉ ุจูŠุธู„ ุซู…ุงู†ูŠุฉ ุนุดุฑ c2 ู†ุงู‚ุต ุฃุฑุจุนุฉ ููŠ ุฎู…ุณุฉ
1352
+
1353
+ 368
1354
+ 00:45:39,450 --> 00:45:48,410
1355
+ ุจู€ ุนุดุฑูŠู† c2 ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต ุงุซู†ูŠู† c2 ุนู„ู‰ ุฎู…ุณุฉ. ุงู„ุขู† ุจุชุนูˆุถ
1356
+
1357
+ 369
1358
+ 00:45:48,410 --> 00:
1359
+
1360
+ 401
1361
+ 00:49:46,940 --> 00:49:53,490
1362
+ ุนู†ุฏู†ุง ุฅุฐุง ุฃู†ุง ู…ู…ูƒู† ุฃุถุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆ
1363
+
1364
+ 402
1365
+ 00:49:53,490 --> 00:49:59,290
1366
+ ุฃุถูŠูู‡ ู„ู…ู†ุŸ ู„ู€ R ุซู„ุงุซุฉ ูŠุจู‚ู‰ ุจุงู‚ูŠ ุจู‚ูˆู„ู‡ ุณุงู„ุจ R ูˆุงุญุฏ
1367
+
1368
+ 403
1369
+ 00:49:59,290 --> 00:50:07,410
1370
+ to R ุซู„ุงุซุฉ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุญู„ู‘ ุฅูŠู‡ ูˆุงุญุฏุŸ Zero Zero
1371
+
1372
+ 404
1373
+ 00:50:07,410 --> 00:50:15,730
1374
+ ูˆุงุญุฏ ูˆ ู‡ู†ุง ุฅูŠู‡ ุฒูŠ ู…ุง ู‡ูˆุŸ ู‡ุฐุง Zero ูˆู‡ู†ุง ูˆุงุญุฏ ุงุซู†ูŠู†
1375
+
1376
+ 405
1377
+ 00:50:15,730 --> 00:50:23,490
1378
+ Zero ูˆู‡ู†ุง ุจ ู‡ู†ุง Zero ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ู†ุง
1379
+
1380
+ 406
1381
+ 00:50:23,490 --> 00:50:28,570
1382
+ ุงุซู†ูŠู† ุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ุฐุง ุณุงู„ุจ ูˆุงุญุฏ ุจุฏูŠุฌูŠู„ูƒ ู‡ู†ุง ุณุงู„ุจ
1383
+
1384
+ 407
1385
+ 00:50:28,570 --> 00:50:37,840
1386
+ ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ A ุงู„ู„ูŠ ู‡ูˆ C ุณุงู„ุจ AC ุณุงู„ุจ A ู‡ุฐุง ุฒูŠ
1387
+
1388
+ 408
1389
+ 00:50:37,840 --> 00:50:43,880
1390
+ ู…ุง ู‡ูˆ ุงู„ู„ูŠ ู‡ูˆ Zero ุงุซู†ูŠู† ูˆุงุญุฏ ูˆุงุญุฏ ูˆ ู‡ู†ุง ุฏูŠ ูˆู‡ูŠ
1391
+
1392
+ 409
1393
+ 00:50:43,880 --> 00:50:48,940
1394
+ ู‚ูู„ู†ุง ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ูŠู† ู„ู„ุฑู‚ู… ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰
1395
+
1396
+ 410
1397
+ 00:50:48,940 --> 00:50:53,540
1398
+ ุงุญู†ุง ู‡ู†ุง ุจุฏู†ุง ู†ูŠุฌูŠ ู†ู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุนุทูŠู†ุง
1399
+
1400
+ 411
1401
+ 00:50:53,540 --> 00:51:03,440
1402
+ ุงุซู†ูŠู† ุงุซู†ูŠู† ุนุงุฑู ุงุซู†ูŠู† ุงุซู†ูŠู† ุนุงุฑู ุงุซู†ูŠู† two are
1403
+
1404
+ 412
1405
+ 00:51:03,440 --> 00:51:10,840
1406
+ ุซู„ุงุซุฉ ู„ุฃ ุงุฑูŠ ุงุซู†ูŠู† ุชู‚ุงุฑ ุซู„ุงุซุฉ ุฏูˆุฑูŠ ุงุฑูŠ ุงุซู†ูŠู† ุชู‚ุงุฑ
1407
+
1408
+ 413
1409
+ 00:51:10,840 --> 00:51:18,340
1410
+ ุซู„ุงุซุฉ ูˆ ุงุซู†ูŠู† ุงุฑูŠ ุงุซู†ูŠู† ุชู‚ุงุฑ ุฃุฑุจุน ูŠุจู‚ู‰ ู‡ู†ุญุตู„ ุนู„ู‰
1411
+
1412
+ 414
1413
+ 00:51:18,340 --> 00:51:28,260
1414
+ ู…ุง ูŠุงุชูŠ ูˆุงุญุฏ ุฒูŠุฑูˆ ุฒูŠุฑูˆ ูˆุงุญุฏ ูˆ ู‡ู†ุง a ู‡ุฐุง Zero ูˆุงุญุฏ
1415
+
1416
+ 415
1417
+ 00:51:28,260 --> 00:51:37,740
1418
+ ุงุซู†ูŠู† Zero ุจ ู‡ู†ุง Zero ูˆู‡ู†ุง Zero ูˆู‡ู†ุง ุฃุฑุจุนุฉ ูˆู‡ู†ุง
1419
+
1420
+ 416
1421
+ 00:51:37,740 --> 00:51:48,160
1422
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง ุจ ุฒุงุฆุฏ ุณ ู†ุงู‚ุต ุฃูŠูˆู‡ู†ุง ุถุฑุจู†ุง ููŠ
1423
+
1424
+ 417
1425
+ 00:51:48,160 --> 00:51:53,620
1426
+ ุงุซู†ูŠู† ุณุงู„ุจ ุงุซู†ูŠู† ูˆุถุฑุจู†ุง ุงู„ุณุงู„ุจ ุงุซู†ูŠู† ุงู„ู„ูŠ ุจุนุฏ ูŠุง ุจู†ุงุช
1427
+
1428
+ 418
1429
+ 00:51:53,620 --> 00:52:01,520
1430
+ ุณุงู„ุจ ุงุซู†ูŠู† R ุงุซู†ูŠู† to R ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู‡ุฐุง Zero ูˆู‡ุฐุง
1431
+
1432
+ 419
1433
+ 00:52:01,520 --> 00:52:09,980
1434
+ Zero ูˆู‡ุฐู‡ ุณุงู„ุจ ุณุงู„ุจ ุณูŠุตุจุญ ุณุงู„ุจ ุฃุฑุจุนุฉ ูˆุงุญุฏ ูŠุจู‚ู‰
1435
+
1436
+ 420
1437
+ 00:52:09,980 --> 00:52:17,540
1438
+ ุณุงู„ุจ ุซู„ุงุซุฉ ูˆู‡ุฐุง zero ุจูŠุธู„ ูˆุงุญุฏ ุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ู†ุง ุณุงู„ุจ
1439
+
1440
+ 421
1441
+ 00:52:17,540 --> 00:52:25,220
1442
+ ุงุซู†ูŠู† ุจูŠุจู‚ู‰ ุฏูŠ ุณุงู„ุจ ุงุซู†ูŠู† ุจ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง
1443
+
1444
+ 422
1445
+ 00:52:25,220 --> 00:52:33,140
1446
+ ุงู„ุขู† ูˆุตู„ู†ุง ู„ู‡ุฐุง ูŠุจู‚ู‰ ู…ุง ุนู„ูŠูƒ ุฅู„ุง ุงุชูƒู…ู„ูŠ ูˆุชุซุจุชูŠ ู…ุง
1447
+
1448
+ 423
1449
+ 00:52:33,140 --> 00:52:40,500
1450
+ ูŠุฃุชูŠ ุชุซุจุชูŠ ุนู„ูŠูƒ ู…ุง ูŠุฃุชูŠ ูŠุทู„ุน ุนู†ุฏู†ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
1451
+
1452
+ 424
1453
+ 00:52:40,500 --> 00:52:54,620
1454
+ ูˆ ุงู„ู„ู‡ ุฃุนู„ู… ุจุฏู‡ ูŠุทู„ุน C1 ูŠุณุงูˆูŠ 4A ุฒุงุฆุฏ 5B ู†ุงู‚ุต 3C
1455
+
1456
+ 425
1457
+ 00:52:54,620 --> 00:53:10,130
1458
+ ู†ุงู‚ุต 4D ูˆ C2 ุจุฏู‡ ูŠุณุงูˆูŠ ุงุซู†ูŠู† A ุฒุงุฆุฏ ุซู„ุงุซุฉ B ู†ู‚ุต
1459
+
1460
+ 426
1461
+ 00:53:10,130 --> 00:53:21,370
1462
+ ุงุซู†ูŠู† C ู†ู‚ุต ุงุซู†ูŠู† D ูˆ C3 ุจุฏู‡ ูŠุณุงูˆูŠ ู†ู‚ุต
1463
+
1464
+ 427
1465
+ 00:53:21,370 --> 00:53:37,460
1466
+ A ู†ู‚ุต B ุฒุงุฆุฏ C ุฒุงุฆุฏ D ูˆ C4 ุจุฏู‡ ูŠุณุงูˆูŠ ู†ุงู‚ุต ุซู„ุงุซุฉ A ูˆ
1467
+
1468
+ 428
1469
+ 00:53:37,460 --> 00:53:48,260
1470
+ ู†ุงู‚ุต ุฎู…ุณุฉ B ู†ุงู‚ุต ุฎู…ุณุฉ B ูˆ ุฒุงุฆุฏ ุซู„ุงุซุฉ C ุฒุงุฆุฏ 4D
1471
+
1472
+ 429
1473
+ 00:53:53,550 --> 00:54:00,950
1474
+ ูŠุจู‚ู‰ ุจู†ุงุกู‹ ุนู„ูŠู‡ ุฃุตุจุญ V1 ูˆ V2 ูˆ V3 ูˆ V4 are bases
1475
+
1476
+ 430
1477
+ 00:54:00,950 --> 00:54:11,210
1478
+ ูŠุนู†ูŠ ุจุชู‚ูˆู„ูŠู„ูŠ ููŠ ุงู„ุขุฎุฑ ู‡ู†ุง V1 ูˆ V2 ูˆ V3 ูˆ V4 are
1479
+
1480
+ 431
1481
+ 00:54:11,210 --> 00:54:14,270
1482
+ bases
1483
+
1484
+ 432
1485
+ 00:54:14,270 --> 00:54:22,990
1486
+ for the vector space R4
1487
+
1488
+ 433
1489
+ 00:54:26,600 --> 00:54:30,460
1490
+ ู„ูุฃูŠุดุŸ ู„ุฃู† ูƒู„ element ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃุฎูŠุฑุฉ ู„ู‚ูŠู†ุง linear
1491
+
1492
+ 434
1493
+ 00:54:30,460 --> 00:54:34,900
1494
+ combination ู…ู† ุงู„ุขุฎุฑูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู† ุงู„ vectors ู‡ุฏูˆู„
1495
+
1496
+ 435
1497
+ 00:54:34,900 --> 00:54:37,160
1498
+ are linearly independent
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/r9WgIkSN3M4_raw.srt ADDED
@@ -0,0 +1,1740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,740 --> 00:00:25,060
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุฐูƒุฑ ุจุงุฎุฑ ุญุงุฌุฉ ุฎุฏู†ุงู‡ุง ุงู„ู…ุฑุฉ
4
+
5
+ 2
6
+ 00:00:25,060 --> 00:00:28,800
7
+ ุงู„ู„ูŠ ูุงุช ููŠ section ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ุจุฏูŠู†ุง ุจุงู„ุฑูˆู†ุณูƒูŠู†
8
+
9
+ 3
10
+ 00:00:28,800 --> 00:00:33,680
11
+ ูˆุนุฑูู†ุง ุงู† ุฑูˆู†ุณูƒูŠู† ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ุญุฏุฏ ุซู… ุงู†ุชู‚ู„ู†ุง ุฅู„ู‰
12
+
13
+ 4
14
+ 00:00:33,680 --> 00:00:38,780
15
+ ู†ุธุฑูŠุฉ ู†ุธุฑูŠุฉ ุฏูˆ ุดู‚ูŠู† ุงู„ุดู‚ ุงู„ุฃูˆู„ ูƒุงู† ุฅุฐุง ูƒุงู† ุนู†ุฏูŠ
16
+
17
+ 5
18
+ 00:00:38,780 --> 00:00:42,680
19
+ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vectors ูˆูƒุงู†ูˆุง linearly dependent
20
+
21
+ 6
22
+ 00:00:42,680 --> 00:00:48,580
23
+ ูŠุจู‚ู‰ ู„ุงุฒู… ุงู„ุฑูˆู†ุณูƒูŠู† ูŠุณุงูˆูŠ zero ุนู†ุฏ ูƒู„ X ู…ูˆุฌูˆุฏุฉ ููŠ
24
+
25
+ 7
26
+ 00:00:48,580 --> 00:00:53,670
27
+ interval ู…ุงุฃุฎุฐู†ุง ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ุฃู†ู‡ ู„ูˆ ูƒุงู† ุงู„
28
+
29
+ 8
30
+ 00:00:53,670 --> 00:00:58,710
31
+ ุฑูˆู†ุณูƒูŠู† ู„ุง ูŠุณุงูˆูŠ 0 ูŠุจู‚ู‰ ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ุงู„ functions ุฃูˆ
32
+
33
+ 9
34
+ 00:00:58,710 --> 00:01:02,110
35
+ ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ุงู„ vectors are linearly independent
36
+
37
+ 10
38
+ 00:01:02,110 --> 00:01:08,310
39
+ ูˆุนุทูŠู†ุง ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ู…ุซู„ ุนู„ู‰ ุฃู†ู‡ ู…ู…ูƒู† ูŠูƒูˆู† ุงู„
40
+
41
+ 11
42
+ 00:01:08,310 --> 00:01:13,350
43
+ ุฑูˆู†ุณูƒูŠู† ูŠุณุงูˆูŠ 0 ู„ูƒู† ุงู„ two functions are not
44
+
45
+ 12
46
+ 00:01:13,350 --> 00:01:18,440
47
+ linearly dependentุจุงู„ู€ Linearly Independent ู„ุฃู†ู‡
48
+
49
+ 13
50
+ 00:01:18,440 --> 00:01:24,120
51
+ ุนูƒุณ ุงู„ู†ุธุฑูŠุฉ ู…ุง ู‡ูˆุงุด ุตุญูŠุญ ุชู…ุงู… ูŠุนุทูŠู†ุง ู…ุซุงู„ ูƒุงู† G1
52
+
53
+ 14
54
+ 00:01:24,120 --> 00:01:28,240
55
+ of X ุชุณุงูˆูŠ X ุชุฑุจูŠุน ูˆ G2 of X ู‡ูˆ X ููŠ absolute
56
+
57
+ 15
58
+ 00:01:28,240 --> 00:01:33,920
59
+ value ู„ X ู†ู†ุชู‚ู„ ุฅู„ู‰ ู…ุซุงู„ ุฌุฏูŠุฏ ูŠู‚ูˆู„ ูŠุดูˆู ู„ูŠู‡ุง ุงู„
60
+
61
+ 16
62
+ 00:01:33,920 --> 00:01:37,280
63
+ functions ู‡ุฐู‡ ุงู„ูˆุงุญุฏ ูˆ X ุงู„ุณุงู„ุจ ูˆุงุญุฏ ูˆ X ุงู„ุณุงู„ุจ
64
+
65
+ 17
66
+ 00:01:37,280 --> 00:01:42,270
67
+ ุงุชู†ูŠู† ุนู„ู…ุง ู…ู† X ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุชุฃุฎุฐ ู‚ูŠู…ุฉ ู…ูˆุฌุจุฉู‡ู„
68
+
69
+ 18
70
+ 00:01:42,270 --> 00:01:46,410
71
+ ู‡ุฏูˆู„ linearly dependent ูˆู„ุง linearly independent
72
+
73
+ 19
74
+ 00:01:46,410 --> 00:01:51,490
75
+ ูุจุฌูŠุจ ุงู‚ูˆู„ูƒ ูƒูˆูŠุณ ุงุฐุง ุงู†ุง ุจุฏูŠ ุงุฎุฏ ุฑูˆู†ุณูƒูŠู† as a
76
+
77
+ 20
78
+ 00:01:51,490 --> 00:01:56,830
79
+ function of X ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ุงูˆู„ู‰ ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ุชุงู†ูŠุฉ
80
+
81
+ 21
82
+ 00:01:56,830 --> 00:02:02,980
83
+ ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ุชุงู„ุชุฉู…ุดุงู† ุฃูƒู…ู„ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ุจุฏูŠ ุฃุดุชู‚ ู…ุฑุฉ
84
+
85
+ 22
86
+ 00:02:02,980 --> 00:02:08,660
87
+ ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุงู„ู…ุดุชู‚ ู‡ุฐูŠ ุจู€0 ู‡ุฐูŠ ู†ุงู‚ุต X ุฃุณ ู†ุงู‚ุต 2 ู‡ุฐูŠ
88
+
89
+ 23
90
+ 00:02:08,660 --> 00:02:16,620
91
+ ู†ุงู‚ุต 2 X ุฃุณ ู†ุงู‚ุต 3 ู†ุดุชู‚ ูƒู…ุงู† ู…ุฑุฉ ูŠุจู‚ู‰ Zero ุงุชู†ูŠู† X
92
+
93
+ 24
94
+ 00:02:16,620 --> 00:02:24,280
95
+ ุฃุณ ู†ุงู‚ุต ุชู„ุงุชุฉ ู‡ุฐูŠ ุณุชุฉ X ุฃุณ ู†ุงู‚ุต ุฃุฑุจุนุฉูŠุจู‚ู‰ ู‡ูŠุดุชุบู„ู†ุง
96
+
97
+ 25
98
+ 00:02:24,280 --> 00:02:29,900
99
+ ุงู„ุฏูˆุงู„ ู…ุฑุชูŠู† ุชู…ุงู… ุงู„ุขู† ุจุฏู‰ ู‚ุฏุงุด ุฃุญุณุจ ู‚ูŠู…ุฉ ู‡ุฐุง
100
+
101
+ 26
102
+ 00:02:29,900 --> 00:02:34,680
103
+ ุงู„ุฑูˆู†ุณูƒูŠู† ูŠุจู‚ู‰ ู‡ููƒ ุงู„ู…ุญุฏุฏ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ
104
+
105
+ 27
106
+ 00:02:34,680 --> 00:02:42,250
107
+ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ููŠู‡ุญุงุตู„ ุถุฑุจ
108
+
109
+ 28
110
+ 00:02:42,250 --> 00:02:49,250
111
+ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑุฉ ุงู„ุฑุฆูŠุณู‰ ูŠุจู‚ู‰ ู†ุงู‚ุต 6 x ุฃุณ ู†ุงู‚ุต 6 ู†ุงู‚ุต
112
+
113
+ 29
114
+ 00:02:49,250 --> 00:02:58,130
115
+ ู…ุน ู†ุงู‚ุต ุฒุงุฆุฏ 4 x ุฃุณ ู†ุงู‚ุต 6 ู†ุงู‚ุต 0 ุฒุงุฆุฏ 0ูŠุจู‚ู‰ ุจู†ุงุก
116
+
117
+ 30
118
+ 00:02:58,130 --> 00:03:04,890
119
+ ุงู† ุนู„ูŠู‡ ุฃุตุจุญ ู†ุงุชุฌ ูŠุณุงูˆูŠ ู†ุงู‚ุต ุงุชู†ูŠู† X ุฃุณ ู†ุงู‚ุต ุณุชุฉ
120
+
121
+ 31
122
+ 00:03:04,890 --> 00:03:11,230
123
+ ุทุจุนุง ู‡ุฐุง ุงู„ูƒู„ุงู… ูƒู„ู‡ ู„ุง ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู„ูŠุดุŸ since ู„ุฃู†
124
+
125
+ 32
126
+ 00:03:11,230 --> 00:03:16,360
127
+ ุงู„ X greater than zeroุฅุฐุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู„ุง ูŠู…ูƒู† ุฃู†
128
+
129
+ 33
130
+ 00:03:16,360 --> 00:03:22,120
131
+ ูŠุณุงูˆูŠ zero ููŠ ุฃูŠ ูŠูˆู… ู…ู† ุงู„ุฃูŠุงู… ูˆู„ุง ุนู†ุฏ ู†ู‚ุทุฉ ูˆู„ุง
132
+
133
+ 34
134
+ 00:03:22,120 --> 00:03:26,660
135
+ ุนู†ุฏ ูƒู„ ุงู„ู†ุบุงุท ู„ุฃู† x greater than zero ุจู†ุงุก ุนู„ูŠู‡
136
+
137
+ 35
138
+ 00:03:26,660 --> 00:03:32,940
139
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุนู†ูŠ ุฃู† ู‡ุฐู‡ ุงู„ functions ุชู„ุงุชุฉ are
140
+
141
+ 36
142
+ 00:03:32,940 --> 00:03:37,340
143
+ linearly dependent ูˆู„ุง linearly independent
144
+
145
+ 37
146
+ 00:03:38,180 --> 00:03:44,400
147
+ Linearly Independent ูŠุจู‚ู‰ ู‡ู†ุง since ุจู…ุง ุฃู†
148
+
149
+ 38
150
+ 00:03:44,400 --> 00:03:48,940
151
+ Erroneous can as a function of x ู„ุง ูŠุณุงูˆูŠ zero
152
+
153
+ 39
154
+ 00:03:48,940 --> 00:03:56,420
155
+ ูŠุจู‚ู‰ the functions ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ูˆ x ุงู„ุณู„ุจ ูˆุงุญุฏ ูˆ x
156
+
157
+ 40
158
+ 00:03:56,420 --> 00:04:02,620
159
+ ุงู„ุณู„ุจ ุงุชู†ูŠู† are linearly independent functions
160
+
161
+ 41
162
+ 00:04:02,620 --> 00:04:14,460
163
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ุฏูˆุงู„ ู…ุณุงู‚ู„ุฉ ุนู† ุจุนุถ ุชู…ุงู…ุงู†ุฃุฎุฏ ู…ุซุงู„ ูŠุจู‚ู‰
164
+
165
+ 42
166
+ 00:04:14,460 --> 00:04:26,520
167
+ ู…ุซุงู„ ูƒุฐู„ูƒ show
168
+
169
+ 43
170
+ 00:04:26,520 --> 00:04:30,660
171
+ that ู…ุจูŠู†ูŠู†
172
+
173
+ 44
174
+ 00:04:30,660 --> 00:04:32,740
175
+ the functions
176
+
177
+ 45
178
+ 00:04:35,130 --> 00:04:46,210
179
+ ุงู„ู„ูŠ ู‡ู…ุง F1 of X ูŠุณุงูˆูŠ E ุฃูุณ R1 X ูˆ F2 of X ูŠุณุงูˆูŠ
180
+
181
+ 46
182
+ 00:04:46,210 --> 00:04:55,930
183
+ E R2 ุฃูุณ X ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ุงู„ FN of X ุจุฏู‡ ูŠุณุงูˆูŠ
184
+
185
+ 47
186
+ 00:04:55,930 --> 00:05:02,110
187
+ E ุฃูุณ RN of X ูˆ ุงู„RI
188
+
189
+ 48
190
+ 00:05:22,910 --> 00:05:29,240
191
+ ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ุนู† ุงู† ู…ู† ุงู„ functions
192
+
193
+ 49
194
+ 00:05:29,240 --> 00:05:35,640
195
+ f1 ูˆf2 ูˆf3 ู‡ุฐู‡ ุงู„ functions ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ูƒุชุจู†ุงู‡ุง
196
+
197
+ 50
198
+ 00:05:35,640 --> 00:05:39,580
199
+ ุจุฏู„ุงู„ุฉ ุงู„ exponential ูŠุจู‚ู‰ ุนู†ุฏู†ุง ุงู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ E
200
+
201
+ 51
202
+ 00:05:39,580 --> 00:05:44,780
203
+ ุฃุณ R1 X ุงู„ุฏุงู„ุฉ ุงู„ุชุงู†ูŠุฉ E ุฃุณ R2 X ุงู„ุฏุงู„ุฉ ุงู„ุชุงู„ุชุฉ E
204
+
205
+ 52
206
+ 00:05:44,780 --> 00:05:51,780
207
+ ุฃุณ R3 X ูˆู‡ูƒุฐุง ู„ุบุงูŠุฉ ู…ุง ู†ูƒู…ู„ ุจุงู‚ูŠ ุงู„ุฏูˆุงู„ ู„ุบุงูŠุฉ E ุฃุณ
208
+
209
+ 53
210
+ 00:05:51,780 --> 00:05:57,090
211
+ R N X ุงู„ุฏูˆุงู„ ู‡ุฏูˆู„ ู…ุง ู„ู‡ู…ุŸู‡ุคู„ุงุก ุงู„ู„ูŠ ุจุฏู†ุง ู†ุดูˆูู‡ ุฃูˆ
212
+
213
+ 54
214
+ 00:05:57,090 --> 00:06:01,470
215
+ ุจุฏู†ุง ู†ุซุจุช ุงู†ู‡ู… linearly independent ุจุดุฑุท ุฑ ูˆุงุญุฏุฉ
216
+
217
+ 55
218
+ 00:06:01,470 --> 00:06:05,410
219
+ ู…ุชุณุงูˆูŠ ุฑ ุงุชู†ูŠู† ูˆู„ุง ุฑ ุชู„ุงุชุฉ ูˆู„ุง ุฑ ูˆู„ุง ูˆุงุญุฏุฉ ููŠู‡ู…
220
+
221
+ 56
222
+ 00:06:05,410 --> 00:06:11,570
223
+ ู…ุชุณุงูˆูŠ ุงู„ุชุงู†ูŠุฉ ุฑุงุญ ู‚ุงู„ ู„ูŠุด ุงู† ุฑ ุงูŠ ู„ุง ุชุณุงูˆูŠ ุฑ ุฌูŠ
224
+
225
+ 57
226
+ 00:06:11,570 --> 00:06:16,230
227
+ ูŠุจู‚ู‰ ุงู„ุงุฑุงุช ู‡ุฏูˆู„ ุงู„ุฃุณุงุณ ูˆู„ุง ูˆุงุญุฏุฉ ุฒูŠ ุงู„ุชุงู†ูŠุฉ ู„ูƒู„
228
+
229
+ 58
230
+ 00:06:16,230 --> 00:06:21,290
231
+ ุงูŠ ู„ุง ุชุณุงูˆูŠ ุฌูŠ ุจุฏุฃ ุงุซุจุช ุงู† ู‡ุฐู‡ ุงู„ functions ู‡ูŠ ุฑ
232
+
233
+ 59
234
+ 00:06:21,290 --> 00:06:27,330
235
+ linearlyุงู†ุฏูŠ ู…ู† ุฏู‡ ุทูŠุจ ู†ุจุฏุฃ ุจ .. ู„ูˆ ุจุฏู†ุง ู†ุงุฎุฏู‡ุง
236
+
237
+ 60
238
+ 00:06:27,330 --> 00:06:31,530
239
+ ูƒู„ู‡ุง ู…ุฑุฉ ูˆุงุญุฏุฉ ุตุนุจุฉ ุฌุฏุง ูˆ ุงู„ุตุจูˆุฑุฉ ุชุงุนุชู†ุง ู…ุด ู‡ุชูƒููŠ
240
+
241
+ 61
242
+ 00:06:31,530 --> 00:06:37,690
243
+ ู„ู„ูƒุชุงุจุฉ ู„ูƒู† ู„ูˆ ุฌูŠู†ุง ู†ุณุชุฑุณู„ ูุจุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง solution
244
+
245
+ 62
246
+ 00:06:37,690 --> 00:06:45,950
247
+ ู„ูˆ ุฃุฎุฏุช ุงู„ N ุชุณุงูˆูŠ 2 ู…ุซู„ุง ูŠุจู‚ู‰ ูƒุงู… function ุจูŠูƒูˆู†
248
+
249
+ 63
250
+ 00:06:45,950 --> 00:06:52,540
251
+ ุนู†ุฏู‰ุŸ ูƒุฏู‡ุดุŸูƒู… ูุงู†ูƒุดู ูŠูƒูˆู† ุนู†ุฏูŠ ุชู†ุชูŠู† ูŠุจู‚ู‰ ู…ุงููŠุด
252
+
253
+ 64
254
+ 00:06:52,540 --> 00:06:56,960
255
+ ุบูŠุฑู‡ู… ุฎู„ูŠ ุจุงู„ูƒู… ู…ุนุงู†ุง ู‡ู†ุง ุจู‚ูˆู„ ุฎู„ูŠ ุจุงู„ูƒู… ู…ุนุงู†ุง ู‡ู†ุง
256
+
257
+ 65
258
+ 00:06:58,160 --> 00:07:03,920
259
+ ูŠุจู‚ู‰ ู„ู…ุง ู…ุงุนู†ุฏูŠุด ูุงู†ูƒุดู† ุชู†ุชูŠู† ุงู† ูŠุณุงูˆูŠ ุงุชู†ูŠู† ูŠุจู‚ู‰
260
+
261
+ 66
262
+ 00:07:03,920 --> 00:07:10,820
263
+ ุจุชุฑูˆุญ ุงุฎุฏ ุงู„ runner skin of X ูŠุจู‚ู‰ ู‡ุฐุง E ุฃุณ R1 X E
264
+
265
+ 67
266
+ 00:07:10,820 --> 00:07:21,660
267
+ ุฃุณ R2 X ุจุฏูŠ ุงุดุชู‚ ูŠุจู‚ู‰ R1 E ุฃุณ R1 X R2 E ุฃุณ R2 X
268
+
269
+ 68
270
+ 00:07:21,660 --> 00:07:28,260
271
+ ูˆูŠุณุงูˆูŠู…ู† ุฎูˆุงุต ุงู„ู…ุญุฏุฏุงุช ุฅุฐุง ููŠ ุนู†ุฏูŠ ุนุงู…ู„ ู…ุดุงุฑูƒ ุจุทู„ุน
272
+
273
+ 69
274
+ 00:07:28,260 --> 00:07:34,660
275
+ ุจุฑุง ูŠุจู‚ู‰ ู…ู† ุงู„ุนู…ูˆุฏูŠ ุงู„ุฃูˆู„ ุฅูŠุด ุนู†ุฏูŠ ุนู…ุฏุงุช E ุฃุณ R1 X
276
+
277
+ 70
278
+ 00:07:34,660 --> 00:07:42,460
279
+ ู…ู† ุงู„ุนู…ูˆุฏูŠ ุงู„ุชุงู†ูŠ E ุฃุณ R2 X ุจุธู„ ุงู„ู…ุญุฏุฏ ุนู†ุฏูŠ 11 R1
280
+
281
+ 71
282
+ 00:07:42,460 --> 00:07:51,150
283
+ R2 ูŠุจู‚ู‰ ู‡ุฐุง ู„ูˆ ููƒุชู‡ ุจุฏูŠ ูŠุตูŠุฑ E ุฃุณ R1 ุฒุงุฆุฏ R2ู‡ุฐุง
284
+
285
+ 72
286
+ 00:07:51,150 --> 00:07:59,950
287
+ ูƒู„ู‡ ููŠ X ูˆ ุจุฏุง ููƒ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูŠุจู‚ู‰ R2-R1 ูƒู„ู‡ ุจุงู„ุดูƒู„
288
+
289
+ 73
290
+ 00:07:59,950 --> 00:08:04,470
291
+ ุงู„ู„ูŠ ุนู†ุง ู‡ุฐุง ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุงู„ X ุจู†ู†ุดู„ ููŠ ุฃูŠ ูŠูˆู… ู…ู†
292
+
293
+ 74
294
+ 00:08:04,470 --> 00:08:06,950
295
+ ุงู„ุฃูŠุงู… ู…ู…ูƒู† ูŠุฃุฎุฐ ุงู„ู‚ูŠู…ุฉ ุงู„ุตูุฑุŸ
296
+
297
+ 75
298
+ 00:08:09,510 --> 00:08:14,670
299
+ ุงู„ู€ R2 ู†ู‚ุต R1 ู‡ู„ ูŠู…ูƒู† ุฃู† ูŠุฃุฎุฐ ุตูุฑุŸ ุงุนุทุงู†ูŠ ุงู„ุดุฑุท
300
+
301
+ 76
302
+ 00:08:14,670 --> 00:08:19,650
303
+ ุฃุณุงุณูŠ ุฃู† ุงู„ู€RI ู„ุง ุชุณูˆู‰ RJ ู„ูƒู„ I ู„ุง ุชุณูˆู‰ J
304
+
305
+ 77
306
+ 00:08:25,030 --> 00:08:32,510
307
+ ุงุฎุชุตุงุฑุง ูŠุง ุจู†ุงุช ู…ู…ูƒู† ุงูƒุชุจ ู‡ุฐู‡ E ุฃุณ R1 ุฒุงุฆุฏ R2 X ููŠ
308
+
309
+ 78
310
+ 00:08:32,510 --> 00:08:41,170
311
+ D2 ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ู„ุง ูŠุณุงูˆูŠ 0 ู…ู† D2 ู„ R2 ู†ุงู‚ุต R1 ูŠุจู‚ู‰
312
+
313
+ 79
314
+ 00:08:41,170 --> 00:08:47,070
315
+ ู„ูˆ ูƒุงู†ุช ุงู„ N ุจุชู†ูŠู† ู„ุง ูŠู…ูƒู† ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃู† ูŠุณุงูˆูŠ 0
316
+
317
+ 80
318
+ 00:08:47,070 --> 00:08:55,510
319
+ ู„ูˆ ุฌูŠุช ุฃุฎุฏ Fู† ุชุณุงูˆูŠ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุฑูˆู†ุณูƒูŠู† of x ูŠุจู‚ู‰
320
+
321
+ 81
322
+ 00:08:55,510 --> 00:09:04,930
323
+ ูŠุณุงูˆูŠ ู‡ุฐู‡ E ุฃุณ R1 X E ุฃุณ R2 X E ุฃุณ R3 X ุงู„ู…ุดุชู‚ุฉ
324
+
325
+ 82
326
+ 00:09:04,930 --> 00:09:15,220
327
+ ุงู„ุฃูˆู„ู‰ R1 E ุฃุณ R1 X R2 E ุฃุณ R2 X R3 E ุฃุณ R3 Xุงู„ู„ูŠ
328
+
329
+ 83
330
+ 00:09:15,220 --> 00:09:22,440
331
+ ู‡ู… ุจุฏู†ุง ู†ุดุชุบู„ ูƒู…ุงู† ู…ุฑุฉ R1 ุชุฑุจูŠุน E ุฃุณ R1 X R2 ุชุฑุจูŠุน
332
+
333
+ 84
334
+ 00:09:22,440 --> 00:09:28,620
335
+ E ุฃุณ R2 X R3 ุชุฑุจูŠุน E ุฃุณ R3 X
336
+
337
+ 85
338
+ 00:09:32,580 --> 00:09:36,020
339
+ ุฅุฐุง ุงู†ุง ู…ู…ูƒู† ุงุนู…ู„ ุฒูŠ ุงู„ู„ูŠ ุฌุงุจู„ู‡ ุจุงู„ุถุจุท ุทู„ุน ุนุงู…ู„ู‡
340
+
341
+ 86
342
+ 00:09:36,020 --> 00:09:40,540
343
+ ู…ุดุชุฑูƒุฉ ู…ู† ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูˆุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ูˆุงู„ุนู…ูˆุฏ
344
+
345
+ 87
346
+ 00:09:40,540 --> 00:09:47,380
347
+ ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ E ุฃุณ R 1 X E ุฃุณ R
348
+
349
+ 88
350
+ 00:09:47,380 --> 00:09:56,380
351
+ 2 X E ุฃุณ R 3 X ูŠุจู‚ู‰ ุนู†ุฏู†ุง ุงู„ู…ุญุฏุฏ ูˆุงุญุฏ ูˆุงุญุฏ ูˆุงุญุฏR1
352
+
353
+ 89
354
+ 00:09:56,380 --> 00:10:04,580
355
+ R2 R3 R1 ุชุฑุจูŠุน R2 ุชุฑุจูŠุน R3 ุชุฑุจูŠุน ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
356
+
357
+ 90
358
+ 00:10:04,580 --> 00:10:13,060
359
+ ู‡ุฐุง ุงูˆ ุจู…ุนู†ู‰ ุงุฎุฑ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ EUS R1 ุฒุงุฆุฏ
360
+
361
+ 91
362
+ 00:10:13,060 --> 00:10:19,760
363
+ R2 ุฒุงุฆุฏ R3 ูƒู„ู‡ fixed ูˆ ุจุฏู‡ ุฑูˆุญ ุงููƒ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ู…ุซู„ุง
364
+
365
+ 92
366
+ 00:10:19,760 --> 00:10:26,160
367
+ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ูŠุจู‚ู‰ ู„ูˆ ููƒุชู‡ ุจุงุณุชุฎุฏุงู…
368
+
369
+ 93
370
+ 00:10:26,160 --> 00:10:30,640
371
+ ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจุฏุงุฌูŠ ู‡ุฐุง ุงู„ู„ูŠ ุฃู‚ูˆู„ู‡ ู‡ุฐุง ุงู„ูƒู„ุงู…
372
+
373
+ 94
374
+ 00:10:30,640 --> 00:10:36,460
375
+ ู…ุถุฑูˆุจ ููŠู‡ ูˆุงุญุฏ ููŠ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุงู„ู…ู†ุงุธุฑ ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ
376
+
377
+ 95
378
+ 00:10:36,460 --> 00:10:46,240
379
+ R2 R3 ุชุฑุจูŠุน ู†ุงู‚ุต R2 ุชุฑุจูŠุน R3 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ term
380
+
381
+ 96
382
+ 00:10:46,240 --> 00:10:52,850
383
+ ุงู„ุฃูˆู„ ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช ู†ุงู‚ุต R1ูˆู‡ู†ุง ู†ุดุทุจ ุงู„ุตู
384
+
385
+ 97
386
+ 00:10:52,850 --> 00:11:00,210
387
+ ุชุจุนู‡ ูˆุงู„ุนู…ูˆุฏ ุจูŠุตูŠุฑ R ุชู„ุงุชุฉ ุชุฑุจูŠุน ู†ุงู‚ุต R ุงุชู†ูŠู†
388
+
389
+ 98
390
+ 00:11:00,210 --> 00:11:06,210
391
+ ุชุฑุจูŠุน ุฌูŠู†ุง ู‡ู†ุง ุฒุงุฆุฏ R one ุชุฑุจูŠุน ุงูˆ square ุงุดุชุช
392
+
393
+ 99
394
+ 00:11:06,210 --> 00:11:11,610
395
+ ุจูŠุตููˆุง ุนู…ูˆุฏู‡ ุจูŠุตูŠุฑ R ุชู„ุงุชุฉ ู†ุงู‚ุต R ุงุชู†ูŠู† ุฌูู„ู†ุง
396
+
397
+ 100
398
+ 00:11:11,610 --> 00:11:20,350
399
+ ุงู„ุฌูˆุฒู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณุงูˆูŠ E ุฃุณ R1 ุฒุงุฆุฏ R2 ุฒุงุฆุฏ R3
400
+
401
+ 101
402
+ 00:11:20,350 --> 00:11:24,170
403
+ ูƒู„ู‡ ููŠ X ู‡ุฐุง ุงู„ูƒู„ุงู… ููŠ
404
+
405
+ 102
406
+ 00:11:53,070 --> 00:11:57,440
407
+ ู…ู…ูƒู† ุงุฎุฏ ู…ู† ู‡ุฐุง ุนุงู…ู„ ู…ุดุชุฑูƒุฃู†ุง ู…ู…ูƒู† ุฃุฎุฏ R ุซู„ุงุซุฉ
408
+
409
+ 103
410
+ 00:11:57,440 --> 00:12:03,060
411
+ ู†ุงู‚ุต R ุงุชู†ูŠู† ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ูƒู„ ุงู„ three terms ูŠุจู‚ู‰
412
+
413
+ 104
414
+ 00:12:03,060 --> 00:12:11,680
415
+ ู‡ุฐุง E ุฃุณ R one ุฒุงุฆุฏ R two ุฒุงุฆุฏ R three ูƒู„ู‡ ููŠ X ููŠ
416
+
417
+ 105
418
+ 00:12:11,680 --> 00:12:18,980
419
+ R three ู†ุงู‚ุต R two ู…ูŠู† ุจูŠุถู„ ุนู†ุฏ ู‡ู†ุง R two R three
420
+
421
+ 106
422
+ 00:12:19,660 --> 00:12:27,820
423
+ ูˆู‡ู†ุง ุจูŠุธู„ ู†ุงู‚ุต R1 R3 ู†ุงู‚ุต
424
+
425
+ 107
426
+ 00:12:27,820 --> 00:12:35,460
427
+ R1 R2 ู†ุงู‚ุต R1 ููŠ ุงู„ุฌูˆุณ ุงู„ุชุงู†ูŠ ูŠุนู†ูŠ ู‡ุฏุงู†ูŠ ููƒุชู‡ ุฒุงุฆุฏ
428
+
429
+ 108
430
+ 00:12:35,460 --> 00:12:43,140
431
+ R1 ุชุฑุจูŠุน ู…ุงููŠุด ุบูŠุฑู‡ุง ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงุทูŠุจ ู‡ุฐุง
432
+
433
+ 109
434
+ 00:12:43,140 --> 00:12:51,100
435
+ ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ E ุฃุณ R1 ุฒุงุฆุฏ R2 ุฒุงุฆุฏ R3 ููŠ X ููŠ
436
+
437
+ 110
438
+ 00:12:51,100 --> 00:12:58,780
439
+ ุงู„ R3 ู†ุงู‚ุต R2 ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ู†ุงู‚ุต R2 ู„ุฌูˆุณ
440
+
441
+ 111
442
+ 00:12:58,780 --> 00:13:04,020
443
+ ุงู„ุฃูˆู„ ุดูˆ ุฑุงูŠูƒูˆุง ู‡ุฏูˆู„ ู…ู…ูƒู† ุงุฎุฏ ู…ู†ู‡ู… ุงูŠู‡ ุนุดุงู† R3
444
+
445
+ 112
446
+ 00:13:04,020 --> 00:13:12,330
447
+ ุนุงู…ู„ ู…ุดุชุฑูƒูŠุจู‚ู‰ ู„ูˆ ุฃุฎุฏู†ุง R3 ุนุงู…ู„ ู…ุดุชุฑูƒ R3 ุจูŠุธู„ ู…ู†
448
+
449
+ 113
450
+ 00:13:12,330 --> 00:13:22,010
451
+ ุนู†ุฏูŠุŸ ุจูŠุธู„ ุนู†ุฏูŠ R2 ู†ุงู‚ุต R1 ูˆู‡ู†ุง ู„ูˆ ุฃุฎุฏู†ุง ู†ุงู‚ุต R1
452
+
453
+ 114
454
+ 00:13:22,010 --> 00:13:26,890
455
+ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุธู„ R2 ู†ุงู‚ุต R1
456
+
457
+ 115
458
+ 00:13:29,040 --> 00:13:37,440
459
+ ุทูŠุจ ู‡ู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง
460
+
461
+ 116
462
+ 00:13:37,440 --> 00:13:53,920
463
+ ุงู†ุง
464
+
465
+ 117
466
+ 00:13:53,920 --> 00:13:56,600
467
+ ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง
468
+
469
+ 118
470
+ 00:13:56,600 --> 00:14:00,950
471
+ ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุงู‡ู„ ูŠู…ูƒู† ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃู† ูŠุณุงูˆูŠ
472
+
473
+ 119
474
+ 00:14:00,950 --> 00:14:05,430
475
+ Zero ููŠ ูŠูˆู… ู…ู† ุงู„ุฃูŠุงู…ุŸููŠ ุงู„ุดู…ูƒุงู†ูŠุฉ ู„ูŠุดุŸ ู„ุฅู† ุงู„
476
+
477
+ 120
478
+ 00:14:05,430 --> 00:14:08,970
479
+ exponential ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง positive greater than
480
+
481
+ 121
482
+ 00:14:08,970 --> 00:14:15,910
483
+ zero ุบูŠุฑ ู‡ูŠูƒ ูˆู„ุง ูˆุงุญุฏุฉ ู…ู† R ุชุณูˆู‰ R ุงู„ุชุงู†ูŠุฉ ุฑ I ู„ุง
484
+
485
+ 122
486
+ 00:14:15,910 --> 00:14:22,570
487
+ ูŠุณูˆู‰ ุฑ ุฌูŠ ู„ูƒู„ ุงู„ I ุงู„ุชูŠ ู„ุง ุชุณูˆู‰ ุฌูŠ ูŠุจู‚ู‰ ู„ุง ูŠู…ูƒู†
488
+
489
+ 123
490
+ 00:14:22,570 --> 00:14:28,010
491
+ ู„ุฃูŠ ู‚ูˆุณ ู…ู† ู‡ุฐู‡ ุงู„ุฃู‚ูˆุงุณ ุฃู† ุชุณูˆู‰ zero ุฅุฐุง ุจุฑูˆุญ ุจู‚ูˆู„ู‡
492
+
493
+ 124
494
+ 00:14:28,010 --> 00:14:34,720
495
+ ู‡ุฐุง ู…ุงู„ู‡ู„ุง ูŠุณุงูˆูŠ 0 ุงูˆ ุงู† ุดุฆุชู… ูุงู‚ูˆู„ูˆุง ู‡ุฐุง ุงูŠู‡ุŸ ุงุตุฑ
496
+
497
+ 125
498
+ 00:14:34,720 --> 00:14:43,440
499
+ one ุฒุงุฆุฏ R2 ุฒุงุฆุฏ R3 ูƒู„ู‡ ููŠ X ููŠ D ุชู„ุงุชุฉ ู‡ุฐุง ูƒู„ู‡
500
+
501
+ 126
502
+ 00:14:43,440 --> 00:14:49,770
503
+ ู…ุงู„ู‡ุŸู„ุฃ ูŠุณุงูˆูŠ 0 ุฅุฐุง ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ ูƒุงู†ุช E ุฃุณ R1
504
+
505
+ 127
506
+ 00:14:49,770 --> 00:14:54,750
507
+ X ูˆ E ุฃุณ R2 X are linearly independent ููŠ ุงู„ุญุงู„ุฉ
508
+
509
+ 128
510
+ 00:14:54,750 --> 00:14:59,670
511
+ ุงู„ุชุงู†ูŠุฉ ุฃุตุจุญ E ุฃุณ R1 E ุฃุณ R2 E ุฃุณ R3 ุจุฑุถู‡ are
512
+
513
+ 129
514
+ 00:14:59,670 --> 00:15:06,290
515
+ linearly independent ุทูŠุจ ุงู„ุขู† ุจุฏุงุฌูŠ ุฃู‚ูˆู„ ู„ูˆ ูƒุงู†
516
+
517
+ 130
518
+ 00:15:06,290 --> 00:15:11,870
519
+ ุนู†ุฏ ุฅูŠู‡ุงู„ู„ูŠ ู‡ูˆ ุงู„ N ู…ู† ุงู„ functions ูŠุนู†ูŠ ุงุญู†ุง ุจุฏู†ุง
520
+
521
+ 131
522
+ 00:15:11,870 --> 00:15:16,150
523
+ ู†ุนู…ู… ุจุฏู„ ู…ุง ู†ู…ุดูŠ ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ูˆ ุงุฑุจุนุฉ ุจุฏู†ุง ู†ุฑูˆุญ
524
+
525
+ 132
526
+ 00:15:16,150 --> 00:15:22,070
527
+ ุงู„ู‰ M ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุงุฎุฏ ู‡ู†ุง also
528
+
529
+ 133
530
+ 00:15:23,870 --> 00:15:28,890
531
+ ู„ูˆ ุฃุฎุฏุช ุฑูˆู†ุณูƒูŠู† as a function of x ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡
532
+
533
+ 134
534
+ 00:15:28,890 --> 00:15:39,410
535
+ ูŠุณุงูˆูŠ E ุฃุต R1X E ุฃุต R2X ูˆุธู„ุช ู…ุณุชู…ุฑ ู„ุบุงูŠุฉ E ุฃุต RNX
536
+
537
+ 135
538
+ 00:15:40,000 --> 00:15:50,480
539
+ ุจุงู„ุฏุฌุงุฌ ุฃุดุชู‚ ูŠุจู‚ู‰ R1 E ุฃุณ R1 X R2 E ุฃุณ R2 X RN E
540
+
541
+ 136
542
+ 00:15:50,480 --> 00:16:01,650
543
+ ุฃุณ RN X ู†ุดุชู‚ ูƒู…ุงู† ู…ุฑุฉ ูŠุจู‚ู‰ R1 ุชุฑุจูŠุฉ E ุฃุณ R1 XR2
544
+
545
+ 137
546
+ 00:16:01,650 --> 00:16:11,070
547
+ ุชุฑุจูŠุฉ E ุฃูุณ R2 X ูˆู†ุธู„ ู…ุงุดูŠูŠู† R N ุชุฑุจูŠุฉ E ุฃูุณ R N X
548
+
549
+ 138
550
+ 00:16:11,070 --> 00:16:19,330
551
+ ู„ูˆ ุถู„ุช ู…ุณุชู…ุฑ ูŠุง ุจู†ุงุช ู‡ูˆุตู„ ู„ูˆูŠู† ู„ู„ R1 ุฃูุณ N ู†ุงู‚ุต
552
+
553
+ 139
554
+ 00:16:19,330 --> 00:16:26,020
555
+ ูˆุงุญุฏ E ุฃูุณ R1 XูŠุนู†ูŠ ู…ุง ุฃู‚ุตุฏุด ู„ู„ู…ุดุชุงู‚ ู‚ุงู†ูˆู†ูŠุง ูˆุฅู†ู…ุง
556
+
557
+ 140
558
+ 00:16:26,020 --> 00:16:31,000
559
+ ุฃู‚ู„ ู…ู† ุงู„ู…ุดุชุงู‚ ู‚ุงู†ูˆู†ูŠุง ุจู…ู‚ุฏุงุฑ ู„ุฅู† ุงู„ุตู ุงู„ุฃูˆู„ ู…ุงููŠุด
560
+
561
+ 141
562
+ 00:16:31,000 --> 00:16:36,920
563
+ ููŠู‡ ุงุดุชู‚ุงุก ุทูŠุจ ุชู…ุงู… ุงู„ุชุงู†ูŠุฉ R2 to the power n
564
+
565
+ 142
566
+ 00:16:36,920 --> 00:16:45,760
567
+ minus ุงู„ one E ุฃุณ R to X ู†ุธู„ ู…ุณุชู…ุฑูŠู† ู„ุบุงูŠุฉ RN ุฃุณ N
568
+
569
+ 143
570
+ 00:16:45,760 --> 00:16:53,900
571
+ ู†ุงู‚ุต ูˆุงุญุฏ E ุฃุณ RN X ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุทูŠุจ ู„ูˆ
572
+
573
+ 144
574
+ 00:16:53,900 --> 00:16:59,140
575
+ ุฌูŠุชู‡ุง ู…ู„ุช ุฒูŠ ุงู„ู„ูŠ ู‚ุจู„ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุญูƒุช ุชุงู„ูŠ ุจุฏูŠ
576
+
577
+ 145
578
+ 00:16:59,140 --> 00:17:09,000
579
+ ูŠุตูŠุฑ E ุฃุณุฑุงุฑ 1 ุฒุงุฆุฏ R2 ุฒุงุฆุฏ R3 ุฒุงุฆุฏ RN ูƒู„ู‡ ููŠ X ููŠ
580
+
581
+ 146
582
+ 00:17:09,000 --> 00:17:17,760
583
+ ู…ูŠู† ูŠุง ุจู†ุงุชุŸ ููŠ ุงู„ DN D2 D3 DN ูˆู‡ุฐุง ูƒู„ู‡ ู„ุง ูŠุณุงูˆูŠ
584
+
585
+ 147
586
+ 00:17:17,760 --> 00:17:20,760
587
+ zero where ุญูŠุซ
588
+
589
+ 148
590
+ 00:17:23,060 --> 00:17:30,820
591
+ ุจู†ู‚ู„ุด ู†ุดูˆู ู…ูŠู† ู‡ูŠ DN ู‡ุฐู‡ ุญูŠุซ ุงู„ DN ู‡ูŠ ุนุจุงุฑุฉ ุนู†
592
+
593
+ 149
594
+ 00:17:30,820 --> 00:17:43,210
595
+ ุงู„ู…ุญุฏุฏ ูˆุงุญุฏ ูˆุงุญุฏ ูˆุงุญุฏู‡ู†ุง R1 R2 R3 RN ู‡ู†ุง R1 ุชุฑุจูŠุน
596
+
597
+ 150
598
+ 00:17:43,210 --> 00:17:52,090
599
+ R2 ุชุฑุจูŠุน R3 ุชุฑุจูŠุน RN ุชุฑุจูŠุน ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ R1
600
+
601
+ 151
602
+ 00:17:52,090 --> 00:17:59,020
603
+ ุฃุณุฆู„ ู†ุงู‚ุต ูˆุงุญุฏR2 ุฃูุณ N ู†ุงู‚ุต ูˆุงุญุฏ R3 ุฃูุณ N ู†ุงู‚ุต
604
+
605
+ 152
606
+ 00:17:59,020 --> 00:18:06,540
607
+ ูˆุงุญุฏ RN ุฃูุณ N ู†ุงู‚ุต ูˆุงุญุฏ ูˆู‡ูŠ ุงู„ู…ุญุฏุฏ ูˆู‡ุฐุง ู…ุง ู„ู‡ ู„ุง
608
+
609
+ 153
610
+ 00:18:06,540 --> 00:18:13,810
611
+ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูƒุฐู„ูƒู…ุง ุฏุงู… ู„ุง ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูŠุจู‚ู‰ ุตุญ ุงู„ู„ูŠ
612
+
613
+ 154
614
+ 00:18:13,810 --> 00:18:21,270
615
+ ู‡ูŠ ุงู„ E ุฃุณ R one X ูˆุงู„ E ุฃุณ R two X ูˆู†ุธู„ ู…ุงุดูŠ ู„ุบุฉ
616
+
617
+ 155
618
+ 00:18:21,270 --> 00:18:28,570
619
+ E ุฃุณ R in X are linearly independent ู„ูŠุดุŸ ู„ุฃู†
620
+
621
+ 156
622
+ 00:18:28,570 --> 00:18:35,050
623
+ ุงู„ู…ุญุฏุฏ ุชุจุนู‡ู… ูƒู„ู‡ ู„ุง ูŠุณุงูˆูŠ ุฒูŠุฑูˆland ู‡ู†ุง stop ุงู†ุชู‡ู‰
624
+
625
+ 157
626
+ 00:18:35,050 --> 00:18:42,830
627
+ ู‡ุฐุง section ูˆุฅู„ู‰ ูŠูƒูˆู† ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ ู…ู† exercises
628
+
629
+ 158
630
+ 00:18:42,830 --> 00:18:50,210
631
+ ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ exercises ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ูˆุงุญุฏ ุงุชู†ูŠู†
632
+
633
+ 159
634
+ 00:18:50,210 --> 00:19:01,670
635
+ ุฃุฑุจุนุฉ ูˆู‡ู†ุง ุณุจุนุฉ ูˆู‡ู†ุง ุชู…ุงู†ูŠุฉ ุจุฏู†ุง
636
+
637
+ 160
638
+ 00:19:01,670 --> 00:19:09,520
639
+ ู†ูŠุฌูŠ ุงู„ุขู†ู„ุฃู‡ู… section ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐุง ุงู„ุดุจุชุฑ ุฃูˆ ู…ู†
640
+
641
+ 161
642
+ 00:19:09,520 --> 00:19:25,620
643
+ ุฃู‡ู… ุงู„ sections ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ู‡ุฐุง ุงู„ุดุจุชุฑ ู‡ุฐุง
644
+
645
+ 162
646
+ 00:19:25,620 --> 00:19:32,390
647
+ ุงู„ู…ูˆุถูˆุน ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ section 3-5ุชู„ุงุชุฉ ุฎู…ุณุฉ ุงู„ู„ูŠ ู‡ูˆ
648
+
649
+ 163
650
+ 00:19:32,390 --> 00:19:38,550
651
+ dimensions dimensions
652
+
653
+ 164
654
+ 00:19:38,550 --> 00:19:45,870
655
+ ู…ูุฑุถู‡ุง dimension ูŠุนู†ูŠ ุงุจุนุงุฏ dimensions ูŠุนู†ูŠ ุงุจุนุงุฏ
656
+
657
+ 165
658
+ 00:19:45,870 --> 00:19:52,230
659
+ ู†ุนุทูŠ
660
+
661
+ 166
662
+ 00:19:52,230 --> 00:19:59,030
663
+ ุชุนุฑูŠููŠู† ูˆุจุนุฏ ู‡ูŠูƒ ู†ุจุฏุฃ ููŠ ุทุฑุญ ุงู„ุฃู…ุซู„ุฉ definition
664
+
665
+ 167
666
+ 00:20:01,970 --> 00:20:17,250
667
+ ู„ุช ูƒุงุจุชู„ V Be A Vector Space Vector Space Then V
668
+
669
+ 168
670
+ 00:20:17,250 --> 00:20:25,530
671
+ Is Said To Be A Finite Dimensional Vector
672
+
673
+ 169
674
+ 00:20:39,370 --> 00:20:50,150
675
+ finite dimensional vector space F ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
676
+
677
+ 170
678
+ 00:20:50,150 --> 00:20:52,330
679
+ there exists a set
680
+
681
+ 171
682
+ 00:21:04,520 --> 00:21:18,660
683
+ of linearly independent elements of V ู†ู‚ุทุฉ ุซุงู†ูŠุฉ
684
+
685
+ 172
686
+ 00:21:18,660 --> 00:21:25,440
687
+ every set
688
+
689
+ 173
690
+ 00:21:25,440 --> 00:21:30,740
691
+ of more than
692
+
693
+ 174
694
+ 00:21:32,250 --> 00:21:38,710
695
+ in elements as
696
+
697
+ 175
698
+ 00:21:38,710 --> 00:21:46,170
699
+ linearly dependent ูˆู„ุญุธุฉ
700
+
701
+ 176
702
+ 00:21:46,170 --> 00:21:57,730
703
+ ุจุณูŠุทุฉ ุฌุฏุง in the above definition in the above
704
+
705
+ 177
706
+ 00:21:57,730 --> 00:22:00,890
707
+ definition we say that
708
+
709
+ 178
710
+ 00:22:04,250 --> 00:22:18,330
711
+ we say that ุงู„ V has dimension has dimension in ูŠุง
712
+
713
+ 179
714
+ 00:22:18,330 --> 00:22:31,170
715
+ ุฅู…ุง ุจู†ู‚ูˆู„ or V is n dimensional V is n dimensional
716
+
717
+ 180
718
+ 00:22:33,490 --> 00:22:49,930
719
+ and dimensional vector space ู…ู„ุงุญุธุฉ
720
+
721
+ 181
722
+ 00:22:49,930 --> 00:22:54,890
723
+ ุงู„ vector space
724
+
725
+ 182
726
+ 00:23:02,280 --> 00:23:14,060
727
+ V ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูู‚ุท is finite dimensional
728
+
729
+ 183
730
+ 00:23:14,060 --> 00:23:17,740
731
+ is
732
+
733
+ 184
734
+ 00:23:17,740 --> 00:23:28,620
735
+ finite dimensional vector space
736
+
737
+ 185
738
+ 00:23:30,930 --> 00:23:40,190
739
+ vector space and has and
740
+
741
+ 186
742
+ 00:23:40,190 --> 00:23:46,690
743
+ has dimension zero
744
+
745
+ 187
746
+ 00:23:46,690 --> 00:23:53,610
747
+ definition the
748
+
749
+ 188
750
+ 00:23:53,610 --> 00:23:59,810
751
+ vectors V1
752
+
753
+ 189
754
+ 00:24:00,900 --> 00:24:19,860
755
+ v2 ูˆ vk in a vector space in a vector space v are
756
+
757
+ 190
758
+ 00:24:19,860 --> 00:24:27,700
759
+ set to form are
760
+
761
+ 191
762
+ 00:24:27,700 --> 00:24:35,670
763
+ set to formA bases for
764
+
765
+ 192
766
+ 00:24:35,670 --> 00:24:47,290
767
+ V F ู†ู…ุฑุฉ A ู†ู…ุฑุฉ
768
+
769
+ 193
770
+ 00:24:47,290 --> 00:24:55,790
771
+ V ูˆุงุญุฏ ูˆ V ุงุชู†ูŠู† ูˆ V ูƒุงุณุจูŠู†
772
+
773
+ 194
774
+ 00:24:55,790 --> 00:24:58,050
775
+ V
776
+
777
+ 195
778
+ 00:24:59,580 --> 00:25:11,300
779
+ ู†ู…ุฑ ุจูŠ V ูˆุงุญุฏ ูˆ V ุงุชู†ูŠู† ูˆ VK are linearly
780
+
781
+ 196
782
+ 00:25:11,300 --> 00:25:12,860
783
+ independent
784
+
785
+ 197
786
+ 00:27:29,190 --> 00:27:35,270
787
+ ุงู„ุงู† ู†ุจุฏุฃ ุจุงู„ุชุนุฑูŠููŠู† ุงู„ุชุนุฑูŠููŠู† ุงู„ุงุซู†ูŠู† ู…ุฑูƒุจ ุนู„ูŠู‡ู…
788
+
789
+ 198
790
+ 00:27:35,270 --> 00:27:41,190
791
+ ูƒู„ ู‡ุฐุง ุงู„ section ูŠุนู†ูŠ ุจุนุฏ ุฐู„ูƒ ุณู†ุงุฎุฏ ู†ุธุฑูŠุงุช ุนู„ู‰ ุงู„
792
+
793
+ 199
794
+ 00:27:41,190 --> 00:27:45,150
795
+ two definitions ุงู„ู„ูŠ ุนู†ุฏู†ุง ู„ุฐู„ูƒ ุถุฑูˆุฑูŠ ู†ูู‡ู… ูƒู„
796
+
797
+ 200
798
+ 00:27:45,150 --> 00:27:50,410
799
+ ุชุนุฑูŠู ู…ู† ู‡ุฐูŠู† ุงู„ุชุนุฑูŠููŠู†ุงู„ุชุนุฑูŠู ุงู„ุฃูˆู„ ุจู‚ูˆู„ let V
800
+
801
+ 201
802
+ 00:27:50,410 --> 00:27:54,930
803
+ ุจูŠู‡ vector space then V is said to be a finite
804
+
805
+ 202
806
+ 00:27:54,930 --> 00:27:59,010
807
+ dimensional vector space F ุฅูŠุด ูŠุนู†ูŠ finite
808
+
809
+ 203
810
+ 00:27:59,010 --> 00:28:04,150
811
+ dimensional vector spaceุŸ finite ู…ุญุฏูˆุฏ ูˆ dimension
812
+
813
+ 204
814
+ 00:28:04,150 --> 00:28:09,060
815
+ ู‚ุนุฏูŠุจู‚ู‰ ู„ู…ุง ุฃู‚ูˆู„ finite dimensional vector space
816
+
817
+ 205
818
+ 00:28:09,060 --> 00:28:15,680
819
+ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ vector space ู„ู‡ ุฃุจุนุงุฏ ู…ุญุฏูˆุฏุฉ ุชู…ุงู… ุฅุฐุง
820
+
821
+ 206
822
+ 00:28:15,680 --> 00:28:22,960
823
+ ุชุญู‚ู‚ ุดุฑุทุงู† ู…ุง ู‡ู…ุง ู‡ุฐุงู† ุงู„ุดุฑุทุงู† ุงู„ุดุฑุท ุงู„ุฃูˆู„ุจู‚ูˆู„ if
824
+
825
+ 207
826
+ 00:28:22,960 --> 00:28:28,440
827
+ there exists a set of n linearly independent of V
828
+
829
+ 208
830
+ 00:28:28,440 --> 00:28:33,860
831
+ ู„ู‚ูŠุช ู„ูŠ two vectors ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ุฎู…ุณุฉ ู‚ุฏ ู…ุง ูŠูƒูˆู†
832
+
833
+ 209
834
+ 00:28:33,860 --> 00:28:38,900
835
+ ู‡ุฏูˆู„ ุงู„ู…ุฌู…ูˆุนุฉ are linearly independent ุงู„ุดุฑุท ุงู„ุฃูˆู„
836
+
837
+ 210
838
+ 00:28:38,900 --> 00:28:44,820
839
+ ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ every set of more than n elements is
840
+
841
+ 211
842
+ 00:28:44,820 --> 00:28:51,840
843
+ linearly dependent ูŠุจู‚ู‰ ุฃู†ุง ู„ู‚ูŠุช ุนู†ุฏูŠู† ู…ู† ุงู„ู€
844
+
845
+ 212
846
+ 00:28:51,840 --> 00:28:55,640
847
+ linearly independent vectors ู„ูˆ ุญุทูŠุช ุนู„ูŠู‡ู… ูƒู…ุงู†
848
+
849
+ 213
850
+ 00:28:55,640 --> 00:29:01,660
851
+ ูˆุงุญุฏ ุจุตูŠ ุงู„ุนุฏุฏ ู‡ู… ุฌุฏูŠุฏ ุงู† ุฒูŠุฏ ูˆุงุญุฏ ุงูŠ ุงู† ุฒูŠุฏ ูˆุงุญุฏ
852
+
853
+ 214
854
+ 00:29:01,660 --> 00:29:07,680
855
+ ูู…ุง ููˆู‚ู‡ ูŠุนุชุจุฑ linearly dependentู…ู…ุชุงุฒ ุฌุฏุง ูŠุจู‚ู‰ ุงู„
856
+
857
+ 215
858
+ 00:29:07,680 --> 00:29:13,060
859
+ vector ุงุณู…ู‡ CLV ุจู‚ูˆู„ ุนู†ู‡ finite dimensional ู…ุญุฏูˆุฏ
860
+
861
+ 216
862
+ 00:29:13,060 --> 00:29:18,800
863
+ ุงุฐุง ุฌุฏุฑุช ุงู„ุงุฌุฆูŠู† ู…ู† ุงู„ linearly independent
864
+
865
+ 217
866
+ 00:29:18,800 --> 00:29:23,980
867
+ elements ุงูŠ ุนุฏุฏ ุงุฎุฑ ุณูˆุงุก ุงู† ุชุจุนุชูŠ ู‡ุฏูˆู„ ูˆ ุงุฒูŠุฏ
868
+
869
+ 218
870
+ 00:29:23,980 --> 00:29:28,560
871
+ ุนู„ูŠู‡ู… ูˆุงุญุฏ ุงูˆ ู…ู† ุบูŠุฑู‡ู… ูŠุฌุจ ุงู† ูŠูƒูˆู†ูˆุง ูƒู„ู‡ู… linearly
872
+
873
+ 219
874
+ 00:29:28,560 --> 00:29:33,320
875
+ dependentุฅู† ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุจู‚ูˆู„ ู‡ุฐุง finite
876
+
877
+ 220
878
+ 00:29:33,320 --> 00:29:38,900
879
+ dimensional vector space ูˆ ุงู„ dimension ุฅู„ู‡ ุงู„ุจุนุฏ
880
+
881
+ 221
882
+ 00:29:38,900 --> 00:29:43,100
883
+ ุชุจุนู‡ ุจุฏูŠ ูŠุณูˆู‰ ุฌุฏุงุด ุจุฏูŠ ูŠุณูˆู‰ M ูŠุจู‚ู‰ in the above
884
+
885
+ 222
886
+ 00:29:43,100 --> 00:29:46,320
887
+ definition ููŠ ุงู„ุชุนุฑูŠูุฉ ู„ูˆ we say that ุจุฑูˆุญ ู†ู‚ูˆู„
888
+
889
+ 223
890
+ 00:29:46,320 --> 00:29:52,020
891
+ ุฅู†ู‡ ููŠ has dimension in ุฃู† ุงู„ุจุนุฏ ุชุจุน ู‡ุฐุง ุงู„ vector
892
+
893
+ 224
894
+ 00:29:52,020 --> 00:29:57,940
895
+ space ูŠุณูˆู‰ Nุฃูˆ ุตูŠุงุบุฉ ุฃุฎุฑู‰ ุจู‚ูˆู„ ุงู† ุงู„ V is N
896
+
897
+ 225
898
+ 00:29:57,940 --> 00:30:01,480
899
+ dimensional vector space ุงู† ู‚ู„ุช ุงู„ dimension ู„ู‡
900
+
901
+ 226
902
+ 00:30:01,480 --> 00:30:06,920
903
+ ุงู„ู„ูŠ ุนุฏุฏ ุงู„ุฃุจุนุงุฏ ุชุจุนู‡ ูŠุณุงูˆูŠ N ุฃูˆ ู‚ู„ุช ู‡ูˆ finite N
904
+
905
+ 227
906
+ 00:30:06,920 --> 00:30:10,140
907
+ dimensional vector space ุงู„ุตูŠุงุบุฉ ู‡ุฐู‡ ุฃูˆ ุงู„ุตูŠุงุบุฉ
908
+
909
+ 228
910
+ 00:30:10,140 --> 00:30:15,460
911
+ ู‡ุฐู‡ ุงู„ุงุชู†ูŠู† are the same ูŠุจู‚ุงุด ู…ุชุนุจุฑุฉ ุตุญ ู…ู† ุงู„ two
912
+
913
+ 229
914
+ 00:30:15,460 --> 00:30:21,080
915
+ definitions ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ุทุจ ุงู„ุณุคุงู„ ู‡ูˆ ุทุจ ู„ูˆ ูƒุงู† ุงู„
916
+
917
+ 230
918
+ 00:30:21,080 --> 00:30:25,400
919
+ vector space ู‡ูˆ ู„ุชุฑูŠููŠุง ุงู„ vector space ุดูˆ ู„ุชุฑูŠููŠุง
920
+
921
+ 231
922
+ 00:30:25,400 --> 00:30:28,200
923
+ ุงู„ vector spaceุŸ ูŠุนู†ูŠ ุงู„ vector space ุงู„ู„ูŠ ู„ุง
924
+
925
+ 232
926
+ 00:30:28,200 --> 00:30:34,240
927
+ ูŠุญุชูˆูŠ ุฅู„ุง ุนู„ู‰ ุนู†ุตุฑ ูˆุงุญุฏ ูˆ ุนู†ุตุฑ ุตูุฑูŠู† ูŠุจู‚ู‰ ู‡ุฐุง ุจู‚ูˆู„
928
+
929
+ 233
930
+ 00:30:34,240 --> 00:30:38,920
931
+ ุงู„ dimension ู„ู‡ ูŠุณุงูˆูŠ ุฌุฏุงุดุŸ ูŠุณุงูˆูŠ zero ู„ุฃู†ู‡
932
+
933
+ 234
934
+ 00:30:38,920 --> 00:30:42,660
935
+ ู…ุงุนู†ุฏูŠุด ุบูŠุฑ main ุบูŠุฑ ุงู„ูˆุงุญุฏ ูˆ ู‡ุฐุง ู…ุงุนุด vectors
936
+
937
+ 235
938
+ 00:30:42,660 --> 00:30:50,340
939
+ ุฃุฎุฑู‰ ุฅุฐุง ู‡ูˆ ู…ุณุชู‚ู„ ูˆ ู‚ุงุฆู… ุจุฐุงุชู‡ ูŠุนู†ูŠ linearlyู„ูˆ
940
+
941
+ 236
942
+ 00:30:50,340 --> 00:30:55,060
943
+ ูˆุฌุฏู†ุง ูƒู„ู…ุฉ ุงุฎุฑู‰ ููŠู‡ุง ุงุฎุฑู‰ ู…ุงููŠู‡ ุงุด ู„ุงู† ู‡ูˆ zero
944
+
945
+ 237
946
+ 00:30:55,060 --> 00:30:59,420
947
+ ู„ุญุงู„ู‡ ุชู…ุงู… ูŠุจู‚ู‰ ูƒุฃู†ู‡ ู‡ุฐุง ุจูŠู‚ูˆู„ูƒ ู„ูˆ ููŠู‡ ุจุฏู‡ู… ูŠูƒูˆู†ูˆุง
948
+
949
+ 238
950
+ 00:30:59,420 --> 00:31:03,960
951
+ linearly dependent ูŠุจู‚ู‰ ู‡ุฐุง ู…ุญู‚ู‚ ุจุงู„ุดุฑุทูŠู† ูŠุจู‚ู‰ ู‡ุฐุง
952
+
953
+ 239
954
+ 00:31:03,960 --> 00:31:09,740
955
+ ุงู„ dimension ู„ู‡ ูŠุณุงูˆูŠ zero ุทูŠุจ ูƒูˆูŠุณ ู†ุฌูŠ ู„ู„ู…ู„ุงุญุธุฉ
956
+
957
+ 240
958
+ 00:31:09,740 --> 00:31:14,270
959
+ ุงู„ุชุงู†ูŠุฉุฃูˆ ุงู„ู€ Definition ุงู„ุชุงู†ูŠุฉ ุจูŠู‚ูˆู„ ุฅุฐุง vectors
960
+
961
+ 241
962
+ 00:31:14,270 --> 00:31:20,470
963
+ V1 ูˆ V2 ู„ุบุงูŠุฉ V ูƒุฅู† Vector Space V are said to
964
+
965
+ 242
966
+ 00:31:20,470 --> 00:31:26,610
967
+ form a basis for V ุจุงุณูŠุณ ูŠุนู†ูŠ ุฃุณุงุณ ูŠุจู‚ู‰ ู‡ุฏูˆู„ ู‡ู…
968
+
969
+ 243
970
+ 00:31:26,610 --> 00:31:32,250
971
+ ุงู„ุฃุณุงุณ ุจุงู„ู†ุณุจุฉ ู„ V ุฅุฐุง ุชุญู‚ู‚ ุดุฑุทุง ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุฃู† ุงู„
972
+
973
+ 244
974
+ 00:31:32,250 --> 00:31:38,150
975
+ V ู‡ุฏูˆู„ Spain VSpan V ูŠุนู†ูŠ ุฅูŠุดุŸ ูŠุนู†ูŠ ุจูŠูˆู„ุฏูˆู„ูŠ ุฌู…ูŠุน
976
+
977
+ 245
978
+ 00:31:38,150 --> 00:31:43,890
979
+ ุฃู†ุตุงุฑ ุงู„ vector space V ุจุงู„ุงุณุชุซู†ุงุก ุจุงู„ุจู„ุฏ ู‡ูŠูƒ ูŠุนู†ูŠ
980
+
981
+ 246
982
+ 00:31:43,890 --> 00:31:49,530
983
+ ุฃูŠ vector ููŠู‡ V ุจุฏูŠู‡ ูŠูƒูˆู† linear combination ู…ู† ุงู„
984
+
985
+ 247
986
+ 00:31:49,530 --> 00:31:54,410
987
+ vectors ู…ู† V1 ู„ุบุงูŠุฉ VKูŠุนู†ูŠ ุงูŠ vector ููŠ ุงู„ vector
988
+
989
+ 248
990
+ 00:31:54,410 --> 00:31:59,850
991
+ space V ุจู‚ุฏุฑ ุงูƒุชุจู‡ ุนู„ู‰ ุดูƒู„ linear combination ู…ู†
992
+
993
+ 249
994
+ 00:31:59,850 --> 00:32:05,350
995
+ V1 ูˆ V2 ูˆ V3 ู„ุบุงูŠุฉ Vk ู„ุบุงูŠุฉ Vk ู‡ุฐุง ุงู„ุดุฑุท ุงู„ุฃูˆู„
996
+
997
+ 250
998
+ 00:32:05,350 --> 00:32:10,870
999
+ ุงู„ุดุฑุท ุงู„ุชุงู†ูŠ V1 ูˆ V2 ูˆ Vk are linearly independent
1000
+
1001
+ 251
1002
+ 00:32:10,870 --> 00:32:15,950
1003
+ ูŠุจู‚ู‰ ุงู†ุง ู…ุดุงู† ุงุฎุชุจุฑ ุงู† ู‡ุฏูˆู„ ุจู†ูุน basis ู„ู„ vector
1004
+
1005
+ 252
1006
+ 00:32:15,950 --> 00:32:21,000
1007
+ space ูˆู„ุง ู„ุฃ ุจุฏูŠ ุงู…ุฑูŠู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„ุฃุฑูŠุฏ ุฃู† ุฃุซุจุช ุฃู†
1008
+
1009
+ 253
1010
+ 00:32:21,000 --> 00:32:23,380
1011
+ ู‡ุคู„ุงุก ุงู„ูˆูƒุชูˆุฑุฒ ู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
1012
+
1013
+ 254
1014
+ 00:32:23,380 --> 00:32:25,960
1015
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
1016
+
1017
+ 255
1018
+ 00:32:25,960 --> 00:32:29,000
1019
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
1020
+
1021
+ 256
1022
+ 00:32:29,000 --> 00:32:29,420
1023
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
1024
+
1025
+ 257
1026
+ 00:32:29,420 --> 00:32:32,080
1027
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
1028
+
1029
+ 258
1030
+ 00:32:32,080 --> 00:32:35,560
1031
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู†
1032
+
1033
+ 259
1034
+ 00:32:35,560 --> 00:32:42,580
1035
+ ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…ุณุชู‚ู„ูŠู† ูˆู…
1036
+
1037
+ 260
1038
+ 00:32:43,930 --> 00:32:47,090
1039
+ ุจุฑูˆุญ ู„ู„ุดุฑุท ุงู„ุชุงู†ูŠ ููŠ ุงู„ุฃูˆู„ ุฃูุถู„ ู„ูŠุด ู„ุฃู†ู‡ ุงู†ุทู„ุน
1040
+
1041
+ 261
1042
+ 00:32:47,090 --> 00:32:51,410
1043
+ linearly dependent ุจุฑูˆุญ ู„ู„ุดุฑุท ุงู„ุชุงู†ูŠ ู„ูƒู† ู„ูˆ ุงุฐุง
1044
+
1045
+ 262
1046
+ 00:32:51,410 --> 00:32:55,010
1047
+ ุนู…ู„ุช ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุจุฏุฃ ุฃุฑูˆุญ ุฃุฎุชุจุฑ ู…ู† ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ
1048
+
1049
+ 263
1050
+ 00:32:55,010 --> 00:33:00,840
1051
+ ุฅุฌุจุงุฑูŠ ูŠุจู‚ู‰ ุงู„ุฃูุถู„ ุฃู† ุฃุฑูˆุญ ู„ู…ูŠู† ู„ู„ุดุฑุท ุงู„ุซุงู†ูŠูŠุจู‚ู‰
1052
+
1053
+ 264
1054
+ 00:33:00,840 --> 00:33:07,620
1055
+ ูŠุง ุจู†ุงุช ู…ุดุงู† ูŠูƒูˆู† ุนู†ุฏู‰ basis ู„ู„ victory space ุจุฏู‰
1056
+
1057
+ 265
1058
+ 00:33:07,620 --> 00:33:12,800
1059
+ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ victories ุงู„ู„ู‰ ุชุจู‚ู‰ basis ูŠุชุญู‚ู‚
1060
+
1061
+ 266
1062
+ 00:33:12,800 --> 00:33:16,580
1063
+ ููŠู‡ุง ุดุฑุทุง ุงู„ุดุฑุท ู„ูˆ ุชุจู‚ู‰ ูƒู„ู‡ู… linearly independent
1064
+
1065
+ 267
1066
+ 00:33:17,810 --> 00:33:21,650
1067
+ ุฃูŠ vector ููŠ ุงู„ vector space ุจู‚ุฏุฑ ุฃูƒุชุจู‡ ุนู„ู‰ ุตูŠุบุฉ
1068
+
1069
+ 268
1070
+ 00:33:21,650 --> 00:33:25,250
1071
+ linear combination ู…ู† ู‡ุฐู‡ ุงู„ vector ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„
1072
+
1073
+ 269
1074
+ 00:33:25,250 --> 00:33:30,250
1075
+ vector is PNV ุจุชูˆู„ุฏ ู„ู„ vector V ู†ุนุทูŠ ู…ุซุงู„ ุชูˆู†ุนูŠ
1076
+
1077
+ 270
1078
+ 00:33:30,250 --> 00:33:34,490
1079
+ ู…ุซุงู„ ุจูŠู‚ูˆู„ ู…ุง ูŠุงุชูŠ ุจูŠู‚ูˆู„ show the vectors ูˆู…ุนุทูŠู†ูŠ
1080
+
1081
+ 271
1082
+ 00:33:34,490 --> 00:33:40,890
1083
+ ุฃุฑุจุนุฉ vectors ู…ูˆุฌูˆุฏุฉ ูˆูŠู†ู‡ุคู„ุงุก ูŠุซุจุช ู„ูŠ ุงู† ู‡ุคู„ุงุก
1084
+
1085
+ 272
1086
+ 00:33:40,890 --> 00:33:46,310
1087
+ ุจูŠุดูƒู„ูˆุง ุจูŠุฒุฒ ู„ ู…ูŠู… ู„ ุงู„ vector space ุงู„ู„ูŠ ุนู†ุฏู†ุง
1088
+
1089
+ 273
1090
+ 00:33:46,310 --> 00:33:51,090
1091
+ ุจู‚ูˆู„ู‡ ูˆุงู„ู„ู‡ ูƒูˆูŠุณ ุทูŠุจ ุชุนุงู„ู‰ ู†ุดูˆู ู‡ู„ ู‡ุคู„ุงุก ุจูŠุดูƒู„ูˆุง
1092
+
1093
+ 274
1094
+ 00:33:51,090 --> 00:33:54,650
1095
+ ุจูŠุฒุฒ ูˆู„ุง ูŠุจู‚ู‰ ุจุฃูˆู„ ุฎุทุฉ ุจุฏูŠ ุฃุซุจุช ุงู† ู‡ู… ูŠุนูŠุดูŠู†
1096
+
1097
+ 275
1098
+ 00:33:55,660 --> 00:34:00,300
1099
+ Linearly Independent ู„ูƒูŠ ุฃุซุจุชู‡ู… ุงู„ู„ูŠ ู‚ุจู„ ุงู„ู…ุงุถูŠ
1100
+
1101
+ 276
1102
+ 00:34:00,300 --> 00:34:04,900
1103
+ ุฃุฎุฏู†ุง ุดุบู„ุงุช
1104
+
1105
+ 277
1106
+ 00:34:04,900 --> 00:34:08,960
1107
+ ูƒุซูŠุฑุฉ ุจุฏุงูƒ ุนู† ุทุฑูŠู‚ ุงู„ู…ุญุฏุฏ ู…ุงุดูŠ ุจุฏุงูƒ ุชู‚ูˆู„ ุงู„
1108
+
1109
+ 278
1110
+ 00:34:08,960 --> 00:34:12,620
1111
+ constant ููŠ ุงู„ุฃูˆู„ ูˆุงู„ุซุงู„ุซ ูˆุงู„ุฑุงุจุน ูŠุชุณุงูˆูŠ ุฒูŠุฑูˆ
1112
+
1113
+ 279
1114
+ 00:34:12,620 --> 00:34:16,640
1115
+ ูˆุงู„ุฑูˆุญ ู†ูุณูŠ ุจุชุงู†ูŠุฉ ุฏูŠ ุงู„ constant ุจุฒูŠุฑูˆ ู…ุงุดูŠ ุจุณูŠุงู†
1116
+
1117
+ 280
1118
+ 00:34:16,640 --> 00:34:24,360
1119
+ ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ ุจุฃูŠ ูˆุณูŠู„ุฉ ุชู†ุดุฃูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ ุงุดูˆู ุงู„ู„ูŠ
1120
+
1121
+ 281
1122
+ 00:34:24,360 --> 00:34:27,560
1123
+ ู‡ูˆ ู„ูˆ ู‚ู„ุช constant ููŠ ุงู„ุฃูˆู„ ูˆ constant ููŠ ุงู„ุชุงู†ูŠ ูˆ
1124
+
1125
+ 282
1126
+ 00:34:27,560 --> 00:34:30,840
1127
+ constant ููŠ ุงู„ุชุงู„ุช ูŠุจู‚ู‰ ุจุงู„ุฏุงุฌูŠ ุงู‚ูˆู„ ู„ู‡ assume
1128
+
1129
+ 283
1130
+ 00:34:30,840 --> 00:34:41,800
1131
+ that there exists c1 ูˆ c2 ูˆ c3 ูˆ c4 in R such that
1132
+
1133
+ 284
1134
+ 00:34:42,190 --> 00:34:53,090
1135
+ ุจุญูŠุซ ุงู† C1 V1 ุฒ๏ฟฝ๏ฟฝุฏ C2 V2 ุฒุงุฏ C3 V3 ุฒุงุฏ C4 V4 ุจุฏู‡
1136
+
1137
+ 285
1138
+ 00:34:53,090 --> 00:34:55,170
1139
+ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ Zero
1140
+
1141
+ 286
1142
+ 00:34:59,430 --> 00:35:11,530
1143
+ ู‡ุฐุง C1 Zero C1 Zero ุฒุงุฆุฏ Zero C2 ุณู„ุจ C2 ุงุชู†ูŠู† C2
1144
+
1145
+ 287
1146
+ 00:35:11,530 --> 00:35:18,950
1147
+ ุฒุงุฆุฏุจุฏุง ูŠุฌูŠ C3 ูŠุจู‚ู‰ Zero ุงุชู†ูŠู† C ุชู„ุงุชุฉ ุงุชู†ูŠู† C
1148
+
1149
+ 288
1150
+ 00:35:18,950 --> 00:35:25,750
1151
+ ุชู„ุงุชุฉ C ุชู„ุงุชุฉ ุฐุงุช ุงู„ vector ุงู„ุฑุงุจุน ูŠุจู‚ุงุด ุจุฏูŠูƒูˆู†
1152
+
1153
+ 289
1154
+ 00:35:25,750 --> 00:35:34,450
1155
+ ุงู„ู„ูŠ ู‡ู…ูŠู† C4 ูŠุจู‚ู‰ C4 ูˆ Zero ูˆ Zero ูˆ C4 ูƒู„ ู‡ุฐุง
1156
+
1157
+ 290
1158
+ 00:35:34,450 --> 00:35:40,890
1159
+ ุงู„ูƒู„ุงู… ุจุฏูŠ ุณูˆู‰ ู‚ุฏุงุด ุจุฏูŠ ุณูˆู‰ Zero ุชู…ุงู… ุชู…ุงู…
1160
+
1161
+ 291
1162
+ 00:35:57,300 --> 00:36:03,380
1163
+ ุนู† ุทุฑูŠู‚ ุงู„ูˆุตูˆู„
1164
+
1165
+ 292
1166
+ 00:36:03,380 --> 00:36:12,340
1167
+ ุฅู„ู‰ ุงู„ู€ C1 ู…ุน ุงู„ุณู„ุงู…ุฉ ุฒุงุฆุฏ C4ุงู„ู„ูŠ ุจุนุฏู‡ Zero C2
1168
+
1169
+ 293
1170
+ 00:36:12,340 --> 00:36:23,460
1171
+ ุงู„ู„ูŠ ุจุนุฏู‡ 2C3 2C3 Zero ู…ุน ุงู„ุณู„ุงู…ุฉ ุงู„ู„ูŠ ุจุนุฏู‡ C1-C2
1172
+
1173
+ 294
1174
+ 00:36:23,460 --> 00:36:26,720
1175
+ 2C3
1176
+
1177
+ 295
1178
+ 00:36:26,720 --> 00:36:35,180
1179
+ Zero ู…ุน ุงู„ุณู„ุงู…ุฉ ุงู„ุนู†ุตุฑ ุงู„ุฑุงุจุน ุงู„ุฃูˆู„ ุฑุงุญ 2C2ุฒุงุฆุฏ C3
1180
+
1181
+ 296
1182
+ 00:36:35,180 --> 00:36:42,120
1183
+ ุฒุงุฆุฏ C4 ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆ Zero ูˆ Zero ุดูƒู„ ุงู„ู„ูŠ
1184
+
1185
+ 297
1186
+ 00:36:42,120 --> 00:36:47,820
1187
+ ุนู†ุฏู†ุง ู‡ู†ุง ู†ุนู…ู„ ู…ู‚ุงุฑู†ุฉ ู…ุง ุจูŠู† ุงู„ุทุฑููŠู† ูŠุจู‚ู‰ ุจู†ุงุก
1188
+
1189
+ 298
1190
+ 00:36:47,820 --> 00:36:57,540
1191
+ ุนู„ูŠู‡ C1ุฒุงุฆุฏ C4 ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุงู„ู„ูŠ ุจุนุฏู‡ C2 ุฒุงุฆุฏ 2
1192
+
1193
+ 299
1194
+ 00:36:57,540 --> 00:37:07,820
1195
+ C3 ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุงู„ู„ูŠ ุจุนุฏู‡ C1 ู†ุงู‚ุต C2 ุฒุงุฆุฏ 2 C3
1196
+
1197
+ 300
1198
+ 00:37:07,820 --> 00:37:20,460
1199
+ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุงู„ู„ูŠ ุจุนุฏู‡ 2C2 ุฒุงุฆุฏ C3 ุฒุงุฆุฏ C4 ูƒู„ู‡
1200
+
1201
+ 301
1202
+ 00:37:20,460 --> 00:37:27,600
1203
+ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ZeroุทูŠุจ ุจุฏู†ุง ู†ุฌุฑุจ ุงู„ุงู†
1204
+
1205
+ 302
1206
+ 00:37:27,600 --> 00:37:34,700
1207
+ ู†ุดูˆู ุดูˆ ุจุฏู†ุง ู†ุนู…ู„ ููŠ ู‡ุฐุง ุงู„ system ู…ุดุงู† ู†ุญู„ ู‡ุฐุง ุงู„
1208
+
1209
+ 303
1210
+ 00:37:34,700 --> 00:37:41,520
1211
+ system ู„ู‡ ุฃุฑุจุน ู…ุนุงุฏู„ุงุช ููŠ ุฃุฑุจุนุฉ ู…ุฌุงู‡ูŠู„ ุทูŠุจ ู„ูˆ
1212
+
1213
+ 304
1214
+ 00:37:41,520 --> 00:37:51,420
1215
+ ุถุฑุจู†ุง ู‡ุฐุง ููŠ ุณุงู„ุจ ุจูŠุทูŠุฑ ู‡ุฐุง ุจูŠุธู„ C1 ูˆ C2 ุทูŠุจ ู„ูˆ
1216
+
1217
+ 305
1218
+ 00:37:51,420 --> 00:38:00,630
1219
+ ุถุฑุจู†ุง ุงู„ุฃูˆู„ู‰ ููŠ ุณุงู„ุจ ุจุชุฑูˆุญ ู‡ุฐู‡ูˆ .. ุงูˆ ุนู† ุทุฑูŠู‚
1220
+
1221
+ 306
1222
+ 00:38:00,630 --> 00:38:05,130
1223
+ ุงู„ู…ุตุญูุงุช ูŠุงู…ุงู† ุงุชุณูŠุง ุงู„ู…ุตุญูุงุช ุงูˆ ุงุฐุง ูƒุงู†ุช ุจุชูŠุฌูŠ
1224
+
1225
+ 307
1226
+ 00:38:05,130 --> 00:38:09,190
1227
+ ุนู…ู„ูŠุฉ ุงู„ุฏุฑุจ ุจูƒูˆู†ูŠ ูƒูˆูŠุณ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏูŠ ุงุดูˆู ุจุณ ุจุชูŠุฌูŠ
1228
+
1229
+ 308
1230
+ 00:38:09,190 --> 00:38:17,550
1231
+ ูˆ ู„ุง ุจุชูŠุฌูŠุด ูŠุจู‚ู‰ ู‡ุฐู‡ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ุฐู‡ ู„ูˆ ุฌู…ุนู†ุงู‡ู… ุจูŠุธู„
1232
+
1233
+ 309
1234
+ 00:38:17,550 --> 00:38:25,480
1235
+ C ุชู„ุงุชุฉ ู…ุงููŠุด ุบูŠุฑู‡ู…ูˆ ู‡ุฏูˆู„ ุณุงู„ุจ ุทุจ ุจุชุฑูˆุญ ู‡ุฏู‰ ุทุจ ู„ูˆ
1236
+
1237
+ 310
1238
+ 00:38:25,480 --> 00:38:36,420
1239
+ ู‡ุฏู‰ ุงู„ุณุงู„ุจ ุจุชุฑูˆุญ ุง ุณุงู„ุจ ุงู†ุง C1 ูˆ C2 ูˆ C3 ู‡ุฏู‰ ุทูŠุจ
1240
+
1241
+ 311
1242
+ 00:38:36,420 --> 00:38:45,510
1243
+ ู‡ู†ุง ุงุชู†ูŠู† C2ูˆู‡ุง ุฏูŠ C4 ูŠุจู‚ู‰ ูˆุงุถุญ ุงู†ู‡ ุบูŠุฑ ู†ุดุชุบู„
1244
+
1245
+ 312
1246
+ 00:38:45,510 --> 00:38:57,410
1247
+ ุดุบู„ุชูŠู† ู…ุน ุจุนุถ ูˆู…ู†ู‡ู… ู†ุญุงูˆู„ ุงู‡ ุชุงู†ูŠ
1248
+
1249
+ 313
1250
+ 00:38:57,410 --> 00:39:04,330
1251
+ ุชุงู†ูŠ ู…ู† ุฃูˆู„ ุฌุฏูŠุฏ ุนู„ูŠ ุตูˆุชูƒ ุดูˆูŠุฉ ุตุญูŠุญ
1252
+
1253
+ 314
1254
+ 00:39:11,550 --> 00:39:13,830
1255
+ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ
1256
+
1257
+ 315
1258
+ 00:39:13,830 --> 00:39:14,690
1259
+ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ
1260
+
1261
+ 316
1262
+ 00:39:14,690 --> 00:39:18,270
1263
+ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ
1264
+
1265
+ 317
1266
+ 00:39:18,270 --> 00:39:19,890
1267
+ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ
1268
+
1269
+ 318
1270
+ 00:39:19,890 --> 00:39:20,410
1271
+ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ
1272
+
1273
+ 319
1274
+ 00:39:20,410 --> 00:39:20,850
1275
+ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ
1276
+
1277
+ 320
1278
+ 00:39:20,850 --> 00:39:21,570
1279
+ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ
1280
+
1281
+ 321
1282
+ 00:39:21,570 --> 00:39:23,510
1283
+ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ
1284
+
1285
+ 322
1286
+ 00:39:23,510 --> 00:39:33,050
1287
+ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ
1288
+
1289
+ 323
1290
+ 00:39:33,050 --> 00:39:41,580
1291
+ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ูˆ ุฌูŠุช ุฌู…ุงุนุฉ ูˆ ุฃุดูˆู ุทุจ
1292
+
1293
+ 324
1294
+ 00:39:41,580 --> 00:39:47,700
1295
+ ู‡ูŠ C1 ูˆ C2 ู‡ุฐูˆู„ ุจูŠุฌูŠุจูˆู„ูŠ ุงู„ุฃุฑุจุนุฉ ู‡ุฐูˆู„ ุจูŠุฌูŠุจูˆู„ูŠ
1296
+
1297
+ 325
1298
+ 00:39:47,700 --> 00:39:54,680
1299
+ ุชู„ุงุชุฉ ูˆ ุจุฌูŠุจ ูˆุงุญุฏ ุจุฏู„ุงู„ุชู‡ ุงู„ุชุงู†ูŠ ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ู†ูุณ
1300
+
1301
+ 326
1302
+ 00:39:54,680 --> 00:39:59,520
1303
+ ุงู„ู‚ุตุฉ ุนู„ู‰ ุฃูŠ ุญุงู„ ู…ุงุนู†ุงุด ู…ุดูƒู„ุฉ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ู‚ู„ุช ู…ุง
1304
+
1305
+ 327
1306
+ 00:39:59,520 --> 00:40:05,870
1307
+ ูŠุงุชูŠ ุดูˆู ูŠุง ุจู†ุงุชุฃู†ุง ุจุฏูŠ ุฃู‚ูˆู„ ู‡ุฐู‡ ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุจุฏูŠ
1308
+
1309
+ 328
1310
+ 00:40:05,870 --> 00:40:12,330
1311
+ ุฃุชุฑูƒ ุงู„ุฃูˆู„ู‰ ุฒูŠ ู…ุง ู‡ูŠ C1 ูˆ C4 ูˆ ู„ูˆ ุฃู†ู‡ ู„ูˆ ุถุฑุจู†ุงู‡ุง
1312
+
1313
+ 329
1314
+ 00:40:12,330 --> 00:40:18,070
1315
+ ุฃู‡ ุจุฏูŠ ุฃุถุฑุจู‡ุง ููŠ ุณุงู„ุจ ูŠุจู‚ู‰ ุจุฏูŠ ุฃู‚ูˆู„ ู‡ุฐู‡ ุงู„ุณุงู„ุจ C1
1316
+
1317
+ 330
1318
+ 00:40:18,070 --> 00:40:24,490
1319
+ ูˆ ู‡ู†ุง ุงู„ุณุงู„ุจ C4 ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุงู„ุชุงู†ูŠุฉ ู„ูˆ ุฎู„ุชู‡ุง ุฒูŠ
1320
+
1321
+ 331
1322
+ 00:40:24,490 --> 00:40:33,250
1323
+ ู…ุง ู‡ูŠ C2 ุฒุงุฆุฏ 2 C3 ุจุฏู‡ ูŠุณุงูˆูŠ Zeroุงู„ุชุงู„ุชุฉ ู„ูˆ ุถุฑุจุชู‡ุง
1324
+
1325
+ 332
1326
+ 00:40:33,250 --> 00:40:41,710
1327
+ ููŠ ุณุงู„ุจ ูŠุจู‚ู‰ ุงู„ุชุงู„ุชุฉ ู„ูˆ ุฑูˆุญุช ู‚ูˆู„ ุณุงู„ุจ C1 ูˆุฒุงุฆุฏ C2
1328
+
1329
+ 333
1330
+ 00:40:41,710 --> 00:40:54,830
1331
+ ูˆู†ู‚ุต 2 C3 ุจุฏู‡ ูŠุณุงูˆูŠ 0 ูˆู‡ู†ุง 2C2 ุฒุงุฆุฏ C3 ุฒุงุฆุฏ C4 ุจุฏู‡
1332
+
1333
+ 334
1334
+ 00:40:54,830 --> 00:40:58,960
1335
+ ูŠุณุงูˆูŠ 0ูŠุจู‚ู‰ ุถุฑุจุช ุงู„ุฃูˆู„ู‰ ูˆุงู„ุชุงู„ุชู‰ ููŠ ุณุงู„ุจ ูˆุงู„ุจุงู‚ูŠ
1336
+
1337
+ 335
1338
+ 00:40:58,960 --> 00:41:04,950
1339
+ ุฎู„ูŠุชู‡ ุฒูŠ ู…ุง ู‡ูˆ ุงูˆู„ ุดูŠ ู‡ุงุฏู‰ ู‡ุชุฑูˆุญ ู…ุน ู‡ุงุฏู‰ุชู…ุงู… ุงุชู†ูŠู†
1340
+
1341
+ 336
1342
+ 00:41:04,950 --> 00:41:11,630
1343
+ C ุชู„ุงุชุฉ ุจุงู„ุณู„ุจ ู…ุน ุงุชู†ูŠู† C ุชู„ุงุชุฉ ุจุงู„ู…ูˆุฌุจ ุชู…ุงู… ุจุถู„
1344
+
1345
+ 337
1346
+ 00:41:11,630 --> 00:41:19,490
1347
+ ุนู†ุฏ ู…ูŠู† C ูˆุงุญุฏ ูˆ C ุงุชู†ูŠู† ูˆ C ุชู„ุงุชุฉ ูƒุฐู„ูƒ ู…ุด ู…ุดูƒู„ุฉ
1348
+
1349
+ 338
1350
+ 00:41:19,490 --> 00:41:25,470
1351
+ ูŠุจู‚ู‰ ุจุตูŠุฑ ุนู†ุฏู‰ ุณุงู„ุจ ุงุชู†ูŠู† C ูˆุงุญุฏ ุณุงู„ุจ ุงุชู†ูŠู† C ูˆุงุญุฏ
1352
+
1353
+ 339
1354
+ 00:41:25,470 --> 00:41:31,110
1355
+ ุฒุงุฆุฏ C ุงุชู†ูŠู† ูˆุงู„ู„ู‡ ุฒุงุฆุฏ ุชู„ุงุชุฉ C ุงุชู†ูŠู†
1356
+
1357
+ 340
1358
+ 00:41:36,440 --> 00:41:46,500
1359
+ ูŠุจู‚ู‰ ุฒุงุฆุฏ 4C2 ุฒุงุฆุฏ 4C2 ุฒุงุฆุฏ C3 ู…ุงููŠุด ุบูŠุฑู‡ุง ูŠุจู‚ู‰
1360
+
1361
+ 341
1362
+ 00:41:46,500 --> 00:41:53,720
1363
+ ุฒุงุฆุฏ C3 ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ Zeroุชู…ุงู… ุชู…ุงู…
1364
+
1365
+ 342
1366
+ 00:41:53,720 --> 00:42:03,360
1367
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงุชู†ูŠู† ูˆู‡ุฐู‡ ุงุฑุจุน ุทูŠุจ ู…ู†ู‡ุง ุจู‚ุฏุฑ ุงุดูŠู„ C3
1368
+
1369
+ 343
1370
+ 00:42:03,360 --> 00:42:12,760
1371
+ ูˆุงุฎุชูŠุงุฑู‡ุง ุจุฏู„ ุงู„ C1 ูˆC2 ุงุฐุง ู‡ุฐู‡ C3 ุชุณูˆู‰ 2C1 ู†ุงู‚ุต
1372
+
1373
+ 344
1374
+ 00:42:12,760 --> 00:42:18,760
1375
+ 4C2 ุชู…ุงู… ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุจุฏู‡ ุงุฌูŠ ุงุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ
1376
+
1377
+ 345
1378
+ 00:42:18,760 --> 00:42:28,680
1379
+ ู‡ุฐู‡ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุงูŠุด ุจูŠุตูŠุฑ ุนู†ุฏู†ุง ุจูŠุตูŠุฑ ุนู†ุฏู†ุง c1-c2
1380
+
1381
+ 346
1382
+ 00:42:28,680 --> 00:42:37,140
1383
+ ุฒูŠุฏูŠ 2c3 ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ุจุงุฑุจุนุฉ c ูˆุงุญุฏ ู†ุงู‚ุต ุชู…ุงู†ูŠุฉ
1384
+
1385
+ 347
1386
+ 00:42:37,140 --> 00:42:42,380
1387
+ c2 ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ zero ุงูˆ ุงู† ุดุงุชู‡ู…
1388
+
1389
+ 348
1390
+ 00:42:42,380 --> 00:42:51,260
1391
+ ูู‚ูˆู„ูˆุง ุงุฑุจุนุฉ ูˆุงุญุฏ ุฎู…ุณุฉ c ูˆุงุญุฏูˆู‡ู†ุง ู†ุงู‚ุต ุนุดุฑุฉ C2
1392
+
1393
+ 349
1394
+ 00:42:51,260 --> 00:42:59,000
1395
+ ู†ุงู‚ุต ุนุดุฑุฉ C2 ุณูŠูƒูˆู† Zero ู„ูˆ ู‚ุณู…ุช ุนู„ู‰ ูˆุงุญุฏ ุณูŠูƒูˆู† C1
1396
+
1397
+ 350
1398
+ 00:42:59,000 --> 00:43:11,850
1399
+ ูŠุณูˆู‰ 2C2 C1 ูŠุณูˆู‰ 2C2 ุชู…ุงู… ู‡ุฐุง ู‡ูˆ ุฃูˆู„ ู…ุนู„ูˆู…ุฉุชู…ุงู…
1400
+
1401
+ 351
1402
+ 00:43:11,850 --> 00:43:21,710
1403
+ ุงุฐุง ู„ูˆ ุฌูŠุช ุงู†ุง ู‡ูŠ C3 ุนุฑูุช C1 ุจุฏู„ุงู„ุฉ C2 ูˆุนุฑูู†ุง C3
1404
+
1405
+ 352
1406
+ 00:43:21,710 --> 00:43:32,810
1407
+ ุจุฏู„ุงู„ุฉ C1 ูˆC2 ุจุฏู†ุง ู†ุฌูŠุจ C4 ูŠุจู‚ู‰ ุงูŠูˆุฉ ู…ู† ุงู„ู„ูŠ ุจุชุญูƒูŠ
1408
+
1409
+ 353
1410
+ 00:43:32,810 --> 00:43:35,850
1411
+ ูƒูŠูุŸ ูˆ ุณู„ุจ 9
1412
+
1413
+ 354
1414
+ 00:43:38,670 --> 00:43:41,550
1415
+ ุฎู…ุณุฉ C ูˆุงุญุฏ ู†ุงู‚ุต ุนุดุฑุฉ C ุงุชู†ูŠู†.
1416
+
1417
+ 355
1418
+ 00:43:44,370 --> 00:43:50,170
1419
+ ู‡ู‰ ุนู†ุฏูƒ ู†ุงู‚ุต .. ู‡ู‰ ุงุฑุจุนุฉ C ูˆุงุญุฏ ูˆุงุฑุจุน .. ุงู‡ ู‡ุฏู‰
1420
+
1421
+ 356
1422
+ 00:43:50,170 --> 00:43:56,420
1423
+ ูˆุงุญุฏ ูˆู‡ุฏู‰ ุชุณุนุฉ ุตุญูŠุญ. ุงู‡ ู‡ุฏู‰ ุชุณุนุฉ ู…ุนุงูƒ ุงู„ุญู‚.ู‡ุฐู‡
1424
+
1425
+ 357
1426
+ 00:43:56,420 --> 00:44:04,960
1427
+ ุชุณุนุฉ ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู†ู‡ C1 ุจุฏูŠ ุณุงูˆูŠ ุชุณุนุฉ C2
1428
+
1429
+ 358
1430
+ 00:44:04,960 --> 00:44:12,160
1431
+ ุนู„ู‰ ุฎู…ุณุฉ ู…ุธุจูˆุท ูŠุจู‚ู‰ ุงูŠู‡ ุฌูŠุจู†ุง C1 ุจุฏู„ุงู„ุฉ ุงู„ุงุฎุฑูŠู†
1432
+
1433
+ 359
1434
+ 00:44:12,160 --> 00:44:15,100
1435
+ ุจู‚ุฏุฑ ุงุฌูŠุจ C4 ูƒุฐู„ูƒ
1436
+
1437
+ 360
1438
+ 00:44:18,620 --> 00:44:32,280
1439
+ C4 ุจุฏู‡ุง ุชุณุงูˆูŠ ุณุงู„ุจ ุชุณุนุฉ C2 ุนู„ู‰ ุฎู…ุณุฉ ูŠุจู‚ู‰
1440
+
1441
+ 361
1442
+ 00:44:32,280 --> 00:44:41,790
1443
+ ุงู†ุง ุนู†ุฏูŠ C1 ุจุฏู„ุงู„ุฉ C2 ูˆุนู†ุฏูŠ C4 ุจุฏู„ุงู„ุฉ C2ูˆุนู†ุฏูŠ C3
1444
+
1445
+ 362
1446
+ 00:44:41,790 --> 00:44:48,890
1447
+ ุจุฏู„ุงู„ุฉ A ู…ู…ุชุงุฒ ู…ู…ุชุงุฒ ุงุชู†ู‰ ุดูˆูŠุฉ ุงู„ุญูŠู† ุงู†ุง ุนู†ุฏู‰ ู„ูˆ
1448
+
1449
+ 363
1450
+ 00:44:48,890 --> 00:44:55,550
1451
+ ุฌูŠุช ุงุฎุฏุช ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฑุงุจุนุฉ ุนู†ุฏูŠ C4 ุจุฏู„ุงู„ุฉ
1452
+
1453
+ 364
1454
+ 00:44:55,550 --> 00:45:08,110
1455
+ C2 ูˆุนู†ุฏูŠ C3 ุจุฏู„ุงู„ุฉ C1 ูˆC2 ูˆุนู†ุฏูŠ C3 ูˆC3 ุชุณุงูˆูŠ
1456
+
1457
+ 365
1458
+ 00:45:15,060 --> 00:45:22,340
1459
+ ุชุณุนุฉ C ุงุชู†ูŠู† ุนู„ู‰ ุฎู…ุณุฉ
1460
+
1461
+ 366
1462
+ 00:45:22,340 --> 00:45:30,210
1463
+ ู†ุงู‚ุต ุงุฑุจุนุฉ C ุงุชู†ูŠู†ู‡ุฐุง ูƒู„ู‡ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุนุจุงุฑุฉ ุนู†
1464
+
1465
+ 367
1466
+ 00:45:30,210 --> 00:45:39,450
1467
+ ูƒู„ู‡ ุนู„ู‰ ุฎู…ุณุฉ ุจูŠุธู„ ุชู…ู†ุชุงุดุฑ C2 ู†ุงู‚ุต ุงุฑุจุน ููŠ ุฎู…ุณุฉ
1468
+
1469
+ 368
1470
+ 00:45:39,450 --> 00:45:48,410
1471
+ ุจุนุดุฑูŠู† C2 ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต ุงุชู†ูŠู† C2 ุนู„ู‰ ุฎู…ุณุฉ.ุงู„ุงู† ุจุชุนูˆุถ
1472
+
1473
+ 369
1474
+ 00:45:48,410 --> 00:45:52,340
1475
+ ูŠุง ุจู†ุงุช ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุนู„ู‰ ุงู„ุฑุงุจุนุฉูŠุจู‚ู‰ ุงู†ุง ุนู†ุฏู‰ ุงุชู†ูŠู†
1476
+
1477
+ 370
1478
+ 00:45:52,340 --> 00:45:59,460
1479
+ C ุงุชู†ูŠู† ุฒุงุฆุฏ C ุชู„ุงุชุฉ ุฒุงุฆุฏ C ุงุฑุจุนุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุงุชู†ูŠู†
1480
+
1481
+ 371
1482
+ 00:45:59,460 --> 00:46:06,980
1483
+ C ุงุชู†ูŠู† ู‡ุงูŠ ุงุชู†ูŠู† C ุงุชู†ูŠู† C ุชู„ุงุชุฉ C ุชู„ุงุชุฉ ู‡ุงูŠ ุงู„ู„ูŠ
1484
+
1485
+ 372
1486
+ 00:46:06,980 --> 00:46:16,030
1487
+ ุทู„ุนู†ุงู‡ุง ู†ุงู‚ุต ุงุชู†ูŠู† C ุงุชู†ูŠู† ุนู„ู‰ ๏ฟฝ๏ฟฝู…ุณุฉู†ู‚ุต ุงุชู†ูŠู† C2
1488
+
1489
+ 373
1490
+ 00:46:16,030 --> 00:46:23,590
1491
+ ุนู„ู‰ ุฎู…ุณุฉ ูˆุฒุงูŠุฏ C4 ูˆ ู‡ู†ุง ู†ุงู‚ุต ุชุณุนุฉ C2 ุนู„ู‰ ุฎู…ุณุฉ ูƒู„
1492
+
1493
+ 374
1494
+ 00:46:23,590 --> 00:46:28,290
1495
+ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ Zero ุฅุฐุง ู„ูˆ ุญุชู‰ ู„ู‡ุง ุงู„ู…ู‚ุงู…ุงุช ูƒู„ู‡ุง
1496
+
1497
+ 375
1498
+ 00:46:28,290 --> 00:46:35,310
1499
+ ุนู„ู‰ ุฎู…ุณุฉ ุจุตูŠุฑ ุนุดุฑุฉ C2 ู†ุงู‚ุต ุงุชู†ูŠู† C2
1500
+
1501
+ 376
1502
+ 00:46:38,130 --> 00:46:44,990
1503
+ -9C2==0 ูŠุจู‚ู‰ ู†ุงู‚ุต 11 ูˆุฒุงุฏ ุนุดุฑุฉ ูŠุจู‚ู‰ ู†ุงู‚ุต C2 ุนู„ู‰
1504
+
1505
+ 377
1506
+ 00:46:44,990 --> 00:46:52,550
1507
+ ุฎู…ุณุฉ ูŠุณุงูˆูŠ Zero ู‡ุฐุง ุณูŠุนุทูŠูƒ ุงู† C2 ูŠุณุงูˆูŠ Zero ู„ู…ุง C2
1508
+
1509
+ 378
1510
+ 00:46:52,550 --> 00:46:59,550
1511
+ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ C4 ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ C1 ูŠุณุงูˆูŠ Zero
1512
+
1513
+ 379
1514
+ 00:46:59,550 --> 00:47:06,280
1515
+ ูŠุจู‚ู‰ C3 ูŠุณุงูˆูŠ Zero ู‡ุฐุง ู…ุนู†ุงู‡ุงู† ุงู„ functions ุงู†
1516
+
1517
+ 380
1518
+ 00:47:06,280 --> 00:47:14,040
1519
+ ู‡ุฏูˆู„ ู…ุงู„ู‡ู… are linearly independent ูŠุจู‚ู‰ ู‡ู†ุง V1 ูˆ
1520
+
1521
+ 381
1522
+ 00:47:14,040 --> 00:47:23,080
1523
+ V2 ูˆ V3 ูˆ V4 are linearly independent ูŠุจู‚ู‰ ุงู†ุช ู‡ู†ุง
1524
+
1525
+ 382
1526
+ 00:47:23,080 --> 00:47:28,180
1527
+ ู…ู† ุงู„ condition ุงู„ุซุงู†ูŠ ู‡ุฐุงุจุนุฏ ุฐู„ูƒ ู†ุฐู‡ุจ ุฅู„ู‰ ุงู„
1528
+
1529
+ 383
1530
+ 00:47:28,180 --> 00:47:34,240
1531
+ condition ุงู„ุฃูˆู„ ู„ูƒูŠ ู†ุซุจุช ุฃู† ุฃูŠ element ููŠ ุงู„
1532
+
1533
+ 384
1534
+ 00:47:34,240 --> 00:47:39,400
1535
+ vector space V ุจุฏูŠ ุฃุญุงูˆู„ ุฃู† ุฃูƒุชุจู‡ ุจุฏู„ุงู„ุฉ ู…ู†ุŸ
1536
+
1537
+ 385
1538
+ 00:47:39,400 --> 00:47:46,120
1539
+ ุจุฏู„ุงู„ุฉ ู‡ุฐู‡ ุงู„ vectors ุงู„ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู„ูŠ ุญู…ู‘ู†
1540
+
1541
+ 386
1542
+ 00:47:46,120 --> 00:47:51,620
1543
+ ู‡ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุจุฏุงุฌุฉ ู‡ู†ุง ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ
1544
+
1545
+ 387
1546
+ 00:47:52,020 --> 00:47:58,980
1547
+ ูŠุจู‚ู‰ let ุงู„ู„ูŠ ู‡ูˆ ุงู„ A ูˆุงู„B ูˆุงู„C ูˆุงู„D ู‡ุฐุง element
1548
+
1549
+ 388
1550
+ 00:47:58,980 --> 00:48:11,620
1551
+ ู…ูˆุฌูˆุฏ ููŠ R ุจุญูŠุซ ุงู† C1V1 ุฒูŠ C2V2 ุฒูŠ C3V3 ุฒูŠ C4V4
1552
+
1553
+ 389
1554
+ 00:48:12,030 --> 00:48:15,010
1555
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ element ูŠุณุงูˆูŠ ู„ู†ุง ุงู„ combination ู…ู†
1556
+
1557
+ 390
1558
+ 00:48:15,010 --> 00:48:19,270
1559
+ ู‡ุฐุง ุงู„ูˆุถุน ูŠุจู‚ู‰
1560
+
1561
+ 391
1562
+ 00:48:19,270 --> 00:48:28,550
1563
+ ุจู†ุงุก ุนู„ูŠู‡ ูŠุจู‚ู‰ C1
1564
+
1565
+ 392
1566
+ 00:48:29,330 --> 00:48:40,550
1567
+ ุฒุงุฆุฏ C4 ุจุฏู‡ ูŠุณุงูˆูŠ A ุงู„ู„ูŠ ุจุนุฏู‡ C2 ุฒุงุฆุฏ 2 C3 ุจุฏู‡
1568
+
1569
+ 393
1570
+ 00:48:40,550 --> 00:48:51,210
1571
+ ูŠุณุงูˆูŠ B ุงู„ู„ูŠ ุจุนุฏู‡ C1 ู†ุงู‚ุต C2 ู†ุงู‚ุต C2 ุฒุงุฆุฏ 2 C3 ุจุฏู‡
1572
+
1573
+ 394
1574
+ 00:48:51,210 --> 00:49:01,840
1575
+ ูŠุณุงูˆูŠ C ุงู„ู„ูŠ ุจุนุฏู‡ 2C2 ุฒุงุฆุฏ C3ุฒุงุฆุฏ C ุฃุฑุจุนุฉ ุจุฏู‡
1576
+
1577
+ 395
1578
+ 00:49:01,840 --> 00:49:08,080
1579
+ ูŠุณุงูˆูŠ ู‚ุฏุงุด D ู‡ุฐุง ุงู„ system ุงู„ู„ูŠ ุจุฏู†ุง ู†ุญุงูˆู„ ู†ุญู„ ู‡ุฐุง
1580
+
1581
+ 396
1582
+ 00:49:08,080 --> 00:49:12,580
1583
+ ุงู„ system ุงู† ุดุงุก ุงู„ู„ู‡ ูˆ ุชุนุงู„ู‰ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ุงู„
1584
+
1585
+ 397
1586
+ 00:49:12,580 --> 00:49:20,000
1587
+ system ู‡ุฐุง ุจุฏู‡ ุฃุฎุฏู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุตูˆูุฉ ุงู„ู…ูˆุณุนุฉ ู‡ุฐุง
1588
+
1589
+ 398
1590
+ 00:49:20,000 --> 00:49:27,240
1591
+ ูˆุงุญุฏZero Zero ูˆุงุญุฏ ูˆ ู‡ู†ุง Zero ูˆ ู‡ู†ุง ูˆุงุญุฏ ูˆ ู‡ู†ุง
1592
+
1593
+ 399
1594
+ 00:49:27,240 --> 00:49:36,020
1595
+ ุงุชู†ูŠู† ูˆ ู‡ู†ุง Zero ูˆ ู‡ู†ุง ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุงุชู†ูŠู† Zero ูˆ
1596
+
1597
+ 400
1598
+ 00:49:36,020 --> 00:49:46,940
1599
+ ู‡ู†ุง Zero ุงุชู†ูŠู† ูˆ ู‡ู†ุง ูˆุงุญุฏ ูˆ ู‡ู†ุง ูˆุงุญุฏ A B C D ุจุดูƒู„
1600
+
1601
+ 401
1602
+ 00:49:46,940 --> 00:49:53,490
1603
+ ุนู†ุฏู†ุงุฅุฐุง ุฃู†ุง ู…ู…ูƒู† ุฃุถุฑุจ ุงู„ุตู ุงู„ุฃูˆู„ ููŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆ
1604
+
1605
+ 402
1606
+ 00:49:53,490 --> 00:49:59,290
1607
+ ุฃุถูŠูู‡ ู„ู…ู†ุŸ ู„ R ุซู„ุงุซุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุณุงู„ุจ R ูˆุงุญุฏ
1608
+
1609
+ 403
1610
+ 00:49:59,290 --> 00:50:07,410
1611
+ to R ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุจุฏู†ุง ุฃู†ุญู„ู‡ ุงูŠู‡ ูˆุงุญุฏุŸ Zero Zero
1612
+
1613
+ 404
1614
+ 00:50:07,410 --> 00:50:15,730
1615
+ ูˆุงุญุฏ ูˆ ู‡ู†ุง ุงูŠู‡ ุฒูŠ ู…ุง ู‡ูˆุŸู‡ุฐุง Zero ูˆู‡ู†ุง ูˆุงุญุฏ ุงุชู†ูŠู†
1616
+
1617
+ 405
1618
+ 00:50:15,730 --> 00:50:23,490
1619
+ Zero ูˆู‡ู†ุง ุจูŠ ู‡ู†ุง Zero ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ู†ุง
1620
+
1621
+ 406
1622
+ 00:50:23,490 --> 00:50:28,570
1623
+ ุงุชู†ูŠู† ุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ุฐุง ุณุงู„ุจ ูˆุงุญุฏ ุจุฏูŠุฌูŠู„ูƒ ู‡ู†ุง ุณุงู„ุจ
1624
+
1625
+ 407
1626
+ 00:50:28,570 --> 00:50:37,840
1627
+ ูˆุงุญุฏ ูˆู‡ู†ุง ุณุงู„ุจ A ุงู„ู„ูŠ ู‡ูˆ C ุณุงู„ุจ AC ุณุงู„ุจ A ู‡ุฐุง ุฒูŠ
1628
+
1629
+ 408
1630
+ 00:50:37,840 --> 00:50:43,880
1631
+ ู…ุง ู‡ูˆ ุงู„ู„ูŠ ู‡ูˆ Zero ุงุชู†ูŠู† ูˆุงุญุฏ ูˆุงุญุฏ ูˆ ู‡ู†ุง ุฏูŠ ูˆู‡ูŠ
1632
+
1633
+ 409
1634
+ 00:50:43,880 --> 00:50:48,940
1635
+ ู‚ูู„ู†ุง ุงู„ุงู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ูŠู† ู„ู„ุฑู‚ู… ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰
1636
+
1637
+ 410
1638
+ 00:50:48,940 --> 00:50:53,540
1639
+ ุงุญู†ุง ู‡ู†ุง ุจุฏู†ุง ู†ูŠุฌูŠ ู†ู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุนุทูŠู†ุง
1640
+
1641
+ 411
1642
+ 00:50:53,540 --> 00:51:03,440
1643
+ ุงุชู†ูŠู† ุงุชู†ูŠู† ุนุงุฑู ุงุชู†ูŠู† ุงุชู†ูŠู† ุนุงุฑู ุงุชู†ูŠู† two are
1644
+
1645
+ 412
1646
+ 00:51:03,440 --> 00:51:10,840
1647
+ ุชู„ุงุชุฉู„ุฃ ุงุฑูŠ ุงุชู†ูŠู† ุชู‚ุงุฑ ุชู„ุงุชุฉ ุฏูˆุฑูŠ ุงุฑูŠ ุงุชู†ูŠู† ุชู‚ุงุฑ
1648
+
1649
+ 413
1650
+ 00:51:10,840 --> 00:51:18,340
1651
+ ุชู„ุงุชุฉ ูˆ ุงุชู†ูŠู† ุงุฑูŠ ุงุชู†ูŠู† ุชู‚ุงุฑ ุงุฑุจุน ูŠุจู‚ู‰ ู‡ู†ุญุตู„ ุนู„ู‰
1652
+
1653
+ 414
1654
+ 00:51:18,340 --> 00:51:28,260
1655
+ ู…ุง ูŠุงุชูŠ ูˆุงุญุฏ ุฒูŠุฑูˆ ุฒูŠุฑูˆ ูˆุงุญุฏ ูˆ ู‡ู†ุง aู‡ุฐุง Zero ูˆุงุญุฏ
1656
+
1657
+ 415
1658
+ 00:51:28,260 --> 00:51:37,740
1659
+ ุงุชู†ูŠู† Zero ุจูŠ ู‡ู†ุง Zero ูˆู‡ู†ุง Zero ูˆู‡ู†ุง ุฃุฑุจุนุฉ ูˆู‡ู†ุง
1660
+
1661
+ 416
1662
+ 00:51:37,740 --> 00:51:48,160
1663
+ ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง ุจูŠ ุฒุงุฆุฏ ุณูŠ ู†ุงู‚ุต ุงูŠูˆู‡ู†ุง ุถุฑุจู†ุง ููŠ
1664
+
1665
+ 417
1666
+ 00:51:48,160 --> 00:51:53,620
1667
+ ุงุชู†ูŠู† ุณุงู„ุจ ุงุชู†ูŠู† ูˆุถู‚ ุงู„ุณุงู„ุจ ุงุชู†ูŠู† ุงู„ู„ูŠ ุจุนุฏ ูŠุง ุจู†ุงุช
1668
+
1669
+ 418
1670
+ 00:51:53,620 --> 00:52:01,520
1671
+ ุณุงู„ุจ ุงุชู†ูŠู† R ุงุชู†ูŠู† to R ุงุฑุจุนุฉ ูŠุจู‚ู‰ ู‡ุฐุง Zero ูˆู‡ุฐุง
1672
+
1673
+ 419
1674
+ 00:52:01,520 --> 00:52:09,980
1675
+ Zero ูˆู‡ุฐู‡ ุณุงู„ุจ ุณุงู„ุจ ุณูŠุตุจุญ ุณุงู„ุจ ุงุฑุจุนุฉ ูˆุงุญุฏ ูŠุจู‚ู‰
1676
+
1677
+ 420
1678
+ 00:52:09,980 --> 00:52:17,540
1679
+ ุณุงู„ุจ ุชู„ุงุชุฉูˆู‡ุฐุง zero ุจูŠุธู„ ูˆุงุญุฏ ุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ู†ุง ุณุงู„ุจ
1680
+
1681
+ 421
1682
+ 00:52:17,540 --> 00:52:25,220
1683
+ ุงุชู†ูŠู† ุจูŠุจู‚ู‰ ุฏูŠ ุณุงู„ุจ ุงุชู†ูŠู† ุจูŠ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง
1684
+
1685
+ 422
1686
+ 00:52:25,220 --> 00:52:33,140
1687
+ ุงู„ุงู† ูˆุตู„ู†ุง ู„ู‡ุฐุง ูŠุจู‚ู‰ ู…ุง ุนู„ูŠูƒ ุฅู„ุง ุงุชูƒู…ู„ูŠ ูˆุชุซุจุชูŠ ู…ุง
1688
+
1689
+ 423
1690
+ 00:52:33,140 --> 00:52:40,500
1691
+ ูŠุฃุชูŠ ุชุซุจุชูŠ ุนู„ูŠูƒ ู…ุง ูŠุฃุชูŠุจุทู„ุน ุนู†ุฏู†ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
1692
+
1693
+ 424
1694
+ 00:52:40,500 --> 00:52:54,620
1695
+ ูˆ ุงู„ู„ู‡ ุฃุนู„ู… ุจุฏู‡ ูŠุทู„ุน C1 ูŠุณุงูˆูŠ 4A ุฒุงุฆุฏ 5B ู†ุงู‚ุต 3C
1696
+
1697
+ 425
1698
+ 00:52:54,620 --> 00:53:10,130
1699
+ ู†ุงู‚ุต 4DูˆC2 ุจุฏู‡ ูŠุณุงูˆูŠ ุงุชู†ูŠู† A ุฒุงุฆุฏ ุชู„ุงุชุฉ B ู†ู‚ุต
1700
+
1701
+ 426
1702
+ 00:53:10,130 --> 00:53:21,370
1703
+ ุงุชู†ูŠู† C ู†ู‚ุต ุงุชู†ูŠู† D ูˆC3 ุจุฏู‡ ูŠุณุงูˆูŠ ู†ู‚ุต
1704
+
1705
+ 427
1706
+ 00:53:21,370 --> 00:53:37,460
1707
+ Aู†ู‚ุต B ุฒุงุฆุฏ C ุฒุงุฆุฏ D ูˆ C4 ุจุฏู‡ ูŠุณุงูˆูŠ ู†ุงู‚ุต ุชู„ุงุชุฉ A ูˆ
1708
+
1709
+ 428
1710
+ 00:53:37,460 --> 00:53:48,260
1711
+ ู†ุงู‚ุต ุฎู…ุณุฉ B ู†ุงู‚ุต ุฎู…ุณุฉ B ูˆ ุฒุงุฆุฏ ุชู„ุงุชุฉ C ุฒุงุฆุฏ 4D
1712
+
1713
+ 429
1714
+ 00:53:53,550 --> 00:54:00,950
1715
+ ูŠุจู‚ู‰ ุจู†ุงุก ุงู† ุนู„ูŠู‡ ุฃุตุจุญ V1 ูˆ V2 ูˆ V3 ูˆ V4 are bases
1716
+
1717
+ 430
1718
+ 00:54:00,950 --> 00:54:11,210
1719
+ ูŠุนู†ูŠ ุจุชู‚ูˆู„ูŠู„ูŠ ููŠ ุงู„ุขุฎุฑ ู‡ู†ุง V1 ูˆ V2 ูˆ V3 ูˆ V4 are
1720
+
1721
+ 431
1722
+ 00:54:11,210 --> 00:54:14,270
1723
+ bases
1724
+
1725
+ 432
1726
+ 00:54:14,270 --> 00:54:22,990
1727
+ for the vector space R4
1728
+
1729
+ 433
1730
+ 00:54:26,600 --> 00:54:30,460
1731
+ ู„ุฃูŠุดุŸ ู„ุฃู† ูƒู„ element ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃุฎูŠุฑุฉ ู„ู‚ู†ุง linear
1732
+
1733
+ 434
1734
+ 00:54:30,460 --> 00:54:34,900
1735
+ combination ู…ู† ุงู„ุฃุฎุฑูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู† ุงู„ vectors ู‡ุฏูˆุฑ
1736
+
1737
+ 435
1738
+ 00:54:34,900 --> 00:54:37,160
1739
+ are linearly independent
1740
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/v0cHtZxEtkI_raw.srt ADDED
@@ -0,0 +1,1520 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:19,490 --> 00:00:23,750
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ู„ู‰ ูุงุชุช ุจุฏุฃู†ุง ููŠ
4
+
5
+ 2
6
+ 00:00:23,750 --> 00:00:28,150
7
+ ู…ูˆุถูˆุน ุงู„ vector spaces ุงู„ูุถุงุกุงุช ุงู„ุงุชุฌุงู‡ูŠุฉ ุงุนุทูŠู†ุง
8
+
9
+ 3
10
+ 00:00:28,150 --> 00:00:32,090
11
+ ุชุนุฑูŠู ูˆ ุงุฐุง ู„ูˆ ุนู†ุฏู‰ 6 V ูˆุญุทูŠู†ุง ุนู„ูŠู‡ุง ุนู…ู„ูŠุฉ ุฌู…ุน
12
+
13
+ 4
14
+ 00:00:32,090 --> 00:00:37,970
15
+ ูˆุนู…ู„ูŠุฉ ุถุฑุจ ู†ุนุฑูู‡ุง ุจุฃู‰ ุทุฑูŠู‚ุฉ ุงู†ุดุฆู†ุง ูู‡ุฐุง ุจูŠูƒูˆู† ู„ V
16
+
17
+ 5
18
+ 00:00:37,970 --> 00:00:43,490
19
+ ู…ุน ุงู„ุถุฑุจ ู…ุน ุงู„ุฌู…ุน vector space ุงุฐุง ุชุญู‚ู‚ุช ุนุดุฑ ุฎูˆุงุต
20
+
21
+ 6
22
+ 00:00:43,490 --> 00:00:48,580
23
+ ูˆุฐูƒุฑู†ุง ู‡ุฐู‡ ุงู„ุฎูˆุงุต ูˆุงุฎุฏู†ุง ุนู„ู‰ ุฐู„ูƒ ุจุฏู„ ุงู„ู…ุซุงู„ 4ูˆู‡ู†ุง
24
+
25
+ 7
26
+ 00:00:48,580 --> 00:00:56,100
27
+ ู†ูƒู…ู„ ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ ู†ูุณ ุงู„ู…ูˆุถูˆุน ูŠูุชุฑุถ ุฃู† V ู‡ูˆ ุนุจุงุฑุฉ
28
+
29
+ 8
30
+ 00:00:56,100 --> 00:01:00,880
31
+ ุนู† set of all ordered pairs X1 ูˆ X2 ุจุนุฏ X1 ูˆ X2
32
+
33
+ 9
34
+ 00:01:00,880 --> 00:01:05,240
35
+ ู…ูˆุฌูˆุฏุฉ ููŠ R ู†ุนุฑู ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ูˆ ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุนู„ู‰ V
36
+
37
+ 10
38
+ 00:01:05,240 --> 00:01:10,110
39
+ ุจุงู„ุชุงู„ูŠู„ูˆ ุฌู…ุนุช two elements ูŠุจู‚ู‰ ุงู„ู…ูุฑูƒู‘ุจุฉ ุงู„ุฃูˆู„ู‰
40
+
41
+ 11
42
+ 00:01:10,110 --> 00:01:14,430
43
+ ุฒุงุฆุฏ ุงู„ู…ูุฑูƒู‘ุจุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ู…ูุฑูƒู‘ุจุฉ ุงู„ุซุงู†ูŠุฉ ู†ุงู‚ุต
44
+
45
+ 12
46
+ 00:01:14,430 --> 00:01:18,390
47
+ ุงู„ู…ูุฑูƒู‘ุจุฉ ุงู„ุซุงู†ูŠุฉ ูŠุนู†ูŠ ุนุฑูุช ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ุจู‡ุฐู‡
48
+
49
+ 13
50
+ 00:01:18,390 --> 00:01:24,090
51
+ ุงู„ุทุฑูŠู‚ุฉ ูˆุนู…ู„ูŠุฉ ุงู„ุถุฑุจ component-wise ุนุงุฏูŠ ุฌุฏุง ู…ุงููŠ
52
+
53
+ 14
54
+ 00:01:24,090 --> 00:01:31,230
55
+ ู…ุดูƒู„ุฉ ุจุณุฃู„ ู‡ู„ ุงู„ V ู‡ุฐุง vector space ูˆู„ุง ู„ุฃ ุจู‚ูˆู„ู‡
56
+
57
+ 15
58
+ 00:01:31,230 --> 00:01:37,050
59
+ ูƒูˆูŠุณ ู…ู† ุถู…ู†ู…ู† ุถู…ู† ุงู„ุจู†ูˆุฏ ุชุจุนุงุช ุงู„ู…ุฑุฉ ุงู„ู„ู‰ ูุงุชุช ูˆ
60
+
61
+ 16
62
+ 00:01:37,050 --> 00:01:42,330
63
+ ุงุนุชู‚ุฏ ูƒุงู† ุงู„ุจู†ุฏู‰ ุงู„ุซุงู†ู‰ ุงู†ู‡ ุนู†ุฏูƒ U ุฒุงุฆุฏ V ุจูŠูƒูˆู† V
64
+
65
+ 17
66
+ 00:01:42,330 --> 00:01:47,590
67
+ ุฒุงุฆุฏ U ูŠุนู†ูŠ ุนู…ู„ูŠุฉ ุงู„ุฌุงู…ุน ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ ุจู†ุดูˆู ู‡ู„
68
+
69
+ 18
70
+ 00:01:47,590 --> 00:01:52,150
71
+ ุนู…ู„ูŠุฉ ุงู„ุฌุงู…ุน ุงู„ู„ู‰ ุนุฑูู„ูŠ ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ
72
+
73
+ 19
74
+ 00:01:52,150 --> 00:01:58,520
75
+ ูˆู„ุง ู„ุฃ ูู„ูˆ ุฌู‡ุฉ goals ู„ู‡ ู‡ู†ุง solutionูŠุจู‚ู‰ ุงู†ุง ุจุฏูŠ
76
+
77
+ 20
78
+ 00:01:58,520 --> 00:02:04,300
79
+ ุงุฎุฏ ุงู„ U ุฒุงุฆุฏ ุงู„ V ูˆุงุดูˆู ุงูŠุด ุจุชุนุทูŠู†ุง ูŠุจู‚ู‰ ุงู„ U
80
+
81
+ 21
82
+ 00:02:04,300 --> 00:02:15,240
83
+ ุฒุงุฆุฏ ุงู„ V ุชุณุงูˆูŠ ุงู„ุงู† ูŠุนู†ูŠ X1 ูˆ X2 ุฒุงุฆุฏ Y1 ูˆ Y2
84
+
85
+ 22
86
+ 00:02:15,240 --> 00:02:24,410
87
+ ูŠุณุงูˆูŠุญุณุจ ุงู„ุชุนุฑูŠู ุงู„ู‰ x1 ุฒุงุฆุฏ y1 ูˆ x2 ู†ุงู‚ุต y2 ู„ูˆ
88
+
89
+ 23
90
+ 00:02:24,410 --> 00:02:36,670
91
+ ุฌูŠุช ุงู„ู‚ู„ุฉ ุงู„ V ุฒุงุฆุฏ ุงู„ U ูŠุจู‚ู‰ y1 ูˆ y2 ุฒุงุฆุฏ x1 ูˆ x2
92
+
93
+ 24
94
+ 00:02:36,670 --> 00:02:46,700
95
+ ูˆ ูŠุณุงูˆุช y1 ุฒุงุฆุฏ x1 ูˆ y2 ู†ุงู‚ุต x2ู…ุง ู‡ูˆ ุฑุฃูŠูƒ ููŠ
96
+
97
+ 25
98
+ 00:02:46,700 --> 00:02:53,540
99
+ ุนู…ู„ุชูŠู† ู‡ุฐูŠู†ุŸ ู‡ู„ ุงู„ู†ุชูŠุฌุฉ ู‡ูŠ ู†ูุณ ุงู„ู†ุชูŠุฌุฉุŸู„ุฃ ุงู„ term
100
+
101
+ 26
102
+ 00:02:53,540 --> 00:02:57,360
103
+ ุงู„ุฃูˆู„ ุตุญูŠุญ ู‡ูˆ ุงู„ term ุงู„ุฃูˆู„ ุจุณ ุงู„ term ุงู„ุชุงู†ูŠ ู‡ุฐุง
104
+
105
+ 27
106
+ 00:02:57,360 --> 00:03:02,680
107
+ ู…ุงู‡ูˆุงุด ุงู„ term ู‡ุฐุง ู‡ุฐุง ู†ูุณู‡ ุจุณ ุจุฅุดุงุฑุฉ ุฅูŠู‡ ู…ุฎุงู„ูุฉ
108
+
109
+ 28
110
+ 00:03:02,680 --> 00:03:11,820
111
+ ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุจุณูˆูˆุด ุจุนุถ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ V is not a vector
112
+
113
+ 29
114
+ 00:03:11,820 --> 00:03:14,620
115
+ space because
116
+
117
+ 30
118
+ 00:03:16,680 --> 00:03:23,920
119
+ ุฅู† ุงู„ู€ U ุฒุงุฆุฏ ุงู„ู€ V ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ V ุฒุงุฆุฏ ุงู„ู€ U ูŠุจู‚ู‰
120
+
121
+ 31
122
+ 00:03:23,920 --> 00:03:28,800
123
+ ุณู‚ุทุช ุฅุญุฏู‰ ุงู„ุฎูˆุงุต ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ู„ูŠุณ vector space
124
+
125
+ 32
126
+ 00:03:28,800 --> 00:03:30,420
127
+ example 6
128
+
129
+ 33
130
+ 00:03:36,230 --> 00:03:43,450
131
+ ุจู‚ูˆู„ let V ุชุณุงูˆูŠ let V ุชุณุงูˆูŠ the set of all
132
+
133
+ 34
134
+ 00:03:43,450 --> 00:03:50,650
135
+ elements X ูˆY ูˆZ ุจุญูŠุซ
136
+
137
+ 35
138
+ 00:03:50,650 --> 00:03:58,830
139
+ ุงู† X ูˆY ูˆZ ูƒู„ู‡ู… ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉ ู…ูˆุฌูˆุฏุฉ ููŠ R define
140
+
141
+ 36
142
+ 00:03:58,830 --> 00:04:01,690
143
+ addition
144
+
145
+ 37
146
+ 00:04:04,550 --> 00:04:15,110
147
+ and multiplication on
148
+
149
+ 38
150
+ 00:04:15,110 --> 00:04:24,410
151
+ V by X
152
+
153
+ 39
154
+ 00:04:24,410 --> 00:04:31,070
155
+ ูˆุงุญุฏ ูˆ Y ูˆุงุญุฏ ูˆ Z ูˆุงุญุฏ ุฒุงุฆุฏ
156
+
157
+ 40
158
+ 00:04:54,750 --> 00:04:56,150
159
+ Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2Y2
160
+
161
+ 41
162
+ 00:04:57,890 --> 00:05:07,570
163
+ ุงู„ู€ a ุงู„ x ูˆ ุงู„ y ูˆ ุงู„ z ุจุฏู‡ ูŠุณุงูˆูŠ x ูˆ 1 ูˆ z
164
+
165
+ 42
166
+ 00:05:07,570 --> 00:05:19,470
167
+ ุงู„ุณุคุงู„ ู‡ูˆ is V a vector space ู‡ู„ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† V a
168
+
169
+ 43
170
+ 00:05:19,470 --> 00:05:21,370
171
+ vector space ุฃู… ู„ุงุŸ
172
+
173
+ 44
174
+ 00:05:29,690 --> 00:05:31,950
175
+ ู‡ู„ ู‡ุฐุง vector of space ู‡ูˆ ุงู„ู„ู‡ ู…ูˆู‡ุงุด vector of
176
+
177
+ 45
178
+ 00:05:31,950 --> 00:05:39,590
179
+ space ุจู†ู‚ูˆู„ ุงู„ู„ู‡ ุฃุนู„ู… ู†ูŠุฌูŠ ู„ู„ solution ู„ูˆ
180
+
181
+ 46
182
+ 00:05:39,590 --> 00:05:47,270
183
+ ุฌูŠุช ุนู„ู‰ ุจุนุถ ุงู„ุฎูˆุงุต ู…ุซู„ุง ูˆ ุฌูŠุช ู‚ู„ุช ุฎุฏูŠู„ูŠ a ููŠ u
184
+
185
+ 47
186
+ 00:05:47,270 --> 00:05:55,730
187
+ ุฒุงุฆุฏ vุจู†ุดูˆู ุงูŠุด ุจุชุนุทูŠู†ุง ูŠุนู†ูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… a v u ุฒุงุฆุฏ
188
+
189
+ 48
190
+ 00:05:55,730 --> 00:06:02,730
191
+ ุงู„ v ุงู„ู„ูŠ ู‡ูˆ x ูˆุงุญุฏ ูˆ y ูˆุงุญุฏ ูˆ z ูˆุงุญุฏ ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ
192
+
193
+ 49
194
+ 00:06:02,730 --> 00:06:11,280
195
+ x ุงุชู†ูŠู† ูˆ y ุงุชู†ูŠู† ูˆ z ุงุชู†ูŠู† ู‡ุฐุง ูƒู„ู‡ ูƒู„ุงู… ูŠุณุงูˆูŠูŠุจู‚ู‰
196
+
197
+ 50
198
+ 00:06:11,280 --> 00:06:24,660
199
+ ูŠุณุงูˆูŠ ุฅูŠู‡ ููŠ ู†ูŠุฌูŠ X1 ุฒุงุฆุฏ X2 Y1 ุฒุงุฆุฏ Y2 Z1 ุฒุงุฆุฏ Z2
200
+
201
+ 51
202
+ 00:06:24,660 --> 00:06:31,230
203
+ ูŠุณุงูˆูŠูŠุจู‚ู‰ ุตุงุฑ ุนู†ุฏู‰ scalar a ูู‰ element ู…ูˆุฌูˆุฏ ูู‰ ุงู„
204
+
205
+ 52
206
+ 00:06:31,230 --> 00:06:35,730
207
+ vector space ุญุณุจ ุงู„ุถุฑุจ ุงู„ู„ู‰ ุนู†ุฏู‡ุง ุจู‚ูˆู„ ู„ูˆ ุชุถุฑุจ a
208
+
209
+ 53
210
+ 00:06:35,730 --> 00:06:39,490
211
+ ูู‰ ุงู„ element ุจุถู„ ุงู„ element ุฒู‰ ู…ุง ู‡ู… ุนุฏุง ุงู„ู„ู‰ ูู‰
212
+
213
+ 54
214
+ 00:06:39,490 --> 00:06:44,870
215
+ ุงู„ู†ุต ู…ุตูŠุฑ ุฌุฏุงุด ูˆุงุญุฏ ุตุญูŠุญ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‰ ูŠุณุงูˆูŠ
216
+
217
+ 55
218
+ 00:06:44,870 --> 00:06:52,880
219
+ x ูˆุงุญุฏ ุฒูŠ x ุงุชู†ูŠู† ูˆ ูˆุงุญุฏ ูˆ y ูˆุงุญุฏ ุฒูŠ y ุงุชู†ูŠู†ุทุจ ู„ูˆ
220
+
221
+ 56
222
+ 00:06:52,880 --> 00:06:59,340
223
+ ุฌูŠุช ุฃุฎุฏุช ุงู„ A ููŠ ุงู„ U ุฒุงุฆุฏ ุงู„ A ููŠ ุงู„ V ูŠุจู‚ู‰ ุงู„ A
224
+
225
+ 57
226
+ 00:06:59,340 --> 00:07:07,520
227
+ X ูˆุงุญุฏ ูˆ Y ูˆุงุญุฏ ูˆ Z ูˆุงุญุฏ ุฒุงุฆุฏ A ููŠ X ุงุชู†ูŠู† ูˆ Y
228
+
229
+ 58
230
+ 00:07:07,520 --> 00:07:14,270
231
+ ุงุชู†ูŠู† ูˆ Z ุงุชู†ูŠู† ูˆ Y ุณุงูˆูŠุญุณุจ ุชุนุฑูŠู ุงู„ุถุฑุจ ูŠุจู‚ู‰ ู‡ุฐุง
232
+
233
+ 59
234
+ 00:07:14,270 --> 00:07:22,270
235
+ ุดูˆ ุจุฏูŠ ูŠุนุทูŠู†ุง X ูˆุงุญุฏ ูˆูˆุงุญุฏ ุตุญูŠุญ ูˆุฒุฏ ูˆุงุญุฏ ุฒุงุฆุฏ ุจุฑุถู‡
236
+
237
+ 60
238
+ 00:07:22,270 --> 00:07:30,350
239
+ ู‡ุฐุง X ุงุชู†ูŠู† ูˆุงุญุฏ ูˆุฒุฏ ุงุชู†ูŠู† ุงู„ุขู† ุญุณุจ ุชุนุฑูŠู ุงู„ุฌุงู…ุนุฉ
240
+
241
+ 61
242
+ 00:07:30,350 --> 00:07:35,710
243
+ ูŠุจู‚ู‰ ุงู„ุฌุงู…ุนุฉ component wise ูŠุจู‚ู‰ X ูˆุงุญุฏ ุฒุงุฆุฏ X
244
+
245
+ 62
246
+ 00:07:35,710 --> 00:07:43,850
247
+ ุงุชู†ูŠู† ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุณูˆู‰ ูƒุฏู‡ ุงุชู†ูŠู†ูˆุฒุฏ ูˆุงุญุฏ ุฒุงุฆุฏ
248
+
249
+ 63
250
+ 00:07:43,850 --> 00:07:48,770
251
+ ุฒุฏ ุงุชู†ูŠู† ุงูŠุด ุฑุฃูŠูƒูˆุง ููŠ ู‡ุฐู‡ ุงู„ู†ุชูŠุฌุฉ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ
252
+
253
+ 64
254
+ 00:07:48,770 --> 00:07:55,130
255
+ VุŸ ู„ุฃ ูŠุจู‚ู‰ ู‡ุฐู‡ does not belong to V ุงู„ุณุจุจ ุงู† ู‡ุฐุง
256
+
257
+ 65
258
+ 00:07:55,130 --> 00:08:00,550
259
+ ุงุชู†ูŠู† ูˆู„ูŠุณ ูˆุงุญุฏ ุตุญูŠุญ ู…ุนู†ุงุชู‡ ุงู„ V ู‡ุฐุง ู…ุงู„ู‡ is not a
260
+
261
+ 66
262
+ 00:08:00,550 --> 00:08:10,790
263
+ vector space ูŠุจู‚ู‰ ู‡ู†ุง V is not a vector space
264
+
265
+ 67
266
+ 00:08:15,820 --> 00:08:20,400
267
+ Need some properties
268
+
269
+ 68
270
+ 00:08:20,400 --> 00:08:25,280
271
+ of
272
+
273
+ 69
274
+ 00:08:25,280 --> 00:08:35,380
275
+ a vector space Let
276
+
277
+ 70
278
+ 00:08:35,380 --> 00:08:45,120
279
+ V be a vector space
280
+
281
+ 71
282
+ 00:08:46,570 --> 00:08:56,590
283
+ and ุงู„ U ู…ูˆุฌูˆุฏุฉ ููŠ V and
284
+
285
+ 72
286
+ 00:08:56,590 --> 00:09:05,550
287
+ let ุงู„
288
+
289
+ 73
290
+ 00:09:05,550 --> 00:09:13,290
291
+ U ู…ูˆุฌูˆุฏุฉ ููŠ V and ุงู„ A ู…ูˆุฌูˆุฏุฉ ููŠ R
292
+
293
+ 74
294
+ 00:09:17,060 --> 00:09:26,940
295
+ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ Zero ููŠ you ูŠุณุงูˆูŠ ุงู„ zero ุงู„ู†ู‚ุทุฉ
296
+
297
+ 75
298
+ 00:09:26,940 --> 00:09:35,840
299
+ ุงู„ุซุงู†ูŠุฉ ุงู„ a ููŠ ุงู„ zero ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ zero ุงู„ู†ู‚ุทุฉ
300
+
301
+ 76
302
+ 00:09:35,840 --> 00:09:43,520
303
+ ุงู„ุชุงู„ุชุฉ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุงู„ you ูŠุณุงูˆูŠ ุณุงู„ุจ you
304
+
305
+ 77
306
+ 00:09:43,520 --> 00:09:46,040
307
+ exercises
308
+
309
+ 78
310
+ 00:09:47,820 --> 00:09:57,220
311
+ ุชู„ุงุชุฉ ูˆุงุญุฏ ุงู„ู…ุณุงุฆู„ ุงุชู†ูŠู† ุฎู…ุณุฉ ุณุชุฉ ุชู…ุงู†ูŠุฉ ุชุณุนุฉ ุนุดุฑุฉ
312
+
313
+ 79
314
+ 00:09:57,220 --> 00:10:03,940
315
+ ุชู„ุชุงุด ุฎู…ุณุชุงุด ุณุจุนุชุงุด ุชู…ุงู†ุชุงุด
316
+
317
+ 80
318
+ 00:10:47,910 --> 00:10:52,310
319
+ ู†ุฑุฌุน ู„ู„ุฎูˆุงุต ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐู‡ ูŠุจู‚ู‰ ุนู†ุฏู†ุง some
320
+
321
+ 81
322
+ 00:10:52,310 --> 00:10:56,170
323
+ properties of a vector space ูŠุจู‚ู‰ ุจุนุถ ุงู„ุฎูˆุงุต
324
+
325
+ 82
326
+ 00:10:56,170 --> 00:10:59,830
327
+ ุงู„ู…ุชุนู„ู‚ุฉ ุจุงู„ vector space ูุจุฌูŠ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุงู„ V ู‡ูˆ
328
+
329
+ 83
330
+ 00:10:59,830 --> 00:11:06,410
331
+ vector space ูˆุฎุช vector U ู…ูˆุฌูˆุฏ ููŠ V and A scalar
332
+
333
+ 84
334
+ 00:11:06,410 --> 00:11:11,310
335
+ ู…ูˆุฌูˆุฏ ููŠ R thenุงู„ู€ zero scalar ููŠ ุงู„ U ูƒ vector
336
+
337
+ 85
338
+ 00:11:25,560 --> 00:11:29,800
339
+ ุจุนุฏ ุฐู„ูƒ ู„ูˆ ุถุฑุจุช ุงู„ scalar a ููŠ ุงู„ zero vector ุจุฑุถู‡
340
+
341
+ 86
342
+ 00:11:29,800 --> 00:11:34,580
343
+ ุจุฏูŠ ูŠุนุทูŠู†ูŠ main ุงู„ zero vector ุณุงู„ุจ ูˆุงุญุฏ ู„ูˆ ุถุฑุจุชู‡
344
+
345
+ 87
346
+ 00:11:34,580 --> 00:11:39,660
347
+ ููŠ u ุจุฏูŠ ูŠุนุทูŠู†ูŠ main ุงู„ u ุชู…ุงู…ุง ุทูŠุจ ู…ุง ู‡ูˆ ุงู„ุณุจุจ
348
+
349
+ 88
350
+ 00:11:39,660 --> 00:11:43,360
351
+ ู„ุฅู† ุงุญู†ุง ู‚ูˆู„ู†ุง ุงู„ุฎุงุตูŠุฉ ุงู„ุนุงุดุฑุฉ ูˆุงุญุฏ ููŠ u ุจุฏูŠ
352
+
353
+ 89
354
+ 00:11:43,360 --> 00:11:47,940
355
+ ูŠุนุทูŠู†ูŠ ุงู„ u ุชู…ุงู…ูˆู…ู† ุถู…ู† ุงู„ุชุนุฑูŠู ููŠ ุงู„ุจุฏุงูŠุฉ ู‚ู„ู†ุง ู„ูˆ
356
+
357
+ 90
358
+ 00:11:47,940 --> 00:11:53,840
359
+ ุฃุฎุฏุช a scalar ู…ู† R ูˆุถุฑุจุชู‡ ููŠ ุนู†ุตุฑ ู…ู† V ูุงู„ A ููŠ ุงู„
360
+
361
+ 91
362
+ 00:11:53,840 --> 00:11:58,880
363
+ U ุจูŠูƒูˆู† ู…ูˆุฌูˆุฏ ููŠ V ูˆู…ู† ู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ููŠ U ุจูŠูƒูˆู†
364
+
365
+ 92
366
+ 00:11:58,880 --> 00:12:04,760
367
+ ุณุงู„ุจ U ูˆู‡ูˆ ู…ูˆุฌูˆุฏ ุฃูŠุถุง ููŠ ุงู„ V ุทุจ ู†ู†ุชู‚ู„ ุงู„ุขู† ุฅู„ู‰
368
+
369
+ 93
370
+ 00:12:04,760 --> 00:12:10,360
371
+ ุงู„ู…ูˆุถูˆุน ุงู„ุซุงู†ูŠ ูˆู‡ูˆ ู…ูˆุถูˆุน ุงู„ subspacesูŠุจู‚ู‰ ุจุฏู†ุง
372
+
373
+ 94
374
+ 00:12:10,360 --> 00:12:16,660
375
+ ู†ูŠุฌูŠ ู„ section ุชู„ุงุชุฉ ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ subspaces
376
+
377
+ 95
378
+ 00:12:16,660 --> 00:12:24,020
379
+ ุงู„ูุถุงุกุงุช ุงู„ุฌุฒุฆูŠุฉ ู†ุนุทูŠ ุชุฃุฑูŠู ู„ู„ subspace ูˆ ุจุนุฏ ู‡ูŠูƒ
380
+
381
+ 96
382
+ 00:12:24,020 --> 00:12:32,600
383
+ ุจู†ุฑูˆุญ ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุนู„ูŠู‡ ูŠุจู‚ู‰ definition a
384
+
385
+ 97
386
+ 00:12:32,600 --> 00:12:37,640
387
+ subspace a subspace
388
+
389
+ 98
390
+ 00:12:37,640 --> 00:12:55,910
391
+ uof a vector space V is called a subspace is a
392
+
393
+ 99
394
+ 00:12:55,910 --> 00:13:05,850
395
+ subset ูˆู„ูŠุณ subset a subset U of a vector space V
396
+
397
+ 100
398
+ 00:13:05,850 --> 00:13:07,790
399
+ is called
400
+
401
+ 101
402
+ 00:13:10,410 --> 00:13:18,730
403
+ A subspace of
404
+
405
+ 102
406
+ 00:13:18,730 --> 00:13:23,450
407
+ VFLU
408
+
409
+ 103
410
+ 00:13:23,450 --> 00:13:32,130
411
+ is itself
412
+
413
+ 104
414
+ 00:13:32,130 --> 00:13:34,750
415
+ a vector space
416
+
417
+ 105
418
+ 00:13:41,100 --> 00:13:47,680
419
+ vector space under the
420
+
421
+ 106
422
+ 00:13:47,680 --> 00:13:57,320
423
+ same operations of
424
+
425
+ 107
426
+ 00:13:57,320 --> 00:14:08,460
427
+ ุงู„ู„ูŠ ู‡ูˆ V firearm let
428
+
429
+ 108
430
+ 00:14:08,460 --> 00:14:22,680
431
+ ุงู„ Vbe a vector space be a vector space and let
432
+
433
+ 109
434
+ 00:14:22,680 --> 00:14:31,640
435
+ ุงู„ูŠูˆู… be a subset
436
+
437
+ 110
438
+ 00:14:31,640 --> 00:14:40,180
439
+ of V then ุงู„ูŠูˆู…
440
+
441
+ 111
442
+ 00:14:41,970 --> 00:14:53,650
443
+ is a subspace of the if and only if ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
444
+
445
+ 112
446
+ 00:14:53,650 --> 00:15:06,850
447
+ ุงู„ู€U is non-empty ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ if ุงู„ู€C ู…ูˆุฌูˆุฏ ููŠ
448
+
449
+ 113
450
+ 00:15:06,850 --> 00:15:08,930
451
+ R and
452
+
453
+ 114
454
+ 00:15:11,520 --> 00:15:21,440
455
+ ุงู„ู€V ู…ูˆุฌูˆุฏ ููŠ ุงู„ูŠูˆู… then ุงู„ู€C ููŠ ุงู„ู€V ู…ูˆุฌูˆุฏ ููŠ
456
+
457
+ 115
458
+ 00:15:21,440 --> 00:15:32,160
459
+ ุงู„ูŠูˆู… ุงู„ู†ู‚ุทุฉ ุงู„ุชุงู„ุชุฉ if V1 ูˆV2 ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ูŠูˆู…
460
+
461
+ 116
462
+ 00:15:32,160 --> 00:15:38,980
463
+ then V1 ุฒุงุฆุฏ V2 ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ูŠูˆู…
464
+
465
+ 117
466
+ 00:15:42,380 --> 00:15:47,240
467
+ example one let
468
+
469
+ 118
470
+ 00:15:47,240 --> 00:15:57,920
471
+ ุงู„ V ุจุฏุฃ ุชุณุงูˆูŠ R ุชูƒูŠุจ ุงู„ู„ูŠ ู‡ูŠ set of ู‚ู„ู… X ูˆุงุญุฏ ูˆ
472
+
473
+ 119
474
+ 00:15:57,920 --> 00:16:05,760
475
+ X ุงุชู†ูŠู† ูˆ X ุชู„ุงุชุฉ such that X ูˆุงุญุฏ ูˆ X ุงุชู†ูŠู† ูˆ X
476
+
477
+ 120
478
+ 00:16:05,760 --> 00:16:10,640
479
+ ุชู„ุงุชุฉ ู…ูˆุฌูˆุฏุฉ ููŠ set of real number ุจูŠ
480
+
481
+ 121
482
+ 00:16:14,270 --> 00:16:23,050
483
+ Vector Vector Space Under
484
+
485
+ 122
486
+ 00:16:23,050 --> 00:16:26,950
487
+ The
488
+
489
+ 123
490
+ 00:16:26,950 --> 00:16:32,670
491
+ Usual Addition
492
+
493
+ 124
494
+ 00:16:32,670 --> 00:16:36,850
495
+ And Multiplication
496
+
497
+ 125
498
+ 00:16:42,120 --> 00:16:49,680
499
+ and multiplication let ุงู„
500
+
501
+ 126
502
+ 00:16:49,680 --> 00:16:56,320
503
+ U ุจุฏุณุฉ with a set of all element X ูˆ Zero ูˆ Zero
504
+
505
+ 127
506
+ 00:16:56,320 --> 00:17:09,760
507
+ ุจุญูŠุซ ุงู„ X ู…ูˆุฌูˆุฏุฉ ููŠ R ุงู„ุณุคุงู„ ู‡ูˆ is U a subspace
508
+
509
+ 128
510
+ 00:17:12,290 --> 00:17:14,910
511
+ of a ุฃู… ู„ุฃ
512
+
513
+ 129
514
+ 00:17:49,720 --> 00:17:50,820
515
+ ู…ุด ูƒูุงูŠุฉ
516
+
517
+ 130
518
+ 00:18:18,210 --> 00:18:21,950
519
+ ุจู†ุฑูˆุญ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุงุญู†ุง ูƒุชุจูŠู†ู‡ ู‡ุฐุง ูŠุจู‚ู‰ ุงุญู†ุง ููŠ ุงู„
520
+
521
+ 131
522
+ 00:18:21,950 --> 00:18:25,770
523
+ section ุงู„ู…ุงุถูŠ ุจุฌูŠู†ุง ู†ุชุญุฏุซ ุนู† ุงู„ vector space ุงู„ู„ูŠ
524
+
525
+ 132
526
+ 00:18:25,770 --> 00:18:29,210
527
+ ู‡ู… ุจูŠุฑูˆุญูˆุง ูŠุงุฎุฏูˆุง ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ ู…ู† ู‡ุฐุง ุงู„ vector
528
+
529
+ 133
530
+ 00:18:29,210 --> 00:18:34,250
531
+ space ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ู‚ุฏ ุชูƒูˆู† vector space ูˆ ู‚ุฏ ู„ุง
532
+
533
+ 134
534
+ 00:18:34,250 --> 00:18:39,310
535
+ ุชูƒูˆู† vector space ุจูŠุฌูŠู†ุง ู†ุดูˆู ู…ุง ู‡ูˆ ุงู„ุดุฑุท ุงู†
536
+
537
+ 135
538
+ 00:18:39,310 --> 00:18:43,630
539
+ ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ู„ูˆ ุงุฎุฏุชู‡ุง ุชุจู‚ู‰ vector space ูู…ุซู„ุงู„ูˆ
540
+
541
+ 136
542
+ 00:18:43,630 --> 00:18:46,350
543
+ ู‚ู„ุช ูƒู„ ุงู„ุจู†ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู‚ุงุน ู‡ุฏูˆู„ vector
544
+
545
+ 137
546
+ 00:18:46,350 --> 00:18:51,710
547
+ space ุจุชุงุฎุฏ ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ู‡ู„ ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ููŠ ุญุฏ
548
+
549
+ 138
550
+ 00:18:51,710 --> 00:18:55,350
551
+ ุฐุงุชู‡ุง ุจุชูƒูˆู† vector space ูˆู„ุง .. ุทุจุนุง ู‡ุฐู‡ ู…ุฌู…ูˆุนุฉ
552
+
553
+ 139
554
+ 00:18:55,350 --> 00:18:59,630
555
+ ุฌุฒุฆูŠุฉ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ูƒุจูŠุฑุฉ ูู‡ู„ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ
556
+
557
+ 140
558
+ 00:18:59,630 --> 00:19:04,300
559
+ ุงู„ุฌุฒุฆูŠุฉ ุจุชูƒูˆู† subspace ุงู… ู„ุง ู‡ุฐุง ุงู„ุณุคุงู„ุงู„ุชุนุฑูŠู
560
+
561
+ 141
562
+ 00:19:04,300 --> 00:19:08,520
563
+ ุจูŠู‚ูˆู„ ุงู„ู€ subset U of a vector space V ูŠุจู‚ู‰ ุงุญู†ุง
564
+
565
+ 142
566
+ 00:19:08,520 --> 00:19:12,280
567
+ ุฃุฎุฏู†ุง ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ ู…ู† ุงู„ vector space V ู‡ุฐู‡ is
568
+
569
+ 143
570
+ 00:19:12,280 --> 00:19:18,600
571
+ called a subspace ุจุณู…ูŠู‡ุง ูุถุงุก ุงุชุฌุงู‡ูŠ ุฌุฒุฆูŠ of V ุฅุฐุง
572
+
573
+ 144
574
+ 00:19:18,600 --> 00:19:23,100
575
+ ูƒุงู† ุงู„ู€ U ู†ูุณู‡ุง ุนุจุงุฑุฉ ุนู† vector space under the
576
+
577
+ 145
578
+ 00:19:23,100 --> 00:19:28,060
579
+ same operations of V ูŠุจู‚ู‰ ุจู†ุงุช ุงู„ู‚ุงุนุฉ ูƒู„ู‡ุง vector
580
+
581
+ 146
582
+ 00:19:28,060 --> 00:19:32,120
583
+ space ุนู„ูŠู‡ุง ุนู…ู„ูŠุฉ ุฌู…ุน ุนู„ูŠู‡ุง ุนู…ู„ูŠุฉ ุถุฑุจ ุฃุฎุฏุช ู…ุฌู…ูˆุนุฉ
584
+
585
+ 147
586
+ 00:19:32,120 --> 00:19:36,280
587
+ ู…ู†ู‡ู…ุฅุฐุง ูˆ ุงู„ู„ู‡ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ู„ูŠ ุฎุฏุชู‡ุง ู„ู‚ูŠุชู‡ุง
588
+
589
+ 148
590
+ 00:19:36,280 --> 00:19:40,840
591
+ vector space ุฌุฏูŠุฏ ุชุญุช ู†ูุณู‡ ุงู„ุนู…ู„ูŠุชูŠู† ุจุชุงุนุฉ ุงู„
592
+
593
+ 149
594
+ 00:19:40,840 --> 00:19:45,740
595
+ vector space ุงู„ุฃุตู„ูŠ ูŠุจู‚ู‰ ุจู‚ูˆู„ ู‡ุฐู‡ subspace ุทุจ
596
+
597
+ 150
598
+ 00:19:45,740 --> 00:19:50,360
599
+ ู‡ุชู‚ูˆู„ูŠ ูˆุงุญุฏุฉ ุทุจ ูˆ ุงุญู†ุง ูƒู„ ู…ุฑุฉ ุจุฏู†ุง ู†ูŠุฌูŠ ู†ุทุจู‚ ุงู„ุนุดุฑ
600
+
601
+ 151
602
+ 00:19:50,360 --> 00:19:54,500
603
+ ุฎูˆุงุต ุนู„ู‰ ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฌุฒูŠุฉ ู‡ุฐู‡ ู‚ุตุฉ ุทูˆูŠู„ุฉูุฑุญ
604
+
605
+ 152
606
+ 00:19:54,500 --> 00:19:58,700
607
+ ุงู„ุนู„ู…ุงุก ุฌู„ุณูˆุง ู…ุน ุจุนุถ ูˆุฏุฑุณูˆุง ุงู„ู…ูˆุถูˆุน ูˆุงุณุชุทุงุนูˆุง ุงู†ู‡ู…
608
+
609
+ 153
610
+ 00:19:58,700 --> 00:20:04,760
611
+ ูŠุฎุชุตุฑูˆุง ู‡ุฐู‡ ุงู„ุนุดุฑุฉ ๏ฟฝ๏ฟฝู†ูˆุฏ ููŠ ุซู„ุงุซุฉ ุจู†ูˆุฏ ูู‚ุท ู„ุง ุบูŠุฑ
612
+
613
+ 154
614
+ 00:20:04,760 --> 00:20:09,800
615
+ ู…ุง ู‡ูŠ ุงู„ุจู†ูˆุฏ ุงู„ุชู„ุงุชุฉ ุงู†ุญุทุช ุจุตูŠุบุฉ ุงู„ู†ุธุฑูŠุฉ ุงู„ุชุงู„ูŠุฉ
616
+
617
+ 155
618
+ 00:20:09,930 --> 00:20:14,650
619
+ ู„ุชู„ V ุจู€ vector space ูˆ U ุนุจุงุฑุฉ ุนู† subset ู…ู† V
620
+
621
+ 156
622
+ 00:20:14,650 --> 00:20:19,090
623
+ ูŠุจู‚ู‰ ุงู„ู€ U ุจู‚ูˆู„ ุฃู†ู‡ุง subspace if and only if ูŠุนู†ูŠ
624
+
625
+ 157
626
+ 00:20:19,090 --> 00:20:23,650
627
+ ู„ูˆ ุชุญู‚ู‚ุช ุงู„ุดุฑูˆุท ุงู„ุชู„ุงุชุฉ ุจูŠูƒูˆู† ุงู„ู€ U subspace ูˆู„ุง
628
+
629
+ 158
630
+ 00:20:23,650 --> 00:20:29,030
631
+ ุนูƒุณ ู„ูˆ ูƒุงู† U subspace ูŠุฌุจ ุฃู† ุชุชุญู‚ู‚ ู…ู† ุงู„ุดุฑูˆุท
632
+
633
+ 159
634
+ 00:20:29,030 --> 00:20:32,890
635
+ ุงู„ุชู„ุงุชุฉูŠุจู‚ู‰ ู„ูˆ ุฃุนุทุงู†ูŠ ุงุฌู…ุนูŠุฉ ุฌุฒุฆูŠุฉ ู…ู† vector space
636
+
637
+ 160
638
+ 00:20:32,890 --> 00:20:37,410
639
+ ูˆู‚ุงู„ ู„ูŠ ุดูˆู ู‡ู„ ููŠ subspace ูˆู„ุง ู„ุฃ ุจู‚ูˆู„ู‡ ุจุฏูŠ ุฃุดูˆู
640
+
641
+ 161
642
+ 00:20:37,410 --> 00:20:41,870
643
+ ู‡ู„ ุงู„ set ู‡ุฐู‡ non-empty ูˆู„ุง ู„ุฃ ุนู„ู‰ ุงู„ุฃู‚ู„ ุจุฏูŠ ุฃุซุจุช
644
+
645
+ 162
646
+ 00:20:41,870 --> 00:20:47,230
647
+ ุฃู† ููŠู‡ุง ูˆู„ูˆ ุนู†ุตุฑ ูˆุงุญุฏ ูู‚ุทุชู…ุงู… ูŠุนู†ูŠ ุฃุณุงุณ ู…ุง ุชุจู‚ุงุด
648
+
649
+ 163
650
+ 00:20:47,230 --> 00:20:50,850
651
+ non-empty ููŠู‡ุง ูˆ ู„ูˆ ุนู†ุตุฑ ูˆุงุญุฏ ุงู† ุดุงุก ุงู„ู„ู‡ ูŠูƒูˆู†
652
+
653
+ 164
654
+ 00:20:50,850 --> 00:20:57,190
655
+ ุงู„ุนู†ุตุฑ ุงู„ุตูุฑูŠู† ุงุชู†ูŠู† ู„ูˆ ุฃุฎุฏุช ุฃูŠ element ู…ู† R ูŠุนู†ูŠ
656
+
657
+ 165
658
+ 00:20:57,190 --> 00:21:01,930
659
+ ุฃูŠ real number ุฃูˆ scalar ูˆ ุฃุฎุฏุช ุฃูŠ vector space ู…ู†
660
+
661
+ 166
662
+ 00:21:01,930 --> 00:21:06,490
663
+ ุงู„ U ู‡ุฐู‡ ู…ู† ุงู„ subset ูˆ ุถุฑุจุช ุงุชู†ูŠู† ุงู„ู„ูŠ ุฌูŠุชู‡ ููŠ U
664
+
665
+ 167
666
+ 00:21:06,490 --> 00:21:10,390
667
+ ูŠุจู‚ู‰ ุชุญู‚ู‚ ุงู„ condition ุงู„ุซุงู†ูŠุจุงุฑูˆุญ ู„ู„ condition
668
+
669
+ 168
670
+ 00:21:10,390 --> 00:21:16,350
671
+ ุงู„ุชุงู„ุช ู„ูˆ ุฃุฎุฏุช ุฃูŠ ุนู†ุตุฑ ู…ู† U ูˆ ู„ุฌุฃุช ุญุงุตู„ ุงู„ุฌุงู…ุนู‡
672
+
673
+ 169
674
+ 00:21:16,350 --> 00:21:20,450
675
+ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ U ุฅุฐุง ุงู„ U ู‡ุฐุง ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ุณูŠูƒูˆู†
676
+
677
+ 170
678
+ 00:21:20,450 --> 00:21:25,910
679
+ ู…ุงู„ู‡ subspace ูŠูƒููŠู†ูŠ ู„ู„ุญูƒู… ุนู„ู‰ subset ุงู„ู„ูŠ ุจุงุฎุฏู‡
680
+
681
+ 171
682
+ 00:21:25,910 --> 00:21:29,750
683
+ ู„ุฃู† subspace ุซู„ุงุซุฉ ุดุฑู…ุฅู† ุงู„ู€ subset ุงู„ู„ูŠ ุฃุฎุฏุชู‡ุง
684
+
685
+ 172
686
+ 00:21:29,750 --> 00:21:34,410
687
+ ุงู„ู€ non-empty ุจู…ุนู†ู‰ ุนู„ู‰ ุงู„ุฃู‚ู„ ุจุฏูŠ ุฃุซุจุช ุฅู† ููŠู‡ุง ูˆู„ูˆ
688
+
689
+ 173
690
+ 00:21:34,410 --> 00:21:40,770
691
+ ุนู†ุตุฑ ูˆุงุญุฏ ูู‚ุท ุฅุชู†ูŠู† ู„ูˆ ุฃุฎุฏุช scalar ูˆ vector ู…ู† ุงู„
692
+
693
+ 174
694
+ 00:21:40,770 --> 00:21:45,150
695
+ U ุถุฑุจุช ุงุชู†ูŠู† ู…ุน ุจุนุถ ุฏุฌูŠุชู‡ ููŠ U ุชู„ุงุชุฉ ู„ูˆ ุฃุฎุฏุช two
696
+
697
+ 175
698
+ 00:21:45,150 --> 00:21:49,110
699
+ vectors ู…ู† ู‡ุฐู‡ ุงู„ U ุฌู…ุนุชู‡ู… ู„ุฌูŠู†ุง ุงู„ู†ุงุชุฌ ููŠ U ูˆู„ูŠุณ
700
+
701
+ 176
702
+ 00:21:49,110 --> 00:21:52,930
703
+ ุฎุงุฑุฌ U automatic ุงู„ U ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุนู„ูŠู‡ุง ู…ุง ู„ู‡ุฐู‡
704
+
705
+ 177
706
+ 00:21:52,930 --> 00:21:58,950
707
+ subspace ู…ู† V ู†ุจุฏุฃ ุจุฃุฎุฐ ุงู„ุฃู…ุซู„ุฉู‚ุงู„ ูŠุงุฎุฏ ุงู„ู€ vector
708
+
709
+ 178
710
+ 00:21:58,950 --> 00:22:04,210
711
+ space ุงู„ู„ูŠ ู‡ูˆ R ุชูƒุนูŠุจ ุฃูˆ R ุชู„ุงุชุฉ ุงู„ู„ูŠ ู‡ูˆ the set
712
+
713
+ 179
714
+ 00:22:04,210 --> 00:22:07,430
715
+ of all three tuples ุจุญูŠุซ X ูˆุงุญุฏ ูˆ X ุงุชู†ูŠู† ูˆ X
716
+
717
+ 180
718
+ 00:22:07,430 --> 00:22:11,450
719
+ ุชู„ุงุชุฉ ูƒู„ู‡ุง ู…ูˆุฌูˆุฏุฉ ููŠ R ุจุฏู†ุง ู†ุนุฑู ุนู„ูŠู‡ู… ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน
720
+
721
+ 181
722
+ 00:22:11,450 --> 00:22:15,950
723
+ ูˆุงู„ุถุฑุจ ุงู„ุนุงุฏูŠุฉ ุงูŠุด ูŠุนู†ูŠ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ ูŠุนู†ูŠ
724
+
725
+ 182
726
+ 00:22:15,950 --> 00:22:19,150
727
+ ุงู„ุฌู…ุน ุงู„ component ูˆ ุงูŠุฒูŠ ูˆ ุงู„ุถุฑุจ ู„ูˆ ุถุฑุจุช scalar
728
+
729
+ 183
730
+ 00:22:19,150 --> 00:22:22,890
731
+ ููŠ ุงู„ components ุจุฏูŠ ุงุถุฑุจู‡ ููŠ ูƒู„ component ู…ู† ู‡ุฐู‡
732
+
733
+ 184
734
+ 00:22:22,890 --> 00:22:29,580
735
+ ุงู„ components ู„ู…ุง ุณู…ูŠุช ุถุฑุจ ุงู„ุนุงุฏูŠ ูˆุงู„ุฌู…ุน ุงู„ุนุงุฏูŠู‡ุฐุง
736
+
737
+ 185
738
+ 00:22:29,580 --> 00:22:32,020
739
+ ุงู„ุจุฑู…ุฌุฉ ุชุณู…ู‰ vector space under U under
740
+
741
+ 186
742
+ 00:22:32,020 --> 00:22:38,420
743
+ multiplication ุฎุฏ ุงู„ U ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ V
744
+
745
+ 187
746
+ 00:22:38,420 --> 00:22:42,940
747
+ ุจุญูŠุซ ุงู„ู…ุฑูƒุจุฉ ุงู„ุชุงู†ูŠุฉ ุฃูˆ ุงู„ู…ุฑูƒุจุฉ ุงู„ุชุงู„ุชุฉ ุฃุตูุฑุง
748
+
749
+ 188
750
+ 00:22:44,340 --> 00:22:48,940
751
+ ู…ุงุนู„ูŠู‡ุงุด ู‚ูŠูˆุฏ ุงู„ุฃูˆู„ู‰ ู‚ุงู„ ู„ูŠ X ู…ูˆุฌูˆุฏุฉ ูˆูŠู† ููŠ R ูŠุนู†ูŠ
752
+
753
+ 189
754
+ 00:22:48,940 --> 00:22:53,700
755
+ ู…ู…ูƒู† ุตูุฑ ูˆู…ู…ูƒู† ู…ูˆุฌุจ ูˆู…ู…ูƒู† ุณุงู„ุจ ูˆู…ู…ูƒู† ูƒุณุฑ ูˆุบูŠุฑ ูƒุณุฑ
756
+
757
+ 190
758
+ 00:22:53,700 --> 00:22:58,900
759
+ ูˆุงู„ุงุฎุฑูŠู† ูŠุนู†ูŠ any real number ู…ู‡ู…ุง ูƒุงู† ุดูƒู„ู‡ ุจูŠู‚ูˆู„
760
+
761
+ 191
762
+ 00:22:58,900 --> 00:23:03,380
763
+ ู„ูŠ ู‡ู„ ู‡ุฐุง subspace ูˆู„ุง ู„ุฃ ุจู‚ูˆู„ู‡ ูˆุงู„ู„ู‡ ุฃุนู„ู… ู…ุด
764
+
765
+ 192
766
+ 00:23:03,380 --> 00:23:10,620
767
+ ุนุงุฑููŠู† ูŠุจู‚ู‰ ุจูŠุฏู†ุง ู†ูŠุฌูŠ ู„ู„ุญู„ solution ู…ุดุงู†ู‡ุง ุดูˆููˆุง
768
+
769
+ 193
770
+ 00:23:15,580 --> 00:23:23,940
771
+ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ุฐุง ุดูƒู„ ุงู„ูŠูˆู… ู‡ู„ ู†ุณุชุทูŠุน ุฃู† ู†ุซุจุช ุฃู† ู‡ู†ุงูƒ
772
+
773
+ 194
774
+ 00:23:23,940 --> 00:23:30,360
775
+ ูˆ ู„ูˆ ุฃู†ุตุฑ ูˆุงุญุฏ ูู‚ุทุงู„ุนู†ุตุฑ ุงู„ุตูุฑูŠ ู„ุฃู† ู‚ุงู„ ู„ูŠ x
776
+
777
+ 195
778
+ 00:23:30,360 --> 00:23:35,460
779
+ ู…ูˆุฌูˆุฏุฉ ููŠ R ูŠุจู‚ู‰ ู…ูŠู† ู…ุง ูƒุงู†ุช ุชูƒูˆู† ุฅุฐุง ุงู„ zero zero
780
+
781
+ 196
782
+ 00:23:35,460 --> 00:23:39,560
783
+ zero ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ U ูˆู„ุง ู„ุง ูŠุจู‚ู‰ ู…ุนู†ุงุชู‡ non-empty
784
+
785
+ 197
786
+ 00:23:39,560 --> 00:23:43,940
787
+ ูŠ๏ฟฝ๏ฟฝู‚ู‰ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุจู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ U
788
+
789
+ 198
790
+ 00:23:43,940 --> 00:23:52,100
791
+ is non-empty non-empty ู„ูŠุด ุจุฏูƒ ุชู‚ูˆู„ ู„ูŠุด because ุงู„
792
+
793
+ 199
794
+ 00:23:52,100 --> 00:23:58,350
795
+ zero ูˆ zero ูˆ zero ู…ูˆุฌูˆุฏ ููŠ ุงู„ Uู„ุฃู†ู‡ ุฌุงุฆู„ ูƒู„ู‡ ุนู„ู‰
796
+
797
+ 200
798
+ 00:23:58,350 --> 00:24:01,930
799
+ ุงู„ุดูƒู„ ู‡ุฐุง ุงู„ู…ูุฑูƒู‘ุจ ุงู„ุชุงู†ูŠ ุฃูˆ ุงู„ุชุงู„ุชุฉ ุจู€0 ูˆู‡ุฐู‡ ู…ุง
800
+
801
+ 201
802
+ 00:24:01,930 --> 00:24:06,350
803
+ ุนู„ูŠู‡ุงุด ู‚ูŠูˆุฏ ู‚ุฏ ุชูƒูˆู† ุตูุฑ ูˆู‚ุฏ ู„ุง ุชูƒูˆู† ุตูุฑ ุงู„ู‚ูŠูˆุฏ ุนู„ู‰
804
+
805
+ 202
806
+ 00:24:06,350 --> 00:24:10,370
807
+ ุงู„ two components ุงู„ุฃุฎุฑู‰ ูŠุจู‚ู‰ ุฎู„ุตู†ุง ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
808
+
809
+ 203
810
+ 00:24:10,370 --> 00:24:16,290
811
+ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉุจูŠู‚ูˆู„ ู„ูŠ ู„ูˆ ุฃุฎุฏุช ุฃูŠ element ู…ู† R ูˆ
812
+
813
+ 204
814
+ 00:24:16,290 --> 00:24:21,910
815
+ ุฃูŠ element ู…ูˆุฌูˆุฏ ููŠ V ูŠุจู‚ู‰ ุจุงู„ุถุฌูŠ ุฃู‚ูˆู„ ู„ู‡ let C
816
+
817
+ 205
818
+ 00:24:21,910 --> 00:24:30,830
819
+ ู…ูˆุฌูˆุฏ ููŠ R and ุงู„ U ุจูŠูƒูˆู† X ูˆ 0 ูˆ 0 ู…ูˆุฌูˆุฏ ููŠ U
820
+
821
+ 206
822
+ 00:24:33,240 --> 00:24:40,600
823
+ ุจุชุงุฎุฏ ุฃู…ุงู†ุงุช C ููŠ ุงู„ู€ U ุฅุฐุง ู‡ุฐู‡ ุจุฏุฃุช ุชุณุงูˆูŠ C ููŠ X
824
+
825
+ 207
826
+ 00:24:40,600 --> 00:24:47,120
827
+ ูˆ Zero ุจ Zero ู‚ู„ุช ุถุฑุจ ุถุฑุจ ุนุงุฏูŠ ูŠุจู‚ู‰ ู‡ุฐูŠุด ุจุชุนุทูŠู†ุง C
828
+
829
+ 208
830
+ 00:24:47,120 --> 00:24:52,670
831
+ X ูˆ C ููŠ Zero ุจ Zero ู…ูˆุฌูˆุฏุฉ ููŠ U ูˆู„ุง ู„ุงุŸู‡ุฐู‡
832
+
833
+ 209
834
+ 00:24:52,670 --> 00:24:57,450
835
+ ุงู„ู…ุฑุงูƒุจุชูŠู† ุชู†ุชู‡ูŠ ุจู€0 ูˆู‡ุฐู‡ ู…ูŠู† ู…ุง ูƒุงู†ุช it ูƒูˆู†ุช ูŠุจู‚ู‰
836
+
837
+ 210
838
+ 00:24:57,450 --> 00:25:01,010
839
+ ู…ุนุงู†ุง ู…ุดูƒู„ุฉ ุฅุฐุง ุงู†ุชุญู‚ู‚ ู…ูŠู† ุงู„ condition ุงู„ุชุงู†ูŠุŸ
840
+
841
+ 211
842
+ 00:25:01,010 --> 00:25:04,290
843
+ ุจุชุฑูˆุญ ุนู„ู‰ ุงู„ condition ุงู„ุชุงู„ุช ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠ ู„ ุงู„
844
+
845
+ 212
846
+ 00:25:04,290 --> 00:25:14,150
847
+ condition ุงู„ุซุงู„ุซ ูŠุจู‚ู‰ ุจุฏูŠ ุฃู‚ูˆู„ู‡ let ู…ุซู„ุง ุงู„ u ูˆ ุงู„
848
+
849
+ 213
850
+ 00:25:14,150 --> 00:25:26,980
851
+ v let ุงู„ uุชุณุงูˆูŠ X ูˆ Zero ูˆ Zero ูˆ V ุชุณุงูˆูŠ Y ูˆ Zero
852
+
853
+ 214
854
+ 00:25:26,980 --> 00:25:34,160
855
+ ูˆ Zero ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูŠูˆู… ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูŠูˆู… ูˆู„ุง ู„ุฃ ู„ุฃู†
856
+
857
+ 215
858
+ 00:25:34,160 --> 00:25:38,000
859
+ ุงู„ู…ุฑุงูƒุจุฉ ุงู„ุชุงู†ูŠุฉ ู‡ูŠ ูƒู„ู‡ ูู‚ุฏุงุด ุจ Zero ูˆ ุงู„ุฃูˆู„ู‰ ู…ูŠู†
860
+
861
+ 216
862
+ 00:25:38,000 --> 00:25:44,670
863
+ ู…ุง ูƒุงู†ุช ุชูƒูˆู†then ุจุฏูŠ ุฃุฎุฏ ุงู„ุฌุงู…ุน ุชุจุนู‡ู… ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎุฏ
864
+
865
+ 217
866
+ 00:25:44,670 --> 00:25:51,070
867
+ ุงู„ U ุฒุงุฆุฏ ุงู„ V ูŠุจู‚ู‰ ุงู„ X ูˆ Zero ูˆ Zero ุฒุงุฆุฏ Y ูˆ
868
+
869
+ 218
870
+ 00:25:51,070 --> 00:25:55,530
871
+ Zero ูˆ Zero ูŠุณุงูˆูŠ ุฌุงู„ูŠ ุฌุงู…ุน ุนุงุฏูŠ ูŠุจู‚ู‰ ุงู„ุฌุงู…ุน
872
+
873
+ 219
874
+ 00:25:55,530 --> 00:26:01,750
875
+ ุงู„ุนุงุฏูŠ ู‡ูˆ ุงู„ component Y's ูŠุจู‚ู‰ X ุฒุงุฆุฏ Y ูˆ Zero ูˆ
876
+
877
+ 220
878
+ 00:26:01,750 --> 00:26:06,020
879
+ Zero ู…ูˆุฌูˆุฏ ููŠ ุงู„ U ูˆู„ุง ู„ุง ูŠุง ุงุจู†ู‡ุงูŠุจู‚ู‰ ุงุชุญู‚ู‚ุช
880
+
881
+ 221
882
+ 00:26:06,020 --> 00:26:10,120
883
+ ุซู„ุงุซุฉ ุดุฑูˆุท ูˆู„ุง ู„ุฃุŸ ุฎู„ุตุช ูŠุจู‚ู‰ ุงุฐุง ุงู„ U ู‡ูˆ ุนุจุงุฑุฉ ุนู†
884
+
885
+ 222
886
+ 00:26:10,120 --> 00:26:20,340
887
+ subspace ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ุณุงุนุฉ ุงู„ U is a subspace of V
888
+
889
+ 223
890
+ 00:26:20,340 --> 00:26:22,420
891
+ ูˆุงู†ุช ู‡ู†ุง ู…ู† ุงู„ู…ุซู„ุฉ
892
+
893
+ 224
894
+ 00:26:28,240 --> 00:26:33,580
895
+ ู…ูŠู† ู…ุง ุชูŠุฌูŠ ุชุญุท ุชุญุท ู…ุงุนู†ุฏูŠุด ู‚ูŠูˆุฏ ุนู„ู‰ X ุฃู†ุง ุจู‚ูˆู„ูƒ
896
+
897
+ 225
898
+ 00:26:33,580 --> 00:26:37,100
899
+ ุจุฏูƒ ุงุฌูŠุจู„ูŠ ูˆู„ูˆ ุนู†ุตุฑ ูˆุงุญุฏ ูุณุชุจูŠู†ูˆุง ุงู†ู‡ุง ุงู„ none
900
+
901
+ 226
902
+ 00:26:37,100 --> 00:26:40,300
903
+ empty ูŠุนู†ูŠ ู…ุด ุงู„ู‚ุฑุขู† ู†ุฒู„ ู…ู† ุงู„ุณู…ุงุก ู„ุงุฒู… ูŠูƒูˆู† ุนู†ุตุฑ
904
+
905
+ 227
906
+ 00:26:40,300 --> 00:26:44,170
907
+ ุงู„ุณูุฑ ู„ุฃ ู„ุฃ ู„ูŠุณ ุจุถุฑูˆุฑุฉุฃูŠ ุนู†ุตุฑ ุจูŠุนู†ูŠ ูŠูƒูˆู† ู…ูˆุฌูˆุฏ
908
+
909
+ 228
910
+ 00:26:44,170 --> 00:26:47,650
911
+ ุญู‚ูŠู‚ูŠุง ูŠุนู†ูŠ ู„ูˆ ู‚ู„ุช ุฃู†ุง ุดูŠู„ุช ุฒูŠุฑูˆ ูˆ ุญุทูŠุช ุจุฏู„ู‡ ู…ูŠุฉ
912
+
913
+ 229
914
+ 00:26:47,650 --> 00:26:51,470
915
+ ุญุฏู„ู‡ ูƒู„ุงู… ุนู†ุฏูŠ ุงู„ู…ูŠุฉ ู…ูˆุฌูˆุฏุฉ ููŠ R ูˆู„ุง ู„ุฃ ู…ูˆุฌูˆุฏุฉ
916
+
917
+ 230
918
+ 00:26:51,470 --> 00:26:55,090
919
+ ูŠุจู‚ู‰ ุฃู†ุง ู…ุชู‚ูŠู„ ุจุงู„ definition ูŠุจู‚ู‰ ู…ูŠุฉ ูˆ ุฒูŠุฑูˆ ูˆ
920
+
921
+ 231
922
+ 00:26:55,090 --> 00:27:02,670
923
+ ุฒูŠุฑูˆ ู…ูˆุฌูˆุฏุฉ ููŠ R ููŠ ุงู„ U ุฅุฐุง ุงู„ U is non-empty ุทูŠุจ
924
+
925
+ 232
926
+ 00:27:02,670 --> 00:27:04,410
927
+ example two
928
+
929
+ 233
930
+ 00:27:11,930 --> 00:27:16,850
931
+ Example 2 ู‡ุฐุง ุณุคุงู„ ุงุชู†ูŠู† ู…ู† ุงู„ูƒุชุงุจ ูƒุฐู„ูƒ ุจู‚ูˆู„ let
932
+
933
+ 234
934
+ 00:27:16,850 --> 00:27:23,690
935
+ ุงู„ V ุชุณุงูˆูŠ R2 ุงู„ู„ูŠ ู‡ูŠ the set of all elements X ูˆ
936
+
937
+ 235
938
+ 00:27:23,690 --> 00:27:27,710
939
+ Y ุจุญูŠุซ ุงู„ X ูˆ ุงู„ Y ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ set of real
940
+
941
+ 236
942
+ 00:27:27,710 --> 00:27:34,340
943
+ numbers ู‚ุงู„ ู„ูŠ letุงู„ู€ U ุจุฏู‡ุง ุชุณูˆูŠ ุงู„ู€ set of all
944
+
945
+ 237
946
+ 00:27:34,340 --> 00:27:40,400
947
+ elements ูˆุงุญุฏ ูˆ Y such that ุงู„ Y ู…ูˆุฌูˆุฏุฉ ููŠ R
948
+
949
+ 238
950
+ 00:27:40,400 --> 00:27:49,060
951
+ ุงู„ุณุคุงู„ ู‡ูˆ is ุงู„ U a
952
+
953
+ 239
954
+ 00:27:49,060 --> 00:27:57,160
955
+ subspace of V ุงู…
956
+
957
+ 240
958
+ 00:27:57,160 --> 00:27:57,820
959
+ ู„ุฃุŸ
960
+
961
+ 241
962
+ 00:28:06,370 --> 00:28:11,550
963
+ ุจู…ุฌุฑุฏ ุงู„ู†ุธุฑ ูŠุง ุจู†ุงุช ู„ู…ุง ุงู‚ูˆู„ ุงู„ you ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
964
+
965
+ 242
966
+ 00:28:11,550 --> 00:28:15,490
967
+ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ุงู„ condition ุงู„ุฃูˆู„ ู…ุชุญู‚ู‚ ุทุจูŠุนูŠ ูˆู„ุง
968
+
969
+ 243
970
+ 00:28:15,490 --> 00:28:25,890
971
+ ู„ุง ุจุฏูˆุฑุด ุนู„ูŠู‡ ุงู„ุฃู…ุฑ ุงู„ุซ๏ฟฝ๏ฟฝู†ูŠ ุดุฑุท ุงู„ุชุงู†ูŠ ู…ุชุญู‚ู‚ุŸ ู„ุฃ ู…ุด
972
+
973
+ 244
974
+ 00:28:25,890 --> 00:28:32,380
975
+ ู…ุชุญู‚ู‚ ุทุจ ุงู„ุชุงู„ุชุŸูŠุจู‚ู‰ ู„ุดุฑุท ุงู„ุชุงู†ูŠ ูˆ ู„ุดุฑุท ุงู„ุชุงู„ุช
976
+
977
+ 245
978
+ 00:28:32,380 --> 00:28:36,080
979
+ ู…ุชุนู‚ู‚ ูŠุจู‚ู‰ ุฃู†ุง ุจุงู‡ู…ู†ูŠ ุงู„ุดุฑุท ุงู„ุชุงู†ูŠ ุจุงู‡ู…ู†ูŠ ุจุณ ูˆุงุญุฏ
980
+
981
+ 246
982
+ 00:28:36,080 --> 00:28:40,120
983
+ ููŠู‡ู… ู„ูˆ ุฃุซุจุชุช ุฃู† ูˆุงุญุฏ ุงู„ three conditions is not
984
+
985
+ 247
986
+ 00:28:40,120 --> 00:28:44,080
987
+ satisfied ูŠุจู‚ู‰ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ุจุทู„ ูŠุญุตู„ ู‡ุฐุง ุงู„
988
+
989
+ 248
990
+ 00:28:44,080 --> 00:28:54,080
991
+ subspace solution ุงู„ U is not a subspace because
992
+
993
+ 249
994
+ 00:28:54,080 --> 00:29:05,150
995
+ ุงู„ุณุจุจ ifูˆุงุญุฏ ูˆ ูˆุงูŠ ูˆุงุญุฏ ูˆ ูˆุงุญุฏ ูˆ ูˆุงูŠ ุงุชู†ูŠู† ู…ูˆุฌูˆุฏุงุช
996
+
997
+ 250
998
+ 00:29:05,150 --> 00:29:12,550
999
+ ููŠู‡ then ูˆุงุญุฏ ูˆ ูˆุงูŠ ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ูˆ ูˆุงูŠ ุงุชู†ูŠู†
1000
+
1001
+ 251
1002
+ 00:29:12,550 --> 00:29:18,150
1003
+ ูŠุณุงูˆูŠ ุงุชู†ูŠู† ูˆ ูˆุงูŠ ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงูŠ ุงุชู†ูŠู† ูˆ ู‡ุฐุง does
1004
+
1005
+ 252
1006
+ 00:29:18,150 --> 00:29:23,650
1007
+ not belong to you ู„ุฐู„ูƒ ุงู„ you is not a subspace of
1008
+
1009
+ 253
1010
+ 00:29:23,650 --> 00:29:23,910
1011
+ me
1012
+
1013
+ 254
1014
+ 00:29:39,180 --> 00:29:48,940
1015
+ Example 3 let
1016
+
1017
+ 255
1018
+ 00:29:48,940 --> 00:30:01,050
1019
+ V ุชุณุงูˆูŠthe set of all elements a ูˆ b ูˆ c ูˆ d ุจุญูŠุซ
1020
+
1021
+ 256
1022
+ 00:30:01,050 --> 00:30:08,930
1023
+ ุงู„ a ูˆ ุงู„ b ูˆ ุงู„ c ูˆ ุงู„ d ูƒู„ู‡ุง ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉ ู…ูˆุฌูˆุฏุฉ
1024
+
1025
+ 257
1026
+ 00:30:08,930 --> 00:30:09,630
1027
+ ููŠ R
1028
+
1029
+ 258
1030
+ 00:30:13,120 --> 00:30:25,040
1031
+ ูƒู„ ุงู„ู…ุตููˆูุงุช ุงู„ู„ูŠ ุนู„ู‰ ุงู„ุดูƒู„ ุฎู…ุณุฉ a b c d ุจุญูŠุซ ุงู„ a
1032
+
1033
+ 259
1034
+ 00:30:25,040 --> 00:30:31,400
1035
+ ูˆ ุงู„ b ูˆ ุงู„ c ูˆ ุงู„ d ู…ูˆุฌูˆุฏุฉ ููŠ set of real numbers
1036
+
1037
+ 260
1038
+ 00:30:31,400 --> 00:30:37,000
1039
+ ุจู‚ูˆู„ prove or
1040
+
1041
+ 261
1042
+ 00:30:37,000 --> 00:30:42,520
1043
+ disprove that
1044
+
1045
+ 262
1046
+ 00:30:45,040 --> 00:30:52,300
1047
+ ุงู„ู€ U is a subspace of V
1048
+
1049
+ 263
1050
+ 00:31:22,620 --> 00:31:28,400
1051
+ ูƒู„ ูˆุงุญุฏุฉ ุนู„ู…ุชูƒ ุจู‚ู‰ ุงุณู…ู‡ุง ู‚ุงุถูŠ ุชุนุงู„ู‰ุŒ ุฎุฏ ุงู„ู„ูŠ ุญุงุฌุฉ
1052
+
1053
+ 264
1054
+ 00:31:28,400 --> 00:31:32,180
1055
+ ูŠุจู‚ู‰
1056
+
1057
+ 265
1058
+ 00:31:32,180 --> 00:31:36,300
1059
+ ุจู‚ู‰ ุฃุตู„ุง ุจุงุฑูŠ ุนู„ู‰ ุงู„ุดุฎุต ุฃู† ู‡ุฐุง ู…ุฑุฉ ุซุงู†ูŠุฉุจู‚ูˆู„ ุงูุชุฑุถ
1060
+
1061
+ 266
1062
+ 00:31:36,300 --> 00:31:41,820
1063
+ ุจูŠู‡ ูƒู„ ุงู„ู…ุตูˆูุงุช ู„ู†ุธุงู…ู‡ุง ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ูˆุงู„ุนู†ุงุตุฑ ุงู„
1064
+
1065
+ 267
1066
+ 00:31:41,820 --> 00:31:46,000
1067
+ interest ุงู„ A ูˆุงู„B ูˆุงู„C ูˆุงู„D ูƒู„ู‡ู… are real numbers
1068
+
1069
+ 268
1070
+ 00:31:46,000 --> 00:31:51,360
1071
+ ู‚ุงู„ ูŠุฎูˆุฏูŠ ุงู„ U ุจุฑุถู‡ ู…ุตูˆูุฉ ู†ุธุงู…ู‡ุง ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ุจุณ
1072
+
1073
+ 269
1074
+ 00:31:51,360 --> 00:31:56,060
1075
+ ุงู„ุนู†ุตุฑ ุงู„ุฃูˆู„ ููŠู‡ุง ู‡ูˆ ู…ุถุงุนูุงุช ุงู„ุนู†ุตุฑ ุงู„ุฃูˆู„ ููŠ ู…ูŠู†
1076
+
1077
+ 270
1078
+ 00:31:56,060 --> 00:32:01,730
1079
+ ููŠ VุจูŠู‚ูˆู„ ู„ูŠ ู‡ู„ ู‡ุฐูŠ ุจูŠูƒูˆู† subspace ูˆู„ุง ู…ุงู‡ูˆุงุด
1080
+
1081
+ 271
1082
+ 00:32:01,730 --> 00:32:05,770
1083
+ subspace ูŠุนู†ูŠ prove or disprove ุฅุฐุง ุจุชู‚ุฏุฑ ุชุชุจุช ุฃู†ู‡
1084
+
1085
+ 272
1086
+ 00:32:05,770 --> 00:32:09,670
1087
+ vector space ูƒุงู† ุจูŠู‡ุง ุจุชู‚ุฏุฑ ุชุชุจุช ุฃู†ู‡ ู…ุงู‡ูˆุงุด vector
1088
+
1089
+ 273
1090
+ 00:32:09,670 --> 00:32:13,290
1091
+ space ู…ุงู‡ูˆุงุด subspace ูƒุงู† ุจูŠู‡ุง ุฃูŠู‡ ุจูŠู‡ุง ุงู„ู„ูŠ ุชู‚ุฏุฑ
1092
+
1093
+ 274
1094
+ 00:32:13,290 --> 00:32:19,250
1095
+ ุนู„ูŠู‡ ุงู„ู„ูŠ ุชู‚ุฏุฑ ุนู„ูŠู‡ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ุงู„ุขู† ุฃู†ุง ุฃุฏุนูŠ ุฃู† ุงู„
1096
+
1097
+ 275
1098
+ 00:32:19,250 --> 00:32:25,700
1099
+ U ู‡ุฐูŠ is non-emptyุตุญุŸ ู„ุฃู† ุนู„ู‰ ุงู„ุฃู‚ู„ ุงู„ู…ุตููˆูุฉ
1100
+
1101
+ 276
1102
+ 00:32:25,700 --> 00:32:30,300
1103
+ ุงู„ุตูุฑูŠุฉ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ space ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ู‡ู†ุง
1104
+
1105
+ 277
1106
+ 00:32:30,300 --> 00:32:38,780
1107
+ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ U is non-empty ุชู…ุงู…ุŸ non-empty
1108
+
1109
+ 278
1110
+ 00:32:38,780 --> 00:32:45,520
1111
+ ู„ูŠุดุŸ since ู„ูˆ ุฃุฎุฏุช ุงู„ู…ุตููˆูุฉ ุงู„ุตูุฑูŠุฉ ูŠุง ุจู†ุงุช ู…ุด
1112
+
1113
+ 279
1114
+ 00:32:45,520 --> 00:32:53,420
1115
+ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุฎู…ุณุฉ ููŠ zero ูˆ zero ูˆ zeroุตุญ ูˆู„ุง ู„ุฃุŸ
1116
+
1117
+ 280
1118
+ 00:32:53,420 --> 00:32:58,940
1119
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ ูˆูŠู†ุŸ ู…ูˆุฌูˆุฏุฉ ููŠู‡ ุทูŠุจุŒ ุจุฏุฃ ู†ุฌูŠ
1120
+
1121
+ 281
1122
+ 00:32:58,940 --> 00:33:06,580
1123
+ ู„ู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุจุฏุฃ ุฃุฎุฏ ุฃูŠ element if ุงู„ู€K ู…ูˆุฌูˆุฏ ููŠ
1124
+
1125
+ 282
1126
+ 00:33:06,580 --> 00:33:10,700
1127
+ ุงู„ู€A then
1128
+
1129
+ 283
1130
+ 00:33:10,700 --> 00:33:17,680
1131
+ ู„ูˆ ุฃุฎุฏุช ุงู„ .. ุจุฏุฃ ุฃุฎุฏ ูƒู…ุงู† element ู…ูˆุฌูˆุฏ ููŠ ุงู„ูŠูˆู…
1132
+
1133
+ 284
1134
+ 00:33:17,680 --> 00:33:19,060
1135
+ and
1136
+
1137
+ 285
1138
+ 00:33:20,930 --> 00:33:29,770
1139
+ ุงู„ู€ A ุชุณุงูˆูŠ ุงู„ุฎู…ุณุฉ A,B,C,D ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูŠูˆู…
1140
+
1141
+ 286
1142
+ 00:33:38,010 --> 00:33:42,750
1143
+ ู…ุด ุงู„ู€ K ููŠ ุงู„ู€ A ุชุนุชุจุฑ ู…ุถุฑูˆุจุฉ ููŠ ูƒู„ ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ
1144
+
1145
+ 287
1146
+ 00:33:42,750 --> 00:33:52,690
1147
+ ุงู„ู…ุตูˆูุฉ ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ุฐู‡ ุฎู…ุณุฉ A K ุฎู…ุณุฉ B ุฎู…ุณุฉ C
1148
+
1149
+ 288
1150
+ 00:33:52,690 --> 00:34:05,980
1151
+ ุฎู…ุณุฉ Kุฎู…ุณุฉ .. ู„ุง ูƒ ุจูŠ ูˆู„ุง ุจูŠ ูƒ ุจูŠ ูƒ ู‡ู†ุง ุณูŠ ูƒ ู‡ู†ุง
1152
+
1153
+ 289
1154
+ 00:34:05,980 --> 00:34:13,390
1155
+ ุฏูŠ ูƒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ู…ูˆุฌูˆุฏุฉ ููŠ U ูˆู„ุง ู„ุงุŸู‡ุฐุง
1156
+
1157
+ 290
1158
+ 00:34:13,390 --> 00:34:18,770
1159
+ ุนู†ุตุฑ ูˆ ู‡ุฐุง ุนู†ุตุฑ ูˆ ู‡ุฐุง ุนู†ุตุฑ ูˆ ุงู„ุฎู…ุณุฉ ู…ุถุฑูˆุจุฉ ููŠ
1160
+
1161
+ 291
1162
+ 00:34:18,770 --> 00:34:24,070
1163
+ ุงู„ุนู†ุตุฑ ุฅุฐุง ู…ูˆุฌูˆุฏุฉ ูˆู„ุง ู„ุง ูŠุจู‚ู‰ ูƒุงูุฉ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ
1164
+
1165
+ 292
1166
+ 00:34:24,070 --> 00:34:29,750
1167
+ ุงู„ูŠูˆู… ุจุฏูŠ ุฃุฑูˆุญ ู„ู„ condition ุงู„ุซุงู„ุซ ุจุฏูŠ ุฃุฎุฏ two
1168
+
1169
+ 293
1170
+ 00:34:29,750 --> 00:34:41,230
1171
+ elementsุงู„ู€ A ูŠุณุงูˆูŠ ุฎู…ุณุฉ A ูˆ ู‡ู†ุง ุจูŠ ูˆ ู‡ู†ุง ุณูŠ ูˆ ุฏูŠ
1172
+
1173
+ 294
1174
+ 00:34:41,230 --> 00:34:49,910
1175
+ ูˆ ุจูŠ ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ู…ูŠู† ุฎู…ุณุฉ A one ูˆ B one ูˆ C one ูˆ
1176
+
1177
+ 295
1178
+ 00:34:49,910 --> 00:34:55,070
1179
+ D one then ุจุชุงุฎุฏ
1180
+
1181
+ 296
1182
+ 00:34:55,070 --> 00:35:03,220
1183
+ ุงู„ A ุฒูŠ ุฏูŠ ุงู„ Bุงู„ู€ A ุฒุงุฆุฏ ุงู„ู€ B ูŠุจู‚ู‰ ุงู„ุฌุงู…ุน ุฎู…ุณุฉ A
1184
+
1185
+ 297
1186
+ 00:35:03,220 --> 00:35:08,780
1187
+ ุฒุงุฆุฏ ุฎู…ุณุฉ A1 ุงู„ุฌุงู…ุน ุนู„ู‰ ุงู„ุฃู†ุตูุงุช component-wise
1188
+
1189
+ 298
1190
+ 00:35:08,780 --> 00:35:20,520
1191
+ ูˆุจุนุฏ ุฐู„ูƒ B ุฒุงุฆุฏ B1ูˆ C ุฒุงุฆุฏ C1 ูˆ D ุฒุงุฆุฏ D1 ูŠุณุงูˆูŠ
1192
+
1193
+ 299
1194
+ 00:35:20,520 --> 00:35:26,080
1195
+ ุฃุธู† ุจู‚ุฏุฑ ุฃุฎุฏ ุฎู…ุณุฉ ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู†ู‡ู… ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุนุทูŠู†ูŠ
1196
+
1197
+ 300
1198
+ 00:35:26,080 --> 00:35:37,000
1199
+ ุฎู…ุณุฉ ููŠ A ุฒุงุฆุฏ A1 B ุฒุงุฆุฏ B1 C ุฒุงุฆุฏ C1 D ุฒุงุฆุฏ D1
1200
+
1201
+ 301
1202
+ 00:35:37,000 --> 00:35:41,350
1203
+ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ U ูˆู„ุง ูŠุง ุจู†ุงุชุŸูŠุจู‚ู‰ ุชุญู‚ู‚ุช ุงู„ุดุฑูˆุท
1204
+
1205
+ 302
1206
+ 00:35:41,350 --> 00:35:46,530
1207
+ ุงุฎุชู„ู‚ุชู‡ุง ูˆู„ุง ู„ุง ูŠุจู‚ู‰ ู…ุนู†ุงุชู‡ ุงู„ู€ U ุฏูŠ is a subspace
1208
+
1209
+ 303
1210
+ 00:35:46,530 --> 00:35:57,570
1211
+ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุจุต ูˆ ู‡ูƒุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ U is a
1212
+
1213
+ 304
1214
+ 00:35:57,570 --> 00:36:04,370
1215
+ subspace of
1216
+
1217
+ 305
1218
+ 00:36:04,370 --> 00:36:11,170
1219
+ VูŠุนู†ูŠ ุงุญู†ุง ุจู†ุญุงูˆู„ ู†ุญู‚ู‚ ุงู„ุดุฑูˆุท ุงู„ุชู„ุงุชุฉ ุฅุฐุง ุญู‚ู‚ู†ุงู‡ุง
1220
+
1221
+ 306
1222
+ 00:36:11,170 --> 00:36:26,570
1223
+ ูƒุงู† ุจูŠู‡ุง ุทูŠุจ ู†ูŠุฌูŠ ู†ุงุฎุฏ ูƒู…ุงู† ู…ุซุงู„ example 4 ุจูŠู‚ูˆู„
1224
+
1225
+ 307
1226
+ 00:36:26,570 --> 00:36:36,670
1227
+ ู„ letุฃุจุทู„ V ูŠุณุงูˆูŠ RN ู…ูŠู† ุงู„ู€ RNุŸ The set of all X1
1228
+
1229
+ 308
1230
+ 00:36:36,670 --> 00:36:48,910
1231
+ ูˆX2 ูˆXN ุจุญูŠุซ ุฃู† X1 ูˆX2 ูˆXN ูƒู„ู‡ ู…ูˆุฌูˆุฏ ููŠ ุงู„ set of
1232
+
1233
+ 309
1234
+ 00:36:48,910 --> 00:36:54,050
1235
+ real numbers Let ุงู„ู€ A
1236
+
1237
+ 310
1238
+ 00:37:00,870 --> 00:37:13,510
1239
+ ู…ุตููˆูุฉ ู…ุฑุจุนุฉ let you be the set of all solutions
1240
+
1241
+ 311
1242
+ 00:37:13,510 --> 00:37:20,110
1243
+ of
1244
+
1245
+ 312
1246
+ 00:37:20,110 --> 00:37:23,750
1247
+ the system
1248
+
1249
+ 313
1250
+ 00:37:25,230 --> 00:37:37,990
1251
+ ุงูƒุณ ุจุฏูŠ ุณุงูˆูŠ ุฒูŠุฑูˆ show that show that show that ุงู†
1252
+
1253
+ 314
1254
+ 00:37:37,990 --> 00:37:45,990
1255
+ ุงู„ U is a subspace of RN
1256
+
1257
+ 315
1258
+ 00:38:16,970 --> 00:38:24,450
1259
+ ู…ุฑุฉ ุชุงู†ูŠุฉ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ู…ุง ูŠุนู†ูŠ ูุชุฑุถูŠ ุฃู† ุนู†ุฏูŠ ุงู„
1260
+
1261
+ 316
1262
+ 00:38:24,450 --> 00:38:29,290
1263
+ vector space V the set of all innitube pairs X1 ูˆ
1264
+
1265
+ 317
1266
+ 00:38:29,290 --> 00:38:33,170
1267
+ X2 ูˆ XN ุจุญูŠุซ ูƒู„ ุงู„ X ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ R
1268
+
1269
+ 318
1270
+ 00:38:38,140 --> 00:38:43,200
1271
+ ุฃูุชุฑุถ ุงู„ู€ U ู‡ูˆ ูƒู„ ุงู„ุญู„ูˆู„ ู„ู„ู€ system ุงู„ู‡ูˆู…ูˆุฌูŠู†ูŠุฉ
1272
+
1273
+ 319
1274
+ 00:38:43,200 --> 00:38:49,200
1275
+ ู‚ุงู„ ูŠุจูŠู†ูŠ ุฃู† ุงู„ู€ U ุนุจุงุฑุฉ ุนู† subspace ู…ู† ู…ูŠู†ุŸ ู…ู† R
1276
+
1277
+ 320
1278
+ 00:38:49,200 --> 00:38:54,570
1279
+ ู†ุฑุฌุน ุจุงู„ุฐุงูƒุฑุฉ ุฅู„ู‰ ุงู„ูˆุฑุงุกู„ู…ุง ุฃู‚ูˆู„ ุนู†ุฏูŠ homogeneous
1280
+
1281
+ 321
1282
+ 00:38:54,570 --> 00:39:00,790
1283
+ system ูŠุจู‚ู‰ ููŠ ุนู†ุฏูŠ ุฅู…ุง ุญู„ ูˆุงุญุฏ ูู‚ุท ูˆู‡ูˆ ุงู„ุญู„
1284
+
1285
+ 322
1286
+ 00:39:00,790 --> 00:39:06,410
1287
+ ุงู„ุตูุฑูŠ ุฃูˆ ุนู†ุฏูŠ ุนุฏุฏ ู„ู†ู‡ุงุฆูŠ ู…ู† ุงู„ุญู„ูˆู„ ูˆุงู„ุนุฏุฏ ุฅู† ู‡ูŠ
1288
+
1289
+ 323
1290
+ 00:39:06,410 --> 00:39:11,710
1291
+ ูŠุฌุชู…ู„ ุนู„ู‰ ุงู„ุญู„ ุงู„ุตูุฑูŠ ุฅุฐุง ููŠ ุนู†ุฏูŠ ุญู„ ูˆู„ุง ู…ุงููŠุด ุญู„
1292
+
1293
+ 324
1294
+ 00:39:12,300 --> 00:39:16,880
1295
+ ูŠุจู‚ู‰ ุงู„ู€ set ู‡ุฐู‡ ู„ุงูŠู…ูƒู† ุฃู† ุชูƒูˆู† empty ูŠุจู‚ู‰ non
1296
+
1297
+ 325
1298
+ 00:39:16,880 --> 00:39:22,820
1299
+ -empty ู„ุฃู† ุนู„ู‰ ุงู„ุฃู‚ู„ ููŠู‡ุง ุงู„ุญู„ ุงู„ุตูุฑูŠ ุชู…ุงู… ูุจุนุฏูŠู†
1300
+
1301
+ 326
1302
+ 00:39:22,820 --> 00:39:27,900
1303
+ ุจู‚ูˆู„ solution the
1304
+
1305
+ 327
1306
+ 00:39:27,900 --> 00:39:39,880
1307
+ set U is non-empty because is
1308
+
1309
+ 328
1310
+ 00:39:39,880 --> 00:39:50,650
1311
+ zeroุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆ Zero ูˆ Zero is the
1312
+
1313
+ 329
1314
+ 00:39:50,650 --> 00:39:55,550
1315
+ trivial solution
1316
+
1317
+ 330
1318
+ 00:39:55,550 --> 00:40:08,780
1319
+ of ุงู„ AX ุจุฏู‡ ูŠุณุงูˆูŠ Zero Because Zero ู‡ุฐุง ู…ูˆุฌูˆุฏU is
1320
+
1321
+ 331
1322
+ 00:40:08,780 --> 00:40:14,140
1323
+ the trivial solution of M ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ U ู‡ุฐู‡
1324
+
1325
+ 332
1326
+ 00:40:14,140 --> 00:40:20,180
1327
+ ู…ุงู„ู‡ุง is non-empty ูŠุจู‚ู‰ ุชุญู‚ู‚ ู…ู† ุงู„ condition ุงู„ุฃูˆู„
1328
+
1329
+ 333
1330
+ 00:40:20,180 --> 00:40:23,940
1331
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ condition ุงู„ุฃูˆู„ ุจุงู„ุฏุงุฎู„ ุงู„ condition
1332
+
1333
+ 334
1334
+ 00:40:23,940 --> 00:40:33,940
1335
+ ุงู„ุซุงู†ูŠุจุฏูŠ ุงุฎุฏ element ู…ูˆุฌูˆุฏ ููŠ R ูŠุจู‚ู‰ ู‡ู†ุง fc ู…ูˆุฌูˆุฏ
1336
+
1337
+ 335
1338
+ 00:40:33,940 --> 00:40:49,280
1339
+ ููŠ ุงู„ R and x1 ู…ุซู„ุง is a solution of
1340
+
1341
+ 336
1342
+ 00:41:02,640 --> 00:41:11,670
1343
+ X1 ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ Uู…ุงุฐุง ุงุซุจุชุŸ ุงุซุจุช ุงู† ุงู„ู€ CX1 ู…ูˆุฌูˆุฏ
1344
+
1345
+ 337
1346
+ 00:41:11,670 --> 00:41:17,130
1347
+ ููŠ ุงู„ู€ U ุจู…ุนู†ู‰ ุงุฎุฑ ุงุซุจุช ุงู† ุงู„ู€ CX1 ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุญู„
1348
+
1349
+ 338
1350
+ 00:41:17,130 --> 00:41:22,370
1351
+ ู„ู…ู†ุŸ ู„ู„ู€ homogeneous system ุตุญ ูˆู„ุง ู„ุงุŸ ู…ุฑุฉ ุซุงู†ูŠุฉ
1352
+
1353
+ 339
1354
+ 00:41:22,370 --> 00:41:26,380
1355
+ ุจู‚ูˆู„ุฃู†ุง ุฎุฏุช ุงู„ condition ุงู„ุชุงู†ูŠ ููŠ ุญุงู„ุฉ ุงู„
1356
+
1357
+ 340
1358
+ 00:41:26,380 --> 00:41:31,300
1359
+ subspace ุจู‚ูˆู„ ู„ูˆ ุฃุฎุฏุช element ู…ู† R ูƒุณูƒู„ุฑ ูˆ vector
1360
+
1361
+ 341
1362
+ 00:41:31,300 --> 00:41:36,420
1363
+ ู…ู† U ูˆ ุถุฑุจุช ุงุชู†ูŠ๏ฟฝ๏ฟฝ ููŠ ุจุนุถ ุจุฏ ุงู„ู†ุชุฌ ูŠูƒูˆู† ูˆูŠู† ููŠ U
1364
+
1365
+ 342
1366
+ 00:41:36,420 --> 00:41:41,540
1367
+ ุจู…ุนู†ู‰ ุงุฎุฑ ู„ู…ุง ุฃุฎุฏุช x ูˆุงุญุฏ ุนุจุงุฑุฉ ุนู† ุญู„ูˆุฌุจุช constant
1368
+
1369
+ 343
1370
+ 00:41:41,540 --> 00:41:49,020
1371
+ C ู…ู† R ุจุฏูŠ C ููŠ X1 ูŠูƒูˆู† ุญู„ ูŠุนู†ูŠ ุฅูŠุด ุจุฏูŠูƒูˆู† ู…ูˆุฌูˆุฏ
1372
+
1373
+ 344
1374
+ 00:41:49,020 --> 00:41:56,060
1375
+ ููŠู‡ ุจู…ุนู†ู‰ ุขุฎุฑ ุฅู†ู‡ C X1 ู„ู…ุง ุฃุถุฑุจ ููŠู‡ ุงู„ A ุจุฏูŠู‡ ุณุงูˆูŠ
1376
+
1377
+ 345
1378
+ 00:41:56,060 --> 00:42:01,780
1379
+ ูƒุฏู‡ุŸ ุจุฏูŠู‡ ุณุงูˆูŠ Zero ุฅู† ูƒุงู† ู‡ูŠูƒ ุจุตูŠุฑ ู‡ุฐุง ู‡ูˆ ุญู„ ุทูŠุจ
1380
+
1381
+ 346
1382
+ 00:42:01,780 --> 00:42:06,380
1383
+ ุชู…ุงู… ุจู‚ูˆู„ูƒ ูƒูˆูŠุณ ุฅุฐุง ุจุฏูŠ ุฃุฌูŠ ุฃู‚ูˆู„ูƒ consider
1384
+
1385
+ 347
1386
+ 00:42:09,300 --> 00:42:18,760
1387
+ ุฃูˆ ู‚ุจู„ ู‚ุจู„ consider ูŠุจู‚ู‰ ู‡ู†ุง since ุจู…ุง ุฃู† x1 a
1388
+
1389
+ 348
1390
+ 00:42:18,760 --> 00:42:32,950
1391
+ solution of ax ุจุฏู‡ ูŠุณุงูˆูŠ zero we haveุงู„ู€ A X1 ูŠุจู‚ู‰
1392
+
1393
+ 349
1394
+ 00:42:32,950 --> 00:42:43,370
1395
+ ูƒุฐู„ูƒ ุจุงู„ู†ุณุจุฉ ู„ู†ุง
1396
+
1397
+ 350
1398
+ 00:42:46,330 --> 00:42:52,630
1399
+ ุฅู† ุทู„ุน ู‡ุฐุง ุงู„ู†ุงุชุฌ ูŠุณุงูˆูŠ Zero ุจูŠูƒูˆู† ูุนู„ุงู‹ CX1 ู‡ูˆ
1400
+
1401
+ 351
1402
+ 00:42:52,630 --> 00:42:56,350
1403
+ ุนุจุงุฑุฉ ุนู† ุญู„ู„ ู‡ู…ูˆุฌูŠู†ูŠุง ุงู„ system ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ู‡ุฐู‡
1404
+
1405
+ 352
1406
+ 00:42:56,350 --> 00:43:00,570
1407
+ ุงู„ุฃู† scalar ุงู„ scalar ุฃุฎุฏู†ุง ู…ู† ุงุณู… ุงู„ vector ุจู‚ุฏุฑ
1408
+
1409
+ 353
1410
+ 00:43:00,570 --> 00:43:04,830
1411
+ ุฃุฎู„ูŠู‡ุง ุฌูˆุง ูˆ ุจู‚ุฏุฑ ุฃุทู„ุนู‡ุง ุจุฑุง ู…ู† ุงู„ู‚ูˆุงุต ูŠุจู‚ู‰ ุจู‚ุฏุฑ
1412
+
1413
+ 354
1414
+ 00:43:04,830 --> 00:43:09,230
1415
+ ุฃู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ CX1
1416
+
1417
+ 355
1418
+ 00:43:15,530 --> 00:43:20,350
1419
+ ูŠุจู‚ู‰ ุงู„ู€ Zero Vector Scalar ููŠ Zero Vector ุจูŠุนุทูŠ
1420
+
1421
+ 356
1422
+ 00:43:20,350 --> 00:43:26,510
1423
+ ู†ู…ูŠู† ุงู„ู€ Zero Vector ุดูˆ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู† ุงู„ู€ CX1
1424
+
1425
+ 357
1426
+ 00:43:26,510 --> 00:43:31,770
1427
+ ุนุจุงุฑุฉ ุนู† ุญู„ ู„ู„ู€ homogeneous system ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงุชู‡
1428
+
1429
+ 358
1430
+ 00:43:31,770 --> 00:43:43,560
1431
+ ุงู† ุงู„ู€ CX1 is a solution ofThe homogenous
1432
+
1433
+ 359
1434
+ 00:43:43,560 --> 00:43:57,120
1435
+ system AX == 0 ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† CX1 ู…ูˆุฌูˆุฏ ููŠ U
1436
+
1437
+ 360
1438
+ 00:44:00,330 --> 00:44:07,070
1439
+ ุฃูุชุฑุถ ุนู†ุฏูŠ ุญู„ูŠู† ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ูŠูˆู… ูŠุจู‚ู‰ ู‡ู†ุง ุจุฏุฃ ุฃู‚ูˆู„
1440
+
1441
+ 361
1442
+ 00:44:07,070 --> 00:44:17,130
1443
+ ู„ู‡ let x1 ูˆ x2 ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ูŠูˆู… ูŠุจู‚ุงุด
1444
+
1445
+ 362
1446
+ 00:44:17,130 --> 00:44:23,530
1447
+ ู…ุนู†ุง x1 ูˆ x2 ุนุจุงุฑุฉ ุนู† ุฃูŠู‡ุŸ ุญู„ูŠู† ู„ู…ู†ุŸ ู„ู„ู€
1448
+
1449
+ 363
1450
+ 00:44:23,530 --> 00:44:26,990
1451
+ homogeneous system ูŠุจู‚ู‰ then
1452
+
1453
+ 364
1454
+ 00:44:29,570 --> 00:44:42,490
1455
+ x1 and x2 are two solutions of the homogeneous
1456
+
1457
+ 365
1458
+ 00:44:42,490 --> 00:44:54,630
1459
+ system A x ุจูŠุณุงูˆูŠ 0 ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† A x1 ุจูŠุณุงูˆูŠ 0 and
1460
+
1461
+ 366
1462
+ 00:44:56,270 --> 00:45:04,750
1463
+ ุงู„ู€ A X2 ุจุฏู‡ ูŠุณุงูˆูŠ 0 ุทุจ ุฃู†ุง ุฅูŠุด ุจุฏู‡ ุฃุซุจุชุŸ ุจุฏู‡ ุฃุซุจุช
1464
+
1465
+ 367
1466
+ 00:45:04,750 --> 00:45:10,070
1467
+ ุฅู† ู…ุฌู…ูˆุนู‡ู… ุจุฏู‡ ูŠูƒูˆู† ุญู„ ู„ู„ู€ Homogeneous System
1468
+
1469
+ 368
1470
+ 00:45:10,070 --> 00:45:16,610
1471
+ ุจู…ุนู†ู‰ ุขุฎุฑุŒ ุฅุฐุง ูƒู†ุช ุฃุซุจุช ุฅู† A X1 ุฒูŠ X2 ุจุฏู‡ ูŠุนุทูŠู†ุง
1472
+
1473
+ 369
1474
+ 00:45:16,610 --> 00:45:22,940
1475
+ 0ุŒ ุจุชู… ุงู„ู…ุทู„ูˆุจุŒ ุตุญุŸ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุงุงู„ุขู† ุจุฏูŠ
1476
+
1477
+ 370
1478
+ 00:45:22,940 --> 00:45:33,100
1479
+ ุฃุฎุฏ ุงู„ a ููŠ x1 ุฒุงุฆุฏ x2 ุจุฏูŠ ุฃุณุงูˆูŠ ุจุฏูŠ ุฃููƒ ู‡ุฐุง ูŠุจู‚ู‰
1480
+
1481
+ 371
1482
+ 00:45:33,100 --> 00:45:44,560
1483
+ ู‡ุฐุง a x1 ุฒุงุฆุฏ a x2 ุทุจ a x1 ูŠุจู‚ู‰ ูƒุฏู‡ุŸ ูˆ a x2 ูŠุจู‚ู‰
1484
+
1485
+ 372
1486
+ 00:45:44,560 --> 00:45:56,160
1487
+ ู†ุงุชุฌ ูƒุฏู‡ุŸูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ู€ x1 ุฒุงุฆุฏ x2 ู‡ูŠ ุญู„ูˆู„
1488
+
1489
+ 373
1490
+ 00:45:58,010 --> 00:46:06,590
1491
+ ุงู„ู€ ax ุจุฏูŠ ุณุงูˆูŠ 0 ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ x1 ุฒูŠุฏูŠ ุงู„ x2
1492
+
1493
+ 374
1494
+ 00:46:06,590 --> 00:46:23,590
1495
+ ู…ูˆุฌูˆุฏ ููŠ ุงู„ U ูŠุจู‚ู‰ ุถุณ ูˆ ู‡ูƒุฐุง ุงู„ U is a subspace of
1496
+
1497
+ 375
1498
+ 00:46:23,590 --> 00:46:25,010
1499
+ V
1500
+
1501
+ 376
1502
+ 00:46:29,870 --> 00:46:34,130
1503
+ ู„ุณู‡ ู„ุงุฒู„ู†ุง ููŠ ู†ูุณ ุงู„ section ูˆ ุจู†ูƒู…ู„ ุงู† ุดุงุก ุงู„ู„ู‡
1504
+
1505
+ 377
1506
+ 00:46:34,130 --> 00:46:37,910
1507
+ ุงู„ .. ูˆุงู„ู„ู‡ ู…ุด ู‡ู†ูƒู…ู„ ุญุชู‰ ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ุงู„ู„ู‰ ุจุนุฏู‡ุง
1508
+
1509
+ 378
1510
+ 00:46:37,910 --> 00:46:44,490
1511
+ ูŠุนู†ู‰ ู„ุณู‡ ููŠู‡ ูƒู„ุงู… ูƒุชูŠุฑ ู‡ู†ุง ุจุณ ู„ุงุฒู„ ุงู† ุงู„ู…ุฒูŠุฏ ู…ู†
1512
+
1513
+ 379
1514
+ 00:46:44,490 --> 00:46:49,110
1515
+ ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ ู†ูุณ ุงู„ู…ูˆุถูˆุน ูˆูŠู† ุงู„ูˆุฑู‚ู‡ุŸ ุงู„ูˆุฑู‚ู‡
1516
+
1517
+ 380
1518
+ 00:46:49,110 --> 00:46:49,690
1519
+ ู‡ุชุนุทูŠูƒูˆุง ุงู„ุนุฑูุฉ
1520
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/x6ZZjvJCeB8_postprocess.srt ADDED
@@ -0,0 +1,1920 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,670 --> 00:00:25,350
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุจุงู„ุนูˆุฏุฉ ุฅู„ู‰ section 2.9
4
+
5
+ 2
6
+ 00:00:25,350 --> 00:00:29,530
7
+ ุงู„ุฐูŠ ุงุจุชุฏุฃู†ุงู‡ ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูƒุงู† ู‡ุฐุง ุงู„ section
8
+
9
+ 3
10
+ 00:00:29,530 --> 00:00:35,110
11
+ ูŠุชุญุฏุซ ุนู† ุฎูˆุงุต ุงู„ู…ุญุฏุฏุงุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ properties of
12
+
13
+ 4
14
+ 00:00:35,110 --> 00:00:41,430
15
+ determinants ุฎูˆุงุต ุงู„ู…ุญุฏุฏุงุช ูˆุงุฎุฏู†ุง ุซู…ุงู†ูŠุฉ ุฎูˆุงุต ู„ู‡ุฐู‡
16
+
17
+ 5
18
+ 00:00:41,430 --> 00:00:47,770
19
+ ุงู„ู…ุญุฏุฏุงุช ูˆุงู„ุงู† ุจู†ุญุงูˆู„ ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุฎูˆุงุต ู…ุง ุฃู…ูƒู†
20
+
21
+ 6
22
+ 00:00:47,770 --> 00:00:52,080
23
+ ุฐู„ูƒู†ุนุทูŠ ุงูˆู„ ู…ุซุงู„ ุนู„ู‰ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุจูŠู‚ูˆู„ evaluate
24
+
25
+ 7
26
+ 00:00:52,080 --> 00:00:57,320
27
+ the determinant ุงุญุณุจ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูˆุฒูŠ ู…ุง ุงู†ุช ุดุงูŠูู‡
28
+
29
+ 8
30
+ 00:00:57,320 --> 00:01:03,160
31
+ ู‡ุฐุง ู…ุญุฏุฏ ู…ู† ุงู„ุฑุชุจุฉ ุงู„ุฑุงุจุนุฉ ูŠุจู‚ู‰ ุงุฑุจุนุฉ ุตููˆู ูˆุงุฑุจุนุฉ
32
+
33
+ 9
34
+ 00:01:03,160 --> 00:01:08,260
35
+ ุงุนู…ุฏุฉ ู…ุด ู‡ููƒ ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ู…ุทูˆู„ุฉ ุชุจุนุช ุงู„ุซุงู†ูˆูŠุฉ ูˆุงู†ู…ุง
36
+
37
+ 10
38
+ 00:01:08,260 --> 00:01:13,560
39
+ ู‡ููƒ ุจุงุณุชุฎุฏุงู… ู‡ุฐู‡ ุงู„ุฎูˆุงุตู… ุจู…ุนู†ู‰ ุงุฎุฑุฅุฐุง ู‚ุฑุฑุช ุฃุฎุฏ
40
+
41
+ 11
42
+ 00:01:13,560 --> 00:01:19,780
43
+ ู…ุญุฏุฏ ู„ู…ุตููˆูุฉ ู‚ุทุฑูŠุฉ ุฃุฎุฑ ู…ู„ุงุญุธุฉ ู…ูƒุชูˆุจุฉ ู…ุนุงูƒูŠ ุงู„ู…ุฑุฉ
44
+
45
+ 12
46
+ 00:01:19,780 --> 00:01:24,500
47
+ ุงู„ู„ูŠ ูุงุชุช ุฃุฎุฑ ุณุทุฑ ู…ูƒุชูˆุจ ู…ุนุงูƒูŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู„ูˆ
48
+
49
+ 13
50
+ 00:01:24,500 --> 00:01:28,320
51
+ ูƒุงู†ุช ุนู†ุฏูŠ ุงู„ triangle matrix ุณูˆุงุก ูƒุงู†ุช upper
52
+
53
+ 14
54
+ 00:01:28,320 --> 00:01:32,440
55
+ triangle ูˆู„ุง lower triangle ูุฅู† ู‚ูŠู…ุฉ ู‡ุฐุง ุงู„ู…ุญุฏุฏ
56
+
57
+ 15
58
+ 00:01:32,440 --> 00:01:39,060
59
+ ุชุณุงูˆูŠ ุญุตู„ ุถุฑุจ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู…ุตุจูˆุท a11, a22,
60
+
61
+ 16
62
+ 00:01:39,460 --> 00:01:46,650
63
+ a33 ู„ุบุงูŠุฉ annู„ุฐู„ูƒ ุงู†ุง ู‡ุญุงูˆู„ ุงุญู„ ุงูˆ ุงูˆุฌุฏ ู‚ูŠู…ุฉ ู‡ุฐุง
64
+
65
+ 17
66
+ 00:01:46,650 --> 00:01:51,990
67
+ ุงู„ู…ุญุฏุฏ ุจุงุณุชุฎุฏุงู… ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ุจู…ุนู†ู‰ ุงุฎุฑ ูŠุนู†ูŠ ุจุฏูŠ
68
+
69
+ 18
70
+ 00:01:51,990 --> 00:01:57,530
71
+ ุงุญูˆู„ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ุงู„ู‰ ู…ุญุฏุฏ ู„ู…ุตูˆูุฉ ู…ุซู„ุซุฉ ุนู„ูŠุง ุงูˆ
72
+
73
+ 19
74
+ 00:01:57,530 --> 00:02:03,130
75
+ ู…ุซู„ุซุฉ ุณูู„ุฉ ุงูŠ ู…ู†ู‡ู…ุง ูˆุจุงู„ุชุงู„ูŠ ุจุฑูˆุญ ุจุฌูŠุจ ุญุงุตู„ ุถุฑุจ
76
+
77
+ 20
78
+ 00:02:03,130 --> 00:02:08,450
79
+ ุนู†ุงุตุฑ ู‚ุทุฉ ุงู„ุฑุฆูŠุณูŠ ุจุชูƒูˆู† ู‡ูŠ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ุงู„ู…ุทู„ูˆุจุฉ
80
+
81
+ 21
82
+ 00:02:09,120 --> 00:02:15,080
83
+ ุจุฏู†ุง ู†ุจุฏุฃ ู†ุดุชุบู„ ููŠ ู‚ูŠู…ุฉ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูุจุงู‚ูŠ ุจู‚ูˆู„ู‡ ู‡ุฐุง
84
+
85
+ 22
86
+ 00:02:15,080 --> 00:02:18,400
87
+ ุงู„ู…ุญุฏุฏ ูƒุชุงู„ูŠ ูŠุจู‚ู‰ ู‡ูŠ solution
88
+
89
+ 23
90
+ 00:02:20,790 --> 00:02:27,330
91
+ ุจุงู„ุฏุฑุฌุฉ ุงู„ู…ุญุฏุฏุฉ ุงู„ู„ูŠ ุงุญู†ุง ูƒุงุชุจูŠู†ู‡ ุงู„ู„ูŠ ู‡ูˆ 6 2 8 0
92
+
93
+ 24
94
+ 00:02:27,330 --> 00:02:43,210
95
+ 1 3 5 2 2 1 0 3 2-5-2-7 ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ
96
+
97
+ 25
98
+ 00:02:45,660 --> 00:02:49,940
99
+ ุฃุธู† ุจู†ูุน ู…ู† ุฅุญุฏู‰ ุงู„ุฎูˆุงุต ู‚ูˆู„ู†ุง ู„ูˆ ุถุฑุจู†ุง ุงู„ู…ุญุฏุฏ ููŠ
100
+
101
+ 26
102
+ 00:02:49,940 --> 00:02:54,440
103
+ ู…ู‚ุฏุงุฑ ุซุงุจุช ุจุถุฑุจู‡ ููŠ ุฃุญุฏ ุงู„ุตููˆู ุฃูˆ ุฃุญุฏ ุงู„ุฃุนู…ุฏุฉ ุฅุฐุง
104
+
105
+ 27
106
+ 00:02:54,440 --> 00:02:58,800
107
+ ุฃู†ุง ู‡ู†ุง ู„ูˆ ููŠ ุนู†ุฏูŠ ุนู…ู„ ู…ุดุชุฑูƒ ููŠ ุฃุญุฏ ุงู„ุตููˆู ุฃูˆ ุฃุญุฏ
108
+
109
+ 28
110
+ 00:02:58,800 --> 00:03:03,720
111
+ ุงู„ุฃุนู…ุฏุฉ ุจู‚ุฏุฑ ุฃู‚ูˆู„ู‡ ุดุฑูู†ุง ุจุฑุง ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃุฎุฏ ู‡ุฐู‡
112
+
113
+ 29
114
+ 00:03:03,720 --> 00:03:08,840
115
+ ุงู„ุตู ุงู„ุฃูˆู„ ููŠู‡ ุงุชู†ูŠู†ููŠ ุชุงู†ูŠ ู„ุง ู…ุงููŠุด ูŠุจู‚ู‰ ุจุงุฌูŠ
116
+
117
+ 30
118
+ 00:03:08,840 --> 00:03:15,020
119
+ ุจู‚ูˆู„ู‡ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ ุงุชู†ูŠู† ูˆู‡ู†ุง ุจุฏุงุฌูŠ ุงุนู…ู„ ู…ุงุชูŠ
120
+
121
+ 31
122
+ 00:03:15,020 --> 00:03:21,360
123
+ ุจูŠุธู„ ุนู†ุฏูŠ ุชู„ุงุชุฉูˆู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ุฃุฑุจุนุฉ ูˆู‡ู†ุง ุฒูŠุฑูˆ ู‡ู†ุง
124
+
125
+ 32
126
+ 00:03:21,360 --> 00:03:27,500
127
+ ุนู†ุฏู†ุง ูˆุงุญุฏ ูˆู‡ูŠ ุชู„ุงุชุฉ ูˆู‡ูŠ ุฎู…ุณุฉ ุงุชู†ูŠู† ุงุชู†ูŠู† ูˆุงุญุฏ
128
+
129
+ 33
130
+ 00:03:27,500 --> 00:03:33,920
131
+ ุฒูŠุฑูˆ ุณุงู„ุจ ุชู„ุงุชุฉ ุงุชู†ูŠู† ุณุงู„ุจ ุฎู…ุณุฉ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ
132
+
133
+ 34
134
+ 00:03:33,920 --> 00:03:41,830
135
+ ุณุจุนุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠู‡ุฐู‡ ุงู„ุงุชู†ูŠู†
136
+
137
+ 35
138
+ 00:03:41,830 --> 00:03:47,290
139
+ ูˆู‡ุฐู‡ ุงู„ู…ุญุฏุฏ ุดูˆ ุฑุฃูŠูƒูˆุง ูŠุง ุจู†ุงุช ู„ูˆ ุจุฏู„ุช ุงู„ุตู ุงู„ุฃูˆู„
140
+
141
+ 36
142
+ 00:03:47,290 --> 00:03:57,490
143
+ ูˆุงู„ุซุงู†ูŠ ู…ุน ุจุนุถ ู‡ู„ ุชุชุบูŠุฑ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ุจุงู„ู…ุฑุฉุŸ
144
+
145
+ 37
146
+ 00:03:57,490 --> 00:04:02,870
147
+ ู…ู† ุฎู„ุงุตุŒ ู„ูˆ ุจุฏู„ู†ุง ุตู ู…ูƒุงู† ุตู ุฃูˆ ุนู…ูˆุฏ ู…ูƒุงู† ุนู…ูˆุฏ
148
+
149
+ 38
150
+ 00:04:02,870 --> 00:04:08,580
151
+ ุชุจู‚ู‰ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ูƒู…ุง ู‡ูŠุฅุดุงุฑุฉ A ู…ุฎุงู„ูุฉ ูŠุนู†ูŠ ู„ูˆ ุจุฏู„ุช
152
+
153
+ 39
154
+ 00:04:08,580 --> 00:04:12,780
155
+ ุตู ู…ูƒุงู† ุตู ุจุฏูŠ ุฃุญุท ุฅุดุงุฑุฉ ุฅูŠู‡ุŸ ุฅุดุงุฑุฉ ุณุงู„ุจ ูŠุจู‚ู‰ ู‡ุฐุง
156
+
157
+ 40
158
+ 00:04:12,780 --> 00:04:18,200
159
+ ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ ุณุงู„ุจ ุงุชู†ูŠู† ูŠุจู‚ู‰ ู‡ุงูŠ ุณุงู„ุจ .. ุดูˆ ุงู„ู„ูŠ
160
+
161
+ 41
162
+ 00:04:18,200 --> 00:04:23,620
163
+ ุจุฏูŠ ุฃุจุฏู„ู‡ุŸ ุจุฏูŠ ุฃุจุฏู„ ุงู„ุตู ุงู„ุฃูˆู„ ูˆุงู„ุชุงู†ูŠ ูŠุจู‚ู‰
164
+
165
+ 42
166
+ 00:04:23,620 --> 00:04:32,490
167
+ replaceุงู„ู„ูŠ ู‡ูˆ R1 and R2 ุจุฏูŠ ุฃุจุฏู„ R1 ูˆ R2 ู…ุน ุจุนุถ
168
+
169
+ 43
170
+ 00:04:32,490 --> 00:04:37,610
171
+ ู„ูŠุด ุจุฏูŠ ุฃุฎู„ูŠ ุงู„ูˆุงุญุฏ ููŠ ุงู„ุจุฏุงูŠุฉ ุนู†ุฏูŠ ู‡ู†ุง ูŠุจู‚ู‰ ุจู‚ุฏุฑ
172
+
173
+ 44
174
+ 00:04:37,610 --> 00:04:45,570
175
+ ุฃู‚ูˆู„ ู‡ูŠ ูˆุงุญุฏ ุชู„ุงุชุฉ ุฎู…ุณุฉ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆุงุญุฏ ุงุฑุจุน ุฒูŠุฑูˆ
176
+
177
+ 45
178
+ 00:04:45,860 --> 00:04:52,540
179
+ ูˆู‡ู†ุง ุชู„ุงุชุฉ ูˆุงุญุฏ ุงุฑุจุนุฉ ุฒูŠุฑูˆ ูˆู‡ู†ุง ุงุชู†ูŠู† ูˆุงุญุฏ ุฒูŠุฑูˆ
180
+
181
+ 46
182
+ 00:04:52,540 --> 00:05:01,330
183
+ ุณุงู„ุจ ุชู„ุงุชุฉ ุงุชู†ูŠู† ู†ุงู‚ุต ุฎู…ุณุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุณุจุนุฉุทุจ
184
+
185
+ 47
186
+ 00:05:01,330 --> 00:05:06,450
187
+ ุงู„ุขู† ุจุฏูŠ ุฃุนู…ู„ ุจุนุถ ุงู„ุนู…ู„ูŠุงุช ุจุญูŠุซ ุจุฏูŠ ุฃุฎู„ูŠู‡ุง upper
188
+
189
+ 48
190
+ 00:05:06,450 --> 00:05:11,330
191
+ triangle matrix ู…ุตูˆูุฉ ู…ุซู„ุซุฉ ุนุงู„ูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎู„ูŠ
192
+
193
+ 49
194
+ 00:05:11,330 --> 00:05:16,770
195
+ ุงู„ุนู†ุงุตุฑ ุฃุณูู„ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุฃุณูุฑุง ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎู„ูŠ ู‡ู†ุง
196
+
197
+ 50
198
+ 00:05:16,770 --> 00:05:23,330
199
+ ุตูุฑ ูˆู‡ู†ุง ุตูุฑ ูˆู‡ู†ุง ุตูุฑ ู…ู† ุถู…ู† ุฎูˆุงุต ุงู„ู…ุญุฏุฏุงุช ู„ูˆ ุถุฑุจุช
200
+
201
+ 51
202
+ 00:05:23,330 --> 00:05:28,370
203
+ ุฃูŠ ุตูุฑ ุฃูˆ ุฃูŠ ุนู…ูˆุฏ ููŠ ู…ู‚ุฏุงุฑ ุซุงุจุช ูˆุฃุถูุชู‡ ู„ุนู†ุงุตุฑ ุตูุฑ
204
+
205
+ 52
206
+ 00:05:28,370 --> 00:05:32,170
207
+ ุฃูˆ ุนู…ูˆุฏ ุซุงู†ูŠ ู„ุงุชุชุบูŠุฑ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏู…ูƒุชูˆุจุฉ ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡
208
+
209
+ 53
210
+ 00:05:32,170 --> 00:05:36,210
211
+ ู…ุนุงูƒู… ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุตุญูŠุญ ูŠุจู‚ู‰ ุงู†ุง ุจุงุฏุนูŠ ุงุถุฑุจ ุงู„ุตู
212
+
213
+ 54
214
+ 00:05:36,210 --> 00:05:41,370
215
+ ุงู„ุฃูˆู„ ููŠ ุณุงู„ุจ ุชู„ุงุชุฉ ูˆ ุงุถูŠูู‡ ู„ู„ุตู ุงู„ุซุงู†ูŠ ูˆ ุงุถุฑุจู‡ ููŠ
216
+
217
+ 55
218
+ 00:05:41,370 --> 00:05:46,790
219
+ ุณุงู„ุจ ุงุชู†ูŠู† ูˆ ุงุถูŠูู‡ ู„ู„ุตู ุงู„ุซุงู„ุซ ูˆ ู„ู„ุตู ุงู„ุฑุงุจุน ูŠุจู‚ู‰
220
+
221
+ 56
222
+ 00:05:46,790 --> 00:05:54,050
223
+ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠุชู…ุงู… ู‡ุฐุง ุงู„ุณุงู„ุจ ุงุชู†ูŠู†
224
+
225
+ 57
226
+ 00:05:54,050 --> 00:05:58,450
227
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆู‡ุฐุง ุงู„ู…ุญุฏุฏ ูˆ ุจุฏูŠ ุฃุดูˆู ุดูˆ ุงู„ู„ูŠ ุจุฏูŠ ูŠุตูŠุฑ
228
+
229
+ 58
230
+ 00:05:58,450 --> 00:06:07,050
231
+ ูŠุจู‚ู‰ ู‡ู†ุง ุจุฏูŠ ุฃุถูŠู ุณุงู„ุจ ุชู„ุงุชุฉ R1 to R2 ู„ู„ุตู ุงู„ุซุงู†ูŠ
232
+
233
+ 59
234
+ 00:06:07,050 --> 00:06:21,190
235
+ and ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ ุงุชู†ูŠู† R1 to R3 and R4ูŠุจู‚ู‰ ุงู„ุตู
236
+
237
+ 60
238
+ 00:06:21,190 --> 00:06:27,070
239
+ ุงู„ุฃูˆู„ ูƒู…ุง ู‡ูˆ ูŠุจู‚ู‰ ู‡ุงูŠ ูˆุงุญุฏ ูˆู‡ูŠ ุชู„ุงุชุฉ ูˆู‡ูŠ ุฎู…ุณุฉ ูˆู‡ูŠ
240
+
241
+ 61
242
+ 00:06:27,070 --> 00:06:31,990
243
+ ุงุชู†ูŠู† ูˆู‡ูŠ ุฌูุงู„ุฉ ุจุงู„ุฏุงู„ูŠ ู„ู„ุตู ุงู„ุชุงู†ูŠ ุถุฑุจุชู‡ ููŠ ุณุงู„ุจ
244
+
245
+ 62
246
+ 00:06:31,990 --> 00:06:36,770
247
+ ุชู„ุงุชุฉ ูˆุฃุถุงูุชู‡ ู„ู‡ ูŠุจู‚ู‰ Zero ุณุงู„ุจ ุชุณุนุฉ ูˆุงุญุฏ ุจูŠุตูŠุฑ
248
+
249
+ 63
250
+ 00:06:36,770 --> 00:06:43,760
251
+ ูƒุฏู‡ุŸ ุณุงู„ุจ ุชู…ุงู†ูŠุฉู‡ู†ุง ุณุงู„ุจ ุชู„ุงุชุฉ ุจูŠุตูŠุฑ ุณุงู„ุจ ุฎู…ุณุชุงุดุฑ
252
+
253
+ 64
254
+ 00:06:43,760 --> 00:06:49,320
255
+ ุณุงู„ุจ ุฎู…ุณุชุงุดุฑ ุงู„ู„ูŠ ุจูŠุธู‡ุฑ ุณุงู„ุจ ุฃุญุฏุงุดุฑ ู‡ู†ุง ุณุงู„ุจ ุชู„ุงุชุฉ
256
+
257
+ 65
258
+ 00:06:49,320 --> 00:06:56,840
259
+ ุจูŠุตูŠุฑ ุณุงู„ุจ ุณุชุฉ ุณุงู„ุจ ุณุชุฉ ูƒู…ุง ู‡ูˆุจุนุฏ ุฐู„ูƒ ุทู„ุจู†ุง ููŠ
260
+
261
+ 66
262
+ 00:06:56,840 --> 00:07:02,580
263
+ ุณุงู„ุจ ุงุชู†ูŠู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ Zero ุณุงู„ุจ ุณุชุฉ ูˆุงุญุฏ ุจูŠุตูŠุฑ
264
+
265
+ 67
266
+ 00:07:02,580 --> 00:07:09,700
267
+ ุณุงู„ุจ ุฎู…ุณุฉ ุณุงู„ุจ ุนุดุฑุฉ ูˆ Zero ุจุณุงู„ุจ ุนุดุฑุฉ ูƒู…ุง ู‡ูˆ ูˆ ู‡ู†ุง
268
+
269
+ 68
270
+ 00:07:09,700 --> 00:07:15,500
271
+ ุณุงู„ุจ ุงุฑุจุนุฉ ูˆ ุณุงู„ุจ ุชู„ุงุชุฉ ุจูŠุตูŠุฑ ุณุงู„ุจ ุณุจุนุฉ ู‡ู†ุง ูƒู…ุงู†
272
+
273
+ 69
274
+ 00:07:15,500 --> 00:07:22,780
275
+ Zeroู‡ู†ุง ุณุงู„ุจ ุณุชุฉ ูˆ ุณุงู„ุจ ุฎู…ุณุฉ ุจุณุงู„ุจ ุฃุญุฏ ุนุดุฑ ูŠุจู‚ู‰
276
+
277
+ 70
278
+ 00:07:22,780 --> 00:07:27,900
279
+ ุณุงู„ุจ
280
+
281
+ 71
282
+ 00:07:27,900 --> 00:07:32,920
283
+ ุนุดุฑ ุฃูˆ ุณุงู„ุจ ุงุชู†ูŠู† ุจุณุงู„ุจ ุงุชู†ุงุด ูŠุจู‚ู‰ ุณุงู„ุจ ุฃุฑุจุนุฉ ุฃูˆ
284
+
285
+ 72
286
+ 00:07:32,920 --> 00:07:39,620
287
+ ุณุงู„ุจ ุณุจุนุฉ ุจุณุงู„ุจ ุฃุญุฏ ุนุดุฑ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงููŠ ู†ุงู‚ุต
288
+
289
+ 73
290
+ 00:07:39,620 --> 00:07:43,640
291
+ ูƒุซูŠุฑ ูŠุนู†ูŠ ูŠุจู‚ู‰ ู…ู…ูƒู† ุงุฎุฏ ู…ู† ู‡ู†ุง ุดุฑ ุงู„ุณุงู„ุจ ูˆุงุญุฏ ูˆู…ู†
292
+
293
+ 74
294
+ 00:07:43,640 --> 00:07:47,400
295
+ ู‡ู†ุง ุดุฑ ุงู„ุณุงู„ุจ ูˆุงุญุฏ ูˆู…ู† ู‡ู†ุง ุดุฑ ุงู„ุณุงู„ุจ ูˆุงุญุฏ ุตุญ ูˆู„ุง
296
+
297
+ 75
298
+ 00:07:47,400 --> 00:07:51,880
299
+ ู„ุง ูŠุนู†ูŠ ูƒุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ุงู„ูƒู„ ุจุตูŠุฑ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุณุงู„ุจ
300
+
301
+ 76
302
+ 00:07:51,880 --> 00:07:56,400
303
+ ูˆุงุญุฏ ููŠ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุณุงู„ุจ ูˆุงุญุฏ ููŠ
304
+
305
+ 77
306
+ 00:07:56,400 --> 00:08:00,750
307
+ ุณุงู„ุจ ูˆุงุญุฏุจู…ูˆุฌุจ ูŠุจู‚ู‰ ุจุถูŠุน ุงู„ุฅุดุงุฑุฉ ุงู„ู„ูŠ ุฌูˆุง ูˆุงู„ุฅุดุงุฑุฉ
308
+
309
+ 78
310
+ 00:08:00,750 --> 00:08:05,810
311
+ ุงู„ู„ูŠ ุจุฑุง ูŠุจู‚ู‰ ุงู„ู…ุญุฏุฏ ู‡ูŠุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ู‡ุงูŠ
312
+
313
+ 79
314
+ 00:08:05,810 --> 00:08:11,350
315
+ ูŠุณุงูˆูŠ ูˆู‡ุฐุง ุงุชู†ูŠู† ุงู„ู„ูŠ ุจุฑุง ุชู…ุงู… ุงูˆ ู„ุณู‡ูˆู„ุฉ ุฎู„ูŠู‡ ู…ุด
316
+
317
+ 80
318
+ 00:08:11,350 --> 00:08:16,830
319
+ ุชุจู‚ู‰ ูˆุงุถุญุฉ ูŠุณุงูˆูŠ ู‡ุงูŠ ุณุงู„ุจ ุงุชู†ูŠู† ุฒูŠ ู…ุง ู‡ูˆ ูˆุงุฎุฏ ูƒู…ุงู†
320
+
321
+ 81
322
+ 00:08:16,830 --> 00:08:22,210
323
+ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุณุงู„ุจ ูˆุงุญุฏ ููŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ูŠ ุงู„ู…ุญุฏุฏ ุญุชู‰
324
+
325
+ 82
326
+ 00:08:22,210 --> 00:08:26,340
327
+ ู„ู…ุง ุชุฑูˆุญ ุชุฑุงุฌุนูŠ ุชุนุฑููŠ ูƒูŠู ุฌุช ู‡ุฐู‡ูŠุจู‚ู‰ ู‡ุงูŠ ูˆุงุญุฏ
328
+
329
+ 83
330
+ 00:08:26,340 --> 00:08:34,720
331
+ ุซู„ุงุซุฉ ุงุชู†ูŠู† ุฎู…ุณุฉ ุงุชู†ูŠู† ุฎู…ุณุฉ ุงุชู†ูŠู† ุงู„ุตู ุงู„ุซุงู†ูŠ Zero
332
+
333
+ 84
334
+ 00:08:34,720 --> 00:08:42,820
335
+ ุชู…ุงู†ูŠุฉ ุงุญุฏ ุนุดุฑ ูˆู‡ู†ุง ุณุชุฉ ูˆู‡ู†๏ฟฝ๏ฟฝ Zero ูˆู‡ู†ุง ุฎู…ุณุฉ ุนุดุฑุฉ
336
+
337
+ 85
338
+ 00:08:42,820 --> 00:08:51,280
339
+ ุณุจุนุฉ ูˆู‡ู†ุง Zero ุงุญุฏ ุนุดุฑ ูˆู‡ู†ุง ุงุชู†ุงุด ูˆู‡ู†ุง ุงุญุฏ ุนุดุฑ
340
+
341
+ 86
342
+ 00:08:51,280 --> 00:08:54,420
343
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุทูŠุจ
344
+
345
+ 87
346
+ 00:08:55,490 --> 00:09:01,870
347
+ ุฃุฑูŠุฏ ุฃู† ุฃุญุงูˆู„ ุฃู† ุฃุฌุนู„ ู‡ุฐุง ุงู„ุฑู‚ู… ูˆุงุญุฏ ุตุญูŠุญ ู„ูƒูŠ ุฃุฌุนู„
348
+
349
+ 88
350
+ 00:09:01,870 --> 00:09:06,090
351
+ ู‡ู†ุง ุชุญุชูŠู‡ ุตูุงุฑ ู„ูƒูŠ ุฃุฌุนู„ ูˆุงุญุฏ ุตุญูŠุญ ู„ูƒูŠ ุฃู‚ุณู… ูƒู„ู‡
352
+
353
+ 89
354
+ 00:09:06,090 --> 00:09:12,350
355
+ ุนุงู„ู…ูŠุง ุนู„ู‰ ุชู…ุงู†ูŠุฉ ูŠุจู‚ู‰ ูƒุฃู†ู‡ ุฃุฑูŠุฏ ุฃู† ุฃุฃุฎุฐู‡ ุชู…ุงู†ูŠุฉ
356
+
357
+ 90
358
+ 00:09:12,350 --> 00:09:18,130
359
+ ุจุฑุฉ ุนุงู…ู„ ู…ุดุชุฑูƒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุชุณุงูˆูŠ ู‡ุฐู‡ ุงู„ุงุชู†ูŠู† ุงู„ู„ูŠ ุจุฑุฉ
360
+
361
+ 91
362
+ 00:09:18,130 --> 00:09:27,530
363
+ ูˆู‡ุฐู‡ ุงู„ุชู…ุงู†ูŠุฉูˆุตุงุฑ ุนู†ุฏู‰ ู‡ุฐุง ุงู„ู…ุญุฏุฏ 1 3 5 2 ูˆ ู‡ู†ุง 0
364
+
365
+ 92
366
+ 00:09:27,530 --> 00:09:38,220
367
+ ูˆ ู‡ู†ุง 1 ูˆ ู‡ู†ุง 11 ุนู„ู‰ 8 ูˆ ู‡ู†ุง 6 ุนู„ู‰ 8 ูŠุนู†ู‰ 3 4ูˆู‡ู†ุง
368
+
369
+ 93
370
+ 00:09:38,220 --> 00:09:45,240
371
+ zero ุฒูŠ ู…ุง ู‡ูˆ ูˆู‡ู†ุง ุฎู…ุณุฉ ูˆู‡ู†ุง ุนุดุฑุฉ ูˆู‡ู†ุง ุณุจุนุฉ ูˆู‡ู†ุง
372
+
373
+ 94
374
+ 00:09:45,240 --> 00:09:52,140
375
+ zero ูˆู‡ู†ุง ุงุญุฏุงุดุฑ ูˆู‡ู†ุง ุงุชู†ุงุดุฑ ูˆู‡ู†ุง ุงุญุฏุงุดุฑ ุจุงู„ุดูƒู„
376
+
377
+ 95
378
+ 00:09:52,140 --> 00:09:57,780
379
+ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุงุงู„ุงู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ 16
380
+
381
+ 96
382
+ 00:09:57,780 --> 00:10:03,660
383
+ ุงุชู†ูŠู† ููŠ ุชู…ุงู†ูŠุฉ ุงุจ ุณุชุงุดุฑ ูˆ ู„ุฎุงุทุฑ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ุงุถุฑุจู‡
384
+
385
+ 97
386
+ 00:10:03,660 --> 00:10:09,020
387
+ ููŠ ุณุงู„ุจ ุฎุงู…ุณุฉ ูˆ ุงุถูŠูู‡ ู„ู„ุตู ุงู„ุซุงู†ูŠ ูˆ ุงู‚ู„ ุงู„ุซุงู„ุซ ูˆ
388
+
389
+ 98
390
+ 00:10:09,020 --> 00:10:14,280
391
+ ุงุถุฑุจู‡ ููŠ ุณุงู„ุจ ุงุญุฏุงุดุฑ ูˆ ุงุถูŠูู‡ ู„ู„ุตู ุงู„ุฑุงุจุน ูŠุจู‚ู‰ ู‡ุฐุง
392
+
393
+ 99
394
+ 00:10:14,280 --> 00:10:19,940
395
+ ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุงุญุฏ
396
+
397
+ 100
398
+ 00:10:19,940 --> 00:10:23,100
399
+ ุนุดุฑ ุนู„ู‰ ุชู…ุงู†ูŠุฉ ูˆ ู‡ุฐุง ุชู„ุงุชุฉ ุนู„ู‰ ุงุฑุจุน
400
+
401
+ 101
402
+ 00:10:32,020 --> 00:10:36,600
403
+ ุฃุฎุฏู†ุง ุชู…ุงู†ูŠุฉ ุนุงู…ู„ ู…ุดุชุฑูƒ ุงุชู†ูŠู† ููŠ ุชู…ุงู†ูŠุฉ ูˆู„ูŠุณ ุงุชู†ูŠู†
404
+
405
+ 102
406
+ 00:10:36,600 --> 00:10:40,100
407
+ ุนู„ู‰ ุชู…ุงู†ูŠุฉ ุงู†ุง ุงุฎุฏุช ุชู…ุงู†ูŠุฉ ุนุงู…ู„ ู…ุดุชุฑูƒ ุนู„ู‰ ุญูŠู† ู‡ุฐู‡
408
+
409
+ 103
410
+ 00:10:40,100 --> 00:10:42,760
411
+ ุงู„ุชู…ุงู†ูŠุฉ ู„ูˆ ุจุฏู‰ ุงุฏุฎู„ู‡ุง ุฌูˆุง ุจุตูŠุฑ ุชู…ุงู†ูŠุฉ ููŠ zero
412
+
413
+ 104
414
+ 00:10:42,760 --> 00:10:47,900
415
+ ุจzero ู‡ู†ุง ุชู…ุงู†ูŠุฉ ู‡ู†ุง ุงุญุฏุงุดุฑ ู‡ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุณุชุฉ
416
+
417
+ 105
418
+ 00:10:50,500 --> 00:10:58,200
419
+ ุงู„ู„ูŠ ุจุฏู‰ ุงุนู…ู„ู‡ ุงู„ุงู† ุจุฏุงุฌู‰ ุงุฎุฏ ุณู„ุจ ุฎู…ุณุฉ ุงุฑูŠ ุงุชู†ูŠู†
420
+
421
+ 106
422
+ 00:10:58,200 --> 00:11:05,740
423
+ to ุงุฑ ุชู„ุงุชุฉ ูˆุจุฏู‰ ุงุฎุฏ ุณู„ุจ ุงุญุฏุงุดุฑ ุงุฑูŠ ุงุชู†ูŠู† ุณู„ุจ
424
+
425
+ 107
426
+ 00:11:05,740 --> 00:11:14,500
427
+ ุงุญุฏุงุดุฑ ุงุฑูŠ ุงุชู†ูŠู† ุงู„ู‰ to ุงุฑ ุงุฑุจุนุฉ ุชุตุจุญ ุจุงู„ุดูƒู„
428
+
429
+ 108
430
+ 00:11:14,500 --> 00:11:21,910
431
+ ุงู„ุชุงู„ูุงู„ุงู† ุงู†ุง ุนู†ุฏู‰ ุงุชู†ู‰ ูู‰ ุชู…ุงู†ูŠุฉ ู‡ุฐุง ุงู„ู„ู‰ ู‡ูˆ ุงุจ
432
+
433
+ 109
434
+ 00:11:21,910 --> 00:11:27,210
435
+ ุณุช ุนุดุฑ ู‡ุฐุง ุงู„ุณุช ุนุดุฑ ูˆู‡ุฐุง ุงู„ู…ุญุฏุฏ ุฃุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„
436
+
437
+ 110
438
+ 00:11:27,210 --> 00:11:34,810
439
+ ุงู„ุชุงู„ูŠ ูˆุงุญุฏ ุชู„ุงุชุฉ ุฎู…ุณุฉ ุงุชู†ูŠู† ูˆู‡ู†ุง ุนู†ุฏูƒ ุงู„ู„ู‰ ู‡ูˆ
440
+
441
+ 111
442
+ 00:11:34,810 --> 00:11:41,990
443
+ Zero ูˆู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ุงุญุฏ ุนุดุฑ ุนู„ู‰ ุชู…ุงู†ูŠุฉ ูƒู…ุง ู‡ูŠูˆู‡ู†ุง
444
+
445
+ 112
446
+ 00:11:41,990 --> 00:11:46,690
447
+ ุชู„ุงุชุฉ ุนุงู„ู‰ ุฃุฑุจุนุฉ ูƒู…ุง ู‡ูŠ ุงู„ุญูŠู† ู‡ู†ุง zero ูˆู‡ู†ุง zero
448
+
449
+ 113
450
+ 00:11:46,690 --> 00:11:51,390
451
+ ู„ูŠุดุŸ ู„ุฃู†ู‡ ุถุงุฑุจ ุณุงู„ุจ ุฎู…ุณุฉ ู‡ุฐู‡ zero ุงู„ู„ูŠ ู…ุง ู‡ูˆ ุณุงู„ุจ
452
+
453
+ 114
454
+ 00:11:51,390 --> 00:11:56,590
455
+ ุฎู…ุณุฉ ูˆุฎู…ุณุฉ zero ู†ุฌูŠ ู‡ุฐู‡ ุณุงู„ุจ ุฎู…ุณุฉ ููŠ ุฃุญุฏ ุนุดุฑ ุจุณุงู„ุจ
456
+
457
+ 115
458
+ 00:11:56,590 --> 00:12:02,050
459
+ ุฎู…ุณุฉ ูˆุฎู…ุณูŠู† ุนู„ู‰ ุชู…ุงู†ูŠุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุณุงู„ุจ ุฎู…ุณุฉ ูˆุฎู…ุณูŠู†
460
+
461
+ 116
462
+ 00:12:02,050 --> 00:12:05,670
463
+ ุนู„ู‰ ุชู…ุงู†ูŠุฉ ุณุงู„ุจ ุฎู…ุณุฉ ูˆุฎู…ุณูŠู† ุนู„ู‰ ุชู…ุงู†ูŠุฉ ูŠุจู‚ู‰ ุถูŠูุฉ
464
+
465
+ 117
466
+ 00:12:05,670 --> 00:12:11,990
467
+ ู„ู…ูŠู†ุŸ ู„ุนุดุฑุฉูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุฒุงุฆุฏ ุนุดุฑุฉ ุงู„ู†ุชูŠุฌุฉ ุชุณุงูˆูŠ
468
+
469
+ 118
470
+ 00:12:11,990 --> 00:12:17,730
471
+ ุชู…ุงู†ูŠู† ุจุฏูŠ ุฃุดูŠู„ ู…ู†ู‡ุง ุฎู…ุณุฉ ูˆ ุฎู…ุณูŠู† ู…ุถู„ ู‚ุฏุงุด ุฎู…ุณุฉ ูˆ
472
+
473
+ 119
474
+ 00:12:17,730 --> 00:12:22,330
475
+ ุนุดุฑูŠู† ุนู„ู‰ ุชู…ุงู†ูŠุฉ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ุนู„ู‰
476
+
477
+ 120
478
+ 00:12:22,330 --> 00:12:28,270
479
+ ุชู…ุงู†ูŠุฉ ุจุงู„ู…ูˆุฌุฉ ุฅุฐุง ู‡ุฐู‡ ุจุฏู‡ุง ุชุตูŠุฑ ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ุนู„ู‰
480
+
481
+ 121
482
+ 00:12:28,270 --> 00:12:35,290
483
+ ุชู…ุงู†ูŠุฉ ุจุงู„ู…ูˆุฌุฉุฃู†ุง ุถุฑุจ ู‡ู†ุง ููŠ ู‚ุฏุงุด ููŠ ุณุงู„ุจ ุฎู…ุณุฉ
484
+
485
+ 122
486
+ 00:12:35,290 --> 00:12:41,050
487
+ ุจุตูŠุฑ ุณุงู„ุจ ุฎู…ุณุชุงุดุฑ ุนู„ู‰ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุฎู…ุณุชุงุดุฑ ุนู„ู‰
488
+
489
+ 123
490
+ 00:12:41,050 --> 00:12:48,170
491
+ ุฃุฑุจุนุฉ ุจุชุถูŠู ู„ู…ู†ุŸ ุจุชุถูŠู ู„ุณุจุนุฉ ูŠุจู‚ู‰ ุฒุงุฆุฏ ุณุจุนุฉ ูˆุณุจุนุฉ
492
+
493
+ 124
494
+ 00:12:48,170 --> 00:12:53,590
495
+ ุฃุฑุจุนุฉ ููŠ ุณุจุนุฉ ุชู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ุจุชุดูŠู„ ู…ู†ู‡ู… ุฎู…ุณุชุงุดุฑ ุจุธู„
496
+
497
+ 125
498
+ 00:12:53,590 --> 00:13:01,200
499
+ ู‚ุฏุงุด ุชู„ุชุงุดุฑ ุนู„ู‰ ุฃุฑุจุนุฉูŠุจู‚ู‰ ู‡ู†ุง 13 ุนู„ู‰ 4 ู†ุฌูŠ ู„ู„ุตูุฉ
500
+
501
+ 126
502
+ 00:13:01,200 --> 00:13:07,900
503
+ ุงู„ุฑุงุจุนุฉ 00 ู„ูŠุด ู†ุถุฑุจู‡ ููŠ ุณู„ุจ 11 ูˆุถูŠูู‡ ู‡ู†ุง ุจุตูŠุฑ ุณู„ุจ
504
+
505
+ 127
506
+ 00:13:07,900 --> 00:13:18,700
507
+ 11 ุณู„ุจ 11 ููŠ 11 ุจุณู„ุจ 121 121 ุนู„ู‰ 8 ุชู…ุงู…ุŸ ุจุฏูŠ ุฃุถูŠูู‡
508
+
509
+ 128
510
+ 00:13:18,700 --> 00:13:25,700
511
+ ู„ู…ูŠู†ุŸ ู„ู„ 12 ูŠุจู‚ู‰ ุฒุงุฆุฏ 12 ู…ุธุจูˆุท ู‡ูŠูƒ ูŠุง ุจู†ุงุชุŸุจุชุถูŠู
512
+
513
+ 129
514
+ 00:13:25,700 --> 00:13:32,180
515
+ ู„ู„ู€ 12 ุทุจุนุงู‹ ุชู…ุงู†ูŠุฉ ููŠ ุงุชู†ุงุด ุจุณุชุฉ ูˆ ุชุณุนูŠู† ุงุฑุจุนุฉ
516
+
517
+ 130
518
+ 00:13:32,180 --> 00:13:37,240
519
+ ูˆุงุญุฏ ูˆ ุนุดุฑูŠู† ูŠุนู†ูŠ ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ุจุณ ุจุงู„ุณุงู„ู… ุณุงู„ู…
520
+
521
+ 131
522
+ 00:13:37,240 --> 00:13:42,600
523
+ ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ุนู„ู‰ ุชู…ุงู†ูŠุฉ ูŠุจู‚ู‰ ุณุงู„ู… ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ุนู„ู‰
524
+
525
+ 132
526
+ 00:13:42,600 --> 00:13:48,920
527
+ ู…ู‡ู… ุนู„ู‰ ุชู…ุงู†ูŠุฉุงู„ุงู† ุจุฏูŠ ุงุถุฑุจู‡ ูƒู…ุงู† ู…ุฑุฉ ููŠ ุณุงู„ุจ 11
528
+
529
+ 133
530
+ 00:13:48,920 --> 00:13:59,620
531
+ ุจุตูŠุฑ ุณุงู„ุจ 33 ูŠุจู‚ู‰ ุณุงู„ุจ 33 ุนู„ู‰ 4 ุณุงู„ุจ 33 ุนู„ู‰ 4 ุฒุงุฆุฏ
532
+
533
+ 134
534
+ 00:13:59,620 --> 00:14:05,580
535
+ 11 ุฒุงุฆุฏ 11 ุงู„ู„ูŠ ู‡ูˆ 7 ุงุฑุจุนุฉ ูˆุงุฑุจุนูŠู† ุจุฏูŠ ุงุดูŠู„ ู…ู†ู‡ู…
536
+
537
+ 135
538
+ 00:14:05,580 --> 00:14:16,900
539
+ ุจุธู„ 11ู…ุธุจูˆุท 44-33 ูŠุจู‚ู‰ 11 ุนู„ู‰ 4 ูŠุจู‚ู‰ ู‡ุฐุง 11 ุนู„ู‰ 4
540
+
541
+ 136
542
+ 00:14:16,900 --> 00:14:23,100
543
+ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงูƒูˆูŠุณ ุทุจ ุงู„ุงู† ุจู‚ุฏุฑ ุงุถูŠู ุงู„ุตู
544
+
545
+ 137
546
+ 00:14:23,100 --> 00:14:29,060
547
+ ุงู„ุชุงู„ุช ุงู„ู‰ ุงู„ุตู ุงู„ุฑุงุจุน ู…ุฑุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
548
+
549
+ 138
550
+ 00:14:29,060 --> 00:14:38,960
551
+ ุจุฏู‡ ูŠุณุงูˆูŠ ุจุฏู‡ R ุชู„ุงุชุฉ to R ุฃุฑุจุนุฉ ู…ุจุงุดุฑุฉ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ
552
+
553
+ 139
554
+ 00:14:38,960 --> 00:14:44,980
555
+ ู‡ู‰ ุงู„ุณุชุงุดุฑ ูุงุฑุฉ ูˆู‡ู‰ ุงู„ู…ุญุฏุฏ ู‡ู‰ ูˆุงุญุฏ ุชู„ุงุชุฉ ุฎู…ุณุฉ
556
+
557
+ 140
558
+ 00:14:44,980 --> 00:15:06,340
559
+ ุงุชู†ูŠู†ูˆู‡ู†ุง 01 11 8 3 4 00 25 8 13 4 ุจู‚ู‰ ุงู„ุตู ุงู„ุฑุงุจุน
560
+
561
+ 141
562
+ 00:15:06,340 --> 00:15:12,980
563
+ 000ูŠุจู‚ู‰ ู‡ุฐุง ุฃุถูุชู‡ ุฅู„ู‰ ู‡ุฐุง ู…ุจุงุดุฑุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถูŠู ู‡ุฐุง
564
+
565
+ 142
566
+ 00:15:12,980 --> 00:15:18,420
567
+ ุฅู„ู‰ ู‡ุฐุง ู…ุจุงุดุฑุฉ ุชู„ุชุงุดุฑ ูˆ ุฃุญุฏุงุดุฑ ุฃุฑุจุนุฉ ูˆ ุนุดุฑูŠู† ุนู„ู‰
568
+
569
+ 143
570
+ 00:15:18,420 --> 00:15:25,120
571
+ ุฃุฑุจุนุฉ ููŠู‡ุง ุณุชุฉ ุชู…ุงู…ุŸ ุฅุฐุง ุฃู†ุง ุจุฏูŠ ู‚ูŠู…ุฉ ู‡ุฐุง ุงู„ู…ุญุฏุฏ
572
+
573
+ 144
574
+ 00:15:25,120 --> 00:15:30,600
575
+ ูŠุจู‚ู‰ ู‚ูŠู…ุชู‡ ู‡ูŠ ุงู„ุณุช ุนุดุฑ ุงู„ู„ูŠ ุจุฑุง ููŠ ู…ูŠู†ุŸ ููŠ ูˆุงุญุฏ ููŠ
576
+
577
+ 145
578
+ 00:15:30,600 --> 00:15:38,340
579
+ ูƒู…ุงู† ูˆุงุญุฏ ููŠ ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ุนู„ู‰ ุชู…ุงู†ูŠุฉ ููŠ ุณุชุฉูŠุจู‚ู‰
580
+
581
+ 146
582
+ 00:15:38,340 --> 00:15:42,800
583
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุชู…ุงู†ูŠุฉ ู…ุน ุณุชุงุดุฑ ููŠู‡ุง ุงุชู†ูŠู† ุงุชู†ูŠู†
584
+
585
+ 147
586
+ 00:15:42,800 --> 00:15:47,260
587
+ ููŠ ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ูˆุฎู…ุณูŠู† ุฎู…ุณุฉ ููŠ ุณุชุฉ ูˆุซู„ุงุซูŠู† ูŠุจู‚ู‰
588
+
589
+ 148
590
+ 00:15:47,260 --> 00:15:53,020
591
+ ุชู„ุงุชู…ูŠุฉ ุงุฐุง ู‚ูŠู…ุฉ ู‡ุฐุง ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ ุชู„ุงุชู…ูŠุฉ ุจุฏูˆู†
592
+
593
+ 149
594
+ 00:15:53,020 --> 00:15:58,570
595
+ ู…ู„ุฌุฃ ู„ูŠููƒู‡ูŠุจู‚ู‰ ุงู†ุง ุงุณุชุฎุฏู…ุช ุงู„ุฎุงุตูŠุฉ ุงู„ุดู‡ูŠุฑุฉ ุงู†
596
+
597
+ 150
598
+ 00:15:58,570 --> 00:16:04,690
599
+ ุงุถุงูุฉ ุงูŠ ุง ุงูˆ ุถุฑุจ ุงูŠ ุตูุฑ ููŠ ุงูŠ ุฑู‚ู… ุซู… ุงุถุงูุชู‡ ุงู„ู‰
600
+
601
+ 151
602
+ 00:16:04,690 --> 00:16:10,490
603
+ ุตูุฑ ุงุฎุฑ ู„ุง ูŠุบูŠุฑ ู…ู† ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ุงุฎุฏ ูƒู…ุงู† ุฎุงุตูŠุฉ
604
+
605
+ 152
606
+ 00:16:10,490 --> 00:16:14,450
607
+ ุชุงู†ูŠุฉ ุงุฐุง ููŠ ุนู†ุฏูŠ ู…ู‚ุฏุงุฑ ุซุงุจุช ู…ูˆุฌูˆุฏ ููŠ ุงุญุฏ ุงู„ุตูุฑ ุงูˆ
608
+
609
+ 153
610
+ 00:16:14,450 --> 00:16:18,670
611
+ ููŠ ุงุญุฏ ุงู„ู„ุนู…ุฏุฉ ู…ุดุชุฑูƒ ุจูŠู† ุฌู…ูŠุน ุงู„ุนู†ุงุตุฑ ุจู‚ุฏุฑ ุงุฎุฏู‡ุง
612
+
613
+ 154
614
+ 00:16:18,670 --> 00:16:25,390
615
+ ุจุฑุง ุงู„ู…ุญุฏุฏูŠุนู†ูŠ ู‡ู†ุง ุงุญู†ุง ุงุดุชุบู„ู†ุง ุงุนุฏุฏ ุฎูˆุงุต ู„ู‡ุฐุง
616
+
617
+ 155
618
+ 00:16:25,390 --> 00:16:29,630
619
+ ุงู„ู…ุญุฏุฏ ูˆู„ุบุงูŠุฉ ู…ุง ุฌูŠู†ุง ู„ุขุฎุฑ ู…ู„ุงุญุธุฉ ูƒุงู†ุช ุงู† ููŠ ุงู„ู…ุฑุฉ
620
+
621
+ 156
622
+ 00:16:29,630 --> 00:16:36,170
623
+ ุงู„ู…ุงุถูŠุฉ ุฃุตุจุญ ุนู†ุฏูŠ ู…ุญุฏุฏ ู„ู…ุตูˆูุฉ ู…ุซู„ุซุฉ ุนู„ูŠุง ูƒู„
624
+
625
+ 157
626
+ 00:16:36,170 --> 00:16:40,850
627
+ ุงู„ุนู†ุงุตุฑ ุฃุณูู„ ุงู„ู‚ุทุฑุฉ ุงู„ุฑุฆูŠุณูŠุฉ ุฃุณูุงุฑุง ุฅุฐุง ู‚ูŠู…ุฉ ู‡ุฐุง
628
+
629
+ 158
630
+ 00:16:40,850 --> 00:16:46,020
631
+ ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ ุญุตู„ ุถุฑุจ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑุงู„ุฑุฆูŠุณ ูŠุจู‚ู‰ ุฃุฎุฑ
632
+
633
+ 159
634
+ 00:16:46,020 --> 00:16:49,760
635
+ ุณุทุฑ ูƒุชุจู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู‡ุฐุง ุงู„ู„ูŠ ุทุจู‚ุชู‡ ู‡ู†ุง
636
+
637
+ 160
638
+ 00:16:49,760 --> 00:16:53,880
639
+ ูˆุจุงู„ุชุงู„ูŠ ุทู„ุนุช ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ู…ุถู… ุฑูˆุญ ุฃููƒ ูˆ ุฃุญุณุจ
640
+
641
+ 161
642
+ 00:16:53,880 --> 00:16:59,400
643
+ ุญุฒุงุจุงุช ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ ููŠ ุญุฏุง ููŠูƒู…
644
+
645
+ 162
646
+ 00:16:59,400 --> 00:17:02,840
647
+ ุจุชุญุจ ุชุณุฃู„ ุฃูŠ ุณุคุงู„ ู‡ู†ุงุŸ ููŠ ุฃูŠ ู†ู‚ุทุฉ ู…ู† ุงู„ูƒู„ุงู… ุงู„ู„ูŠ
648
+
649
+ 163
650
+ 00:17:02,840 --> 00:17:06,540
651
+ ู‚ุฏุงู…ู†ุง ุนู„ู‰ ุงู„ู„ูˆุญุŸ ุงูŠูˆุฉ ุฃู†ุง ุฏุงูŠู…ุง ุฃุฑุฌุน ู„ููƒุฑุฉ ุงู„ู„ูŠ
652
+
653
+ 164
654
+ 00:17:06,540 --> 00:17:12,650
655
+ ู‡ูŠู…ุซู„ุซุฉ ุงู„ุนุงู„ูŠุฉุŸ ูˆ ู„ุง ููŠ ุฅูŠุดุŸ ุจูŠู†ููƒุŒ ู„ุฃ ุจุชู‚ุฏุฑ ุชููƒูŠ
656
+
657
+ 165
658
+ 00:17:12,650 --> 00:17:16,150
659
+ ููƒ ุนุงุฏูŠุŒ ูƒู…ุงู† ุจูŠุณุฃู„ู†ูŠ ู„ุณู‡ ู…ุง ุงุชูƒู„ู…ู†ุงุด ููŠู‡ ููƒ ุนุงุฏูŠุŒ
660
+
661
+ 166
662
+ 00:17:16,150 --> 00:17:19,250
663
+ ุชู…ุง ุฑุบู… ุฃู†ูŠ ุฃุนุทูŠุชู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉุŒ ุจุณ ู…ุงุนุทูŠุชุด
664
+
665
+ 167
666
+ 00:17:19,250 --> 00:17:23,090
667
+ ุนู„ูŠู‡ุง ู…ุซุงู„ุŒ ู‚ูˆู„ู†ุง ุจููƒู‡ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุฃูŠ ุตู ุฃูˆ ุฃูŠ
668
+
669
+ 168
670
+ 00:17:23,090 --> 00:17:27,690
671
+ ุนู…ูˆุฏุŒ ู…ุธุจูˆุทุŒ ู‡ู†ุนูŠุฏ ู‡ุฐุง ุงู„ูƒู„ุงู…ุฌุงูŠ ูู‰ ุงู„ section
672
+
673
+ 169
674
+ 00:17:27,690 --> 00:17:32,850
675
+ ุงู„ู‚ุงุฏู… ุงู† ุดุงุก ุงู„ู„ู‡ ูˆู†ูˆุฑูŠูƒูˆุง ูƒูŠู ุจุฑุถู‡ ู†ุธุฑูŠุง ูƒูŠู
676
+
677
+ 170
678
+ 00:17:32,850 --> 00:17:37,470
679
+ ู‡ู†ููƒ ูˆูƒูŠู ู‡ู†ุณุชุฎุฏู… ุฐู„ูƒ ุนู„ู‰ ุฃูŠ ุญุงู„ ู…ุง ุนู„ูŠู†ุง ุงู„ุงู†
680
+
681
+ 171
682
+ 00:17:37,470 --> 00:17:46,850
683
+ ุจุฑูˆุญ ู†ูƒู…ู„ ุฃู…ุซู„ุฉ ุนู„ู‰ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ู†ุงุฎุฏ example 2
684
+
685
+ 172
686
+ 00:17:46,850 --> 00:17:53,730
687
+ ุจู‚ูˆู„
688
+
689
+ 173
690
+ 00:17:53,730 --> 00:18:03,840
691
+ ู„ุฃูุงู„ู€ determinant ู„ู„ู€ A ุจุฏูˆ ูŠุณูˆูŠ ุฎู…ุณุฉ and ุงู„
692
+
693
+ 174
694
+ 00:18:03,840 --> 00:18:14,720
695
+ determinant ู„ู„ B ุจุฏูˆ ูŠุณูˆูŠ ุชู„ุงุชุฉ compute ุงุญุณุจ
696
+
697
+ 175
698
+ 00:18:14,720 --> 00:18:24,330
699
+ ุงู„ determinant ู„ู…ูŠู† ุงุญุณุจ ุงู„ determinantู„ู„ู€ ABA
700
+
701
+ 176
702
+ 00:18:24,330 --> 00:18:25,970
703
+ Transpose
704
+
705
+ 177
706
+ 00:18:37,410 --> 00:18:42,070
707
+ ูŠุจู‚ู‰ ููŠ ู‡ุฐุง ุงู„ู…ุซุงู„ ูŠุนุทูŠู†ุง ุฃู† ู…ุญุฏุฏ ุงู„ู…ุตูˆูุฉ A ูŠุณุงูˆูŠ
708
+
709
+ 178
710
+ 00:18:42,070 --> 00:18:47,910
711
+ ุฎู…ุณุฉ ูˆู…ุญุฏุฏ ุงู„ู…ุตูˆูุฉ B ูŠุณุงูˆูŠ ุชู„ุงุชุฉ ูˆุทู„ุจ ู…ู†ูŠ ุฌุฏุด ู‚ูŠู…ุฉ
712
+
713
+ 179
714
+ 00:18:47,910 --> 00:18:54,190
715
+ ู…ุญุฏุฏ A ุจู€ A Transpose ุงู„ู„ูŠ ู‡ูˆ ู…ุฏูˆุฑ ู…ุตูˆูุฉ ูƒุญุงุตู„ ุถุฑุจ
716
+
717
+ 180
718
+ 00:18:54,190 --> 00:19:01,030
719
+ ุซู„ุงุซ ู…ุตูˆูุงุช ููŠ ุจุนุถู‡ู… ุงู„ุจุนุถ ุงู„ุญู„ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุจุฏุฃ ุจุงู„ู€
720
+
721
+ 181
722
+ 00:19:01,030 --> 00:19:10,400
723
+ Determinant ู„ู…ุงู…ู„ู„ู€ ABA Transposeุฃุฎุฏู†ุง ุฎุงุตูŠุฉ ุงู„ู…ุฑุฉ
724
+
725
+ 182
726
+ 00:19:10,400 --> 00:19:14,300
727
+ ุงู„ู„ูŠ ูุงุชุช ุฃู†ู‡ determinant ู„ู€A ููŠ B ูŠุณูˆู‰
728
+
729
+ 183
730
+ 00:19:14,300 --> 00:19:18,740
731
+ determinant ู„ู€A ููŠ determinant ู„ู€B ุชู…ุงู…ุŸ ุฅุฐุง ุจู†ุงุก
732
+
733
+ 184
734
+ 00:19:18,740 --> 00:19:23,720
735
+ ุนู„ู‰ ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ู„ูˆ ุงุนุชุจุฑุช ุฃู† ู‡ุฐู‡ ู…ุตููˆูุฉ ูˆู‡ุฐู‡
736
+
737
+ 185
738
+ 00:19:23,720 --> 00:19:28,760
739
+ ู…ุตููˆูุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ุงู„ุทุจู‚ุฉ ู„ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ุจูŠุตูŠุฑ
740
+
741
+ 186
742
+ 00:19:28,760 --> 00:19:36,720
743
+ determinant ู„ู„ู€A ููŠ determinant ู„ู€B A transposeุจุนุฏ
744
+
745
+ 187
746
+ 00:19:36,720 --> 00:19:41,880
747
+ ุฐู„ูƒ ู‡ุฐู‡ ู…ุตููˆูุฉ ูˆู‡ุฐู‡ ู…ุตููˆูุฉ ุชุชุทุจู‚ ุนู„ูŠู‡ุง ู†ูุณ ุงู„ุฎุงุตูŠุฉ
748
+
749
+ 188
750
+ 00:19:41,880 --> 00:19:46,400
751
+ ูƒู…ุงู† ู…ุฑุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณูˆูŠ ุงู„ determinant
752
+
753
+ 189
754
+ 00:19:46,400 --> 00:19:51,520
755
+ ุงู„ู„ูŠ ุจุฑุง ู…ุงู„ูŠุด ุนู„ุงู‚ุฉ ููŠู‡ุง ุขูŠุฉ ู…ูˆุฌูˆุฏุฉ ุงู„ุขู† ู‡ุฐุง
756
+
757
+ 190
758
+ 00:19:51,520 --> 00:19:57,080
759
+ determinant ู„ู„ B ููŠ determinant ู„ู„ A transpose
760
+
761
+ 191
762
+ 00:19:57,080 --> 00:20:02,980
763
+ ูƒูˆูŠุณ ุทุจ ู‡ู†ุง ู…ุด ูŠุนุทูŠู†ูŠ ุฌุฏุงุด ุงู„ determinant ู„ู„ A
764
+
765
+ 192
766
+ 00:20:02,980 --> 00:20:08,590
767
+ transposeู„ูƒู† ุฃูˆู„ ุฎุงุตูŠุฉ ุฃุฎุฏู†ุงู‡ุง ุฃู† determinant ู„ู€ A
768
+
769
+ 193
770
+ 00:20:08,590 --> 00:20:13,670
771
+ ู‡ูŠ determinant ู„ู€ A ู…ุตุจูˆุท ูŠุจู‚ู‰ ู‡ุงูŠ ุงุณุชุฎุฏู…ุช ูƒุงู…
772
+
773
+ 194
774
+ 00:20:13,670 --> 00:20:18,850
775
+ ุฎุงุตูŠุฉ ููŠ ุญุงู„ ุงู„ู…ุซุงู„ุŸ ุฎุงุตูŠุชูŠู† ูŠุจู‚ู‰ ุจุฑุฌุน ู„ู„ุฎุงุตูŠุฉ
776
+
777
+ 195
778
+ 00:20:18,850 --> 00:20:23,690
779
+ ุงู„ุฃูˆู„ู‰ ุจู‚ูˆู„ ู„ู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ุณุงูˆูŠ determinant ู„ู„ู€
780
+
781
+ 196
782
+ 00:20:23,690 --> 00:20:30,010
783
+ A ููŠ determinant ู„ู„ู€ B ููŠ determinant ู„ู„ู€ A ุชุจู‚ู‰
784
+
785
+ 197
786
+ 00:20:30,010 --> 00:20:36,920
787
+ ู„ู„ุฎุงุตูŠุฉุฑู‚ู… ูˆุงุญุฏ ู…ู† ุฎูˆุงุต ุงู„ู…ุญุฏุฏ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
788
+
789
+ 198
790
+ 00:20:36,920 --> 00:20:40,340
791
+ ุจูŠุณุงูˆูŠ determinant ู„ุฅูŠู‡ ู…ูุนุทูŽู„ ูŠู‡ูˆ ุจุฎู…ุณุฉ
792
+
793
+ 199
794
+ 00:20:40,340 --> 00:20:45,940
795
+ determinant ู„ุจ ู…ูุนุทูŽู„ ูŠู‡ูˆ ุจุชู„ุงุชุฉ determinant ู„ุฅูŠู‡
796
+
797
+ 200
798
+ 00:20:45,940 --> 00:20:51,340
799
+ ุงู„ู„ูŠ ู‡ูˆ ุจุฎู…ุณุฉ ููŠ ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ููŠ ุชู„ุงุชุฉ ุจุฎู…ุณุฉ ูˆุณุจุนูŠู†
800
+
801
+ 201
802
+ 00:20:51,340 --> 00:20:58,010
803
+ ูŠุจู‚ู‰ ู‚ูŠู…ุฉ ู‡ุฐุง ุญุงุตู„ ุงู„ุถุฑุจ ูŠุณุงูˆูŠ ุฎู…ุณุฉ ูˆุณุจุนูŠู†ูŠุจู‚ู‰
804
+
805
+ 202
806
+ 00:20:58,010 --> 00:21:05,610
807
+ ุงุณุชุทุงุนู†ุง ุงู„ุญุตูˆู„ ุนู„ู‰ ู…ุญุฏุฏุงุช ู‡ุฐู‡ ุงู„ู…ุตููˆูุงุช ุฏูˆู† ู…ุนุฑูุฉ
808
+
809
+ 203
810
+ 00:21:05,610 --> 00:21:11,270
811
+ ุดูƒู„ ู‡ุฐู‡ ุงู„ู…ุตููˆูุงุช ูˆู„ูƒู† ุนู† ุทุฑูŠู‚ ุงุณุชุฎุฏุงู… ุฎูˆุงุต
812
+
813
+ 204
814
+ 00:21:11,270 --> 00:21:14,310
815
+ ุงู„ู…ุญุฏุฏุงุช ุงู„ู…ุฎุชู„ูุฉ
816
+
817
+ 205
818
+ 00:21:22,140 --> 00:21:25,900
819
+ ููŠ ุนู†ุฏูƒูˆุง ุฃูƒุชุฑ ู…ู† ุณุคุงู„ ููŠ ุงู„ุชู…ุฑูŠู†ุŸ ุงู„ุฃุณุฆู„ุฉ ุฏูŠ
820
+
821
+ 206
822
+ 00:21:25,900 --> 00:21:37,480
823
+ ุฌู…ุนุชู‡ู… ููŠ ู…ุซุงู„ ูˆุงุญุฏ ููŠ ุนู†ุฏูŠ ู…ุซุงู„ ุซู„ุงุซูŠ ุจูŠู‚ูˆู„
824
+
825
+ 207
826
+ 00:21:37,480 --> 00:21:47,700
827
+ ู„ูŠ ู†ู…ุฑุฉ A F ุงู„ A ุชุฑุจูŠุน ุจุฏูŠู‡ ูŠุณุงูˆูŠ ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ
828
+
829
+ 208
830
+ 00:21:47,700 --> 00:21:57,910
831
+ show thatุจูŠู† ู„ุฃู† ุงู„ู€ determinant ู„ู„ู€ A ุจูŠูƒูˆู† ุฒุงุฆุฏ
832
+
833
+ 209
834
+ 00:21:57,910 --> 00:22:06,810
835
+ ุฃูˆ ู†ุงู‚ุต ูˆุงุญุฏ ู†ู…ุฑ ูŠุง ุจูŠู‡ ู„ูˆ ูƒุงู† ุงู„ู€ A transpose ููŠ
836
+
837
+ 210
838
+ 00:22:06,810 --> 00:22:12,830
839
+ ุงู„ู€ A ูŠุณุงูˆูŠ ุงู„ู€ I ุจุฑุถู‡ show that ุฃู† ุงู„ู€
840
+
841
+ 211
842
+ 00:22:12,830 --> 00:22:20,540
843
+ determinant ู„ู„ู€ A ุจูŠูƒูˆู† ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต ูˆุงุญุฏุงู„ุฃู† ู†ู…ุฑูŠ
844
+
845
+ 212
846
+ 00:22:20,540 --> 00:22:33,480
847
+ ุงู„ู€ C F ุงู„ู€ A ุชุฑุจูŠุน ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ A what can
848
+
849
+ 213
850
+ 00:22:33,480 --> 00:22:44,120
851
+ you said about determinant
852
+
853
+ 214
854
+ 00:22:44,120 --> 00:22:45,520
855
+ ู„ู„ู€ A
856
+
857
+ 215
858
+ 00:22:51,330 --> 00:22:56,170
859
+ ูŠุจู‚ู‰ ุนู†ุฏู†ุง ุงู„ุขู† ู…ุทุฑูˆุญ ุซู„ุงุซุฉ ุฃุณุฆู„ุฉ ุจุฏู†ุง ู†ุญุงูˆู„ ู†ุฌุงูˆุจ
860
+
861
+ 216
862
+ 00:22:56,170 --> 00:23:01,330
863
+ ุนู„ู‰ ูƒู„ ุณุคุงู„ ู…ู† ู‡ุฐู‡ ุงู„ุฃุณุฆู„ุฉ ุงู„ุซู„ุงุซุฉ ุฅุฌุงุจุฉ ุนู„ู…ูŠุฉ
864
+
865
+ 217
866
+ 00:23:01,330 --> 00:23:06,190
867
+ ุฏู‚ูŠู‚ุฉ ู…ู† ุฎู„ุงู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุฏุฏุงุช ุฃูˆ ู…ู† ุฎู„ุงู„ ุฎูˆุงุต
868
+
869
+ 218
870
+ 00:23:06,190 --> 00:23:12,790
871
+ ุงู„ู…ุญุฏุฏุงุช ุงู„ุชูŠ ุฏุฑุณุช ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู„ุขู† ุจุฏุงุฌูŠ
872
+
873
+ 219
874
+ 00:23:12,790 --> 00:23:15,430
875
+ ู„ ุงู„ุญู„ ูŠุจู‚ู‰ solution
876
+
877
+ 220
878
+ 00:23:19,290 --> 00:23:25,110
879
+ ุฃุญู†ุง ุนู†ุง ุงู„ู€A ุชุฑุจูŠุฉ ุชุณุงูˆูŠ ู…ุตูˆูุฉ ุงู„ูˆุญุฏุฉ ู‡ุฐุง ูƒู„ุงู…
880
+
881
+ 221
882
+ 00:23:25,110 --> 00:23:31,290
883
+ ู…ูุนุทูŽุน ุทูŠุจ ุฅูŠุด ุงู„ู…ุทู„ูˆุจุŸ ุงู„ู€determinant ู„ู€A ุฅุฐุง ุจุฏูŠ
884
+
885
+ 222
886
+ 00:23:31,290 --> 00:23:34,610
887
+ ุฃุฌูŠุจ ุงู„ู€determinant ู„ู„ู€two matrices ุงู„ู„ูŠ ุนู†ุฏู†ุง
888
+
889
+ 223
890
+ 00:23:34,610 --> 00:23:39,370
891
+ ูŠุจู‚ู‰ ู…ุฏุงู… ุงู„ู…ุตูˆูุชูŠู† ู†ูุณ ุจุนุถ ูŠุจู‚ู‰ ุงู„ู€determinant
892
+
893
+ 224
894
+ 00:23:39,370 --> 00:23:45,790
895
+ ู„ู„ู€A ุชุฑุจูŠุฉ ู‡ูˆ ู†ูุณ ุงู„ู€determinant ู„ู„ู€I ุงู„ู€identity
896
+
897
+ 225
898
+ 00:23:45,790 --> 00:23:51,430
899
+ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุทูŠุจุงู„ุญูŠู† ู„ู…ุง ุฃู‚ูˆู„ ู‡ุฐู‡ determinant ู„ูŠู‡
900
+
901
+ 226
902
+ 00:23:51,430 --> 00:23:56,770
903
+ ุชุฑุจูŠุฉ ู…ุด ุนุจุงุฑุฉ ุนู† ุง ู…ุถุฑูˆุจุฉ ููŠ ุง ูŠุจู‚ู‰ ู‡ุฐู‡ ูƒุฃู†ู‡ุง
904
+
905
+ 227
906
+ 00:23:56,770 --> 00:24:04,290
907
+ determinant ู„ู„ู…ุตููˆู ุง ู…ุถุฑูˆุจุฉ ููŠ ุงู„ู…ุตููˆู ุงู„ูˆุญุฏุฉ
908
+
909
+ 228
910
+ 00:24:04,460 --> 00:24:08,720
911
+ ู…ุตุฑูˆูุฉ ุงู„ูˆุญุฏุฉ ุฌู…ูŠุน ุฃู†ุตุงุฑู‡ุง ุฃุตูุฑู‹ุง ู…ุง ุนุฏุง ุฃู†ุตุงุฑ ู‚ูˆุฉ
912
+
913
+ 229
914
+ 00:24:08,720 --> 00:24:13,480
915
+ ุงู„ุฑุฆูŠุณูŠ 1 1 1 ุทุจู‚ ุงู„ุฃุฎุฑ ุณุทุฑ ุฎุฏู†ุงู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ
916
+
917
+ 230
918
+ 00:24:13,480 --> 00:24:18,560
919
+ ูŠุจู‚ู‰ ุญุตู„ ุฏุฑู…ุช ูŠุงุฌูˆู† ุงู„ matrix ุงู„ู„ูŠ ู‡ูˆ 1 ููŠ 1 ููŠ 1
920
+
921
+ 231
922
+ 00:24:18,560 --> 00:24:23,740
923
+ ุฌุฏ ู…ุง ูŠูƒูˆู† ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุฌุฏุงุดุŸ 1 ู…ู† ุฏุงุฆู…ุง ูˆุฃุจุฏุง
924
+
925
+ 232
926
+ 00:24:23,740 --> 00:24:29,310
927
+ ู‚ูŠู…ุฉ ู…ุญุฏุฏุฉ ู„ู…ุตุฑูˆูุฉ ุงู„ูˆุญุฏุฉ ู‡ูˆ ุจูˆุงุญุฏ ุตุญูŠุญุทูŠุจุŒ ู‡ุฐุง ูŠุง
928
+
929
+ 233
930
+ 00:24:29,310 --> 00:24:33,730
931
+ ุจู†ุงุช ุงู„ู‚ูŠู…ุฉ ููŠ ู†ูุณู‡ุง ู…ุด ุนุจุงุฑุฉ ุนู† ุงู„ู€determinant
932
+
933
+ 234
934
+ 00:24:33,730 --> 00:24:39,890
935
+ ู„ู„ู€A ู„ูƒู„ ุชุฑุจูŠุฉ ูŠุณุงูˆูŠ ูˆุงุญุฏุŸ ุทูŠุจุŒ ุฎู„ู‘ูŠู†ุง ู†ุงุฎุฏ ุงู„ุฌุฐุฑ
936
+
937
+ 235
938
+ 00:24:39,890 --> 00:24:44,830
939
+ ุงู„ุชุฑุจูŠู‡ูŠ ู„ู„ุทุฑููŠู† ูŠุจู‚ู‰ ู„ูˆ ุฃุฎุฏู†ุง ุงู„ู€determinant
940
+
941
+ 236
942
+ 00:24:44,830 --> 00:24:50,890
943
+ ู„ู„ู€AุŒ ุจุฏู‘ูˆุง ูŠุนุทูŠู†ุง ู‡ุฐุง ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต ูˆุงุญุฏุŒ ุงู„ู„ูŠ ู‡ูˆ
944
+
945
+ 237
946
+ 00:24:50,890 --> 00:24:55,080
947
+ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠู‡ูŠ ู„ู„ุทุฑููŠู†ุŒ ุฃุธู† ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจุŸุฎู„ุตู†ุง ู…ู†ู‡
948
+
949
+ 238
950
+ 00:24:55,080 --> 00:25:00,660
951
+ ู†ุฌูŠ ู„ู†ู…ุฑุฉ B ู…ู† ุงู„ู…ุซู„ุฉ ุจุฌู‡ุฏูŠ ูƒุงู†ุช ู†ู…ุฑุฉ A ุจุฏูŠ ุงุฌูŠ
952
+
953
+ 239
954
+ 00:25:00,660 --> 00:25:05,920
955
+ ู„ู†ู…ุฑุฉ B ุจู†ูุณ ุงู„ุชูƒุชูŠูƒ ุงู†ุง ุนู†ุฏูŠ A transpose ููŠ ุงู„ A
956
+
957
+ 240
958
+ 00:25:05,920 --> 00:25:11,220
959
+ ุจุฏู‡ ุณุงูˆูŠ ุงู„ I ูŠุนู†ูŠ ู„ูˆ ุถุฑุจุช ู…ุฏูˆุฑ ุงู„ู…ุตูˆูุฉ ููŠ ุงู„ู…ุตูˆูุฉ
960
+
961
+ 241
962
+ 00:25:11,220 --> 00:25:16,730
963
+ ูˆุทู„ุน ุงู„ู†ุงุชุฌ ู‡ูˆ ู…ุตูˆูุฉ ุงู„ูˆุญุฏุฉูŠุจู‚ู‰ ุจู†ุงุกู‹ ุนู„ูŠู‡ ุจุฏู‘ูŠ
964
+
965
+ 242
966
+ 00:25:16,730 --> 00:25:22,310
967
+ ุฃุฑูˆุญ ุฃุฎุฏ ุงู„ู€ Determinant ู„ู„ู€ A Transpose ููŠ ุงู„ู€ A
968
+
969
+ 243
970
+ 00:25:22,310 --> 00:25:29,520
971
+ ุจุฏูŠ ุฃุณุงูˆูŠ Determinant ู„ู…ุตูˆูุฉ ุงู„ูˆุญุฏุฉุญุณุจ ุงู„ุฎูˆุงุต ูŠุจู‚ู‰
972
+
973
+ 244
974
+ 00:25:29,520 --> 00:25:34,100
975
+ ู‡ุฐุง ุงู„ู€ determinant ู„ู„ู€ A transpose ููŠ ุงู„ู€
976
+
977
+ 245
978
+ 00:25:34,100 --> 00:25:40,480
979
+ determinant ู„ู„ู€ A ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏ ูŠุงุด ูˆุงุญุฏ ุตุญูŠุญ ุทุจ ุงู„
980
+
981
+ 246
982
+ 00:25:40,480 --> 00:25:44,760
983
+ determinant ู„ู„ู€ A transpose ู‡ูˆ determinant ู„ู€ A
984
+
985
+ 247
986
+ 00:25:44,760 --> 00:25:50,290
987
+ ุงู„ู„ูŠ ู‡ูŠ ุฃูˆู„ ุฎุงุตูŠุฉ ู…ู† ุงู„ุฎูˆุงุต ุงู„ู…ุญุฏุฏุงุชู‡ุฐุง ู…ุนู†ุงู‡ ุฃู†
988
+
989
+ 248
990
+ 00:25:50,290 --> 00:25:55,690
991
+ ุงู„ู€ determinant ู„ู„ู€ A ููŠ ุงู„ู€ determinant ู„ู„ู€ A
992
+
993
+ 249
994
+ 00:25:55,690 --> 00:26:01,670
995
+ ุจูŠูƒูˆู† 1 ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ determinant ู„ู„ู€ A ู„ูƒู„
996
+
997
+ 250
998
+ 00:26:01,670 --> 00:26:07,110
999
+ ุชุฑุจูŠุฉ ุจูŠูƒูˆู† ุฌุฏุงุด 1 ู„ูˆ ุฃุฎุฐู†ุง ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุฉ ุฅู„ู‰
1000
+
1001
+ 251
1002
+ 00:26:07,110 --> 00:26:12,810
1003
+ ุงู„ุทุฑููŠู† ูŠุจู‚ู‰ ุงู„ู€ determinant ู„ู„ู€ A ุจูŠูƒูˆู† ุฌุฏุงุด ุฒุงุฆุฏ
1004
+
1005
+ 252
1006
+ 00:26:12,810 --> 00:26:19,340
1007
+ ุฃูˆ ู†ุงู‚ุต 1 ุทูŠุจ ูŠุจู‚ู‰ ุฃุธู† ู…ุง ู‡ูˆ ุงู„ู…ุทู„ูˆุจุŸูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ
1008
+
1009
+ 253
1010
+ 00:26:19,340 --> 00:26:24,680
1011
+ ู†ุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุชุงู„ุชุฉ ุงู„ู„ูŠ ู‡ูŠ ู†ู…ุฑุฉ ุงู„ู€C ู†ู…ุฑุฉ ุงู„ู€C
1012
+
1013
+ 254
1014
+ 00:26:24,680 --> 00:26:30,930
1015
+ ูŠุนุทูŠู†ูŠ ุฃู† ุงู„ู€A ุชุฑุจูŠุฉ ุชุณุงูˆูŠ ุงู„ู€AุจูŠู‚ูˆู„ ู„ูŠ ู…ุงุฐุง
1016
+
1017
+ 255
1018
+ 00:26:30,930 --> 00:26:36,510
1019
+ ุชุณุชุทูŠุน ุฃู† ุชู‚ูˆู„ ุนู† ุงู„ determinant ู„ู„ู€A ูŠุนู†ูŠ
1020
+
1021
+ 256
1022
+ 00:26:36,510 --> 00:26:41,050
1023
+ ู…ุงูŠุนุทูŠู†ูŠู‡ุง ุฏูŠ ุจู†ุณู…ูŠู‡ุง ููŠ ู„ุบุฉ ุงู„ุฌุจุฑ ุงู„ุนู†ุตุฑ ู…ุงุณู…ูŠู‡
1024
+
1025
+ 257
1026
+ 00:26:41,050 --> 00:26:46,050
1027
+ idempotent idempotent ู„ูˆ ูƒุงู† ู…ุฑุจุน ุงู„ุนู†ุตุฑ ุจูŠุนุทูŠู†ูŠ
1028
+
1029
+ 258
1030
+ 00:26:46,050 --> 00:26:51,010
1031
+ ู†ูุณ ุงู„ุนู†ุตุฑ ุงูŠู‡ ุชุฑุจูŠุฉ ุชุณุงูˆูŠ ุงูŠู‡ ู…ุนู†ุงุชู‡ ุงู„ matrix ุฏูŠ
1032
+
1033
+ 259
1034
+ 00:26:51,010 --> 00:26:57,370
1035
+ ุจู†ุณู…ูŠู‡ุง idempotentุงู†ุณู‰ ุจู„ุฒู… ูƒูŠุด ู„ูƒู† ุจุณ ู…ุฌุฑุฏ ู…ุนู„ูˆู…ุฉ
1036
+
1037
+ 260
1038
+ 00:26:57,370 --> 00:27:00,930
1039
+ ู„ู„ุชุฐูƒูŠุฑ ุงูˆ ู„ูˆ ู…ุฑุช ุนู„ูŠูƒ ููŠ ูŠูˆู… ู…ู† ุงู„ุงูŠุงู… ุชูƒูˆู†ูŠ ุนู„ู‰
1040
+
1041
+ 261
1042
+ 00:27:00,930 --> 00:27:04,150
1043
+ ุนู„ู… ูˆุฏุฑุงูŠุฉ ุจู‡ุง ุนู„ู‰ ูŠุนู†ูŠ ู…ุนู†ู‰ ุงู† ู…ุด ู‡ุฐุง ุงู„ู…ูˆุถูˆุน
1044
+
1045
+ 262
1046
+ 00:27:04,150 --> 00:27:08,810
1047
+ ูŠุจุฌูŠ ุงู†ุง ุนู†ุฏูŠ ู…ุฑุจุน ู„ูŠู‡ ู…ุตูˆูุฉ ุจูŠุนุทูŠู†ูŠ ู†ูุณ ุงู„ู…ุตูˆูุฉ
1048
+
1049
+ 263
1050
+ 00:27:08,810 --> 00:27:16,680
1051
+ ุจูŠู‚ูˆู„ูŠ ู…ุงุฐุง ูŠู…ูƒู† ุงู† ุชู‚ูˆู„ ุนู† ู…ุญุฏุฏ ุงู„ู…ุตูˆูุฉ ุงูŠู‡ุŸุจู‚ูˆู„ู‡
1052
+
1053
+ 264
1054
+ 00:27:16,680 --> 00:27:20,360
1055
+ ุชุนุงู„ู‰ ู†ุฌูŠุจ ุงู„ู…ุญุฏุฏ ูˆ ุจุนุฏูŠู† ุจูŠุตูŠุฑ ุฎูŠุฑ ูŠุชูู‡ู… ุนู†
1056
+
1057
+ 265
1058
+ 00:27:20,360 --> 00:27:25,880
1059
+ ุงู„ู…ูˆุถูˆุน ูŠุจู‚ู‰ ุจุงุฌูŠ ุจูŠู‚ูˆู„ู‡ ุฎุฏ ุงู„ู…ุญุฏุฏ ุจูŠุตูŠุฑ ุงู„
1060
+
1061
+ 266
1062
+ 00:27:25,880 --> 00:27:32,480
1063
+ determinant ู„ู„ A ุชุฑุจูŠุน ูŠุณูˆู‰ ุงู„ determinant ู„ู…ู†ุŸ ู„ู„
1064
+
1065
+ 267
1066
+ 00:27:32,480 --> 00:27:39,060
1067
+ A ุฃูˆ ุงู† ุดุฆุชู… ูู‚ูˆู„ูˆุง ูŠุจู‚ู‰ ุงู„ determinant ู„ู„ A ููŠ ุงู„
1068
+
1069
+ 268
1070
+ 00:27:39,060 --> 00:27:46,360
1071
+ A ูŠุณูˆู‰ ุงู„ determinant ู„ู„ A ุฃูˆ ุงู„ determinantู„ู„ู€ A
1072
+
1073
+ 269
1074
+ 00:27:46,360 --> 00:27:52,900
1075
+ ููŠ ุงู„ู€ determinant ู„ู„ู€ A ู†ุงู‚ุต ุงู„ู€ determinant ู„ู„ู€
1076
+
1077
+ 270
1078
+ 00:27:52,900 --> 00:27:58,960
1079
+ A ุจุฏู‡ ุณุงูˆูŠ Zero ููƒูŠุช ู‡ุฐู‡ ูƒุญุตู„ ุถุฑุจ two determinants
1080
+
1081
+ 271
1082
+ 00:27:58,960 --> 00:28:03,580
1083
+ ูˆ ุฃุถูุช ุณุงู„ุจ determinant A ู„ูŠู‡ุง ุงู„ุทุฑููŠู† ูุญุตู„ุช ุนู„ู‰
1084
+
1085
+ 272
1086
+ 00:28:03,580 --> 00:28:08,960
1087
+ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูˆ ูƒุฃู†ู‡ ุฃู†ุง ุนู†ุฏูŠ ู…ุนุงุฏู„ุฉ ู…ู† ุงู„ุฏุฑุฌุฉ
1088
+
1089
+ 273
1090
+ 00:28:08,960 --> 00:28:13,520
1091
+ ุงู„ุซุงู†ูŠุฉ ุจุงู„ู†ุณุจุฉ ู„ู€ determinant A ูˆ ุจุฏู‡ ุญู„ ู‡ุฐู‡
1092
+
1093
+ 274
1094
+ 00:28:13,520 --> 00:28:17,500
1095
+ ุงู„ู…ุนุงุฏู„ุฉุฅูŠู‡ ุฏู‡ ุญู„ูˆู„ุฉุŸ ุฎู„ุงุต ุฃู†ุง ูƒู†ุช ู‡ู†ุง ู…ู† ู‡ุฐู‡
1096
+
1097
+ 275
1098
+ 00:28:17,500 --> 00:28:22,760
1099
+ ุงู„ุดุบู„ุฉ ุฃุธู† ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐุง ู…ู…ูƒู† ุฃุงุฎุฏ determinant
1100
+
1101
+ 276
1102
+ 00:28:22,760 --> 00:28:29,000
1103
+ ู„ู„ู€A ุนุงู… ุงู„ู…ุดุชุฑูƒ ุจูŠุธู„ determinant ู„ู„ู€A ู†ุงู‚ุต ูˆุงุญุฏ
1104
+
1105
+ 277
1106
+ 00:28:29,000 --> 00:28:33,720
1107
+ ูŠุณุงูˆูŠ Zero ู…ุธุจูˆุทุŸ
1108
+
1109
+ 278
1110
+ 00:28:33,720 --> 00:28:38,540
1111
+ ุฅุฐุง ูŠุง ุฅู…ุง ุงู„ term ุงู„ุฃูˆู„ ู‡ูˆ ุงู„ู„ูŠ ุจูŠุณุงูˆูŠ Zero ูŠุง
1112
+
1113
+ 279
1114
+ 00:28:38,540 --> 00:28:43,740
1115
+ ุฅู…ุง ุงู„ term ุงู„ุชุงู†ูŠ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆู‚ุฏ ูŠูƒูˆู† ูƒู„ุงู‡ู…ุง
1116
+
1117
+ 280
1118
+ 00:28:43,740 --> 00:28:50,240
1119
+ ู…ุซู„ุงุงู„ู„ู‡ ุฃุนู„ู…ูŠุจู‚ู‰ ุจุงุฌูŠ ุจูŠู‚ูˆู„ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„
1120
+
1121
+ 281
1122
+ 00:28:50,240 --> 00:28:55,980
1123
+ determinant ู„ู„ A ุจุฏู‡ ูŠุณุงูˆูŠ 0 ุงูˆ ุงู„ determinant ู„ู„
1124
+
1125
+ 282
1126
+ 00:28:55,980 --> 00:29:01,840
1127
+ A minus ุงู„ 1 ู‡ูˆ ุงู„ู„ูŠ ุจุฏู‡ ูŠุณุงูˆูŠ 0 ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„
1128
+
1129
+ 283
1130
+ 00:29:01,840 --> 00:29:08,720
1131
+ determinant ู„ู„ A ุจุฏู‡ ูŠุณุงูˆูŠ 0 ุงูˆ ุงู„ determinant ู„ู„
1132
+
1133
+ 284
1134
+ 00:29:08,720 --> 00:29:14,280
1135
+ A ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด 1 ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ ุงู„ู„ูŠ ุจู†ุณุชุทูŠุน ู†ู‚ูˆู„ู‡
1136
+
1137
+ 285
1138
+ 00:29:14,280 --> 00:29:19,230
1139
+ ุนู† ุงู„ determinant ู„ู„ AูŠุง ุฅู…ุง ู…ุญุฏุฏ ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ
1140
+
1141
+ 286
1142
+ 00:29:19,230 --> 00:29:23,930
1143
+ ูŠุณุงูˆูŠ ุงู„ุตูุฑุŒ ูŠุง ุฅู…ุง ู…ุญุฏุฏ ู‡ุฐู‡ ุงู„ู…ุตูˆูุฉ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ
1144
+
1145
+ 287
1146
+ 00:29:23,930 --> 00:29:27,730
1147
+ ูŠุณุงูˆูŠ ูˆุงู‚ุนุŒ ุญู‚ ุตุญูŠุญ ู‡ุฐุง ูƒู„ ุงู„ู„ูŠ ุจู†ู‚ุฏุฑ ู†ู‚ูˆู„ู‡ ุนู†
1148
+
1149
+ 288
1150
+ 00:29:27,730 --> 00:29:32,570
1151
+ ุงู„ู‚ุตุฉ ู‡ุฐู‡ุŒ ุชู…ุงู…ุŸ ู„ุญุฏ ู‡ู†ุงุŒ stopุŒ ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„
1152
+
1153
+ 289
1154
+ 00:29:32,570 --> 00:29:38,130
1155
+ sectionุŒ ูˆู„ุง ูŠูƒูˆู† ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ุŒ ูŠุจู‚ู‰ ุจุฏุฃุฌูŠ ู„
1156
+
1157
+ 290
1158
+ 00:29:38,130 --> 00:29:38,910
1159
+ exercises
1160
+
1161
+ 291
1162
+ 00:29:41,390 --> 00:29:47,990
1163
+ ุฃุชู†ูŠู† ูˆุชุณุนุฉ ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ ุงู„ุณุคุงู„ ุงู„ุฑุงุจุน ูˆุงู„ุณุคุงู„
1164
+
1165
+ 292
1166
+ 00:29:47,990 --> 00:29:58,630
1167
+ ุงู„ุฎุงู…ุณ B ูˆุงู„ุณุคุงู„ ุงู„ุณุงุฏุณ A ูˆุงู„ุณุคุงู„ ุงู„ุณุงุจุน ูˆุจุนุฏ ุฐู„ูƒ
1168
+
1169
+ 293
1170
+ 00:29:58,630 --> 00:30:04,050
1171
+ ู…ู† ุชุณุนุฉ ู„ุบุงูŠุฉ ุฃุชู†ุงุดุฑ ู…ู† ุชุณุนุฉ ู„ุบุงูŠุฉ ุฃุชู†ุงุดุฑ
1172
+
1173
+ 294
1174
+ 00:30:29,610 --> 00:30:35,490
1175
+ ู†ู†ุชู‚ู„ ุงู„ุขู† ุฅู„ู‰ ุงู„ section ุงู„ู„ุฐูŠ ูŠู„ูŠู‡ ูˆู‡ูˆ section
1176
+
1177
+ 295
1178
+ 00:30:35,490 --> 00:30:41,410
1179
+ ุงู„ู€ cofactors ูŠุนู†ูŠ ุงู„ุนูˆุงู…ู„ ุงู„ู…ุฑุงูู‚ุฉ
1180
+
1181
+ 296
1182
+ 00:30:47,110 --> 00:30:54,590
1183
+ ู„ุบุงูŠุฉ ู‡ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ู‡ูŠ ุงู„ุงู…ุชุญุงู† ู„ุบุงูŠุฉ ู†ู‡ุงูŠุฉ 2 ุชุณุนุฉ
1184
+
1185
+ 297
1186
+ 00:30:54,590 --> 00:31:00,830
1187
+ ุทุจุนุง ุงู„ุงู…ุชุญุงู† ูŠูˆู… ุงู„ุชู„ุงุชุฉ ุงู„ู‚ุงุฏู… ูŠูˆู… 12 ุชู„ุงุชุฉ ุงู†
1188
+
1189
+ 298
1190
+ 00:31:00,830 --> 00:31:05,030
1191
+ ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ุนู„ู‰ ุฃูŠ ุญุงู„ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„
1192
+
1193
+ 299
1194
+ 00:31:05,030 --> 00:31:09,810
1195
+ section ุงู„ุฌุฏูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ section 210 ุงู„ู„ูŠ ู‡ูˆ
1196
+
1197
+ 300
1198
+ 00:31:09,810 --> 00:31:11,730
1199
+ cofactors
1200
+
1201
+ 301
1202
+ 00:31:13,630 --> 00:31:22,490
1203
+ ุงู„ุนูˆุงู…ู„ ุงู„ู…ุฑุงูู‚ุฉ ู†ุนุทูŠ ุจุนุถ ุงู„ุชุนุฑูŠูุงุช Definition let
1204
+
1205
+ 302
1206
+ 00:31:22,490 --> 00:31:33,930
1207
+ A be an mร—n matrix then
1208
+
1209
+ 303
1210
+ 00:31:33,930 --> 00:31:35,350
1211
+ a submatrix
1212
+
1213
+ 304
1214
+ 00:31:41,780 --> 00:31:50,680
1215
+ ู…ุตูˆูุฉ ุฌุฒุฆูŠุฉ is a matrix is a matrix ู‡ูŠ ุนุจุงุฑุฉ ุนู†
1216
+
1217
+ 305
1218
+ 00:31:50,680 --> 00:31:56,840
1219
+ ู…ุตูˆูุฉ obtained from
1220
+
1221
+ 306
1222
+ 00:31:56,840 --> 00:32:10,800
1223
+ a ู…ู† ุงู„ู…ุตูˆูุฉ a by adding by deleting ูˆู„ูŠุณ adding
1224
+
1225
+ 307
1226
+ 00:32:14,900 --> 00:32:20,660
1227
+ by deleting rows or
1228
+
1229
+ 308
1230
+ 00:32:20,660 --> 00:32:25,180
1231
+ columns or
1232
+
1233
+ 309
1234
+ 00:32:25,180 --> 00:32:39,920
1235
+ columns of a or both ุฃูˆ ูƒู„ู‡ู…ุง definition ุชุงู†ูŠ if
1236
+
1237
+ 310
1238
+ 00:32:42,730 --> 00:32:57,410
1239
+ ุงู„ู€ A is a square matrix ู…ุตูˆูุฉ ู…ุฑุจุนุฉ order N ู…ู†
1240
+
1241
+ 311
1242
+ 00:32:57,410 --> 00:33:06,090
1243
+ ุงู„ุฑุชุจุฉ ุงู„ู†ูˆู†ูŠุฉ then the minor of
1244
+
1245
+ 312
1246
+ 00:33:06,090 --> 00:33:11,530
1247
+ the
1248
+
1249
+ 313
1250
+ 00:33:15,270 --> 00:33:22,830
1251
+ Element The minor of the element AIK
1252
+
1253
+ 314
1254
+ 00:33:22,830 --> 00:33:25,850
1255
+ AIK
1256
+
1257
+ 315
1258
+ 00:33:25,850 --> 00:33:33,890
1259
+ is the determinant is the determinant
1260
+
1261
+ 316
1262
+ 00:33:33,890 --> 00:33:38,670
1263
+ of
1264
+
1265
+ 317
1266
+ 00:33:38,670 --> 00:33:41,350
1267
+ the determinant
1268
+
1269
+ 318
1270
+ 00:33:43,820 --> 00:33:49,760
1271
+ of a submatrix
1272
+
1273
+ 319
1274
+ 00:33:49,760 --> 00:34:07,760
1275
+ of a of order n minus one that obtained ูˆุงู„ู„ูŠ
1276
+
1277
+ 320
1278
+ 00:34:07,760 --> 00:34:10,560
1279
+ ุญุตู„ู†ูŠ ุนู„ูŠู‡ by deleting
1280
+
1281
+ 321
1282
+ 00:34:16,960 --> 00:34:24,600
1283
+ by deleting the I throw the
1284
+
1285
+ 322
1286
+ 00:34:24,600 --> 00:34:39,780
1287
+ I throw and ูƒุซู‚ุงู„ ูƒุซู‚ุงู„
1288
+
1289
+ 323
1290
+ 00:34:39,780 --> 00:34:50,840
1291
+ of ุงูŠู‡ ุงุทู„ุจ English ูŠุนู†ูŠthe raw and
1292
+
1293
+ 324
1294
+ 00:34:50,840 --> 00:34:57,180
1295
+ the
1296
+
1297
+ 325
1298
+ 00:34:57,180 --> 00:35:00,600
1299
+ calm
1300
+
1301
+ 326
1302
+ 00:35:00,600 --> 00:35:10,620
1303
+ of
1304
+
1305
+ 327
1306
+ 00:35:10,620 --> 00:35:12,800
1307
+ aik
1308
+
1309
+ 328
1310
+ 00:35:16,440 --> 00:35:22,800
1311
+ this minor this
1312
+
1313
+ 329
1314
+ 00:35:22,800 --> 00:35:34,840
1315
+ minor is denoted by mik
1316
+
1317
+ 330
1318
+ 00:35:34,840 --> 00:35:41,780
1319
+ command
1320
+
1321
+ 331
1322
+ 00:35:41,780 --> 00:35:42,420
1323
+ definition
1324
+
1325
+ 332
1326
+ 00:35:49,700 --> 00:35:56,180
1327
+ ู…ุน ุงู„ู€ square matrix
1328
+
1329
+ 333
1330
+ 00:35:56,180 --> 00:36:10,280
1331
+ of order n ู†ุฏูุน
1332
+
1333
+ 334
1334
+ 00:36:15,250 --> 00:36:22,070
1335
+ The Cofactor The
1336
+
1337
+ 335
1338
+ 00:36:22,070 --> 00:36:32,890
1339
+ Cofactor Of The Element Cofactor
1340
+
1341
+ 336
1342
+ 00:36:32,890 --> 00:36:36,970
1343
+ Of The
1344
+
1345
+ 337
1346
+ 00:36:36,970 --> 00:36:40,290
1347
+ Element AIK
1348
+
1349
+ 338
1350
+ 00:36:42,490 --> 00:36:53,070
1351
+ aik to be the number to be the number ูˆุนุจุงุฑุฉ ุนู†
1352
+
1353
+ 339
1354
+ 00:36:53,070 --> 00:36:57,570
1355
+ ุงู„ุฑู‚ู… aik
1356
+
1357
+ 340
1358
+ 00:36:57,570 --> 00:37:06,950
1359
+ ูˆุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ุงุต ุงูŠ ุฒุงุฆุฏ ูƒ ู…
1360
+
1361
+ 341
1362
+ 00:37:06,950 --> 00:37:10,270
1363
+ ุงูŠ ูƒ
1364
+
1365
+ 342
1366
+ 00:37:43,380 --> 00:37:49,760
1367
+ example let a ุชุณุงูˆูŠ
1368
+
1369
+ 343
1370
+ 00:37:49,760 --> 00:37:59,720
1371
+ ูˆุงุญุฏ ุชู„ุงุชุฉ ุงุชู†ูŠู† ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ ุงุฑุจุนุฉ ู†ุงู‚ุต
1372
+
1373
+ 344
1374
+ 00:37:59,720 --> 00:38:13,630
1375
+ ุชู„ุงุชุฉ ุฎู…ุณุฉ zeroุงู„ู…ุทู„ุจ ุงู„ุฃูˆู„ ู†ู…ุฑุฉ a find the minor
1376
+
1377
+ 345
1378
+ 00:38:13,630 --> 00:38:18,930
1379
+ of the
1380
+
1381
+ 346
1382
+ 00:38:18,930 --> 00:38:32,550
1383
+ elements of the element ุฎู…ุณุฉ and zero ู†ู…ุฑุฉ bFind
1384
+
1385
+ 347
1386
+ 00:38:32,550 --> 00:38:38,550
1387
+ the cofactors
1388
+
1389
+ 348
1390
+ 00:38:38,550 --> 00:38:44,330
1391
+ of the elements ุฎู…ุณุฉ and ุฒูŠุฑูˆ
1392
+
1393
+ 349
1394
+ 00:39:36,670 --> 00:39:41,610
1395
+ ู†ุฑุฌุน ู„ูƒู„ุงู… ุงู„ู„ูŠ ุงุญู†ุง ูƒุงุชุจูŠู†ู‡ ุงู„ู€ cofactors ุงู„ุนูˆุงู…ู„
1396
+
1397
+ 350
1398
+ 00:39:41,610 --> 00:39:48,110
1399
+ ุงู„ู…ุฑุงูู‚ุฉ ู†ุนุทูŠู‡ ุซู„ุงุซ ุชุนุฑูŠูุงุช ูˆ ู…ู† ุซู… ู†ุฐู‡ุจ ุงู„ู‰
1400
+
1401
+ 351
1402
+ 00:39:48,110 --> 00:39:53,190
1403
+ ุงุณุชุฎุฏุงู… ู‡ุฐู‡ ุงู„ุชุนุฑูŠูุงุช ุจุงู„ู…ุซุงู„ุจู‚ูˆู„ ู„ูƒ ุงู„ a ุจูŠ ุงู† m
1404
+
1405
+ 352
1406
+ 00:39:53,190 --> 00:39:57,450
1407
+ by n matrix then a submatrix is a matrix obtained
1408
+
1409
+ 353
1410
+ 00:39:57,450 --> 00:40:02,410
1411
+ from a by deleting rows or columns or both ูŠุนู†ูŠ
1412
+
1413
+ 354
1414
+ 00:40:02,410 --> 00:40:07,750
1415
+ ู‡ู†ุง ุจุชุชูƒู„ู… ุนู„ู‰ ู…ุตููˆูุฉ ุฌุฒุฆูŠุฉ sub matrix ูŠุนู†ูŠ ู…ุตููˆูุฉ
1416
+
1417
+ 355
1418
+ 00:40:07,750 --> 00:40:14,890
1419
+ ุฌุฒุฆูŠุฉ ุฅุฐุง ุงุญู†ุง ู…ู† ู…ุตููˆูุฉ ุนู†ุฏู†ุง ุจุฏู†ุง ุจุฏู†ุง ู†ุฌูŠุจ
1420
+
1421
+ 356
1422
+ 00:40:14,890 --> 00:40:19,150
1423
+ ู…ุตููˆูุฉ ุฌุฒุฆูŠุฉ ู…ุซุงู„ ูˆ ุฐู„ูƒู„ูˆ ุงุนุชุจุฑุช ูŠุง ุจู†ุงุช ุงู„ู„ูŠ
1424
+
1425
+ 357
1426
+ 00:40:19,150 --> 00:40:23,470
1427
+ ุฌุงุนุฏุชู‡ุง ุฏูˆู„ ููŠ ุงู„ุดุฌุฉ ู‡ุฐู‡ ูƒู„ู‡ู… matrix ู‡ุฏูˆู„ ุฌูŠู†ุง
1428
+
1429
+ 358
1430
+ 00:40:23,470 --> 00:40:27,930
1431
+ ุฌู„ู†ุง ู„ู„ุตู ุงู„ุฃูˆู„ ูŠู„ุง ุฌู… ู…ู† ู‡ู†ุง ูŠุจู‚ุงุด ุจูŠุตูŠุฑู‡ู… sub
1432
+
1433
+ 359
1434
+ 00:40:27,930 --> 00:40:31,990
1435
+ matrix ุงู„ู„ูŠ ุจูŠุงุฎุฏ ู…ู†ู‡ู… ุงู„ sub matrix ุฃูˆ ุฌู„ู†ุง ู„ู„ุตู
1436
+
1437
+ 360
1438
+ 00:40:31,990 --> 00:40:35,940
1439
+ ู‡ุฐุง ูƒู„ู‡ ูŠู„ุง ุงู†ุช ุฌู„ุน ุงู„ุดุฌุฉ ุงู„ุชุงู†ูŠุฉูŠุจู‚ู‰ ุงู„ุจุงู‚ูŠุฉ ู‡ู†ุง
1440
+
1441
+ 361
1442
+ 00:40:35,940 --> 00:40:41,160
1443
+ sub matrix ู…ู† ุงู„ matrix ุงู„ุงุตู„ูŠุฉ ูˆูŠู…ูƒู† ุงู‚ูˆู„ ุงู„ุตู
1444
+
1445
+ 362
1446
+ 00:40:41,160 --> 00:40:44,840
1447
+ ู‡ุฐุง ูˆ ุงู„ุตู ู‡ุฐุง ูŠุงู„ุง ู…ุน ุงู„ุณู„ุงู…ุฉ ุงู„ุตู ูˆุงู„ุนู…ูˆุฏ ูŠุนู†ูŠ
1448
+
1449
+ 363
1450
+ 00:40:44,840 --> 00:40:48,180
1451
+ ูŠุงู„ุง ุงู†ุชุฌู„ูˆุง ุนู„ู‰ ุงู„ุดุฌุฑุฉ ุชุงู†ูŠุฉ ูŠุจู‚ู‰ ุงู„ุจุงู‚ูŠุฉ ุฏู‡ ูƒู„ู‡
1452
+
1453
+ 364
1454
+ 00:40:48,180 --> 00:40:53,560
1455
+ ู…ุงู„ู‡ sub matrix ูŠุจู‚ู‰ ู‡ู†ุง ุงุฐุง ุดุทุจุช ุตู ู…ู† ุตููˆู
1456
+
1457
+ 365
1458
+ 00:40:53,560 --> 00:41:00,730
1459
+ ุงู„ู…ุตุญูุฉ ุงูˆ ุงูƒุซุฑุฃูˆ ุดุทุจุช ุนู…ูˆุฏ ุฃูˆ ุฃูƒุชุฑ ุฃูˆ ุดุทุจุช ุตู ูˆ
1460
+
1461
+ 366
1462
+ 00:41:00,730 --> 00:41:06,890
1463
+ ุนู…ูˆุฏ ููŠ ุฃูŠ ูˆุงุญุฏ or both ูƒู„ู‡ู… ุตู ูˆ ุนู…ูˆุฏ ูŠุจู‚ู‰
1464
+
1465
+ 367
1466
+ 00:41:06,890 --> 00:41:12,810
1467
+ ุงู„ู…ุตุญูˆู ุงู„ู…ุชุจู‚ูŠุฉ ุจู†ุณู…ูŠู‡ุง sub matrix ู…ุตุญูˆูุฉ ุฌุฒุฆูŠุฉ
1468
+
1469
+ 368
1470
+ 00:41:12,810 --> 00:41:18,250
1471
+ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ู…ุตุญูˆู ุงู„ุฃูˆู„ู‰ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„
1472
+
1473
+ 369
1474
+ 00:41:18,250 --> 00:41:23,250
1475
+ definition ุงู„ุฃูˆู„ ุฃุธู† ุจุณูŠุท ุฌุฏุง ุจุชุฏูˆ ุงู„ุดุบู„ุงู„ู€
1476
+
1477
+ 370
1478
+ 00:41:23,250 --> 00:41:27,330
1479
+ Definition ุงู„ุชุงู†ูŠุฉ ุจู‚ูˆู„ ู„ูˆ ูƒุงู†ุช ุงู„ A ู…ุตููˆูุฉ ู…ุฑุจุน
1480
+
1481
+ 371
1482
+ 00:41:27,330 --> 00:41:32,390
1483
+ ุงู„ู‚ุฑุฑ ุชุจุนู‡ุง N ูŠุจู‚ู‰ The Minor The Minor ูŠุจู‚ู‰ ู„ุบุชู†ุง
1484
+
1485
+ 372
1486
+ 00:41:32,390 --> 00:41:38,590
1487
+ ุงู„ุนุฑุจูŠุฉ ู…ุณุชู…ูŠุฉ ุงู„ู…ุญุฏุฏ ุฃูˆ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑูŠุนู†ูŠ ุฅุฐุง
1488
+
1489
+ 373
1490
+ 00:41:38,590 --> 00:41:43,330
1491
+ ุนู†ุฏูŠ ู…ุตููˆูุฉ ุฃุตู„ูŠุฉ ุงูŠู‡ุŸ ู‡ู‡ ู‡ุง ุฏูŠ ุจู‚ูˆู„ ุงู„ู…ุญุฏุฏ ุชุจุน
1492
+
1493
+ 374
1494
+ 00:41:43,330 --> 00:41:47,530
1495
+ ุงู„ู…ุตููˆูุฉ ุฅูŠู‡ ุฅุฐุง ุดุทุจุช ุฅู†ู‡ุง ุตููˆู ุฃูˆ ุนู…ุฏุฉ ูˆ ุฌูŠุช ุฃุญุณุจ
1496
+
1497
+ 375
1498
+ 00:41:47,530 --> 00:41:51,770
1499
+ ุฅูŠู‡ ุงู„ู…ุญุฏุฏุŒ ู‡ุง ุฏูŠ ุจู‚ู‰ ูŠุณู…ูŠู‡ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุฃูˆ
1500
+
1501
+ 376
1502
+ 00:41:51,770 --> 00:42:01,150
1503
+ ุงู„ู…ุญูŠุฏุฏูŠุจู‚ู‰ ุงู„ู€ minor ู‡ูˆ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุฃูˆ ุงู„ู…ุญูŠุฏุฏ
1504
+
1505
+ 377
1506
+ 00:42:01,150 --> 00:42:06,850
1507
+ ุงู„ู…ู†ุงุธุฑ ู„ู…ูŠู† ุฃูˆ ุงู„ู…ุฃุฎูˆุฐ ู…ู† ู„ูŠู‡ ุงู„ sub matrix ู…ู† ู…ู†
1508
+
1509
+ 378
1510
+ 00:42:06,850 --> 00:42:12,570
1511
+ ู…ู† ุงู„ matrix ุงู„ุฃุตู„ูŠุฉ ูุจู‚ูˆู„ F ู„ูŠู‡ุง is a square
1512
+
1513
+ 379
1514
+ 00:42:12,570 --> 00:42:18,210
1515
+ matrix of order N ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู…ุตูˆู N ู…ู† ุงู„ุตููˆู ูˆ N
1516
+
1517
+ 380
1518
+ 00:42:18,210 --> 00:42:23,740
1519
+ ู…ู† ุงู„ุฃุนู…ุฏุฉุงู„ู€ Minor than the minor of the element
1520
+
1521
+ 381
1522
+ 00:42:23,740 --> 00:42:31,760
1523
+ AIK ูŠุจู‚ู‰ ุฃู†ุง ููŠ ุนู†ุฏูŠ ู…ุญุฏุฏ ุฃุตุบุฑ ู…ู†ุงุธุฑ ู„ุฃูŠ ุนู†ุตุฑ ู…ู†
1524
+
1525
+ 382
1526
+ 00:42:31,760 --> 00:42:40,290
1527
+ ุนู†ุงุตุฑ ุงู„ู…ุญุฏุฏุชุฐูƒุฑูˆุง ู‚ุจู„ ู‡ูŠูƒ ุงุนุทูŠู†ุงูƒู… ู…ุญุฏุฏ ูˆู‚ู„ู†ุง
1528
+
1529
+ 383
1530
+ 00:42:40,290 --> 00:42:43,570
1531
+ ุจูŠู†ุง ู†ุญุณุจ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ุงู„ุซู„ุงุซูŠ ูˆู‚ู„ู†ุง ู„ูƒู… ู†ุณุชุทูŠุน
1532
+
1533
+ 384
1534
+ 00:42:43,570 --> 00:42:49,090
1535
+ ุฑูุนูƒู… ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงูŠ ุตู ุฃูˆ ุงูŠ ุนู…ูˆุฏ ู…ุธุจูˆุท ู…ุณูƒุช
1536
+
1537
+ 385
1538
+ 00:42:49,090 --> 00:42:53,270
1539
+ ุงู„ุนู†ุตุฑ ุงูˆู„ ูˆู‚ู„ู†ุง ุงุดุทุจ ุตูู‡ ูˆ ุงุดุทุจ ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ ุงู„ู„ูŠ
1540
+
1541
+ 386
1542
+ 00:42:53,270 --> 00:42:59,630
1543
+ ุจูŠุธู„ ู‡ุฐุง ู‡ูˆ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุงู„ู…ู†ุงุธุฑ ู„ู„ุนู†ุตุฑ ู‡ุฐุงุจุนุฏูŠู†
1544
+
1545
+ 387
1546
+ 00:42:59,630 --> 00:43:04,230
1547
+ ุงู†ุชู‚ู„ ู„ุนู†ุตุฑ ุงู„ู„ูŠ ุจุนุฏู‡ ุงุดุทุจ ุงู„ุนู…ูˆุฏ ูˆุงู„ุตู ุชุจุนู‡ ุงู„ู„ูŠ
1548
+
1549
+ 388
1550
+ 00:43:04,230 --> 00:43:08,170
1551
+ ุจูŠุธู„ ุนู„ู‰ ุงู„ุทุฑููŠู† ู‡ุฐุง ู‡ูˆ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ู…ู†ุธุฑู‡ ู„ู‡ ูˆ
1552
+
1553
+ 389
1554
+ 00:43:08,170 --> 00:43:14,190
1555
+ ู‡ูƒุฐุง ูŠุจู‚ู‰ ู…ุฑุฉ ุชุงู†ูŠุฉ ุจู‚ูˆู„ ู„ูˆ ุนู†ุฏูŠ ู…ุตููˆู A ุงู„ order
1556
+
1557
+ 390
1558
+ 00:43:14,190 --> 00:43:20,890
1559
+ ุชุจุนู‡ุง ูŠุณุงูˆูŠ M the minor of the element AIK ุงู„ู…ุญุฏุฏ
1560
+
1561
+ 391
1562
+ 00:43:20,890 --> 00:43:27,920
1563
+ ุงู„ุฃุตุบุฑ ุงู„ุฎุงุต ุจุงู„ุนู†ุตุฑ AIKis the determinant of a
1564
+
1565
+ 392
1566
+ 00:43:27,920 --> 00:43:33,520
1567
+ sub matrix of A ู‡ูˆ ู…ุญุฏุฏ ู„ู…ุตูˆูุฉ ุฌุฒุฆูŠุฉ ู…ู† L ู‚ุฑู‡
1568
+
1569
+ 393
1570
+ 00:43:33,520 --> 00:43:40,000
1571
+ ุชุจุนู‡ุง ุฌุฏุงุด N ุณุงู„ุจ ูˆุงุญุฏ ูŠุนู†ูŠ ุดุทุงุจ ุตู ูˆุนู…ูˆุฏ ู…ู† ุงู„ุตู
1572
+
1573
+ 394
1574
+ 00:43:40,000 --> 00:43:45,180
1575
+ ูˆุงู„ุนู…ูˆุฏ ุงู„ุตู ูˆุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ูŠู‚ุน ููŠู‡ ู‡ุฐุง ุงู„ุนู†ุตุฑูŠุนู†ูŠ
1576
+
1577
+ 395
1578
+ 00:43:45,180 --> 00:43:50,460
1579
+ ู„ูˆ ู‚ู„ุช I ุจุงุชู†ูŠู† ูˆ K ุจุชู„ุงุชุฉ ูŠุจู‚ู‰ ุจุฏุฑุดุชู‡ ุจุงู„ุตู
1580
+
1581
+ 396
1582
+ 00:43:50,460 --> 00:43:55,960
1583
+ ุงู„ุซุงู†ูŠ ูˆุงู„ุนู…ูˆุฏ ุงู„ุซุงู„ุซ ุงู„ุฐูŠ ูŠู‚ุนุฏ ุงู„ู„ูŠ ุจูŠุธู„ ู‡ูŠ ู…ุตูˆูุฉ
1584
+
1585
+ 397
1586
+ 00:43:55,960 --> 00:44:01,320
1587
+ ุฌุฒุฆูŠุฉ ู…ู† ุงู„ู…ุตูˆูุฉ ุงู„ุฃุตู„ูŠุฉ ูˆุจุงู„ุชุงู„ูŠ ุงู„ู…ุญุฏุฏ ุชุจุนู‡ุง ุจุฏู„
1588
+
1589
+ 398
1590
+ 00:44:01,320 --> 00:44:06,160
1591
+ ู…ุง ูƒุงู† ู…ู† ุงู„ุฑุซุจู‡ ุฃู†ู‡ ูŠุตุจุญ ู…ู† ุงู„ุฑุซุจู‡ N ู†ุงู‚ุต ูˆุงุญุฏ
1592
+
1593
+ 399
1594
+ 00:44:06,160 --> 00:44:11,280
1595
+ ูˆุงุถุญุฉ ุตูŠู†ูŠู‡ ูŠุนู†ูŠ ู…ุซู„ุง ู„ูˆ ุฌูŠุช ุงูุชุฑุถุช ุงู† ุงู„ุดุฌุฑุฉ ุงู„ู„ูŠ
1596
+
1597
+ 400
1598
+ 00:44:11,280 --> 00:44:13,400
1599
+ ููŠู‡ุง ุงู„ุทู„ุจุงุช ู…ุตูˆูุฉ ู…ุฑุจุนุฉ
1600
+
1601
+ 401
1602
+ 00:44:21,150 --> 00:44:27,090
1603
+ ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ููŠู‡ ุงู„ู…ุชุจู‚ูŠ ู‡ูŠ ู…ุตููˆูุฉ ู…ุฑุจุนุฉ ู†ู‚ุตุฉ ุตู ูˆ
1604
+
1605
+ 402
1606
+ 00:44:27,090 --> 00:44:31,230
1607
+ ู†ู‚ุตุฉ ุนู…ูˆุฏ ูŠุจู‚ู‰ ุจุฏู„ ู…ุง ูƒุงู†ุช ู…ู† ุงู„ุฑุชุจุฉ ุงู†ุตุฑุช ู…ู†
1608
+
1609
+ 403
1610
+ 00:44:31,230 --> 00:44:36,110
1611
+ ุงู„ุฑุชุจุฉ ุงู„ู†ุงู‚ุต ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุงูŠ ุงู„ู…ู‚ุตูˆุฏ ุจู‡ุฐุง ุงู„ุชุนุฑูŠุจ
1612
+
1613
+ 404
1614
+ 00:44:36,410 --> 00:44:42,630
1615
+ that obtained by deleting ูŠุนู†ูŠ ูƒูŠู ุญุตู„ู†ุง ุนู„ูŠ ู‡ุฐุง
1616
+
1617
+ 405
1618
+ 00:44:42,630 --> 00:44:48,650
1619
+ by obtaining by deleting the i-th row and ูƒุฐุง ูŠุนู†ูŠ
1620
+
1621
+ 406
1622
+ 00:44:48,650 --> 00:44:55,750
1623
+ ุจุงู„ุดุทุจ ุงู„ุตู ุฑู‚ู… I ูˆุงู„ุนู…ูˆุฏ ุฑู‚ู… Kุงู„ุนู†ุตุฑ ูŠู‚ุน ููŠ ุงู„ุตู
1624
+
1625
+ 407
1626
+ 00:44:55,750 --> 00:44:59,370
1627
+ ุงู„ูู„ุงู†ูŠ ู†ุดุทุจ ุตูู‡ ูˆูŠู‚ุน ููŠ ุงู„ุนู…ูˆุฏ ุงู„ูู„ุงู†ูŠ ูŠุจู‚ู‰ ู…ู†ู‡ุด
1628
+
1629
+ 408
1630
+ 00:44:59,370 --> 00:45:03,690
1631
+ ู†ุดุทุจ ุนู…ูˆุฏู‡ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงู„ุฃุฎุช ู‡ุฐู‡ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู†ุดุทุจ
1632
+
1633
+ 409
1634
+ 00:45:03,690 --> 00:45:08,170
1635
+ ุงู„ุตู ุงู„ู„ุชูŠ ุชู‚ุน ููŠู‡ ูˆู†ุดุทุจ ุงู„ุนู…ูˆุฏ ุงู„ู„ุชูŠ ุชู‚ุน ููŠู‡
1636
+
1637
+ 410
1638
+ 00:45:08,170 --> 00:45:15,170
1639
+ ุงู„ู…ุชุจู‚ูŠ ู‡ูˆ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุงู„ู…ู†ุงุธุฑ ู„ู‡ุฐู‡ ุงู„ุฃุฎุช ุจุณ
1640
+
1641
+ 411
1642
+ 00:45:15,170 --> 00:45:16,010
1643
+ ุตุนุจุŸ
1644
+
1645
+ 412
1646
+ 00:45:18,440 --> 00:45:23,160
1647
+ ู‡ูŠ ู†ุฌูŠ ุญุทูŠุช ุจูŠู†ุฌูˆุณูŠู† ุฐุฑู‡ and the column of a k
1648
+
1649
+ 413
1650
+ 00:45:23,160 --> 00:45:28,120
1651
+ ูŠุนู†ูŠ ุงู„ุตู ูˆ ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ูŠู‚ุน ููŠู‡ ุงู„ุนู†ุตุฑ a i k ุทูŠุจ
1652
+
1653
+ 414
1654
+ 00:45:28,120 --> 00:45:33,400
1655
+ ุฎู„ุงุต ู„ู…ุง ู†ู‚ุตุช ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุงู„ minor
1656
+
1657
+ 415
1658
+ 00:45:33,400 --> 00:45:37,860
1659
+ ุจุฏู†ุง ู†ุฌูŠ ู„ุงู„ู…ูˆุถูˆุน ุงู„ู„ูŠ ุงุญู†ุง ุจุฏู†ุง ูŠุงู‡ ูˆ ุงุญู†ุง ุฑูุนูŠู†ู‡
1660
+
1661
+ 416
1662
+ 00:45:37,860 --> 00:45:41,760
1663
+ ุงู„ cofactor ุจุณ ู‚ุจู„ ุงู„ factor ุงู„ minor ู‡ุฐุง ู‡ุฏู„ู‡ ุฑู…ุฒ
1664
+
1665
+ 417
1666
+ 00:45:41,760 --> 00:45:51,610
1667
+ m i k ูŠุจู‚ู‰ m i k ุนู†ุตุฑ ูˆู„ุง ู…ุญุฏุฏู…ุญุฏุฏ ุฃุตุบุฑ ูŠุจู‚ู‰ MIK
1668
+
1669
+ 418
1670
+ 00:46:00,750 --> 00:46:05,650
1671
+ ุงู„ุงู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ูŠู†ุŸ for the square matrix ู„ู„ู…ุตูˆูุฉ
1672
+
1673
+ 419
1674
+ 00:46:05,650 --> 00:46:13,350
1675
+ ุงู„ู…ุฑุจุน of order n we define the cofactor ุงู„ุนู…ู„ูŠ
1676
+
1677
+ 420
1678
+ 00:46:13,350 --> 00:46:19,290
1679
+ ุงู„ู…ุฑุงูู‚ ู„ู„ element ik to be the number aik ู…ูŠู† ู‡ูˆ
1680
+
1681
+ 421
1682
+ 00:46:19,290 --> 00:46:25,290
1683
+ aikุŸ ูŠุจู‚ู‰ ุณู„ุจ ูˆุงุญุฏ ุงู‚ุต ุงูŠูƒ ุงูŠ ุฒุงูŠุฏ ูƒ ููŠ ุงู„ MIK
1684
+
1685
+ 422
1686
+ 00:46:26,140 --> 00:46:29,340
1687
+ ูุงูƒุฑูŠู† ู„ู…ุง ูƒู†ุง ุงู„ู…ุญุฏุฏ ุจูŠุฌูŠู†ุง ูˆ ุจูŠู‚ูˆู„ ุงู„ู„ูŠ ุจู†ููƒู‡
1688
+
1689
+ 423
1690
+ 00:46:29,340 --> 00:46:32,860
1691
+ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุฃูŠ ุตู ูˆ ุฃูŠ ุนู…ูˆุฏุŸ ู…ุนู…ุฑุงุชุŒ ู‚ุงุนุฏุฉ
1692
+
1693
+ 424
1694
+ 00:46:32,860 --> 00:46:37,700
1695
+ ุงู„ุฅุดุงุฑุงุชุŒ ู‡ุฐู‡ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุชุŒ ู„ูŠุณ ุงู„ุง ุฃู†ุง ู…ุงุฎุฏ
1696
+
1697
+ 425
1698
+ 00:46:37,700 --> 00:46:43,280
1699
+ ุงู„ุนู†ุตุฑ ููŠ ุงู„ุตู ุงู„ุฃูˆู„ ูˆ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠูŠุจู‚ู‰ ุจุฏุฃ ุฃู‚ูˆู„
1700
+
1701
+ 426
1702
+ 00:46:43,280 --> 00:46:48,220
1703
+ ุณุงู„ุจ ูˆุงุญุฏ ุฃุณ ูˆุงุญุฏ ุฒุงุฆุฏ ุงุชู†ูŠู† ูŠุนู†ูŠ ุฃุณ ุชู„ุงุชูƒ ุจุฅุดุงุฑุฉ
1704
+
1705
+ 427
1706
+ 00:46:48,220 --> 00:46:53,580
1707
+ ุณุงู„ุจ ุจุตูŠุฑ ุงู„ุนู†ุตุฑ ู‡ุฐุง ุจุฅุดุงุฑุฉ ุณุงู„ุจ ู‡ุฐู‡ ูƒู†ุง ุณู…ูŠู‡ุง ู‚ุจู„
1708
+
1709
+ 428
1710
+ 00:46:53,580 --> 00:46:59,340
1711
+ ุฐู„ูƒ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช ูŠุจู‚ู‰ ุจุญุตู„ ุนู„ู‰ ุงู„ cofactor ุฅุฐุง
1712
+
1713
+ 429
1714
+ 00:46:59,340 --> 00:47:03,940
1715
+ ุญุตู„ุช ุนู„ู‰ ุงู„ minor ูˆ ุงู„ minor ู‡ุฐุง ู‚ุฏ ูŠูƒูˆู† ุจุฅุดุงุฑุฉ
1716
+
1717
+ 430
1718
+ 00:47:03,940 --> 00:47:09,130
1719
+ ุณุงู„ุจุฉ ุฃูˆ ุจุฅุดุงุฑุฉ ู…ูˆุฌุจุฉุญุณุจ ุฌู…ุน I ุฒุงุฆุฏ K ุฅู† ูƒุงู† ุนุฏุฏุง
1720
+
1721
+ 431
1722
+ 00:47:09,130 --> 00:47:13,570
1723
+ ูุฑุฏูŠุง ูุงู„ุฅุดุงุฑุฉ ุจุงู„ุณุงู„ุจ ูˆุฅู† ูƒุงู† ุนุฏุฏุง ุฒูˆุฌูŠุง ูุงู„ุฅุดุงุฑุฉ
1724
+
1725
+ 432
1726
+ 00:47:13,570 --> 00:47:18,270
1727
+ ุจุงู„ู…ูˆุฌุจ ูƒู…ุง ุณู†ุฑู‰ ุนุธูŠู… ูˆุงุถุญ ู‡ุฐุง ุงู„ูƒู„ุงู… ุทูŠุจ ู†ุงุฎุฏ
1728
+
1729
+ 433
1730
+ 00:47:18,270 --> 00:47:22,700
1731
+ ู…ุซุงู„ ุนู…ู„ูŠ ุนู„ู‰ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุจู†ู‚ูˆู„ู‡ ู‡ู†ุงู…ุนุทูŠู†ูŠ ู…ุตุญูˆูุฉ
1732
+
1733
+ 434
1734
+ 00:47:22,700 --> 00:47:27,080
1735
+ ู†ุธุงู…ู‡ุง ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ูˆู‚ุงู„ ู„ูŠ ู‡ุงุช ู„ู„ minor ู„ู„
1736
+
1737
+ 435
1738
+ 00:47:27,080 --> 00:47:32,820
1739
+ elements ุงู„ู„ูŠ ู‡ูˆ ุฎู…ุณุฉ ูˆุฒูŠู‡ ุชู…ุงู… ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ
1740
+
1741
+ 436
1742
+ 00:47:32,820 --> 00:47:38,520
1743
+ ูŠุจู‚ู‰ ุฃู†ุง ุงู„ minor ุจุฏูŠู„ู‡ ุงู„ุฑู…ุฒ ู…ูŠู† ูŠุง ุจู†ุงุช M I K
1744
+
1745
+ 437
1746
+ 00:47:38,520 --> 00:47:44,990
1747
+ ุงู„ุขู† ุงู„ุนู†ุตุฑ ุฎู…ุณุฉ ู‡ูŠ ุฎู…ุณุฉ ู…ุงููŠุด ุบูŠุฑู‡ ู‡ุฐุง ุฌุงูŠ ูˆูŠู†ููŠ
1748
+
1749
+ 438
1750
+ 00:47:44,990 --> 00:47:54,810
1751
+ ุงู„ุตู ุงู„ุชุงู„ุช ูˆุงู„ุนู…ูˆุฏูŠ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ู‡ู†ุง the minor of
1752
+
1753
+ 439
1754
+ 00:47:54,810 --> 00:48:03,210
1755
+ ุฎู…ุณุฉ is M ุชู„ุงุชุฉ ุงุชู†ูŠู†ู…ู† ูˆูŠู† ุฌุจุชู‡ ุชู„ุงุชุฉ ุงุชู†ูŠู† ู„ุฃู†
1756
+
1757
+ 440
1758
+ 00:48:03,210 --> 00:48:10,370
1759
+ ุงู„ุนู†ุตุฑ ุฎู…ุณุฉ ูŠู‚ุน ููŠ ุงู„ุตู ุงู„ุซุงู„ุซ ูˆุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุชู…ุงู…
1760
+
1761
+ 441
1762
+ 00:48:10,370 --> 00:48:15,230
1763
+ ุทูŠุจ ู‡ุฐุง ุงู„ M ุชู„ุงุชุฉ ุงุชู†ูŠู† ูŠุณูˆู‰ ุงู„ู…ุญุฏุฏ ุจุฏู†ุง ู†ุดุทุจ
1764
+
1765
+ 442
1766
+ 00:48:15,230 --> 00:48:21,450
1767
+ ุงู„ุตู ุชุจุนู‡ ูˆุงู„ุนู…ูˆุฏ ุชุจุนู‡ ูˆุงู„ู„ูŠ ุจูŠุธู„ ุจูŠูƒูˆู† ู‡ูˆ ู‚ูŠู…ุฉ ุงู„
1768
+
1769
+ 443
1770
+ 00:48:21,450 --> 00:48:27,550
1771
+ minor ูˆู‡ู†ุง ุตูู‡ ูˆุนู…ูˆุฏู‡ ุจูŠุธู„ ุนู†ุฏ ู‡ู†ุง ุฌุฏุงุด ุงุชู†ูŠู†
1772
+
1773
+ 444
1774
+ 00:48:27,550 --> 00:48:33,720
1775
+ ุงุฑุจุนุฉู‡ุฐุง ู„ูˆ ุฌูŠุช ูุงูƒุชู‡ ูŠุจู‚ู‰ ุงุฑุจุนุฉ ุฒุงุฆุฏ ุงุฑุจุนุฉ ูŠุณุงูˆูŠ
1776
+
1777
+ 445
1778
+ 00:48:33,720 --> 00:48:38,800
1779
+ ูƒุฏู‡ุดุŸ ูŠุณุงูˆูŠ ุชู…ุงู†ูŠุฉ ูŠุจู‚ู‰ ุงู„ minor ู„ู„ุฎู…ุณุฉ ู‡ูˆ ุชู…ุงู†ูŠุฉ
1780
+
1781
+ 446
1782
+ 00:48:38,800 --> 00:48:43,800
1783
+ ูŠุจู‚ู‰ ู‡ูˆ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุงู„ู…ู†ุงุธุฑ ู„ู…ูŠู†ุŸ ู„ู„ุฎู…ุณุฉ
1784
+
1785
+ 447
1786
+ 00:48:43,800 --> 00:48:47,300
1787
+ ุจุงู„ู…ุซู„ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ ุงู„ minor ู„ zero ู…ุด ูŠุชุฑูˆุญ
1788
+
1789
+ 448
1790
+ 00:48:47,300 --> 00:48:51,560
1791
+ ุงู„ุฌูˆุฏุฉ ุงู„ minor ู„ zero ุจ zero ู„ุง ู…ุงู„ูˆุด ุฏุนูˆุฉ ูุจุฌูŠ
1792
+
1793
+ 449
1794
+ 00:48:51,560 --> 00:48:58,900
1795
+ ุจู‚ูˆู„ู‡ ู‡ู†ุงthe minor of zero is ุจุงุฌูŠ ุนู„ู‰ ุงู„ zero ู‡ูŠ
1796
+
1797
+ 450
1798
+ 00:48:58,900 --> 00:49:04,560
1799
+ ุงู„ zero ูˆุงู‚ุน ููŠ ุงู„ุตู ุงู„ุซุงู„ุซ ูˆุงู„ุนู…ูˆุฏ ุงู„ุซุงู„ุซ ูŠุจู‚ู‰
1800
+
1801
+ 451
1802
+ 00:49:04,560 --> 00:49:10,940
1803
+ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ M ุชู„ุงุชุฉ ุชู„ุงุชุฉ ูˆูŠุณูˆู‰ ุงู„ู…ุญุฏุฏ ุชุจุน๏ฟฝ๏ฟฝ ุงู„ุงุตู…
1804
+
1805
+ 452
1806
+ 00:49:10,940 --> 00:49:16,700
1807
+ ู†ุธุฑ ุจุดุทู‡ ุจุตู ูˆุนู…ูˆุฏ ุจูŠุถู„ ูˆุงุญุฏ ุชู„ุงุชุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต
1808
+
1809
+ 453
1810
+ 00:49:16,700 --> 00:49:24,710
1811
+ ูˆุงุญุฏูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู†ุชูŠุฌุฉ ุจู†ุงู‚ุต ูˆุงุญุฏ ุฒุงุฆุฏ ุณุชุฉ ุชุฌุฏุฏ ุงูŠูˆุฉ
1812
+
1813
+ 454
1814
+ 00:49:24,710 --> 00:49:28,950
1815
+ ูŠุจู‚ู‰ ุงู„ minor ู„ zero ุทู„ุน ุฎู…ุณุฉ ู…ุด zero ูŠุจู‚ู‰ ุงู†ุง
1816
+
1817
+ 455
1818
+ 00:49:28,950 --> 00:49:33,050
1819
+ ุจุงุฎุฏู‡ุด ุงู†ุง ุจุงุฎุฏ ุงู„ู…ุญุฏุฏ ุชุจุนู‡ ู…ุด ุจุงุฎุฏ ุงู„ุนู†ุตุฑ ุชู…ุงู…
1820
+
1821
+ 456
1822
+ 00:49:33,050 --> 00:49:37,110
1823
+ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ minor ุฎู„ุงุตุฉ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ู…ุทู„ูˆุจ ุงู„ุชุงู†ูŠ
1824
+
1825
+ 457
1826
+ 00:49:37,110 --> 00:49:43,370
1827
+ ุฌุงู„ูŠู‡ุงุช ู„ู„ cofactor ู„ูƒู„ ู…ู†ู‡ุง ุชู…ุงู… ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุนู„ู‰
1828
+
1829
+ 458
1830
+ 00:49:43,370 --> 00:49:49,590
1831
+ ุงู„ cofactor ุจุฏุงุฌูŠ ู„ู„ cofactor ุงู„ุฃูˆู„ุงู„ุงู† ู†ู…ุฑ ุจู€ The
1832
+
1833
+ 459
1834
+ 00:49:49,590 --> 00:50:01,250
1835
+ cofactor of ุฎู…ุณุฉ is ุงุชู„ุงุชุฉ ุงุชู†ูŠู† ูŠุนู†ูŠ ุณุงู„ุจ ูˆุงุญุฏ
1836
+
1837
+ 460
1838
+ 00:50:01,250 --> 00:50:08,110
1839
+ ุชู„ุงุชุฉ ุฒุงุฆุฏ ุงุชู†ูŠู† ููŠ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุงู„ู…ู†ุงุธุฑ ุงู„ู„ูŠ ู‡ูˆ
1840
+
1841
+ 461
1842
+ 00:50:08,110 --> 00:50:15,540
1843
+ ุฌุจู†ุงู‡ ููˆู‚ ู…ุงุชุบูŠุฑุด ู†ู‚ุต ุงุชู†ูŠู† ุงุฑุจุนุงู„ุญูŠู† ู‡ุฐุง ุณุงู„ุจ
1844
+
1845
+ 462
1846
+ 00:50:15,540 --> 00:50:20,220
1847
+ ูˆุงุญุฏ ุฃุณ ุชู„ุงุชุฉ ูŠุนู†ูŠ ุณุงู„ุจ ูˆุงุญุฏ ุฃุณ ู‚ุฏุงุด ุงู„ุฃุณูุฑ ุฏูŠ
1848
+
1849
+ 463
1850
+ 00:50:20,220 --> 00:50:26,000
1851
+ ูŠุจู‚ู‰ ุงู„ุฅุดุงุฑุฉ ุจุงู„ุณุงู„ุจ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠุณุงูˆูŠ ุณุงู„ุจ
1852
+
1853
+ 464
1854
+ 00:50:26,000 --> 00:50:32,880
1855
+ ุชู…ุงู†ูŠุฉ ุงู„ุขู† ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ ุงู„ cofactor of zero is
1856
+
1857
+ 465
1858
+ 00:50:32,880 --> 00:50:40,080
1859
+ ุงูŠู‡ ุชู„ุงุชุฉ ุชู„ุงุชุฉุจุฏูŠ ุฃุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ุฃุณ ุชู„ุงุชุฉ ุฒุงุฆุฏ
1860
+
1861
+ 466
1862
+ 00:50:40,080 --> 00:50:45,380
1863
+ ุชู„ุงุชุฉ ููŠ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ุงู„ู…ู†ุงุธุฑ ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ
1864
+
1865
+ 467
1866
+ 00:50:45,380 --> 00:50:50,460
1867
+ ุชู„ุงุชุฉ ุณุงู„ุจ ุงุชู†ูŠู† ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุตูŠุฑ ุนู†ุฏู†ุง
1868
+
1869
+ 468
1870
+ 00:50:50,460 --> 00:50:57,000
1871
+ ูƒุฏู‡ุŸ ุฎู…ุณุฉ ูƒุฐู„ูƒ ู„ุฃู† ู‡ุฐู‡ ุงู„ุณุงู„ุจ ูˆุงุญุฏ ุฃุณ ุณุชุฉ ุงู„ุฃุณ
1872
+
1873
+ 469
1874
+ 00:50:57,000 --> 00:51:00,880
1875
+ ุฒูˆุฌูŠ ุจูŠุจุชุทู„ุน ุจุงู„ู…ูˆุฌุฉุŒ ุจูŠุถู„ ูŠุดูŠู„ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏุŒ ู‚ูŠู…ุฉ
1876
+
1877
+ 470
1878
+ 00:51:00,880 --> 00:51:06,570
1879
+ ุงู„ู…ุญุฏุฏ ูŠุชุณุงูˆูŠ ุฎู…ุณุฉ ู…ู† ุฃุนู„ู‰ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูุฑู‚ ู…ุง ุจูŠู† ุงู„
1880
+
1881
+ 471
1882
+ 00:51:06,570 --> 00:51:11,070
1883
+ minor ูˆ ุงู„ cofactor ูˆ ุฒูŠ ู…ุง ุชุดูˆููŠ ุงู„ cofactor
1884
+
1885
+ 472
1886
+ 00:51:11,070 --> 00:51:16,030
1887
+ ูŠุนุชู…ุฏ ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰ ุงู„ minor ูˆ ู‡ุฐุง ุฏู‡ ูƒู†ุช ุจุชุฐูƒุฑ ูˆ
1888
+
1889
+ 473
1890
+ 00:51:16,030 --> 00:51:21,050
1891
+ ุจุฌูŠู†ุง ุจู‚ูˆู„ ุงู†ููƒ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ุจู†ุฌูŠ ุจู†ู†ููƒู‡ ุจุงุณุชุฎุฏุงู…
1892
+
1893
+ 474
1894
+ 00:51:21,050 --> 00:51:24,430
1895
+ ุนู†ุงุตุฑ ุฃูˆ ุตู ุฃูˆ ุนู…ูˆุฏ ูุจุฌูŠ ุจู‚ูˆู„ ู…ุซู„ุง ุจุงู„ุตู ุงู„ุชุงู„ุฏ
1896
+
1897
+ 475
1898
+ 00:51:24,430 --> 00:51:28,790
1899
+ ูŠุจู‚ู‰ ุงู„ุนู†ุตุฑ ู‡ุฐุง ุงุดุทุท ุจุตู ูˆ ุนู…ูˆุฏ ูˆ ุจุถู„ ุงู„ู…ุญุฏุฏ ู‡ุฐุง
1900
+
1901
+ 476
1902
+ 00:51:29,200 --> 00:51:33,380
1903
+ ุญุณุจ ู‚ุงุนุฉ ุงู„ุฅุดุงุฑุงุช ุงู„ุฅุดุงุฑุฉ ู‡ุฐู‡ ุงุชุจุนุชู‡ ุจุงู„ุณุงู„ุจ ูˆู‡ูŠู‡ุง
1904
+
1905
+ 477
1906
+ 00:51:33,380 --> 00:51:38,220
1907
+ ุทู„ุนุช ุนู†ุฏู†ุง ุจู…ูŠู† ุจุงู„ุณุงู„ุจ ุชู…ุงู… ูŠุจู‚ู‰ ุจุฑูˆุญ ุจุดุทุจ ุตูู‡
1908
+
1909
+ 478
1910
+ 00:51:38,220 --> 00:51:41,940
1911
+ ุนู…ูˆุฏู‡ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ุจุถู„ู‡ ุจุถุฑุจู‡ ููŠ ุงู„ุฎู…ุณุฉ ุงู„ู„ูŠ ุจุนุฏู‡
1912
+
1913
+ 479
1914
+ 00:51:41,940 --> 00:51:45,600
1915
+ ู…ุง ู‡ูˆ ุงู„ zero ููŠ ู…ุญุฏุฏู‡ ูŠุจู‚ู‰ ุจ zero ุทูŠู‘ุนู†ุง ู…ู† ู‡ู†ุง
1916
+
1917
+ 480
1918
+ 00:51:45,600 --> 00:51:49,540
1919
+ ุชู…ุงู…ุŸ ุจู†ูƒู…ู„ ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰
1920
+
PL9fwy3NUQKwYaToDpbPxaOdkUX3PS_VKf/xaphhldfua0.srt ADDED
@@ -0,0 +1,1270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:20,320 --> 00:00:24,720
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ุชุญุฏุซู†ุง
4
+
5
+ 2
6
+ 00:00:24,720 --> 00:00:29,220
7
+ ููŠ chapter ูˆุงุญุฏ section ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ separable
8
+
9
+ 3
10
+ 00:00:29,220 --> 00:00:34,000
11
+ equations ูˆู‡ูŠ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูŠ ูุตู„ู†ุง ููŠู‡ุง ุงู„ู…ุชุบูŠุฑุงุช
12
+
13
+ 4
14
+ 00:00:34,000 --> 00:00:38,520
15
+ ุจูŠู† ุงู„ู€ X ููŠ ู†ุงุญูŠุฉ ูˆ ุงู„ู€ Y ููŠ ู†ุงุญูŠุฉ ุซู… ุฃูƒู…ู„ู†ุง ุงู„ุญู„
16
+
17
+ 5
18
+ 00:00:38,520 --> 00:00:42,580
19
+ ุจูˆุงุณุทุฉ ุงู„ integration ูŠุจู‚ู‰ ุฃูƒู…ู„ู†ุง ุงู„ุทุฑููŠู† ุญุตู„ู†ุง
20
+
21
+ 6
22
+ 00:00:42,580 --> 00:00:50,000
23
+ ุนู„ู‰ ุดูƒู„ ุญู„ ุงู„ู…ุนุงุฏู„ุฉ. ุงู„ุขู† ู†ู†ุชู‚ู„ ู„ู„ู†ูˆุน ุงู„ุซุงู†ูŠ ูˆู‡ูˆ ุงู„ู€
24
+
25
+ 7
26
+ 00:00:50,000 --> 00:00:55,260
27
+ Homogeneous equations ุงู„ู…ุนุงุฏู„ุงุช ุงู„ู…ุชุฌุงู†ุณุฉ ุงู„ุขู†
28
+
29
+ 8
30
+ 00:00:55,260 --> 00:01:01,620
31
+ ู†ุญูƒู… ูƒูŠู ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุชุฌุงู†ุณุฉ ูู†ุนุทูŠู‡ุง ุชุนุฑูŠู ุซุงู†ูŠ.
32
+
33
+ 9
34
+ 00:01:02,130 --> 00:01:04,210
35
+ ูุจู‚ู‰ ุงู„ู„ูŠ ุจูู‡ู…ู‡ ุจุฌู‡ุฉ ุจู‚ูˆู„ ุงู„ู€ differential
36
+
37
+ 10
38
+ 00:01:04,210 --> 00:01:08,230
39
+ equation dy by dx ูŠุณุงูˆูŠ f of x y is called
40
+
41
+ 11
42
+ 00:01:08,230 --> 00:01:12,770
43
+ homogeneous. ู‡ุฐู‡ ุงุฎุชุตุงุฑ ู„ูƒู„ู…ุฉ homogeneous ุงู„ู„ูŠ ููˆู‚.
44
+
45
+ 12
46
+ 00:01:12,770 --> 00:01:17,810
47
+ ุนู†ุฏ ุงู„ู€ g ู‡ุนุทูŠู†ุง ู†ู‚ุทุฉ if it can be written as ุฅุฐุง
48
+
49
+ 13
50
+ 00:01:17,810 --> 00:01:22,570
51
+ ูˆุฌุฏูˆุง ุฃู†ู‡ ู†ูƒุชุจู‡ ุนู„ู‰ ุงู„ุตูŠุบุฉ dy ุนู„ู‰ dx ูŠุณุงูˆูŠ capital F
52
+
53
+ 14
54
+ 00:01:22,570 --> 00:01:27,390
55
+ ุงู„ู„ูŠ ููˆู‚ small f ูˆุงู„ู„ูŠ ุชุญุช capital F as a function
56
+
57
+ 15
58
+ 00:01:27,390 --> 00:01:32,470
59
+ of y ุนู„ู‰ x. ูŠุนู†ูŠ ุฅุฐุง ู‚ุฏุฑู†ุง ู†ูƒุชุจ ุงู„ู…ุนุงุฏู„ุฉ ุนู„ู‰ ุดูƒู„ y
60
+
61
+ 16
62
+ 00:01:32,470 --> 00:01:38,950
63
+ ุนู„ู‰ x ุจู‚ุฏุฑ ุฃุณู…ูŠู‡ุง ุฏุงู„ุฉ ู…ุชุฌุงู†ุณุฉ ู…ุนุงุฏู„ุฉ ู…ุชุฌุงู†ุณุฉ.
64
+
65
+ 17
66
+ 00:01:38,950 --> 00:01:44,250
67
+ ุทุจุนุง ู‡ุฐุง ู…ู†ุงุจุท ู…ุด ู…ู…ูƒู† ูŠุญุตู„ ุฅู„ุง ุฅุฐุง ูƒุงู† ุนู†ุฏูŠ ุจุณุท ูˆ
68
+
69
+ 18
70
+ 00:01:44,250 --> 00:01:50,410
71
+ ู…ู‚ุงู… ูŠุนู†ูŠ dy ุนู„ู‰ dx ูŠุณุงูˆูŠ ุจุณุท ุนู„ู‰ ู…ู‚ุงู… ู„ุฃู† ููŠ ู‡ุฐู‡
72
+
73
+ 19
74
+ 00:01:50,410 --> 00:01:55,030
75
+ ุงู„ุญุงู„ุฉ ุจู‚ุฏุฑ ุฃูƒุชุจ ุฑุจู…ุง ู†ู‚ุฏุฑ ูˆ ุฑุจู…ุง ู„ุง ู†ู‚ุฏุฑ ู†ูƒุชุจ
76
+
77
+ 20
78
+ 00:01:55,030 --> 00:02:00,630
79
+ ุงู„ู…ุนุงุฏู„ุฉ ูƒู„ู‡ุง ุจุฏู„ุงู„ุฉ Y ุนู„ู‰ X ู„ูƒู† constant ุนู„ู‰ X
80
+
81
+ 21
82
+ 00:02:00,630 --> 00:02:04,470
83
+ ูˆู„ุง constant ุนู„ู‰ Y ู…ู…ู†ูˆุน. ุจุณ constant ู„ุญุงู„ู‡ ู…ุงููŠ
84
+
85
+ 22
86
+ 00:02:04,470 --> 00:02:08,710
87
+ ู…ุดูƒู„ุฉ ูŠุนู†ูŠ ู„ูˆ ุฌูŠู†ุง ุฌุณู…ู†ุง ุนู„ู‰ X ุนู„ู‰ Y ุฅู„ู‰ ุขุฎุฑู‡
88
+
89
+ 23
90
+ 00:02:08,710 --> 00:02:13,630
91
+ ูˆุตุงุฑุช ููŠ ุนู†ุฏูŠ ุทู„ุน ุฒุงุฆุฏ 3 ุนู„ู‰ X ู‡ู„ ู‡ุฐู‡ homogeneousุŸ
92
+
93
+ 24
94
+ 00:02:13,630 --> 00:02:19,430
95
+ ู„ุง ุทุจุนุง ุจุฏูŠู‡ุง ุชุจู‚ู‰ Y ุนู„ู‰ X ุฃูˆ ู…ู‚ุฏุงุฑ ุซุงุจุช ุฎุงู„ูŠ ู…ู†
96
+
97
+ 25
98
+ 00:02:19,430 --> 00:02:25,440
99
+ ูƒู„ ู…ู† X ูˆY ูƒู…ุง ุณู†ุฑุงู‡ ู…ู† ุฎู„ุงู„ ุงู„ุฃู…ุซู„ุฉ ุจุนุฏ ู‚ู„ูŠู„. ุงู„ุขู†
100
+
101
+ 26
102
+ 00:02:25,440 --> 00:02:32,120
103
+ ุจุฏู†ุง ู†ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู…ุชุฌุงู†ุณุฉ ูŠุจู‚ู‰
104
+
105
+ 27
106
+ 00:02:32,120 --> 00:02:35,660
107
+ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู…ุชุฌุงู†ุณุฉ ู„ู‡ุง ุชูƒุชูŠูƒ ูˆุงุญุฏ ููŠ
108
+
109
+ 28
110
+ 00:02:35,660 --> 00:02:37,460
111
+ ุงู„ุญู„ ูˆู‡ูˆ ูƒุงู„ุชุงู„ูŠ
112
+
113
+ 29
114
+ 00:02:47,050 --> 00:02:54,010
115
+ ุงู„ู…ุชุบูŠุฑ V ูŠุณุงูˆูŠ Y ุนู„ู‰ X ู„ูˆ ุฌุงุกุช ุถุฑุจุŒ ุถุฑุจ ุงู„ุชุจุงุฏู„
116
+
117
+ 30
118
+ 00:02:54,010 --> 00:02:57,970
119
+ ูŠุณุงูˆูŠ
120
+
121
+ 31
122
+ 00:02:57,970 --> 00:03:06,560
123
+ X ููŠ V. ุงู„ุขู† ู„ูˆ ุฌูŠุช ุงุดุชู‚ุช ูŠุจู‚ู‰ ุงู„ู€ dy by dx ูŠุณุงูˆูŠ
124
+
125
+ 32
126
+ 00:03:06,560 --> 00:03:15,340
127
+ ู‡ุฐุง ูŠุนุชุจุฑ ู…ุดุชู‚ุฉ ุญุงุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ V ุฒุงุฆุฏ X ููŠ
128
+
129
+ 33
130
+ 00:03:15,340 --> 00:03:22,320
131
+ dv ุนู„ู‰ dx. ุงู„ุฃูˆู„ู‰ ููŠ ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู‡ูŠู‡ุง ุฒูŠ ุฏุงู„ุฉ
132
+
133
+ 34
134
+ 00:03:22,320 --> 00:03:28,300
135
+ ุงู„ุซุงู†ูŠุฉ ููŠ ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ุฒูŠู‡ุง. ุงู„ุขู† ุฃู†ุง ุนู†ุฏูŠ y ุนู„ู‰ x
136
+
137
+ 35
138
+ 00:03:28,300 --> 00:03:32,600
139
+ ู…ู…ูƒู† ุฃุดูŠู„ู‡ ูˆ ุฃูƒุชุจ ุจุฏู„ู‡ุง V ูˆ dy ุนู„ู‰ dx ุจุฏูŠ ุฃุดูŠู„ู‡ ูˆ
140
+
141
+ 36
142
+ 00:03:32,600 --> 00:03:38,740
143
+ ุงูƒุชุจ ุจุฏู„ู‡ุง V ุฒุงุฆุฏ X ููŠ dv ุนู„ู‰ dx. ู†ู…ุณูƒ ุงู„ู…ุนู„ูˆู…ุงุช ู‡ุฐู‡
144
+
145
+ 37
146
+ 00:03:38,740 --> 00:03:44,300
147
+ ูˆ ู†ุฑุฌุน ู†ุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… star ุจู†ุญุตู„ ุนู„ู‰ ู…ุง ูŠุฃุชูŠ.
148
+
149
+ 38
150
+ 00:03:44,740 --> 00:03:52,840
151
+ V ุฒุงุฆุฏ X ููŠ ุงู„ู€DV ุนู„ู‰ DX ูŠุณุงูˆูŠ capital F as a
152
+
153
+ 39
154
+ 00:03:52,840 --> 00:03:58,720
155
+ function of V ู„ุฃู† ุดูŠู„ุช Y ุนู„ู‰ X ูˆุญุทูŠุช ู…ูƒุงู†ู‡ุง V.
156
+
157
+ 40
158
+ 00:03:59,400 --> 00:04:04,560
159
+ ุงู„ุขู† ู…ู…ูƒู† ุฃุฌูŠุจ V ูˆูŠู†ุŸ ุนู„ู‰ ุงู„ู†ุงุญูŠุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุฃูˆ
160
+
161
+ 41
162
+ 00:04:04,560 --> 00:04:12,040
163
+ ุฃุถูู†ุง ุณุงู„ุจ V ู„ู„ุทุฑููŠู† ูŠุจู‚ู‰ X ููŠ ุงู„ู€DV ุนู„ู‰ DX ูŠุณุงูˆูŠ
164
+
165
+ 42
166
+ 00:04:12,040 --> 00:04:18,620
167
+ capital F of V ู†ุงู‚ุต ุงู„ู€V ุงูŠุด ุฑุฃูŠูƒุŸ ุจู‚ุฏุฑ ุฃูุตู„
168
+
169
+ 43
170
+ 00:04:18,620 --> 00:04:24,670
171
+ ุงู„ู…ุชุบูŠุฑุงุช ุงู„ุขู†ุŸ ุจุชุฎู„ูŠ ุงู„ V's ููŠ ุฌู‡ุฉ ูˆ ุงู„ X's ููŠ
172
+
173
+ 44
174
+ 00:04:24,670 --> 00:04:28,450
175
+ ุฌู‡ุฉ ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ุจูŠุตูŠุฑ
176
+
177
+ 45
178
+ 00:04:53,840 --> 00:05:06,960
179
+ differential equation that can be solved as before
180
+
181
+ 46
182
+ 00:05:06,960 --> 00:05:11,860
183
+ ุฒูŠ ู…ุง ูƒู†ุง ุจู†ุญู„ ู‚ุจู„ ุจู†ู‚ุฏุฑ ู†ุฑูˆุญ ู†ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ
184
+
185
+ 47
186
+ 00:05:11,860 --> 00:05:18,900
187
+ ุนู†ุฏู†ุง ู‡ุฐู‡. ุทุจ ูƒูˆูŠุณ ู„ุงุญุธูˆุง ู‚ุจู„ ู‚ู„ูŠู„ ู‚ู„ุช ู„ูƒู… ุฅู†
188
+
189
+ 48
190
+ 00:05:18,900 --> 00:05:22,680
191
+ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ู„ูˆ ูƒุงู†ุช
192
+
193
+ 49
194
+ 00:05:22,680 --> 00:05:27,560
195
+ rational function ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ูŠุนู†ูŠ ุจุณุท ุนู„ู‰ ู…ู‚ุงู….
196
+
197
+ 50
198
+ 00:05:27,560 --> 00:05:32,320
199
+ ุทุจ ุงูุชุฑุถูŠ ู…ุง ูƒุงู†ุด ุนู†ุฏูŠ ุจุณุท ุนู„ู‰ ู…ู‚ุงู… ูƒุงู†ุช ุฏุงู„ุฉ ุนุงุฏูŠุฉ
200
+
201
+ 51
202
+ 00:05:32,320 --> 00:05:36,360
203
+ ุฏูŠ ูˆุงูŠ ุนู„ู‰ ุฏูŠ ุงูƒุณ ูŠุณุงูˆูŠ X Y ุชุฑุจูŠุน ุฒูŠ ุงุซู†ูŠู† X
204
+
205
+ 52
206
+ 00:05:36,360 --> 00:05:41,170
207
+ ูˆุงูŠ ุฒูŠ ุงู„ุซู„ุงุซุฉ ู…ุซู„ุง ุชู…ุงู…. ุทุจ ูƒูŠู ุจู†ุนู…ู„ ููŠ ู‡ุฐู‡
208
+
209
+ 53
210
+ 00:05:41,170 --> 00:05:47,770
211
+ ุงู„ุญุงู„ุฉุŸ ููŠ ุนู†ุฏูŠ ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ู„ู„ุญูƒู… ุนู„ู‰ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ
212
+
213
+ 54
214
+ 00:05:47,770 --> 00:05:53,530
215
+ ู‡ู„ ู‡ูŠ ู…ุนุงุฏู„ุฉ ู…ุชุฌุงู†ุณุฉ ุฃู… ู„ุงุŸ ุดูˆ ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉุŸ ู‡ู†ุญุทู‡ุง
216
+
217
+ 55
218
+ 00:05:53,530 --> 00:05:57,990
219
+ ู„ูƒ ููŠ ุงู„ definition ุงู„ุชุงู„ูŠ. ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุนุทูŠ
220
+
221
+ 56
222
+ 00:05:57,990 --> 00:06:05,990
223
+ definition ุฌุฏูŠุฏ. ูŠุจู‚ู‰ ุจุฏุงุฌูŠ definition ู‡ู‚ุณู…ู‡
224
+
225
+ 57
226
+ 00:06:05,990 --> 00:06:08,630
227
+ ุฅู„ู‰ ู†ู‚ุทุชูŠู†. ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
228
+
229
+ 58
230
+ 00:06:11,240 --> 00:06:19,180
231
+ differential equation. ุงู„ู€ differential equation dy
232
+
233
+ 59
234
+ 00:06:19,180 --> 00:06:30,000
235
+ by dx ุจุฏู‡ ูŠุณุงูˆูŠ f of x y is called homogeneous is
236
+
237
+ 60
238
+ 00:06:30,000 --> 00:06:35,300
239
+ called homogeneous.
240
+
241
+ 61
242
+ 00:06:35,300 --> 00:06:46,780
243
+ if and only if. ูุงู„ู€
244
+
245
+ 62
246
+ 00:06:46,780 --> 00:07:00,800
247
+ F of T X ูˆ T Y ุจุฏู‡ุง ุชุณุงูˆูŠ F of X Y for all T
248
+
249
+ 63
250
+ 00:07:00,800 --> 00:07:04,060
251
+ ุงู„ู†ู‚ุทุฉ
252
+
253
+ 64
254
+ 00:07:04,060 --> 00:07:17,840
255
+ ุงู„ุซุงู†ูŠุฉ. A function f of x ูˆ y is called homogeneous
256
+
257
+ 65
258
+ 00:07:17,840 --> 00:07:24,100
259
+ of degree
260
+
261
+ 66
262
+ 00:07:24,100 --> 00:07:35,360
263
+ m.
264
+
265
+ 67
266
+ 00:07:37,650 --> 00:07:47,390
267
+ ุงู„ู€ F of T X ูˆ T Y ุจุฏู‡ุง ุชุณุงูˆูŠ T to the power M ููŠ
268
+
269
+ 68
270
+ 00:07:47,390 --> 00:07:57,530
271
+ ุงู„ F of X Y. ูุงู„ู€
272
+
273
+ 69
274
+ 00:07:57,530 --> 00:08:04,450
275
+ F of T X ูˆ T Y ุจุฏู‡ุง ุชุณุงูˆูŠ F of X Y
276
+
277
+ 70
278
+ 00:08:07,930 --> 00:08:18,330
279
+ a homogeneous equation of degree ุงู„ู„ู‡ ุฃุนู„ู….
280
+
281
+ 71
282
+ 00:08:32,640 --> 00:08:37,080
283
+ ู†ุฑุฌุน ุงู„ุขู† ู„ู„ู€ two definitions ุงู„ู„ูŠ ุงุญู†ุง ูƒุชุจู†ุงู‡ู…
284
+
285
+ 72
286
+ 00:08:37,080 --> 00:08:41,940
287
+ ู†ูู‡ู… ูƒู„ ูˆุงุญุฏ ู…ู† ุงู„ two definitions ู‡ุฐุง ุทุจุนุง ุงู„ุชุงู†
288
+
289
+ 73
290
+ 00:08:41,940 --> 00:08:45,900
291
+ ุงู„ู„ูŠ ู‡ู…ุง ุนู„ุงู‚ุฉ ุจุจุนุถ ุนู„ุงู‚ุฉ ู‚ูˆูŠุฉ ุฌุฏุง ูˆุงู„ู„ูŠ ู‡ู…ุง
292
+
293
+ 74
294
+ 00:08:45,900 --> 00:08:50,690
295
+ ุนู„ุงู‚ุฉ ุจุงู„ definition ุงู„ุฃูˆู„. ุงู„ุฏูŠููŠู†ูŠุดู† ุงู„ุฃูˆู„ุงู†ูŠ ู‡ุฐุง
296
+
297
+ 75
298
+ 00:08:50,690 --> 00:08:54,370
299
+ ุจูŠู‚ูˆู„ ุงู„ู€ differential equation dy by dx ูŠุณุงูˆูŠ f of
300
+
301
+ 76
302
+ 00:08:54,370 --> 00:08:59,390
303
+ x y is called homogeneous. ูู‚ู„ู†ุง homogeneous ุฅุฐุง
304
+
305
+ 77
306
+ 00:08:59,390 --> 00:09:02,830
307
+ ู‚ุฏุฑู†ุง ู†ูƒุชุจู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ู†ุง ุจู‚ูˆู„
308
+
309
+ 78
310
+ 00:09:02,830 --> 00:09:09,610
311
+ homogeneous if and only if. ุงู„ู€ f of t x ูˆ t y
312
+
313
+ 79
314
+ 00:09:09,610 --> 00:09:16,060
315
+ ุจูŠุจู‚ูˆุง ูŠุณุงูˆูŠ f of x y ู„ุฃูŠ t ู†ุญุทู‡ุง. ุจูŠู‚ูˆู„ ุจุชูŠุฌูŠ ุนู„ู‰
316
+
317
+ 80
318
+ 00:09:16,060 --> 00:09:22,000
319
+ ุงู„ู…ุนุงุฏู„ุฉ ู„ูˆ ุดูŠู„ุช ูƒู„ X ูˆุญุทูŠุช ู…ูƒุงู†ู‡ุง TX ูˆุฌูŠุช ุนู„ู‰ Y
320
+
321
+ 81
322
+ 00:09:22,000 --> 00:09:27,320
323
+ ูˆุดูŠู„ุชู‡ุง ูˆุญุทูŠุช ู…ูƒุงู†ู‡ุง TY ุชุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุฉ ูƒู…ุง ู‡ูŠ. ุฅู†
324
+
325
+ 82
326
+ 00:09:27,320 --> 00:09:31,280
327
+ ุจู‚ุช ูƒู…ุง ู‡ูŠ ุจู‚ูˆู„ ู‡ุฐู‡ homogeneous differential
328
+
329
+ 83
330
+ 00:09:31,280 --> 00:09:36,100
331
+ equation. ุทุจ ุฃู†ุง ู‡ู†ุง ู„ูˆ ุฌูŠุช ูˆุญุทูŠุช ูŠุง ุจู†ุงุช TY ุนู„ู‰
332
+
333
+ 84
334
+ 00:09:36,100 --> 00:09:43,180
335
+ TX ู…ุด ุจุชุธู„ู‡ุง Y ุนู„ู‰ XุŸ ูˆู…ู† ู‡ู†ุง ุจุงุฎุชุตุฑ T ู…ุน T ุจูŠุถู„ Y
336
+
337
+ 85
338
+ 00:09:43,180 --> 00:09:47,360
339
+ ุนู„ู‰ X ูˆู…ู† ู‡ู†ุง ู‡ุฐุง ุงู„ definition ูŠูƒุงูุฆ ู‡ุฐุง ุงู„
340
+
341
+ 86
342
+ 00:09:47,360 --> 00:09:52,970
343
+ definition. ุชู…ุงู…. ู„ู…ุง ุฃู‚ูˆู„ ู‡ุฐู‡ homogeneous ุงู„ู„ูŠ ู‡ูˆ
344
+
345
+ 87
346
+ 00:09:52,970 --> 00:09:57,550
347
+ differential equation ู…ู…ูƒู† ุชูƒูˆู† ู…ู† ุฏุฑุฌุฉ ู…ุง ุชุนุงู„ู‰
348
+
349
+ 88
350
+ 00:09:57,550 --> 00:10:01,790
351
+ ู†ุดูˆู ุงูŠุด ุงู„ู„ูŠ ุจู‚ูˆู„ ู‡ู†ุง ุจู‚ูˆู„ ุฏุงู„ุฉ F of X Y ุจู‚ูˆู„
352
+
353
+ 89
354
+ 00:10:01,790 --> 00:10:07,030
355
+ ุนู†ู‡ุง homogeneous of degree M ุฏุงู„ุฉ ู…ุชุฌุงู†ุณุฉ ู…ู†
356
+
357
+ 90
358
+ 00:10:07,030 --> 00:10:13,210
359
+ ุงู„ุฏุฑุฌุฉ ุฑู‚ู… M ุทุจุนุง M ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุฃูˆ ุตูุฑ. ู…ุง ุนู†ุงู‡
360
+
361
+ 91
362
+ 00:10:13,210 --> 00:10:19,790
363
+ ู…ุด ู…ุดูƒู„ุฉ ุจุณ ู„ูŠุณ ูƒุซูŠุฑ ู„ูŠุณ ุณุงู„ุจุง. ูˆู‡ู†ุง ุงูŠู‡ ูุงุตู„ุฉ ูˆู‚ู„ูŠู„
364
+
365
+ 92
366
+ 00:10:19,790 --> 00:10:30,670
367
+ ุงู„ุงู… greater than or equal to zero ูˆุงู„ุงู… is an
368
+
369
+ 93
370
+ 00:10:30,670 --> 00:10:34,930
371
+ integer ูŠุจู‚ู‰
372
+
373
+ 94
374
+ 00:10:34,930 --> 00:10:35,810
375
+ ุนุฏุฏ ุตุญูŠุญ.
376
+
377
+ 95
378
+ 00:10:38,550 --> 00:10:43,830
379
+ ุฃู†ุง ุฌูŠุช ุนู„ู‰ X ุดูŠู„ุชู‡ุง ูˆุญุทูŠุช ู…ูƒุงู†ู‡ุง TX ุฌูŠุช ุนู„ู‰ Y
380
+
381
+ 96
382
+ 00:10:43,830 --> 00:10:48,230
383
+ ุดูŠู„ุชู‡ุง ูˆุญุทูŠุช ู…ูƒุงู†ู‡ุง TY ู„ู…ุง ุฌูŠุช ุฅู†ู‡ุง ุชุฌุชู…ุน ุฒูŠ ุงู„ู„ูŠ
384
+
385
+ 97
386
+ 00:10:48,230 --> 00:10:53,310
387
+ ููˆู‚ ุชุณุงูˆูŠ F of XY ู„ู…ุง ุฌูŠุช ุชุณุงูˆูŠ T to the power M ููŠ F
388
+
389
+ 98
390
+ 00:10:53,310 --> 00:10:59,550
391
+ of XY. ุจู‚ูˆู„ ุฅู† ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุนู†ู‡ุง ุฏูŠ
392
+
393
+ 99
394
+ 00:10:59,550 --> 00:11:06,450
395
+ ุจู‚ูˆู„ ุนู†ู‡ุง homogeneous ู…ู† ุงู„ุฏุฑุฌุฉ ุฑู‚ู… M. ุชู…ุงู…ุŸ ูŠุจู‚ู‰
396
+
397
+ 100
398
+ 00:11:06,450 --> 00:11:12,790
399
+ ู‡ุฐุง degree M ู‡ูˆู…ูˆุฌูŠู†ูŠุณ ู…ู† degree M ุทูŠุจ ูŠุจู‚ู‰ ุจู†ุงุก
400
+
401
+ 101
402
+ 00:11:12,790 --> 00:11:18,950
403
+ ุนู„ูŠู‡ ุงู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ ู‡ุฐู‡ ููŠ ุนู†ุฏูŠ ู‡ู†ุง T ู…ุง ุนู†ุฏูŠุด ูŠุนู†ูŠ
404
+
405
+ 102
406
+ 00:11:18,950 --> 00:11:25,030
407
+ ูƒุงู†ุช T ุฃูˆ Zero ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุงู„ู‡ูˆู…ูˆุฌูŠู†ูŠุณ of degree
408
+
409
+ 103
410
+ 00:11:25,030 --> 00:11:31,870
411
+ Zero. ุชู…ุงู…. degree Zero ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุชุฌุงู†ุณุฉ ู…ู† ุงู„ุฏุฑุฌุฉ
412
+
413
+ 104
414
+ 00:11:31,870 --> 00:11:36,680
415
+ ุงู„ุตูุฑูŠุฉ. ุงู„ุขู† ุจุฏู†ุง ู†ุฑูˆุญ ูƒูŠู ุจุฏู†ุง ู†ูู‡ู… ุงู„ two
416
+
417
+ 105
418
+ 00:11:36,680 --> 00:11:41,280
419
+ definitions ู‡ุฏูˆู„ุŸ ุจุฏู†ุง ู†ุงุฎุฏ ุจุนุถ ุงู„ุฃู…ุซู„ุฉ ูŠุจู‚ู‰
420
+
421
+ 106
422
+ 00:11:41,280 --> 00:11:48,340
423
+ example one ุจู‚ูˆู„
424
+
425
+ 107
426
+ 00:11:48,340 --> 00:11:54,100
427
+ determine. determine
428
+
429
+ 108
430
+ 00:11:54,100 --> 00:12:00,300
431
+ whether the following
432
+
433
+ 109
434
+ 00:12:03,040 --> 00:12:07,920
435
+ determine whether the following functions are
436
+
437
+ 110
438
+ 00:12:07,920 --> 00:12:18,200
439
+ homogeneous or not if
440
+
441
+ 111
442
+ 00:12:18,200 --> 00:12:30,080
443
+ it is Homogeneous ู„ูˆ ูƒุงู†ุช homogenous state its degree
444
+
445
+ 112
446
+ 00:12:30,080 --> 00:12:36,100
447
+ ุจุฏูŠ ุฃุนุฑู ู‚ุฏุงุด ุงู„ุฏุฑุฌุฉ ุจุชุงุนุชู‡ุง. ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
448
+
449
+ 113
450
+ 00:12:51,130 --> 00:13:03,950
451
+ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ. ุงู„ู€ F of X ูˆ Y ุจุฏู‡ุง ุชุณุงูˆูŠ XY Cos Y
452
+
453
+ 114
454
+ 00:13:03,950 --> 00:13:08,690
455
+ ุนู„ู‰ X ุฒุงุฆุฏ X ุชุฑุจูŠุน.
456
+
457
+ 115
458
+ 00:13:14,510 --> 00:13:19,270
459
+ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ู„ูŠ ุดูˆู ู„ู…ูŠู† ู…ู† ุงู„ุฏูˆู„ ุงู„ุชุงู„ูŠุฉ ุจุชุจู‚ู‰
460
+
461
+ 116
462
+ 00:13:19,270 --> 00:13:22,890
463
+ homogenous ูˆู…ูŠู† ู…ุงู‡ูŠุด homogenous ูˆุฅุฐุง ูƒุงู†ุช
464
+
465
+ 117
466
+ 00:13:22,890 --> 00:13:27,450
467
+ homogenous ุจุฏูŠ ุฃุนุฑู ุงู„ู€ M ู‡ุฐู‡ ู‚ุฏุงุด ู‚ูŠู…ุชู‡ุง ูŠุนู†ูŠ ู‚ุฏุงุด
468
+
469
+ 118
470
+ 00:13:27,450 --> 00:13:34,290
471
+ ุฏุฑุฌุฉ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ. ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ุจุฏุงุฌูŠ ุงู„ solution ู‡ูˆ
472
+
473
+ 119
474
+ 00:13:34,290 --> 00:13:41,310
475
+ ุจุฏุงุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุฑู‚ู… I ุฑู‚ู… I ุจุฏูŠ ุฃุดูŠู„
476
+
477
+ 120
478
+ 00:13:41,310 --> 00:13:48,050
479
+ ูƒู„ X ูˆุฃุญุท ู…ูƒุงู†ู‡ุง. ูˆุฃุดูŠู„ ูƒู„ Y ูˆุฃุญุท ู…ูƒุงู†ู‡ุง TY ูŠุจู‚ู‰
480
+
481
+ 121
482
+ 00:13:48,050 --> 00:13:57,310
483
+ ุจุงู„ุฏุงุฌูŠ ุฃู‚ูˆู„ู‡ ู‡ู†ุง G of TX ูˆTY ุจุฏู‡ุง ุชุณุงูˆูŠ ุงุซู†ูŠู† TX
484
+
485
+ 122
486
+ 00:13:57,310 --> 00:14:07,800
487
+ ู„ูƒู„ ุชุฑุจูŠุน ุฒุงุฆุฏ ุซู„ุงุซุฉ TY ู„ูƒู„ ุชุฑุจูŠุน ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูŠุนู†ูŠ
488
+
489
+ 123
490
+ 00:14:07,800 --> 00:14:14,560
491
+ ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุงู„ู„ูŠ ู‡ูŠ ุงุซู†ูŠู† T ุชุฑุจูŠุน X ุชุฑุจูŠุน ุฒุงุฆุฏ
492
+
493
+ 124
494
+ 00:14:14,560 --> 00:14:24,720
495
+ ุซู„ุงุซุฉ T ุชุฑุจูŠุน Y ุชุฑุจูŠุน ุฒุงุฆุฏ ุฃุฑุจุนุฉ. ุงู„ู€ G is a non
496
+
497
+ 125
498
+ 00:14:24,720 --> 00:14:31,020
499
+ homogeneous function.
500
+
501
+ 126
502
+ 00:14:31,020 --> 00:14:35,660
503
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ู„ูŠุณุช homogeneous function.
504
+
505
+ 127
506
+ 00:14:46,190 --> 00:14:51,590
507
+ ู†ุฃุชูŠ ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ ุฃูˆ ู„ู„ู€ function ุงู„ุซุงู†ูŠุฉ. ู†ุงุฎุฏ
508
+
509
+ 128
510
+ 00:14:51,590 --> 00:15:01,730
511
+ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ู„ู€ F of TX ูˆ TY ุชุณุงูˆูŠ ูŠุจู‚ู‰ ู‡ู†ุง TX
512
+
513
+ 129
514
+ 00:15:01,730 --> 00:15:14,190
515
+ ู…ุถุฑูˆุจุฉ ููŠ TY TX ููŠ TY ููŠ Cos TY ุนู„ู‰ TX
516
+
517
+ 130
518
+ 00:15:14,190 --> 00:15:24,010
519
+ ุฒุงุฆุฏ TX ู„ูƒู„ ุชุฑุจูŠุน. ู‡ุฐู‡ ู„ูˆ ุฌูŠุช ุถุฑุจุชู‡ุง ูŠุง ุจู†ุงุช ุจูŠุตูŠุฑ
520
+
521
+ 131
522
+ 00:15:24,010 --> 00:15:31,250
523
+ T ุชุฑุจูŠุน XY ูˆู‡ู†ุง ู„ูˆ ุงุฎุชุตุฑุช T ู…ุน T ุจูŠุธู„
524
+
525
+ 132
526
+ 00:15:31,250 --> 00:15:38,130
527
+ Cosine Y ุนู„ู‰ X ูˆู‡ุฐู‡ ุฒุงุฆุฏ T ุชุฑุจูŠุน X ุชุฑุจูŠุน.
528
+
529
+ 133
530
+ 00:15:39,380 --> 00:15:44,000
531
+ ุฃุธู† ู…ู…ูƒู† ู…ู† ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุขุฎุฏ T ุชุฑุจูŠุน ุนุงู…ู„ ู…ุดุชุฑูƒ. ุฅุฐุง
532
+
533
+ 134
534
+ 00:15:44,000 --> 00:15:51,580
535
+ ู„ูˆ ุฃุฎุฐู†ุง T ุชุฑุจูŠุน ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุธู„ ู„ุฃู† XY Cos Y ุนู„ู‰
536
+
537
+ 135
538
+ 00:15:51,580 --> 00:15:57,820
539
+ X ุฒุงุฆุฏ X ุชุฑุจูŠุน ุงู„ู„ูŠ ุจูŠู† Cos ุฃู„ูŠุณ T F of X ูˆY
540
+
541
+ 136
542
+ 00:15:57,820 --> 00:16:05,280
543
+ ุงู„ุฃุตู„ูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณุงูˆูŠ T ุชุฑุจูŠุน ููŠ F of X
544
+
545
+ 137
546
+ 00:16:05,280 --> 00:16:14,840
547
+ ูˆY. ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงูŠู‡ุŸ ู ุงู„ f of x ูˆ y is a
548
+
549
+ 138
550
+ 00:16:14,840 --> 00:16:19,820
551
+ homogeneous function
552
+
553
+ 139
554
+ 00:16:19,820 --> 00:16:31,880
555
+ of degree ุงุซู†ูŠู†. ุทูŠุจ ุฃู†ุช ู‡ู†ุง ุฑูˆุญ ู†ุงุฎุฏ ุฃู…ุซู„ุฉ. ูŠุจู‚ู‰ ู‡ุฐุง
556
+
557
+ 140
558
+ 00:16:31,880 --> 00:16:36,720
559
+ ุงู„ู…ุซุงู„ ุนู„ู‰ ุขุฎุฑ ุงู„ุชุนุฑูŠููŠู†. ุจุฏู†ุง ู†ุฑูˆุญ ู†ุงุฎุฏ ู…ุซุงู„ ุนู„ู‰
560
+
561
+ 141
562
+ 00:16:36,720 --> 00:16:41,020
563
+ ุงู„ุชุนุฑูŠู ุงู„ุฃูˆู„ ู„ู„ homogenous differential equation.
564
+
565
+ 142
566
+ 00:16:41,020 --> 00:16:49,320
567
+ ูŠุจู‚ู‰ example two ุจูŠู‚ูˆู„
568
+
569
+ 143
570
+ 00:16:49,320 --> 00:16:57,800
571
+ solve the following differential
572
+
573
+ 144
574
+ 00:16:59,520 --> 00:17:05,540
575
+ Equations. ๏ฟฝ๏ฟฝู„ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ ุงู„ุชุงู„ูŠุฉ. ุฃูˆู„
576
+
577
+ 145
578
+ 00:17:05,540 --> 00:17:12,440
579
+ ู…ุนุงุฏู„ุฉ ู…ู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูŠ ู‡ูŠ ุฑู‚ู… A ุจูŠู‚ูˆู„ XYY'
580
+
581
+ 146
582
+ 00:17:13,280 --> 00:17:19,520
583
+ ูŠุณุงูˆูŠ 2Y ุชุฑุจูŠุน ู†ุงู‚ุต X ุชุฑุจูŠุน.
584
+
585
+ 147
586
+ 00:17:44,670 --> 00:17:49,890
587
+ ุฃูˆู„ ุดูŠุก ุจุชุจุญุซ ู‡ู„ ู‡ูŠ homogeneousุŸ ู…ุงู‡ูŠุด homogeneous
588
+
589
+ 148
590
+ 00:17:49,890 --> 00:17:56,980
591
+ ู†ู‚
592
+
593
+ 201
594
+ 00:22:45,060 --> 00:22:51,500
595
+ ุถุฑุจู†ุง ููŠ ุงุซู†ูŠู† ุจุตูŠุฑ ุงู„ู€Lin ู‡ุฐู‡ ูŠุง ุจู†ุงุช ูƒุฃู†ู‡ุง ุงูŠู‡ุŸ
596
+
597
+ 202
598
+ 00:22:51,500 --> 00:22:57,840
599
+ ูƒุฃู†ู‡ุง ุงู„ู€Lin ุงู„ู€V ุชุฑุจูŠุน ู†ุงู‚ุต ูˆุงุญุฏ ูŠุณุงูˆูŠ ุงู„ู€Lin
600
+
601
+ 203
602
+ 00:22:57,840 --> 00:23:03,700
603
+ absolute value ู„ู„ู€ X ุชุฑุจูŠุน ุฃุธู† ุณูˆุงุก ูƒุชุจู†ุง ุงู„ู€Lin ูˆ
604
+
605
+ 204
606
+ 00:23:03,700 --> 00:23:11,280
607
+ ูˆุงู„ู„ู‡ ู…ุง ูƒุชุจู†ุงุด ุจุชูุฑุฌุด ุนู†ุฏู†ุง ุชู…ุงู…ุŸ ู‡ุง ุฒุงุฆุฏ ุงุซู†ูŠู†
608
+
609
+ 205
610
+ 00:23:11,280 --> 00:23:19,570
611
+ C1ุฃู†ุง ุจุฏูŠ ุฃุดูŠู„ ู„ู† ู‡ุฐู‡ ุจุฑูุน ุงุซู†ูŠู† ูƒุฃุณ ู„ู„ุนุฏุงุฏ ุงูŠู‡
612
+
613
+ 206
614
+ 00:23:19,570 --> 00:23:24,530
615
+ ูŠุจู‚ุงุด ุจูŠุตูŠุฑ ุนู†ุฏู†ุง ู‡ู†ุง absolute value ู„ู„ู€ V ุชุฑุจูŠุน ู†ุงู‚ุต
616
+
617
+ 207
618
+ 00:23:24,530 --> 00:23:32,570
619
+ ูˆุงุญุฏ ูŠุณุงูˆูŠ E ุฃุณ ู„ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ X ุชุฑุจูŠุน ู„ุฅู† ุงู„ู€ X
620
+
621
+ 208
622
+ 00:23:32,570 --> 00:23:38,530
623
+ ุชุฑุจูŠุน ุฒุงุฆุฏ ุงุซู†ูŠู† C1 ูƒูˆู†ู‡ ูƒู…ูŠุฉ ู…ุฑุจุนุฉ ุญุทูŠุช ุงู„ู€
624
+
625
+ 209
626
+ 00:23:38,530 --> 00:23:43,000
627
+ absolute ูˆุงู„ู„ู‡ ุดูŠู„ุชู‡ ุจุชูุฑุฌุด ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู‡ุฐู‡ ูŠุง ุจู†ุงุช
628
+
629
+ 210
630
+ 00:23:43,000 --> 00:23:50,480
631
+ ุงู„ู„ูŠ ู‡ูŠ ุจุชุชุณุงูˆูŠ ู‚ุฏุงุด X ุชุฑุจูŠุน ููŠ E ุฃุณ ุงุซู†ูŠู† C1 E ุฃุณ
632
+
633
+ 211
634
+ 00:23:50,480 --> 00:23:56,640
635
+ ู„ูŠู† X ุชุฑุจูŠุน ูˆ E ุฃุณ ุงุซู†ูŠู† C1 ุชู…ุงู… ุงู„ู€ E ูˆ ุงู„ู€ L ุนูƒุณ
636
+
637
+ 212
638
+ 00:23:56,640 --> 00:24:02,020
639
+ ุจุนุถ ุจุตูŠุฑ X ุชุฑุจูŠุน ููŠ ู…ู† ููŠ C1 ุทุจ ุฅูŠุด ุฑุฃูŠูƒ ู‡ุฐู‡ ุนู…ุฑู‡ุง
640
+
641
+ 213
642
+ 00:24:02,020 --> 00:24:07,680
643
+ ุชุตูŠุฑ ู‚ูŠู…ุฉ ุณุงู„ุจุฉ ูŠุจู‚ู‰ ุงู„ู€ absolute value ู‡ุฐุง ู„ุง ู…ุนู†ู‰
644
+
645
+ 214
646
+ 00:24:07,680 --> 00:24:13,190
647
+ ู„ู‡ ู…ูˆุฌุจ ุฏุงุฆู…ุงู‹ ูˆุฃุจุฏุงู‹ ูŠุจู‚ู‰ ุจู†ุงุกู‹ ุนู„ูŠู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุฅุฐุง
648
+
649
+ 215
650
+ 00:24:13,190 --> 00:24:21,410
651
+ ุงู„ู€V ุชุฑุจูŠุน ู†ุงู‚ุต ูˆุงุญุฏ ูŠุณุงูˆูŠ C ููŠ X ุชุฑุจูŠุน ูˆุงู„ู€C ุจุฏูŠ
652
+
653
+ 216
654
+ 00:24:21,410 --> 00:24:27,010
655
+ ูŠุณุงูˆูŠ E ุฃุณ ุงุซู†ูŠู† C1 ู‡ุฐุง ู…ู‚ุฏุงุฑ ุซุงุจุช ุจุฏู„ ู…ุง ู‡ู… ูƒุงู†ูˆุง
656
+
657
+ 217
658
+ 00:24:27,010 --> 00:24:31,150
659
+ ุจุฏูŠู‡ู… ูŠุญุทูˆุง ู…ุฏุงู„ู‡ C ุงู„ุชูู„ูŠ ุจุณ ููŠ ุงู„ูƒุชุงุจ ู…ู‚ุฏุงุฑ ุซุงุจุช
660
+
661
+ 218
662
+ 00:24:31,150 --> 00:24:37,410
663
+ ุฌุฏ ู…ุง ูŠูƒูˆู† ูŠูƒูˆู† ุทูŠุจ ุงู„ูˆุงุญุฏ ู‡ุฐุง ุจู‚ุฏุฑ ุฃู†ู‚ู„ู‡ ุฃูŠู†ุŸ ุนู„ู‰
664
+
665
+ 219
666
+ 00:24:37,410 --> 00:24:44,570
667
+ ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุตูŠุฑ ุงู„ู€ V ุชุฑุจูŠุน ุจุฏู‡ ูŠุณุงูˆูŠ CX
668
+
669
+ 220
670
+ 00:24:44,570 --> 00:24:51,190
671
+ ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ุทุจ ุงู„ู€ V ุชุฑุจูŠุฉ ู‡ุฐู‡ ู…ุด ุนุจุงุฑุฉ ุนู† Y ุนู„ู‰
672
+
673
+ 221
674
+ 00:24:51,190 --> 00:24:57,730
675
+ X ู„ูƒู„ ุชุฑุจูŠุฉ ุตุญ ู†ุถุฑุจ ุงู„ุทุฑููŠู† ููŠ X ุชุฑุจูŠุฉ ุจุตูŠุฑ ุนู†ุฏู†ุง
676
+
677
+ 222
678
+ 00:24:57,730 --> 00:25:05,970
679
+ ู‡ู†ุง Y ุชุฑุจูŠุฉ ูŠุณุงูˆูŠ X ุชุฑุจูŠุฉ ููŠ C X ุชุฑุจูŠุฉ ุฒุงุฆุฏ ูˆุงุญุฏ
680
+
681
+ 223
682
+ 00:25:06,560 --> 00:25:13,160
683
+ ู†ุงุฎุฏ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู„ุทุฑููŠู† ูŠุจู‚ู‰ ุจุตูŠุฑ Y ูŠุณุงูˆูŠ
684
+
685
+ 224
686
+ 00:25:13,160 --> 00:25:19,180
687
+ ุงู„ุฒุงุฆุฏ ุฃูˆ ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ main ุงู„ู„ูŠ ู‡ูˆ absolute value
688
+
689
+ 225
690
+ 00:25:19,180 --> 00:25:25,780
691
+ ู„ู„ู€ X ููŠ main ููŠ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู€ CX ุชุฑุจูŠุน ุฒุงุฆุฏ
692
+
693
+ 226
694
+ 00:25:25,780 --> 00:25:35,150
695
+ ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุงู„ุญู„ ุชุจุน ุงู„ู…ุซู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุชู…ุงู…ุŸ
696
+
697
+ 227
698
+ 00:25:35,150 --> 00:25:39,150
699
+ ุญุฏ ู„ู‡ ุฃูŠ ุชุณุงุคู„ ู‡ู†ุง ู‚ุจู„ ุฃู† ู†ุฐู‡ุจ ุฅู„ู‰ ุงู„ู…ุซุงู„ ุงู„ุฐูŠ
700
+
701
+ 228
702
+ 00:25:39,150 --> 00:25:45,750
703
+ ูŠู„ูŠู‡ .. ุขู‡ ุฃูŠูˆุฉ ุชูุถู„ูŠ ู…ุง ููŠุด
704
+
705
+ 229
706
+ 00:25:45,750 --> 00:25:50,310
707
+ ุฑุฃูŠูƒ ุชูŠุฌูŠ ู‡ู†ุงุŸ ุชุนุงู„ูŠ ูŠู„ุง ูŠุง ุจู†ุงุช ุฃุฎุฐู†ุง ุทุงู„ ุงู„ูˆู‚ุช
708
+
709
+ 230
710
+ 00:25:50,310 --> 00:25:54,570
711
+ four example ูƒู…ุซุงู„ ู…ุดุงู† ุงู„ู„ูŠ ู…ุด ู…ุฎุฏู…ุฉ ุชุฃุฎุฐ ุจุงู„ู‡ุง
712
+
713
+ 231
714
+ 00:25:54,570 --> 00:26:00,410
715
+ ุชุณุฃู„ูŠ ู‡ู†ุง ุงู„ู„ูŠ ุจุฏูƒูŠุฉ ู‡ู†ุง ูŠุฌุจ ุฃู† ุชุนู…ู„ E ุฃุณู†ูŠู† extra
716
+
717
+ 232
718
+ 00:26:00,410 --> 00:26:06,160
719
+ B ุฒูŠ ุงุซู†ูŠู† C one ู…ุด ู‡ูŠ ุงู„ุงุซู†ูŠู† C one ุจุญุงู„ู‡ู‡ุง ู…ุงุดูŠ
720
+
721
+ 233
722
+ 00:26:06,160 --> 00:26:14,620
723
+ ู„ูƒู† ู‡ุฐุง ูƒู„ู‡ ูƒุฃุณู„ ุงู„ุนุฏุฏ E ู‡ุฐุง ูƒู„ู‡ ุฃุณู„ ุงู„ุนุฏุฏ E E ุฃุณู„
724
+
725
+ 234
726
+ 00:26:14,620 --> 00:26:20,080
727
+ ูŠุณุงูˆูŠ E ุฃุณ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ูƒู„ู‡ ู…ุธุจูˆุท ูˆู„ุง ู„ุฃ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ
728
+
729
+ 235
730
+ 00:26:20,080 --> 00:26:29,150
731
+ E ุฃุณู„ X ุชุฑุจูŠุน E ุฃุณู„ X ุชุฑุจูŠุน ููŠ E ุฃุณ ุงุซู†ูŠู† C1 ู‡ูŠ
732
+
733
+ 236
734
+ 00:26:29,150 --> 00:26:33,290
735
+ ูˆุฒู†ู‡ุง ู…ุธุจูˆุท ู‡ูŠูƒ ุนู†ุฏ ุถุฑุจ ุชุฌู…ุน ุงู„ุฃุณุณ ูุตุงุฑุช ู…ุฌู…ูˆุนุฉ
736
+
737
+ 237
738
+ 00:26:33,290 --> 00:26:37,890
739
+ ุจู‡ุฐุง ุงู„ุดูƒู„ ุงู„ู€E ูˆุงู„ุฅู†ุนูƒุณ ุจุนุถ ุจุถู„ X ุชุฑุจูŠุนู‡ุง ุฏูŠ ุญุทูŠุช
740
+
741
+ 238
742
+ 00:26:37,890 --> 00:26:42,790
743
+ ุจุฏู„ู‡ุง ู…ู‚ุฏุงุฑ ุซุงุจุช ู„ุฅู† 2 ูˆ7 ู…ู† 10 ุฃุณ ู…ู‚ุฏุงุฑ ุซุงุจุช ู‡ูŠูƒ
744
+
745
+ 239
746
+ 00:26:42,790 --> 00:26:47,110
747
+ ูƒู†ุช ุจุฏูƒ ุชุณุฃู„ูŠ ูˆู„ุง ุจุทู„ุชูŠ ู†ูุณ ุงู„ุณุคุงู„ ููŠ ุญุงุจุฉ ุชุณุฃู„
748
+
749
+ 240
750
+ 00:26:47,110 --> 00:26:54,250
751
+ ุซุงู†ูŠ ูŠุง ุจู†ุงุช ุฎู„ุงุต ู†ุฐู‡ุจ ุฅู„ู‰ ุงู„ู…ุซุงู„ ุงู„ุฐูŠ ูŠู„ูŠู‡
752
+
753
+ 241
754
+ 00:27:10,480 --> 00:27:15,160
755
+ ู†ู…ุฑ ุจู€ X
756
+
757
+ 242
758
+ 00:27:15,160 --> 00:27:27,980
759
+ ุชุฑุจูŠุฉ Y' ู†ุงู‚ุต XY X ุชุฑุจูŠุฉ ุฒุงุฆุฏ Y ุชุฑุจูŠุฉ ููŠ 10
760
+
761
+ 243
762
+ 00:27:27,980 --> 00:27:36,040
763
+ inverse Y ุนู„ู‰ X ู†ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง
764
+
765
+ 244
766
+ 00:27:36,040 --> 00:27:44,090
767
+ ู‡ุฐู‡ ุจุณูŠุทุฉ ุฌุฏุงู‹ ูŠุจู‚ู‰ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุจุฏูŠ ุฃุฎู„ู‘ูŠ Y' ู„ุญุงู„ุฉ
768
+
769
+ 245
770
+ 00:27:44,090 --> 00:27:51,130
771
+ ูŠุจู‚ู‰ ุฅูŠุด ู†ุนู…ู„ุŸ ู†ุถุฑุจ ููŠ X ุชุฑุจูŠุน ุตุญูŠุญ ูˆู„ุง ู„ุงุŸ ูŠุจู‚ู‰
772
+
773
+ 246
774
+ 00:27:51,130 --> 00:27:58,490
775
+ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ solution ุฃุฌุณู… ุงู„ู…ุนุงุฏู„ุฉ ูƒู„ู‡ุง ุนู„ู‰ X ุชุฑุจูŠุฉ
776
+
777
+ 247
778
+ 00:27:58,490 --> 00:28:05,090
779
+ ู„ูˆ ุฌุณู…ุช ุนู„ู‰ X ุชุฑุจูŠุฉ ู‡ู†ุง ูŠู‚ุฏุฑุด ุจูŠุทู„ุน Y' ู„ูˆ ุฌุณู…ุช ุนู„ู‰
780
+
781
+ 248
782
+ 00:28:05,090 --> 00:28:13,110
783
+ X ุชุฑุจูŠุฉ ุจูŠุธู„ ูŠู‚ุฏุฑุด Y ุนู„ู‰ X ูŠุจุฏูˆ ูŠุณุงูˆูŠ 1 ุฒุงุฆุฏ Y ุนู„ู‰
784
+
785
+ 249
786
+ 00:28:13,110 --> 00:28:19,550
787
+ X ู„ูƒู„ ุชุฑุจูŠุฉ ุซุงู†ูŠ Inverse Y ุนู„ู‰ X
788
+
789
+ 250
790
+ 00:28:23,140 --> 00:28:27,480
791
+ ุจุนุฏ ุฐู„ูƒ ุงู„ุขู† ุตุงุฑุช ู‡ุฐู‡ homogenous differential
792
+
793
+ 251
794
+ 00:28:27,480 --> 00:28:34,840
795
+ equation ูŠุจู‚ู‰ ู‡ุฐู‡ homogenous differential
796
+
797
+ 252
798
+ 00:28:34,840 --> 00:28:38,980
799
+ equation ู…ุงุฏุงู… homogenous ุฅุฐุง ุจู†ุญู„ู‡ุง ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ
800
+
801
+ 253
802
+ 00:28:38,980 --> 00:28:45,450
803
+ ุญู„ู†ุงู‡ุง ุจุงู„ู…ุซุงู„ ู‚ุจู„ ู‚ู„ูŠู„ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ put ุญุท ู„ูŠ V
804
+
805
+ 254
806
+ 00:28:45,450 --> 00:28:52,430
807
+ ุชุณุงูˆูŠ Y ุนู„ู‰ X ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† Y ูŠุณุงูˆูŠ XV ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู†
808
+
809
+ 255
810
+ 00:28:52,430 --> 00:29:01,930
811
+ dy by dx ูŠุณุงูˆูŠ V ุฒุงุฆุฏ X ููŠ DV ุนู„ู‰ DX ุฅุฐุง ุจุฏู†ุง ู†ู…ุณูƒ
812
+
813
+ 256
814
+ 00:29:01,930 --> 00:29:05,050
815
+ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู„ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุง ูˆ ู†ุฑุฌุน ู†ุนูˆุถู‡ุง ุจู‚ู‰ ููŠ
816
+
817
+ 257
818
+ 00:29:05,050 --> 00:29:12,180
819
+ ุงู„ู…ุนุงุฏู„ุฉ ุฃุนู„ูŠ ูŠุจู‚ู‰ ุงู„ู€Y' ูŠุง ุจู†ุงุช ุงู„ู„ูŠ ู‡ูŠ V ุฒุงุฆุฏ X
820
+
821
+ 258
822
+ 00:29:12,180 --> 00:29:21,640
823
+ ููŠ ุงู„ู€DV ุนู„ู‰ DX ู†ู‚ุต ุงู„ู€V ูŠุณุงูˆูŠ 1 ุฒุงุฆุฏ V ุชุฑุจูŠุน ููŠ
824
+
825
+ 259
826
+ 00:29:21,640 --> 00:29:30,860
827
+ 10 inverse V ุฃุธู† ุณุงู„ุจ V ูˆู…ูˆุฌุฉ V ู…ุน ุงู„ุณู„ุงู…ุฉ ูŠุจู‚ู‰
828
+
829
+ 260
830
+ 00:29:30,860 --> 00:29:39,140
831
+ ุชู‚ูˆู„ ุงู„ู…ุซู„ ุฅู„ู‰ X ููŠ ุงู„ู€DV ุนู„ู‰ DX 1 ุฒุงุฆุฏ V ุชุฑุจูŠุน ููŠ
832
+
833
+ 261
834
+ 00:29:39,140 --> 00:29:47,460
835
+ Tan inverse V ู†ูุตู„ ุงู„ู…ุชุบูŠุฑุงุช ุจูŠุฏุฎู„ ุงู„ู€ V ููŠ ุงู„ุฌู‡ุฉ
836
+
837
+ 262
838
+ 00:29:47,460 --> 00:29:54,340
839
+ ุงู„ุดู…ุงู„ ูˆุงู„ู€ X ููŠ ุงู„ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ูŠุจู‚ู‰ ุฏูŠ ุจูŠุตูŠุฑ DV ุนู„ู‰
840
+
841
+ 263
842
+ 00:29:54,340 --> 00:30:02,600
843
+ ูˆุงุญุฏ ุฒุงุฆุฏ V ุชุฑุจูŠุน ููŠ tan inverse V ูŠุณุงูˆูŠ DX ุนู„ู‰ X
844
+
845
+ 264
846
+ 00:30:02,600 --> 00:30:07,520
847
+ ูˆู‡ุฐู‡ C Parabol equation
848
+
849
+ 265
850
+ 00:30:08,420 --> 00:30:14,100
851
+ ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุนุงุฏู„ุฉ ููŠู‡ุง ุงู„ู…ุชุบูŠุฑุงุช ู…ูุตูˆู„ุฉ ุฅุฐุง ุงู„ู…ุนุงุฏู„ุฉ
852
+
853
+ 266
854
+ 00:30:14,100 --> 00:30:20,160
855
+ ุงู„ู„ูŠ ูƒุงู†ุช homogenous ุญูˆู„ู†ุงู‡ุง ุฅู„ู‰ separable ูˆู…ู† ุซู…
856
+
857
+ 267
858
+ 00:30:20,160 --> 00:30:25,800
859
+ ู…ุง ุถุงูŠู„ ุนู„ูŠู†ุง ุฅู„ุง ู†ูƒุงู…ู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุจูŠูƒูˆู† ุญุตู„ู†ุง
860
+
861
+ 268
862
+ 00:30:25,800 --> 00:30:33,540
863
+ ุนู„ู‰ ุงู„ุญู„ ุงู„ู…ุทู„ูˆุจ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ุฐู‡ very easy ุทุจ ูˆ ู‡ุฐู‡
864
+
865
+ 269
866
+ 00:30:33,540 --> 00:30:41,000
867
+ very easy ูƒู…ุงู† ู…ุด ุชู‚ุช ุงู„ู€ tan inverse ูƒุฏู‡ุŸ 1 ู„ุง 1
868
+
869
+ 270
870
+ 00:30:41,000 --> 00:30:47,900
871
+ ุฒุงุฆุฏ V ุชุฑุจูŠุน ุฅุฐุง ู‡ุฐู‡ ูƒู„ู‡ุง ู‡ูŠ ู…ุด ุชู‚ุช ู…ู†ุŸ tan
872
+
873
+ 271
874
+ 00:30:47,900 --> 00:30:54,580
875
+ inverse ูŠุจู‚ู‰ ุงู„ู…ุซู„ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ูŠ D ู„ู€ tan inverse V
876
+
877
+ 272
878
+ 00:30:54,580 --> 00:31:02,400
879
+ ุนู„ู‰ tan inverse V ุจุฏู‡ ูŠุณุงูˆูŠ DX ุนู„ู‰ X ุฅุฐุง ุฑุญุช ูƒุชุจุช
880
+
881
+ 273
882
+ 00:31:02,400 --> 00:31:07,790
883
+ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ุจุตูŠุงุบุฉ ุฌุฏูŠุฏุฉ ุทุจ ุงู„ุจุณุท ู‡ูˆ ุชูุงุถู„
884
+
885
+ 274
886
+ 00:31:07,790 --> 00:31:13,430
887
+ ุงู„ู…ู‚ุงู… ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ู„ูŠู† absolute value ู„ู„ู…ู‚ุงู… ูŠุจู‚ู‰
888
+
889
+ 275
890
+ 00:31:13,430 --> 00:31:19,430
891
+ ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง ุจุงู„ุชูƒุงู…ู„ ู„ูŠู† absolute value ู„ู€ 10
892
+
893
+ 276
894
+ 00:31:19,430 --> 00:31:25,990
895
+ inverse V ุจุฏูŠ ูŠุณุงูˆูŠ ู„ูŠู† absolute value ู„ู€ X ุฒุงุฆุฏ
896
+
897
+ 277
898
+ 00:31:25,990 --> 00:31:33,990
899
+ constant C1 ุทูŠุจ ุดูˆ ุฑุฃูŠูƒุŸ ู†ุงุฎุฐ ุงู„ู€ exponential
900
+
901
+ 278
902
+ 00:31:33,990 --> 00:31:40,110
903
+ ู„ู„ุทุฑููŠู† ูŠุจู‚ู‰ ู„ู‡ุง ุฑูุนุช ุงุซู†ูŠู† ูƒุฃุณ ู„ู„ุนุฏุฏ E ุจุตูŠุฑ ุนู†ุฏูŠ
904
+
905
+ 279
906
+ 00:31:40,110 --> 00:31:46,890
907
+ absolute value ู„ู€ 10 inverse V ุจูŠุตูŠุฑ E ุฃุณ ู„ู†
908
+
909
+ 280
910
+ 00:31:46,890 --> 00:31:55,570
911
+ absolute value ู„ู€ X ุฒุงุฆุฏ C1 ุดูˆ ุงุณู…ูƒ ุฃู†ุช ูˆุงู„ู„ู‡ุŸ ู…ุด
912
+
913
+ 281
914
+ 00:31:55,570 --> 00:32:02,670
915
+ ุณุงู…ุน ุฃุฎูˆูƒ ู†ุฑู…ูŠ ุชูˆุณูŠุน ุณุฃู„ุฉ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุจุนุถูƒู… ูƒุงู†ุช
916
+
917
+ 282
918
+ 00:32:02,670 --> 00:32:08,550
919
+ ุฎุฌู„ุงู†ุฉ ุชุณุฃู„ู‡ ู†ุดุฌุนู‡ุง ุนู„ู‰ ุฐู„ูƒ ูˆู†ุฐู‡ุจ ู†ุฐูƒุฑ ุชุฐูƒูŠุฑ ุจู…ุง
920
+
921
+ 283
922
+ 00:32:08,550 --> 00:32:15,170
923
+ ูƒู†ุง ู†ุตู†ุนู‡ ููŠ Calculus B ูŠุจู‚ู‰ ู‡ุฐู‡ E ุฃุณ ู„ู† absolute
924
+
925
+ 284
926
+ 00:32:15,170 --> 00:32:25,300
927
+ value ู„ู€ X ููŠ E ุฃุณ C1 ุชู…ุงู…ุŸ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุฃูˆ
928
+
929
+ 285
930
+ 00:32:25,300 --> 00:32:29,760
931
+ ู‡ุฐุง ุงู„ูƒู„ุงู… ู‡ูˆ ุงู„ู„ูŠ ุฅู† ุนูƒุณ ุจุนุถ ูŠุจู‚ู‰ absolute value
932
+
933
+ 286
934
+ 00:32:29,760 --> 00:32:38,440
935
+ ู„ู€ X ููŠ C ูˆุงู„ู€ C ุจุฏู‡ ูŠุณุงูˆูŠ E on C1 ู…ุดุงู† ุฃุถูŠุน ุงู„ูƒู„ูƒุฉ
936
+
937
+ 287
938
+ 00:32:38,440 --> 00:32:44,620
939
+ ู…ุง ุฃุฎู„ูŠุด ุนู†ุฏูŠ ูƒู„ูƒุนุฉ ูƒุชูŠุฑุฉ ุทูŠุจ ุดูˆ ุฑุฃูŠูƒุŸ ุจุฏู‡ ุฃุฎุฐ ุงู„ุขู†
940
+
941
+ 288
942
+ 00:32:44,620 --> 00:32:55,200
943
+ 10 ู„ู„ุทุฑููŠู† ูŠุจู‚ู‰ V ุชุณุงูˆูŠ 10 C absolute value ู„ู€ X
944
+
945
+ 289
946
+ 00:32:58,220 --> 00:33:06,300
947
+ Y ุนู„ู‰ X ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† Y ุนู„ู‰ X ูŠุณุงูˆูŠ 10 ู„ู€ C
948
+
949
+ 290
950
+ 00:33:06,300 --> 00:33:11,100
951
+ absolute value ู„ู€ X ูŠุจู‚ู‰ ุงู„ุญู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู„ูˆ ู†ุถุฑุจ
952
+
953
+ 291
954
+ 00:33:11,100 --> 00:33:18,740
955
+ ุงู„ุทุฑููŠู† ููŠ X ุจูŠุตูŠุฑ Y ูŠุณุงูˆูŠ X ููŠ 10C absolute value
956
+
957
+ 292
958
+ 00:33:18,740 --> 00:33:23,480
959
+ ู„ู€ X ู‡ุฐุง ู‡ูˆ ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู…ุนุทุงุฉ
960
+
961
+ 293
962
+ 00:33:28,600 --> 00:33:36,820
963
+ ู‡ุฐุง ูƒู„ู‡ ุจูŠุธุจุท ูŠูƒูˆู† Y ุนู„ู‰ X ู…ู…ูƒู†
964
+
965
+ 294
966
+ 00:33:36,820 --> 00:33:40,880
967
+ ู…ุง ูŠุธุจุทุด ูˆู„ู…ุง ู…ุง ุธุจุทุด ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู€ C Parable ุฃูˆ
968
+
969
+ 295
970
+ 00:33:40,880 --> 00:33:46,670
971
+ ู„ุจุนุถ ุงู„ุทุฑู‚ ุงู„ุฃุฎุฑู‰ ุงู„ุชูŠ ู„ู… ู†ุฏุฑุณู‡ุง ุจุนุฏ ูŠุนู†ูŠ ุงุญู†ุง
972
+
973
+ 296
974
+ 00:33:46,670 --> 00:33:52,730
975
+ ุจุงู„ุฃุฎุฑ ู…ู…ูƒู† ู†ุฌูŠุจู„ูƒ ุชู…ุฑูŠู† ุนุงู… ุจุนุฏ ูƒู„ู‡ ุชุญู„ ุนู„ู‰ ุฃูŠ
976
+
977
+ 297
978
+ 00:33:52,730 --> 00:33:56,730
979
+ ุทุฑูŠู‚ุฉ ุจุณ ุชุฌุฑุจ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ุชุนุฌุจูƒ ุจุณ ุงู„ู€ Y ุนู„ู‰ X
980
+
981
+ 298
982
+ 00:33:56,730 --> 00:34:01,990
983
+ ุจุชู‚ุฏุฑ ุชุทู„ุน ููŠู‡ุง ุจู…ุฌุฑุฏ ุงู„ู†ุธุฑ ูŠุนู†ูŠ ุฃู†ุง ู„ูˆ ุฌุณู…ุช ุนู„ู‰ X
984
+
985
+ 299
986
+ 00:34:01,990 --> 00:34:06,030
987
+ ูˆู„ุง ุนู„ู‰ X ุชุฑุจูŠุน ู‡ู„ ุจูŠุทู„ุน Y ุนู„ู‰ X ูˆ X ุนู„ู‰ Y ูˆู„ุง ู„ุฃ
988
+
989
+ 300
990
+ 00:34:06,030 --> 00:34:09,350
991
+ ุฅุฐุง ุทู„ุน ุฎู„ุงุต ู‡ู…ูˆุฌูŠู†ุฉ ู‚ุจู„ ู…ุง ุชุดุชุบู„ ู„ู‡ุง ุจู…ุฌุฑุฏ ู…ุง
992
+
993
+ 301
994
+ 00:34:09,350 --> 00:34:13,580
995
+ ุชุทู„ุน ููŠู‡ุง ุชู…ุงู… ุฃูˆ ุฅุฐุง ู‚ุฑุฑุช ุฃูุตู„ ุจู‚ุฏุฑ ุฃูุตู„ ุงู„ู…ุชุบูŠุฑ
996
+
997
+ 302
998
+ 00:34:13,580 --> 00:34:19,040
999
+ ูŠุจู‚ู‰ ูŠุงุณูŠ ุจุฑุงู…ูˆู„ ูˆู‡ูƒุฐุง ู„ุณู‡ ู„ุงุฒุงู„ ุนู†ุฏู†ุง ุจุนุถ ุฃู†ูˆุงุน
1000
+
1001
+ 303
1002
+ 00:34:19,040 --> 00:34:24,080
1003
+ ุฃุฎุฑู‰ ู…ู† ุงู„ู€ first order differential equation ุทูŠุจ
1004
+
1005
+ 304
1006
+ 00:34:24,080 --> 00:34:34,420
1007
+ ู†ุนุทูŠูƒูŠ ู…ู„ุงุญุธุฉ remark to
1008
+
1009
+ 305
1010
+ 00:34:34,420 --> 00:34:35,280
1011
+ solve
1012
+
1013
+ 306
1014
+ 00:34:39,910 --> 00:34:48,770
1015
+ ู„ู€ differential equation ู„ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ a1
1016
+
1017
+ 307
1018
+ 00:34:48,770 --> 00:34:59,830
1019
+ x1 b1 y1 ุฒุงุฆุฏ c1 ูƒู„ ู‡ุฐุง ู…ุถุฑูˆุจ ููŠ ุงู„ู€ y prime ูŠุณุงูˆูŠ
1020
+
1021
+ 308
1022
+ 00:34:59,830 --> 00:35:15,500
1023
+ a2 x ุฒุงุฆุฏ a2 xA1X ูŠุง ุจู†ุงุช B1X ูŠุณุงูˆูŠ as A2X ุฒุงุฆุฏ
1024
+
1025
+ 309
1026
+ 00:35:15,500 --> 00:35:30,340
1027
+ B2Y ุฒุงุฆุฏ C2 ูˆ examine the following ุจุฏู†ุง ู†ุฎุชุจุฑ ู…ุง
1028
+
1029
+ 310
1030
+ 00:35:30,340 --> 00:35:34,280
1031
+ ูŠุฃุชูŠ ุงู„ู†ู‚ุทุฉ
1032
+
1033
+ 311
1034
+ 00:35:34,280 --> 00:35:34,660
1035
+ ุงู„ุฃูˆู„ู‰
1036
+
1037
+ 312
1038
+ 00:35:37,390 --> 00:35:51,310
1039
+ ุฅุฐุง ุงู„ู€ A1 ููŠ ุงู„ู€ B2 ุชุณุงูˆูŠ A2 ููŠ ุงู„ู€ B1 ู†ุญู„ ุจุงู„ุทุฑูŠู‚ุฉ
1040
+
1041
+ 313
1042
+ 00:35:51,310 --> 00:36:02,110
1043
+ ู†ุญู„ ู†ุญู„ ุจุงู„ุทุฑูŠู‚ุฉ ู†ุญู„ as the final example
1044
+
1045
+ 314
1046
+ 00:36:03,880 --> 00:36:14,260
1047
+ as a final example in section ูˆุงุญุฏ ุงุซู†ูŠู† ู†ู‚ุทุฉ
1048
+
1049
+ 315
1050
+ 00:36:14,260 --> 00:36:26,980
1051
+ ุซุงู†ูŠุฉ if ุงู„ a1 b2 ู„ุง ุชุณุงูˆูŠ ุงู„ a2 ููŠ ุงู„ b1 we use
1052
+
1053
+ 316
1054
+ 00:36:26,980 --> 00:36:31,620
1055
+ the transform
1056
+
1057
+ 317
1058
+ 00:36:34,360 --> 00:36:43,440
1059
+ ูˆ ู†ุณุชุฎุฏู… ุงู„ู€ transform ุงู„ู„ูŠ ู‡ูˆ X ูŠุณุงูˆูŠ X ูƒุงุจุชู„ ุฒุงุฆุฏ
1060
+
1061
+ 318
1062
+ 00:36:43,440 --> 00:36:56,380
1063
+ P ูˆ Y ูŠุณุงูˆูŠ Y ูƒุงุจุชู„ ุฒุงุฆุฏ Q ุญูŠุซ
1064
+
1065
+ 319
1066
+ 00:36:56,380 --> 00:37:01,220
1067
+ ุงู„ู€ P ูˆ ุงู„ู€ Q ู‡ูŠ ุญู„
1068
+
1069
+ 320
1070
+ 00:37:07,180 --> 00:37:15,540
1071
+ is the solution of the system
1072
+
1073
+ 321
1074
+ 00:37:15,540 --> 00:37:20,440
1075
+ of equations
1076
+
1077
+ 322
1078
+ 00:37:20,440 --> 00:37:24,020
1079
+ a1p
1080
+
1081
+ 323
1082
+ 00:37:24,020 --> 00:37:37,900
1083
+ ุฒุงุฆุฏ b1q ุฒุงุฆุฏ c1 ูŠุณุงูˆูŠ zero ูˆ a2p ุฒุงุฆุฏ ุจูŠุชูˆ ุงูƒูŠูˆ
1084
+
1085
+ 324
1086
+ 00:37:37,900 --> 00:37:46,700
1087
+ ุจูŠุชูˆ ุงูƒูŠูˆ ุฒุงุฆุฏ C2 ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ Zero
1088
+
1089
+ 325
1090
+ 00:38:33,240 --> 00:38:39,670
1091
+ Y' ูŠุณุงูˆูŠ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุนู„ู‰ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุฃูˆ ุถุฑุจู†ุง
1092
+
1093
+ 326
1094
+ 00:38:39,670 --> 00:38:43,270
1095
+ ุงู„ุทุฑููŠู† ููŠ ุงู„ู…ู‚ุงู… ูุตุฑุช ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‚ุฏุงู…ูŠ ู‡ุฐุง
1096
+
1097
+ 327
1098
+ 00:38:43,270 --> 00:38:48,250
1099
+ ูŠุจู‚ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‚ุฏุงู…ูŠ ู‡ุฐุง ุฃูˆ y prime ูŠุณุงูˆูŠ ู‡ุฐุง ุนู„ู‰
1100
+
1101
+ 328
1102
+ 00:38:48,250 --> 00:38:52,510
1103
+ ุงู„ุฌู‡ุฉ ุณูŠุงู† ูƒู„ ูˆุงุญุฏ ุทูŠุจ ุฃู†ุง ุนู†ุฏูŠ ู…ุนุงุฏู„ุฉ ุจุดูƒู„ ู„ุฃู†
1104
+
1105
+ 329
1106
+ 00:38:52,510 --> 00:38:57,450
1107
+ ุฃู†ุง ุจุงุฏุฌูŠ ุฃุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูŠุง ุจู†ุงุช ููŠ ุนู†ุฏ ุงู„ู…ุนุงุฏู„ุฉ
1108
+
1109
+ 330
1110
+ 00:38:57,450 --> 00:39:02,650
1111
+ ุฃุญูŠุงู†ุงู‹ ุจุชูƒูˆู†ุด homogenous ู„ูƒู† ุฃู†ุง ุจู‚ุฏุฑ ุจุทุฑูŠู‚ุฉ ู…ุง
1112
+
1113
+ 331
1114
+ 00:39:02,650 --> 00:39:06,710
1115
+ ุฃุญูˆู„ู‡ุง ุฅู„ู‰ homogeneous differential equation ูˆุฅุฐุง
1116
+
1117
+ 332
1118
+ 00:39:06,710 --> 00:39:09,970
1119
+ ุญูˆู„ุชู‡ุง ุจู‚ุฏุฑ ุฃุญู„ู‡ุง ุจุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ุญู„ู†ุงู‡ุง ุจุงู„ู…ุซุงู„ูŠู†
1120
+
1121
+ 333
1122
+ 00:39:09,970 --> 00:39:15,070
1123
+ ุงู„ุณุงุจู‚ูŠู† ู‚ุจู„ ู‚ู„ูŠู„ ุทุจุนุงู‹ ูŠุจู‚ู‰ ุฅุฐุง ุนู†ุฏูŠ ู…ุซู„ ู…ู† ู‡ุฐุง
1124
+
1125
+ 334
1126
+ 00:39:15,070 --> 00:39:19,850
1127
+ ุงู„ู‚ุจู„ ูˆู‡ุฐู‡ ู„ูŠุณุช homogenous ุจุฏู‡ ุฃุทู„ุน ุนู„ู‰ ุดุบู„ุชูŠู†
1128
+
1129
+ 335
1130
+ 00:39:19,850 --> 00:39:29,140
1131
+ ุงู„ุดุบู„ ุงู„ุฃูˆู„ู‰ ู‡ู„ a1 ููŠ ุงู„ b2 ู…ุน ุงู„ู€ A2 ููŠ ุงู„ู€ B1 ู‡ู„
1132
+
1133
+ 336
1134
+ 00:39:29,140 --> 00:39:33,740
1135
+ ู‡ุฏูˆู„ ุจูŠุณุงูˆูˆุง ุจุนุถุŸ ูˆุงู„ู„ู‡ ุจูŠุณุงูˆูˆุด ูˆุงู„ู„ู‡ ุฅุฐุง ูƒุงู† ู‡ุฏูˆู„
1136
+
1137
+ 337
1138
+ 00:39:33,740 --> 00:39:38,140
1139
+ ุจูŠุณุงูˆูˆุง ุจุนุถ ุจู†ุฑูˆุญ ู†ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุฒูŠ ุขุฎุฑ ู…ุซุงู„
1140
+
1141
+ 338
1142
+ 00:39:38,140 --> 00:39:42,160
1143
+ ุฃุฎุฐู†ุงู‡ ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจุตูŠุฑ ุนู†ุฏูŠ ุฌูˆุณ ูƒู„ู‡
1144
+
1145
+ 339
1146
+ 00:39:42,160 --> 00:39:47,600
1147
+ ุจุนุชุจุฑู‡ variable ุฌุฏูŠุฏ ุฌูˆุณ ุจูŠุญุชูˆูŠ ุนู„ู‰ X ูˆ Y ุจุดูŠู„ู‡
1148
+
1149
+ 340
1150
+ 00:39:47,600 --> 00:39:52,500
1151
+ ุจุญุทู‡ variable ูˆู„ูŠูƒู† V ูˆุจุงู„ุชุงู„ูŠ ุจุตูŠุฑ ุนู†ุฏูŠ separable
1152
+
1153
+ 341
1154
+ 00:39:52,500 --> 00:39:56,700
1155
+ differential equationูˆุฅุฐุง ู…ุง ูƒุงู†ุด ูˆููŠ ุงู„ุบุงู„ุจ ู…ุง
1156
+
1157
+ 342
1158
+ 00:39:56,700 --> 00:40:01,940
1159
+ ุจูŠูƒูˆู†ุด ูˆุฅุฐุง ู…ุง ูƒุงู†ุด ุจู†ุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ูŠุนู†ูŠ ูุจุงุฌูŠ
1160
+
1161
+ 343
1162
+ 00:40:01,940 --> 00:40:06,600
1163
+ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุงู„ a1 ููŠ ุงู„ b2 ู„ุง ุชุณุงูˆูŠ ุงู„ a2 ููŠ ุงู„ b1
1164
+
1165
+ 344
1166
+ 00:40:06,600 --> 00:40:13,030
1167
+ ุดูˆ ุจู†ุนู…ู„ุŸ we use the transfer ุจู†ุนู…ู„ ุชุญูˆูŠู„ุฉ ุฌุฏูŠุฏุฉ ุดูˆ
1168
+
1169
+ 345
1170
+ 00:40:13,030 --> 00:40:20,210
1171
+ ุงู„ุชุญูˆูŠู„ ุงู„ุฌุฏูŠุฏ ู‡ุฐู‡ุŸ ุจุญุท X small ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐู‡ ุฃูˆ X
1172
+
1173
+ 346
1174
+ 00:40:20,210 --> 00:40:26,450
1175
+ ู‡ุฐู‡ ุจู€ X ูƒุงุจุชู„ ุฒุงุฆุฏ ุฑู‚ู… ูˆ ุงู„ู€ Y small ุจู€ Y ูƒุงุจุชู„
1176
+
1177
+ 347
1178
+ 00:40:26,450 --> 00:40:32,240
1179
+ ุฒุงุฆุฏ ุฑู‚ู… ู…ูŠู† ู‡ูˆ ุงู„ุฑู‚ู… ู‡ุฐุงุŸ ุจุงุฌูŠ ุนู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡
1180
+
1181
+ 348
1182
+ 00:40:32,240 --> 00:40:37,380
1183
+ ูˆ ุจุณูˆูŠู‡ุง ุจุงู„ุตูุฑ ุจุนุฏ ู…ุง ุฃุดูŠู„ ุงู„ู€ X ูˆ ุฃุญุท ู…ูƒุงู†ู‡ุง ุจูŠู‡
1184
+
1185
+ 349
1186
+ 00:40:37,380 --> 00:40:41,900
1187
+ ูˆ ุฃุดูŠู„ ุงู„ู€ Y ูˆ ุฃุญุท ู…ูƒุงู†ู‡ุง ู„ูƒูŠูˆ ูˆ ุจุงุฌูŠ ุนู„ู‰ ุงู„ู…ุนุงุฏู„ุฉ
1188
+
1189
+ 350
1190
+ 00:40:41,900 --> 00:40:46,500
1191
+ ู‡ุฐู‡ ูƒู…ุงู† ูˆ ุจุณูˆูŠู‡ุง ุจู…ูŠู†ุŸ ุจุงู„ุตูุฑ ูŠุจู‚ู‰ ุฃู†ุง ุงู„ู…ุซู„
1192
+
1193
+ 351
1194
+ 00:40:46,500 --> 00:40:53,440
1195
+ ุจู…ุชุบูŠุฑ ุฌุฏูŠุฏ ุจุฏู‡ ุงุณู…ูŠ X ูƒุงุจุชู„ ุฒุงุฆุฏ ุงู„ู€ P ูˆุงู„ู€ Y ุฃุณู…ู‡
1196
+
1197
+ 352
1198
+ 00:40:53,440 --> 00:40:58,020
1199
+ ุงู„ู„ูŠ ุจุฏูŠ ุฃุณู…ูŠู‡ Y ูƒุงุจุชู„ ุฒุงุฆุฏ Q ุงู„ู„ูŠ ุทุงู„ุน ุซุงู†ูŠ ุฏูŠ ุจุนุฏ
1200
+
1201
+ 353
1202
+ 00:40:58,020 --> 00:41:03,760
1203
+ ู‡ูŠูƒ ุจุฏูŠ ุฃุดูŠู„ ูƒู„ X ูˆ ุฃุญุท ู…ูƒุงู†ู‡ุง X ุฒุงุฆุฏ P ููŠ
1204
+
1205
+ 354
1206
+ 00:41:03,760 --> 00:41:08,820
1207
+ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ูˆ ู‡ุฐุง ุจุฏูŠ ุฃุญุท Y ูƒุงุจุชู„ ุฒุงุฆุฏ Q ูˆุงู„ุซุงู†ูŠ
1208
+
1209
+ 355
1210
+ 00:41:08,820 --> 00:41:12,820
1211
+ ู‡ุฐู‡ ุฒูŠู‡ุง ู„ู…ุง ุฃุนู…ู„ ู‡ูŠูƒ ุนุงุฑููŠู† ุฅูŠุด ุจุนู…ู„ ู„ู…ุง ุฃุนู…ู„
1212
+
1213
+ 356
1214
+ 00:41:12,820 --> 00:41:18,710
1215
+ ู‡ุฐุงุŸ ุจุทูŠุฑ ุงู„ุซุงุจุช ุงู„ู„ูŠ ุนู†ุฏูŠ C2 ูˆC1 ุจุชุฎู„ุต ู…ู† ุงู„ุซูˆุงุจุช
1216
+
1217
+ 357
1218
+ 00:41:18,710 --> 00:41:23,950
1219
+ ุงู„ู„ูŠ ุจุณุจุจู‡ู… ู„ู„ู…ุดูƒู„ุฉ ู„ุฃู† ูˆุฌูˆุฏู‡ู… ู„ูˆ ุฌุณู…ุช ุนู„ู‰ X ูˆ ู„ูˆ
1220
+
1221
+ 358
1222
+ 00:41:23,950 --> 00:41:27,890
1223
+ ุฌุณู…ุช ุนู„ู‰ Y ุจุชุจุทู„ ุงู„ุตูŠุฑุฉ homogenous ู„ูƒู† ู„ู…ุง ุญุท
1224
+
1225
+ 359
1226
+ 00:41:27,890 --> 00:41:31,470
1227
+ ุงู„ุชุนูˆูŠุถ ู‡ุฐู‡ ุจูŠุทูŠุฑูˆุง ุงู„ุซุงุจุช ู„ูˆ ู…ุง ุทุฑูˆุด ุงู„ุซูˆุงุจุช
1228
+
1229
+ 360
1230
+ 00:41:31,470 --> 00:41:35,730
1231
+ ู…ุนู†ุงุชู‡ ููŠ ุดุบู„ ุบู„ุท ุนู†ุฏูƒ ุงู„ุบู„ุท ููŠ ุญุณุงุจ ุงู„ู€ P ูˆ ุงู„ู€ Q
1232
+
1233
+ 361
1234
+ 00:41:35,730 --> 00:41:40,440
1235
+ ุฃูˆ ููŠ ุงู„ุชุนูˆูŠุถ ุนู†ุฏูƒ ูŠุจู‚ู‰ ุจุนุฏ ุฐู„ูƒ ุชุชุญูˆู„ ุฅู„ู‰
1236
+
1237
+ 362
1238
+ 00:41:40,440 --> 00:41:45,320
1239
+ homogeneous differential equation ูŠุนู†ูŠ ูุงุฆุฏุฉ ู‡ุฐู‡
1240
+
1241
+ 363
1242
+ 00:41:45,320 --> 00:41:51,220
1243
+ ุงู„ุชุญูˆู„ุฉ ุชุญูˆู„ุช ุงู„ู…ุนุงุฏู„ุฉ ู…ู† non homogeneous ุฅู„ู‰
1244
+
1245
+ 364
1246
+ 00:41:51,220 --> 00:41:55,260
1247
+ homogeneous differential equation ูˆุจุงู„ุชุงู„ูŠ ุจู†ุฑูˆุญ
1248
+
1249
+ 365
1250
+ 00:41:55,260 --> 00:42:01,160
1251
+ ู†ุญู„ู‡ุง ุฒูŠ ู…ุง ูƒู†ุง ุจู†ุญู„ ุงู„ู…ุซุงู„ูŠู† ู‚ุจู„ ู‚ู„ูŠู„ ูˆุงุถุญ ูƒู„ุงู…ูŠุŸ
1252
+
1253
+ 366
1254
+ 00:42:01,440 --> 00:42:07,620
1255
+ ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู…ู„ุงุญุธุฉ ุฃูˆ ู‡ุฐุง ุงู„ู†ูˆุน ู…ู† ุงู„ู…ุณุงุฆู„ ุจู†ู„ุฌุฃ ู„ู‡
1256
+
1257
+ 367
1258
+ 00:42:07,620 --> 00:42:11,620
1259
+ ุฅุฐุง ุทู„ุนุช ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ู…ุง ู‡ูŠ ู…ุชุฌุงู†ุณุฉ ุฒูŠ ู…ุง
1260
+
1261
+ 368
1262
+ 00:42:11,620 --> 00:42:16,560
1263
+ ุณุฃู„ุชูŠ ู‚ุจู„ู‡ุง ู‚ู„ุช ูŠู…ูƒู† ู…ุง ุชุทู„ุนุด ู…ุชุฌุงู†ุณุฉ ุจู‚ูˆู„ ู„ูƒ ููŠ ุทุฑู‚
1264
+
1265
+ 369
1266
+ 00:42:16,560 --> 00:42:20,680
1267
+ ุฃุฎุฑู‰ ุฃูˆ ููŠ ู…ุนุงุฏู„ุฉ ุฃุฎุฑู‰ ุจุฑูˆุญ ุฃุฎุชุจุฑู‡ุง ุฅูŠุด ุฃุฎุฐู†ุงู‡
1268
+
1269
+ 370
1270
+ 00:42:20,680 -->
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/7iThC-B-ye0_postprocess.srt ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:04,940 --> 00:00:08,080
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:08,080 --> 00:00:14,240
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ู‹ุง ูƒุซูŠุฑู‹ุง ูˆุจุนุฏ ููŠ ู‡ุฐู‡
8
+
9
+ 3
10
+ 00:00:14,240 --> 00:00:20,600
11
+ ุงู„ู…ุญุงุถุฑุฉ ู†ุชู†ุงูˆู„ ุชุฌุฑุจุฉ ุงู„ุณุฌู† ุนู†ุฏ ุนู„ูŠ ุจู† ุงู„ุฌู‡ู… ููŠ
12
+
13
+ 4
14
+ 00:00:20,600 --> 00:00:27,160
15
+ ู‚ุตูŠุฏุชู‡ ุงู„ุฏุงู„ูŠุฉ ูˆุงู„ุชูŠ ู‚ุงู„ ุนู†ู‡ุง ุตุงุญุจ ุงู„ุนู…ุฏุฉ ุงุจู† ุฑุดูŠู‚
16
+
17
+ 5
18
+ 00:00:27,160 --> 00:00:33,060
19
+ ูˆุฃู…ุง ุนู„ูŠ ุจู† ุงู„ุฌู‡ู… ูุฑุดูŠู‚ ุงู„ูู‡ู… ุฌูŠุฏ ุงู„ุดุนุฑูŠ ูˆู„ู‡ ููŠ
20
+
21
+ 6
22
+ 00:00:33,060 --> 00:00:40,280
23
+ ุงู„ุบุฒู„ ุงู„ุฑุตุงููŠุฉูˆููŠ ุงู„ุนุชุงุจ ุงู„ุฏุงู„ูŠุฉ ูˆู„ูˆ ู„ู… ูŠูƒู† ู„ู‡
24
+
25
+ 7
26
+ 00:00:40,280 --> 00:00:46,560
27
+ ุณูˆุงู‡ู…ุง ู„ูƒุงู† ุฃุดุนุฑ ุงู„ู†ุงุณ ู‚ุงู„ ููŠู‡ุง ูˆู‡ู†ุง ู†ุงุฎุฏ ู…ุฌู…ูˆุน ู…ู†
28
+
29
+ 8
30
+ 00:00:46,560 --> 00:00:52,600
31
+ ุฃุจูŠุงุช ู‡ุฐู‡ ุงู„ู‚ุตูŠุฏุฉ ู‚ุงู„ูˆุง ุญุจุณุช ูู‚ู„ุช ู„ูŠุณ ุจุธุงุฆุฑ ุญุจุณูŠ
32
+
33
+ 9
34
+ 00:00:52,600 --> 00:01:00,120
35
+ ูˆุฃูŠ ู…ู‡ู†ุฏ ู„ุง ูŠู‡ู…ุฏู‡ ุฃูˆ ู…ุง ุฑุฃูŠุช ู„ูŠุณ ูŠุฃู„ู ุบูŠู„ู‡ ูƒุจุฑุง
36
+
37
+ 10
38
+ 00:01:00,120 --> 00:01:07,860
39
+ ูˆุฃูˆุจุงุณ ุงู„ุณุจุงุน ุชุฑุฏุฏู‡ูˆุงู„ุดู…ุณ ู„ูˆู„ุง ุฃู†ู‡ุง ู…ุญุฌูˆุจุฉ ุนู†
40
+
41
+ 11
42
+ 00:01:07,860 --> 00:01:16,240
43
+ ู†ุธุฑูŠูƒ ู„ู…ุง ุฃุถุงุก ุงู„ูุฑู‚ุฏ ูˆุงู„ุจุฏุฑ ูŠุฏุฑูƒ ุงู„ุณุฑุงุฑุฉ ูุชู†ุฌู„ูŠ
44
+
45
+ 12
46
+ 00:01:16,240 --> 00:01:26,120
47
+ ุฃูŠุงู…ู‡ ูˆูƒุฃู†ู‡ ู…ุชุฌุฏุฏ ูˆุงู„ุบูŠุซ
48
+
49
+ 13
50
+ 00:01:26,120 --> 00:01:34,060
51
+ ูŠุญุตุฑู‡ ุงู„ุบู…ุงู… ูู…ุง ูŠุฑุงู‡ ุฅู„ุง ูˆุฑูŠู‚ู‡ ูŠุฑุงุญ ูˆูŠุฑุนุฏูˆุงู„ู†ุงุฑ
52
+
53
+ 14
54
+ 00:01:34,060 --> 00:01:40,480
55
+ ููŠ ุฃุญุฌุงุฑู‡ุง ู…ุฎุจูˆู‚ุฉุŒ ู„ุง ุชูุตุทู„ู‰ ุฅู† ู„ู… ุชุซูุฑู‡ุง ุงู„ุฃุฒู†ุฏู‡ุŒ
56
+
57
+ 15
58
+ 00:01:40,480 --> 00:01:49,540
59
+ ู„ุง ูŠุคูŠุณู†ูƒ ู…ู† ุชูุฑุฌ ูƒุฑุจุฉ ุฎุทุจ ุฑู…ุงูƒ ุจู‡ ุงู„ุฒู…ุงู† ุงู„ุฃู†ูƒุฏูˆุŒ
60
+
61
+ 16
62
+ 00:01:49,540 --> 00:01:58,420
63
+ ูƒู… ุนู„ูŠู„ ู‚ุฏ ุชุฎุทุงู‡ ุงู„ุฑุฏู‰ุŒ ูู†ุฌู‰ ูˆู…ุงุช ุทุจูŠุจู‡ ูˆุงู„ุนูˆุฏู‡
64
+
65
+ 17
66
+ 00:02:08,280 --> 00:02:14,340
67
+ ูˆุงู„ุญุจุณ ู…ุง ู„ู… ุชุบุดู‡ ู„ุฏู†ูŠุฉ ุดู†ุนุงุก ู†ุนู… ุงู„ู…ู†ุฒู„ ุงู„ู…ุชูˆุฑุฏ
68
+
69
+ 18
70
+ 00:02:14,340 --> 00:02:24,440
71
+ ุจูŠุช ูŠุฌุฏุฏ ู„ู„ูƒุฑูŠู… ูƒุฑุงู…ุฉ ูˆูŠุฒุงุฑ ููŠู‡ ูˆู„ุง ูŠุฒูˆุฑ ูˆูŠุญูุธ ู„ูˆ
72
+
73
+ 19
74
+ 00:02:24,440 --> 00:02:30,200
75
+ ู„ู… ูŠูƒู† ููŠ ุงู„ุณุฌู† ุฅู„ุง ุฃู†ู‡ู„ุง ูŠุณุชุฐู„ูƒ ุจุงู„ุญุฌุงุจ ุงู„ุฃุนุจุฏ
76
+
77
+ 20
78
+ 00:02:30,200 --> 00:02:40,100
79
+ ุฃู…ู† ุงู„ุณูˆูŠุฉ ูŠุจู† ุนู… ู…ุญู…ุฏ ุฎุตู… ุชู‚ุฑุจู‡ ูˆ ุขุฎุฑ ุชุจุนุฏู‡ ู‚ุงู„ูˆุง
80
+
81
+ 21
82
+ 00:02:40,100 --> 00:02:49,930
83
+ ุญุจุณุชูู‚ู„ุช ู„ูŠุณ ุจุธุงุฆุฑ ุญุจุณูŠ ูˆุฃูŠ ู…ู‡ู†ุฏุณ ู„ุง ูŠุบู…ุถู‡ู… ู…ู†
84
+
85
+ 22
86
+ 00:02:49,930 --> 00:02:56,950
87
+ ุงู„ู…ุนู„ูˆู… ุฃู† ู‡ุฏู ุงู„ุณุฌู† ู‡ูˆ ุงู„ู‚ุถุงุก ุนู„ู‰ ุฅุฑุงุฏุฉ ุงู„ุฅู†ุณุงู†
88
+
89
+ 23
90
+ 00:02:56,950 --> 00:03:05,810
91
+ ุชุญุทูŠู… ุงู„ุฅุฑุงุฏุฉ ุงู„ุฅู†ุณุงู†ูŠุฉ ุชุญุทูŠู… ุฅุฑุงุฏุฉ ุงู„ู…ุณุฌูˆู†ูˆู‚ุฏ
92
+
93
+ 24
94
+ 00:03:05,810 --> 00:03:12,450
95
+ ุนุจู‘ุฑ ุงู„ุดุนุฑุงุก ุนู† ุงู„ุฅุฑุงุฏุฉ ููŠู…ุง ุณุจู‚ ุจู…ุนุงู†ูŠ ูƒุซูŠุฑุฉ ุฃูˆ
96
+
97
+ 25
98
+ 00:03:12,450 --> 00:03:21,330
99
+ ุจุฃู„ูุงุธ ูƒุซูŠุฑุฉ ู…ู†ู‡ุง ุงู„ุณูŠู ุงู„ู…ู‡ู†ุฏ ูˆู…ู†ู‡ุง ุงู„ุฃุณุฏ
100
+
101
+ 26
102
+ 00:03:21,330 --> 00:03:25,990
103
+ ูˆุชุนุจูŠุฑุงุช
104
+
105
+ 27
106
+ 00:03:25,990 --> 00:03:30,390
107
+ ูƒุซูŠุฑุฉ ูˆู…ู†ู‡ุง ุงู„ูุชุงุฉ ู„ูƒู† ู‡ู†ุง ุชู„ุฏ ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช ุชู„ุฏ
108
+
109
+ 28
110
+ 00:03:30,390 --> 00:03:32,590
111
+ ูƒู„ู…ุฉ ู…ู‡ู†ุฏ
112
+
113
+ 29
114
+ 00:03:34,900 --> 00:03:39,220
115
+ ู‚ุงู„ูˆุง ุญุจุณุช ูู‚ู„ุช
116
+
117
+ 30
118
+ 00:03:39,220 --> 00:03:46,460
119
+ ู„ูŠุณ ุจุถุงุฆุฑ ุญุจุณูŠ ูˆุฃูŠ ู…ู‡ู†ุฏู„ ู„ุง ูŠูˆู…ุฏู‡ู… ู‚ุงู„ูˆุง ุงู„ุถู…ูŠุฑ ููŠ
120
+
121
+ 31
122
+ 00:03:46,460 --> 00:03:56,130
123
+ ู‚ุงู„ูˆุง ุชุนูˆุฏ ุนู„ู‰ ุบุงุฆุจุชุญู‚ูŠุฑุงู‹ ู„ู‡ ูˆูŠู‚ุตุฏ ุจุฐู„ูƒ ุงู„ุฎุตูˆู… ุฃูˆ
124
+
125
+ 32
126
+ 00:03:56,130 --> 00:04:05,070
127
+ ุงู„ูˆุดุงุก ุงู„ุฐูŠู† ูˆุดูˆุง ู„ู„ุฎู„ูŠูุฉ ุถุฏ ู‡ุฐุง ุงู„ุฑุฌู„ ุถุฏ ุงู„ุดุนุจ
128
+
129
+ 33
130
+ 00:04:05,070 --> 00:04:12,110
131
+ ูู‚ู„ุช ู„ูŠุณ ุจุธุงุฆุฑ ุญุจุณูŠ ู‚ุงู„ูˆุง ุญุจุณุชุฉ ูŠุนู†ูŠ ู‚ุงู„ ุงู„ุดุงู…
132
+
133
+ 34
134
+ 00:04:12,110 --> 00:04:23,110
135
+ ุชูˆู†ุฉุฃูˆ ุงู„ูˆุดุงุก ุญุจุณุช ุชุญู‚ูŠุฑุง ู„ูŠู‡ ูˆุชุดู…ุชุง ุจูŠู‡ ูู‚ู„ุช ู„ูŠุณ
136
+
137
+ 35
138
+ 00:04:23,110 --> 00:04:31,070
139
+ ู„ุฃ ูู‚ู„ุช ู„ูŠุณ ุจุฏุงุฆุฑ ุญุจุณูŠ ู‡ุฐุง ุงู„ุญุจุณ ู„ุง ูŠุถุฑู†ูŠ ูˆู„ุง ูŠู†ู‚ุต
140
+
141
+ 36
142
+ 00:04:31,070 --> 00:04:39,430
143
+ ู…ู† ูˆู„ุง ูŠูˆู‚ุต ู…ู† ูƒุฑุงู…ุชูŠ ูˆู‚ูŠู…ุชูŠ ูƒู…ุง ุงู„ุณูŠู ู„ุง ูŠู†ุชู‚ุต
144
+
145
+ 37
146
+ 00:04:39,430 --> 00:04:45,900
147
+ ุนู†ุฏู…ุง ูŠูˆุถุน ุนู†ุฏู…ุง ูŠูˆุถุน ููŠ ุบู…ุฏู‡ูุตูุฉ ุงู„ู…ุถุงุก ูˆุงู„ุฅุฑุงุฏุฉ
148
+
149
+ 38
150
+ 00:04:45,900 --> 00:04:52,820
151
+ ูˆุงู„ุนุฒูŠู…ุฉ ู„ุง ุชุฒุงู„ ููŠู‡ ูˆูƒุฐู„ูƒ ุฃู†ุง ูุฃู†ุง ุตุงุญุจ ุฅุฑุงุฏุฉ
152
+
153
+ 39
154
+ 00:04:52,820 --> 00:05:02,180
155
+ ูˆุตุงุญุจ ุนุฒูŠู…ุฉ ุฃุฎู„ุงู‚ูŠุฉ ูู„ุง ูŠู‡ู…ู†ูŠ ู…ุง ูŠูุนู„ ู‡ุคู„ุงุก ุงู„ูˆุดุงุก
156
+
157
+ 40
158
+ 00:05:02,180 --> 00:05:11,290
159
+ ุฃูˆ ุงู„ุดุงู…ุชูˆู† ูุงู„ุณุฌู† ู„ุง ูŠุญุทู… ุฅุฑุงุฏุชูŠุตุญูŠุญ ุฃู†ู‡ ูŠุบูŠุจ
160
+
161
+ 41
162
+ 00:05:11,290 --> 00:05:18,110
163
+ ุฌุณุฏูŠ ูƒู…ุง ุงู„ุบูู…ู’ุฏุŒ ูŠุบูŠุจ ุงู„ุณูŠูุŒ ูˆู„ูƒู† ุงู„ุณูŠู ูŠุจู‚ู‰
164
+
165
+ 42
166
+ 00:05:18,110 --> 00:05:23,830
167
+ ุณูŠูู‹ุง ูŠุฑู…ุฒ ุฅู„ู‰ ุงู„ุฅุฑุงุฏุฉ ุงู„ุตุงุฏู‚ุฉ ูˆุงู„ุนุฒูŠู…ุฉ ุงู„ู‚ูˆูŠุฉุŒ
168
+
169
+ 43
170
+ 00:05:23,830 --> 00:05:30,510
171
+ ูˆูƒุฐู„ูƒ ๏ฟฝ๏ฟฝูŠุณ ุงู„ุฃุณุฏ ุฃูˆ ู…ุง ุฑุฃูŠุช ู„ูŠุณ ูŠุฃู„ู ุบูŠู„ู‡ ูƒุจุฑู‹ุง
172
+
173
+ 44
174
+ 00:05:31,310 --> 00:05:40,450
175
+ ูˆุฃูˆุจุงุซ ุงู„ุณุจุงุนูŠ ุชุฑุฏุฏู‡ ูƒุฐู„ูƒ ุงู„ุฃุณุฏ ูˆู‡ู†ุง ุฐูƒุฑ ุงู„ู„ูŠุซ ูˆู‡ูŠ
176
+
177
+ 45
178
+ 00:05:40,450 --> 00:05:47,510
179
+ ุงุณู… ู…ู† ุฃุณู…ุงุก ุงู„ุฃุณุฏ ูˆู‡ุฐุง ุงู„ุงุณู… ุฅู†ู…ุง ู‡ูˆ ุตูุฉ ู…ู† ุตูุงุช
180
+
181
+ 46
182
+ 00:05:47,510 --> 00:05:55,270
183
+ ุงู„ุฃุณุฏ ุฃูˆ ุญุงู„ุฉ ู…ู† ุญุงู„ุงุชู‡ ูˆู‡ูŠ ุงู„ุญุงู„ุฉ ุงู„ุชูŠ ูŠู†ุทู„ู‚ ููŠู‡ุง
184
+
185
+ 47
186
+ 00:05:55,270 --> 00:06:04,050
187
+ ุนู„ู‰ ุฎุตู…ู‡ ุฃูˆ ุนู„ู‰ ูƒุฏุณุชู‡ุจู…ุนู†ู‰ ุฃู† ูƒู„ู…ุฉ ู„ูŠุซ ู‡ูŠ ุงู„ุฃุณุฏ ููŠ
188
+
189
+ 48
190
+ 00:06:04,050 --> 00:06:11,810
191
+ ุญุงู„ุฉ ุงู„ุงู†ุทู„ุงู‚ ููŠ ุญุงู„ุฉ ุงู„ู‡ุฌูˆู… ุนู„ู‰ ุงู„ูุฑูŠุณุฉ ู„ูŠุซ ู‡ูˆ ู…ุง
192
+
193
+ 49
194
+ 00:06:11,810 --> 00:06:18,510
195
+ ุฑุฃูŠุช ุงู„ู„ูŠุณ ูŠุฃู„ู‰ ูุบูŠู„ู‡ ูŠุนู†ูŠ ุงู„ู„ูŠุซ ู‡ูˆ ุงู„ุฃุณุฏ ุงู„ุฐูŠ
196
+
197
+ 50
198
+ 00:06:18,510 --> 00:06:26,580
199
+ ูŠู†ุทู„ู‚ ู†ุญูˆ ุงู„ูุฑูŠุณุฉูŠุนู†ูŠ ุงู„ุฃุณุฏ ุงู„ุฐูŠ ู„ู‡ ุฅุฑุงุฏุฉ ู‚ูˆูŠุฉ
200
+
201
+ 51
202
+ 00:06:26,580 --> 00:06:34,480
203
+ ูˆุตู„ุจุฉ ูˆุนุฒูŠู…ุฉ ู‚ูˆูŠุฉ ู‡ูˆ ู…ุง ุฑุฃูŠุช ู„ูŠุณ ูŠุฃู„ู ุบูŠู„ู‡ ูˆุงู„ุบูŠู„
204
+
205
+ 52
206
+ 00:06:34,480 --> 00:06:42,910
207
+ ู‡ูˆ ู…ุฎุจุฃ ุงู„ุฃุณุฏ ุจูŠู† ุงู„ุฃุดุฌุงุฑ ุงู„ู…ู„ุชูุฉูƒูุจุฑุงู‹ ูู‡ูˆ ูŠุฌู„ุณ
208
+
209
+ 53
210
+ 00:06:42,910 --> 00:06:51,750
211
+ ููŠ ุบูŠู„ู‡ ูƒูุจุฑุงู‹ ุจูŠู†ู…ุง ุตุบุงุฑ ุงู„ุณุจุงุน ุชุชุญุฑูƒ ูˆุชุชุฑุฏุฏ ุนู„ู‰
212
+
213
+ 54
214
+ 00:06:51,750 --> 00:06:59,270
215
+ ุงู„ุฌูŠู ุจูŠู†ู…ุง ู‡ูˆ ุฌุงู„ุณ ููŠ ุนุฑูŠู†ู‡ ุงู†ู…ุง ุงู„ุฐูŠ ู…ู†ุนู‡ู… ู…ู†
216
+
217
+ 55
218
+ 00:06:59,270 --> 00:07:07,500
219
+ ุงู„ุงู†ุทู„ุงู‚ ุงู„ูƒูุจุฑุงูˆุงู„ุดู…ุณ ู„ูˆู„ุง ุฃู†ู‡ุง ู…ุญุฌูˆุจุฉ ุนู† ู†ุงุธุฑูŠูƒ
220
+
221
+ 56
222
+ 00:07:07,500 --> 00:07:15,860
223
+ ู„ู…ุง ุฃุถุงุก ุงู„ูุฑู‚ุฏ ูˆุบูŠุงุจ ุงู„ุดู…ุณ ู„ุง ูŠู†ุชู‚ุต ู…ู† ู‚ูŠู…ุชู‡ุง ุจู„
224
+
225
+ 57
226
+ 00:07:15,860 --> 00:07:24,280
227
+ ุฅู†ู‡ ุฃูŠุถุง ูŠุฒูŠุฏ ุงู„ู†ุฌู…ุฉ ุฌู…ุงู„ุง ูุบูŠุงุจ ุงู„ุดู…ุณ ูŠุนุทูŠ ู„ู„ูุฑู‚ุฏ
228
+
229
+ 58
230
+ 00:07:24,280 --> 00:07:34,890
231
+ ุฌู…ุงู„ุง ูˆ ุฅุถุงุกุฉ ูˆ ุฑูˆู†ู‚ุง ูˆ ุฑูˆุนุฉู„ู…ุง ุฃุถุงุก ุงู„ูุฑู‚ุฏ ูˆุงู„ุจุฏุฑ
232
+
233
+ 59
234
+ 00:07:34,890 --> 00:07:43,950
235
+ ุฐู„ูƒ ุงู„ุธู‡ูˆุฑ ุงู„ุฑุงุฆุน ุงู„ุฌู…ูŠู„ ู„ู„ู‚ู…ุฑ ู„ุง ูŠู†ู‚ุตู‡ ุฃู†ู‡ ูŠุบูŠุจ
236
+
237
+ 60
238
+ 00:07:43,950 --> 00:07:54,010
239
+ ุญูŠู† ูŠูƒูˆู† ู‡ู„ุงู„ุง ุฃูˆ ุญูŠู† ูŠูƒูˆู† ุบุงุฆุจุง ู„ุฃู† ุงู„ุบูŠุงุจ ูŠูˆู„ุฏ
240
+
241
+ 61
242
+ 00:07:54,010 --> 00:08:02,460
243
+ ุงู„ุญุงุฌุฉ ุฅู„ู‰ ุฑุคูŠุฉ ุงู„ุจุฏุฑ ูƒู…ุง ู‚ุงู„ุงู„ุดุงุนุฑ ุฃุจูˆ ูุฑุงุต
244
+
245
+ 62
246
+ 00:08:02,460 --> 00:08:11,560
247
+ ุงู„ุญู…ุฏุงู†ูŠ ุนู†ุฏู…ุง ู‚ุงู„ ูˆููŠ ุงู„ู„ูŠู„ุฉ ุงู„ุธู„ู…ุงุก ูŠูุชู‚ุฏ ุงู„ุจุฏุฑ
248
+
249
+ 63
250
+ 00:08:11,560 --> 00:08:21,040
251
+ ูˆุงู„ุจุฏุฑ ูŠุฏุฑูƒ ุงู„ุณุฑุงุฑ ูุชู†ุฌู„ูŠ ุฃูŠุงู…ู‡ ูˆูƒุฃู†ู‡ ู…ุชุฌุฏุฏ ูุงู„ุจุฏุฑ
252
+
253
+ 64
254
+ 00:08:21,040 --> 00:08:29,620
255
+ ููŠ ุงู„ุชู†ู‚ู„ ููŠ ู‡ุฐู‡ ุงู„ุฃุญูˆุงู„ ุฅู†ู…ุง ูŠุฒุฏุงุฏ ุฌู…ุงู„ุงุจูŠู†
256
+
257
+ 65
258
+ 00:08:29,620 --> 00:08:38,660
259
+ ุงู„ุบูŠุงุจ ูˆุงู„ุธู‡ูˆุฑ ุชุชุฌุฏุฏ ุงู„ุฃูŠุงู… ููŠุฒุฏุงุฏ ุฌู…ุงู„ุง ูˆุงู„ุบูŠุซ
260
+
261
+ 66
262
+ 00:08:38,660 --> 00:08:46,920
263
+ ูŠุญุตุฑู‡ ุงู„ุบู…ุงู… ูู…ุง ูŠุฑู‰ ุฅู„ุง ูˆุฑูŠู‚ู‡ ูŠุฑุงุญ ูˆูŠุฑุนุฏ ูƒุฐู„ูƒ
264
+
265
+ 67
266
+ 00:08:46,920 --> 00:08:54,250
267
+ ุงู„ู…ุทุฑ ุงู„ุบูŠุซ ูˆุงู„ุนุฑุจ ุชู‚ูˆู„ ุนู† ุงู„ุบูŠุซ ู…ุทุฑุงูŠุนู†ูŠ ุชุณุงูˆูŠ
268
+
269
+ 68
270
+ 00:08:54,250 --> 00:09:00,670
271
+ ุจูŠู† ุงู„ุบูŠุซ ูˆุงู„ู…ุทุฑ ู„ูƒู† ุงู„ู‚ุฑุขู† ุงู„ูƒุฑูŠู… ุงุณุชุนู…ู„ ุงู„ุบูŠุซ
272
+
273
+ 69
274
+ 00:09:00,670 --> 00:09:07,290
275
+ ูู‚ุท ุฏูˆู† ุงู„ู…ุทุฑุฐู„ูƒ ุฃู† ุงู„ู…ุทุฑ ูŠุฏุฏ ููŠ ุงู„ู‚ุฑุขู† ุงู„ูƒุฑูŠู… ููŠ
276
+
277
+ 70
278
+ 00:09:07,290 --> 00:09:14,070
279
+ ู…ูˆุงุทู† ุงู„ุนุฐุงุจ ูˆุงู„ุนู‚ุงุจ ุฃู…ุง ุงู„ุบูŠุซ ููŠ ู…ูˆุงุทู† ุงู„ุฑุญู…ุฉ
280
+
281
+ 71
282
+ 00:09:14,070 --> 00:09:21,890
283
+ ูˆุงู„ุฎูŠุฑ ูˆุงู„ุบูŠุซ ูŠุญุตุฑู‡ ุงู„ุบู…ุงู… ูู…ุง ูŠุฑู‰ ุฅู„ุง ูˆุฑูŠู‚ู‡ ูŠุฑุงุญ
284
+
285
+ 72
286
+ 00:09:21,890 --> 00:09:25,810
287
+ ูŠุนู†ูŠ ูŠุณูƒุจ ู…ุงุกู‡ ูˆูŠุฑุนุฏู‡
288
+
289
+ 73
290
+ 00:09:27,440 --> 00:09:34,300
291
+ ูู‡ุฐุง ุงู„ุบูŠุงุจ ู„ู„ุบูŠุซ ู„ุง ูŠู†ู‚ุต ู‚ูŠู…ุชู‡ ูˆู„ุง ุฑูˆุนุชู‡ ูˆุฃู‡ู…ูŠุชู‡ุง
292
+
293
+ 74
294
+ 00:09:34,300 --> 00:09:40,340
295
+ ูˆุงู„ู†ุงุฑ ููŠ ุฃุญุฌุงุฑู‡ุง ู…ุฎุจูˆุฆุฉ ู„ุง ุชุตุทู„ู‰ ุฅู† ู„ู… ุชุซุฑู‡ุง
296
+
297
+ 75
298
+ 00:09:40,340 --> 00:09:46,500
299
+ ุงู„ุฃุฐู†ุฏู‡ู… ูˆูƒุฐู„ูƒ ุงู„ู†ุงุฑ ู‡ูŠ ุบุงุฆุจุฉ ููŠ ุฃุญุฌุงุฑู‡ุง ู„ูƒู†ู‡ุง
300
+
301
+ 76
302
+ 00:09:46,500 --> 00:09:53,370
303
+ ุชุธู‡ุฑ ุนู†ุฏู…ุง ุชุซุงุฑ ุงู„ุฃุฐู†ุฏ ููŠ ู‡ุฐู‡ ุงู„ุญุฌุงุฑุฉูŠุนู†ูŠ ุนู†ุฏู…ุง
304
+
305
+ 77
306
+ 00:09:53,370 --> 00:10:04,830
307
+ ูŠุถุฑุจ ุงู„ุญุฌุฑ ุจุงู„ุฒู†ุงุฏ ุชุฎุฑุฌ ุงู„ู†ุงุฑ ููŠู†ุชูุน ุจู‡ุง ูู„ุง ูŠู†ู‚ุต
308
+
309
+ 78
310
+ 00:10:04,830 --> 00:10:11,730
311
+ ุงู„ู†ุงุฑ ุฃู†ู‡ุง ูƒุงู†ุช ู…ุฎุจูˆู‚ุฉ ููŠ ุงู„ุญุฌุงุฑุฉ ู„ุง ูŠุคุณ ุฃู†ูƒ ู…ู†
312
+
313
+ 79
314
+ 00:10:11,730 --> 00:10:21,230
315
+ ุชูุฑุฌ ูƒุฑุจุฉ ู„ุง ูŠุตูŠุจ ุฃู†ูƒ ุงู„ูŠุฃุณ ู…ู† ุชูุฑุฌ ู…ุตูŠุจุฉ ุฃูˆ ูƒุฑุจุฉ
316
+
317
+ 80
318
+ 00:10:22,500 --> 00:10:29,020
319
+ ุฎุทุจ ุนุธูŠู… ู„ุฃู† ุงู„ุฎุทุจ ุงู„ุนุธูŠู… ุฅุฐุง ู„ู… ูŠุตุจุฑ ุงู„ุฅู†ุณุงู† ุนู„ูŠู‡
320
+
321
+ 81
322
+ 00:10:29,020 --> 00:10:37,720
323
+ ูุฑุจู…ุง ูŠูˆู„ุฏ ุฎุทุจุง ุฃุนุธู… ูุนู„ู‰ ุงู„ุฅู†ุณุงู† ุฃู† ู„ุง ูŠูŠุฃุณ ู„ุฃู†
324
+
325
+ 82
326
+ 00:10:37,720 --> 00:10:45,160
327
+ ุงู„ูŠุฃุณ ุทุงู‚ุฉ ุฅูŠุฌุงุจูŠุฉ ุทุงู‚ุฉ ุณู„ุจูŠุฉ ุชูˆู„ุฏ ุทุงู‚ุงุช ุณู„ุจูŠุฉ
328
+
329
+ 83
330
+ 00:10:45,160 --> 00:10:51,420
331
+ ุฃุฎุฑู‰ ููŠ ุงู„ุฅู†ุณุงู† ูุนู„ู‰ ุงู„ุฅู†ุณุงู† ุฃู† ูŠุจุชุนุฏ ุนู† ุงู„ูŠุฃุณูˆุนู†
332
+
333
+ 84
334
+ 00:10:51,420 --> 00:10:59,500
335
+ ุฃูŠ ุทุงู‚ุฉ ุณู„ุจูŠุฉ ุนู„ูŠู‡ ุจุงู„ุตุจุฑ ูˆุงู„ุชูุงุคู„ ูู‡ุฐุง ูŠู‚ูˆุฏ ุฅู„ู‰
336
+
337
+ 85
338
+ 00:10:59,500 --> 00:11:08,860
339
+ ุฃู† ุชุชูˆู„ุฏ ููŠ ุงู„ู†ูุณ ุทุงู‚ุงุช ุฅูŠุฌุงุจูŠุฉู„ุง ูŠุคุณู†ูƒ ู…ู† ุชูุฑุฌ
340
+
341
+ 86
342
+ 00:11:08,860 --> 00:11:18,920
343
+ ูƒุฑุจุฉ ุฎุทุจ ุฑู…ุงูƒ ุจู‡ ุงู„ุฒู…ุงู† ุงู„ุฃู†ูƒุฏูˆ ุฐู„ูƒ ุฃู†ู‡ ู…ุง ู…ู† ูƒุฑุจุฉ
344
+
345
+ 87
346
+ 00:11:18,920 --> 00:11:25,680
347
+ ุฅู„ุง ูˆ ุจุนุฏู‡ุง ูุฑุฌูˆู‡ุฐู‡ ุณู†ุฉ ููŠ ุงู„ุญูŠุงุฉ ูˆู‚ุงู†ูˆู† ููŠ ุงู„ุญูŠุงุฉ
348
+
349
+ 88
350
+ 00:11:25,680 --> 00:11:36,960
351
+ ูุจุนุฏ ุงู„ุนุณุฑูŠ ูŠูƒูˆู† ุงู„ูŠุณุฑ ูˆุจุนุฏ ุงู„ุถูŠู‚ ูŠูƒูˆู† ุงู„ูุฑุฌ ูˆู„ุฐู„ูƒ
352
+
353
+ 89
354
+ 00:11:36,960 --> 00:11:49,460
355
+ ุนู„ู‰ ุงู„ุฅู†ุณุงู† ุฃู† ูŠุฃุฎุฐ ุจุฎูŠุงุฑ ุงู„ุตุจุฑ ูˆุฎูŠุงุฑ ุนุฏู… ุงู„ูŠุฃุณูƒู…
356
+
357
+ 90
358
+ 00:11:49,460 --> 00:11:55,660
359
+ ู…ู† ุนู„ูŠู„ ู‚ุฏ ุชุฎุทุงู‡ ุงู„ุฑุฏู‰ุŒ ูู†ุฌู‰ ูˆู…ุงุช ุทุจูŠุจู‡ ูˆุงู„ุนูˆุฏู‡ุŸ
360
+
361
+ 91
362
+ 00:11:55,660 --> 00:12:03,920
363
+ ูˆู‡ู†ุงูƒ ุญุงู„ุงุช ูƒุซูŠุฑุฉ ุชุตู„ุญ ุฃู† ุชูˆู„ุฏ ู‚ุงู†ูˆู†ุงุŒ ูƒู… ู…ู† ุนู„ูŠู„
364
+
365
+ 92
366
+ 00:12:03,920 --> 00:12:10,740
367
+ ูŠุนู†ูŠ ู‡ู†ุงูƒ ุญุงู„ุงุช ูƒุซูŠุฑุฉ ู…ู† ุงู„ู…ุฑุถู‰ู‚ุฏ ุชุฎุทุงู‡ู… ุงู„ุฑุฏู‰
368
+
369
+ 93
370
+ 00:12:10,740 --> 00:12:19,840
371
+ ุชุฑูƒู‡ู… ุงู„ู…ูˆุช ูˆุงู„ู‡ู„ุงูƒ ูู†ุฌูˆุง ุจูŠู†ู…ุง ู„ุญู‚ ุงู„ู…ูˆุช ุจุงู„ุฃุทุจุงุก
372
+
373
+ 94
374
+ 00:12:19,840 --> 00:12:28,460
375
+ ูˆุงู„ุฒุงุฆุฑูŠู† ูู†ุฌู‰ ูˆู…ุงุช ุทุจูŠุจู‡ ูˆุงู„ุนูˆุฏ ูˆุงู„ุนูˆุฏ ุฌู…ุน ุนุงุฆุฏ
376
+
377
+ 95
378
+ 00:12:28,460 --> 00:12:36,610
379
+ ูˆู‡ูˆ ุงู„ุฐูŠ ูŠุฐูˆุฑ ุงู„ู…ุฑุถ ุตุจุฑุงูŠุนู†ูŠ ุงุตุจุฑ ุตุจุฑุง ู„ุฃู† ุงู„ุตุจุฑุฉ
380
+
381
+ 96
382
+ 00:12:36,610 --> 00:12:47,010
383
+ ู‡ูˆ ุงู„ุฎูŠุงุฑ ุงู„ุฃู†ุฌุน ููŠ ู…ูˆุงุฌู‡ุฉ ุงู„ู…ุตุงุฆุจ ุตุจุฑุง ูŠุนู†ูŠ ุงุตุจุฑ
384
+
385
+ 97
386
+ 00:12:47,010 --> 00:12:52,050
387
+ ุตุจุฑุง ู…ูุนูˆู„ ู…ุทู„ู‚ ู„ูุนู„ ู…ุญุฐูˆู ุจู…ุนู†ู‰ ุงุตุจุฑ ุตุจุฑุง ุฌู…ูŠู„ุง
388
+
389
+ 98
390
+ 00:12:52,050 --> 00:13:00,790
391
+ ูˆุงู„ุตุจุฑ ุงู„ุฌู…ูŠู„ ู‡ูˆ ุตุจุฑ ุจู„ุง ูŠุฃุณ ูุณุจู‚ ุฃู† ุฃุดุงุฑ ุงู„ุดุงุนุฑ
392
+
393
+ 99
394
+ 00:13:00,790 --> 00:13:11,000
395
+ ุฅู„ู‰ ุนุฏู… ุงู„ูŠุฃุณ ู„ุง ูŠุคูŠุณู†ูƒู‡ู†ุง ุชุฎู„ู‰ ุฃู† ูŠุชุฎู„ู‰ ุนู†ูƒ ุงู„ูŠุฃุณ
396
+
397
+ 100
398
+ 00:13:11,000 --> 00:13:19,380
399
+ ุนู„ูŠูƒ ุฃู† ุชุชุฑูƒ ุงู„ูŠุฃุณ ูˆุชุฃุฎุฐ ุจุฎูŠุงุฑ ุงู„ุตุจุฑ ูุงู„ุตุจุฑ ูŠูƒูˆู†
400
+
401
+ 101
402
+ 00:13:19,380 --> 00:13:26,380
403
+ ุฌู…ูŠู„ู‹ุง ุนู†ุฏู…ุง ูŠูƒูˆู† ุจู„ุง ุฌุฒุน ูˆุฃู† ูŠุตู„ ุฅู„ู‰ ุฃุนู„ู‰ ุงู„ุฏุฑุฌุงุช
404
+
405
+ 102
406
+ 00:13:26,380 --> 00:13:31,540
407
+ ุตุจุฑู‹ุง ูˆู„ุฐู„ูƒ ุตุจุฑู‹ุง ู‡ูŠ ู…ูุนูˆู„ ู…ุทู„ู‚ ู„ูุนู„ ู…ุญุฐูˆู ูŠุนู†ูŠ
408
+
409
+ 103
410
+ 00:13:31,540 --> 00:13:33,980
411
+ ุงุตุจุฑ ุตุจุฑุง ุฑุงุฆุนู‹ุง
412
+
413
+ 104
414
+ 00:13:36,040 --> 00:13:43,860
415
+ ู„ุฃู† ู‡ู†ุงูƒ ุญู‚ูŠู‚ุฉ ุซุงุจุชุฉ ุฅู† ุงู„ุตุจุฑ ูŠุนู‚ุจ ุฑุงุญุฉ ูˆ ู‡ู†ุงูƒ
416
+
417
+ 105
418
+ 00:13:43,860 --> 00:13:52,660
419
+ ุทุจุนุง ุฃูŠู‡ ุงู„ูุฑู‚ ุจูŠู† ุงู„ุฌู…ู„ุชูŠู† ุตุจุฑุง ูŠุนู†ูŠ ุฌู…ู„ุฉ ูุนู„ูŠุฉ
420
+
421
+ 106
422
+ 00:13:52,660 --> 00:14:01,200
423
+ ุงุตุจุฑ ุตุจุฑุง ูˆุฅู† ุงู„ุตุจุฑ ูŠุนู‚ุจ ุฑุงุญุฉ ุฌู…ู„ุฉ ุงุณู…ูŠุฉ ูˆุงู„ุฌู…ู„ุฉ
424
+
425
+ 107
426
+ 00:14:01,200 --> 00:14:08,010
427
+ ุงู„ุงุณู…ูŠุฉ ุฃุซุจุช ู…ู† ุงู„ุฌู…ู„ุฉ ุงู„ูุนู„ูŠุฉูƒุฐู„ูƒ ุตุจุฑู‹ุง ุชู…ุซู„ ุฌู…ู„ุฉ
428
+
429
+ 108
430
+ 00:14:08,010 --> 00:14:15,750
431
+ ุฅู†ุดุงุฆูŠุฉ ุฅู† ุงู„ุตุจุฑ ูŠุนู‚ุจ ุฑุงุญุฉ ุฌู…ู„ุฉ ุฎุจุฑูŠุฉ ูˆุทุจุนู‹ุง ุงู„ุฎุจุฑ
432
+
433
+ 109
434
+ 00:14:15,750 --> 00:14:24,610
435
+ ุฃู‚ูˆู‰ ู…ู† ุงู„ู‚ุงู†ูˆู† ุฃู…ุง ุงู„ุตุจุฑ ุตุจุฑู‹ุง ูู‡ูŠ ู…ูˆู‚ู ุฅู†ุณุงู†ูŠ
436
+
437
+ 110
438
+ 00:14:24,610 --> 00:14:27,770
439
+ ูุฅู†
440
+
441
+ 111
442
+ 00:14:27,770 --> 00:14:35,100
443
+ ุงู„ุตุจุฑ ูŠุนู‚ุจ ุฑุงุญุฉู„ุฏูŠ ุญู‚ูŠู‚ุฉ ุซุงุจุชุฉ ุชุฌุฑูŠ ููŠ ุงู„ุฎู„ู‚ ูˆููŠ
444
+
445
+ 112
446
+ 00:14:35,100 --> 00:14:44,100
447
+ ุงู„ุญูŠุงุฉ ุฃู† ุจุนุฏ ุงู„ุตุจุฑ ุงู„ูุฑุฌ ูˆุจุนุฏ ุงู„ุนุณุฑ ุงู„ูŠุณุฑ ุซู… ู‡ู†ุงูƒ
448
+
449
+ 113
450
+ 00:14:44,100 --> 00:14:53,240
451
+ ุฃู…ุฑ ุขุฎุฑ ู‡ูˆ ุฃู† ุงู„ุฎู„ูŠูุฉ ูŠุนู†ูŠ ู„ุง ูŠู‚ุตุฑ ุจู„ ุฅู† ูŠุฏู‡ ูƒุฑูŠู…ุฉ
452
+
453
+ 114
454
+ 00:14:53,240 --> 00:15:03,390
455
+ ูŠูˆุฒุน ูƒุฑู…ู‡ ูˆุนุทุงุกู‡ ุนู„ู‰ ุงู„ุขุฎุฑูŠู†ูˆูŠุฏ ุงู„ุฎู„ูŠูุฉ ู„ุง ุชุทุงูˆู„ู‡ุง
456
+
457
+ 115
458
+ 00:15:03,390 --> 00:15:11,790
459
+ ูŠุฏู‡ ูŠุนู†ูŠ ูŠุฏ ุงู„ุฎู„ูŠูุฉ ู…ู…ุฏูˆุฏุฉ ุจุงู„ุฎูŠุฑุงุช ู„ุง ูŠุนู†ูŠ ูŠุดุจู‡ู‡
460
+
461
+ 116
462
+ 00:15:11,790 --> 00:15:21,230
463
+ ุฃุญุฏ ููŠ ูƒุฑู…ู‡ ูˆุนุทุงุกู‡ ูˆุงู„ุญุจุณ ู…ุง ู„ู… ุชุบุดู‡ ู„ุฏู†ูŠุง ุณู†ุนุงุก
464
+
465
+ 117
466
+ 00:15:21,230 --> 00:15:28,430
467
+ ู†ุนู… ุงู„ู…ู†ุฒู„ ุงู„ู…ุชูˆุฑุฏ ูุงู„ุญุจุณ ู„ุฃุตุญุงุจ ุงู„ู…ุจุงุฏุฆ ู‡ูˆ ู†ุนู…
468
+
469
+ 118
470
+ 00:15:28,430 --> 00:15:35,770
471
+ ุงู„ู…ู†ุฒู„ุงู„ุฐูŠ ูŠุฑุฏูˆุง ุฃูˆ ูŠุทู„ุจูˆุง ุฃู† ูŠู†ุฒู„ ุฅู„ูŠู‡ ุงู„ุฅู†ุณุงู†
472
+
473
+ 119
474
+ 00:15:35,770 --> 00:15:42,490
475
+ ุฅุฐุง ูƒุงู† ุจุณุจุจ ุงู„ู…ุจุงุฏุฆ ูˆุงู„ู‚ูŠู… ูˆุงู„ุญุจุณ ู…ุง ู„ู… ุชุบุดู‡
476
+
477
+ 120
478
+ 00:15:42,490 --> 00:15:51,690
479
+ ู„ุฏู†ูŠุฉ ูŠุนู†ูŠ ู„ุฌุฑูŠู„ุฉ ุฌู†ุงุฆูŠุฉ ูู‡ูˆ ุฃูุถู„ ุงู„ู…ู†ุงุฏู„ ุงู„ู…ุทู„ูˆุจุฉ
480
+
481
+ 121
482
+ 00:15:52,710 --> 00:16:01,290
483
+ ู„ุฃุตุญุงุจ ุงู„ู…ุจุงุฏุฆ ูู‡ูˆ ู…ุณุชุนุฏ ุฃู† ูŠุฑุฏ ู‡ุฐุง ุงู„ุณุฌู† ููŠ ู…ู‚ุงุจู„
484
+
485
+ 122
486
+ 00:16:01,290 --> 00:16:10,370
487
+ ุฃู† ูŠุญุงูุธ ุนู„ู‰ ู…ุจุงุฏุฆู‡ ูˆู‚ูŠู…ู‡ูˆู‡ูˆ ุจูŠุช ูŠุฌุฏุฏ ู„ู„ูƒุฑูŠู… ูƒุฑุงู…ุฉ
488
+
489
+ 123
490
+ 00:16:10,370 --> 00:16:17,250
491
+ ูู‡ุฐุง ุงู„ุณุฌู† ูŠุญุงูุธ ุนู„ู‰ ูƒุฑุงู…ุฉ ุงู„ุณุฌูŠู†
492
+
493
+ 124
494
+ 00:16:17,250 --> 00:16:24,470
495
+ ู„ุฃู†ู‡ ุณุฌู† ู…ู† ุฃุฌู„ ู…ุจุงุฏุฆู‡ ูˆู‚ูŠู…ู‡ ูˆู‡ุฐุง ู‡ูˆ ุงู„ุนู†ูˆุงู†
496
+
497
+ 125
498
+ 00:16:24,470 --> 00:16:30,800
499
+ ุงู„ุฃุจุฑุฒ ููŠ ุงู„ุชุญู„ูŠู„ ุงู„ุฃุฎู„ุงู‚ูŠ ู„ุฃู† ุงู„ุฃุฎู„ุงู‚ููŠ ุชุญู„ูŠู„ู‡ุง
500
+
501
+ 126
502
+ 00:16:30,800 --> 00:16:38,660
503
+ ุงู„ู†ู‡ุงุฆูŠ ุชู‡ุฏูู‡ ุฃูˆ ูŠูƒูˆู† ู†ู‡ุงูŠุชู‡ ุงู„ุชุถุญูŠุฉ ูุงู„ุชุถุญูŠุฉ ู‡ูŠ
504
+
505
+ 127
506
+ 00:16:38,660 --> 00:16:44,160
507
+ ุงู„ุชุญู„ูŠู„ ุงู„ู†ู‡ุงุฆูŠ ู„ู„ุฃุฎู„ุงู‚ ุจุฎู„ุงู ุงู„ุณูŠุงุณุฉ ูุฅู† ุงู„ุชุญู„ูŠู„
508
+
509
+ 128
510
+ 00:16:44,160 --> 00:16:51,570
511
+ ุงู„ู†ู‡ุงุฆูŠ ู„ู‡ุง ู‡ูˆ ุงู„ู…ุตู„ุญุฉูˆู„ุฐู„ูƒ ู‚ุงู„ ุจูŠุช ูŠุฌุฏุฏ ู„ู„ูƒุฑูŠู…
512
+
513
+ 129
514
+ 00:16:51,570 --> 00:17:00,750
515
+ ูƒุฑุงู…ุฉ ูุงู„ุณุฌูŠู† ุฅู†ู…ุง ุณุฌู† ูˆุถุญู‰ ุจุฃุฌู…ู„ ุนู…ุฑู‡ ุจุฃุฌู…ู„ ู…ุง
516
+
517
+ 130
518
+ 00:17:00,750 --> 00:17:06,810
519
+ ูŠู…ู„ูƒู‡ ูˆู‡ูˆ ุงู„ุนู…ุฑ ูˆุงู„ุฒู…ู† ูŠู‚ุฏู…ู‡ ุชุถุญูŠุฉ ู…ู† ุฃุฌู„ ู…ุจุงุฏุฆู‡
520
+
521
+ 131
522
+ 00:17:06,810 --> 00:17:12,750
523
+ ูู‡ูˆ ูŠุถุญูŠ ู…ู† ุฃุฌู„ ุงู„ู…ุจุงุฏุฆ ูˆู‡ุฐุง ูŠุฒูŠุฏ ููŠ ูƒุฑุงู…ุฉ ุงู„ุณุฌูŠู†
524
+
525
+ 132
526
+ 00:17:12,750 --> 00:17:20,500
527
+ ุฃู†ู‡ ูŠุถุญูŠูู…ุชู‰ ู…ุง ูƒุงู† ุงู„ุฅู†ุณุงู† ู…ุถุญูŠุง ู„ู…ุจุงุฏุฆู‡ ูŠูƒุชุณุจ
528
+
529
+ 133
530
+ 00:17:20,500 --> 00:17:29,100
531
+ ุตูุฉ ุงู„ูƒุฑุงู…ุฉ ูˆุงู„ุฑูˆุนุฉ ุซู… ู‡ูˆ ูŠุฒุงุฑู‡ ูˆู„ุง ูŠุฒูˆุฑู‡ ูŠุนู†ูŠ
532
+
533
+ 134
534
+ 00:17:29,100 --> 00:17:38,400
535
+ ูŠุฃุชูŠ ุฅู„ูŠู‡ ุงู„ู†ุงุณ ูˆูŠุนู†ูŠ ูŠุฏูŠุฏูˆู† ููŠ ูƒุฑุงู…ุชู†ุงู„ูˆ ู„ู… ูŠูƒู†
536
+
537
+ 135
538
+ 00:17:38,400 --> 00:17:44,980
539
+ ููŠ ุงู„ุณุฌู† ุฅู„ุง ุฃู† .. ู„ูƒู† ู‡ู†ุงูƒ ุฃู…ุฑ ูŠุนู†ูŠ ู…ุคุฐู† ู„ู„ุณุฌูŠู†
540
+
541
+ 136
542
+ 00:17:44,980 --> 00:17:54,200
543
+ ูˆู‡ูˆ ูŠุนู†ูŠ ุฃู†ู‡ ูŠุณุฌู† ูˆูŠุนุฐุจ ุนู„ู‰ ุฃูŠุฏูŠ ุงู„ุนุจูŠุฏ ุงู„ุฐูŠู†
544
+
545
+ 137
546
+ 00:17:54,200 --> 00:17:59,600
547
+ ูŠูุชู‚ุฏูˆู† ุฅู„ู‰ ุงู„ุฅุฑุงุฏุฉ ุงู„ุฃุฎู„ุงู‚ูŠุฉ ุฃูˆ ุงู„ู…ู†ุธูˆู…ุฉ
548
+
549
+ 138
550
+ 00:17:59,600 --> 00:18:06,150
551
+ ุงู„ุฃุฎู„ุงู‚ูŠุฉุงู„ุนุจุฏ ู„ุฃู† ุงู„ุนุจุฏ ู‡ูˆ ูŠุนู†ูŠ ู…ู† ูู‚ุฏ ุงู„ุฅุฑุงุฏุฉ
552
+
553
+ 139
554
+ 00:18:06,150 --> 00:18:13,170
555
+ ุฅุฑุงุฏุฉ ุงู„ุชุตุฑุฑ ุฃูˆ ุงู„ุญุฑูŠุฉ ู„ุง ูŠุณุชุฏู„ูƒ ุจุงู„ุญุฌุงุจ ุงู„ุฃุนุจุฏ
556
+
557
+ 140
558
+ 00:18:13,170 --> 00:18:20,490
559
+ ูุงู„ุฐูŠ ูŠุคุฐูŠ ููŠ ุงู„ุณุฌู† ู‡ู… ุงู„ุนุจูŠุฏ ุงู„ุฐูŠู† ูŠูุชู‚ุฏูˆู† ุฅู„ู‰
560
+
561
+ 141
562
+ 00:18:20,490 --> 00:18:29,700
563
+ ุงู„ุฅุฑุงุฏุฉ ูˆุงู„ุญุฑูŠุฉุฃู…ู† ุงู„ุณูˆูŠุฉ ูŠุจู†ู‰ ุนู… ู…ุญู…ุฏ ุฎุตู… ุชู‚ุฑุจู‡ ูˆ
564
+
565
+ 142
566
+ 00:18:29,700 --> 00:18:37,160
567
+ ุขุฎุฑ ุชุจุนุฏู‡ ุทุจุนุง ู‡ู†ุง ุงุณุชูุงู‡ุงู… ู…ุฌุงุฒูŠ ุบุฑุถู‡ ุงู„ู†ููŠ ุฃู…ู†
568
+
569
+ 143
570
+ 00:18:37,160 --> 00:18:44,800
571
+ ุงู„ุณูˆูŠุฉ ูŠุจู†ู‰ ุนู… ู…ุญู…ุฏ ุฎุตู… ุชู‚ุฑุจู‡ ูˆ ุขุฎุฑ ุชุจุนุฏู‡ ูŠุนู†ูŠ ู„ูŠุณ
572
+
573
+ 144
574
+ 00:18:44,800 --> 00:18:53,000
575
+ ู…ู† ุงู„ุนุฏู„ ุฃู† ูŠุนู†ูŠ ูŠู‚ุฑุจ ุฎุตู… ูˆ ูŠุจุนุฏ ุขุฎุฑุฅุฐ ุงู„ุนุฏุงู„ุฉ
576
+
577
+ 145
578
+ 00:18:53,000 --> 00:19:02,020
579
+ ุชู‚ุชุถูŠ ุฃู† ูŠุฌู…ุน ุงู„ุฎุตู…ูŠู† ู„ูˆ ูŠุฌู…ุนูˆุง ุงู„ุฎุตู…ูŠู† ุนู†ุฏูƒ ู…ุดู‡ุฏ
580
+
581
+ 146
582
+ 00:19:02,020 --> 00:19:11,260
583
+ ูŠูˆู…ุง ู„ุจุงู† ู„ูƒ ุงู„ุทุฑูŠู‚ ุงู„ูˆุงุถุญ ุงู„ุทุฑูŠู‚ ุงู„ุฃู…ุตุฏ ู‡ุฐุง ู‡ูˆ
584
+
585
+ 147
586
+ 00:19:11,260 --> 00:19:14,160
587
+ ุจุงู„ู„ู‡ ุงู„ุชูˆููŠู‚ ูˆ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆ ุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
588
+
589
+ 148
590
+ 00:19:14,160 --> 00:19:17,540
591
+ ูˆ ุนู„ู‰ ุขู„ู‡ ูˆ ุตุญุจู‡ ูˆ ุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง
592
+
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/7iThC-B-ye0_raw.srt ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:04,940 --> 00:00:08,080
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:08,080 --> 00:00:14,240
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ู‹ุง ูƒุซูŠุฑู‹ุง ูˆุจุนุฏ ููŠ ู‡ุฐู‡
8
+
9
+ 3
10
+ 00:00:14,240 --> 00:00:20,600
11
+ ุงู„ู…ุญุงุถุฑุฉ ู†ุชู†ุงูˆู„ ุชุฌุฑุจุฉ ุงู„ุณุฌู† ุนู†ุฏ ุนู„ูŠ ุจู† ุงู„ุฌู‡ู… ููŠ
12
+
13
+ 4
14
+ 00:00:20,600 --> 00:00:27,160
15
+ ู‚ุตูŠุฏุชู‡ ุงู„ุฏุงู„ูŠุฉ ูˆุงู„ุชูŠ ู‚ุงู„ ุนู†ู‡ุง ุตุงุญุจ ุงู„ุนู…ุฏุฉ ุงุจู† ุฑุดูŠู‚
16
+
17
+ 5
18
+ 00:00:27,160 --> 00:00:33,060
19
+ ูˆุฃู…ุง ุนู„ูŠ ุจู† ุงู„ุฌู‡ู… ูุฑุดูŠู‚ ุงู„ูู‡ู… ุฌูŠุฏ ุงู„ุดุนุฑูŠ ูˆู„ู‡ ููŠ
20
+
21
+ 6
22
+ 00:00:33,060 --> 00:00:40,280
23
+ ุงู„ุบุฒู„ ุงู„ุฑุตุงููŠุฉูˆููŠ ุงู„ุนุชุงุจ ุงู„ุฏุงู„ูŠุฉ ูˆู„ูˆ ู„ู… ูŠูƒู† ู„ู‡
24
+
25
+ 7
26
+ 00:00:40,280 --> 00:00:46,560
27
+ ุณูˆุงู‡ู…ุง ู„ูƒุงู† ุฃุดุนุฑ ุงู„ู†ุงุณ ู‚ุงู„ ููŠู‡ุง ูˆู‡ู†ุง ู†ุงุฎุฏ ู…ุฌู…ูˆุน ู…ู†
28
+
29
+ 8
30
+ 00:00:46,560 --> 00:00:52,600
31
+ ุฃุจูŠุงุช ู‡ุฐู‡ ุงู„ู‚ุตูŠุฏุฉ ู‚ุงู„ูˆุง ุญุจุณุช ูู‚ู„ุช ู„ูŠุณ ุจุธุงุฆุฑ ุญุจุณูŠ
32
+
33
+ 9
34
+ 00:00:52,600 --> 00:01:00,120
35
+ ูˆุฃูŠ ู…ู‡ู†ุฏ ู„ุง ูŠู‡ู…ุฏู‡ ุฃูˆ ู…ุง ุฑุฃูŠุช ู„ูŠุณ ูŠุฃู„ู ุบูŠู„ู‡ ูƒุจุฑุง
36
+
37
+ 10
38
+ 00:01:00,120 --> 00:01:07,860
39
+ ูˆุฃูˆุจุงุณ ุงู„ุณุจุงุน ุชุฑุฏุฏู‡ูˆุงู„ุดู…ุณ ู„ูˆู„ุง ุฃู†ู‡ุง ู…ุญุฌูˆุจุฉ ุนู†
40
+
41
+ 11
42
+ 00:01:07,860 --> 00:01:16,240
43
+ ู†ุธุฑูŠูƒ ู„ู…ุง ุฃุถุงุก ุงู„ูุฑู‚ุฏ ูˆุงู„ุจุฏุฑ ูŠุฏุฑูƒ ุงู„ุณุฑุงุฑุฉ ูุชู†ุฌู„ูŠ
44
+
45
+ 12
46
+ 00:01:16,240 --> 00:01:26,120
47
+ ุฃูŠุงู…ู‡ ูˆูƒุฃู†ู‡ ู…ุชุฌุฏุฏ ูˆุงู„ุบูŠุซ
48
+
49
+ 13
50
+ 00:01:26,120 --> 00:01:34,060
51
+ ูŠุญุตุฑู‡ ุงู„ุบู…ุงู… ูู…ุง ูŠุฑุงู‡ ุฅู„ุง ูˆุฑูŠู‚ู‡ ูŠุฑุงุญ ูˆูŠุฑุนุฏูˆุงู„ู†ุงุฑ
52
+
53
+ 14
54
+ 00:01:34,060 --> 00:01:40,480
55
+ ููŠ ุฃุญุฌุงุฑู‡ุง ู…ุฎุจูˆู‚ุฉุŒ ู„ุง ุชูุตุทู„ู‰ ุฅู† ู„ู… ุชุซูุฑู‡ุง ุงู„ุฃุฒู†ุฏู‡ุŒ
56
+
57
+ 15
58
+ 00:01:40,480 --> 00:01:49,540
59
+ ู„ุง ูŠุคูŠุณู†ูƒ ู…ู† ุชูุฑุฌ ูƒุฑุจุฉ ุฎุทุจ ุฑู…ุงูƒ ุจู‡ ุงู„ุฒู…ุงู† ุงู„ุฃู†ูƒุฏูˆุŒ
60
+
61
+ 16
62
+ 00:01:49,540 --> 00:01:58,420
63
+ ูƒู… ุนู„ูŠู„ ู‚ุฏ ุชุฎุทุงู‡ ุงู„ุฑุฏู‰ุŒ ูู†ุฌู‰ ูˆู…ุงุช ุทุจูŠุจู‡ ูˆุงู„ุนูˆุฏู‡
64
+
65
+ 17
66
+ 00:02:08,280 --> 00:02:14,340
67
+ ูˆุงู„ุญุจุณ ู…ุง ู„ู… ุชุบุดู‡ ู„ุฏู†ูŠุฉ ุดู†ุนุงุก ู†ุนู… ุงู„ู…ู†ุฒู„ ุงู„ู…ุชูˆุฑุฏ
68
+
69
+ 18
70
+ 00:02:14,340 --> 00:02:24,440
71
+ ุจูŠุช ูŠุฌุฏุฏ ู„ู„ูƒุฑูŠู… ูƒุฑุงู…ุฉ ูˆูŠุฒุงุฑ ููŠู‡ ูˆู„ุง ูŠุฒูˆุฑ ูˆูŠุญูุธ ู„ูˆ
72
+
73
+ 19
74
+ 00:02:24,440 --> 00:02:30,200
75
+ ู„ู… ูŠูƒู† ููŠ ุงู„ุณุฌู† ุฅู„ุง ุฃู†ู‡ู„ุง ูŠุณุชุฐู„ูƒ ุจุงู„ุญุฌุงุจ ุงู„ุฃุนุจุฏ
76
+
77
+ 20
78
+ 00:02:30,200 --> 00:02:40,100
79
+ ุฃู…ู† ุงู„ุณูˆูŠุฉ ูŠุจู† ุนู… ู…ุญู…ุฏ ุฎุตู… ุชู‚ุฑุจู‡ ูˆ ุขุฎุฑ ุชุจุนุฏู‡ ู‚ุงู„ูˆุง
80
+
81
+ 21
82
+ 00:02:40,100 --> 00:02:49,930
83
+ ุญุจุณุชูู‚ู„ุช ู„ูŠุณ ุจุธุงุฆุฑ ุญุจุณูŠ ูˆุฃูŠ ู…ู‡ู†ุฏุณ ู„ุง ูŠุบู…ุถู‡ู… ู…ู†
84
+
85
+ 22
86
+ 00:02:49,930 --> 00:02:56,950
87
+ ุงู„ู…ุนู„ูˆู… ุฃู† ู‡ุฏู ุงู„ุณุฌู† ู‡ูˆ ุงู„ู‚ุถุงุก ุนู„ู‰ ุฅุฑุงุฏุฉ ุงู„ุฅู†ุณุงู†
88
+
89
+ 23
90
+ 00:02:56,950 --> 00:03:05,810
91
+ ุชุญุทูŠู… ุงู„ุฅุฑุงุฏุฉ ุงู„ุฅู†ุณุงู†ูŠุฉ ุชุญุทูŠู… ุฅุฑุงุฏุฉ ุงู„ู…ุณุฌูˆู†ูˆู‚ุฏ
92
+
93
+ 24
94
+ 00:03:05,810 --> 00:03:12,450
95
+ ุนุจู‘ุฑ ุงู„ุดุนุฑุงุก ุนู† ุงู„ุฅุฑุงุฏุฉ ููŠู…ุง ุณุจู‚ ุจู…ุนุงู†ูŠ ูƒุซูŠุฑุฉ ุฃูˆ
96
+
97
+ 25
98
+ 00:03:12,450 --> 00:03:21,330
99
+ ุจุฃู„ูุงุธ ูƒุซูŠุฑุฉ ู…ู†ู‡ุง ุงู„ุณูŠู ุงู„ู…ู‡ู†ุฏ ูˆู…ู†ู‡ุง ุงู„ุฃุณุฏ
100
+
101
+ 26
102
+ 00:03:21,330 --> 00:03:25,990
103
+ ูˆุชุนุจูŠุฑุงุช
104
+
105
+ 27
106
+ 00:03:25,990 --> 00:03:30,390
107
+ ูƒุซูŠุฑุฉ ูˆู…ู†ู‡ุง ุงู„ูุชุงุฉ ู„ูƒู† ู‡ู†ุง ุชู„ุฏ ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช ุชู„ุฏ
108
+
109
+ 28
110
+ 00:03:30,390 --> 00:03:32,590
111
+ ูƒู„ู…ุฉ ู…ู‡ู†ุฏ
112
+
113
+ 29
114
+ 00:03:34,900 --> 00:03:39,220
115
+ ู‚ุงู„ูˆุง ุญุจุณุช ูู‚ู„ุช
116
+
117
+ 30
118
+ 00:03:39,220 --> 00:03:46,460
119
+ ู„ูŠุณ ุจุถุงุฆุฑ ุญุจุณูŠ ูˆุฃูŠ ู…ู‡ู†ุฏู„ ู„ุง ูŠูˆู…ุฏู‡ู… ู‚ุงู„ูˆุง ุงู„ุถู…ูŠุฑ ููŠ
120
+
121
+ 31
122
+ 00:03:46,460 --> 00:03:56,130
123
+ ู‚ุงู„ูˆุง ุชุนูˆุฏ ุนู„ู‰ ุบุงุฆุจุชุญู‚ูŠุฑุงู‹ ู„ู‡ ูˆูŠู‚ุตุฏ ุจุฐู„ูƒ ุงู„ุฎุตูˆู… ุฃูˆ
124
+
125
+ 32
126
+ 00:03:56,130 --> 00:04:05,070
127
+ ุงู„ูˆุดุงุก ุงู„ุฐูŠู† ูˆุดูˆุง ู„ู„ุฎู„ูŠูุฉ ุถุฏ ู‡ุฐุง ุงู„ุฑุฌู„ ุถุฏ ุงู„ุดุนุจ
128
+
129
+ 33
130
+ 00:04:05,070 --> 00:04:12,110
131
+ ูู‚ู„ุช ู„ูŠุณ ุจุธุงุฆุฑ ุญุจุณูŠ ู‚ุงู„ูˆุง ุญุจุณุชุฉ ูŠุนู†ูŠ ู‚ุงู„ ุงู„ุดุงู…
132
+
133
+ 34
134
+ 00:04:12,110 --> 00:04:23,110
135
+ ุชูˆู†ุฉุฃูˆ ุงู„ูˆุดุงุก ุญุจุณุช ุชุญู‚ูŠุฑุง ู„ูŠู‡ ูˆุชุดู…ุชุง ุจูŠู‡ ูู‚ู„ุช ู„ูŠุณ
136
+
137
+ 35
138
+ 00:04:23,110 --> 00:04:31,070
139
+ ู„ุฃ ูู‚ู„ุช ู„ูŠุณ ุจุฏุงุฆุฑ ุญุจุณูŠ ู‡ุฐุง ุงู„ุญุจุณ ู„ุง ูŠุถุฑู†ูŠ ูˆู„ุง ูŠู†ู‚ุต
140
+
141
+ 36
142
+ 00:04:31,070 --> 00:04:39,430
143
+ ู…ู† ูˆู„ุง ูŠูˆู‚ุต ู…ู† ูƒุฑุงู…ุชูŠ ูˆู‚ูŠู…ุชูŠ ูƒู…ุง ุงู„ุณูŠู ู„ุง ูŠู†ุชู‚ุต
144
+
145
+ 37
146
+ 00:04:39,430 --> 00:04:45,900
147
+ ุนู†ุฏู…ุง ูŠูˆุถุน ุนู†ุฏู…ุง ูŠูˆุถุน ููŠ ุบู…ุฏู‡ูุตูุฉ ุงู„ู…ุถุงุก ูˆุงู„ุฅุฑุงุฏุฉ
148
+
149
+ 38
150
+ 00:04:45,900 --> 00:04:52,820
151
+ ูˆุงู„ุนุฒูŠู…ุฉ ู„ุง ุชุฒุงู„ ููŠู‡ ูˆูƒุฐู„ูƒ ุฃู†ุง ูุฃู†ุง ุตุงุญุจ ุฅุฑุงุฏุฉ
152
+
153
+ 39
154
+ 00:04:52,820 --> 00:05:02,180
155
+ ูˆุตุงุญุจ ุนุฒูŠู…ุฉ ุฃุฎู„ุงู‚ูŠุฉ ูู„ุง ูŠู‡ู…ู†ูŠ ู…ุง ูŠูุนู„ ู‡ุคู„ุงุก ุงู„ูˆุดุงุก
156
+
157
+ 40
158
+ 00:05:02,180 --> 00:05:11,290
159
+ ุฃูˆ ุงู„ุดุงู…ุชูˆู† ูุงู„ุณุฌู† ู„ุง ูŠุญุทู… ุฅุฑุงุฏุชูŠุตุญูŠุญ ุฃู†ู‡ ูŠุบูŠุจ
160
+
161
+ 41
162
+ 00:05:11,290 --> 00:05:18,110
163
+ ุฌุณุฏูŠ ูƒู…ุง ุงู„ุบูู…ู’ุฏุŒ ูŠุบูŠุจ ุงู„ุณูŠูุŒ ูˆู„ูƒู† ุงู„ุณูŠู ูŠุจู‚ู‰
164
+
165
+ 42
166
+ 00:05:18,110 --> 00:05:23,830
167
+ ุณูŠูู‹ุง ูŠุฑู…ุฒ ุฅู„ู‰ ุงู„ุฅุฑุงุฏุฉ ุงู„ุตุงุฏู‚ุฉ ูˆุงู„ุนุฒูŠู…ุฉ ุงู„ู‚ูˆูŠุฉุŒ
168
+
169
+ 43
170
+ 00:05:23,830 --> 00:05:30,510
171
+ ูˆูƒุฐู„ูƒ ๏ฟฝ๏ฟฝูŠุณ ุงู„ุฃุณุฏ ุฃูˆ ู…ุง ุฑุฃูŠุช ู„ูŠุณ ูŠุฃู„ู ุบูŠู„ู‡ ูƒุจุฑู‹ุง
172
+
173
+ 44
174
+ 00:05:31,310 --> 00:05:40,450
175
+ ูˆุฃูˆุจุงุซ ุงู„ุณุจุงุนูŠ ุชุฑุฏุฏู‡ ูƒุฐู„ูƒ ุงู„ุฃุณุฏ ูˆู‡ู†ุง ุฐูƒุฑ ุงู„ู„ูŠุซ ูˆู‡ูŠ
176
+
177
+ 45
178
+ 00:05:40,450 --> 00:05:47,510
179
+ ุงุณู… ู…ู† ุฃุณู…ุงุก ุงู„ุฃุณุฏ ูˆู‡ุฐุง ุงู„ุงุณู… ุฅู†ู…ุง ู‡ูˆ ุตูุฉ ู…ู† ุตูุงุช
180
+
181
+ 46
182
+ 00:05:47,510 --> 00:05:55,270
183
+ ุงู„ุฃุณุฏ ุฃูˆ ุญุงู„ุฉ ู…ู† ุญุงู„ุงุชู‡ ูˆู‡ูŠ ุงู„ุญุงู„ุฉ ุงู„ุชูŠ ูŠู†ุทู„ู‚ ููŠู‡ุง
184
+
185
+ 47
186
+ 00:05:55,270 --> 00:06:04,050
187
+ ุนู„ู‰ ุฎุตู…ู‡ ุฃูˆ ุนู„ู‰ ูƒุฏุณุชู‡ุจู…ุนู†ู‰ ุฃู† ูƒู„ู…ุฉ ู„ูŠุซ ู‡ูŠ ุงู„ุฃุณุฏ ููŠ
188
+
189
+ 48
190
+ 00:06:04,050 --> 00:06:11,810
191
+ ุญุงู„ุฉ ุงู„ุงู†ุทู„ุงู‚ ููŠ ุญุงู„ุฉ ุงู„ู‡ุฌูˆู… ุนู„ู‰ ุงู„ูุฑูŠุณุฉ ู„ูŠุซ ู‡ูˆ ู…ุง
192
+
193
+ 49
194
+ 00:06:11,810 --> 00:06:18,510
195
+ ุฑุฃูŠุช ุงู„ู„ูŠุณ ูŠุฃู„ู‰ ูุบูŠู„ู‡ ูŠุนู†ูŠ ุงู„ู„ูŠุซ ู‡ูˆ ุงู„ุฃุณุฏ ุงู„ุฐูŠ
196
+
197
+ 50
198
+ 00:06:18,510 --> 00:06:26,580
199
+ ูŠู†ุทู„ู‚ ู†ุญูˆ ุงู„ูุฑูŠุณุฉูŠุนู†ูŠ ุงู„ุฃุณุฏ ุงู„ุฐูŠ ู„ู‡ ุฅุฑุงุฏุฉ ู‚ูˆูŠุฉ
200
+
201
+ 51
202
+ 00:06:26,580 --> 00:06:34,480
203
+ ูˆุตู„ุจุฉ ูˆุนุฒูŠู…ุฉ ู‚ูˆูŠุฉ ู‡ูˆ ู…ุง ุฑุฃูŠุช ู„ูŠุณ ูŠุฃู„ู ุบูŠู„ู‡ ูˆุงู„ุบูŠู„
204
+
205
+ 52
206
+ 00:06:34,480 --> 00:06:42,910
207
+ ู‡ูˆ ู…ุฎุจุฃ ุงู„ุฃุณุฏ ุจูŠู† ุงู„ุฃุดุฌุงุฑ ุงู„ู…ู„ุชูุฉูƒูุจุฑุงู‹ ูู‡ูˆ ูŠุฌู„ุณ
208
+
209
+ 53
210
+ 00:06:42,910 --> 00:06:51,750
211
+ ููŠ ุบูŠู„ู‡ ูƒูุจุฑุงู‹ ุจูŠู†ู…ุง ุตุบุงุฑ ุงู„ุณุจุงุน ุชุชุญุฑูƒ ูˆุชุชุฑุฏุฏ ุนู„ู‰
212
+
213
+ 54
214
+ 00:06:51,750 --> 00:06:59,270
215
+ ุงู„ุฌูŠู ุจูŠู†ู…ุง ู‡ูˆ ุฌุงู„ุณ ููŠ ุนุฑูŠู†ู‡ ุงู†ู…ุง ุงู„ุฐูŠ ู…ู†ุนู‡ู… ู…ู†
216
+
217
+ 55
218
+ 00:06:59,270 --> 00:07:07,500
219
+ ุงู„ุงู†ุทู„ุงู‚ ุงู„ูƒูุจุฑุงูˆุงู„ุดู…ุณ ู„ูˆู„ุง ุฃู†ู‡ุง ู…ุญุฌูˆุจุฉ ุนู† ู†ุงุธุฑูŠูƒ
220
+
221
+ 56
222
+ 00:07:07,500 --> 00:07:15,860
223
+ ู„ู…ุง ุฃุถุงุก ุงู„ูุฑู‚ุฏ ูˆุบูŠุงุจ ุงู„ุดู…ุณ ู„ุง ูŠู†ุชู‚ุต ู…ู† ู‚ูŠู…ุชู‡ุง ุจู„
224
+
225
+ 57
226
+ 00:07:15,860 --> 00:07:24,280
227
+ ุฅู†ู‡ ุฃูŠุถุง ูŠุฒูŠุฏ ุงู„ู†ุฌู…ุฉ ุฌู…ุงู„ุง ูุบูŠุงุจ ุงู„ุดู…ุณ ูŠุนุทูŠ ู„ู„ูุฑู‚ุฏ
228
+
229
+ 58
230
+ 00:07:24,280 --> 00:07:34,890
231
+ ุฌู…ุงู„ุง ูˆ ุฅุถุงุกุฉ ูˆ ุฑูˆู†ู‚ุง ูˆ ุฑูˆุนุฉู„ู…ุง ุฃุถุงุก ุงู„ูุฑู‚ุฏ ูˆุงู„ุจุฏุฑ
232
+
233
+ 59
234
+ 00:07:34,890 --> 00:07:43,950
235
+ ุฐู„ูƒ ุงู„ุธู‡ูˆุฑ ุงู„ุฑุงุฆุน ุงู„ุฌู…ูŠู„ ู„ู„ู‚ู…ุฑ ู„ุง ูŠู†ู‚ุตู‡ ุฃู†ู‡ ูŠุบูŠุจ
236
+
237
+ 60
238
+ 00:07:43,950 --> 00:07:54,010
239
+ ุญูŠู† ูŠูƒูˆู† ู‡ู„ุงู„ุง ุฃูˆ ุญูŠู† ูŠูƒูˆู† ุบุงุฆุจุง ู„ุฃู† ุงู„ุบูŠุงุจ ูŠูˆู„ุฏ
240
+
241
+ 61
242
+ 00:07:54,010 --> 00:08:02,460
243
+ ุงู„ุญุงุฌุฉ ุฅู„ู‰ ุฑุคูŠุฉ ุงู„ุจุฏุฑ ูƒู…ุง ู‚ุงู„ุงู„ุดุงุนุฑ ุฃุจูˆ ูุฑุงุต
244
+
245
+ 62
246
+ 00:08:02,460 --> 00:08:11,560
247
+ ุงู„ุญู…ุฏุงู†ูŠ ุนู†ุฏู…ุง ู‚ุงู„ ูˆููŠ ุงู„ู„ูŠู„ุฉ ุงู„ุธู„ู…ุงุก ูŠูุชู‚ุฏ ุงู„ุจุฏุฑ
248
+
249
+ 63
250
+ 00:08:11,560 --> 00:08:21,040
251
+ ูˆุงู„ุจุฏุฑ ูŠุฏุฑูƒ ุงู„ุณุฑุงุฑ ูุชู†ุฌู„ูŠ ุฃูŠุงู…ู‡ ูˆูƒุฃู†ู‡ ู…ุชุฌุฏุฏ ูุงู„ุจุฏุฑ
252
+
253
+ 64
254
+ 00:08:21,040 --> 00:08:29,620
255
+ ููŠ ุงู„ุชู†ู‚ู„ ููŠ ู‡ุฐู‡ ุงู„ุฃุญูˆุงู„ ุฅู†ู…ุง ูŠุฒุฏุงุฏ ุฌู…ุงู„ุงุจูŠู†
256
+
257
+ 65
258
+ 00:08:29,620 --> 00:08:38,660
259
+ ุงู„ุบูŠุงุจ ูˆุงู„ุธู‡ูˆุฑ ุชุชุฌุฏุฏ ุงู„ุฃูŠุงู… ููŠุฒุฏุงุฏ ุฌู…ุงู„ุง ูˆุงู„ุบูŠุซ
260
+
261
+ 66
262
+ 00:08:38,660 --> 00:08:46,920
263
+ ูŠุญุตุฑู‡ ุงู„ุบู…ุงู… ูู…ุง ูŠุฑู‰ ุฅู„ุง ูˆุฑูŠู‚ู‡ ูŠุฑุงุญ ูˆูŠุฑุนุฏ ูƒุฐู„ูƒ
264
+
265
+ 67
266
+ 00:08:46,920 --> 00:08:54,250
267
+ ุงู„ู…ุทุฑ ุงู„ุบูŠุซ ูˆุงู„ุนุฑุจ ุชู‚ูˆู„ ุนู† ุงู„ุบูŠุซ ู…ุทุฑุงูŠุนู†ูŠ ุชุณุงูˆูŠ
268
+
269
+ 68
270
+ 00:08:54,250 --> 00:09:00,670
271
+ ุจูŠู† ุงู„ุบูŠุซ ูˆุงู„ู…ุทุฑ ู„ูƒู† ุงู„ู‚ุฑุขู† ุงู„ูƒุฑูŠู… ุงุณุชุนู…ู„ ุงู„ุบูŠุซ
272
+
273
+ 69
274
+ 00:09:00,670 --> 00:09:07,290
275
+ ูู‚ุท ุฏูˆู† ุงู„ู…ุทุฑุฐู„ูƒ ุฃู† ุงู„ู…ุทุฑ ูŠุฏุฏ ููŠ ุงู„ู‚ุฑุขู† ุงู„ูƒุฑูŠู… ููŠ
276
+
277
+ 70
278
+ 00:09:07,290 --> 00:09:14,070
279
+ ู…ูˆุงุทู† ุงู„ุนุฐุงุจ ูˆุงู„ุนู‚ุงุจ ุฃู…ุง ุงู„ุบูŠุซ ููŠ ู…ูˆุงุทู† ุงู„ุฑุญู…ุฉ
280
+
281
+ 71
282
+ 00:09:14,070 --> 00:09:21,890
283
+ ูˆุงู„ุฎูŠุฑ ูˆุงู„ุบูŠุซ ูŠุญุตุฑู‡ ุงู„ุบู…ุงู… ูู…ุง ูŠุฑู‰ ุฅู„ุง ูˆุฑูŠู‚ู‡ ูŠุฑุงุญ
284
+
285
+ 72
286
+ 00:09:21,890 --> 00:09:25,810
287
+ ูŠุนู†ูŠ ูŠุณูƒุจ ู…ุงุกู‡ ูˆูŠุฑุนุฏู‡
288
+
289
+ 73
290
+ 00:09:27,440 --> 00:09:34,300
291
+ ูู‡ุฐุง ุงู„ุบูŠุงุจ ู„ู„ุบูŠุซ ู„ุง ูŠู†ู‚ุต ู‚ูŠู…ุชู‡ ูˆู„ุง ุฑูˆุนุชู‡ ูˆุฃู‡ู…ูŠุชู‡ุง
292
+
293
+ 74
294
+ 00:09:34,300 --> 00:09:40,340
295
+ ูˆุงู„ู†ุงุฑ ููŠ ุฃุญุฌุงุฑู‡ุง ู…ุฎุจูˆุฆุฉ ู„ุง ุชุตุทู„ู‰ ุฅู† ู„ู… ุชุซุฑู‡ุง
296
+
297
+ 75
298
+ 00:09:40,340 --> 00:09:46,500
299
+ ุงู„ุฃุฐู†ุฏู‡ู… ูˆูƒุฐู„ูƒ ุงู„ู†ุงุฑ ู‡ูŠ ุบุงุฆุจุฉ ููŠ ุฃุญุฌุงุฑู‡ุง ู„ูƒู†ู‡ุง
300
+
301
+ 76
302
+ 00:09:46,500 --> 00:09:53,370
303
+ ุชุธู‡ุฑ ุนู†ุฏู…ุง ุชุซุงุฑ ุงู„ุฃุฐู†ุฏ ููŠ ู‡ุฐู‡ ุงู„ุญุฌุงุฑุฉูŠุนู†ูŠ ุนู†ุฏู…ุง
304
+
305
+ 77
306
+ 00:09:53,370 --> 00:10:04,830
307
+ ูŠุถุฑุจ ุงู„ุญุฌุฑ ุจุงู„ุฒู†ุงุฏ ุชุฎุฑุฌ ุงู„ู†ุงุฑ ููŠู†ุชูุน ุจู‡ุง ูู„ุง ูŠู†ู‚ุต
308
+
309
+ 78
310
+ 00:10:04,830 --> 00:10:11,730
311
+ ุงู„ู†ุงุฑ ุฃู†ู‡ุง ูƒุงู†ุช ู…ุฎุจูˆู‚ุฉ ููŠ ุงู„ุญุฌุงุฑุฉ ู„ุง ูŠุคุณ ุฃู†ูƒ ู…ู†
312
+
313
+ 79
314
+ 00:10:11,730 --> 00:10:21,230
315
+ ุชูุฑุฌ ูƒุฑุจุฉ ู„ุง ูŠุตูŠุจ ุฃู†ูƒ ุงู„ูŠุฃุณ ู…ู† ุชูุฑุฌ ู…ุตูŠุจุฉ ุฃูˆ ูƒุฑุจุฉ
316
+
317
+ 80
318
+ 00:10:22,500 --> 00:10:29,020
319
+ ุฎุทุจ ุนุธูŠู… ู„ุฃู† ุงู„ุฎุทุจ ุงู„ุนุธูŠู… ุฅุฐุง ู„ู… ูŠุตุจุฑ ุงู„ุฅู†ุณุงู† ุนู„ูŠู‡
320
+
321
+ 81
322
+ 00:10:29,020 --> 00:10:37,720
323
+ ูุฑุจู…ุง ูŠูˆู„ุฏ ุฎุทุจุง ุฃุนุธู… ูุนู„ู‰ ุงู„ุฅู†ุณุงู† ุฃู† ู„ุง ูŠูŠุฃุณ ู„ุฃู†
324
+
325
+ 82
326
+ 00:10:37,720 --> 00:10:45,160
327
+ ุงู„ูŠุฃุณ ุทุงู‚ุฉ ุฅูŠุฌุงุจูŠุฉ ุทุงู‚ุฉ ุณู„ุจูŠุฉ ุชูˆู„ุฏ ุทุงู‚ุงุช ุณู„ุจูŠุฉ
328
+
329
+ 83
330
+ 00:10:45,160 --> 00:10:51,420
331
+ ุฃุฎุฑู‰ ููŠ ุงู„ุฅู†ุณุงู† ูุนู„ู‰ ุงู„ุฅู†ุณุงู† ุฃู† ูŠุจุชุนุฏ ุนู† ุงู„ูŠุฃุณูˆุนู†
332
+
333
+ 84
334
+ 00:10:51,420 --> 00:10:59,500
335
+ ุฃูŠ ุทุงู‚ุฉ ุณู„ุจูŠุฉ ุนู„ูŠู‡ ุจุงู„ุตุจุฑ ูˆุงู„ุชูุงุคู„ ูู‡ุฐุง ูŠู‚ูˆุฏ ุฅู„ู‰
336
+
337
+ 85
338
+ 00:10:59,500 --> 00:11:08,860
339
+ ุฃู† ุชุชูˆู„ุฏ ููŠ ุงู„ู†ูุณ ุทุงู‚ุงุช ุฅูŠุฌุงุจูŠุฉู„ุง ูŠุคุณู†ูƒ ู…ู† ุชูุฑุฌ
340
+
341
+ 86
342
+ 00:11:08,860 --> 00:11:18,920
343
+ ูƒุฑุจุฉ ุฎุทุจ ุฑู…ุงูƒ ุจู‡ ุงู„ุฒู…ุงู† ุงู„ุฃู†ูƒุฏูˆ ุฐู„ูƒ ุฃู†ู‡ ู…ุง ู…ู† ูƒุฑุจุฉ
344
+
345
+ 87
346
+ 00:11:18,920 --> 00:11:25,680
347
+ ุฅู„ุง ูˆ ุจุนุฏู‡ุง ูุฑุฌูˆู‡ุฐู‡ ุณู†ุฉ ููŠ ุงู„ุญูŠุงุฉ ูˆู‚ุงู†ูˆู† ููŠ ุงู„ุญูŠุงุฉ
348
+
349
+ 88
350
+ 00:11:25,680 --> 00:11:36,960
351
+ ูุจุนุฏ ุงู„ุนุณุฑูŠ ูŠูƒูˆู† ุงู„ูŠุณุฑ ูˆุจุนุฏ ุงู„ุถูŠู‚ ูŠูƒูˆู† ุงู„ูุฑุฌ ูˆู„ุฐู„ูƒ
352
+
353
+ 89
354
+ 00:11:36,960 --> 00:11:49,460
355
+ ุนู„ู‰ ุงู„ุฅู†ุณุงู† ุฃู† ูŠุฃุฎุฐ ุจุฎูŠุงุฑ ุงู„ุตุจุฑ ูˆุฎูŠุงุฑ ุนุฏู… ุงู„ูŠุฃุณูƒู…
356
+
357
+ 90
358
+ 00:11:49,460 --> 00:11:55,660
359
+ ู…ู† ุนู„ูŠู„ ู‚ุฏ ุชุฎุทุงู‡ ุงู„ุฑุฏู‰ุŒ ูู†ุฌู‰ ูˆู…ุงุช ุทุจูŠุจู‡ ูˆุงู„ุนูˆุฏู‡ุŸ
360
+
361
+ 91
362
+ 00:11:55,660 --> 00:12:03,920
363
+ ูˆู‡ู†ุงูƒ ุญุงู„ุงุช ูƒุซูŠุฑุฉ ุชุตู„ุญ ุฃู† ุชูˆู„ุฏ ู‚ุงู†ูˆู†ุงุŒ ูƒู… ู…ู† ุนู„ูŠู„
364
+
365
+ 92
366
+ 00:12:03,920 --> 00:12:10,740
367
+ ูŠุนู†ูŠ ู‡ู†ุงูƒ ุญุงู„ุงุช ูƒุซูŠุฑุฉ ู…ู† ุงู„ู…ุฑุถู‰ู‚ุฏ ุชุฎุทุงู‡ู… ุงู„ุฑุฏู‰
368
+
369
+ 93
370
+ 00:12:10,740 --> 00:12:19,840
371
+ ุชุฑูƒู‡ู… ุงู„ู…ูˆุช ูˆุงู„ู‡ู„ุงูƒ ูู†ุฌูˆุง ุจูŠู†ู…ุง ู„ุญู‚ ุงู„ู…ูˆุช ุจุงู„ุฃุทุจุงุก
372
+
373
+ 94
374
+ 00:12:19,840 --> 00:12:28,460
375
+ ูˆุงู„ุฒุงุฆุฑูŠู† ูู†ุฌู‰ ูˆู…ุงุช ุทุจูŠุจู‡ ูˆุงู„ุนูˆุฏ ูˆุงู„ุนูˆุฏ ุฌู…ุน ุนุงุฆุฏ
376
+
377
+ 95
378
+ 00:12:28,460 --> 00:12:36,610
379
+ ูˆู‡ูˆ ุงู„ุฐูŠ ูŠุฐูˆุฑ ุงู„ู…ุฑุถ ุตุจุฑุงูŠุนู†ูŠ ุงุตุจุฑ ุตุจุฑุง ู„ุฃู† ุงู„ุตุจุฑุฉ
380
+
381
+ 96
382
+ 00:12:36,610 --> 00:12:47,010
383
+ ู‡ูˆ ุงู„ุฎูŠุงุฑ ุงู„ุฃู†ุฌุน ููŠ ู…ูˆุงุฌู‡ุฉ ุงู„ู…ุตุงุฆุจ ุตุจุฑุง ูŠุนู†ูŠ ุงุตุจุฑ
384
+
385
+ 97
386
+ 00:12:47,010 --> 00:12:52,050
387
+ ุตุจุฑุง ู…ูุนูˆู„ ู…ุทู„ู‚ ู„ูุนู„ ู…ุญุฐูˆู ุจู…ุนู†ู‰ ุงุตุจุฑ ุตุจุฑุง ุฌู…ูŠู„ุง
388
+
389
+ 98
390
+ 00:12:52,050 --> 00:13:00,790
391
+ ูˆุงู„ุตุจุฑ ุงู„ุฌู…ูŠู„ ู‡ูˆ ุตุจุฑ ุจู„ุง ูŠุฃุณ ูุณุจู‚ ุฃู† ุฃุดุงุฑ ุงู„ุดุงุนุฑ
392
+
393
+ 99
394
+ 00:13:00,790 --> 00:13:11,000
395
+ ุฅู„ู‰ ุนุฏู… ุงู„ูŠุฃุณ ู„ุง ูŠุคูŠุณู†ูƒู‡ู†ุง ุชุฎู„ู‰ ุฃู† ูŠุชุฎู„ู‰ ุนู†ูƒ ุงู„ูŠุฃุณ
396
+
397
+ 100
398
+ 00:13:11,000 --> 00:13:19,380
399
+ ุนู„ูŠูƒ ุฃู† ุชุชุฑูƒ ุงู„ูŠุฃุณ ูˆุชุฃุฎุฐ ุจุฎูŠุงุฑ ุงู„ุตุจุฑ ูุงู„ุตุจุฑ ูŠูƒูˆู†
400
+
401
+ 101
402
+ 00:13:19,380 --> 00:13:26,380
403
+ ุฌู…ูŠู„ู‹ุง ุนู†ุฏู…ุง ูŠูƒูˆู† ุจู„ุง ุฌุฒุน ูˆุฃู† ูŠุตู„ ุฅู„ู‰ ุฃุนู„ู‰ ุงู„ุฏุฑุฌุงุช
404
+
405
+ 102
406
+ 00:13:26,380 --> 00:13:31,540
407
+ ุตุจุฑู‹ุง ูˆู„ุฐู„ูƒ ุตุจุฑู‹ุง ู‡ูŠ ู…ูุนูˆู„ ู…ุทู„ู‚ ู„ูุนู„ ู…ุญุฐูˆู ูŠุนู†ูŠ
408
+
409
+ 103
410
+ 00:13:31,540 --> 00:13:33,980
411
+ ุงุตุจุฑ ุตุจุฑุง ุฑุงุฆุนู‹ุง
412
+
413
+ 104
414
+ 00:13:36,040 --> 00:13:43,860
415
+ ู„ุฃู† ู‡ู†ุงูƒ ุญู‚ูŠู‚ุฉ ุซุงุจุชุฉ ุฅู† ุงู„ุตุจุฑ ูŠุนู‚ุจ ุฑุงุญุฉ ูˆ ู‡ู†ุงูƒ
416
+
417
+ 105
418
+ 00:13:43,860 --> 00:13:52,660
419
+ ุทุจุนุง ุฃูŠู‡ ุงู„ูุฑู‚ ุจูŠู† ุงู„ุฌู…ู„ุชูŠู† ุตุจุฑุง ูŠุนู†ูŠ ุฌู…ู„ุฉ ูุนู„ูŠุฉ
420
+
421
+ 106
422
+ 00:13:52,660 --> 00:14:01,200
423
+ ุงุตุจุฑ ุตุจุฑุง ูˆุฅู† ุงู„ุตุจุฑ ูŠุนู‚ุจ ุฑุงุญุฉ ุฌู…ู„ุฉ ุงุณู…ูŠุฉ ูˆุงู„ุฌู…ู„ุฉ
424
+
425
+ 107
426
+ 00:14:01,200 --> 00:14:08,010
427
+ ุงู„ุงุณู…ูŠุฉ ุฃุซุจุช ู…ู† ุงู„ุฌู…ู„ุฉ ุงู„ูุนู„ูŠุฉูƒุฐู„ูƒ ุตุจุฑู‹ุง ุชู…ุซู„ ุฌู…ู„ุฉ
428
+
429
+ 108
430
+ 00:14:08,010 --> 00:14:15,750
431
+ ุฅู†ุดุงุฆูŠุฉ ุฅู† ุงู„ุตุจุฑ ูŠุนู‚ุจ ุฑุงุญุฉ ุฌู…ู„ุฉ ุฎุจุฑูŠุฉ ูˆุทุจุนู‹ุง ุงู„ุฎุจุฑ
432
+
433
+ 109
434
+ 00:14:15,750 --> 00:14:24,610
435
+ ุฃู‚ูˆู‰ ู…ู† ุงู„ู‚ุงู†ูˆู† ุฃู…ุง ุงู„ุตุจุฑ ุตุจุฑู‹ุง ูู‡ูŠ ู…ูˆู‚ู ุฅู†ุณุงู†ูŠ
436
+
437
+ 110
438
+ 00:14:24,610 --> 00:14:27,770
439
+ ูุฅู†
440
+
441
+ 111
442
+ 00:14:27,770 --> 00:14:35,100
443
+ ุงู„ุตุจุฑ ูŠุนู‚ุจ ุฑุงุญุฉู„ุฏูŠ ุญู‚ูŠู‚ุฉ ุซุงุจุชุฉ ุชุฌุฑูŠ ููŠ ุงู„ุฎู„ู‚ ูˆููŠ
444
+
445
+ 112
446
+ 00:14:35,100 --> 00:14:44,100
447
+ ุงู„ุญูŠุงุฉ ุฃู† ุจุนุฏ ุงู„ุตุจุฑ ุงู„ูุฑุฌ ูˆุจุนุฏ ุงู„ุนุณุฑ ุงู„ูŠุณุฑ ุซู… ู‡ู†ุงูƒ
448
+
449
+ 113
450
+ 00:14:44,100 --> 00:14:53,240
451
+ ุฃู…ุฑ ุขุฎุฑ ู‡ูˆ ุฃู† ุงู„ุฎู„ูŠูุฉ ูŠุนู†ูŠ ู„ุง ูŠู‚ุตุฑ ุจู„ ุฅู† ูŠุฏู‡ ูƒุฑูŠู…ุฉ
452
+
453
+ 114
454
+ 00:14:53,240 --> 00:15:03,390
455
+ ูŠูˆุฒุน ูƒุฑู…ู‡ ูˆุนุทุงุกู‡ ุนู„ู‰ ุงู„ุขุฎุฑูŠู†ูˆูŠุฏ ุงู„ุฎู„ูŠูุฉ ู„ุง ุชุทุงูˆู„ู‡ุง
456
+
457
+ 115
458
+ 00:15:03,390 --> 00:15:11,790
459
+ ูŠุฏู‡ ูŠุนู†ูŠ ูŠุฏ ุงู„ุฎู„ูŠูุฉ ู…ู…ุฏูˆุฏุฉ ุจุงู„ุฎูŠุฑุงุช ู„ุง ูŠุนู†ูŠ ูŠุดุจู‡ู‡
460
+
461
+ 116
462
+ 00:15:11,790 --> 00:15:21,230
463
+ ุฃุญุฏ ููŠ ูƒุฑู…ู‡ ูˆุนุทุงุกู‡ ูˆุงู„ุญุจุณ ู…ุง ู„ู… ุชุบุดู‡ ู„ุฏู†ูŠุง ุณู†ุนุงุก
464
+
465
+ 117
466
+ 00:15:21,230 --> 00:15:28,430
467
+ ู†ุนู… ุงู„ู…ู†ุฒู„ ุงู„ู…ุชูˆุฑุฏ ูุงู„ุญุจุณ ู„ุฃุตุญุงุจ ุงู„ู…ุจุงุฏุฆ ู‡ูˆ ู†ุนู…
468
+
469
+ 118
470
+ 00:15:28,430 --> 00:15:35,770
471
+ ุงู„ู…ู†ุฒู„ุงู„ุฐูŠ ูŠุฑุฏูˆุง ุฃูˆ ูŠุทู„ุจูˆุง ุฃู† ูŠู†ุฒู„ ุฅู„ูŠู‡ ุงู„ุฅู†ุณุงู†
472
+
473
+ 119
474
+ 00:15:35,770 --> 00:15:42,490
475
+ ุฅุฐุง ูƒุงู† ุจุณุจุจ ุงู„ู…ุจุงุฏุฆ ูˆุงู„ู‚ูŠู… ูˆุงู„ุญุจุณ ู…ุง ู„ู… ุชุบุดู‡
476
+
477
+ 120
478
+ 00:15:42,490 --> 00:15:51,690
479
+ ู„ุฏู†ูŠุฉ ูŠุนู†ูŠ ู„ุฌุฑูŠู„ุฉ ุฌู†ุงุฆูŠุฉ ูู‡ูˆ ุฃูุถู„ ุงู„ู…ู†ุงุฏู„ ุงู„ู…ุทู„ูˆุจุฉ
480
+
481
+ 121
482
+ 00:15:52,710 --> 00:16:01,290
483
+ ู„ุฃุตุญุงุจ ุงู„ู…ุจุงุฏุฆ ูู‡ูˆ ู…ุณุชุนุฏ ุฃู† ูŠุฑุฏ ู‡ุฐุง ุงู„ุณุฌู† ููŠ ู…ู‚ุงุจู„
484
+
485
+ 122
486
+ 00:16:01,290 --> 00:16:10,370
487
+ ุฃู† ูŠุญุงูุธ ุนู„ู‰ ู…ุจุงุฏุฆู‡ ูˆู‚ูŠู…ู‡ูˆู‡ูˆ ุจูŠุช ูŠุฌุฏุฏ ู„ู„ูƒุฑูŠู… ูƒุฑุงู…ุฉ
488
+
489
+ 123
490
+ 00:16:10,370 --> 00:16:17,250
491
+ ูู‡ุฐุง ุงู„ุณุฌู† ูŠุญุงูุธ ุนู„ู‰ ูƒุฑุงู…ุฉ ุงู„ุณุฌูŠู†
492
+
493
+ 124
494
+ 00:16:17,250 --> 00:16:24,470
495
+ ู„ุฃู†ู‡ ุณุฌู† ู…ู† ุฃุฌู„ ู…ุจุงุฏุฆู‡ ูˆู‚ูŠู…ู‡ ูˆู‡ุฐุง ู‡ูˆ ุงู„ุนู†ูˆุงู†
496
+
497
+ 125
498
+ 00:16:24,470 --> 00:16:30,800
499
+ ุงู„ุฃุจุฑุฒ ููŠ ุงู„ุชุญู„ูŠู„ ุงู„ุฃุฎู„ุงู‚ูŠ ู„ุฃู† ุงู„ุฃุฎู„ุงู‚ููŠ ุชุญู„ูŠู„ู‡ุง
500
+
501
+ 126
502
+ 00:16:30,800 --> 00:16:38,660
503
+ ุงู„ู†ู‡ุงุฆูŠ ุชู‡ุฏูู‡ ุฃูˆ ูŠูƒูˆู† ู†ู‡ุงูŠุชู‡ ุงู„ุชุถุญูŠุฉ ูุงู„ุชุถุญูŠุฉ ู‡ูŠ
504
+
505
+ 127
506
+ 00:16:38,660 --> 00:16:44,160
507
+ ุงู„ุชุญู„ูŠู„ ุงู„ู†ู‡ุงุฆูŠ ู„ู„ุฃุฎู„ุงู‚ ุจุฎู„ุงู ุงู„ุณูŠุงุณุฉ ูุฅู† ุงู„ุชุญู„ูŠู„
508
+
509
+ 128
510
+ 00:16:44,160 --> 00:16:51,570
511
+ ุงู„ู†ู‡ุงุฆูŠ ู„ู‡ุง ู‡ูˆ ุงู„ู…ุตู„ุญุฉูˆู„ุฐู„ูƒ ู‚ุงู„ ุจูŠุช ูŠุฌุฏุฏ ู„ู„ูƒุฑูŠู…
512
+
513
+ 129
514
+ 00:16:51,570 --> 00:17:00,750
515
+ ูƒุฑุงู…ุฉ ูุงู„ุณุฌูŠู† ุฅู†ู…ุง ุณุฌู† ูˆุถุญู‰ ุจุฃุฌู…ู„ ุนู…ุฑู‡ ุจุฃุฌู…ู„ ู…ุง
516
+
517
+ 130
518
+ 00:17:00,750 --> 00:17:06,810
519
+ ูŠู…ู„ูƒู‡ ูˆู‡ูˆ ุงู„ุนู…ุฑ ูˆุงู„ุฒู…ู† ูŠู‚ุฏู…ู‡ ุชุถุญูŠุฉ ู…ู† ุฃุฌู„ ู…ุจุงุฏุฆู‡
520
+
521
+ 131
522
+ 00:17:06,810 --> 00:17:12,750
523
+ ูู‡ูˆ ูŠุถุญูŠ ู…ู† ุฃุฌู„ ุงู„ู…ุจุงุฏุฆ ูˆู‡ุฐุง ูŠุฒูŠุฏ ููŠ ูƒุฑุงู…ุฉ ุงู„ุณุฌูŠู†
524
+
525
+ 132
526
+ 00:17:12,750 --> 00:17:20,500
527
+ ุฃู†ู‡ ูŠุถุญูŠูู…ุชู‰ ู…ุง ูƒุงู† ุงู„ุฅู†ุณุงู† ู…ุถุญูŠุง ู„ู…ุจุงุฏุฆู‡ ูŠูƒุชุณุจ
528
+
529
+ 133
530
+ 00:17:20,500 --> 00:17:29,100
531
+ ุตูุฉ ุงู„ูƒุฑุงู…ุฉ ูˆุงู„ุฑูˆุนุฉ ุซู… ู‡ูˆ ูŠุฒุงุฑู‡ ูˆู„ุง ูŠุฒูˆุฑู‡ ูŠุนู†ูŠ
532
+
533
+ 134
534
+ 00:17:29,100 --> 00:17:38,400
535
+ ูŠุฃุชูŠ ุฅู„ูŠู‡ ุงู„ู†ุงุณ ูˆูŠุนู†ูŠ ูŠุฏูŠุฏูˆู† ููŠ ูƒุฑุงู…ุชู†ุงู„ูˆ ู„ู… ูŠูƒู†
536
+
537
+ 135
538
+ 00:17:38,400 --> 00:17:44,980
539
+ ููŠ ุงู„ุณุฌู† ุฅู„ุง ุฃู† .. ู„ูƒู† ู‡ู†ุงูƒ ุฃู…ุฑ ูŠุนู†ูŠ ู…ุคุฐู† ู„ู„ุณุฌูŠู†
540
+
541
+ 136
542
+ 00:17:44,980 --> 00:17:54,200
543
+ ูˆู‡ูˆ ูŠุนู†ูŠ ุฃู†ู‡ ูŠุณุฌู† ูˆูŠุนุฐุจ ุนู„ู‰ ุฃูŠุฏูŠ ุงู„ุนุจูŠุฏ ุงู„ุฐูŠู†
544
+
545
+ 137
546
+ 00:17:54,200 --> 00:17:59,600
547
+ ูŠูุชู‚ุฏูˆู† ุฅู„ู‰ ุงู„ุฅุฑุงุฏุฉ ุงู„ุฃุฎู„ุงู‚ูŠุฉ ุฃูˆ ุงู„ู…ู†ุธูˆู…ุฉ
548
+
549
+ 138
550
+ 00:17:59,600 --> 00:18:06,150
551
+ ุงู„ุฃุฎู„ุงู‚ูŠุฉุงู„ุนุจุฏ ู„ุฃู† ุงู„ุนุจุฏ ู‡ูˆ ูŠุนู†ูŠ ู…ู† ูู‚ุฏ ุงู„ุฅุฑุงุฏุฉ
552
+
553
+ 139
554
+ 00:18:06,150 --> 00:18:13,170
555
+ ุฅุฑุงุฏุฉ ุงู„ุชุตุฑุฑ ุฃูˆ ุงู„ุญุฑูŠุฉ ู„ุง ูŠุณุชุฏู„ูƒ ุจุงู„ุญุฌุงุจ ุงู„ุฃุนุจุฏ
556
+
557
+ 140
558
+ 00:18:13,170 --> 00:18:20,490
559
+ ูุงู„ุฐูŠ ูŠุคุฐูŠ ููŠ ุงู„ุณุฌู† ู‡ู… ุงู„ุนุจูŠุฏ ุงู„ุฐูŠู† ูŠูุชู‚ุฏูˆู† ุฅู„ู‰
560
+
561
+ 141
562
+ 00:18:20,490 --> 00:18:29,700
563
+ ุงู„ุฅุฑุงุฏุฉ ูˆุงู„ุญุฑูŠุฉุฃู…ู† ุงู„ุณูˆูŠุฉ ูŠุจู†ู‰ ุนู… ู…ุญู…ุฏ ุฎุตู… ุชู‚ุฑุจู‡ ูˆ
564
+
565
+ 142
566
+ 00:18:29,700 --> 00:18:37,160
567
+ ุขุฎุฑ ุชุจุนุฏู‡ ุทุจุนุง ู‡ู†ุง ุงุณุชูุงู‡ุงู… ู…ุฌุงุฒูŠ ุบุฑุถู‡ ุงู„ู†ููŠ ุฃู…ู†
568
+
569
+ 143
570
+ 00:18:37,160 --> 00:18:44,800
571
+ ุงู„ุณูˆูŠุฉ ูŠุจู†ู‰ ุนู… ู…ุญู…ุฏ ุฎุตู… ุชู‚ุฑุจู‡ ูˆ ุขุฎุฑ ุชุจุนุฏู‡ ูŠุนู†ูŠ ู„ูŠุณ
572
+
573
+ 144
574
+ 00:18:44,800 --> 00:18:53,000
575
+ ู…ู† ุงู„ุนุฏู„ ุฃู† ูŠุนู†ูŠ ูŠู‚ุฑุจ ุฎุตู… ูˆ ูŠุจุนุฏ ุขุฎุฑุฅุฐ ุงู„ุนุฏุงู„ุฉ
576
+
577
+ 145
578
+ 00:18:53,000 --> 00:19:02,020
579
+ ุชู‚ุชุถูŠ ุฃู† ูŠุฌู…ุน ุงู„ุฎุตู…ูŠู† ู„ูˆ ูŠุฌู…ุนูˆุง ุงู„ุฎุตู…ูŠู† ุนู†ุฏูƒ ู…ุดู‡ุฏ
580
+
581
+ 146
582
+ 00:19:02,020 --> 00:19:11,260
583
+ ูŠูˆู…ุง ู„ุจุงู† ู„ูƒ ุงู„ุทุฑูŠู‚ ุงู„ูˆุงุถุญ ุงู„ุทุฑูŠู‚ ุงู„ุฃู…ุตุฏ ู‡ุฐุง ู‡ูˆ
584
+
585
+ 147
586
+ 00:19:11,260 --> 00:19:14,160
587
+ ุจุงู„ู„ู‡ ุงู„ุชูˆููŠู‚ ูˆ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆ ุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
588
+
589
+ 148
590
+ 00:19:14,160 --> 00:19:17,540
591
+ ูˆ ุนู„ู‰ ุขู„ู‡ ูˆ ุตุญุจู‡ ูˆ ุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง
592
+
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/AXkgumImG1k.srt ADDED
@@ -0,0 +1,790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:06,610 --> 00:00:09,890
3
+ ุจุงุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆ ุฃุตู„ู‘ูŠ ูˆ ุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง
4
+
5
+ 2
6
+ 00:00:09,890 --> 00:00:16,270
7
+ ู…ุญู…ุฏ ูˆ ุนู„ู‰ ุขู„ู‡ ูˆ ุตุญุจู‡ ูˆ ุฃุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง ูˆ ุจุนุฏุŒ ููŠ
8
+
9
+ 3
10
+ 00:00:16,270 --> 00:00:25,450
11
+ ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ู†ุชู†ุงูˆู„ ุดุฎุตูŠุฉ ุดุนุฑูŠุฉ ูƒุงู†ุช ู…ู† ุฃู‡ู…
12
+
13
+ 4
14
+ 00:00:25,450 --> 00:00:34,910
15
+ ุงู„ู‚ุงู…ุงุช ุงู„ุดุนุฑูŠุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑุŒ ูˆู‡ูŠ ุดุฎุตูŠุฉ ุฃุจูˆ ู†ูˆุงุณ
16
+
17
+ 5
18
+ 00:00:37,540 --> 00:00:46,920
19
+ ูˆุฃุจูˆ ู†ูˆุงุณ ุงุดุชู‡ุฑ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุจุงู„ุดุนุฑ ุงู„ุบุฒู„ ูˆุงู„ู„ู‡ูˆ
20
+
21
+ 6
22
+ 00:00:46,920 --> 00:00:53,560
23
+ ูˆุงู„ู…ุฌูˆู†ุŒ ูู‡ูˆ ุนู„ู… ู…ู† ุฃุนู„ุงู… ุดุนุฑุงุก ุงู„ู…ุฌูˆู† ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
24
+
25
+ 7
26
+ 00:00:53,560 --> 00:01:01,700
27
+ ูˆู„ุฐู„ูƒ ุฌุนู„ู†ุงู‡ ุนู„ู…ู‹ุง ู…ู† ุฃุนู„ุงู… ุงู„ุดุนุฑ ููŠ ู‡ุฐุง ุงู„ุนุตุฑุŒ ู‡ู†ุงูƒ
28
+
29
+ 8
30
+ 00:01:01,700 --> 00:01:09,690
31
+ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุนูˆุงู…ู„ ุงู„ุชูŠ ุฃุซุฑุช ููŠ ุดุงุนุฑูŠุชู‡ุŒ ุงู„ุนุงู… ุงู„ุฃูˆู„
32
+
33
+ 9
34
+ 00:01:09,690 --> 00:01:18,370
35
+ ู‡ูˆ ู†ุณุจู‡ ุบูŠุฑ ุนุฑุจูŠุŒ ูˆู„ุฏ ุฃุจูˆ ู†ูˆุงุณ ุนุงู… ุชุณุน ูˆุซู„ุงุซูŠู† ูˆู…ุฆุฉ
36
+
37
+ 10
38
+ 00:01:18,370 --> 00:01:27,930
39
+ ู„ู„ู‡ุฌุฑุฉ ู…ู† ุฃุจูˆูŠู† ูุงุฑุณูŠูŠู† ููŠ ู…ุฏูŠู†ุฉ ุงู„ุฃู‡ูˆุงุฒุŒ ูˆุฃุซูŠุฑุช
40
+
41
+ 11
42
+ 00:01:27,930 --> 00:01:37,560
43
+ ุญูˆู„ู‡ ุดุจู‡ุงุช ูƒุซูŠุฑุฉุŒ ู‚ูŠู„ ุฅู† ุฃุจุงู‡ ูƒุงู† ุนุฑุจูŠุงุŒ ูˆู‚ูˆู‰ ุญุฌุชู‡
44
+
45
+ 12
46
+ 00:01:37,560 --> 00:01:48,500
47
+ ุจุฃู† ูƒู†ูŠุชู‡ ู‡ูŠ ูƒู†ูŠู‡ ูŠู…ุงู†ูŠุฉุŒ ู„ุฃู† ู‡ุฐู‡ ุงู„ูƒู†ูŠุฉ ุชุณุชุนู…ู„ ููŠ
48
+
49
+ 13
50
+ 00:01:48,500 --> 00:01:57,100
51
+ ุงู„ูŠู…ู†ุŒ ุฃุจูˆ ู†ูˆุงุณุŒ ุงู„ุนู…ู„ ุงู„ุซุงู†ูŠ ู‡ูˆ ุงู„ูŠุชู…ุŒ ูู‚ุฏ ุชูˆููŠ
52
+
53
+ 14
54
+ 00:01:57,100 --> 00:02:05,270
55
+ ุฃุจูˆู‡ ูˆู‡ูˆ ููŠ ุงู„ุณุงุฏุณุฉ ู…ู† ุนู…ุฑู‡ุŒ ุซู… ู‚ุงู…ุช ุจุฑุนุงูŠุชู‡ ุฃู…ู‡
56
+
57
+ 15
58
+ 00:02:05,270 --> 00:02:12,210
59
+ ูุงู†ุชู‚ู„ุช ุจู‡ ุฅู„ู‰ ุงู„ุจุตุฑุฉ ูˆู‚ุงู…ุช ุจุชุฑุจูŠุชู‡ุŒ ูุญุงูุธ ุงู„ู‚ุฑุขู†
60
+
61
+ 16
62
+ 00:02:12,210 --> 00:02:19,270
63
+ ูˆุฃุทุฑุงูุง ู…ู† ุงู„ุดุนุฑุŒ ูˆู‚ุฏ ุฐูƒุฑู†ุง ู…ู† ู‚ุจู„ ุฃู†ู‡ ูƒุงู† ูŠุญูุธ
64
+
65
+ 17
66
+ 00:02:19,270 --> 00:02:27,700
67
+ ุณุชูŠู† ุฏูŠูˆุงู†ู‹ุง ู…ู† ุฏูˆุงูˆูŠู† ุงู„ู†ุณุงุก ุบูŠุฑ ู…ุง ูƒุงู† ูŠุญูุธู‡ู… ู…ู†
68
+
69
+ 18
70
+ 00:02:27,700 --> 00:02:36,000
71
+ ุดุนุฑ ุงู„ุฑุฌุงู„ุŒ ูˆูƒุงู† ูŠุญูุธ ุณุจุนู…ุงุฆุฉ ุฃุฑุฌูˆุฒุฉ ุบูŠุฑ ู…ุง ูƒุงู†
72
+
73
+ 19
74
+ 00:02:36,000 --> 00:02:44,900
75
+ ูŠุญูุธู‡ู… ู…ู† ุงู„ู‚ุตูŠุฏุŒ ูˆู‚ุงู„ ููŠู‡ ุงู„ุฌุงุญุธ: ู„ู… ุฃุฑูŽ ุฃุญุฏู‹ุง ุฃุนู„ู…
76
+
77
+ 20
78
+ 00:02:44,900 --> 00:02:53,170
79
+ ุจุงู„ุดุนุฑ ู…ู† ุฃุจูŠ ู†ูˆุงุณุŒ ุฃูˆ ูƒู…ุง ู‚ุงู„ ุงุจู† ู‚ุชูŠุจุฉุŒ ุนููˆุงุŒ ุงู„ุนู…ู„
80
+
81
+ 21
82
+ 00:02:53,170 --> 00:02:57,530
83
+ ุงู„ุซุงู„ุซ ู‡ูˆ ุงู„ุงู‡ุชู…ุงู… ุจุญู„ู‚ุงุช ุงู„ุนู„ู…ุŒ ูƒุงู† ูŠุชุฑุฏุฏ ุนู„ู‰
84
+
85
+ 22
86
+ 00:02:57,530 --> 00:03:01,850
87
+ ุญู„ู‚ุงุช ุงู„ุนู„ู… ููŠ ุฏุฑุงุณุฉ ุนู„ูˆู… ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉ ูˆุงู„ุฏูŠู†
88
+
89
+ 23
90
+ 00:03:01,850 --> 00:03:06,990
91
+ ูˆุงู„ูู‚ู‡ ูˆุงู„ุชูุณูŠุฑ ูˆุงู„ุญุฏูŠุซุŒ ุญุชู‰ ุฅู†ู‡ ูƒุงู† ุนุงู„ู…ู‹ุง ุจุงู„ูุชูˆู‰ุŒ
92
+
93
+ 24
94
+ 00:03:06,990 --> 00:03:14,690
95
+ ุจุตูŠุฑู‹ุง ุจุงู„ุงุฎุชู„ุงูุŒ ุตุงุญุจ ู†ุธุฑ ูˆุญูุธ ูˆู…ุนุฑูุฉ ุจุทุฑู‚ ุงู„ุญุฏูŠุซ
96
+
97
+ 25
98
+ 00:03:14,690 --> 00:03:19,550
99
+ ูŠุนุฑู ุงู„ู†ุงุณุฎ ูˆุงู„ู…ู†ุณูˆุฎ ูˆุงู„ู…ุญูƒู… ูˆุงู„ู…ุชุดุงุจู‡ ู…ู† ุงู„ู‚ุฑุขู†
100
+
101
+ 26
102
+ 00:03:19,550 --> 00:03:25,950
103
+ ุงู„ูƒุฑูŠู…ุŒ ูƒู…ุง ุทู„ุจ ุนู„ู… ุงู„ูƒู„ุงู…ุŒ ุญุชู‰ ุฅู†ู‡ ู‚ูŠู„ ุฅู†ู‡ ุจุฏุฃ
104
+
105
+ 27
106
+ 00:03:25,950 --> 00:03:31,010
107
+ ู…ุชูƒู„ู…ู‹ุงุŒ ุซู… ุงู†ุชู‚ู„ ุฅู„ู‰ ู†ุธู… ุงู„ุดุนุฑุŒ ูˆู‡ุฐุง ุงู„ูƒู… ู…ู†
108
+
109
+ 28
110
+ 00:03:31,010 --> 00:03:38,250
111
+ ุงู„ุนู„ู… ูŠุธู‡ุฑ ุฃู†ู‡ ูƒุงู† ุฐุง ุซู‚ุงูุฉ ุนุงู„ูŠุฉ ูˆุดุฎุตูŠุฉ ุบู†ูŠุฉ
112
+
113
+ 29
114
+ 00:03:38,250 --> 00:03:44,960
115
+ ุจุงู„ุชู†ูˆุนุŒ ู„ุง ุงู„ุชู†ุงู‚ุถ ูƒู…ุง ูŠุธู† ุงู„ุจุนุถุŒ ูุดุฎุตูŠุฉ ุงุจู† ูˆุงุณ
116
+
117
+ 30
118
+ 00:03:44,960 --> 00:03:53,720
119
+ ุดุฎุตูŠุฉ ููŠู‡ุง ุชู†ูˆุน ูˆู„ูŠุณ ุชู†ุงู‚ุถุŒ ู‡ุฐุง ุงู„ุชู†ูˆุน ุฃูˆุฌุฏ ู„ุฏูŠู‡
120
+
121
+ 31
122
+ 00:03:53,720 --> 00:04:02,080
123
+ ุตุฑุงุนู‹ุง ุฏุงุฎู„ูŠู‹ุงุŒ ูุชุงุฑุฉ ุชุบู„ุจ ุนู„ูŠู‡ ู†ุฒุนุฉ ุงู„ุฒู‡ุฏุŒ ูˆุชุงุฑุฉ ุชุบู„ุจ
124
+
125
+ 32
126
+ 00:04:02,080 --> 00:04:09,000
127
+ ุนู„ูŠู‡ ู†ุฒุนุฉ ุงู„ู…ุฌูˆู† ูˆุงู„ู„ู‡ูˆุŒ ุญุชู‰ ุบู„ุจ ุนู„ูŠู‡ ุงู„ุฒู‡ุฏ ููŠ ุขุฎุฑ
128
+
129
+ 33
130
+ 00:04:09,000 --> 00:04:17,570
131
+ ุญูŠุงุชู‡ ูˆู…ุงุช ุนู„ูŠู‡ุŒ ู„ุฃู† ู…ู‚ูˆู…ุงุช ุงู„ุฐู‡ุจ ูˆุฏุงูุนูŠุฉ ุงู„ุซู‚ุงูุฉ
132
+
133
+ 34
134
+ 00:04:17,570 --> 00:04:24,670
135
+ ุงู„ุฅุณู„ุงู…ูŠุฉ ู‡ูŠ ุงู„ุชูŠ ุชุบู„ุจุช ูˆุงู†ุชุตุฑุช ููŠ ุขุฎุฑ ุงู„ู…ุทุงูุŒ ูˆููŠ
136
+
137
+ 35
138
+ 00:04:24,670 --> 00:04:30,450
139
+ ุงู„ุฌูˆู„ุฉ ุงู„ุฃุฎูŠุฑุฉุŒ ูˆุณู†ุชู†ุงูˆู„ ุฐู„ูƒ ููŠ ุญูŠู†ู‡ ุฅู† ุดุงุก ุงู„ู„ู‡
140
+
141
+ 36
142
+ 00:04:30,450 --> 00:04:38,940
143
+ ุงุทู„ุงุนู‡ ุนู„ู‰ ุซู‚ุงูุงุช ุนุตุฑู‡ุŒ ูู‚ุฏ ูƒุงู† ู…ุซู‚ูู‹ุง ุนุงู„ูŠ ุงู„ุชุซู‚ูŠู
144
+
145
+ 37
146
+ 00:04:38,940 --> 00:04:46,760
147
+ ูˆ ุณุงุนุฏุชู‡ ุฅุฌุงุฏุชู‡ ู„ู„ุบุฉ ุงู„ูุงุฑุณูŠุฉ ุนู„ู‰ ุงู„ุชุจุญุฑ ููŠ ุซู‚ุงูุฉ
148
+
149
+ 38
150
+ 00:04:46,760 --> 00:04:52,780
151
+ ุงู„ูุงุฑุณูŠุฉ ูˆุบูŠุฑู‡ุง ู…ู† ุงู„ุซู‚ุงูุงุชุŒ ูƒุงู† ุฃุจูˆ ู†ูˆุงุณ ู…ู„ูŠุญ
152
+
153
+ 39
154
+ 00:04:52,780 --> 00:04:58,280
155
+ ุงู„ูˆุฌู‡ ูˆู„ู‡ ู‚ุจูˆู„ ุนู†ุฏ ุงู„ู†ุงุณ
156
+
157
+ 40
158
+ 00:05:00,530 --> 00:05:08,770
159
+ ู‡ู†ุงูƒ ุนุงู…ู„ ุขุฎุฑ ุฑุจู…ุง ูŠูƒูˆู† ุณู„ุจูŠู‹ุง ููŠ ุญูŠุงุฉ ุฃุจูŠ ู†ูˆุงุณ ูˆู‡ูˆ
160
+
161
+ 41
162
+ 00:05:08,770 --> 00:05:17,590
163
+ ุณูŠุฑุฉ ุฃู…ู‡ ูˆุงุชุตุงู„ู‡ ุจูˆุงู„ุฏุฉ ุงุจู† ุงู„ุญุจุงุจุŒ ุฃุญุฏ ุงู„ู…ุฌุงู† ููŠ
164
+
165
+ 42
166
+ 00:05:17,590 --> 00:05:24,540
167
+ ู‡ุฐุง ุงู„ุนุตุฑุŒ ูู‡ุฐุง ู‡ูˆ ุงู„ุฐูŠ ุฑุจู…ุง ูŠุนู†ูŠ ูŠุฑุฌุน ุฅู„ูŠู‡ ุฅูุณุงุฏ
168
+
169
+ 43
170
+ 00:05:24,540 --> 00:05:33,420
171
+ ุฃุจูŠ ู†ูˆุงุณุŒ ูƒู…ุง ุฃู† ุณูŠุฑุฉ ุฃู…ู‡ ู„ู… ุชุนุฌุจู‡ุŒ ูุฑุจู…ุง ูƒุงู†ุช ู‡ูŠ
172
+
173
+ 44
174
+ 00:05:33,420 --> 00:05:43,440
175
+ ุงู„ุฏุงูุน ูˆุฑุงุก ุงู†ุญุฑุงูู‡ ู†ุญูˆ ุงู„ู…ุฌูˆู† ูˆู…ุฑุงูู‚ุฉ ุงู„ู…ุฌุงู†
176
+
177
+ 45
178
+ 00:05:43,440 --> 00:05:53,160
179
+ ูˆุฃุตุญุงุจ ุงู„ู„ู‡ูˆุŒ ูุฃุฎุฐ ูŠุนู†ูŠ ูŠุนุจุฆ ุงู„ุฎู…ุฑ ูƒูŠู†ุณ ู‡ู…ูˆู…ู‡ุŒ ููƒุงู†
180
+
181
+ 46
182
+ 00:05:53,160 --> 00:06:00,680
183
+ ูƒุงู„ู…ุณุชุฌูŠุฑ ู…ู† ุงู„ุฑู…ุถุงุก ุจุงู„ู†ุงุฑุŒ ุชูุชู‚ุช
184
+
185
+ 47
186
+ 00:06:00,680 --> 00:06:05,820
187
+ ุดุนุฑูŠุชู‡ ุฃุจู† ู†ูˆุงุณ ู…ุจูƒุฑู‹ุงุŒ ูˆูŠุนุงุฏ ู…ู† ุฃุนุฌูŠุจ ุนุตุฑู‡ ููŠ ุงู„ุดุนุฑ
188
+
189
+ 48
190
+ 00:06:05,820 --> 00:06:10,520
191
+ ูƒุงู† ูŠู…ู„ูƒ ู‚ุฑูŠุญุฉ ุดุนุฑูŠุฉ ุณู‚ู„ู‡ุง ุจุงู„ุฏุฑุณ ุงู„ุทูˆูŠู„ ู„ู„ุดุนุฑ
192
+
193
+ 49
194
+ 00:06:10,520 --> 00:06:17,610
195
+ ุงู„ู‚ุฏูŠู… ูˆุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉุŒ ูˆุบุฒู‘ุงู‡ ุจุงู„ู…ุญุชูˆู‰ ุงู„ุฅุณู„ุงู…ูŠ
196
+
197
+ 50
198
+ 00:06:17,610 --> 00:06:22,390
199
+ ูˆุงู„ุซู‚ุงูุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ูˆุบูŠุฑู‡ุง ู…ู† ุซู‚ุงูุงุช ุนุตุฑู‡ุŒ ู‚ุงู„
200
+
201
+ 51
202
+ 00:06:22,390 --> 00:06:30,910
203
+ ุงู„ุฌุงุญุธ: ู…ุง ุฑุฃูŠุช ุฃุญุฏู‹ุง ุฃุนู„ู… ุจุงู„ู„ุบุฉ ู…ู† ุฃุจูŠ ู†ูˆุงุณุŒ ูˆู‚ุฏู…ุช
204
+
205
+ 52
206
+ 00:06:30,910 --> 00:06:34,330
207
+ ุดุฎุตูŠุชู‡ ููŠ ุงุชุฌุงู‡ูŠู†ุŒ ุงุชุฌุงู‡ ูŠุญุงูุธ ุนู„ู‰ ุงู„ุชู‚ุงู„ูŠุฏ
208
+
209
+ 53
210
+ 00:06:34,330 --> 00:06:41,730
211
+ ุงู„ู…ูˆุถูˆุนุฉ ุฏูˆู† ุฃู† ูŠุณู‚ุท ุฃูˆ ูŠุดุชุท ููŠ ุงู„ุชุฌุฏูŠุฏุŒ ูˆู‡ุฐุง ู…ุง
212
+
213
+ 54
214
+ 00:06:41,730 --> 00:06:47,890
215
+ ู†ุฑุงู‡ ููŠ ู…ุฏุงุฆุญู‡ ูˆุฃุฑุงุฌูŠุฒู‡ ูˆู…ุฑุซูŠู‡ุŒ ูˆุงุชุฌุงู‡ ูŠุฌุฏุฏ ููŠู‡
216
+
217
+ 55
218
+ 00:06:47,890 --> 00:06:53,570
219
+ ุชุฌุฏูŠุฏู‹ุง ูˆุงุณุนู‹ุง ููŠ ุงู„ู…ุนุงู†ูŠ ูˆุงู„ุฃู„ูุงุธุŒ ูˆู‡ุฐุง ู…ุง ู†ู„ุงุญุธู‡ ููŠ
220
+
221
+ 56
222
+ 00:06:53,570 --> 00:07:01,070
223
+ ุฃู‡ุงุฌูŠู‡ ูˆุบุฒู„ูŠุงุชู‡ ูˆุฎู…ุฑูŠุงุชู‡ุŒ ุฃู…ุง ุจุงู„ู†ุณุจุฉ ู„ู…ูˆุถูˆุนุงุช ุดุนุฑู‡
224
+
225
+ 57
226
+ 00:07:01,070 --> 00:07:10,450
227
+ ูู†ุจุฏุฃ ุจู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญุŒ ููƒุงู† ุฃุจูˆ ู†ูˆุงุณ ูŠู…ุฏุญ ุญุณุจ ุงู„ู…ู…ุฏูˆุญุŒ
228
+
229
+ 58
230
+ 00:07:10,450 --> 00:07:19,170
231
+ ุฃูŠ ูŠุฑุงุนูŠ ุงู„ู…ู…ุฏูˆุญ ููŠ ุงู„ู…ุนุงู†ูŠ ุงู„ุชูŠ ูŠุตู ุจู‡ุง ู‡ุฐุง
232
+
233
+ 59
234
+ 00:07:19,170 --> 00:07:22,610
235
+ ุงู„ู…ู…ุฏูˆุญุŒ ูˆูƒุงู†
236
+
237
+ 60
238
+ 00:07:25,890 --> 00:07:37,530
239
+ ู‡ุฐู‡ ุงู„ู…ุฑุงุนุงุฉ ู†ุงุดุฆุฉ ู…ู† ุนุจู‚ุฑูŠุฉ ุฃุจูŠ ู†ูˆุงุณ ูˆุณู„ูŠู‚ุชู‡
240
+
241
+ 61
242
+ 00:07:37,530 --> 00:07:45,610
243
+ ูˆุงู…ุชู„ุงูƒู‡ ู„ู„ู…ู‚ูˆู…ุงุช ูˆุงู„ู…ู‚ุฏุฑุงุช ุงู„ุฃุณู„ูˆุจูŠุฉ ูˆุงู„ูู†ูŠุฉ
244
+
245
+ 62
246
+ 00:07:45,610 --> 00:07:47,190
247
+ ูˆุงู„ุซู‚ุงููŠุฉ
248
+
249
+ 63
250
+ 00:07:49,160 --> 00:07:54,060
251
+ ูู…ุซู„ุง ูŠู„ุชุฒู… ุจุงู„ู…ู‚ุฏู…ุฉ ุงู„ุทู„ุงู„ูŠุฉ ุงู„ุชู‚ู„ูŠุฏูŠุฉ ููŠ ู…ุฏุงุฆุญู‡
252
+
253
+ 64
254
+ 00:07:54,060 --> 00:08:00,400
255
+ ู„ูƒู†ู‡ ู„ุง ูŠุทูŠู„ ููŠู‡ุงุŒ ูˆู‡ุฐู‡ ุนู„ุงู…ุฉ ูุงุฑู‚ุฉ ุจูŠู†ู‡ ูˆุจูŠู† ุจุดุงุฑ
256
+
257
+ 65
258
+ 00:08:00,400 --> 00:08:09,000
259
+ ุจู† ุจุฑุฏุŒ ูู†ุฑุงู‡ ูŠู…ุฏุญ ุงู„ุฎุตูŠุจ ููŠู‚ูˆู„ ููŠ ุงู„ู…ู‚ุฏู…ุฉ ุฃุฌุงุฑุฉ
260
+
261
+ 66
262
+ 00:08:09,000 --> 00:08:17,490
263
+ ุจุจูŠุชูŠู†: ุฃุจูˆูƒ ุบูŠูˆุฑ ูˆู…ูŠุณูˆุฑุŒ ู…ุง ูŠุฑุฌู‰ ู„ุฏูŠูƒ ุนุณูŠุฑุŒ ูˆูŠู‚ูˆู„ ููŠ
264
+
265
+ 67
266
+ 00:08:17,490 --> 00:08:23,950
267
+ ู…ุฏุญ ุงู„ุฃู…ูŠู†: ูŠุง ุฏุงุฑ ู…ุง ูุนู„ุช ุจูƒ ุงู„ุฃูŠุงู…ุŒ ู„ู… ุชุจู‚ ููŠูƒ
268
+
269
+ 68
270
+ 00:08:23,950 --> 00:08:30,830
271
+ ุจุดุงุดุฉ ุชุณุชุงู…ุŒ ุฃู…ุง ููŠู…ุง ูŠุชุนู„ู‚ ุจู…ุนุงู†ูŠู‡ุŒ ูŠุนู†ูŠ ู…ุนุงู†ูŠ
272
+
273
+ 69
274
+ 00:08:30,830 --> 00:08:35,450
275
+ ุงู„ู…ุฏุญุŒ ู†ุฌุฏู‘ู‡ ุฏุงุฆู…ุง ุงูŠู‡ุŸ ุฃูˆ ุบุงู„ุจู‹ุง ูŠุจุงู„ุบ ููŠ ุตูุงุช
276
+
277
+ 70
278
+ 00:08:35,450 --> 00:08:43,330
279
+ ุงู„ู…ู…ุฏูˆุญุŒ ูƒู…ุง ูŠู‚ูˆู„ ููŠ ุงู„ุฑุดูŠุฏ: ูˆุฃุฎูุช ุฃู‡ู„ ุงู„ุดุฑูƒ ุญุชู‰ ุฅู†ู‡
280
+
281
+ 71
282
+ 00:08:43,330 --> 00:08:50,750
283
+ ู„ุชุฎุงููƒ ุงู„ู†ุทู ุงู„ุชูŠ ู„ู… ุชุฎู„ู‚ูุŒ ูˆูŠู‚ูˆู„ ููŠ ุงู„ุฑุดูŠุฏ ุฃูŠุถู‹ุง: ู…ู„ูƒ
284
+
285
+ 72
286
+ 00:08:50,750 --> 00:08:59,010
287
+ ุชุตูˆุฑ ููŠ ุงู„ู‚ู„ูˆุจ ู…ุซุงู„ู‡ ููƒุฃู†ู‡ ู„ู… ูŠุฎู„ ู…ู†ู‡ ู…ูƒุงู†ูŒุŒ ูˆู…ู†
288
+
289
+ 73
290
+ 00:08:59,010 --> 00:09:07,610
291
+ ู…ุจู„ุบุงุชู‡ุŒ ุชุตูˆูŠุฑู‡ ุงู„ุทุฑูŠู ู„ุจุนุถ ู…ู…ุฏุญูŠู‡ ููŠู‚ูˆู„: ุชุบุทูŠุช ู…ู†
292
+
293
+ 74
294
+ 00:09:07,610 --> 00:09:16,410
295
+ ุฏู‡ุฑูŠ ุจุธู„ ุฌู†ุงุญู‡ุŒ ูุนูŠู†ูŠ ุชุฑุง ุฏู‡ุฑูŠ ูˆู„ูŠุณ ูŠุฑุงู†ููŠุŒ ูู„ูˆ ุชุณุฃู„
296
+
297
+ 75
298
+ 00:09:16,410 --> 00:09:23,410
299
+ ุงู„ุฃูŠุงู… ู…ุง ุงุณู…ูŠ ู„ู…ุง ุฏุฑุชุŒ ูˆุฃูŠู† ู…ูƒุงู†ูŠ ู…ุง ุนุฑูู†ุง ู…ูƒุงู†ูŠ
300
+
301
+ 76
302
+ 00:09:23,410 --> 00:09:27,270
303
+ ูˆู†ุฑู‰
304
+
305
+ 77
306
+ 00:09:27,270 --> 00:09:33,350
307
+ ุฃุจุง ู†ูˆุงุณ ูŠุณุชุนู…ู„ ุงู„ุฃู„ูุงุธ ุงู„ุณู‡ู„ุฉ ุงู„ุชูŠ ุชู…ูˆุฌ ู†ุนู…ุฉ ูˆุฑู‚ุฉ
308
+
309
+ 78
310
+ 00:09:33,350 --> 00:09:41,430
311
+ ูˆุฎูุฉุŒ ูˆุฐู„ูƒ ุฅุฐุง ูƒุงู† ุนู„ู‰ ุนู„ุงู‚ุฉ ุญู…ูŠู…ุฉ ู…ุน ุงู„ู…ู…ุฏูˆุญุŒ ูƒู…ุง ููŠ
312
+
313
+ 79
314
+ 00:09:41,430 --> 00:09:49,250
315
+ ู…ุฏุญ ุงู„ุฃู…ูŠู†ุŒ ูŠู‚ูˆู„: ุฃุถุญู‰ ุงู„ุฅู…ุงู… ู…ุญู…ุฏ ู„ู„ุฏูŠู† ู†ูˆุฑู‹ุง ูŠู‚ุชุจุณ
316
+
317
+ 80
318
+ 00:09:49,250 --> 00:09:56,940
319
+ ุชุจูƒูŠ ุงู„ุจุฏูˆุฑ ู„ุถุญูƒู‡ ูˆุงู„ุณูŠู ูŠุถุญูƒ ุฅู† ุนุจุณุŒ ูˆุทุจุนุง ุงู„ุจุฏูˆุฑ
320
+
321
+ 81
322
+ 00:09:56,940 --> 00:10:09,740
323
+ ุฌู…ุน ุจุฏุฑุฉุŒ ูˆู‡ูŠ ูƒูŠุซ ููŠู‡ ู…ุจู„ุบ ู…ุนูŠู† ู…ู† ุงู„ู…ุงู„ุŒ ู†ู„ุงุญุธ
324
+
325
+ 82
326
+ 00:10:09,740 --> 00:10:16,380
327
+ ุงู„ุฃู„ูุงุธ ุณู‡ู„ุฉ ูˆุงุถุญุฉ ุนุฐุจุฉุŒ ู„ุง ุบู…ูˆุถุฉ ููŠู‡ุง ูˆู„ุง ุบุฑุจุฉ
328
+
329
+ 83
330
+ 00:10:16,380 --> 00:10:19,460
331
+ ูˆุฃูŠุถุง
332
+
333
+ 84
334
+ 00:10:21,700 --> 00:10:29,700
335
+ ู†ุฑุงู‡ ุฅุฐุง ููŠ ุงู„ู…ุฏุญ ูŠุชู…ูŠุฒ ุจู‡ุฐู‡ ุงู„ู…ูŠุฒุงุช ุงู„ุซู„ุงุซ
336
+
337
+ 85
338
+ 00:10:29,700 --> 00:10:35,220
339
+ ุงู„ุงู„ุชุฒุงู… ุฃุญูŠุงู†ู‹ุง ุจุงู„ู…ู‚ุฏู…ุฉ ุงู„ุทู„ุงู„ูŠุฉุŒ ูˆู„ูƒู†ู‡ ู„ุง ูŠุทูŠู„
340
+
341
+ 86
342
+ 00:10:35,220 --> 00:10:42,780
343
+ ููŠู‡ุงุŒ ูˆุงู„ุดูŠุก ุงู„ุซุงู†ูŠ ุฃู†ู‡ ูŠุจุงู„ุบ ููŠ ุงู„ุชุตูˆูŠุฑุŒ ูˆุงู„ุดูŠุก
344
+
345
+ 87
346
+ 00:10:42,780 --> 00:10:50,980
347
+ ุงู„ุซุงู„ุซ ุณู‡ูˆู„ุฉ ุงู„ุฃู„ูุงุธ ูˆุนุฏู… ุบู…ูˆุถู‡ุง ููŠ ุงู„ู…ุนุงู†ูŠุŒ ูˆุฃูŠุถุง
348
+
349
+ 88
350
+ 00:10:50,980 --> 00:10:56,140
351
+ ุงู„ุจุนุฏ ุนู† ุงู„ูƒู„ู…ุงุช ุงู„ุบุฑูŠุจุฉุŒ ูˆู‡ุฐุง ุงู„ุจุนุฏ ุนู† ุงู„ูƒู„ู…ุงุช
352
+
353
+ 89
354
+ 00:10:56,140 --> 00:11:02,000
355
+ ุงู„ุบุฑูŠุจุฉ ู„ูŠุณ ุฌู‡ู„ุง ููŠ ุงู„ู„ุบุฉ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุณุŒ ูˆุฅู†ู…ุง ูƒุงู†
356
+
357
+ 90
358
+ 00:11:02,000 --> 00:11:11,780
359
+ ูŠู„ุงุฆู… ุจูŠู† ุงู„ู…ู…ุฏูˆุญ ูˆุงู„ุฃู„ูุงุธ ูˆุงู„ู…ุนุงู†ูŠุŒ ูˆู‚ุฏ ุฑุฃูŠู†ุง ุฃู†
360
+
361
+ 91
362
+ 00:11:11,780 --> 00:11:17,580
363
+ ูƒู…ุง ู‚ุงู„ ุงู„ุฌุงุญุธ: ู„ู… ุฃุฑูŽ ุฃุญุฏู‹ุง ุฃุนู„ู… ุจุงู„ู„ุบุฉ ู…ู† ุฃุจู„ูŠ ู†ูˆุงุณ
364
+
365
+ 92
366
+ 00:11:17,580 --> 00:11:27,400
367
+ ูู„ูŠุณ ู…ุนู†ู‰ ุฃู†ู‡ ูŠุฃุชูŠ ุจุฃู„ูุงุธ ุณู‡ู„ุฉ ุฃู†ู‡ ู„ุง ูŠุนุฑู ุงู„ูƒู„ู…ุงุช
368
+
369
+ 93
370
+ 00:11:27,400 --> 00:11:32,700
371
+ ุงู„ุบุฑูŠุจุฉ ุฃูˆ ุฃู†ู‡ ูŠุฌู‡ู„ ุงู„ุฃุณุงู„ูŠุจ ุงู„ู‚ูˆูŠุฉุŒ ู„ุฃ ุฅู†ู…ุง ู‡ุฐุง
372
+
373
+ 94
374
+ 00:11:32,700 --> 00:11:38,690
375
+ ูŠุฏู„ ุนู„ู‰ ุดุงุนุฑูŠุชู‡ุŒ ู„ุฃู†ู‡ ูŠุฎุงุทุจ ูˆูŠุณุชุนู…ู„ ู…ู† ุงู„ู„ุบุฉ ู…ุง
376
+
377
+ 95
378
+ 00:11:38,690 --> 00:11:44,350
379
+ ูŠู†ุงุณุจู‡ุง ูˆู…ู† ุงู„ู…ู…ุฏูˆุญูŠู† ูˆู…ุง ูŠู†ุงุณุจู‡ู… ู…ู† ุงู„ุฃู„ูุงุธ
380
+
381
+ 96
382
+ 00:11:44,350 --> 00:11:52,170
383
+ ูˆุงู„ู…ุนุงู†ูŠ ู…ู†
384
+
385
+ 97
386
+ 00:11:52,170 --> 00:12:02,710
387
+ ุฃูƒุซุฑ ุงู„ู…ูˆุถูˆุนุงุช ุงู„ุชูŠ ุชู‚ุฑุจ ุฃุจูˆ ู†ูˆุงุณ ุงู„ุชูŠ ุชู‚ุฑุจ ุฃุจูˆ
388
+
389
+ 98
390
+ 00:12:02,710 --> 00:12:11,240
391
+ ู†ูˆุงุณ ู…ู† ุงู„ู‚ุฏูŠู… ู‡ูˆ ุดุนุฑ ุงู„ุทุฑุฏ ุฃูˆ ุดุนุฑ ุงู„ุตูŠุฏุŒ ูู…ู† ุฎู„ุงู„
392
+
393
+ 99
394
+ 00:12:11,240 --> 00:12:19,340
395
+ ู‡ุฐู‡ ุงู„ู‚ุตูŠุฏุฉ ู†ุณุชุทูŠุน ุฃู† ู†ุนุฑู ุฃู† ุฃุจุง ู†ูˆุงุณ ูƒุงู† ุนู„ู‰
396
+
397
+ 100
398
+ 00:12:19,340 --> 00:12:28,380
399
+ ุนู„ุงู‚ุฉ ู‚ูˆูŠุฉ ูˆุฎุจุฑุฉ ุนุธูŠู…ุฉ ุจุงู„ู„ุบุฉ ูˆุบุฑูŠุจู‡ุงุŒ ูููŠ ุฅุญุฏู‰
400
+
401
+ 101
402
+ 00:12:28,380 --> 00:12:34,900
403
+ ุทุฑุฏูŠุงุชู‡ ูŠุจุฏูˆ ุฃุจูˆ ู†ูˆุงุณ ูƒู…ุง ู„ูˆ ูƒุงู† ุดุงุนุฑู‹ุง ู…ู† ุดุนุฑุงุก
404
+
405
+ 102
406
+ 00:12:34,900 --> 00:12:41,720
407
+ ุงู„ุจุฏูˆ ููŠ ุงู„ุนุตุฑ ุงู„ุฃู…ูˆูŠ ูƒุฃุจูŠ ู†ุฎูŠู„ุฉ ูˆุงู„ุดู…ุฑุฏู„ุŒ ูŠู‚ูˆู„
408
+
409
+ 103
410
+ 00:12:41,720 --> 00:12:51,300
411
+ ู…ุซู„ุง ููŠ ุชุฑุถูŠุงุชู‡ุŒ ููŠ ุฃุญุฏ ุชุฑุถูŠุงุชู‡: ู„ู…ุง ุชุจุฏ ุงู„ุตุจุญ ู…ู†
412
+
413
+ 104
414
+ 00:12:51,300 --> 00:12:58,720
415
+ ุญุฌุงุจู‡ ูƒุทู„ุนุฉ ุงู„ุฃุดู…ุท ู…ู† ุฌู„ุจุงุจู‡ุŒ ูˆุงู†ุนุฏู„ ุงู„ู„ูŠู„ ุฅู„ู‰ ู…ู‚ุงุจู‡
416
+
417
+ 105
418
+ 00:12:58,720 --> 00:13:08,780
419
+ ูƒุงู„ุญุจุดูŠ ุงูุชุฑ ุนู† ุฃู†ูŠุงุจู‡ุŒ ู‡ุฌู†ุง ุจูƒู„ุจ ุทุงู„ู…ุง ู‡ุฌู†ุง ุจู‡
420
+
421
+ 106
422
+ 00:13:08,780 --> 00:13:16,780
423
+ ูŠู†ุชุณู ุงู„ู…ู‚ูˆุฏุฉ ู…ู† ูƒู„ุงุจู‡ุŒ ูƒุฃู† ู…ุชู†ูŠู‡ ู„ุฏู‰ ุงู†ุณุฑุงุจู‡ ู…ุชู†ุง
424
+
425
+ 107
426
+ 00:13:16,780 --> 00:13:24,750
427
+ ุดุฌุงุน ู„ุฌู‘ ููŠ ุงู†ุณูŠุงุจู‡ุŒ ูƒุฃู†ู…ุง ุงู„ุฃุธููˆุฑ ููŠ ู‚ู†ุงุจู‡ ู…ูˆุณู‰
428
+
429
+ 108
430
+ 00:13:24,750 --> 00:13:33,370
431
+ ุตู†ุงุน ุฑุฏู‘ ููŠ ู†ุตุงุจู‡ุŒ ูƒุฃู† ู†ุตุง ู…ุง ุชูˆูƒู„ู†ุง ุจู‡ ูŠุนููˆ ุนู„ู‰ ู…ุง
432
+
433
+ 109
434
+ 00:13:33,370 --> 00:13:40,950
435
+ ุฌุฑู‘ ู…ู† ุซูŠุงุจู‡ุŒ ุชุฑู‰ ุณูˆุงู… ุงู„ูˆุญุด ูŠุญุชูˆูŠ ุจู‡ ูŠุฑูˆุญู†ุง ุฃุณุฑู‰
436
+
437
+ 110
438
+ 00:13:40,950 --> 00:13:48,650
439
+ ุฐูุฑู‡ ูˆู†ุงุจู‡ุŒ ูููŠ ู‡ุฐู‡ ุงู„ุทุฑุฏูŠุฉ ุฃูˆ ู‡ุฐู‡ ุงู„ู‚ุตูŠุฏุฉ ู†ุฑู‰ ุฃู†
440
+
441
+ 111
442
+ 00:13:48,650 --> 00:13:58,790
443
+ ุฃุจุง ู†ูˆุงุณ ูŠุจุฏูˆ ูƒู…ุง ู„ูˆ ูƒุงู† ุดุงุนุฑู‹ุง ุนุฑุจูŠู‹ุง ุจุฏูˆูŠู‹ุง ูŠู„ุจุณ
444
+
445
+ 112
446
+ 00:13:58,790 --> 00:14:05,630
447
+ ุจุฌุงุฏ ุงู„ุจุฏูˆูŠุŒ ูˆูŠุธู‡ุฑ ุฐู„ูƒ ู…ู† ุฎู„ุงู„ ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช ุงู„ุชูŠ
448
+
449
+ 113
450
+ 00:14:05,630 --> 00:14:09,530
451
+ ูŠุณุชุนู…ู„ู‡ุง
452
+
453
+ 114
454
+ 00:14:09,530 --> 00:14:12,190
455
+ ุดุนุฑุงุก ุงู„ุจุงุฏูŠุฉ
456
+
457
+ 115
458
+ 00:14:17,040 --> 00:14:27,520
459
+ ูุทุจุนู‹ุง ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช ูŠุนู†ูŠ ูƒุซูŠุฑุฉ ู…ุซู„ ูƒู„ู…ุฉ ุงู„ุฃุดู…ุท ูˆุฅู†
460
+
461
+ 116
462
+ 00:14:27,520 --> 00:14:36,190
463
+ ุนุฏู„ุฉ ูˆูุชุฑุฉ ูˆู‡ุฌู†ุฉ ูˆุงู†ุณุฑุงุจู‡
464
+
465
+ 117
466
+ 00:14:36,190 --> 00:14:45,570
467
+ ุงู„ุฃุฐููˆุฑ ุงู„ู‚ู†ุงุจ ูŠุนููˆ ูƒู„ ู‡ุฐู‡ ูƒู„ู…ุงุช ูƒู„ู…ุงุช ุจุฏูˆูŠุฉ ุชุธู‡ุฑ
468
+
469
+ 118
470
+ 00:14:45,570 --> 00:14:48,450
471
+ ููŠ ุดุนุฑ ุงู„ุฃุนุฑุงุจ ุฃูˆ ุงู„ุจุฏูˆ
472
+
473
+ 119
474
+ 00:14:53,930 --> 00:15:01,830
475
+ ุฃู…ุง ู‚ุตูŠุฏุฉ ุงู„ุฑุซุงุกุŒ ูู‡ูŠ ุงุฎุชุงุฑ ู„ู‡ุง ุฃุจูˆ ู†ูˆุงุณ ุฃุณู„ูˆุจู‹ุง ุฌุฒู„ุง
476
+
477
+ 120
478
+ 00:15:01,830 --> 00:15:06,690
479
+ ู…ุณุคูˆู„ู‹ุงุŒ ูˆุฑุจู…ุง ูŠุฃุชูŠ ุจุงู„ูƒู„ู…ุงุช ุงู„ุบุฑูŠุจุฉ ุฎุงุตุฉ ุฅุฐุง ูƒุงู†
480
+
481
+ 121
482
+ 00:15:06,690 --> 00:15:14,000
483
+ ุงู„ู…ูŠุช ู„ุบูˆูŠู‹ุงุŒ ูˆู‚ุฏ ูŠุชุฎูู ู…ู† ุฐู„ูƒ ุฃุญูŠุงู†ู‹ุงุŒ ูŠู‚ูˆู„ ููŠ ุฑุซุงุก
484
+
485
+ 122
486
+ 00:15:14,000 --> 00:15:22,020
487
+ ุนุงู„ู… ุงู„ู„ุบุฉ ุฎู„ู ุงู„ุฃุญู…ุฑ: ุฃูˆุฏู‰ ุฌู…ุงุน ุงู„ุนู„ู… ุฅุฐ ุฃูˆุฏู‰ ุฎู„ู
488
+
489
+ 123
490
+ 00:15:22,020 --> 00:15:28,820
491
+ ู…ู† ู„ุง ูŠุนุฏ ุงู„ุนู„ู… ุฅู„ุง ู…ุง ุนุฑูุŒ ูƒู†ุง ู…ุชู‰ ู…ุง ู†ุฏู† ู…ู†ู‡
492
+
493
+ 124
494
+ 00:15:28,820 --> 00:15:37,920
495
+ ู†ุบุชุฑู ุฑูˆุงูŠุฉ ู„ุง ุชุฌุชู†ูŠู†ุง ู…ู† ุงู„ุตุญูุŒ ุฃู…ุง ุฅุฐุง ูƒุงู†ุช ุงู„ุนู„ุงู‚ุฉ
496
+
497
+ 125
498
+ 00:15:37,920 --> 00:15:47,840
499
+ ุจูŠู†ู‡ ูˆุจูŠู† ุงู„ู…ูŠุช ุนู„ุงู‚ุฉ ุญู…ูŠู…ูŠุฉุŒ ูู†ุฑู‰ ุงู„ู‚ุตูŠุฏุฉ ุชุดุชุนู„
500
+
501
+ 126
502
+ 00:15:47,840 --> 00:15:56,480
503
+ ุจุงู„ู„ูˆุนุฉ ูˆุงู„ุญุฑุงุฑุฉ ูˆุชุชู…ูŠุฒ ุจุงู„ุตุฏู‚ ููŠ ู…ุซู„ ู‚ูˆู„ู‡ ูŠุฑุซูŠ
504
+
505
+ 127
506
+ 00:15:56,480 --> 00:16:04,180
507
+ ุงู„ุฃู…ูŠู†: ุทูˆู‰ ุงู„ู…ูˆุช ู…ุง ุจูŠู†ูŠ ูˆุจูŠู† ู…ุญู…ุฏุŒ ูˆู„ูŠุณ ู„ู…ุง ุชุทูˆูŠ
508
+
509
+ 128
510
+ 00:16:04,180 --> 00:16:13,780
511
+ ุงู„ู…ู†ูŠุฉ ู†ุงุดุฑู‡ุงุŒ ูู„ุง ูˆุตู„ ุฅู„ุง ุนุจุฑุฉ ุชุณุชุฏูŠู…ู‡ุง ุฃุญุงุฏูŠุซ ู†ูุณ
512
+
513
+ 129
514
+ 00:16:13,780 --> 00:16:21,980
515
+ ู…ุง ู„ู‡ุง ุงู„ุฏู‡ุฑ ุฐุงูƒุฑู‡ุŒ ูˆูƒู†ุช ุนู„ูŠู‡ ุฃุญุฐุฑ ุงู„ู…ูˆุช ูˆุญุฏู‡ุŒ ูู„ู…
516
+
517
+ 130
518
+ 00:16:21,980 --> 00:16:29,340
519
+ ูŠุจู‚ู‰ ู„ูŠ ุดูŠุก ุนู„ูŠู‡ ุฃุญุฐุฑู‡ุŒ ู„ุฅู† ุนู…ุฑุช ุฏูˆุฑ ุจู…ู† ู„ุง ุฃูˆุฏู‡
520
+
521
+ 131
522
+ 00:16:29,340 --> 00:16:33,000
523
+ ู„ู‚ุฏ ุนู…ุฑุช ู…ู…ู† ุฃุญุจ ุงู„ู…ู‚ุงุจุฑ
524
+
525
+ 132
526
+ 00:16:35,780 --> 00:16:43,800
527
+ ูู†ู„ุงุญุธ ู‡ู†ุง ุฃู† ุงู„ู…ุนุงู†ูŠ ุตุงุฏู‚ุฉ ู†ุงุจุนุฉ ู…ู† ุชุฌุฑุจุฉ ุตุงุฏู‚ุฉ
528
+
529
+ 133
530
+ 00:16:43,800 --> 00:16:53,240
531
+ ูˆูƒุฃู†ู‡ ุจุงู„ู…ูˆุช ูˆุงุนุธุŒ ูˆุบุงู„ุจู‹ุง ู…ุง ูŠูƒูˆู† ุดุนุฑ ุงู„ุฑุซุงุก ุตุงุฏู‚
532
+
533
+ 134
534
+ 00:16:53,240 --> 00:17:00,300
535
+ ุตุงุฏู‚ู‹ุงุŒ ููƒูŠู ุฅุฐุง ูƒุงู† ุฃูŠุถู‹ุง ุฃูˆ ุฃุถูู†ุง ุณุจุจู‹ุง ุขุฎุฑ ูˆู‡ูˆ
536
+
537
+ 135
538
+ 00:17:00,300 --> 00:17:05,740
539
+ ุงู„ุนู„ุงู‚ุฉ ุงู„ุญู…ูŠู…ูŠุฉ ุจูŠู† ุงู„ุดุงุนุฑ ูˆุงู„ู…ุฑุซู‰
540
+
541
+ 136
542
+ 00:17:10,110 --> 00:17:20,230
543
+ ูƒุฐู„ูƒ ู†ุฑู‰ ุฃู† ุงู„ู„ุบุฉ ุฃูˆ ุงู„ุฃุณู„ูˆุจ ูŠูƒุงุฏ ูŠูƒูˆู† ุฃู‚ูˆู‰ ูˆุฃุฌุฒู„
544
+
545
+ 137
546
+ 00:17:20,230 --> 00:17:27,050
547
+ ู…ู…ุง ุฑุฃูŠู†ุงู‡ ููŠ ุดุนุฑ ุงู„ู…ุฌู†ูˆู† ูˆุงู„ู„ู‡ูˆุŒ ู…ุซู„ุงุŒ ุฃู…ุง ู‚ุตูŠุฑุฉ
548
+
549
+ 138
550
+ 00:17:27,050 --> 00:17:31,450
551
+ ุงู„ู‡ุฌุงุกุŒ ูู†ู„ุงุญุธ ููŠ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุฃู† ุฃุจุง ู†ูˆุงุณ ู„ู… ูŠู‚ู
552
+
553
+ 139
554
+ 00:17:31,450 --> 00:17:36,620
555
+ ุนู†ุฏ ุญุฏูˆุฏ ุณู„ุจ ุงู„ู‚ูŠู…ุฉ ุงู„ุฎู„ู‚ูŠุฉ ู…ู† ุงู„ู…ู‡ุฌูˆุŒ ุจู„ ู†ุฑุงู‡ ูŠุฌุนู„
556
+
557
+ 140
558
+ 00:17:36,620 --> 00:17:43,020
559
+ ู…ู† ุงู„ู…ู‡ุฌูˆุก ุฃุถุญูˆูƒุฉ ูŠุชู†ุฏุฑ ุจู‡ุงุŒ ููŠ ู…ุซู„ ู‚ูˆู„ู‡ ูŠู‡ุฌูˆ
560
+
561
+ 141
562
+ 00:17:43,020 --> 00:17:51,400
563
+ ุฅุณู…ุงุนูŠู„ ุงุจู† ู†ูˆุจุฎุชุŒ ูŠู‚ูˆู„: ุฎุจุฒ ุฅุณู…ุงุนูŠู„ ูƒุงู„ูˆุดูŠุŒ ุฅุฐุง ู…ู†
564
+
565
+ 142
566
+ 00:17:51,400 --> 00:18:00,450
567
+ ุดู‚ู‡ ูŠุฑูุนุŒ ุนุฌุจู‹ุง ู…ู† ุฃุซุฑ ุงู„ุตู†ุนุฉ ููŠู‡ุŒ ูƒูŠู ูŠูุฎูู‰ ุฅู† ุฑูุงู‚ูƒ
568
+
569
+ 143
570
+ 00:18:00,450 --> 00:18:08,450
571
+ ู‡ุฐุง ุฃู„ุทู ุงู„ุฃู…ุฉ ูƒูุฉุŒ ูู‡ู†ุง ุงู„ุดุงุนุฑ ู„ุง ูŠู‚ู ุนู†ุฏ ุณู„ุจ
572
+
573
+ 144
574
+ 00:18:08,450 --> 00:18:15,550
575
+ ุงู„ู…ู‡ุฌูˆ ุฃูˆ ุณู„ุจ ุงู„ุฑุฐุงุฆู„ ู…ู† .. ุณู„ุจ ุงู„ูุถุงุก ู…ู† ุงู„ู…ู‡ุฌูˆ
576
+
577
+ 145
578
+ 00:18:15,550 --> 00:18:20,710
579
+ ูˆุงู„ุณุงู‚ ุงู„ุฑุฐุงุฆู„ ุจู‡ุŒ ูู„ู… ูŠุนู†ูŠ .. ูู„ู… ูŠู‚ู ุนู†ุฏ ูˆุตูŠู‡
580
+
581
+ 146
582
+ 00:18:20,710 --> 00:18:31,430
583
+ ุจุงู„ุจุฎู„ุŒ ุฅู†ู…ุง ุฌุนู„ู‡ ุฃุถุญูˆูƒุฉ ูˆูŠุชู†ุฏุฑ ุจู‡ุงุŒ ูุนู†ุฏู…ุง
584
+
585
+ 147
586
+ 00:18:31,430 --> 00:18:37,250
587
+ ู‚ุงู„: ุฎุจุฒ ุฅุณู…ุงุนูŠู„ ูƒุงู„ูˆุดูŠุŒ ูŠุนู†ูŠ ูƒุงู„ุซูˆุจ ุงู„ู…ูˆุดูŠ ุงู„ู…ุทุฑุฒ
588
+
589
+ 148
590
+ 00:18:37,250 --> 00:18:43,140
591
+ ุงู„ู…ูุฌู…ู‘ู„ ุจุฃู†ูˆุงุน ุงู„ูˆุดูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุทุฑูŠุฒุŒ ูˆู‡ุฐุง ุฏู„ูŠู„ ุนู„ูŠู‡
592
+
593
+ 149
594
+ 00:18:43,140 --> 00:18:53,400
595
+ ุนู„ู‰ ุฃู†ู‡ ูŠุนุธู… ุงู„ุฎุจุฒ ูˆูŠุฌู…ู„ู‡ุŒ ู„ุฃู† ุงู„ุฎุจุฒ ู„ุฏูŠู‡ ู…ู‚ุฏุณ
596
+
597
+ 150
598
+ 00:18:53,400 --> 00:19:02,440
599
+ ูˆู…ุนุธู… ูˆุชุนู…ูŠู… ู„ู„ุจุฎู„ุŒ ู‚ุงู„: ุนุฌุจุง ู…ู† ุฃุซุฑ ุตู†ุนุฉ ููŠู‡ ูƒูŠู
600
+
601
+ 151
602
+ 00:19:02,440 --> 00:19:10,070
603
+ ูŠูุฎูู‰ุŒ ูŠุนู†ูŠ ุฃู†ู‡ ุญุฑูŠุต ุนู„ู‰ ุฃู† ูŠุจู‚ู‰ ุฑุบูŠู ุงู„ุฎุจุฒ ูƒุงู…ู„ุงู‹
604
+
605
+ 152
606
+ 00:19:10,070 --> 00:19:18,850
607
+ ุบูŠุฑ ู…ู†ู‚ูˆุตุŒ ูˆุฅุฐุง ูƒุณุฑ ูŠุนูŠุฏู‡ ูˆูŠู„ุณู‚ู‡ ุจุทุฑูŠู‚ุฉ ู…ุงู‡ุฑุฉ ูƒู…ุง
608
+
609
+ 153
610
+ 00:19:18,850 --> 00:19:26,850
611
+ ูŠูุนู„ ุงู„ุฑูุงุก ุงู„ุฐูŠ ูŠุตู„ุญ ุงู„ุซูŠุงุจุŒ ู„ุฃู†ู‡ ูŠุฒูŠู„ ุฃู…ุงูƒู† ุงู„ุนูŠุจ
612
+
613
+ 154
614
+ 00:19:26,850 --> 00:19:30,430
615
+ ููŠู‡ ุจุทุฑูŠู‚ุฉ ู…ุงู‡ุฑุฉ
616
+
617
+ 155
618
+ 00:19:33,640 --> 00:19:40,960
619
+ ุฃู…ุง ููŠู…ุง ูŠุชุนู„ู‚ ุจุงู„ู…ู‚ุฏู…ุฉ ุงู„ุทู„ุงู„ูŠุฉุŒ ูุฅู† ุฃุจุง ู†ูˆุงุณ ุฏุนุง
620
+
621
+ 156
622
+ 00:19:40,960 --> 00:19:50,000
623
+ ุฅู„ู‰ ุชุฑูƒ ุงู„ู…ู‚ุฏู…ุฉ ุงู„ุทู„ุงู„ูŠุฉ ููŠ ุฃูƒุซุฑ ู…ู† ู…ูƒุงู†ุŒ ูˆู„ูƒู† ู‡ุฐู‡
624
+
625
+ 157
626
+ 00:19:50,000 --> 00:19:57,700
627
+ ุงู„ุฏุนูˆุฉ ู„ู… ุชู„ู‚ูŽ ุงุณุชุฌุงุจุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑุŒ ูˆู„ูƒู†ู‡ุง ู…ู‡ุฏุช ู„
628
+
629
+ 158
630
+ 00:19:58,700 --> 00:20:07,080
631
+ ู…ู‡ุฏุช ู‡ุฐู‡ ุงู„ุฏุนูˆุฉ ู„ุชุฑูƒ ุงู„ู…ู‚ุฏู…ุฉ ููŠ ุงู„ุนุตูˆุฑ ุงู„ู„ุงุญู‚ุฉ
632
+
633
+ 159
634
+ 00:20:07,080 --> 00:20:17,980
635
+ ูˆุฒุนุฒุนุช ุฃูŠุถู‹ุง ุงู„ุดุนุฑุงุก ููŠ ุฃู‡ู…ูŠุฉ ู‡ุฐู‡ ุงู„ู…ู‚ุฏู…ุฉุŒ ูŠู‚ูˆู„ ุฃุจูˆ
636
+
637
+ 160
638
+ 00:20:17,980 --> 00:20:26,270
639
+ ู†ูˆุงุณ: ู„ุง ุชุจูƒูŠ ู„ูŠู„ุฉ ูˆู„ุง ุชุทุฑุจ ุฅู„ู‰ ู‡ู†ุฏูŠุŒ ูˆุงุดุฑุจ ุนู„ู‰ ุงู„ูˆุฑุฏ
640
+
641
+ 161
642
+ 00:20:26,270 --> 00:20:34,010
643
+ ู…ู† ุญู…ุฑุงุก ูƒุงู„ูˆุฑุฏ ูƒุฃุณู‹ุง ุฅุฐุง ุญุถุฑุช ููŠ ู‚ู„ุจ ุดุงุฑุจู‡ุง ุฃุฌุฏุชู‡
644
+
645
+ 162
646
+ 00:20:34,010 --> 00:20:40,350
647
+ ุญู…ุฑุชู‡ุง ููŠ ุงู„ุนูŠู† ูˆุงู„ุฎูŽุฏู‘ุŒ ูุงู„ุฎู…ุฑ ูŠุงู‚ูˆุชุฉ ูˆุงู„ูƒุฃุณ ู„ุคู„ุคุฉ
648
+
649
+ 163
650
+ 00:20:40,350 --> 00:20:47,510
651
+ ููŠ ูƒูู‘ ุฌุงุฑูŠุฉ ู…ู…ุดูˆู‚ุฉ ุงู„ู‚ูŽุฏู‘ ุชุณู‚ูŠูƒ ู…ู† ูŠุฏู‡ุง ุฎู…ุฑู‹ุง ูˆู…ู†
652
+
653
+ 164
654
+ 00:20:47,510 --> 00:20:51,830
655
+ ูู…ู‡ุง ุฎู…ุฑู‹ุงุŒ ูู…ุง ู„ูƒ ู…ู† ุณูƒุฑูŠู† ู…ู† ุจุฏู‡
656
+
657
+ 165
658
+ 00:20:54,780 --> 00:21:02,940
659
+ ูู…ุง ู„ูƒ ู…ู† ุณูƒุฑูŠู†ูŠ ู…ู† ุจุฏูŠุŒ ุฃูŠุถู‹ุง ูŠู‚ูˆู„: ุนุงุฌ ุงู„ุดู‚ูŠ ุนู„ู‰
660
+
661
+ 166
662
+ 00:21:02,940 --> 00:21:11,240
663
+ ุฑุณู… ูŠุณุงุฆู„ู‡ ูˆุนุฒุชู‡ุŒ ุฃุณุฃู„ ุนู† ุฎู…ุงุฑุฉ ุงู„ุจู„ุฏูŠุŒ ูŠุจูƒูŠ ุนู„ู‰ ุทู„ู„
664
+
665
+ 167
666
+ 00:21:11,240 --> 00:21:17,600
667
+ ุงู„ู…ุงุถูŠู† ู…ู† ุฃุณุฏู ู„ุง ุฏุฑู‘ุฐ ุงู„ุฑูƒู‡ุŒ ู‚ู„ ู„ูŠ ู…ู† ุจู†ูˆุง ุฃุณุฏูŠ
668
+
669
+ 168
670
+ 00:21:18,210 --> 00:21:25,630
671
+ ุฏุงุนุฐุง ุนุฏู…ุชูƒ ูˆุงุดุฑุจู‡ุง ู…ุนุชู‚ุฉ ุตูุฑุงุกุŒ ุชูุฑู‘ู‚ ุจูŠู† ุงู„ุฑูˆุญ
672
+
673
+ 169
674
+ 00:21:25,630 --> 00:2
675
+
676
+ 201
677
+ 00:25:15,170 --> 00:25:22,390
678
+ ุฃุจูŠ ุจูƒุฑ ุงู„ุตูˆู„ูŠ ูˆุทุฑูŠู‚ ุญู…ุฒุฉ ุงู„ุฃุตูู‡ุงู†ูŠ ูˆูˆุฑุฏ ู‡ุฐุง ุงู„ุดุนุฑ
679
+
680
+ 202
681
+ 00:25:22,390 --> 00:25:32,490
682
+ ู…ู† ุทุฑูŠู‚ูŠู† ูŠุฏู„ ุนู„ู‰ ุตุญุฉ ู†ุณุจุชู‡ ุฅู„ู‰ ุฃุจูŠ ู†ูˆุงุณ ู‡ุฐุง
683
+
684
+ 203
685
+ 00:25:32,490 --> 00:25:39,410
686
+ ุงู„ุดูŠุก ุงู„ุซุงู„ุซ ุฃู† ู‡ุฐุง ุงู„ุดุนุฑ ุงู„ุฒู‡ุฏ ู„ูŠุณููŠ
687
+
688
+ 204
689
+ 00:25:39,410 --> 00:25:48,070
690
+ ูŠุนู†ูŠ ู„ูŠุณ ุฎุงุฑุฌ ุงู„ุชูˆู‚ุน ุจู„ ุฅู†ู‡ ู†ุชูŠุฌุฉ ู…ู†ุทู‚ูŠุฉ ู„ุฐู„ูƒ
691
+
692
+ 205
693
+ 00:25:48,070 --> 00:25:55,370
694
+ ุงู„ุตุฑุงุน ุงู„ุฏุงุฎู„ ุงู„ุฐูŠ ูƒุงู† ูŠุดุชุบู„ ุฃูˆ ูŠุดุชุนู„ ููŠ ู†ูุณ ุงุจู†
695
+
696
+ 206
697
+ 00:25:55,370 --> 00:26:03,490
698
+ ู†ูˆุงุณ ุฅู†ู‡ ุตุฑุงุน ุจูŠู† ู‚ูˆุฉ ุงู„ุฎูŠุฑ ูˆู‚ูˆุฉ ุงู„ุดุฑ ุฃูˆ ู‚ูŠู… ุงู„ุฎูŠุฑ
699
+
700
+ 207
701
+ 00:26:03,490 --> 00:26:11,870
702
+ ูˆู‚ูŠู… ุงู„ุดุฑุŒ ุงู„ุซู‚ุงูุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ุงู„ุชูŠ ุชุฑุนุฑุน ููŠู‡ุง ุฃุจูˆ
703
+
704
+ 208
705
+ 00:26:11,870 --> 00:26:24,050
706
+ ู†ูˆุงุณ ู„ู… ุชูƒู† ูุชุฑุฉ ู‡ูŠู†ุฉ ุจู„ ูƒุงู†ุช ู‚ูˆูŠุฉ ุฌุฏุง ูˆุบุฒูŠุฑุฉ ุฌุฏุง
707
+
708
+ 209
709
+ 00:26:24,050 --> 00:26:32,950
710
+ ูˆู„ุฐู„ูƒ ูƒุงู†ุช ุตุญูˆุฉ ุงู„ุถู…ูŠุฑ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุณ ู‚ูˆูŠุฉ ุฌุฏุง ุงู„ู‚ูˆุฉ
711
+
712
+ 210
713
+ 00:26:32,950 --> 00:26:43,870
714
+ ุงู„ุซู‚ุงูุฉ ุงู„ูƒุงู…ู†ุฉ ููŠ ู†ูุณู‡ ูˆุณุนุชู‡ุง ูˆุดู…ูˆู„ู‡ุง ู„ูƒู„ ู…ู†ุงุญูŠ
715
+
716
+ 211
717
+ 00:26:43,870 --> 00:26:51,150
718
+ ู…ูƒูˆู†ุงุชู‡ ุงู„ู†ูุณูŠุฉ ูˆุงู„ุซู‚ุงููŠุฉ ูู„ูŠุณ
719
+
720
+ 212
721
+ 00:26:51,150 --> 00:26:58,630
722
+ ุบุฑูŠุจู‹ุง ุฃู† ูŠูƒูˆู† ุฒุงู‡ุฏู‹ุง ุฅู†ู…ุง ุงู„ุบุฑูŠุจ ุฃู† ูŠูƒูˆู† ุบูŠุฑ ุฐู„ูƒ
723
+
724
+ 213
725
+ 00:27:01,790 --> 00:27:10,130
726
+ ุฃูŠุถู‹ุง ูŠู„ุงุญุธ ุฃู† ุดุนุฑ ุงู„ุฒู‡ุฏ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุณ ู‡ูˆ ู†ุชูŠุฌุฉ
727
+
728
+ 214
729
+ 00:27:10,130 --> 00:27:15,430
730
+ ู†ุชูŠุฌุฉ ุฅูŠู‡ุŸ ุฑุฏ ูุนู„ ุนู†ูŠูุฉ ูˆู‚ูˆูŠุฉ ุฃู‚ูˆู‰ ู…ู† ุงู„ู…ุฌู†ูˆู† ุงู„ู„ูŠ
731
+
732
+ 215
733
+ 00:27:15,430 --> 00:27:23,040
734
+ ู‡ูˆ ุงู„ู„ู‡ูˆ ูˆุงู„ุชุนุงุจุณ ุงู„ุฐูŠ ุบุฑู‚ ููŠู‡ ู„ูุชุฑุฉ ู…ู† ุงู„ุฒู…ู† ูƒุฐู„ูƒ
735
+
736
+ 216
737
+ 00:27:23,040 --> 00:27:30,800
738
+ ู…ุง ูŠุคูƒุฏ ุนู„ู‰ ุฃู† ุงู„ุฒู‡ุฏ ู‡ูˆ ุญู‚ูŠู‚ุฉ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุณ ุฃู†ู‡ ุฌุงุก
739
+
740
+ 217
741
+ 00:27:30,800 --> 00:27:36,880
742
+ ู…ุชูˆุงูู‚ุง ุฃูˆ ู…ูˆุงูู‚ุง ู„ุชุนุงู„ูŠู… ุงู„ุฅุณู„ุงู… ูˆู„ู… ูŠุทุนู† ููŠ ุดุนุฑู‡
743
+
744
+ 218
745
+ 00:27:36,880 --> 00:27:46,240
746
+ ุฃุญุฏ ุฃูˆ ุฃุนุงุจู‡ ุฃูˆ ุงู†ุชู‚ุฏู‡ุŒ ููŠู‚ูˆู„ ู…ุซู„ุง ูŠุง ุทุงู„ุจ ุงู„ุฏู†ูŠุง
747
+
748
+ 219
749
+ 00:27:46,240 --> 00:27:53,820
750
+ ู„ูŠุฌู…ุนู‡ุง ุฌู…ุญุช ุจูƒ ุงู„ุขู…ุงู„ ูุงู‚ุชุตุฏูŠ ูˆุงู„ู‚ุตุฏ ุฃุญุณู† ู…ุง ุนู…ู„ุช
751
+
752
+ 220
753
+ 00:27:53,820 --> 00:27:59,680
754
+ ุจู‡ ูุงุณู„ูƒ ุณุจูŠู„ ุงู„ุฎูŠุฑ ูˆุงุฌุชู‡ุฏูŠ ูˆุนู…ู„ ู„ุฏุงุฑ ุฃู† ุชุฌุนู„ู‡ุง
755
+
756
+ 221
757
+ 00:27:59,680 --> 00:28:02,500
758
+ ุฏุงุฑ ุงู„ู…ู‚ุงู…ุฉ ุขุฎุฑ ุงู„ุฃุจุฏ
759
+
760
+ 222
761
+ 00:28:05,640 --> 00:28:14,360
762
+ ุฅุฐุง ุงู„ุฒู‡ุฏ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุณ ุฒู‡ุฏ ุฅุณู„ุงู…ูŠ ูˆุญู‚ูŠู‚ูŠ ูˆู„ูŠุณ
763
+
764
+ 223
765
+ 00:28:14,360 --> 00:28:22,100
766
+ ู…ู†ุชุญู„ุงู‹ ูˆู„ูŠุณ ุฎุงุฑุฌุง ุนู† ุฏุงุฆุฑุฉ ุงู„ุชูˆู‚ุน ูู‡ูˆ ุดูŠุก ู…ุชูˆู‚ุน
767
+
768
+ 224
769
+ 00:28:22,100 --> 00:28:28,640
770
+ ู…ุชูˆู‚ุน ูˆุดูŠุก ุฃุตูŠู„ ุจุฃุตุงู„ุฉ ุงู„ุซู‚ุงูุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ุงู„ู…ูˆุฌูˆุฏุฉ
771
+
772
+ 225
773
+ 00:28:28,640 --> 00:28:36,320
774
+ ููŠ ู†ูุณู‡ ูˆุงู„ุชูŠ ุชู„ู‚ุงู‡ุง ููŠ ู…ุณุงุฌุฏ ุงู„ุจุตุฑุฉ ูˆุญูุธู‡ ู„ู„ู‚ุฑุขู†
775
+
776
+ 226
777
+ 00:28:36,320 --> 00:28:42,880
778
+ ูˆุงู„ุญุฏูŠุซ ูˆุงู„ุดุนุฑ ุงู„ุนุฑุจูŠ ูู‡ุฐุง ุฏู„ูŠู„ ุนู„ู‰ ุฃู† ุงู„ุฒู‡ุฏ ู‡ูˆ
779
+
780
+ 227
781
+ 00:28:42,880 --> 00:28:47,760
782
+ ุญู‚ูŠู‚ุฉ ูˆู„ูŠุณ ุฃุณุทูˆุฑุฉ
783
+
784
+ 228
785
+ 00:28:50,830 --> 00:28:55,070
786
+ ู‡ุฐุง ูˆุจุงู„ู„ู‡ ุงู„ุชูˆููŠู‚ ูˆุตู„ู‰ ุงู„ู„ู‡ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ ูˆุนู„ู‰
787
+
788
+ 229
789
+ 00:28:55,070 --> 00:28:58,390
790
+ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/AXkgumImG1k_postprocess.srt ADDED
@@ -0,0 +1,916 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:06,610 --> 00:00:09,890
3
+ ุจุงุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆ ุฃุตู„ู‘ูŠ ูˆ ุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง
4
+
5
+ 2
6
+ 00:00:09,890 --> 00:00:16,270
7
+ ู…ุญู…ุฏ ูˆ ุนู„ู‰ ุขู„ู‡ ูˆ ุตุญุจู‡ ูˆ ุฃุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง ูˆ ุจุนุฏ ููŠ
8
+
9
+ 3
10
+ 00:00:16,270 --> 00:00:25,450
11
+ ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ู†ุชู†ุงูˆู„ ุดุฎุตูŠุฉ ุดุงุนุฑูŠุฉ ูƒุงู†ุช ู…ู† ุฃู‡ู…
12
+
13
+ 4
14
+ 00:00:25,450 --> 00:00:34,910
15
+ ุงู„ู‚ุงู…ุงุช ุงู„ุดุนุฑูŠุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูˆู‡ูŠ ุดุฎุตูŠุฉ ุฃุจูˆ ู†ูˆุงุฒ
16
+
17
+ 5
18
+ 00:00:37,540 --> 00:00:46,920
19
+ ูˆุฃุจูˆ ู†ูˆุงุฒ ุฃุดุชู‡ุฑ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุจุงู„ุดุนุฑูŠ ุงู„ุบุฒู„ ูˆุงู„ู„ู‡ูˆ
20
+
21
+ 6
22
+ 00:00:46,920 --> 00:00:53,560
23
+ ูˆุงู„ู…ุฌูˆู† ูู‡ูˆ ุนู„ู… ู…ู† ุฃุนู„ุงู… ุดุนุฑุงุก ุงู„ู…ุฌูˆู† ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
24
+
25
+ 7
26
+ 00:00:53,560 --> 00:01:01,700
27
+ ูˆู„ุฐู„ูƒ ุฌุนู„ู†ุงู‡ ุนู„ู…ุง ู…ู† ุฃุนู„ุงู… ุงู„ุดุนุฑ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ู‡ู†ุงูƒ
28
+
29
+ 8
30
+ 00:01:01,700 --> 00:01:09,690
31
+ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุนูˆุงู…ู„ ุงู„ุชูŠ ุฃุซุฑุช ููŠ ุดุงุนุฑูŠุชู‡ุงู„ุนุงู… ุงู„ุฃูˆู„
32
+
33
+ 9
34
+ 00:01:09,690 --> 00:01:18,370
35
+ ู‡ูˆ ู†ุณุจู‡ ุบูŠุฑ ุนุฑุจูŠ ูˆู„ุฏ ุฃุจูˆ ู†ูˆุงุณ ุนุงู… ุชุณุน ูˆุซู„ุงุซูŠู† ูˆู…ุฆุฉ
36
+
37
+ 10
38
+ 00:01:18,370 --> 00:01:27,930
39
+ ู„ู„ู‡ุฌุฑุฉ ู…ู† ุฃุจูˆูŠู†ู‡ ูุงุฑุณูŠูŠู† ููŠ ู…ุฏูŠู†ุฉ ุงู„ุฃู‡ูˆุงุฒ ูˆุฃุซูŠุฑุช
40
+
41
+ 11
42
+ 00:01:27,930 --> 00:01:37,560
43
+ ุญูˆู„ู‡ ุดุจู‡ุงุช ูƒุซูŠุฑุฉู‚ูŠู„ ุฅู† ุฃุจุงู‡ ูƒุงู† ุนุฑุจูŠุง ูˆู‚ูˆู‰ ุญุฌุชู‡
44
+
45
+ 12
46
+ 00:01:37,560 --> 00:01:48,500
47
+ ุจุฃู† ูƒู†ูŠุชู‡ ู‡ูŠ ูƒู†ูŠู‡ ูŠู…ุงู†ูŠุฉ ู„ุฃู† ู‡ุฐู‡ ูƒู†ูŠู‡ ุชุณุชุนู…ู„ ููŠ
48
+
49
+ 13
50
+ 00:01:48,500 --> 00:01:57,100
51
+ ุงู„ูŠู…ู† ุงุจูˆ ู†ูˆุงุณ ุงู„ุนู…ู„ ุงู„ุซุงู†ูŠ ู‡ูˆ ุงู„ูŠู‡ุชู… ูู‚ุฏ ุชูˆููŠ
52
+
53
+ 14
54
+ 00:01:57,100 --> 00:02:05,270
55
+ ุฃุจูˆู‡ ูˆ ู‡ูˆ ููŠ ุงู„ุณุงุฏุณุฉ ู…ู† ุนู…ุฑู‡ุซู… ู‚ุงู…ุช ุจุฑุนุงูŠุชู‡ ุฃู…ู‡
56
+
57
+ 15
58
+ 00:02:05,270 --> 00:02:12,210
59
+ ูุงู†ุชู‚ู„ุช ุจู‡ ุฅู„ู‰ ุงู„ุจุตุฑุฉ ูˆู‚ุงู…ุช ุจุชุฑุจูŠุชู‡ ูุญุงูุธ ุงู„ู‚ุฑุขู†
60
+
61
+ 16
62
+ 00:02:12,210 --> 00:02:19,270
63
+ ูˆุฃุทุฑุงูุง ู…ู† ุงู„ุดุนุฑ ูˆู‚ุฏ ุฐูƒุฑู†ุง ู…ู† ู‚ุจู„ ุฃู†ู‡ ูƒุงู† ูŠุญูุธ
64
+
65
+ 17
66
+ 00:02:19,270 --> 00:02:27,700
67
+ ุณุชูŠู† ุฏูŠูˆุงู†ุง ู…ู† ุฏูˆุงูˆูŠู† ุงู„ู†ุณุงุกุบูŠุฑ ู…ุง ูƒุงู† ูŠุญูุธู‡ู… ู…ู†
68
+
69
+ 18
70
+ 00:02:27,700 --> 00:02:36,000
71
+ ุดุนุฑูŠ ุงู„ุฑุฌุงู„ ูˆูƒุงู† ูŠุญูุธ ุณุจุนู…ุงุฆุฉ ุฃุฑุฌูˆุฏุฉ ุบูŠุฑ ู…ุง ูƒุงู†
72
+
73
+ 19
74
+ 00:02:36,000 --> 00:02:44,900
75
+ ูŠุญูุธู‡ู… ู…ู† ุงู„ู‚ุตูŠุฏ ูˆู‚ุงู„ ููŠู‡ ุงู„ุฌุงุญุธ ู„ู… ุฃุฑู‰ ุฃุญุฏ ุฃุนู„ู…
76
+
77
+ 20
78
+ 00:02:44,900 --> 00:02:53,170
79
+ ุจุงู„ุดุนุฑูŠ ู…ู† ุฃุจูŠ ู†ูˆุงุฒ ุฃูˆ ูƒู…ุง ู‚ุงู„ ุงุจู† ู‚ุชูŠุจุฉ ุนููˆุงุงู„ุนู…ู„
80
+
81
+ 21
82
+ 00:02:53,170 --> 00:02:57,530
83
+ ุงู„ุซุงู„ุซ ู‡ูˆ ุงู„ุงุฎุชู„ุงู ุฅู„ู‰ ุญู„ู‚ุงุช ุงู„ุนู„ู… ูƒุงู† ูŠุชุฑุฏุฏ ุนู„ู‰
84
+
85
+ 22
86
+ 00:02:57,530 --> 00:03:01,850
87
+ ุญู„ู‚ุงุช ุงู„ุนู„ู… ููŠ ุฏุฑุงุณุฉ ุนู„ูˆู… ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉ ูˆุงู„ุฏูŠู†
88
+
89
+ 23
90
+ 00:03:01,850 --> 00:03:06,990
91
+ ูˆุงู„ูู‚ู‡ ูˆุงู„ุชูุณูŠุฑ ูˆุงู„ุญุฏูŠุซ ุญุชู‰ ุฅู†ู‡ ูƒุงู† ุนุงู„ู…ู‹ุง ุจุงู„ูุชูŠุฉ
92
+
93
+ 24
94
+ 00:03:06,990 --> 00:03:14,690
95
+ ุจุตูŠุฑู‹ุง ุจุงู„ุงุฎุชู„ุงู ุตุงุญุจ ู†ุธุฑ ูˆุญูุธ ูˆู…ุนุฑูุฉ ุจุทุฑู‚ ุงู„ุญุฏูŠุซ
96
+
97
+ 25
98
+ 00:03:14,690 --> 00:03:19,550
99
+ ูŠุนุฑู ุงู„ู†ุงุณุฎ ูˆุงู„ู…ู†ุณูˆุฎ ูˆุงู„ู…ุญูƒู… ูˆุงู„ู…ุชุดุงุจู‡ ู…ู† ุงู„ู‚ุฑุขู†
100
+
101
+ 26
102
+ 00:03:19,550 --> 00:03:25,950
103
+ ุงู„ูƒุฑูŠู…ูƒู…ุง ุทู„ุจ ุนู„ู… ุงู„ูƒู„ุงู…ุŒ ุญุชู‰ ุฅู†ู‡ ู‚ูŠู„ ุฅู†ู‡ ุจุฏุฃ
104
+
105
+ 27
106
+ 00:03:25,950 --> 00:03:31,010
107
+ ู…ุชูƒู„ู…ู‹ุงุŒ ุซู… ุงู†ุชู‚ู„ ุฅู„ู‰ ู†ุธู… ุงู„ุดุนุฑุŒ ูˆู‡ุฐุง ุงู„ูƒู… ู…ู†
108
+
109
+ 28
110
+ 00:03:31,010 --> 00:03:38,250
111
+ ุงู„ุนู„ู… ูŠุธู‡ุฑ ุฃู†ู‡ ูƒุงู† ุฐุง ุซู‚ุงูุฉ ุนุงู„ูŠุฉ ูˆุดุฎุตูŠุฉ ุบู†ูŠุฉ
112
+
113
+ 29
114
+ 00:03:38,250 --> 00:03:44,960
115
+ ุจุงู„ุชู†ูˆุนุŒ ู„ุง ุงู„ุชู†ุงู‚ุถูƒู…ุง ูŠุธู† ุงู„ุจุนุถ ูุดุฎุตูŠุฉ ุงุจู† ูˆุงุณ
116
+
117
+ 30
118
+ 00:03:44,960 --> 00:03:53,720
119
+ ุดุฎุตูŠุฉ ููŠู‡ุง ุชู†ูˆุน ูˆู„ูŠุณ ุชู†ุงู‚ุถ ู‡ุฐุง ุงู„ุชู†ูˆุน ุฃูˆุฌุฏ ู„ุฏูŠู‡
120
+
121
+ 31
122
+ 00:03:53,720 --> 00:04:02,080
123
+ ุตุฑุงุน ุฏุงุฎู„ูŠู‹ุง ูุชุงุฑุฉ ุชุบู„ุจ ุนู„ูŠู‡ ู†ุฒุนุฉ ุงู„ุฒู‡ุฏ ูˆุชุงุฑุฉ ุชุบู„ุจ
124
+
125
+ 32
126
+ 00:04:02,080 --> 00:04:09,000
127
+ ุนู„ูŠู‡ ู†ุฒุนุฉ ุงู„ู…ุฌูˆู† ูˆุงู„ู„ู‡ูˆ ุญุชู‰ ุบู„ุจ ุนู„ูŠู‡ ุงู„ุฒู‡ุฏ ููŠ ุขุฎุฑ
128
+
129
+ 33
130
+ 00:04:09,000 --> 00:04:17,570
131
+ ุญูŠุงุชู‡ ูˆู…ุงุช ุนู„ูŠู‡ู„ุฃู† ู…ู‚ูˆู…ุงุช ุงู„ุฐู‡ุจ ูˆุฐุงูุนูŠุฉ ุงู„ุซู‚ุงูุฉ
132
+
133
+ 34
134
+ 00:04:17,570 --> 00:04:24,670
135
+ ุงู„ุฅุณู„ุงู…ูŠุฉ ู‡ูŠ ุงู„ุชูŠ ุชุบู„ุจุช ูˆุงู†ุชุตุฑุช ููŠ ุขุฎุฑ ุงู„ู…ุทุงู ูˆููŠ
136
+
137
+ 35
138
+ 00:04:24,670 --> 00:04:30,450
139
+ ุงู„ุฌูˆู„ุฉ ุงู„ุฃุฎูŠุฑุฉ ูˆุณู†ุชู†ุงูˆู„ ุฐู„ูƒ ููŠ ุญูŠู†ู‡ ุฅู† ุดุงุก ุงู„ู„ู‡
140
+
141
+ 36
142
+ 00:04:30,450 --> 00:04:38,940
143
+ ุงุทู„ุงุนู‡ ุนู„ู‰ ุซู‚ุงูุงุช ุนุตุฑู‡ูู‚ุฏ ูƒุงู† ู…ุซู‚ูุงู‹ ุนุงู„ูŠ ุงู„ุชุซู‚ูŠู
144
+
145
+ 37
146
+ 00:04:38,940 --> 00:04:46,760
147
+ ูˆ ุณุงุนุฏุชู‡ ุฅูŠุฌุงุฏุชู‡ ู„ู„ุบุฉ ุงู„ูุงุฑุณูŠุฉ ุนู„ู‰ ุงู„ุชุจุญุฑ ููŠ ุซู‚ุงูุฉ
148
+
149
+ 38
150
+ 00:04:46,760 --> 00:04:52,780
151
+ ุงู„ูุงุฑุณูŠุฉ ูˆุบูŠุฑู‡ุง ู…ู† ุงู„ุซู‚ุงูุงุช ูƒุงู† ุฃุจูˆ ู†ูˆุงุณ ู…ู„ูŠุญ
152
+
153
+ 39
154
+ 00:04:52,780 --> 00:04:58,280
155
+ ุงู„ูˆุฌู‡ ูˆู„ู‡ ู‚ุจูˆู„ ุนู†ุฏ ุงู„ู†ุงุณ
156
+
157
+ 40
158
+ 00:05:00,530 --> 00:05:08,770
159
+ ู‡ู†ุงูƒ ุนุงู…ู„ ุขุฎุฑ ุฑุจู…ุง ูŠูƒูˆู† ุณู„ุจูŠ ููŠ ุญูŠุงุฉ ุฃุจูŠ ู†ูˆุงุซ ูˆู‡ูˆ
160
+
161
+ 41
162
+ 00:05:08,770 --> 00:05:17,590
163
+ ุณูŠุฑุฉ ุฃู…ู‡ ูˆุงุชุตุงู„ู‡ ุจูˆุงู„ุฏุฉ ุงุจู† ุงู„ุญ๏ฟฝ๏ฟฝุงุจ ุฃุญุฏ ุงู„ู…ุฌุงู† ููŠ
164
+
165
+ 42
166
+ 00:05:17,590 --> 00:05:24,540
167
+ ู‡ุฐุง ุงู„ุนุตุฑูู‡ุฐุง ู‡ูˆ ุงู„ุฐูŠ ุฑุจู…ุง ูŠุนู†ูŠ ูŠุฑุฌุน ุฅู„ูŠู‡ ุฅูุณุงุฏ
168
+
169
+ 43
170
+ 00:05:24,540 --> 00:05:33,420
171
+ ุฃุจูŠ ู†ูˆุงุฒ ูƒู…ุง ุฃู† ุณูŠุฑุฉ ุฃู…ู‡ ู„ู… ุชุนุฌุจู‡ ูุฑุจู…ุง ูƒุงู†ุช ู‡ูŠ
172
+
173
+ 44
174
+ 00:05:33,420 --> 00:05:43,440
175
+ ุงู„ุฏุงูุน ูˆุฑุง ุฅู†ุญุฑุงูู‡ ู†ุญูˆ ุงู„ู…ุฌูˆู† ูˆู…ุฑุงูู‚ุฉ ุงู„ู…ุฌุงู†
176
+
177
+ 45
178
+ 00:05:43,440 --> 00:05:53,160
179
+ ูˆุฃุตุญุงุจ ุงู„ู„ู‡ู… ูุฃุฎุฐ ูŠุนู†ูŠูŠุนุจูˆุง ุงู„ุฎู…ุฑ ูƒูŠู†ุณ ู‡ู…ูˆู…ู‡ ููƒุงู†
180
+
181
+ 46
182
+ 00:05:53,160 --> 00:06:00,680
183
+ ูƒุงู„ู…ุณุชุฌูŠุฑ ู…ู† ุงู„ุฑู…ุถุงุก ุจุงู„ู†ุงุฑ ุชูุชู‚ุช
184
+
185
+ 47
186
+ 00:06:00,680 --> 00:06:05,820
187
+ ุดุนูŠุฑูŠุฉ ุฃุจู† ูˆุณุช ู…ุจูƒุฑุง ูˆูŠุนุงุฏ ู…ู† ุฃุนุฌูŠุจ ุนุตุฑู‡ ููŠ ุงู„ุดุนุฑ
188
+
189
+ 48
190
+ 00:06:05,820 --> 00:06:10,520
191
+ ูƒุงู† ูŠู…ู„ูƒ ู‚ุฑูŠุญุฉ ุดุนุฑูŠุฉ ุณู‚ู„ู‡ุง ุจุงู„ุฏุฑุณ ุงู„ุทูˆูŠู„ ู„ู„ุดุนุฑ
192
+
193
+ 49
194
+ 00:06:10,520 --> 00:06:17,610
195
+ ุงู„ู‚ุฏูŠู… ูˆุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉูˆุบุฒู‘ุงู‡ ุจุงู„ู…ุญุชูˆู‰ ุงู„ุฅุณู„ุงู…ูŠ
196
+
197
+ 50
198
+ 00:06:17,610 --> 00:06:22,390
199
+ ูˆุงู„ุซู‚ุงูุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ูˆุบูŠุฑู‡ุง ู…ู† ุซู‚ุงูุงุช ุนุตุฑู‡ ู‚ุงู„
200
+
201
+ 51
202
+ 00:06:22,390 --> 00:06:30,910
203
+ ุงู„ุฌุงุญุธ ู…ุง ุฑุฃูŠุช ุฃุญุฏู‹ุง ุฃุนู„ู… ุจุงู„ู„ุบุฉ ู…ู† ุฃุจูŠ ู†ูˆุงุณ ูˆู‚ุฏู…ุช
204
+
205
+ 52
206
+ 00:06:30,910 --> 00:06:34,330
207
+ ุดุฎุตูŠุชู‡ ููŠ ุงุชุฌุงู‡ูŠู† ุงุชุฌุงู‡ ูŠุญุงูุธ ุนู„ู‰ ุงู„ุชู‚ุงู„ูŠุฏ
208
+
209
+ 53
210
+ 00:06:34,330 --> 00:06:41,730
211
+ ุงู„ู…ูˆุถูˆุนุฉ ุฏูˆู† ุฃู† ูŠุณู‚ุท ุฃูˆ ูŠุดุชุท ููŠ ุงู„ุชุฌุฏูŠุฏูˆู‡ุฐุง ู…ุง
212
+
213
+ 54
214
+ 00:06:41,730 --> 00:06:47,890
215
+ ู†ุฑุงู‡ ููŠ ู…ุฏุงุฆุญู‡ ูˆุฃุฑุงุฌูŠุฒู‡ ูˆู…ุฑุซูŠู‡ ูˆุงุชุฌุงู‡ ูŠุฌุฏุฏ ููŠู‡
216
+
217
+ 55
218
+ 00:06:47,890 --> 00:06:53,570
219
+ ุชุฌุฏูŠุฏุง ูˆุงุณุนุง ุงู„ู…ุนุงู†ูŠ ูˆุงู„ุฃู„ูุงุธ ูˆู‡ุฐุง ู…ุง ู†ู„ุงุญุธู‡ ููŠ
220
+
221
+ 56
222
+ 00:06:53,570 --> 00:07:01,070
223
+ ุฃู‡ุงุฌูŠู‡ ูˆุบุฒู„ูŠุงุชู‡ ูˆุฎู…ุฑูŠุงุชู‡ ุฃู…ุง ุจุงู„ู†ุณุจุฉ ู„ู…ูˆุถูˆุนุงุช ุดุนุฑู‡
224
+
225
+ 57
226
+ 00:07:01,070 --> 00:07:10,450
227
+ ูู†ุจุฏุฃ ุจู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ููƒุงู† ุฃุจูˆ ู†ูˆุงุณ ูŠู…ุฏุญุญุณุจ ุงู„ู…ู…ุฏูˆุญ
228
+
229
+ 58
230
+ 00:07:10,450 --> 00:07:19,170
231
+ ุฃูŠ ูŠุฑุงุนูŠ ุงู„ู…ู…ุฏูˆุญ ููŠ ุงู„ู…ุนุงู†ูŠ ุงู„ุชูŠ ูŠุตู ุจู‡ุง ู‡ุฐุง
232
+
233
+ 59
234
+ 00:07:19,170 --> 00:07:22,610
235
+ ุงู„ู…ู…ุฏูˆุญ ูˆูƒุงู†
236
+
237
+ 60
238
+ 00:07:25,890 --> 00:07:37,530
239
+ ู‡ุฐู‡ ุงู„ู…ุฑุงุนุงุฉ ู†ุงุดุฆุฉ ู…ู† ุนุจู‚ุฑูŠุฉ ุฃุจูŠ ู†ูˆุงุซ ูˆุณู„ูŠู‚ุชู‡
240
+
241
+ 61
242
+ 00:07:37,530 --> 00:07:45,610
243
+ ูˆุงู…ุชู„ุงูƒู‡ ู„ู„ู…ู‚ุงูˆู…ุงุช ูˆุงู„ู…ู‚ุฏุฑุงุช ุงู„ุฃุณู„ูˆุจูŠุฉ ูˆุงู„ูู†ูŠุฉ
244
+
245
+ 62
246
+ 00:07:45,610 --> 00:07:47,190
247
+ ูˆุงู„ุซู‚ุงููŠุฉ
248
+
249
+ 63
250
+ 00:07:49,160 --> 00:07:54,060
251
+ ูู…ุซู„ู‹ุง ูŠู„ุชุฒู… ุจุงู„ู…ู‚ุฏู…ุฉ ุงู„ุทู„ุงู„ูŠุฉ ุงู„ุชู‚ู„ูŠุฏูŠุฉ ููŠ ู…ุฏุงุฆู‡ุง
252
+
253
+ 64
254
+ 00:07:54,060 --> 00:08:00,400
255
+ ู„ูƒู†ู‡ ู„ุง ูŠุทูŠู„ ููŠู‡ุง ูˆู‡ุฐู‡ ุนู„ุงู…ุฉ ูุงุฑู‚ุฉ ุจูŠู†ู‡ ูˆุจูŠู† ุจุดุงุฑ
256
+
257
+ 65
258
+ 00:08:00,400 --> 00:08:09,000
259
+ ุฅุจู† ุจูˆุฑุฏ ูู†ุฑุงู‡ ูŠู…ุฏุญ ุงู„ุฎุตูŠุจ ููŠู‚ูˆู„ ููŠ ุงู„ู…ู‚ุฏู…ุฉ ุฃุฌุงุฑุฉ
260
+
261
+ 66
262
+ 00:08:09,000 --> 00:08:17,490
263
+ ุจูŠุชูŠู† ุฃุจูˆูƒ ุบูŠูˆุฑ ูˆู…ูŠุณูˆุฑ ู…ุง ูŠุฑุฌู‰ ู„ุฏูŠูƒ ุนุณูŠุฑูˆูŠู‚ูˆู„ ููŠ
264
+
265
+ 67
266
+ 00:08:17,490 --> 00:08:23,950
267
+ ู…ุฏุญ ุงู„ุฃู…ูŠู† ูŠุง ุฏุงุฑ ู…ุง ูุนู„ุช ุจูƒ ุงู„ุฃูŠุงู… ู„ู… ุชุจู‚ู‰ ููŠูƒ
268
+
269
+ 68
270
+ 00:08:23,950 --> 00:08:30,830
271
+ ุจุดุงุดุฉ ุชุณุชุงู… ุฃู…ุง ููŠู…ุง ูŠุชุนู„ู‚ ุจู…ุนุงู†ูŠู‡ ูŠุนู†ูŠ ู…ุนุงู†ูŠ
272
+
273
+ 69
274
+ 00:08:30,830 --> 00:08:35,450
275
+ ุงู„ู…ุฏุญูู†ุฌุฏู‡ ุฏุงุฆู…ุง ุงูŠู‡ุŸ ุฃูˆ ุบุงู„ุจุง ูŠุจุงู„ุบ ููŠ ุตูุงุช
276
+
277
+ 70
278
+ 00:08:35,450 --> 00:08:43,330
279
+ ุงู„ู…ู…ุฏูˆุญ ูƒู…ุง ูŠู‚ูˆู„ ููŠ ุงู„ุฑุดูŠุฏ ูˆุฃุฎูุช ุฃู‡ู„ ุงู„ุดุฑูƒ ุญุชู‰ ุฅู†ู‡
280
+
281
+ 71
282
+ 00:08:43,330 --> 00:08:50,750
283
+ ู„ุชุฎุงููƒ ุงู„ู†ุทู ุงู„ุชูŠ ู„ู… ุชุฎู„ู‚ูŠ ูˆูŠู‚ูˆู„ ููŠ ุงู„ุฑุดูŠุฏ ุฃูŠุถุงู…ู„ูƒ
284
+
285
+ 72
286
+ 00:08:50,750 --> 00:08:59,010
287
+ ุชุตูˆุฑ ููŠ ุงู„ู‚ู„ูˆุจ ู…ุซุงู„ู‡ ููƒุฃู†ู‡ ู„ู… ูŠุฎู„ ู…ู†ู‡ ู…ูƒุงู†ู‡ ูˆู…ู†
288
+
289
+ 73
290
+ 00:08:59,010 --> 00:09:07,610
291
+ ู…ุจู„ุบุงุชู‡ ุชุตูˆูŠุฑู‡ ุงู„ุทุฑูŠู ู„ุจุนุถ ู…ู…ุฏุญูŠู‡ ููŠู‚ูˆู„ ุชุบุทูŠุช ู…ู†
292
+
293
+ 74
294
+ 00:09:07,610 --> 00:09:16,410
295
+ ุฏู‡ุฑูŠ ุจุธู„ ุฌู†ุงุญู‡ ูุนูŠู†ูŠ ุชุฑุง ุฏู‡ุฑูŠ ูˆู„ูŠุณ ูŠุฑุงู†ูŠูู„ูˆ ุชุณุฃู„
296
+
297
+ 75
298
+ 00:09:16,410 --> 00:09:23,410
299
+ ุงู„ุฃูŠุงู… ู…ุง ุงุณู…ูŠ ู„ู…ุง ุฏุฑุชุŒ ูˆุฃูŠู† ู…ูƒุงู†ูŠ ู…ุง ุนุฑูู†ุง ู…ูƒุงู†ูŠ
300
+
301
+ 76
302
+ 00:09:23,410 --> 00:09:27,270
303
+ ูˆู†ุฑู‰
304
+
305
+ 77
306
+ 00:09:27,270 --> 00:09:33,350
307
+ ุฃุจุง ู†ูˆุงุณ ูŠุณุชุนู…ู„ ุงู„ุฃู„ูุงุธ ุงู„ุณู‡ู„ุฉ ุงู„ุชูŠ ุชู…ูˆุฌ ู†ุนู…ุฉ ูˆุฑู‚ุฉ
308
+
309
+ 78
310
+ 00:09:33,350 --> 00:09:41,430
311
+ ูˆุฎูุฉูˆุฐู„ูƒ ุฅุฐุง ูƒุงู† ุนู„ู‰ ุนู„ุงู‚ุฉ ุญู…ูŠู…ุฉ ู…ุน ุงู„ู…ู…ุฏูˆุญ ูƒู…ุง ููŠ
312
+
313
+ 79
314
+ 00:09:41,430 --> 00:09:49,250
315
+ ู…ุฏุญ ุงู„ุฃู…ูŠู† ูŠู‚ูˆู„ ุฃุถุญู‰ ุงู„ุฅู…ุงู… ู…ุญู…ุฏ ู„ู„ุฏูŠู† ู†ูˆุฑุง ูŠู‚ุชุจุณ
316
+
317
+ 80
318
+ 00:09:49,250 --> 00:09:56,940
319
+ ุชุจูƒูŠ ุงู„ุจุฏูˆุฑ ู„ุถุญูƒู‡ ูˆุงู„ุณูŠู ูŠุถุญูƒ ุฅู† ุนุจุณูˆุทุจุนุง ุงู„ุจุฏูˆุฑ
320
+
321
+ 81
322
+ 00:09:56,940 --> 00:10:09,740
323
+ ุฌู…ุน ุจุฏุฑุฉ ูˆู‡ูŠ ูƒูŠุซ ููŠู‡ ู…ุจู„ุบ ู…ุนูŠู† ู…ู† ุงู„ู…ุงู„ ู†ู„ุงุญุธ
324
+
325
+ 82
326
+ 00:10:09,740 --> 00:10:16,380
327
+ ุงู„ุฃู„ูุงุธ ุณู‡ู„ุฉ ูˆุงุถุญุฉ ุนุฐุจุฉ ู„ุง ุบู…ูˆุถุฉ ููŠู‡ุง ูˆู„ุง ุบุฑุจุฉ
328
+
329
+ 83
330
+ 00:10:16,380 --> 00:10:19,460
331
+ ูˆุฃูŠุถุง
332
+
333
+ 84
334
+ 00:10:21,700 --> 00:10:29,700
335
+ ู†ุฑุงู‡ ุฅุฐุง ููŠ ุงู„ู…ุฐุญุฉ ูŠุชู…ูŠุฒ ุจู‡ุฐู‡ ุงู„ู…ูŠุฒุงุช ุงู„ุซู„๏ฟฝ๏ฟฝุซ
336
+
337
+ 85
338
+ 00:10:29,700 --> 00:10:35,220
339
+ ุงู„ุงู†ุชุฌุงู… ุฃุญูŠุงู†ุง ุจุงู„ู…ู‚ุฏู…ุฉ ุงู„ุทู„ุงู„ูŠุฉ ูˆู„ูƒู†ู‡ ู„ุง ูŠุทูŠู„
340
+
341
+ 86
342
+ 00:10:35,220 --> 00:10:42,780
343
+ ููŠู‡ุง ูˆุงู„ุดูŠุก ุงู„ุซุงู†ูŠ ุฃู†ู‡ ูŠุจุงู„ุบ ููŠ ุงู„ุชุตูˆูŠุฑ ูˆุงู„ุดูŠุก
344
+
345
+ 87
346
+ 00:10:42,780 --> 00:10:50,980
347
+ ุงู„ุซุงู„ุซ ุณู‡ูˆู„ุฉ ุงู„ุฃู„ูุงุธ ูˆุนุฏู… ุบู…ูˆุถู‡ุงููŠ ุงู„ู…ุนุงู†ูŠ ูˆุฃูŠุถุง
348
+
349
+ 88
350
+ 00:10:50,980 --> 00:10:56,140
351
+ ุงู„ุจุนุฏ ุนู† ุงู„ูƒู„ู…ุงุช ุงู„ุบุฑูŠุจุฉ ูˆู‡ุฐุง ุงู„ุจุนุฏ ุนู† ุงู„ูƒู„ู…ุงุช
352
+
353
+ 89
354
+ 00:10:56,140 --> 00:11:02,000
355
+ ุงู„ุบุฑูŠุจุฉ ู„ูŠุณ ุฌู‡ู„ุง ููŠ ุงู„ู„ุบุฉ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุณ ูˆุฅู†ู…ุง ูƒุงู†
356
+
357
+ 90
358
+ 00:11:02,000 --> 00:11:11,780
359
+ ูŠู„ุงุฆู… ุจูŠู† ุงู„ู…ู…ุฏูˆุญ ูˆุงู„ุฃู„ูุงุธ ูˆุงู„ู…ุนุงู†ูŠูˆู‚ุฏ ุฑุฃูŠู†ุง ุฃู†
360
+
361
+ 91
362
+ 00:11:11,780 --> 00:11:17,580
363
+ ูƒู…ุง ู‚ุงู„ ุฌุงุญุธ ู„ู… ุฃุฑู‰ ุฃุญุฏ ุฃุนู„ู… ุจุงู„ู„ุบุฉ ู…ู† ุฃุจู„ูŠ ู†ูˆุงุณ
364
+
365
+ 92
366
+ 00:11:17,580 --> 00:11:27,400
367
+ ูู„ูŠุณ ู…ุนู†ู‰ ุฃู†ู‡ ูŠุฃุชูŠ ุจุฃู„ูุงุธ ุณู‡ู„ุฉ ุฃู†ู‡ ู„ุง ูŠุนุฑู ุงู„ูƒู„ู…ุงุช
368
+
369
+ 93
370
+ 00:11:27,400 --> 00:11:32,700
371
+ ุงู„ุบุฑูŠุจุฉ ุฃูˆ ุฃู†ู‡ ูŠุฌู‡ู„ ุงู„ุฃุณุงู„ูŠุจ ุงู„ู‚ูˆูŠุฉ ู„ุฃ ุฅู†ู…ุง ู‡ุฐุง
372
+
373
+ 94
374
+ 00:11:32,700 --> 00:11:38,690
375
+ ูŠุฏู„ ุนู„ู‰ ุดุงุนุฑูŠุชู‡ู„ุฃู†ู‡ ูŠุฎุงุทุจ ูˆูŠุณุชุนู…ู„ ู…ู† ุงู„ู„ุบุฉ ู…ุง
376
+
377
+ 95
378
+ 00:11:38,690 --> 00:11:44,350
379
+ ูŠู†ุงุณุจู‡ุง ูˆู…ู† ุงู„ู…ู…ุฏูˆุญูŠู† ูˆู…ุง ูŠู†ุงุณุจู‡ู… ู…ู† ุงู„ุฃู„ูุงุธ
380
+
381
+ 96
382
+ 00:11:44,350 --> 00:11:52,170
383
+ ูˆุงู„ู…ุนุงู… ู…ู†
384
+
385
+ 97
386
+ 00:11:52,170 --> 00:12:02,710
387
+ ุฃูƒุซุฑ ุงู„ู…ูˆุถูˆุนุงุช ุงู„ุชูŠ ุชู‚ุฑุจ ุฃุจูˆ ู†ูˆุงุณ ุงู„ุชูŠ ุชู‚ุฑุจ ุฃุจูˆ
388
+
389
+ 98
390
+ 00:12:02,710 --> 00:12:11,240
391
+ ู†ูˆุงุณ ู…ู† ุงู„ู‚ุฏูŠู…ู‡ูˆ ุดุนุฑ ุงู„ุทุฑุฏ ุฃูˆ ุดุนุฑ ุงู„ุตูŠุฏ ูู…ู† ุฎู„ุงู„
392
+
393
+ 99
394
+ 00:12:11,240 --> 00:12:19,340
395
+ ู‡ุฐู‡ ุงู„ู‚ุตูŠุฏุฉ ู†ุณุชุทูŠุน ุฃู† ู†ุนุฑู ุฃู† ุฃุจุง ู†ูˆุงุณ ูƒุงู† ุนู„ู‰
396
+
397
+ 100
398
+ 00:12:19,340 --> 00:12:28,380
399
+ ุนู„ุงู‚ุฉ ู‚ูˆูŠุฉ ูˆุฎุจุฑุฉ ุนุธูŠู…ุฉ ุจุงู„ู„ุบุฉ ูˆุบุฑูŠุจู‡ุง ูููŠ ุฅุญุฏู‰
400
+
401
+ 101
402
+ 00:12:28,380 --> 00:12:34,900
403
+ ุทุฑุฏูŠุงุชู‡ ูŠุจุฏูˆ ุฃุจูˆ ู†ูˆุงุณูƒู…ุง ู„ูˆ ูƒุงู† ุดุงุนุฑุงู‹ ู…ู† ุดุนุฑุงุก
404
+
405
+ 102
406
+ 00:12:34,900 --> 00:12:41,720
407
+ ุงู„ุจุฏูˆ ููŠ ุงู„ุนุตุฑ ุงู„ุฃู…ูˆูŠ ูƒุฃุจูŠ ู†ุฎูŠู„ุฉ ูˆุงู„ุดู…ุฑุฏู„ ูŠู‚ูˆู„
408
+
409
+ 103
410
+ 00:12:41,720 --> 00:12:51,300
411
+ ู…ุซู„ุง ููŠ ุชุฑุถูŠุงุชู‡ ููŠ ุฃุญุฏ ุชุฑุถูŠุงุชู‡ ู„ู…ุง ุชุจุฏ ุงู„ุตุจุญ ู…ู†
412
+
413
+ 104
414
+ 00:12:51,300 --> 00:12:58,720
415
+ ุญุฌุงุจู‡ ูƒุทู„ุนุฉ ุงู„ุฃุดู…ุทู…ู† ุฌู„ุจุงุจู‡ ูˆุงู†ุนุฏู„ ุงู„ู„ูŠู„ ุฅู„ู‰ ู…ู‚ุงุจู‡
416
+
417
+ 105
418
+ 00:12:58,720 --> 00:13:08,780
419
+ ูƒุงู„ุญุจุดูŠ ุงูุชุฑ ุนู† ุฃู†ูŠุงุจู‡ ู‡ุฌู†ุง ุจูƒู„ุจ ุทุงู„ู…ุง ู‡ุฌู†ุง ุจู‡
420
+
421
+ 106
422
+ 00:13:08,780 --> 00:13:16,780
423
+ ูŠู†ุชุณู ุงู„ู…ู‚ูˆุฏุฉ ู…ู† ูƒู„ุงุจู‡ ูƒุฃู† ู…ุชู†ูŠู‡ ู„ุฏู‰ ุงู†ุณุฑุงุจู‡ ู…ุชู†ุง
424
+
425
+ 107
426
+ 00:13:16,780 --> 00:13:24,750
427
+ ุดุฌุงุน ู„ุฌู‘ ููŠ ุงู†ุณูŠุงุจู‡ูƒุฃู†ู…ุง ุงู„ุฃุธููˆุฑ ููŠ ู‚ู†ุงุจู‡ ู…ูˆุณู‰
428
+
429
+ 108
430
+ 00:13:24,750 --> 00:13:33,370
431
+ ุตู†ุงุน ุฑุฏ ููŠ ู†ุตุงุจู‡ุŒ ูƒุฃู† ู†ุตุง ู…ุง ุชูˆูƒู„ู†ุง ุจู‡ ูŠุนููˆ ุนู„ู‰ ู…ุง
432
+
433
+ 109
434
+ 00:13:33,370 --> 00:13:40,950
435
+ ุฌุฑ ู…ู† ุซูŠุงุจู‡ุŒ ุชุฑู‰ ุณูˆุงู… ุงู„ูˆุญุด ูŠุญุชูˆูŠ ุจู‡ ูŠุฑูˆุญู†ุง ุฃุณุฑู‰
436
+
437
+ 110
438
+ 00:13:40,950 --> 00:13:48,650
439
+ ุฐูุฑู‡ ูˆู†ุงุจู‡ูููŠ ู‡ุฐู‡ ุงู„ุทุฑุฏูŠุฉ ุฃูˆ ู‡ุฐู‡ ุงู„ู‚ุตูŠุฏุฉ ู†ุฑู‰ ุฃู†
440
+
441
+ 111
442
+ 00:13:48,650 --> 00:13:58,790
443
+ ุฃุจุง ู†ูˆุงุณ ูŠุจุฏูˆ ูƒู…ุง ู„ูˆ ูƒุงู† ุดุงุนุฑุง ุนุฑุจูŠุง ุจุฏูˆูŠุง ูŠู„ุจุณ
444
+
445
+ 112
446
+ 00:13:58,790 --> 00:14:05,630
447
+ ุจุฌุงุฏ ุงู„ุจุฏูˆูŠ ูˆ ูŠุธู‡ุฑ ุฐู„ูƒ ู…ู† ุฎู„ุงู„ ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช ุงู„ุชูŠ
448
+
449
+ 113
450
+ 00:14:05,630 --> 00:14:09,530
451
+ ูŠุณุชุนู…ู„ู‡ุง
452
+
453
+ 114
454
+ 00:14:09,530 --> 00:14:12,190
455
+ ุดุนุฑุงุก ุงู„ุจุงุฏูŠุฉ
456
+
457
+ 115
458
+ 00:14:17,040 --> 00:14:27,520
459
+ ูุทุจุนุง ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช ูŠุนู†ูŠ ูƒุซูŠุฑุฉ ู…ุซู„ ูƒู„ู…ุฉ ุงู„ุฃุดู…ุท ูˆุฅู†
460
+
461
+ 116
462
+ 00:14:27,520 --> 00:14:36,190
463
+ ุนุฏู„ุฉูˆูุชุฑุฉ ูˆู‡ุฌู†ุฉ ูˆุงู†ุณุฑุงุจู‡
464
+
465
+ 117
466
+ 00:14:36,190 --> 00:14:45,570
467
+ ุงู„ุฃุฐููˆุฑ ุงู„ู‚ู†ุงุจ ูŠุนููˆ ูƒู„ ู‡ุฐู‡ ูƒู„ู…ุงุช ูƒู„ู…ุงุช ุจุฏูˆูŠุฉ ุชุธู‡ุฑ
468
+
469
+ 118
470
+ 00:14:45,570 --> 00:14:48,450
471
+ ููŠ ุดุนุฑ ุงู„ุฃุนุฑุงุจ ุฃูˆ ุงู„ุจุฏูˆ
472
+
473
+ 119
474
+ 00:14:53,930 --> 00:15:01,830
475
+ ุฃู…ุง ู‚ุตูŠุฏุฉ ุงู„ุฅุซุงุก ู‡ูŠ ุชุฎูŠุฑ ู„ู‡ุง ุฃุจูˆ ู†ูˆุงุณ ุฃุณู„ูˆุจุง ุฌุฒู„ุง
476
+
477
+ 120
478
+ 00:15:01,830 --> 00:15:06,690
479
+ ู…ุณุฆูˆู„ุง ูˆ ุฑุจู…ุง ูŠุฃุชูŠ ุจุงู„ูƒู„ู…ุงุช ุงู„ุบุฑูŠุจุฉ ุฎุงุตุฉ ุฅุฐุง ูƒุงู†
480
+
481
+ 121
482
+ 00:15:06,690 --> 00:15:14,000
483
+ ุงู„ู…ูŠุช ู„ุบูˆูŠุง ูˆ ู‚ุฏ ูŠุชุฎูู ู…ู† ุฐู„ูƒ ุฃุญูŠุงู†ุงูŠู‚ูˆู„ ููŠ ุฑุณุงุฆูŠ
484
+
485
+ 122
486
+ 00:15:14,000 --> 00:15:22,020
487
+ ุนุงู„ู… ุงู„ู„ุบุฉ ุฎู„ู ุงู„ุฃุญู…ุฑ ุฃูˆุฏู‰ ุฌู…ุงุน ุงู„ุนู„ู… ุฅุฐ ุฃูˆุฏู‰ ุฎู„ู
488
+
489
+ 123
490
+ 00:15:22,020 --> 00:15:28,820
491
+ ู…ู† ู„ุง ูŠุนุฏ ุงู„ุนู„ู… ุฅู„ุง ู…ุง ุนุฑู ูƒู†ุง ู…ุชู‰ ู…ุง ู†ุฏู† ู…ู†ู‡
492
+
493
+ 124
494
+ 00:15:28,820 --> 00:15:37,920
495
+ ู†ุบุชู„ู ุฑูˆุงูŠุฉ ู„ุง ุชุฌุชู†ุง ู…ู† ุงู„ุตุญูุฃู…ุง ุฅุฐุง ูƒุงู† ุงู„ุนู„ุงู‚ุฉ
496
+
497
+ 125
498
+ 00:15:37,920 --> 00:15:47,840
499
+ ุจูŠู†ู‡ ูˆุจูŠู† ุงู„ู…ูŠุช ุนู„ุงู‚ุฉ ุญู…ูŠู…ูŠุฉ ูู†ุฑู‰ ุงู„ู‚ุตูŠุฏุฉ ุชุดุชุนู„
500
+
501
+ 126
502
+ 00:15:47,840 --> 00:15:56,480
503
+ ุจุงู„ู„ูˆุนุฉ ูˆุงู„ุญุฑุงุฑุฉ ูˆุชุชู…ูŠุฒ ุจุงู„ุตุฏู‚ููŠ ู…ุซู„ ู‚ูˆู„ู‡ ูŠุฑุซูŠ
504
+
505
+ 127
506
+ 00:15:56,480 --> 00:16:04,180
507
+ ุงู„ุฃู…ูŠู† ุทูˆู‰ ุงู„ู…ูˆุช ู…ุง ุจูŠู†ูŠ ูˆุจูŠู† ู…ุญ๏ฟฝ๏ฟฝุฏ ูˆู„ูŠุณ ู„ู…ุง ุชุทูˆูŠ
508
+
509
+ 128
510
+ 00:16:04,180 --> 00:16:13,780
511
+ ุงู„ู…ู†ูŠุฉ ู†ุงุดุฑู‡ูู„ุง ูˆุตู„ ุฅู„ุง ุนุจุฑุฉ ุชุณุชุฏูŠู…ู‡ุง ุฃุญุงุฏูŠุซ ู†ูุณ
512
+
513
+ 129
514
+ 00:16:13,780 --> 00:16:21,980
515
+ ู…ุง ู„ู‡ุง ุงู„ุฏู‡ุฑ ุฐุงูƒุฑู‡ ูˆูƒู†ุช ุนู„ูŠู‡ ุฃุญุฐุฑ ุงู„ู…ูˆุช ูˆุญุฏู‡ ูู„ู…
516
+
517
+ 130
518
+ 00:16:21,980 --> 00:16:29,340
519
+ ูŠุจู‚ู‰ ู„ูŠ ุดูŠุก ุนู„ูŠู‡ ุฃุญุฐุฑู‡ ู„ุฅู† ุนู…ุฑุช ุฏูˆุฑ ุจู…ู† ู„ุง ุฃูˆุฏู‡
520
+
521
+ 131
522
+ 00:16:29,340 --> 00:16:33,000
523
+ ู„ู‚ุฏ ุนู…ุฑุช ู…ู…ู† ุฃุญุจ ุงู„ู…ู‚ุงุจุฑ
524
+
525
+ 132
526
+ 00:16:35,780 --> 00:16:43,800
527
+ ูู†ู„ุงุญุธ ู‡ู†ุง ุฃู† ุงู„ู…ุนุงู†ูŠ ุตุงุฏู‚ุฉ ู†ุงุจุนุฉ ู…ู† ุชุฌุฑุจุฉ ุตุงุฏู‚ุฉ
528
+
529
+ 133
530
+ 00:16:43,800 --> 00:16:53,240
531
+ ูˆูƒุงูุฉ ุจุงู„ู…ูˆุช ูˆุงุนุธุงูˆุบุงู„ุจุง ู…ุง ูŠูƒูˆู† ุดุนุฑ ุงู„ุฑุซุงุก ุตุงุฏู‚
532
+
533
+ 134
534
+ 00:16:53,240 --> 00:17:00,300
535
+ ุตุงุฏู‚ุง ููƒูŠู ุงุฐุง ูƒุงู† ุงูŠุถุง ุงูˆ ุงุถุงูู†ุง ุณุจุจ ุงุฎุฑ ูˆู‡ูˆ
536
+
537
+ 135
538
+ 00:17:00,300 --> 00:17:05,740
539
+ ุงู„ุนู„ุงู‚ุฉ ุงู„ุญู…ูŠู…ูŠุฉ ุจูŠู† ุงู„ุดุงุนุฑ ูˆุงู„ู…ุฑุซู‰
540
+
541
+ 136
542
+ 00:17:10,110 --> 00:17:20,230
543
+ ูƒุฐู„ูƒ ู†ุฑู‰ ุฃู† ุงู„ู„ุบุฉ ุฃูˆ ุงู„ุฃุณู„ูˆุจ ูŠูƒุงุฏ ูŠูƒูˆู† ุฃู‚ูˆู‰ ูˆุฃุฌุฒู„
544
+
545
+ 137
546
+ 00:17:20,230 --> 00:17:27,050
547
+ ู…ู…ุง ุฑุฃูŠู†ุงู‡ ููŠ ุดุนุฑูŠ ุงู„ู…ุฌู†ูˆู† ูˆุงู„ู„ู‡ูˆ ู…ุซู„ุง ุฃู…ุง ู‚ุตูŠุฑุฉ
548
+
549
+ 138
550
+ 00:17:27,050 --> 00:17:31,450
551
+ ุงู„ู‡ุฌุงุก ูู†ู„ุงุญุธ ููŠ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุฃู† ุฃุจุง ู†ูˆุงุณ ู„ู… ูŠู‚ู
552
+
553
+ 139
554
+ 00:17:31,450 --> 00:17:36,620
555
+ ุนู†ุฏ ุญุฏูˆุฏ ุณู„ุจ ุงู„ู‚ูŠู…ุฉ ุงู„ุฎู„ู‚ูŠุฉ ู…ู† ุงู„ู…ู‡ุฌูˆู…ุจู„ ู†ุฑุงู‡ ูŠุฌุนู„
556
+
557
+ 140
558
+ 00:17:36,620 --> 00:17:43,020
559
+ ู…ู† ุงู„ู…ู‡ุฌูˆุก ุฃุถุญูˆูƒุฉ ูŠุชู†ุถุฑ ุจู‡ุง ููŠ ู…ุซู„ ู‚ูˆู„ู‡ ูŠู‡ุฌูˆ
560
+
561
+ 141
562
+ 00:17:43,020 --> 00:17:51,400
563
+ ุฅุณู…ุงุนูŠู„ ุงุจู† ู†ูˆุจุฎุช ูŠู‚ูˆู„ ุฎุจุฒ ุฅุณู…ุงุนูŠู„ ูƒุงู„ูˆุดูŠ ุฅุฐุง ู…ู†
564
+
565
+ 142
566
+ 00:17:51,400 --> 00:18:00,450
567
+ ุดู‚ู‡ ูŠุฑูุนุนุฌุจู‹ุง ู…ู† ุฃุซุฑ ุงู„ุตู†ุนุฉ ููŠู‡ ูƒูŠู ูŠูุฎูู‰ ุฅู† ุฑูุงู‚ูƒ
568
+
569
+ 143
570
+ 00:18:00,450 --> 00:18:08,450
571
+ ู‡ุฐุง ุฃู„ุทู ุงู„ุฃู…ุฉ ูƒูุฉ ูู‡ู†ุง ุงู„ุดุงุนุฑ ู„ุง ูŠู‚ู ุนู†ุฏ ุณู„ุจ
572
+
573
+ 144
574
+ 00:18:08,450 --> 00:18:15,550
575
+ ุงู„ู…ู‡ุฌูˆ ุฃูˆ ุณู„ุจ ุงู„ุฑุฐุงุฆู„ ู…ู† .. ุณู„ุจ ุงู„ูุถุงุก ู…ู† ุงู„ู…ู‡ุฌูˆ
576
+
577
+ 145
578
+ 00:18:15,550 --> 00:18:20,710
579
+ ูˆุงู„ุณุงู‚ ุงู„ุฑุฐุงุฆู„ ุจู‡ ูู„ู… ูŠุนู†ูŠ .. ูู„ู… ูŠู‚ู ุนู†ุฏ ูˆุตูŠู‡
580
+
581
+ 146
582
+ 00:18:20,710 --> 00:18:31,430
583
+ ุจุงู„ุจุฎู„ ุฅู†ู…ุง ุฌุนู„ุฌุนู„ู‡ ุฃุถุญูˆูƒ ูˆ ุชู†ุฏุฑ ุจู‡ุง ูุนู†ุฏู…ุง
584
+
585
+ 147
586
+ 00:18:31,430 --> 00:18:37,250
587
+ ู‚ุงู„ ุฎุจุฒ ุฅุณู…ุงุนูŠู„ ูƒุงู„ูˆุดูŠ ูŠุนู†ูŠ ูƒุงู„ุซูˆุจ ุงู„ู…ูˆุดูŠ ุงู„ู…ุทุฑุฒ
588
+
589
+ 148
590
+ 00:18:37,250 --> 00:18:43,140
591
+ ุงู„ู…ุฌู…ู„ ุจุฃู†ูˆุงุน ุงู„ูˆุดูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุทุฑูŠุฒูˆู‡ุฐุง ุฏู„ูŠู„ ุนู„ูŠู‡
592
+
593
+ 149
594
+ 00:18:43,140 --> 00:18:53,400
595
+ ุนู„ู‰ ุฃู†ู‡ ูŠุนุธู… ุงู„ุฎุจุฒ ูˆูŠุฌู…ู„ู‡ ู„ุฃู† ุงู„ุฎุจุฒ ู„ุฏูŠู‡ ู…ู‚ุฏุณ
596
+
597
+ 150
598
+ 00:18:53,400 --> 00:19:02,440
599
+ ูˆู…ุนุธู… ูˆุชุนู…ูŠุฎ ู„ู„ุจุฎู„ ู‚ุงู„ ุนุฌุจุง ู…ู† ุฃุซุฑ ุตู†ุนุฉ ููŠู‡ ูƒูŠู
600
+
601
+ 151
602
+ 00:19:02,440 --> 00:19:10,070
603
+ ูŠูุฎูู‰ูŠุนู†ูŠ ุฃู†ู‡ ุญุฑูŠุต ุนู„ู‰ ุฃู† ูŠุจู‚ู‰ ุฑุบูŠู ุงู„ุฎุจุฒ ูƒุงู…ู„ุง
604
+
605
+ 152
606
+ 00:19:10,070 --> 00:19:18,850
607
+ ุบูŠุฑ ู…ู†ู‚ูˆุต ูˆุฅุฐุง ูƒุณุฑ ูŠุนูŠุฏู‡ ูˆูŠู„ุณู‚ู‡ ุจุทุฑูŠู‚ุฉ ู…ุงู‡ุฑุฉ ูƒู…ุง
608
+
609
+ 153
610
+ 00:19:18,850 --> 00:19:26,850
611
+ ูŠูุนู„ ุงู„ุฑูุงุก ุงู„ุฐูŠ ูŠุตู„ุญ ุงู„ุซูŠุงุจ ู„ุฃู†ู‡ ูŠุฒูŠู„ ุฃู…ุงูƒู† ุงู„ุนูŠุจ
612
+
613
+ 154
614
+ 00:19:26,850 --> 00:19:30,430
615
+ ููŠู‡ ุจุทุฑูŠู‚ุฉ ู…ุงู‡ุฑุฉ
616
+
617
+ 155
618
+ 00:19:33,640 --> 00:19:40,960
619
+ ุฃู…ุง ููŠู…ุง ูŠุชุนู„ู‚ ุจุงู„ู…ู‚ุฏู…ุฉ ุงู„ุทู„ุงู„ูŠุฉ ูุฅู† ุฃุจุง ู†ูˆุงุฒ ุฏุนู‰
620
+
621
+ 156
622
+ 00:19:40,960 --> 00:19:50,000
623
+ ุฅู„ู‰ ุชุฑูƒ ุงู„ู…ู‚ุฏู…ุฉ ุงู„ุทู„ุงู„ูŠุฉ ููŠ ุฃูƒุซุฑ ู…ู† ู…ูƒุงู† ูˆู„ูƒู† ู‡ุฐู‡
624
+
625
+ 157
626
+ 00:19:50,000 --> 00:19:57,700
627
+ ุงู„ุฏุนูˆุฉ ู„ู… ุชู„ู‚ู‰ ุงุณุชุฌุงุจุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูˆู„ูƒู†ู‡ุง ู…ู‡ุฏุช ู„
628
+
629
+ 158
630
+ 00:19:58,700 --> 00:20:07,080
631
+ ู…ู‡ุฏุฏ ู‡ุฐู‡ ุงู„ุฏุนูˆุฉ ู„ุชุฑูƒ ุงู„ู…ู‚ุฏู…ุฉ ููŠ ุงู„ุฃุฌุงู„ุฉ ุงู„ู„ุงุญู‚ุฉ
632
+
633
+ 159
634
+ 00:20:07,080 --> 00:20:17,980
635
+ ูˆุฒุนุฒุนุช ุฃูŠุถู‹ุง ุงู„ุดุนุฑุงุก ููŠ ุฃู‡ู…ูŠุฉ ู‡ุฐู‡ ุงู„ู…ู‚ุฏู…ุฉ ูŠู‚ูˆู„ ุฃุจูˆ
636
+
637
+ 160
638
+ 00:20:17,980 --> 00:20:26,270
639
+ ู†ูˆุงุซ ู„ุง ุชุจูƒูŠ ู„ูŠู„ุฉ ูˆู„ุง ุชุทุฑุจ ุฅู„ู‰ ู‡ู†ุฏูŠูˆุงุดุฑุจ ุนู„ู‰ ุงู„ูˆุฑุฏ
640
+
641
+ 161
642
+ 00:20:26,270 --> 00:20:34,010
643
+ ู…ู† ุญู…ุฑุงุก ูƒุงู„ูˆุฑุฏ ูƒุฃุณุง ุฅุฐุง ุญุถุฑุช ููŠ ู‚ู„ุจ ุดุงุฑุจู‡ุง ุฃุฌุฏุชู‡
644
+
645
+ 162
646
+ 00:20:34,010 --> 00:20:40,350
647
+ ุญู…ุฑุชู‡ุง ููŠ ุงู„ุนูŠู† ูˆ ุงู„ุฎุฏ ูุงู„ุฎู…ุฑ ูŠุงู‚ูˆุชุฉ ูˆ ุงู„ูƒุฃุณ ู„ุคู„ุคุฉ
648
+
649
+ 163
650
+ 00:20:40,350 --> 00:20:47,510
651
+ ููŠ ูƒู ุฌุงุฑูŠุฉ ู…ู…ุดูˆู‚ุฉ ุงู„ู‚ุฏ ุชุณู‚ูŠูƒ ู…ู† ูŠุฏู‡ุง ุฎู…ุฑุง ูˆ ู…ู†
652
+
653
+ 164
654
+ 00:20:47,510 --> 00:20:51,830
655
+ ูู…ู‡ุง ุฎู…ุฑุง ูู…ุง ู„ูƒ ู…ู† ุณูƒุฑูŠู† ู…ู† ุจุฏู‡
656
+
657
+ 165
658
+ 00:20:54,780 --> 00:21:02,940
659
+ ูู…ุงู„ูƒ ู…ู† ุณูƒุฑูŠู†ูŠ ู…ู† ุจุฏูŠ ุฃูŠุถู‹ุง ูŠู‚ูˆู„ ุนุงุฌ ุงู„ุดู‚ูŠ ุนู„ู‰
660
+
661
+ 166
662
+ 00:21:02,940 --> 00:21:11,240
663
+ ุฑุณู… ูŠุณุงุฆู„ู‡ ูˆุนุฒุชู‡ ุฃุณุฃู„ ุนู† ุฎู…ุงุฑุฉ ุงู„ุจู„ุฏูŠ ูŠุจูƒูŠ ุนู„ู‰ ุทู„ู„
664
+
665
+ 167
666
+ 00:21:11,240 --> 00:21:17,600
667
+ ุงู„ู…ุงุถูŠู† ู…ู† ุฃุณุฏ ู„ุง ุฏุฑู‘ุฐ ุงู„ุฑูƒู‡ ู‚ู„ ู„ูŠ ู…ู† ุจู†ูˆุง ุฃุณุฏูŠ
668
+
669
+ 168
670
+ 00:21:18,210 --> 00:21:25,630
671
+ ุฏุงุนุฐุง ุนุฏู…ุชูƒ ูˆุงุดุฑุจู‡ุง ู…ุนุชู‚ุฉ ุตูุฑุงุก ุชูุฑู‚ ุจูŠู† ุงู„ุฑูˆุญ
672
+
673
+ 169
674
+ 00:21:25,630 --> 00:21:32,950
675
+ ูˆุงู„ุฌุณุฏู†ู„ุงุญุธ ุฃู†ู‡ ููŠ ู‡ุฐู‡ ุงู„ุฃุดุนุงุฑ ูŠุฏุนูˆ ุฅู„ู‰ ุชุฑูƒ
676
+
677
+ 170
678
+ 00:21:32,950 --> 00:21:40,890
679
+ ุงู„ู…ู‚ุฏู…ุฉ ุงู„ุทู„ุงู„ูŠุฉ ูˆูŠุฏุนูˆ ุฅู„ู‰ ุงู„ู…ู‚ุฏู…ุฉ ุงู„ุฎู…ุฑูŠุฉ ูˆู‡ุฐู‡
680
+
681
+ 171
682
+ 00:21:40,890 --> 00:21:48,850
683
+ ุงู„ุฏุนูˆุฉ ูˆุฅู† ู„ู… ุชู„ู‚ู‰ ุงุณุชุฌุงุจุฉ ูˆุงุณุนุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูƒู…ุง
684
+
685
+ 172
686
+ 00:21:48,850 --> 00:21:55,720
687
+ ุฃู† ุฃุจุง ู†ูˆุงุฒ ู†ูุณู‡ุงุณุชุนู…ู„ ุงู„ู…ู‚ุฏู…ุฉ ุงู„ุทู„ุงู„ูŠุฉ ูƒู…ุง ุฑุฃูŠู†ุง
688
+
689
+ 173
690
+ 00:21:55,720 --> 00:22:02,740
691
+ ู…ู† ู‚ุจู„ ูˆู„ูƒู† ู‡ุฐู‡ ุงู„ุฏุนูˆุฉ ูˆุฅู† ู„ู… ุชู†ุฌุญ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
692
+
693
+ 174
694
+ 00:22:02,740 --> 00:22:07,600
695
+ ุฅู„ุง ุฃู†ู‡ุง ู…ู‡ุฏุช ูˆุฒุนุฒุนุช
696
+
697
+ 175
698
+ 00:22:07,600 --> 00:22:13,640
699
+ ุซู‚ุฉ ุงู„ุดุนุฑุงุก ุจุงู„ู…ู‚ุฏู…ุฉ ู…ู…ุง ุฃุฏู‰ ุฅู„ู‰ ุฅุญุฏุงุซ ุชุทูˆูŠุฑ
700
+
701
+ 176
702
+ 00:22:13,640 --> 00:22:21,190
703
+ ูˆุชุฌุฏูŠุฏ ู„ู„ู…ู‚ุฏู…ุฉ ูƒู…ุง ุฑุฃูŠู†ุง ููŠู…ุง ุณุจู‚ุนู†ุฏู…ุง ุชู†ูˆู„ู†ุง
704
+
705
+ 177
706
+ 00:22:21,190 --> 00:22:22,690
707
+ ู‚ููŠู„ุฉ ุงู„ู…ุฏุนู‰
708
+
709
+ 178
710
+ 00:22:26,560 --> 00:22:34,680
711
+ ุงู„ู‚ุตูŠุฏุฉ ุงู„ุฃุฎูŠุฑุฉ ู‡ูŠ ู‚ุตูŠุฏุฉ ุงู„ุฐู‡ุฏ ูˆู‚ุตูŠุฏุฉ ุงู„ุฐู‡ุฏ ู†ุงู„ุช
712
+
713
+ 179
714
+ 00:22:34,680 --> 00:22:44,260
715
+ ุชุดูƒูŠูƒุง ูˆุดุจู‡ุงุช ุนุฏุฉ ุนู†ุฏ ุงู„ุจุงุญุซูŠู† ูˆุฃุดุงุก ุงู„ุจุนุถ ูู‡ู…
716
+
717
+ 180
718
+ 00:22:44,260 --> 00:22:49,800
719
+ ุฏูˆุงูุน ุงู„ุดุงุนุฑ ูˆุดุฎุตูŠุฉ
720
+
721
+ 181
722
+ 00:22:49,800 --> 00:22:56,630
723
+ ุงู„ุดุงุนุฑ ูˆู…ูƒูˆู†ุงุชู‡ ุงู„ุซู‚ุงููŠุฉ ูˆุงู„ู†ูุณูŠุฉูู…ู†ู‡ู… ู…ู† ู‚ุงู„ ุฅู†
724
+
725
+ 182
726
+ 00:22:56,630 --> 00:23:02,450
727
+ ู…ุง ู†ุณุจ ู…ู† ุดุนุฑ ุงู„ุฐู‡ุฏ ู„ุฃุจูŠ ู†ูˆุงุฒ ู‡ูˆ ุดุนุฑ ู…ู†ุชุญู„ ูŠุนู†ูŠ
728
+
729
+ 183
730
+ 00:23:02,450 --> 00:23:11,530
731
+ ู…ู†ุณูˆุจ ุฅู„ูŠู‡ ูˆู‡ุฐุง ูŠุญุชุงุฌ ุฅู„ู‰ ู†ู‚ุฏ
732
+
733
+ 184
734
+ 00:23:11,530 --> 00:23:19,370
735
+ ูˆุชุญู„ูŠู„ ูู…ู† ู‚ุงู„ ุฃู† ุงู„ุฐู‡ุฏ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุฒ ู‡ูˆ ู…ุฑุญู„ุฉ
736
+
737
+ 185
738
+ 00:23:19,370 --> 00:23:26,550
739
+ ุนุงุจุฑุฉ ู…ู† ู…ุฑุงุญู„ ุญูŠุงุชู‡ุงู„ุดุนูŠุฑูŠุฉ ุซู… ุนุงุฏ ุฅู„ูŠู‡ุง ุซุงู†ูŠุฉ
740
+
741
+ 186
742
+ 00:23:26,550 --> 00:23:36,170
743
+ ูู‡ุฐุง ูŠุนู†ูŠ ู„ูŠุณ ุตุญูŠุญุง ุฑุจู…ุง
744
+
745
+ 187
746
+ 00:23:36,170 --> 00:23:41,010
747
+ ูŠูƒูˆู† ู‡ุฏู ู‡ุคู„ุงุก ุงู„ุฐูŠู† ู‚ุงู„ูˆุง ุฅู† ุงู„ุฐู‡ุฏ ุนู†ุฏ ุฃุจูˆ ู†ูˆุงุฒ
748
+
749
+ 188
750
+ 00:23:41,010 --> 00:23:47,070
751
+ ู…ุฑุญู„ุฉ ุนุงุจุฑุฉ ุฃุฑุงุฏูˆุง ุฃู† ูŠุญุงูุธูˆุง ุนู„ู‰ ุงู„ุนุงู„ู…ูŠุฉุนุงู„ู…ูŠุฉ
752
+
753
+ 189
754
+ 00:23:47,070 --> 00:23:55,250
755
+ ุงู„ู…ุฌู†ูˆู† ุงู„ู„ุงู‡ูˆ ุนู†ุฏ ุงุจู† ูˆุงุณ ูˆูŠู„ุชู‚ูˆุง ู…ุนุงู‡ ุนู„ู‰ ู‡ุฐุง
756
+
757
+ 190
758
+ 00:23:55,250 --> 00:23:59,750
759
+ ุงู„ุตุนูŠุฏ ุงูˆ ุนู„ู‰ ู‡ุฐู‡ ุงู„ู…ูƒุงู†ุฉ
760
+
761
+ 191
762
+ 00:24:01,660 --> 00:24:07,380
763
+ ูˆู„ูƒู† ุงู„ุญู‚ูŠู‚ุฉ ุฃู† ุงู„ุฐู‡ุฏ ุนู†ุฏ ุฃุจูˆ ู†ูˆุงุณ ูƒุงู† ู…ุฑุญู„ุฉ ุฃุฎูŠุฑุฉ
764
+
765
+ 192
766
+ 00:24:07,380 --> 00:24:14,380
767
+ ูˆู„ูŠุณ ู…ุฑุญู„ุฉ ุนุงุจุฑุฉ ูŠุนู†ูŠ ูƒุงู†ุช ููŠ ูˆุณุท ุญูŠุงุชู‡ ุซู… ุนุงุฏ ุฅู„ู‰
768
+
769
+ 193
770
+ 00:24:14,380 --> 00:24:20,160
771
+ ุญุงู„ุชู‡ ุงู„ุฃูˆู„ู‰ ูƒุงู†ุช ู…ุฑุญู„ุฉ ุฃุฎูŠุฑุฉ ูˆุฏู„ูŠู„ ุนู„ู‰ ุฐู„ูƒ ุฃู†
772
+
773
+ 194
774
+ 00:24:20,160 --> 00:24:25,980
775
+ ุงู„ุฅู…ุงู… ุงู„ุดุงุจุนูŠ ุฑุถูŠ ุงู„ู„ู‡ ุนู†ู‡ ุฃุชู‰ ุฃุจูˆ ู†ูˆุงุณ ูˆู‡ูˆ ูŠุฌูˆุฏ
776
+
777
+ 195
778
+ 00:24:25,980 --> 00:24:34,760
779
+ ุจู†ูุณู‡ ูˆู‡ูˆ ูŠุญุชุถุฑูุณุฃู„ู‡ ู…ุงุฐุง ุฃุนุฏุฏุช ู„ู‡ุฐุง ุงู„ูŠูˆู… ูู‚ุงู„
780
+
781
+ 196
782
+ 00:24:34,760 --> 00:24:41,900
783
+ ุฃุจูˆ ู†ูˆุงุฒ ุชุนุธู…ู†ูŠ ุฐู†ุจูŠ ูู„ู…ู‘ุง ู‚ุฑู†ุชู‡ ุจุนููˆูƒ ูƒุงู† ุนููˆูƒ
784
+
785
+ 197
786
+ 00:24:41,900 --> 00:24:49,120
787
+ ุฃุนุธู…ู‡ุง ู‡ุฐุง ุฏู„ูŠู„ ุนู„ู‰ ุฃู† ุงู„ุฐู‡ุฏ ู‡ูˆ ู…ุฑุญู„ุฉ ุฃุฎูŠุฑุฉ ููŠ
788
+
789
+ 198
790
+ 00:24:49,120 --> 00:24:58,420
791
+ ุญูŠุงุฉ ุฃุจูŠ ู†ูˆุงุฒ ุงู„ุฃู…ุฑ ุงู„ุขุฎุฑ ุฃู† ุจุนุถ ุงู„ุจุงุญุซูŠู†ู†ูู‰ ุดุนุฑ
792
+
793
+ 199
794
+ 00:24:58,420 --> 00:25:06,420
795
+ ุงู„ุฐู‡ุฏ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุฒ ูˆู‚ุงู„ ุฅู†ู‡ ุดุนุฑ ุฏุฎูŠู„ ูˆุงู„ุญู‚ูŠู‚ุฉ ุฃู†
796
+
797
+ 200
798
+ 00:25:06,420 --> 00:25:15,170
799
+ ู‡ุฐุง ุงู„ุดุนุฑ ุดุนุฑ ุงู„ุฐู‡ุฏ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุฒุฌุงุก ู…ู† ุทุฑูŠู‚ูŠู† ุทุฑูŠู‚
800
+
801
+ 201
802
+ 00:25:15,170 --> 00:25:22,390
803
+ ุฃุจูŠ ุจูƒุฑ ุงู„ุตูˆู„ูŠ ูˆุทุฑูŠู‚ ุญู…ุฒุฉ ุงู„ุฃุตูุงู†ูŠ ูˆูˆุฑุฏ ู‡ุฐุง ุงู„ุดุนุฑ
804
+
805
+ 202
806
+ 00:25:22,390 --> 00:25:32,490
807
+ ู…ู† ุทุฑูŠู‚ูŠู† ูŠุฏู„ ุนู„ู‰ ุตุญุฉ ู†ุณุจุชู‡ ุฅู„ู‰ ุฃุจูŠ ู†ูˆุงุฒ ู‡ุฐุง
808
+
809
+ 203
810
+ 00:25:32,490 --> 00:25:39,410
811
+ ุงู„ุดูŠุก ุงู„ุดูŠุก ุงู„ุซุงู„ุซ ุฃู† ู‡ุฐุง ุงู„ุดุนุฑ ุงู„ุดุนุฑ ุงู„ุฐู‡ุฏ ู„ูŠุณููŠ
812
+
813
+ 204
814
+ 00:25:39,410 --> 00:25:48,070
815
+ ูŠุนู†ูŠ ู„ูŠุณ ุฎุงุฑุฌ ุงู„ุชูˆู‚ุน ุจู„ ุฅู†ู‡ ู†ุชูŠุฌุฉ ู…ู†ุทู‚ูŠุฉ ู„ุฐู„ูƒ
816
+
817
+ 205
818
+ 00:25:48,070 --> 00:25:55,370
819
+ ุงู„ุตุฑุงุน ุงู„ุฏุงุฎู„ ุงู„ุฐูŠ ูƒุงู† ูŠุดุชุบู„ ุฃูˆ ูŠุดุชุนู„ ููŠ ู†ูุณ ุฃุจู†
820
+
821
+ 206
822
+ 00:25:55,370 --> 00:26:03,490
823
+ ูˆุงุณ ุฅู†ู‡ ุตุฑุงุน ุจูŠู† ู‚ูˆุฉ ุงู„ุฎูŠุฑ ูˆ ู‚ูˆุฉ ุงู„ุดุฑ ุฃูˆ ู‚ูŠู… ุงู„ุฎูŠุฑ
824
+
825
+ 207
826
+ 00:26:03,490 --> 00:26:11,870
827
+ ูˆ ู‚ูŠู… ุงู„ุดุฑุงู„ุซู‚ุงูุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ุงู„ุชูŠ ุชุฑุนุฑุน ููŠู‡ุง ุฃุจูˆ
828
+
829
+ 208
830
+ 00:26:11,870 --> 00:26:24,050
831
+ ู†ูˆุงุณ ู„ู… ุชูƒู† ูุชุฑุฉ ู‡ูŠู†ุฉ ุจู„ ูƒุงู†ุช ู‚ูˆูŠุฉ ุฌุฏุง ูˆุบุฒูŠุฑุฉ ุฌุฏุง
832
+
833
+ 209
834
+ 00:26:24,050 --> 00:26:32,950
835
+ ูˆู„ุฐู„ูƒ ูƒุงู†ุช ุตุญุฑุฉ ุงู„ุถู…ูŠุฑ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุณ ู‚ูˆูŠุฉ ุฌุฏุงู„ู‚ูˆุฉ
836
+
837
+ 210
838
+ 00:26:32,950 --> 00:26:43,870
839
+ ุงู„ุซู‚ุงูุฉ ุงู„ูƒุงู…ู†ุฉ ููŠ ู†ูุณู‡ ูˆุณุนุชู‡ุง ูˆุดู…ูˆู„ู‡ุง ู„ูƒู„ ู…ู†ุงุญูŠ
840
+
841
+ 211
842
+ 00:26:43,870 --> 00:26:51,150
843
+ ู…ูƒูˆู†ุงุชู‡ ุงู„ู†ูุณูŠุฉ ูˆุงู„ุซู‚ุงููŠุฉ ูู„ูŠุณ
844
+
845
+ 212
846
+ 00:26:51,150 --> 00:26:58,630
847
+ ุบุฑูŠุจู‹ุง ุฃู† ูŠูƒูˆู† ุฒุงู‡ุฏู‹ุง ุฅู†ู…ุง ุงู„ุบุฑูŠุจ ุฃู† ูŠูƒูˆู† ุบูŠุฑ ุฐู„ูƒ
848
+
849
+ 213
850
+ 00:27:01,790 --> 00:27:10,130
851
+ ุฃูŠุถู‹ุง ูŠู„ุงุญุธ ุฃู† ุดุนุฑ ุงู„ุฐู‡ุฏ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุฒ ู‡ูˆ ู†ุชูŠุฌุฉ
852
+
853
+ 214
854
+ 00:27:10,130 --> 00:27:15,430
855
+ ู†ุชูŠุฌุฉ ุฅูŠู‡ุŸ ุฑุฏ ูุนู„ ุนู†ูŠูุฉ ูˆู‚ูˆูŠุฉ ุฃู‚ูˆู‰ ู…ู† ุงู„ู…ุฌู†ูˆู† ุงู„ู„ูŠ
856
+
857
+ 215
858
+ 00:27:15,430 --> 00:27:23,040
859
+ ู‡ูˆ ุงู„ู„ู‡ูˆ ูˆุงู„ุชุนุงุจุณ ุงู„ุฐูŠ ุบู„ู‚ ููŠู‡ู„ูุชุฑุฉ ู…ู† ุงู„ุฒู…ู† ูƒุฐู„ูƒ
860
+
861
+ 216
862
+ 00:27:23,040 --> 00:27:30,800
863
+ ู…ุง ูŠุคูƒุฏ ุนู„ู‰ ุฃู† ุงู„ุฐู‡ุฏ ู‡ูˆ ุญู‚ูŠู‚ุฉ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุณ ุฃู†ู‡ ุฌุงุก
864
+
865
+ 217
866
+ 00:27:30,800 --> 00:27:36,880
867
+ ู…ุชูˆุงูู‚ุง ุฃูˆ ู…ูˆุงูู‚ุง ู„ุชุนุงู„ูŠู… ุงู„ุฅุณู„ุงู… ูˆู„ู… ูŠุทุนู† ููŠ ุดุนุฑู‡
868
+
869
+ 218
870
+ 00:27:36,880 --> 00:27:46,240
871
+ ุฃุญุฏ ุฃูˆ ุฃุนุงุจู‡ ุฃูˆ ุงู†ุชู‚ุฏู‡ููŠู‚ูˆู„ ู…ุซู„ุง ูŠุง ุทุงู„ุจ ุงู„ุฏู†ูŠุง
872
+
873
+ 219
874
+ 00:27:46,240 --> 00:27:53,820
875
+ ู„ูŠุฌู…ุนู‡ุง ุฌู…ุญุช ุจูƒ ุงู„ุขู…ุงู„ ูุงู‚ุชุตุฏูŠ ูˆุงู„ู‚ุตุฏ ุฃุญุณู† ู…ุง ุนู…ู„ุช
876
+
877
+ 220
878
+ 00:27:53,820 --> 00:27:59,680
879
+ ุจู‡ ูุงุณู„ูƒ ุณุจูŠู„ ุงู„ุฎูŠุฑ ูˆุงุฌุชู‡ุฏูŠ ูˆุนู…ู„ ู„ุฏุงุฑ ุฃู† ุชุฌุนู„ู‡ุง
880
+
881
+ 221
882
+ 00:27:59,680 --> 00:28:02,500
883
+ ุฏุงุฑ ุงู„ู…ู‚ุงู…ุฉ ุขุฎุฑ ุงู„ุฃุจุฏ
884
+
885
+ 222
886
+ 00:28:05,640 --> 00:28:14,360
887
+ ุฅุฐุง ุงู„ุฐู‡ุจ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุณ ุฐู‡ุจ ุฅุณู„ุงู…ูŠ ูˆุญู‚ูŠู‚ูŠ ูˆู„ูŠุณ
888
+
889
+ 223
890
+ 00:28:14,360 --> 00:28:22,100
891
+ ู…ู†ุชุญุฑุง ูˆู„ูŠุณ ุฎุงุฑุฌุง ุนู† ุฏุงุฆุฑุฉ ุงู„ุชูˆู‚ุน ูู‡ูˆ ุดูŠุก ู…ุชูˆู‚ุน
892
+
893
+ 224
894
+ 00:28:22,100 --> 00:28:28,640
895
+ ู…ุชูˆู‚ุน ูˆุดูŠุก ุฃุตูŠู„ุจุฃุตุงู„ุฉ ุงู„ุซู‚ุงูุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ุงู„ู…ูˆุฌูˆุฏุฉ
896
+
897
+ 225
898
+ 00:28:28,640 --> 00:28:36,320
899
+ ููŠ ู†ูุณู‡ ูˆุงู„ุชูŠ ุชู„ู‚ุงู‡ุง ููŠ ู…ุณุงุฌุฏ ุงู„ุจุตุฑุฉ ูˆุญูุธู‡ ู„ู„ู‚ุฑุขู†
900
+
901
+ 226
902
+ 00:28:36,320 --> 00:28:42,880
903
+ ูˆุงู„ุญุฏูŠุซ ูˆุงู„ุดุนุฑ ุงู„ุนุฑุจูŠ ูู‡ุฐุง ุฏู„ูŠู„ ุนู„ู‰ ุฃู† ุงู„ุฐู‡ุฏ ู‡ูˆ
904
+
905
+ 227
906
+ 00:28:42,880 --> 00:28:47,760
907
+ ุญู‚ูŠู‚ุฉ ูˆู„ูŠุณ ุฃุณุทูˆุฑุฉ
908
+
909
+ 228
910
+ 00:28:50,830 --> 00:28:55,070
911
+ ู‡ุฐุง ูˆุจุงู„ู„ู‡ ุงู„ุชูˆููŠู‚ ูˆุตู„ู‰ ุงู„ู„ู‡ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ ูˆุนู„ู‰
912
+
913
+ 229
914
+ 00:28:55,070 --> 00:28:58,390
915
+ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณูŠู…ุง ูƒุซูŠุฑุง
916
+
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/FF2OJnsBtxQ.srt ADDED
@@ -0,0 +1,1307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:05,030 --> 00:00:08,510
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:08,510 --> 00:00:13,330
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ู‹ุง ูƒุซูŠุฑู‹ุง ููŠ ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ
8
+
9
+ 3
10
+ 00:00:13,330 --> 00:00:20,030
11
+ ู†ุชู†ุงูˆู„ ุงู„ู…ุคุซุฑุงุช ุงู„ุงุฌุชู…ุงุนูŠุฉ ููŠ ุงู„ุฃุฏุจ ุงู„ุนุจุงุณูŠ ูƒู†ุง ููŠ
12
+
13
+ 4
14
+ 00:00:20,030 --> 00:00:25,210
15
+ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุณุงุจู‚ุฉ ู‚ุฏ ุฐูƒุฑู†ุง ุจุนุถู‹ุง ู…ู† ู‡ุฐู‡ ุงู„ู…ุคุซุฑุงุช
16
+
17
+ 5
18
+ 00:00:25,210 --> 00:00:30,750
19
+ ุงู„ู…ุคุซุฑุงุช ุงู„ุชูŠ ู‡ูŠ ุงู„ุญุถุงุฑุฉ ูˆุงู„ุซุฑุงุก ูˆุงู„ุชุฑู ูˆู‡ุฐุง ุญุตู„
20
+
21
+ 6
22
+ 00:00:30,750 --> 00:00:34,870
23
+ ุจุณุจุจ ุงู„ุชู…ุงุฒุฌ ุงู„ุฌู†ุณูŠ ูˆุงู„ุญุถุงุฑูŠ ูˆุงู„ุซู‚ุงููŠ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
24
+
25
+ 7
26
+ 00:00:35,110 --> 00:00:40,630
27
+ ุจูŠู† ุงู„ุนุฑุจูŠ ูˆุงู„ุนุฌู…ูŠ ูˆุฃุฏู‰ ุฐู„ูƒ ุฅู„ู‰ ุชู†ูˆุน ุซู‚ุงููŠ ูˆุญุถุงุฑูŠ
28
+
29
+ 8
30
+ 00:00:40,630 --> 00:00:47,830
31
+ ุฃูŠุถู‹ุง ุซุฑุงุก ูˆุงู„ุชุฑู ุฃุฏู‰ ุฅู„ู‰ ุญุตูˆู„ ุงู„ุฑูุงู‡ูŠุฉ ุงู„ุชูŠ ู‡ูŠ ููˆู‚
32
+
33
+ 9
34
+ 00:00:47,830 --> 00:00:52,090
35
+ ุงู„ุญุฏ ุงู„ูƒูุงูŠุฉ ุงู„ุชูŠ ูƒุงู† ูŠุณุนู‰ ุนู„ูŠู‡ุง ุงู„ุนุฑุจูŠ ููŠ ุงู„ุนุตูˆุฑ
36
+
37
+ 10
38
+ 00:00:52,090 --> 00:00:57,540
39
+ ุงู„ุณุงุจู‚ุฉ ูƒุงู† ุงู„ุนุฑุจูŠ ููŠ ุงู„ุณุงุจู‚ ูŠู‡ุชู… ุจุชุญู‚ูŠู‚ ุงู„ูƒูุงูŠุฉ
40
+
41
+ 11
42
+ 00:00:57,540 --> 00:01:03,540
43
+ ุฃู…ุง ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูุฃุตุจุญ ูŠุจุญุซ ุนู† ุงู„ุฑูุงู‡ูŠุฉ ูˆู‡ุฐุง ูˆู„ุฏ
44
+
45
+ 12
46
+ 00:01:03,540 --> 00:01:08,040
47
+ ููŠ ู†ูุณู‡ ุงุชู‘ู†ุนู…ุงู‹ ูˆุงู„ุฅุณุฑุงู ููŠ ุงู„ู…ุธุงู‡ุฑ ุงู„ุงุฌุชู…ุงุนูŠุฉ
48
+
49
+ 13
50
+ 00:01:08,040 --> 00:01:14,500
51
+ ูˆุงู„ู…ุจุงู„ุบุฉ ููŠ ูˆุณุงุฆู„ ุงู„ุฒูŠู†ุฉ ูˆุงู„ุฒุฎุฑู ูˆู‡ุฐุง ุฃุฏู‰ ุจุฏูˆุฑู‡
52
+
53
+ 14
54
+ 00:01:14,500 --> 00:01:21,940
55
+ ุฅู„ู‰ ุฎู„ู‚ ุฅุญุณุงุณ ุฌู…ุงู„ ุนู…ูŠู‚ ููŠ ุงู„ู†ูุณ ููŠ ุงู„ุฃุฏุจ ุงู„ุนุฑุจูŠ
56
+
57
+ 15
58
+ 00:01:21,940 --> 00:01:28,160
59
+ ูุงุฑุชู‚ู‰ ุงู„ุนู‚ู„ ูˆุฑู‚ู‰ ุงู„ุฅุญุณุงุณ ุฃูŠุถู‹ุง ุชุญุฏุซู†ุง ุนู† ุงู„ุฑู‚ูŠู‚ ูˆ
60
+
61
+ 16
62
+ 00:01:28,160 --> 00:01:33,980
63
+ ุงู„ุฌูˆุงุฑูŠ ูˆูƒุงู† ู„ู‡ ุชุฃุซูŠุฑ ููŠ ุชุดูƒูŠู„ ุธุงู‡ุฑุฉ ุฌุฏูŠุฏุฉ ุนุฑูุช
64
+
65
+ 17
66
+ 00:01:33,980 --> 00:01:39,080
67
+ ุจุธุงู‡ุฑุฉ ุงู„ุชุบุฐูŠ ุจุงู„ุบู„ู…ุงู† ู…ู† ุฑูˆุงุฏู‡ุง ู…ุทูŠู‘ุน ุงุจู† ุฅูŠุงุณ
68
+
69
+ 18
70
+ 00:01:39,080 --> 00:01:46,510
71
+ ูˆูˆู„ุจุฉ ุงุจู† ุงู„ุญุจุงุจ ูˆุฃุจูˆ ู†ูˆุงุณ ุฃูŠุถู‹ุง ู‡ุฐู‡ ุงู„ุธุงู‡ุฑุฉุŒ
72
+
73
+ 19
74
+ 00:01:46,510 --> 00:01:51,950
75
+ ุธุงู‡ุฑุฉ ุงู„ุฑู‚ูŠู‚ ูˆุงู„ุฌูˆุงุฑูŠ ุฃุญุฏุซุช ุฅุญุณุงุณู‹ุง ุนู…ูŠู‚ู‹ุง ุจุงู„ุฌู…ุงู„
76
+
77
+ 20
78
+ 00:01:51,950 --> 00:01:57,250
79
+ ูˆุถุนุช ุชุตูˆุฑู‹ุง ุฌู…ุงู„ูŠู‹ุง ุนู†ุฏ ุดุนุฑ ุงู„ุนุจุงุณูŠ ู„ู„ู…ุฑุฃุฉ
80
+
81
+ 21
82
+ 00:01:57,250 --> 00:02:03,630
83
+ ูˆุฃูŠุถู‹ุง ูˆู„ุฏ ุฅุญุณุงุณู‹ุง ุฑู‚ูŠู‚ู‹ุง ุนู†ุฏ ุงู„ุดุนุฑุงุก ูˆู‡ุฐุง ุจุฏูˆุฑู‡
84
+
85
+ 22
86
+ 00:02:03,630 --> 00:02:11,630
87
+ ุฃุฏู‰ ุฅู„ู‰ ุชุฑู‚ูŠู‚ ู„ุบุฉ ุงู„ุดุนุฑ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุฃูŠุถู‹ุง ูƒุงู† ู…ู†
88
+
89
+ 23
90
+ 00:02:11,630 --> 00:02:17,610
91
+ ุชุฃุซูŠุฑ ุงู„ุฑู‚ูŠู‚ ูˆุงู„ุฌูˆุงุฑูŠ ุงุฒุฏู‡ุงุฑ ูู† ุงู„ุบู†ุงุก ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
92
+
93
+ 24
94
+ 00:02:17,610 --> 00:02:23,730
95
+ ูˆู‡ูˆ ุจุฏูˆุฑู‡ ุฃุนุทู‰ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู…ุคุซุฑุงุช ููŠ ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ
96
+
97
+ 25
98
+ 00:02:23,730 --> 00:02:31,510
99
+ ู…ุซู„ ุชุฑู‚ูŠู‚ ู„ุบุฉ ุงู„ุดุนุฑ ูˆูˆุฌุฏู†ุง ุฃูˆุฒุงู†ู‹ุง ุฎููŠูุฉ ูˆู…ุฌุฒูˆุกุฉ
100
+
101
+ 26
102
+ 00:02:31,510 --> 00:02:36,720
103
+ ุชุธู‡ุฑ ุจูƒุซุฑุฉ ููŠ ู‡ุฐุง ุงู„ุดุนุฑ ุฃูŠุถู‹ุง ูˆุฌุฏู†ุง ุงู„ู…ู‚ุทุนุงุช
104
+
105
+ 27
106
+ 00:02:36,720 --> 00:02:44,400
107
+ ุงู„ุดุนุฑูŠุฉ ุฃูˆ ุงู„ู‚ุตุงุฆุฏ ุฐุงุช ุงู„ุฃุจูŠุงุช ุงู„ู…ุญุฏูˆุฏุฉ ุฅุฐู† ุชุฑูƒุช
108
+
109
+ 28
110
+ 00:02:44,400 --> 00:02:50,280
111
+ ุธุงู‡ุฑุฉ ุงู„ุฑู‚ูŠู‚ ูˆุงู„ุฌูˆุงุฑูŠ ุฃุซุฑู‹ุง ููŠ ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ูƒุฐู„ูƒ
112
+
113
+ 29
114
+ 00:02:50,280 --> 00:02:58,260
115
+ ูˆุฌุฏู†ุง ุตูˆุฑู‹ุง ุฅุจุฏุงุนูŠุฉ ุฌุฏูŠุฏุฉ ูˆูƒุฐู„ูƒ ูˆุฌุฏู†ุง ุชู…ุฑุฏู‹ุง ุนู„ู‰
116
+
117
+ 30
118
+ 00:02:58,260 --> 00:03:03,780
119
+ ู…ู‚ุฏู…ุฉ ุงู„ู‚ุตูŠุฏุฉ ุงู„ุนุฑุจูŠุฉ ุฃูŠุถู‹ุง ุชุญุฏุซู†ุง ููŠ ุงู„ู„ู‚ุงุก ุงู„ุณุงุจู‚
120
+
121
+ 31
122
+ 00:03:03,780 --> 00:03:07,280
123
+ ุนู† ุงู„ู…ุฌูˆู† ูˆุงู„ู„ู‡ูˆ ูˆู‚ู„ู†ุง ุฅู† ู‡ุฐู‡ ุธุงู‡ุฑุฉ ุบูŠุฑ ุนุฑุจูŠุฉ
124
+
125
+ 32
126
+ 00:03:07,280 --> 00:03:13,780
127
+ ู„ุฃู† ู…ู†ุดุฃู‡ุง ุงู„ุชุฌุงูˆุฒุŒ ุชุฌุงูˆุฒ ุงู„ุญุฏ ุงู„ุทุจูŠุนูŠ
128
+
129
+ 33
130
+ 00:03:13,780 --> 00:03:21,260
131
+ ู„ู„ุดู‡ูˆุงุช ุงู„ุชูŠ ุธู‡ุฑุช ููŠ ุงู„ุญุถุงุฑุฉ ุงู„ูุงุฑุณูŠุฉ ูˆุงู†ุชู‚ู„ุช ุฅู„ู‰
132
+
133
+ 34
134
+ 00:03:21,260 --> 00:03:25,860
135
+ ุงู„ุนุฑุจ ุชุญุช ุชุฃุซูŠุฑ ุงู„ุญุฑูŠุฉ ุงู„ู…ุณุฑูุฉ ุงู„ุชูŠ ุชุญุฏุซู†ุง ุนู†ู‡ุง ููŠ
136
+
137
+ 35
138
+ 00:03:25,860 --> 00:03:31,100
139
+ ุงู„ู…ุคุซุฑุงุช ุงู„ุณูŠุงุณูŠุฉ ููˆุฌุฏู†ุง ุชุฌุงูˆุฒู‹ุง ููŠ ุงู„ุชุบุฐูŠ
140
+
141
+ 36
142
+ 00:03:31,100 --> 00:03:38,120
143
+ ุจุงู„ุบู„ู…ุงู† ูˆุงู„ุชุบุฐูŠ ุจุงู„ุตูุงุช ุงู„ุตุฑูŠุญุฉ ู„ู„ู…ุฑุฃุฉ ุฃูˆ ู…ูุงุชู†
144
+
145
+ 37
146
+ 00:03:38,120 --> 00:03:43,460
147
+ ุงู„ู…ุฑุฃุฉ ูˆุฑุฃูŠู†ุง ุฃู† ุงู„ุดุนุฑุงุก ู‚ุฏ ุฃูƒุซุฑ ู…ู† ุงู„ุญุฏูŠุซ ุนู†
148
+
149
+ 38
150
+ 00:03:43,460 --> 00:03:48,740
151
+ ุงู„ุฎู…ุฑ ูˆูˆุตููˆุง ู…ุฌุงู„ุณู‡ุง ูˆุจู„ุบูˆุง ููŠ ู‡ุฐู‡ ุงู„ุดู‡ูˆุฉ ุญุชู‰
152
+
153
+ 39
154
+ 00:03:48,740 --> 00:03:55,500
155
+ ุฃุฎุฑุฌุชู‡ู… ู…ู† ุงู„ุฏูŠู† ูุชุฌุงูˆุฒูˆุง ุงู„ุฃูˆุงู…ุฑ ุงู„ุฏูŠู†ูŠุฉ ูˆุงู„ุชุนุฏูŠ
156
+
157
+ 40
158
+ 00:03:55,500 --> 00:04:00,820
159
+ ุนู„ู‰ ุงู„ุนู‚ูŠุฏุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ูƒู…ุง ุจูŠู†ุง ููŠ ุงู„ู„ู‚ุงุก ุงู„ุณุงุจู‚
160
+
161
+ 41
162
+ 00:04:00,820 --> 00:04:07,520
163
+ ุงู„ู†ู‚ุทุฉ ุงู„ุชูŠ ู†ุดูŠุฑ ุฅู„ูŠู‡ุง ุฃูŠุถู‹ุง ู…ู† ุงู„ุธูˆุงู‡ุฑ ุงู„ุงุฌุชู…ุงุนูŠุฉ
164
+
165
+ 42
166
+ 00:04:07,520 --> 00:04:15,040
167
+ ู‡ูŠ ุงู„ุดุนูˆุจูŠุฉ ูˆุงู„ุฒู†ุฏู‚ุฉ ูˆู…ุนู†ู‰ ุงู„ุดุนูˆุจูŠุฉ ู‡ูŠ ุชูุถูŠู„ ุบูŠุฑ
168
+
169
+ 43
170
+ 00:04:15,040 --> 00:04:24,070
171
+ ุงู„ุนุฑุจูŠ ุนู„ู‰ ุฐู†ุจ ุงู„ุฌู†ุณ ุงู„ุนุฑุจูŠ ุชูุถูŠู„ ุบูŠุฑ ุนุฑุจูŠ ุนู„ู‰ ุฐู†ุจ ุงู„ุฌู†ุณ
172
+
173
+ 44
174
+ 00:04:24,070 --> 00:04:29,670
175
+ ุงู„ุนุฑุจูŠ ูˆู…ุนู„ูˆู… ุฃู† ุงู„ุฅุณู„ุงู… ู‚ุฏ ุญุงุฑุจ ุงู„ุดุนูˆุจูŠุฉ ุงุจุชุฏุงุกู‹
176
+
177
+ 45
178
+ 00:04:29,670 --> 00:04:35,110
179
+ ูˆุฌุนู„ ู…ู‚ูŠุงุณ ุงู„ุชูุงุฎุฑ ู‡ูˆ ุงู„ุชู‚ูˆู‰ ูู‚ุงู„ ุชุนุงู„ู‰ ุฅู† ุฃูƒุฑู…ูƒู…
180
+
181
+ 46
182
+ 00:04:35,110 --> 00:04:40,350
183
+ ุนู†ุฏ ุงู„ู„ู‡ ุฃุชู‚ุงูƒู… ูˆู‚ุงู„ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู…ุŒ ยซู„ุง ูุฑู‚
184
+
185
+ 47
186
+ 00:04:40,350 --> 00:04:47,090
187
+ ู„ุนุฑุจูŠ ุนู„ู‰ ุนุฌู…ูŠ ุฅู„ุง ุจุงู„ุชู‚ูˆู‰ยป ูˆูƒุงู† ู„ุณูŠุทุฑุฉ ุงู„ุฑูˆู…ุŒ
188
+
189
+ 48
190
+ 00:04:47,090 --> 00:04:53,770
191
+ ู„ุณูŠุทุฑุฉ ุงู„ูุฑุณ ููŠ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ุงู†ุทุจุนุช ุงู„ุญูŠุงุฉ ุจุทุงุจุน
192
+
193
+ 49
194
+ 00:04:53,770 --> 00:04:59,830
195
+ ูุงุฑุณูŠ ูˆุฐู„ูƒ ู„ุฃู† ุงู„ูุฑุณ ูƒุงู† ู„ู‡ู… ุฏูˆุฑ ูƒุจูŠุฑ ููŠ ุฅู‚ุงู…ุฉ
196
+
197
+ 50
198
+ 00:04:59,830 --> 00:05:05,290
199
+ ุฏูˆู„ุฉ ุจู†ูŠ ุงู„ุนุจุงุณ ูุธู‡ุฑุช ุณู„ูˆูƒูŠุงุช
200
+
201
+ 51
202
+ 00:05:06,430 --> 00:05:11,350
203
+ ูˆู…ูˆุงู‚ู ุงุชุฌุงู‡ ุงู„ุนุฑุจ ูู‚ุฏู…ูˆุง ุงู„ุดุนูˆุจ ุงู„ุฃุฌู†ุจูŠุฉ ุนู„ู‰
204
+
205
+ 52
206
+ 00:05:11,350 --> 00:05:17,510
207
+ ุงู„ุนุฑุจ ูˆุงู†ุชู‚ุตูˆุง ู‚ุฏุฑ ุงู„ุนุฑุจ ูˆุญู‚ุฑูˆุง ุดุฃู†ู‡ู… ูˆูƒุงู† ุฏุงูุน
208
+
209
+ 53
210
+ 00:05:17,510 --> 00:05:24,520
211
+ ุฐู„ูƒ ุณูŠุงุณูŠู‹ุง ุฐู„ูƒ ุฃู† ุงู„ูุฑุณ ุดุนุฑูˆุง ุจุฃู† ุฃูˆ ุงุนุชู‚ุฏูˆุง ุจุฃู†
212
+
213
+ 54
214
+ 00:05:24,520 --> 00:05:30,100
215
+ ุงู„ุนุฑุจ ู‡ู… ุงู„ุฐูŠู† ุฃุฒุงู„ูˆุง ุฏูˆู„ุฉ ุงู„ูุฑุซ ูˆุฃู†ู‡ู… ู†ู‚ู„ูˆู‡ู… ู…ู†
216
+
217
+ 55
218
+ 00:05:30,100 --> 00:05:39,740
219
+ ุญูŠุงุฉ ุงู„ุชู†ุนู‘ู… ูˆุงู„ุชุฑู ุฅู„ู‰ ุญูŠุงุฉ ุงู„ุชู‚ุดู ูˆุงู„ุดู‘ุธู ููƒุงู†
220
+
221
+ 56
222
+ 00:05:39,740 --> 00:05:46,780
223
+ ู‡ู†ุงูƒ ุฃูˆ ู†ุดุฃ ู‡ู†ุงูƒ ุนุฏุงุก ู„ู„ุนุฑุจ ู„ุฃู†ู‡ู… ุถูŠู‚ูˆุง ุนู„ู‰ ู‡ุคู„ุงุก
224
+
225
+ 57
226
+ 00:05:46,780 --> 00:05:55,490
227
+ ุญูŠุงุชู‡ู… ูˆู…ุนูŠุดุชู‡ู… ุงู„ุฏู†ูŠูˆูŠุฉ ูˆุฑุฃูˆุง ุฃูŠุถู‹ุง ุฃู† ุงู„ูุฑุณ ุฃุญู‚
228
+
229
+ 58
230
+ 00:05:55,490 --> 00:06:01,430
231
+ ุจุงู„ุณูŠุงุฏุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูุงู†ุชู‚ุตูˆุง ุนุงุฏุงุช ุงู„ุนุฑุจ
232
+
233
+ 59
234
+ 00:06:01,430 --> 00:06:09,120
235
+ ูˆุชู‚ุงู„ูŠุฏู‡ู… ูˆุชู‚ุงู„ูŠุฏู‡ู… ููŠ ุงู„ู…ุนูŠุดุฉ ูˆุงู„ุงุฌุชู…ุงุน ูˆุบูŠุฑู‡ุง ู…ู…ุง
236
+
237
+ 60
238
+ 00:06:09,120 --> 00:06:15,860
239
+ ู„ุง ุชุชูู‚ ู…ุน ุนุงุฏุงุช ุงู„ูุฑุณ ูˆุชู‚ุงู„ูŠุฏู‡ู… ูู‚ุฏ ุฑุฃูŠู†ุง ุฃู†ู‡ู… ู‚ุฏ
240
+
241
+ 61
242
+ 00:06:15,860 --> 00:06:22,700
243
+ ุฃุณุฑููˆุง ููŠ ุงู„ู„ู‡ูˆ ูˆุงู„ู…ุฌูˆู† ูˆู‡ู†ุงูƒ ุฏุงูุน ุฃูŠุถู‹ุง ู„ู…ุนุงุฏุงุฉ
244
+
245
+ 62
246
+ 00:06:22,700 --> 00:06:28,660
247
+ ุงู„ุนุฑุจ ูˆู‡ูˆ ุฃู† ู‡ุคู„ุงุก ุงู„ุนุฑุจ ู‡ู… ุงู„ุฐูŠู† ูŠู‚ูˆุฏูˆู† ุงู„ุฃู…ุฉ
248
+
249
+ 63
250
+ 00:06:28,660 --> 00:06:37,380
251
+ ูˆูŠู‚ูˆุฏูˆู† ุงู„ุจุดุฑูŠุฉ ุฃู…ุง ุงู„ุฒู†ุฏู‚ุฉ ูู‡ูŠ ู„ูุธ ูุงุฑุณูŠ ู…ุนุฑู‘ุจ
252
+
253
+ 64
254
+ 00:06:37,380 --> 00:06:47,920
255
+ ุฃุตู„ู‡ุง ู…ุฃุฎูˆุฐ ู…ู† ูƒู„ู…ุฉ ุงู„ู€ Zendethist ูˆู‡ูŠ ูƒู„ู…ุฉ ูุงุฑุณูŠุฉ
256
+
257
+ 65
258
+ 00:06:47,920 --> 00:06:54,760
259
+ ุชูุทู„ู‚ ุนู„ู‰ ุงู„ูƒุชุงุจ ุงู„ู…ู‚ุฏุณ ุนู†ุฏ ุงู„ู…ุฌูˆุณ ูˆุดุงุนุช ู‡ุฐู‡
260
+
261
+ 66
262
+ 00:06:54,760 --> 00:07:02,260
263
+ ุงู„ูƒู„ู…ุฉ ููŠ ุงู„ู…ุฌุชู…ุน ุงู„ุนุจุงุณูŠ ูˆุญูุฑูุช ุฅู„ู‰ ูƒู„ู…ุฉ ุฒู†ุฏู‚ุฉ
264
+
265
+ 67
266
+ 00:07:02,260 --> 00:07:09,520
267
+ ู„ุชูุทู„ู‚ ู‡ุฐู‡ ุงู„ูƒู„ู…ุฉ ุนู„ู‰ ูƒู„ ู…ู† ูŠุชู‡ุงูˆู† ููŠ ุงู„ุฏูŠู† ุฃูˆ ูŠู‡ุฒุฃ
268
+
269
+ 68
270
+ 00:07:09,520 --> 00:07:16,200
271
+ ุจุชุนุงู„ูŠู…ู‡ ูˆุนุจุงุฏุงุชู‡ ุฃูˆ ูŠุชุฌุฑุฃ ุฅุณุฑุงูู‹ุง ููŠ ุงู„ู…ุนุงุตูŠ
272
+
273
+ 69
274
+ 00:07:16,200 --> 00:07:21,720
275
+ ูˆุงู„ู…ู†ูƒุฑุงุช ุฃูˆ ูŠู‚ูˆู„ ุจู…ู‚ุงู„ุฉ ุจุนุถ ุงู„ูƒูุงุฑ ูˆูŠุคู…ู†ูˆุง
276
+
277
+ 70
278
+ 00:07:22,580 --> 00:07:28,960
279
+ ุจุนู‚ุงุฆุฏู‡ู… ูˆุนู„ู‰ ูƒู„ ู…ู† ูŠุชุฃุซุฑ ุจุงู„ูุฑุณ ููŠ ุนุงุฏุงุชู‡ู… ูˆูŠุณุชุฑู
280
+
281
+ 71
282
+ 00:07:28,960 --> 00:07:36,180
283
+ ููŠ ุงู„ุนุจุซ ูˆุงู„ู…ุฌูˆู† ูุงู„ุฒู†ุฏู‚ุฉ ุฅุฐู† ู‡ูŠ ุจุบุถ ุงู„ุฅุณู„ุงู… ูˆุฃู‡ู„ู‡
284
+
285
+ 72
286
+ 00:07:36,180 --> 00:07:43,020
287
+ ูˆุชุนุงู„ูŠู…ู‡ ุซู… ุงุชุจุงุน ุทุฑู‚ ุฃุตุญุงุจ ุงู„ู…ู„ู„ ูˆุงู„ู†ุญู„ ุงู„ุถุงู„ุฉ
288
+
289
+ 73
290
+ 00:07:43,020 --> 00:07:49,300
291
+ ูˆุงู„ุฃู‡ูˆุงุก ุงู„ูุงุณุฏุฉ ูˆุงู„ุฃูุนุงู„ ุงู„ู…ู„ู‡ูŠุฉ ูˆู‡ู†ุงูƒ ุนู„ุงู‚ุฉ ุจูŠู†
292
+
293
+ 74
294
+ 00:07:49,300 --> 00:07:54,380
295
+ ุงู„ุดุนูˆุจูŠุฉ ูˆุงู„ุฒู†ุฏู‚ุฉุŒ ูุงู„ุดุนูˆุจูŠุฉ ุนุงู…ู‘ุฉุŒ ูˆู‡ูŠ ู…ู‚ุฏู…ุฉ
296
+
297
+ 75
298
+ 00:07:54,380 --> 00:07:57,460
299
+ ู„ู„ุฒู†ุฏู‚ุฉุŒ
300
+
301
+ 76
302
+ 00:07:57,460 --> 00:08:02,720
303
+ ูˆูŠู‚ูˆู„ ุงู„ุฌุงุญุธ ููŠ ุงู„ุฑุจุท ุจูŠู† ุงู„ุฒู†ุฏู‚ุฉ ูˆุงู„ุดุนูˆุจูŠุฉุŒ ุฅู†
304
+
305
+ 77
306
+ 00:08:02,720 --> 00:08:09,660
307
+ ุนุงู…ู‘ุฉ ู…ู† ุงุฑุชุงุจ ุจุงู„ุฅุณู„ุงู… ูŠุนู†ูŠ ุนุงู…ุฉ ุงู„ุฒู†ุงุฏู‚ุฉุŒ ุฅู†ู…ุง
308
+
309
+ 78
310
+ 00:08:09,660 --> 00:08:16,010
311
+ ูƒุงู† ุฃูˆู„ ุฐู„ูƒ ุฑุฃูŠ ุงู„ุดุนูˆุจูŠุฉุŒ ูŠุนู†ูŠ ูƒุงู† ุดุนูˆุจูŠู‹ุงุŒ ุซู…
312
+
313
+ 79
314
+ 00:08:16,010 --> 00:08:21,530
315
+ ุชู…ุงุฏู‰ ููŠ ู‡ุฐุง ุงู„ุฑุฃูŠ ูˆุงู„ุชู…ุงุฏู‰ ููŠู‡ ูˆุทูˆู„ ุงู„ุฌุฐุงู„ ุงู„ู…ุคุฏูŠ
316
+
317
+ 80
318
+ 00:08:21,530 --> 00:08:27,590
319
+ ุฅู„ู‰ ุงู„ุถู„ุงู„ ูุฅุฐุง ุฃุจุบุถ ุดูŠุฆู‹ุง ุฃุจุบุถ ุฃู‡ู„ู‡ ูˆุฅุฐุง ุฃุจุบุถ ุชู„ูƒ
320
+
321
+ 81
322
+ 00:08:27,590 --> 00:08:32,630
323
+ ุงู„ู„ุบุฉ ุฃุจุบุถ ุชู„ูƒ ุงู„ุฌุฒูŠุฑุฉ ูˆุฅุฐุง ุฃุจุบุถ ุชู„ูƒ ุงู„ุฌุฒูŠุฑุฉ ุฃุญุจ
324
+
325
+ 82
326
+ 00:08:32,630 --> 00:08:38,170
327
+ ู…ู† ุฃุจุบ๏ฟฝ๏ฟฝ ุชู„ูƒ ุงู„ุฌุฒูŠุฑุฉ ูู„ุง ุฒุงู„ุช ุฃูˆ ูู„ุง ุชุฒุงู„ ุงู„ุญุงู„ุงุช
328
+
329
+ 83
330
+ 00:08:38,170 --> 00:08:47,360
331
+ ุชุชู†ู‚ู„ ุจู‡ ุญุชู‰ ูŠู†ุณู„ุฎ ุนู† ุงู„ุฅุณู„ุงู… ู‡ู†ุงูƒ ุฑุจุท ุจูŠู† ุงู„ุดุนูˆุจูŠุฉ
332
+
333
+ 84
334
+ 00:08:47,360 --> 00:08:56,540
335
+ ูˆุงู„ุฒู†ุฏู‚ุฉ ูุงู„ุดุนูˆุจูŠุฉ ุฃุนู… ูˆุงู„ุฒู†ุฏู‚ุฉ ุฃุฎุต ููƒู„ ุฒู†ุฏูŠู‚ ุดุนูˆุจูŠ
336
+
337
+ 85
338
+ 00:08:56,540 --> 00:09:02,800
339
+ ูˆู„ูŠุณ ูƒู„ ุดุนูˆุจูŠ ุฒู†ุฏูŠู‚ ู„ุฃู† ู…ู† ุงู„ุดุนูˆุจูŠุฉ ู…ู† ูŠูƒุฑู‡ ุงู„ุนุฑุจ
340
+
341
+ 86
342
+ 00:09:02,800 --> 00:09:09,200
343
+ ูˆู„ูƒู†ู‡ ูŠุญุจ ุงู„ุฅุณู„ุงู… ูŠูƒุฑู‡ ุญูŠุงุฉ ุงู„ุนุฑุจ ูˆุนุงุฏุงุชู‡ู…
344
+
345
+ 87
346
+ 00:09:09,200 --> 00:09:12,920
347
+ ูˆุนุงุฏุงุชู‡ู… ูˆู„ูƒู†ู‡ ูŠุญุจ ุงู„ุฅุณู„ุงู…
348
+
349
+ 88
350
+ 00:09:15,740 --> 00:09:21,640
351
+ ูˆู‚ุฏ ูƒุงู† ู„ู„ุฒู†ุฏู‚ุฉ ูˆุงู„ุฒู†ุงุฏู‚ุฉ ุญุถูˆุฑ ุจุงุฑุฒ ููŠ ุงู„ุญูŠุงุฉ
352
+
353
+ 89
354
+ 00:09:21,640 --> 00:09:26,900
355
+ ุงู„ุซู‚ุงููŠุฉ ูˆุงู„ุฏูŠู†ูŠุฉ ูˆุงู„ุงุฌุชู…ุงุนูŠุฉ ูˆูƒุงู† ุชุฃุซูŠุฑู‡ู… ุฎุทูŠุฑู‹ุง
356
+
357
+ 90
358
+ 00:09:26,900 --> 00:09:33,280
359
+ ู…ู…ุง ุฏูุน ุฎู„ูุงุก ุจู†ูŠ ุงู„ุนุจุงุณ ู„ู„ุชุตุฏูŠ ู„ู‡ู… ูุฃู‚ุงู…ูˆุง ู„ู‡ู…
360
+
361
+ 91
362
+ 00:09:33,280 --> 00:09:39,360
363
+ ุงู„ู…ุดุงู†ู‚ ูˆูุชุญูˆุง ู„ู‡ู… ุงู„ุณุฌูˆู† ูู‚ุชู„ ู…ู†ู‡ู… ู…ู† ู‚ุชู„ ูˆุตู„ุจ
364
+
365
+ 92
366
+ 00:09:39,360 --> 00:09:45,810
367
+ ู…ู† ุตูู„ุจ ูˆูƒุงู† ู…ู†ู‡ู… ุจุดุงุฑ ุจู† ุจุฑุฏ ูˆุตุงู„ุญ ุจู† ุนุจุฏ ุงู„ู‚ุฏูˆุณ
368
+
369
+ 93
370
+ 00:09:45,810 --> 00:09:53,910
371
+ ูˆุชุตุฏู‘ู‰ ู„ู„ุฒู†ุงุฏู‚ุฉ ุงู„ู…ุนุชุฒู„ุฉ ูˆู‡ู… ุฎูŠุฑ ู…ุฐู‡ุจ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
372
+
373
+ 94
374
+ 00:09:53,910 --> 00:10:00,110
375
+ ูŠุชุตุฏู‘ู‰ ู„ู„ุฒู†ุงุฏู‚ุฉ ูˆูŠุฏุงูุน ุนู† ุงู„ุฅุณู„ุงู… ู…ู† ุดุฑูˆุฑู‡ู…
376
+
377
+ 95
378
+ 00:10:00,110 --> 00:10:08,900
379
+ ูˆุฃุญู‚ุงุฏู‡ู… ูˆู…ุนุชู‚ุฏุงุชู‡ู… ุงู„ูุงุณุฏุฉ ู‡ุฐุง ู…ุธู‡ุฑ ุงุฌุชู…ุงุนูŠ ุซุงู„ุซ
380
+
381
+ 96
382
+ 00:10:08,900 --> 00:10:15,500
383
+ ุฃู…ุง ุงู„ู…ุธู‡ุฑ ุงู„ุฑุงุจุน ูู‡ูˆ ุธุงู‡ุฑุฉ ุงู„ุฒู‡ุฏ ูˆู…ุนู†ู‰ ุงู„ุฒู‡ุฏ ู‡ูˆ
384
+
385
+ 97
386
+ 00:10:15,500 --> 00:10:21,300
387
+ ูŠุนู†ูŠ ููŠ ุชุนุฑูŠู ู…ูˆุฌุฒ ุงู„ุฒู‡ุฏ ู‡ูˆ ุชุฑูƒ ุดูŠุก ู…ู† ุงู„ู…ุจุงุญ ุฃูˆ
388
+
389
+ 98
390
+ 00:10:21,300 --> 00:10:27,500
391
+ ุงู„ุญู„ุงู„ ู…ุฎุงูุฉ ุงู„ูˆู‚ูˆุน ููŠ ุงู„ุญุฑุงู… ูˆุจุฐู„ูƒ ู†ุฌุฏ ุฃู† ุงู„ุฒุงู‡ุฏ
392
+
393
+ 99
394
+ 00:10:27,500 --> 00:10:34,700
395
+ ู„ูŠุณ ูƒุงู„ุฅู†ุณุงู† ุงู„ุนุงุฏูŠ ุงู„ุฐูŠ ูŠุชุฑูƒ ุงู„ุญุฑุงู… ูุงู„ุฒู‡ุฏ ูŠุชุฑูƒ
396
+
397
+ 100
398
+ 00:10:34,700 --> 00:10:40,720
399
+ ุงู„ุญุฑุงู… ูˆุดูŠุก ู…ู† ุงู„ุญู„ุงู„ ู…ุฎุงูุฉ ุฃู† ูŠู‚ุน ููŠ ุงู„ุญุฑุงู…ุŒ ูู‡ูˆ
400
+
401
+ 101
402
+ 00:10:40,720 --> 00:10:44,440
403
+ ุงุจุชุนุฏ ู…ุณุงูุฉ ุจุนูŠุฏุฉ ุนู† ุงู„ุญุฑุงู… ุฃูƒุซุฑ ู…ู† ุงู„ุฅู†ุณุงู†
404
+
405
+ 102
406
+ 00:10:44,440 --> 00:10:49,940
407
+ ุงู„ุนุงุฏูŠุŒ ูˆู„ุฐู„ูƒ ุงู„ุฒู‡ุฏ ููŠ ุฃุจุณุท ุงู„ุชุนุฑูŠู ู„ู‡ ุชุฑูƒ ุดูŠุก ู…ู†
408
+
409
+ 103
410
+ 00:10:49,940 --> 00:10:56,740
411
+ ุงู„ุญู„ุงู„ ุฃูˆ ุงู„ู…ุจุงุญ ู…ุฎุงูุฉ ุงู„ูˆู‚ูˆุน ููŠ ุงู„ุญุฑุงู…ุŒ ูˆู‡ุฐุง
412
+
413
+ 104
414
+ 00:10:56,740 --> 00:11:05,160
415
+ ูŠุญุชุงุฌ ุฅู„ู‰ ู…ุฌู‡ูˆุฏุงุช ุชุนุจุฏูŠุฉ ูˆู†ูุณูŠุฉ ูˆุณู„ูˆูƒูŠุฉ ู„ูŠุฑุชู‚ูŠ
416
+
417
+ 105
418
+ 00:11:05,160 --> 00:11:13,180
419
+ ุงู„ุฅู†ุณุงู† ุฅู„ู‰ ู‡ุฐู‡ ุงู„ุฏุฑุฌุฉ ู„ุฃู† ุงู„ุชุฑูƒ ูŠูƒูˆู† ุฃุนู„ู‰ุŒ ูู‡ูˆ
420
+
421
+ 106
422
+ 00:11:13,180 --> 00:11:20,670
423
+ ูŠุญุชุงุฌ ุฅู„ู‰ ุฌู‡ุฏ ู†ูุณูŠ ุฃุณู…ู‰ ูˆู‡ุฐุง ู„ุง ูŠุชูˆูุฑ ู„ู„ุฅู†ุณุงู†
424
+
425
+ 107
426
+ 00:11:20,670 --> 00:11:26,370
427
+ ุงู„ุนุงุฏูŠ ุฃู…ุง ูู„ุณูุชู‡ ูุชู‚ูˆู… ุนู„ู‰ ุฃู…ุฑูŠู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„
428
+
429
+ 108
430
+ 00:11:26,370 --> 00:11:32,330
431
+ ุชู‡ุฐูŠุจ ุงู„ุฑุบุจุฉ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ ุญุจ ุงู„ุจู‚ุงุก ุงู„ุดูŠุก ุงู„ุซุงู†ูŠ
432
+
433
+ 109
434
+ 00:11:32,330 --> 00:11:37,710
435
+ ุชู‡ุฐูŠุจ ุงู„ุฑุบุจุฉ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ ุญุจ ุงู„ุชู…ู„ูƒ ููŠ ุญุจ ุงู„ุจู‚ุงุก
436
+
437
+ 110
438
+ 00:11:37,710 --> 00:11:45,190
439
+ ู†ุฌุฏ ุฃู† ุงู„ุฒู‡ุงุฏ ูŠุฑูƒุฒูˆู† ุนู„ู‰ ุญู‚ูŠู‚ุฉ ุงู„ู…ูˆุช ูˆุงู„ูู†ุงุก ูู„ุฐู„ูƒ
440
+
441
+ 111
442
+ 00:11:45,190 --> 00:11:52,430
443
+ ู†ุฌุฏ ุฃู† ุดุนุฑ ุงู„ุฒู‡ุฏูŠ ูŠูƒุซุฑ ู…ู† ู‡ุฐู‡ ุงู„ุธุงู‡ุฑุฉ ุฃูŠุถู‹ุง ุชู‡ุฐูŠุจ
444
+
445
+ 112
446
+ 00:11:52,430 --> 00:11:57,070
447
+ ุงู„ุฑุบุจุฉ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ ุญุจ ุงู„ุชู…ู„ูƒ ู…ู† ุฎู„ุงู„ ุงู„ู‚ู†ุงุนุฉ
448
+
449
+ 113
450
+ 00:11:57,070 --> 00:12:03,730
451
+ ุงู„ุชุฃูƒูŠุฏ ุนู„ู‰ ุงู„ู‚ู†ุงุนุฉ ูˆุงู„ุฑุถุง ุจุงู„ู‚ู„ูŠู„ ูˆู„ุฐู„ูƒ ู†ุฌุฏ ุดุนุฑ
452
+
453
+ 114
454
+ 00:12:03,730 --> 00:12:12,500
455
+ ุงู„ุฒู‡ุฏ ูŠุฑูƒุฒ ููŠ ู…ุฌู…ู„ู‡ ุนู„ู‰ ู‡ุฐู‡ ุงู„ุฃู…ูˆุฑ ู‡ู†ุงูƒ ุชุนุฑูŠูุงุช
456
+
457
+ 115
458
+ 00:12:12,500 --> 00:12:19,120
459
+ ูƒุซูŠุฑุฉ ู„ู„ุฒู‡ุฏ ู„ูƒู† ุงู„ุชุนุฑูŠู ุงู„ุฐูŠ ู‚ู„ู†ุงู‡ ูŠูƒููŠ ูˆูŠุณุฏ ุจุฏู„
460
+
461
+ 116
462
+ 00:12:19,120 --> 00:12:24,720
463
+ ู‡ุฐู‡ ุงู„ุชุนุฑูŠูุงุช ุงู„ูƒุซูŠุฑุฉ ูˆูƒู„ู‡ุง ุฌูŠุฏุฉ ู‡ู†ุงูƒ ู…ู„ุงุญุธุงุช
464
+
465
+ 117
466
+ 00:12:24,720 --> 00:12:32,470
467
+ ุชุชุนู„ู‚ ุจุญุฑูƒุฉ ุงู„ุฒู‡ุฏ ุงู„ู…ู„ุงุญุธุฉ ุงู„ุฃูˆู„ู‰ ุฃู† ุญุฑูƒุฉ ุงู„ุฒู‡ุฏ
468
+
469
+ 118
470
+ 00:12:32,470 --> 00:12:40,150
471
+ ูƒุงู†ุช ุฑุฏุฉ ูุนู„ ู„ุญุฑูƒุฉ ุงู„ู…ุฌูˆู† ูˆุงู„ู„ู‡ูˆ ูุฅุฐุง ูƒุงู†ุช ุญุฑูƒุฉ
472
+
473
+ 119
474
+ 00:12:40,150 --> 00:12:43,710
475
+ ุงู„ู…ุฌูˆู† ูˆุงู„ู„ู‡ูˆ ู‚ุฏ ุฃุตุงุจุช ุงู„ุทุจู‚ุฉ ุงู„ุนู„ูŠุง ููŠ ุงู„ู…ุฌุชู…ุน
476
+
477
+ 120
478
+ 00:12:43,710 --> 00:12:50,210
479
+ ูุฅู† ุญุฑูƒุฉ ุงู„ุฒู‡ุฏ ุฃุตุงุจุช ูˆุงู†ุชุดุฑุช ุจูŠู† ุงู„ุนุงู…ุฉ ูˆู„ูƒู†ู‡ุง ู…ุน
480
+
481
+ 121
482
+ 00:12:50,210 --> 00:12:59,110
483
+ ุฐู„ูƒ ุทุฑู‚ุช ู‚ุตูˆุฑุงู‹ ุงู„ุฎู„ูุงุก ุนู„ู‰ ู†ุญูˆ ู…ุง ุฑุฃูŠู†ุง ุนู†ุฏ ุนู…ุฑ ุจู†
484
+
485
+ 122
486
+ 00:12:59,110 --> 00:13:03,970
487
+ ุงู„ุฃุจูŠุถ ููŠ ูˆุนุธู‡ ู„ู„ู…ู†ุตูˆุฑ ูˆุตุงู„ุญ ุจู† ุนุจุฏ ุงู„ุฌู„ูŠู„ ููŠ ูˆุนุธู‡
488
+
489
+ 123
490
+ 00:13:03,970 --> 00:13:12,590
491
+ ู„ู„ู…ู‡ุฏูŠ ูˆุงุจู† ุงู„ุณู…ุงูƒ ููŠ ูˆุนุธู‡ ู„ู‡ุงุฑูˆู† ุงู„ุฑุดูŠุฏ ู…ู† ูƒู„ุงู…ู‡
492
+
493
+ 124
494
+ 00:13:12,590 --> 00:13:20,950
495
+ ู…ู† ูƒู„ุงู… ุงุจู† ุงู„ุณู…ุงูƒ ู‚ูˆู„ู‡ ุงู„ุฏู†ูŠุง ูƒู„ู‡ุง ู‚ู„ูŠู„ ูˆุงู„ุฐูŠ ุจู‚ูŠ
496
+
497
+ 125
498
+ 00:13:20,950 --> 00:13:27,630
499
+ ู…ู†ู‡ุง ููŠ ุฌู†ุจ ุงู„ู…ุงุถูŠ ู‚ู„ูŠู„ ูˆุงู„ุฐูŠ ู„ูƒ ู…ู† ุงู„ุจุงู‚ูŠ ู‚ู„ูŠู„ ูˆู„ู…
500
+
501
+ 126
502
+ 00:13:27,630 --> 00:13:34,790
503
+ ูŠุจู‚ูŽ ู…ู† ู‚ู„ูŠู„ููƒ ุฅู„ุง ุงู„ู‚ู„ูŠู„ ู‡ุฐู‡ ุนุจุงุฑุฉ ู„ุงุจู† ุงู„ุณู…ุงูƒ ู„ูˆ
504
+
505
+ 127
506
+ 00:13:34,790 --> 00:13:41,360
507
+ ุณุฃู„ู†ุง ุณุคุงู„ุงู‹ ูˆู‚ู„ู†ุง ุถุน ู‡ุฐู‡ ุงู„ุนุจุงุฑุฉ ุฃูˆ ุถุน ู‡ุฐู‡ ุงู„ุนุจุงุฑุฉ
508
+
509
+ 128
510
+ 00:13:41,360 --> 00:13:46,900
511
+ ููŠ ุณูŠุงู‚ ู†ุธุฑูŠุฉ ุงู„ุฒู‡ุฏ ูˆู…ุง ู‡ูŠ ุงู„ุฅู…ูƒุงู†ุงุช ุงู„ุฃุณู„ูˆุจูŠุฉ ุฃูˆ
512
+
513
+ 129
514
+ 00:13:46,900 --> 00:13:51,920
515
+ ุงู„ู…ู‡ุงุฑุงุช ุงู„ุฃุณู„ูˆุจูŠุฉ ุงู„ุชูŠ ุงุณุชุนู…ู„ู‡ุง ุงุจู† ุงู„ุณู…ุงูƒ
516
+
517
+ 130
518
+ 00:13:51,920 --> 00:14:05,180
519
+ ู„ู„ุชุนุจูŠุฑ ุนู† ู†ุธุฑูŠุฉ ุงู„ุฒู‡ุฏ ู†ู„ุงุญุธ ุฃู†ู‡ ู…ู† ุญูŠุซู ูู„ุณูุฉ ุงู„ุฒู‡ุฏ
520
+
521
+ 131
522
+ 00:14:05,180 --> 00:14:10,420
523
+ ุฃู†ู‡ุง ุชู‚ูˆู… ุนู„ู‰ ุชู‡ุฐูŠุจ ุงู„ุฑุบุจุฉ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ
524
+
525
+ 132
526
+ 00:14:10,420 --> 00:14:14,940
527
+ ุญุจ ุงู„ุจู‚ุงุก ูƒู…ุง ู‚ู„ู†ุง ูˆุญุจ ุงู„ุชู…ู„ูƒ ูู‚ุงู„ ุงู„ุฏู†ูŠุง ูƒู„ู‡ุง
528
+
529
+ 133
530
+ 00:14:14,940 --> 00:14:21,780
531
+ ู‚ู„ูŠู„ ุทุจุนู‹ุง ู‡ุฐุง ุงู„ู…ู‚ูŠุงุณ ุงู†ุจู†ู‰ ุนู„ู‰ ุฅุญุฏุงุซ ู…ู‚ุงุฑู†ุฉ ุจูŠู†
532
+
533
+ 134
534
+ 00:14:21,780 --> 00:14:28,540
535
+ ุงู„ุฏู†ูŠุง ูˆุงู„ุขุฎุฑุฉ ูุงู„ุฏู†ูŠุง ุจุงู„ู†ุณุจุฉ ู„ู„ุขุฎุฑุฉ ู‚ู„ูŠู„ ู„ุฃู†
536
+
537
+ 135
538
+ 00:14:28,540 --> 00:14:33,560
539
+ ุงู„ุขุฎุฑุฉ ููŠู‡ุง ู…ุง ู„ุง ุนูŠู† ุฑุฃุช ูˆู„ุง ุฃุฐู† ุณู…ุนุช ูˆู„ุง ุฎุทุฑ ุนู„ู‰
540
+
541
+ 136
542
+ 00:14:33,560 --> 00:14:42,170
543
+ ู‚ู„ุจ ุงู„ุจุดุฑ ูุงู„ุฏู†ูŠุง ุฅุฐู† ูˆูู‚ู‹ุง ู„ู„ุขุฎุฑุฉ ู‡ูŠ ู‚ู„ูŠู„ ู†ู„ุงุญุธ ุฃู†
544
+
545
+ 137
546
+ 00:14:42,170 --> 00:14:50,790
547
+ ุงุจู† ุงู„ุณู…ุงูƒ ุนู…ู‘ู‚ ู…ุนู†ู‰ ุงู„ู‚ู„ุฉ ุงู„ุฐูŠ ูŠุชุณู‚ ู…ุน ุญู‚ูŠู‚ุฉ
548
+
549
+ 138
550
+ 00:14:50,790 --> 00:14:57,870
551
+ ุงู„ูู†ุงุก ูˆุญู‚ูŠู‚ุฉุŒ ูˆุงู„ุฑุถุง ุจุงู„ู‚ู„ูŠู„ ูˆุงู„ู‚ู†ุงุนุฉ ุจุงู„ู‚ู„ูŠู„
552
+
553
+ 139
554
+ 00:14:58,910 --> 00:15:04,210
555
+ ู‚ุงู„ ุงู„ุฏู†ูŠุง ูƒู„ู‡ุง ู‚ู„ูŠู„ ูˆุงู„ุฐูŠ ุจู‚ูŠ ู…ู†ู‡ุง ููŠ ุฌู†ุจ ุงู„ู…ุงุถูŠ
556
+
557
+ 140
558
+ 00:15:04,210 --> 00:15:09,990
559
+ ู‚ู„ูŠู„ ู†ู„ุงุญุธ ู‡ู†ุง ููŠู‡ ู…ู‡ุงุฑุงุช ุฃุณู„ูˆุจูŠุฉ ุชู…ุซู„ุช ููŠ ุฅุญุฏุงุซ
560
+
561
+ 141
562
+ 00:15:09,990 --> 00:15:21,590
563
+ ู…ู‚ุงุฑู†ุฉ ุจูŠู† ุงู„ุญุงุถุฑ ูˆุงู„ู…ุงุถูŠ ุจูŠู† ุงู„ุฏู†ูŠุง ูˆุงู„ุขุฎุฑุฉ ุงู„ุดูŠุก
564
+
565
+ 142
566
+ 00:15:21,590 --> 00:15:27,550
567
+ ุงู„ุซุงู†ูŠ ุฃู†ู‡ ูŠูƒุฑุฑ ูƒู„ู…ุฉ ู‚ู„ูŠู„ ุงู„ุฏู†ูŠุง ูƒู„ู‡ุง ู‚ู„ูŠู„ ูˆุงู„ุฐูŠ
568
+
569
+ 143
570
+ 00:15:27,550 --> 00:15:36,410
571
+ ุจู‚ูŠ ู…ู†ู‡ุง ููŠ ุฌู†ุจ ุงู„ู…ุงุถูŠ ู‚ู„ูŠู„ ูˆุงู„ุฐูŠ ู„ูƒ ู…ู† ุงู„ุจุงู‚ูŠ
572
+
573
+ 144
574
+ 00:15:36,410 --> 00:15:46,070
575
+ ู‚ู„ูŠู„ ูˆู„ู… ูŠุจู‚ูŽ ู…ู† ู‚ู„ูŠู„ููƒ ุฅู„ุง ุงู„ู‚ู„ูŠู„ ูู†ู„ุงุญุธ ู‡ู†ุง ุฅูŠู‡ ุฃู†
576
+
577
+ 145
578
+ 00:15:46,070 --> 00:15:51,970
579
+ ุงุจู† ุงู„ุณู…ุงูƒ ู„ูŠุคูƒุฏ ุนู„ู‰ ู†ุธุฑูŠุชู‡ ูˆูู„ุณูุฉ ุงู„ุฒู‡ุฏ ูˆู‡ูŠ ุชุญุทูŠู…
580
+
581
+ 146
582
+ 00:15:51,970 --> 00:15:56,670
583
+ ุฃูˆ ุชู‡ุฐูŠุจ ุงู„ุฑุบุจุฉ ููŠ ุญุจ ุงู„ุจู‚ุงุก ู…ู† ุฎู„ุงู„ ุชุฃูƒูŠุฏ ุนู„ู‰
584
+
585
+ 147
586
+ 00:15:56,670 --> 00:16:06,010
587
+ ุญู‚ูŠู‚ุฉ ุงู„ูู†ุงุก ูˆุงู„ู‚ู„ุฉ ูˆุงู„ู‚ู†ุงุนุฉ ูˆุงู„ุฑุถุง ุจุงู„ู‚ู„ูŠู„ ุฃูŠุถู‹ุง
588
+
589
+ 148
590
+ 00:16:06,010 --> 00:16:10,430
591
+ ู…ู† ุงู„ู…ุธุงู‡ุฑ ุงู„ุฃุณู„ูˆุจูŠุฉ ุงู„ุชูŠ ุงุนุชู…ุฏ ุนู„ูŠู‡ุง ุงู„ุฒู‡ุฏ
592
+
593
+ 149
594
+ 00:16:10,430 --> 00:16:19,970
595
+ ูˆุงู„ู†ุณู‘ุงูƒ ูˆุดุนุฑุงุก ูˆูˆุนุงุธ ุงู„ุฒู‡ุฏ ู‡ูˆ ุงู„ุฃุณู„ูˆุจ ุงู„ู‚ุตุตูŠ ุฐู„ูƒ ุฃู†
596
+
597
+ 150
598
+ 00:16:19,970 --> 00:16:28,950
599
+ ุงู„ุฃุณู„ูˆุจ ุงู„ู‚ุตุตูŠ ูŠุนุฑุถ ููƒุฑุฉ ุงู„ุฒู‡ุฏ ุฃูˆ ู†ุธุฑูŠุฉ ุงู„ุฒู‡ุฏ ู…ู†
600
+
601
+ 151
602
+ 00:16:28,950 --> 00:16:34,780
603
+ ูƒูˆู†ู‡ุง ููƒุฑุฉ ุฃูˆ ู†ุธุฑูŠุฉ ู…ุฌุฑุฏุฉ ุฅู„ู‰ ู†ู…ูˆุฐุฌ ูŠุนู†ูŠ ูŠูุนุจู‘ุฑ
604
+
605
+ 152
606
+ 00:16:34,780 --> 00:16:41,260
607
+ ูˆุนุงุธ ุงู„ุฒู‡ุฏ ู…ู† ุฎู„ุงู„ ู†ู…ูˆุฐุฌ ุฅู†ุณุงู†ูŠ ู„ุฃู† ุงู„ู‚ุตุฉ ุชู‚ูˆู…
608
+
609
+ 153
610
+ 00:16:41,260 --> 00:16:50,460
611
+ ุนู„ู‰ ุฅูŠู‡ุŸ ุชู‚ูˆู… ุนู„ู‰ ุดุฎุตูŠุฉ ูˆุนู„ู‰ ุญุจูƒุฉ ูˆุนู„ู‰ ุฃุญุฏุงุซ
612
+
613
+ 154
614
+ 00:16:50,460 --> 00:16:56,060
615
+ ูˆู…ูˆุงู‚ู ู‡ุฐุง ุฅูŠู‡ ูŠุญุฏุซ ุฅูŠู‡ ุฌุงุฐุจูŠุฉ ุนู†ุฏ ุงู„ู…ุชู„ู‚ูŠ ูˆู„ุฐู„ูƒ
616
+
617
+ 155
618
+ 00:16:56,060 --> 00:17:02,600
619
+ ูŠุนู†ูŠ ุงุนุชู…ุฏ ุงู„ูˆุนู‘ุงุธ ุนู„ู‰ ุงู„ุฃุณู„ูˆุจ ุงู„ู‚ุตุตูŠ ูˆุฎุงุตู‘ุฉ ุฅูŠู‡
620
+
621
+ 156
622
+ 00:17:02,600 --> 00:17:09,560
623
+ ุงู„ู…ุซูŠุฑ ุงู„ุฐูŠ ูŠุนู†ูŠ ูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ุฃู…ูˆุฑ ููˆู‚ ุงู„ู…ุนุชุงุฏุฉ
624
+
625
+ 157
626
+ 00:17:09,560 --> 00:17:16,740
627
+ ูุงู„ู‚ุตุฉ ูŠุนู†ูŠ ุชุฃุชูŠ ุจู…ูˆุงู‚ู ุฅู†ุณุงู†ูŠุฉ ุฑุงุฆุนุฉ ุชุฑูƒุฒ ุนู„ู‰
628
+
629
+ 158
630
+ 00:17:16,740 --> 00:17:24,650
631
+ ุงู„ู†ู…ูˆุฐุฌ ุงู„ุฅู†ุณุงู†ูŠ ุนู„ู‰ ุงู„ู…ูˆู‚ู ุงู„ู†ู…ูˆุฐุฌุŒ ุนู„ู‰ ุงู„ู‚ูŠู…
632
+
633
+ 159
634
+ 00:17:24,650 --> 00:17:30,790
635
+ ุงู„ุฑููŠุนุฉ ุงู„ุนุงู„ูŠุฉุŒ ูˆู„ุฐู„ูƒ
636
+
637
+ 160
638
+ 00:17:30,790 --> 00:17:40,950
639
+ ุงุนุชู…ุฏ ุงู„ูˆุนู‘ุงุธ ูˆุงู„ู‚ุตู‘ุงุต ุนู„ู‰ ุงู„ุฃุณู„ูˆุจ ุงู„ู‚ุตุตูŠุŒ ูˆูƒุงู† ุทุจุนู‹ุง
640
+
641
+ 161
642
+ 00:17:40,950 --> 00:17:45,410
643
+ ุจุฌุงู†ุจ ู‡ุคู„ุงุก ุงู„ู‚ุตู‘ุงุต ูˆุงู„ูˆุนู‘ุงุธ ูƒุซูŠุฑ ู…ู† ุงู„ู†ุณู‘ุงูƒ ุฃูŠุถู‹ุงุŒ
644
+
645
+ 162
646
+ 00:17:45,410 --> 00:17:50,760
647
+ ูˆู„ู‡ู… ู…ู‚ูˆู„ุงุช ูƒุซูŠุฑุฉุŒ ูŠุนู†ูŠ ู„ูˆ ุฑุฌุนู†ุง ุฅู„ู‰ ูƒุชุงุจ ุงู„ุจูŠุงู†
648
+
649
+ 163
650
+ 00:17:50,760 --> 00:17:54,700
651
+ ูˆุงู„ุชู‘ุจูŠูŠู† ู„ู„ุฌุงุญุธ ูˆุนูŠูˆู† ุงู„ุฃุฎุจุงุฑ ู„ู„ู‚ุชูŠุจุฉ ูˆุงู„ุนู‚ู„
652
+
653
+ 164
654
+ 00:17:54,700 --> 00:18:00,020
655
+ ุงู„ูุฑูŠุฏ ู„ุนุจุฏ ุงู„ุฑุจู‘ู‡ ุณู†ุฌุฏ ู‡ู†ุงูƒ ู†ุซุฑุงุช ุฑุงุฆุนุฉ ู„ู…ุดู‡ูˆุฑ
656
+
657
+ 165
658
+ 00:18:00,020 --> 00:18:07,360
659
+ ุงู„ูˆุนู‘ุงุธ ูˆุงู„ู†ุณู‘ุงูƒ ุฃู…ุซุงู„ ุณููŠุงู† ุงู„ุซูˆุฑูŠ ูˆุฏุงูˆุฏ ุงู„ุทุงุฆูŠ
660
+
661
+ 166
662
+ 00:18:07,360 --> 00:18:12,520
663
+ ูˆุนุจุฏ ุงู„ู„ู‡ ุจู† ุงู„ู…ุจุงุฑูƒ ูˆุงู„ูุถูŠู„ ุจู† ุนูŠุงุถ ูˆุณููŠุงู† ุจู†
664
+
665
+ 167
666
+ 00:18:12,520 --> 00:18:21,120
667
+ ุนูŠูŠู†ุฉ ุงู„ุฐูŠ ูŠู‚ูˆู„ ููƒุฑูƒ ููŠ ุฑุฒู‚ ุบุฏ ูŠููƒุชุจ ุนู„ูŠูƒ ุฎุทูŠุฆุฉ ูƒู…ุง
668
+
669
+ 168
670
+ 00:18:21,120 --> 00:18:25,600
671
+ ู‚ู„ู†ุง ุทุจุนู‹ุง ู‡ุฐู‡ ุงู„ุนุจุงุฑุฉ ุชุชุณู‚ ู…ุน ู†ุธุฑูŠุฉ ุงู„ุฒู‡ุฏ ูƒู…ุง ู‚ู„ู†ุง
672
+
673
+ 169
674
+ 00:18:25,600 --> 00:18:33,760
675
+ ู…ู† ู‚ุจู„ ุฃู† ุงู„ุฒู‡ุฏ ู‡ูˆ ุชุฑูƒ ุดูŠุก ู…ู† ุงู„ู…ุจุงุญ ุฃูˆ ุงู„ุญู„ุงู„
676
+
677
+ 170
678
+ 00:18:33,760 --> 00:18:40,480
679
+ ู…ุฎุงูุฉ ุงู„ูˆู‚ูˆุน ููŠ ุงู„ุญุฑุงู… ูุงู„ุชููƒูŠุฑ ููŠ ุฑุฒู‚ ุบุฏ ู„ูŠุณ
680
+
681
+ 171
682
+ 00:18:40,480 --> 00:18:46,720
683
+ ุญุฑุงู…ู‹ุง ุจู„ ู‡ูˆ ุญู„ุงู„ ู‚ุงู„ ููƒุฑูƒ ูŠุนู†ูŠ ุชููƒูŠุฑูƒ ุฃู‚ุงู… ุงู„ุงุณู…
684
+
685
+ 172
686
+ 00:18:46,720 --> 00:18:52,320
687
+ ู…ู‚ุงู… ุงู„ู…ุตุฏุฑ ู„ุฃู† ุงู„ุงุณู… ุฃุซุจุช ู…ู† ุงู„ู…ุตุฏุฑ ู„ุฃู†
688
+
689
+ 201
690
+ 00:22:01,050 --> 00:22:09,980
691
+ ุงู„ุฐู‡ุจ ุฃู†ู‡ุง ูŠุนู†ูŠ ูƒุงู†ุช ุฑุฏุฉ ูุนู„ ูˆู„ูŠุณุช ุญุฑูƒุฉ ู…ู…ู†ู‡ุฌุฉ ูŠุนู†ูŠ
692
+
693
+ 202
694
+ 00:22:09,980 --> 00:22:16,880
695
+ ุญุฑูƒุฉ ู‚ุงู…ุช ุนู„ู‰ ุฑุฏุฉ ูุนู„ ู…ู† ุฎู„ุงู„ ุฃูŠุฉ ูŠุนู†ูŠ ุนู„ุงู‚ุฉ
696
+
697
+ 203
698
+ 00:22:16,880 --> 00:22:22,880
699
+ ุงุฌุชู…ุงุนูŠุฉ ูุฅุฐุง ูƒุงู† ุงู„ู…ุฌู†ูˆู† ูˆุงู„ู„ู‡ูˆ ูŠุฎุชุตุงู† ุจุงู„ุทุจู‚ุฉ
700
+
701
+ 204
702
+ 00:22:22,880 --> 00:22:28,820
703
+ ุงู„ุฎุงุตุฉ ูุฅู† ุงู„ุฐู‡ุจ ูŠุฎุชุต ุจุงู„ุทุจู‚ุฉ ุฃูˆ ุงู†ุชุดุฑุช ุงู„ุทุจู‚ุฉ ููŠ
704
+
705
+ 205
706
+ 00:22:28,820 --> 00:22:35,660
707
+ ุงู„ุนุงู…ุฉ ุงู„ุฑุฏ ูุนู„ ูˆู„ูŠุณุช ุญุฑูƒุฉ ู…ู†ู‡ุฌูŠุฉ ู„ุฃู† ู…ู† ุดุฃู†
708
+
709
+ 206
710
+ 00:22:35,660 --> 00:22:46,840
711
+ ุญุฑูƒุงุช ุฑุฏุฉ ุงู„ูุนู„ ุฃู† ุชุคุณุณ ู„ู„ู…ุดุงูƒู„ ุฃูˆ ุนูŠูˆุจ ุฃูˆ ุนูˆุงุฑ
712
+
713
+ 207
714
+ 00:22:46,840 --> 00:22:55,040
715
+ ูŠุนูŠู‚ ู‡ุฐู‡ ุงู„ุญุฑูƒุฉ ูˆูŠูุญูุฒู‡ุง ุฃูˆ ูŠุญุฏุซ ุงู†ุญุฑุงูุงุช ู„ุฃู† ุญุฑูƒุฉ
716
+
717
+ 208
718
+ 00:22:55,040 --> 00:23:00,260
719
+ ุงู„ุฑุฏุฉ ุงู„ูุนู„ ุชูˆุฌุฏ ุณู„ุจูŠุงุช ูˆุฃุญูŠุงู†ู‹ุง ุงู†ุญุฑุงูุงุช
720
+
721
+ 209
722
+ 00:23:00,260 --> 00:23:07,760
723
+ ูˆุงุณุชุซู†ุงุกุงุช ุฏุงุฎู„ ุงู„ุญุฑูƒุฉ ู…ุน ู…ุฑูˆุฑ ุงู„ุฒู…ู† ุฑุจู…ุง ูŠุนู†ูŠ
724
+
725
+ 210
726
+ 00:23:07,760 --> 00:23:17,140
727
+ ุชู†ู‚ู„ุจ ููŠ ุงู„ุงุชุฌุงู‡ ุงู„ู…ุนุงูƒุณ ูุชุชุญูˆู„ ุฅู„ู‰ ุณู„ุจูŠุงุช ูุฅุฐุง
728
+
729
+ 211
730
+ 00:23:17,140 --> 00:23:23,220
731
+ ุจุญุฑูƒุฉ ุงู„ุฐู‡ุจ ุนู†ุฏู…ุง ุชุณุชู…ุฑ ููŠ ุงู„ุฃุฌูˆุงุก ุงู„ุณุงุจู‚ุฉ ุชุชุญูˆู„
732
+
733
+ 212
734
+ 00:23:23,220 --> 00:23:34,510
735
+ ุฅู„ู‰ ุชุตูˆู ู…ุฒู…ูˆู… ูƒู…ุง ุฑุฃูŠู†ุง ุนู†ุฏ ุงู„ุญู„ุงุฌ ูˆุบูŠุฑู‡ ู‡ู†ุงูƒ ููŠู‡
736
+
737
+ 213
738
+ 00:23:34,510 --> 00:23:45,950
739
+ ู…ู„ุงุญุธุฉ ูŠุนู†ูŠ ุชุงุฑูŠุฎูŠุฉ ู…ู‡ู…ุฉ ู„ุชูุณูŠุฑ ุญุฑูƒุฉ ุงู„ุฐู‡ุฏ ูˆุฑุจู…ุง
740
+
741
+ 214
742
+ 00:23:45,950 --> 00:23:55,080
743
+ ุชุคุดุฑ ุฅู„ู‰ ุนู…ู„ูŠุฉ ุงู†ุญุฑุงู ููŠู…ุง ุจุนุฏ ูŠุนู†ูŠ ูŠู‚ุงู„ ุฃู† ุฃู†ุง ู…ู†
744
+
745
+ 215
746
+ 00:23:55,080 --> 00:23:59,820
747
+ ู…ุดู‡ูˆุฑูŠ ุฃู†ุณุงูƒ ุนุจุฏ ุงู„ูˆุงุญุฏ ุจู† ุฒูŠุฏ ุงู„ุฐูŠ ุฃู†ุดุฃ ุฃูˆู„ ุฑุจุงุท
748
+
749
+ 216
750
+ 00:23:59,820 --> 00:24:06,240
751
+ ุฃูˆ ุตูˆู…ุนุฉ ููŠ ุนุจุงุฏุงู† ู‚ุฑุจ ุงู„ูƒูˆูุฉ ูˆููŠู‡ุง ูŠู‚ูˆู„ ุฃุจูˆ
752
+
753
+ 217
754
+ 00:24:06,240 --> 00:24:11,400
755
+ ุงู„ุนุชุงู‡ูŠุฉ ุณู‚ู‰ ุงู„ู„ู‡ ุนุจุงุฏุงู† ุบูŠุซุง ู…ุฌู„ู„ุง ูุฅู† ู„ู‡ุง ูุถู„ุง
756
+
757
+ 218
758
+ 00:24:11,400 --> 00:24:17,540
759
+ ุฌุฏูŠุฏุง ูˆุฃูˆู„ุง ูˆุซุจุช ู…ู† ููŠู‡ุง ู…ู‚ูŠู…ุฉ ู…ุฑุงุจุทุฉ ูู…ุง ุฅู† ุฃุฑู‰
760
+
761
+ 219
762
+ 00:24:17,540 --> 00:24:25,640
763
+ ุนู†ู‡ุง ู„ู‡ ู…ุชุญูˆู„ุฉ ูˆุฃุฎุฐุช ุชู‚ุงู… ุงู„ุฑุจุงุทุงุช ุทุจุนุง ู†ู„ุงุญุธ ุทุจุนุง
764
+
765
+ 220
766
+ 00:24:25,640 --> 00:24:34,700
767
+ ู‡ู†ุง ูŠุนู†ูŠ ูŠุนู†ูŠ ููŠ ู…ุฌุงู„ ู„ู„ุชููƒูŠุฑ ูˆุฑุจุท ุจูŠู† ุงู„ู…ู‚ุฏู…ุงุช
768
+
769
+ 221
770
+ 00:24:34,700 --> 00:24:40,520
771
+ ูˆุงู„ู†ุชุงุฆุฌ ุฃู† ู‡ุฐู‡ ูŠุนู†ูŠ ุฃู† ู‡ุฐู‡ ุงู„ู†ุดุฃุฉ
772
+
773
+ 222
774
+ 00:24:42,990 --> 00:24:52,070
775
+ ู„ู„ุฑุจุงุทุงุช ุชุฏู„ ุนู„ู‰ ุฑุจุท ุจูŠู† ุงู„ุชุตูˆู ูˆุงู„ุชุดูŠุน ู„ุฃู† ู‡ุฐุง
776
+
777
+ 223
778
+ 00:24:52,070 --> 00:24:57,230
779
+ ุงู„ุฑุจุงุท ุฃู†ุดุฆ ู‚ุฑุจ ุงู„ูƒูˆูุฉ ูˆุงู„ูƒูˆูุฉ ูƒู…ุง ุฐูƒุฑู†ุง ู…ูˆุทู†
780
+
781
+ 224
782
+ 00:24:57,230 --> 00:25:05,580
783
+ ุงู„ุชุดูŠูŠุน ู‡ุฐู‡ ุทุจุนู‹ุง ู†ูˆุน ู…ู† ุงู„ุชุญู„ูŠู„ ู†ูˆุน ู…ู† ุงู„ุชูุณูŠุฑ ุฃูˆ
784
+
785
+ 225
786
+ 00:25:05,580 --> 00:25:10,380
787
+ ูˆุฌู‡ุฉ ู†ุธุฑ ุนู„ู‰ ุงู„ุฃู‚ู„ ูŠุนู†ูŠ ุฃู† ุงู„ุชุดูŠูŠุน.. ุฃู† ุงู„ุชุตูˆู
788
+
789
+ 226
790
+ 00:25:10,380 --> 00:25:17,360
791
+ ุงุฑุชุจุท ุงุจุชุฏุงุก ุจุงู„ุชุดูŠูŠุน ุฃูŠุถู‹ุง
792
+
793
+ 227
794
+ 00:25:17,360 --> 00:25:22,300
795
+ ู…ู† ุงู„ู…ู„ุงุญุธุงุช ุฃู† ุญุฑูƒุฉ ุงู„ุฐู‡ุจ ุงุฑุชุจุท ุจู‡ุง ู…ู†ุธูˆู…ุฉ
796
+
797
+ 228
798
+ 00:25:22,300 --> 00:25:29,220
799
+ ุฃุฎู„ุงู‚ูŠุฉ ูƒู…ุง ู‚ู„ู†ุง ุฅู† ุญุฑูƒุฉ ุงู„ุฐู‡ุจ ุชู‚ูˆู… ุนู„ู‰ ุชู‡ุฐูŠุจ ุงู„ู†ูุณ
800
+
801
+ 229
802
+ 00:25:30,160 --> 00:25:39,300
803
+ ุจุงู„ุฒู‡ุฏ ุงู„ู‚ู„ูŠู„ ูˆุงู„ุงุณุชุนุฏุงุฏ ู„ู„ุฑุญูŠู„ ูˆุชุนุฒูŠุฒ ุญู‚ูŠู‚ุฉ ุงู„ู…ูˆุช
804
+
805
+ 230
806
+ 00:25:39,300 --> 00:25:43,640
807
+ ูˆุงู„ูู†ุงุก ููŠ ุงู„ุฅู†ุณุงู† ุงุชุจุนุช ุจู‡ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฃุฎู„ุงู‚
808
+
809
+ 231
810
+ 00:25:43,640 --> 00:25:52,200
811
+ ุงู„ู†ูุณูŠุฉ ู…ุซู„ ุงู„ุตุจุฑ ูˆุงู„ุชุฐู„ู„ ูˆุงู„ุฎุถูˆุน ูˆุงู„ุตู…ู… ูˆุงู„ุญู„ู…
812
+
813
+ 232
814
+ 00:25:52,200 --> 00:26:04,690
815
+ ูู‡ุฐู‡ ู…ุฃุฎูˆุฐุฉ ู…ู† ู†ุธุฑูŠุฉ ุงู„ุฐู‡ุจ ู…ู† ุงู„ุฑุงุนูŠ ุงู„ุฃูˆู„ ููŠ
816
+
817
+ 233
818
+ 00:26:04,690 --> 00:26:12,670
819
+ ุงู„ุชุตูˆู ุฃูˆ ุงู„ู…ูŠู„ ุงู„ุฐู‡ุจูŠ ุฅู„ู‰ ุงู„ู†ุฒุนุฉ ุงู„ุชุตูˆููŠุฉ ู†ุฑุงู‡ุง ุนู†ุฏ
820
+
821
+ 234
822
+ 00:26:12,670 --> 00:26:19,130
823
+ ุฅุจุฑุงู‡ูŠู… ุจู† ุฃุฏู‡ู… ุงู„ุจู„ุฎูŠ ูˆุฑุงุจุนุฉ ุงู„ุนุฏูˆูŠุฉ ูˆุดู‚ูŠู‚ ุงู„ุจู„ุฎูŠ
824
+
825
+ 235
826
+ 00:26:19,130 --> 00:26:28,020
827
+ ุชู„ู…ูŠุฐ ุงุจู† ุฃุฏู‡ู… ูˆู‚ุงู„ ุฅู†ู‡ ุฃูˆู„ ู…ู† ุชูƒู„ู… ููŠ ุงู„ุชุตูˆู ูˆุนู„ูˆู…
828
+
829
+ 236
830
+ 00:26:28,020 --> 00:26:32,520
831
+ ุงู„ุฃุญูˆุงู„ ุจุฎุฑุงุณุงู† ูˆุฃุดุงุน ู…ุจุฏุฃ ุงู„ุชูˆูƒู„ ูˆู…ุนุฑูˆู ุงู„ูƒูˆููŠ
832
+
833
+ 237
834
+ 00:26:32,520 --> 00:26:40,840
835
+ ุฅุฐู‹ุง ู‡ู†ุง ููŠ ุนู„ุงู…ุฉ ุฃูŠุถู‹ุง ุชุฌุนู„ ุงู„ู‚ุงุฑุฆ ุฃู† ูŠููƒุฑ ู…ู„ูŠู‹ุง
836
+
837
+ 238
838
+ 00:26:40,840 --> 00:26:51,770
839
+ ุฃู† ุงู„ุชุตูˆู ู‚ุฏู… ู…ู† ุจู„ุงุฏ ูุงุฑุณ ูˆู…ู† ุฎุฑุงุณุงู† ูˆู…ู† ูˆุฑุงุก ุฃูŠุฉ
840
+
841
+ 239
842
+ 00:26:51,770 --> 00:27:01,250
843
+ ู†ู‡ุฑ ูŠุนู†ูŠ ุงู„ุชุตูˆู ู„ูŠุณ ุฎู„ู‚ู‹ุง ุนุฑุจูŠู‹ุง ูƒุงู† ู‡ู†ุงูƒ ุฃูŠุฉ
844
+
845
+ 240
846
+ 00:27:01,250 --> 00:27:06,810
847
+ ุงู„ุฐู‡ุจ ูƒุงู† ู‡ู†ุงูƒ ุตุจุฑ ุนู†ุฏ ุงู„ุนุฑุจ ุงู„ุตุจุฑ ุนู„ู‰ ุงู„ุฌูˆุน ุงู„ุตุจุฑ
848
+
849
+ 241
850
+ 00:27:06,810 --> 00:27:11,450
851
+ ุนู„ู‰ ุงู„ุนุทุด ูƒุงู† ุนู†ุฏู‡ู….. ุนู†ุฏู‡ู… ุฃูŠุฉ ูƒุฑุงู…ุฉ ูˆู„ุฐุง ู„ู…
852
+
853
+ 242
854
+ 00:27:11,450 --> 00:27:15,690
855
+ ูŠู†ุดุฃ ุนู†ุฏู‡ู… ุฃูŠุฉ ุงู„ู…ุฌู†ูˆู† ูˆู„ุง ู„ู‡ูˆ ูƒู…ุง ู„ู… ูŠู†ุดุฃ ุนู†ุฏู‡ู…
856
+
857
+ 243
858
+ 00:27:15,690 --> 00:27:22,100
859
+ ุฃูŠุฉ ุงู„ุชุตูˆู ุฅุฐุง ุฃูŠุฉุŸ ุงู„ู…ูˆุฌูˆุฏ ู„ู‡ ุนุงุฏุฉ ูุงุฑุณูŠุฉ ูˆุงู„ุชุตูˆู
860
+
861
+ 244
862
+ 00:27:22,100 --> 00:27:30,740
863
+ ุฃูŠุถู‹ุง ุนุงุฏุฉ ูุงุฑุณูŠุฉ ูŠุนู†ูŠ ูˆุฑุซ ู…ู† ุซู‚ุงูุฉ ูุงุฑุณูŠุฉ
864
+
865
+ 245
866
+ 00:27:30,740 --> 00:27:34,300
867
+ ูˆู„ุฐู„ูƒ
868
+
869
+ 246
870
+ 00:27:34,300 --> 00:27:39,040
871
+ ุงู„ุฃุณู…ุงุก ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู„ูŠุณุช ุฃุณู…ุงุก ุนุฑุจูŠุฉ ูŠุนู†ูŠ ูƒู„ู‡ุง
872
+
873
+ 247
874
+ 00:27:39,040 --> 00:27:46,600
875
+ ู…ู† ุจู„ุฎ ุดู‚ูŠู‚ ุงู„ุจู„ุฎูŠ ูˆุฅุจุฑุงู‡ูŠู… ุจู† ุฃุฏู‡ู… ุงู„ุจู„ุฎูŠ ูˆุฑุงุจุนุฉ
876
+
877
+ 248
878
+ 00:27:46,600 --> 00:27:50,820
879
+ ุงู„ุนุฏูˆูŠุฉ ูˆู…ุนุฑูˆู ุงู„ูƒูˆููŠ ูˆุงู„ูƒูˆููŠ ู…ูˆุทู† ุงู„ุชุดูŠูŠุน
880
+
881
+ 249
882
+ 00:27:50,820 --> 00:27:58,240
883
+ ูู‡ู†ุงูƒ ุฅุฐู† ุฑุจุท ุจูŠู† ุงู„ุชุตูˆู ูˆุงู„ุชุดูŠุน ุฃู† ู…ู‚ุฏู…ุงุช ุงู„ุชุตูˆู
884
+
885
+ 250
886
+ 00:27:58,240 --> 00:28:06,400
887
+ ู†ุดุฃุช ุจุฌูˆุงุฑ ุงู„ุชุดูŠูŠุน ู…ู† ู…ุฃุซูˆุฑ ุงู„ูƒู„ุงู… ุงู„ู…ุนุฑูˆู ู„ู„ูƒูˆููŠ
888
+
889
+ 251
890
+ 00:28:06,400 --> 00:28:14,380
891
+ ู…ู† ูƒุจุฑ ุงู„ู„ู‡ ุตุฑุงุนู‡ ูˆู…ู† ู†ุงุฒุนู‡ ู‚ู…ุนู‡ ูˆู…ู† ุชูˆุงุถุนู‡ ู„ู‡ ุฑูุนู‡
892
+
893
+ 252
894
+ 00:28:14,380 --> 00:28:18,220
895
+ ูˆู…ู† ู…ุง ูƒุฑู‡ู‡ ุฎุฏุนู‡ ูˆู…ู† ุชูˆู‚ู‘ู„ ุนู„ูŠู‡ ู…ู†ุนู‡ ุฅู„ู‰ ุขุฎุฑู‡ู…
896
+
897
+ 253
898
+ 00:28:19,190 --> 00:28:25,750
899
+ ูˆู‡ู†ุงูƒ ุจุดุฑ ุงู„ุญุงููŠ ุงู„ุฎุฑุงุณุงู†ูŠ ู†ุฒูŠู„ ุจุบุฏุงุฏ ุทุจุนู‹ุง ู†ู„ุงุญุธ
900
+
901
+ 254
902
+ 00:28:25,750 --> 00:28:31,410
903
+ ู‡ู†ุง ู„ุฃู† ุงู„ุฃุณู…ุงุก ุทุจุนู‹ุง ุงู‚ุชุจุณุช ุจุฃูŠุฉ ู„ุฃู† ู…ู‚ุฏู…ุฉ ุงู„ุชุตูˆู
904
+
905
+ 255
906
+ 00:28:31,410 --> 00:28:40,610
907
+ ูŠุนู†ูŠ ู†ุดุฃุช ุจูุนู„ ุงู„ูุฑุต ูˆุทุจุนู‹ุง ู‡ุฐู‡ ุงู„ู†ุดุฃุฉ ู„ูŠุณุช ู†ุดุฃุฉ
908
+
909
+ 256
910
+ 00:28:40,610 --> 00:28:45,850
911
+ ุนุฑุจูŠุฉ ูุงู„ุชุตูˆู ู„ูŠุณ ุฎู„ู‚ู‹ุง ุนุฑุจูŠู‹ุง ูƒู…ุง ุงู„ู…ูˆุฌูˆุฏ ุฃูŠุถู‹ุง
912
+
913
+ 257
914
+ 00:28:48,760 --> 00:28:53,940
915
+ ุจุดุฑ ุงู„ุญุงููŠ ุงู„ุฎุฑุงุณุงู†ูŠ ู†ุฒูŠู„ ุจุบุฏุงุฏ ูƒุงู† ูŠู‚ูˆู„ ุงู„ูุคุงุฏ
916
+
917
+ 258
918
+ 00:28:53,940 --> 00:29:03,660
919
+ ูŠู…ูŠุช ุฃููˆุง ุงู„ุฌูˆุน ูŠุตู ุงู„ูุคุงุฏ ูˆูŠู…ูŠุช ุงู„ู‡ูˆู‰ ูˆูŠููˆุฑุซ ุงู„ุนู„ู…
920
+
921
+ 259
922
+ 00:29:03,660 --> 00:29:10,880
923
+ ุงู„ุฏู‚ูŠู‚ ูˆุงู„ู…ุชู‚ู„ุจ ููŠ ุฌูˆุนู‡ ูƒุงู„ู…ุชุดุญุช ููŠ ุณุจูŠู„ ุงู„ู„ู‡ ูˆุฅุฐุง
924
+
925
+ 260
926
+ 00:29:10,880 --> 00:29:19,390
927
+ ุฃุนุฌุจูƒ ุงู„ูƒู„ุงู… ูุงุตู…ุช ูˆุฅุฐุง ุฃุนุฌุจูƒ ุงู„ุตู…ุช ูุชูƒู„ู… ูŠุนู†ูŠ ู„ูˆ
928
+
929
+ 261
930
+ 00:29:19,390 --> 00:29:24,230
931
+ ูˆุถุนู†ุง ู‡ุฐู‡ ุงู„ุนุจุงุฑุฉ ููŠ ุณูŠุงู‚ ู†ุธุฑูŠุฉ ุงู„ุฐู‡ุฏ ูˆุจุฏุงูŠุฉ
932
+
933
+ 262
934
+ 00:29:24,230 --> 00:29:30,830
935
+ ุงู„ุชุตูˆู ูŠุนู†ูŠ ุฑุจู…ุง ู†ุถุน ุฃูŠุฏูŠู†ุง ุนู„ู‰ ุงู„ู…ู‚ุฏู…ุงุช ุจุดูƒู„ ุฃูŠุฉ
936
+
937
+ 263
938
+ 00:29:30,830 --> 00:29:40,290
939
+ ุณู„ูŠู… ุงู„ุฌูˆุน ูŠุตู ุงู„ูุคุงุฏ ููƒุงู† ุงู„ู…ุชุตูˆูุฉ ูŠุนุชู…ุฏูˆู† ุนู„ู‰
940
+
941
+ 264
942
+ 00:29:40,290 --> 00:29:46,510
943
+ ุงู„ุฌูˆุน ู„ูŠู†ู‚ูŠ ุงู„ุฌุงู†ุจ ุงู„ุฑูˆุญูŠ ูˆูŠู…ูŠุช ุฃูŠุฉ ุงู„ู‡ูˆู‰ ุงู„ุฐูŠ ู‡ูˆ
944
+
945
+ 265
946
+ 00:29:46,510 --> 00:29:51,700
947
+ ุงู„ู…ูŠู„ ุฅู„ู‰ ุงู„ุดู‡ูˆุงุช ูˆูŠููˆุฑุซ ุงู„ุนู„ู… ุงู„ุฏู‚ูŠู‚ ูŠุนู†ูŠ ูŠุฑุชู‚ูŠ
948
+
949
+ 266
950
+ 00:29:51,700 --> 00:29:58,220
951
+ ุงู„ุฅู†ุณุงู† ููŠ ุงู„ุชุฃู…ู„ ุงู„ุชุฃู…ู„ ุงู„ุงุฑุชู‚ุงุฆูŠ ูŠุนู†ูŠ ูŠุฑูุน
952
+
953
+ 267
954
+ 00:29:58,220 --> 00:30:07,620
955
+ ุงู„ุฅู†ุณุงู† ุฅู„ู‰ ุฏุฑุฌุฉ ุฃุนู„ู‰ ู…ู† ุงู„ุทุจูŠุนุฉ ูˆุฃุนู„ู‰ ู…ู† ุงู„ุฃุดูŠุงุก
956
+
957
+ 268
958
+ 00:30:07,620 --> 00:30:15,060
959
+ ุงู„ู…ุงุฏูŠุฉ ูˆุงู„ู…ุชู‚ู„ุจ ููŠ ุฌูˆุนู‡ ูƒุงู„ู…ุชุดุญุท ููŠ ุฏู…ู‡ ููŠ ุณุจูŠู„
960
+
961
+ 269
962
+ 00:30:15,060 --> 00:30:24,100
963
+ ุงู„ู„ู‡ ูุฌุนู„ู‡ ุงู„ุฐูŠ ูŠุฌูˆุน ูˆูŠุชู‚ู„ุจ ู…ู† ุงู„ุฌูˆุน ูƒู…ู† ูŠู‚ุชู„ ููŠ
964
+
965
+ 270
966
+ 00:30:24,100 --> 00:30:29,620
967
+ ุณุจูŠู„ ุงู„ู„ู‡ ูˆุชุดูŠุฑ ุฃูŠุถู‹ุง ู‡ุฐู‡ ุงู„ู…ู‚ูˆู„ุฉ ู…ู‚ูˆู„ุฉ ุจุดุฑ
968
+
969
+ 271
970
+ 00:30:29,620 --> 00:30:38,540
971
+ ุงู„ุญุงููŠ ุฅู„ู‰ ู†ุธุฑูŠุฉ ุงู„ุฃุฎู„ุงู‚ ุนู†ุฏ ุงู„ู…ุชุตูˆูุฉ ุฃูˆ ุงู„ุฐู‡ุฏ ูˆู‡ูŠ
972
+
973
+ 272
974
+ 00:30:38,540 --> 00:30:45,020
975
+ ู‚ุงุฆู…ุฉ ุนู„ู‰ ุตูุงุช ู†ูุณูŠุฉ ุฅุฐุง ุฃุนุฌุจูƒ ุงู„ูƒู„ุงู… ูุงุตู…ุช ูˆุฅุฐุง
976
+
977
+ 273
978
+ 00:30:45,020 --> 00:30:50,260
979
+ ุฃุนุฌุจูƒ ุงู„ุตู…ุช ูุชูƒู„ู… ูˆู„ุฐู„ูƒ ู†ุฌุฏ ุฃู† ุงู„ู…ูุฑุฏุงุช ุงู„ุฃุฎู„ุงู‚ูŠุฉ
980
+
981
+ 274
982
+ 00:30:50,260 --> 00:30:58,340
983
+ ููŠ ู†ุธุฑูŠุฉ ุงู„ุฒู‡ุฏ ู‡ูŠ ุงู„ุตู…ุช ูˆุงู„ุญู„ู… ูˆุงู„ุตุจุฑ ูˆุงู„ุฎุดูˆุน
984
+
985
+ 275
986
+ 00:30:58,340 --> 00:31:00,620
987
+ ูˆุงู„ุชุฐู„ู„ ูˆุงู„ุงู†ูƒุณุงุฑ
988
+
989
+ 276
990
+ 00:31:03,710 --> 00:31:08,550
991
+ ุจุนุถ ุงู„ู…ุณุชุดุฑู‚ูŠู† ุญุงูˆู„ูˆุง ุฃู† ูŠุฑุจุทูˆุง ุงู„ุฐู‡ุฏ ุงู„ุฅุณู„ุงู…ูŠ ุจุฐู‡ุฏ
992
+
993
+ 277
994
+ 00:31:08,550 --> 00:31:14,210
995
+ ุงู„ุฑู‡ุจุงู† ุงู„ู†ุตุงุฑู‰ ู†ุญู† ู†ู‚ูˆู„ ูƒู…ุง ู‚ุงู„ ุดูˆูƒุธูŠู ุฃู† ุงู„ุฐู‡ุฏ ููŠ
996
+
997
+ 278
998
+ 00:31:14,210 --> 00:31:18,990
999
+ ุงู„ู‚ุฑู† ุงู„ุฃูˆู„ ู…ู† ุนู…ุฑ ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ูƒุงู† ุฐู‡ุฏู‹ุง
1000
+
1001
+ 279
1002
+ 00:31:18,990 --> 00:31:25,160
1003
+ ุฅุณู„ุงู…ูŠู‹ุง ูŠุนู†ูŠ ู†ุงุจุน ู…ู† ุชุนุงู„ูŠู… ุงู„ุฅุณู„ุงู… ุงู„ุญู†ูŠู ูˆู‡ุฐุง ู„ุง
1004
+
1005
+ 280
1006
+ 00:31:25,160 --> 00:31:33,880
1007
+ ูŠู…ู†ุน ุฃู† ู†ุฌุฏ ู‡ู†ุงูƒ ุฃุณุงู„ูŠุจ ุฃุณุงู„ูŠุจ ู…ู† ุฐู‡ุจ ุงู„ู†ุตุงุฑู‰ ุฃูˆ ุฐู‡ุจ
1008
+
1009
+ 281
1010
+ 00:31:33,880 --> 00:31:43,140
1011
+ ุฃูŠุฉ ุงู„ุจูˆุฐูŠูŠู† ุฃูˆ ุงู„ู…ุงู†ูˆูŠูŠู† ุฃูˆ ุฃูˆ ุฏูŠุงู†ุงุช ุฃูˆ ู…ู„ู„
1012
+
1013
+ 282
1014
+ 00:31:43,140 --> 00:31:48,360
1015
+ ุฃุฎุฑู‰ ู‡ู†ุงูƒ ุฃุณุงู„ูŠุจ ู…ู† ุงู„ุฐู‡ุจ ู„ูƒู† ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ุธู„
1016
+
1017
+ 283
1018
+ 00:31:48,360 --> 00:31:55,520
1019
+ ู…ุญุงูุธู‹ุง ุนู„ู‰ ุทุจูŠุนุชู‡ ุงู„ุฅุณู„ุงู…ูŠุฉ ููŠ ุงู„ู‚ุฑู† ุงู„ุฃูˆู„ ู…ู†
1020
+
1021
+ 284
1022
+ 00:31:55,520 --> 00:32:01,440
1023
+ ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ูˆู‡ู†ุงูƒ
1024
+
1025
+ 285
1026
+ 00:32:01,440 --> 00:32:06,480
1027
+ ูุฑู‚ ุฃุตู„ุงู‹ ุจูŠู† ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ูˆุฐู‡ุจ ุงู„ุฑู‡ุจุงู† ุงู„ู†ุตุงุฑู‰
1028
+
1029
+ 286
1030
+ 00:32:06,480 --> 00:32:12,880
1031
+ ุฐู„ูƒ ุฃู† ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ู‚ุงุฆู… ุนู„ู‰ ุนุจุงุฏุงุช ุฅุณู„ุงู…ูŠุฉ
1032
+
1033
+ 287
1034
+ 00:32:12,880 --> 00:32:18,270
1035
+ ูˆู‚ุงุฆู… ุนู„ู‰ ุนู‚ูŠุฏุฉ ุงู„ุชูˆุญูŠุฏ ูˆุนู„ู‰ ุงู„ุฅูŠู…ุงู† ุจุงู„ูŠูˆู… ุงู„ุขุฎุฑ
1036
+
1037
+ 288
1038
+ 00:32:18,270 --> 00:32:25,850
1039
+ ุฃู…ุง ุงู„ุฐู‡ุจ ุงู„ู†ุตุฑุงู†ูŠ ูู‚ุงู… ุนู„ู‰ ุนู‚ูŠุฏุฉ ุงู„ุชุซู„ูŠุซ ุงู„ุดูŠุก
1040
+
1041
+ 289
1042
+ 00:32:25,850 --> 00:32:31,510
1043
+ ุงู„ุซุงู†ูŠ ุฃู† ุงู„ุฐู‡ุจ ุงู„ุฐู‡ุจ ู„ู„ู†ุตุงุฑู‰ ู‚ุงุฆู… ุนู„ู‰ ุงู„ุงุชุณุงุฎ
1044
+
1045
+ 290
1046
+ 00:32:31,510 --> 00:32:38,030
1047
+ ุงู„ู…ู‚ุฏุณ ู‡ู†ุงูƒ ู†ุธุฑูŠุฉ ุงู„ุงุชุณุงุฎ ุงู„ู…ู‚ุฏุณ ุนู†ุฏ ุงู„ู†ุตุงุฑู‰ ูู‡ู…
1048
+
1049
+ 291
1050
+ 00:32:38,030 --> 00:32:46,290
1051
+ ูŠุฑูˆู† ุฃู† ุชุณูŠุฎ ุงู„ุฌุณู… ูˆุนุฏู… ุงู„ุงู‡ุชู…ุงู… ุจุงู„ู†ุธุงูุฉ ุงู„ุดุฎุตูŠุฉ
1052
+
1053
+ 292
1054
+ 00:32:46,290 --> 00:32:53,750
1055
+ ูŠุคุฏูŠ ุฅู„ู‰ ุงุฑุชู‚ุงุก ุงู„ุฑูˆุญ ุทุจุนู‹ุง ู‡ุฐุง ู…ุฎุงู„ู ู„ู„ุฅุณู„ุงู…
1056
+
1057
+ 293
1058
+ 00:32:56,040 --> 00:32:59,880
1059
+ ุงู„ุฐูŠ ุฏุนุง ุฅู„ู‰ ุงู„ู†ุธุงูุฉ ุงู„ุดุฎุตูŠุฉ ูˆุงู„ุงู‡ุชู…ุงู… ุจุงู„ู‡ูŠุฆุฉ
1060
+
1061
+ 294
1062
+ 00:32:59,880 --> 00:33:06,280
1063
+ ูˆุงู„ุงู‡ุชู…ุงู… ุจุงู„ุทู‡ุงุฑุฉ ูˆู†ุญูˆ ุฐู„ูƒ ูˆุงู„ุฅุณู„ุงู… ุฃูŠุถู‹ุง ุฃู…ุฑ
1064
+
1065
+ 295
1066
+ 00:33:06,280 --> 00:33:14,020
1067
+ ุจุงู„ุฒูˆุงุฌ ุจูŠู†ู…ุง ุงู„ุฐู‡ุฏ ุงู„ู†ุตุฑุงู†ูŠ ุฏุนุง ุฅู„ู‰ ุงู„ุนุฒูˆุจูŠุฉ ูˆู‡ุฐุง
1068
+
1069
+ 296
1070
+ 00:33:14,020 --> 00:33:20,380
1071
+ ุทุจุนู‹ุง ูŠุฏู„ ุนู„ู‰ ุฃู† ู‡ู†ุงูƒ ุฎู„ุงูุง ุฃูˆ ุงุฎุชู„ุงูุง ุจูŠู† ุงู„ุฐู‡ุฏ
1072
+
1073
+ 297
1074
+ 00:33:20,380 --> 00:33:26,680
1075
+ ุงู„ุฅุณู„ุงู…ูŠ ูˆุฐู‡ุฏ ุงู„ู†ุตุงุฑู‰ ุฃูŠุถู‹ุง ุญุงูˆู„ ุงู„ู…ุณุชุดุฑู‚ ุฌูˆู„ุฏ ุณูŠู‡ุฑ
1076
+
1077
+ 298
1078
+ 00:33:26,680 --> 00:33:32,280
1079
+ ุฃู† ูŠู„ุจุณ ุจูŠู† ู…ู‚ุฏู…ุงุช ู†ุฒุนุฉ ุงู„ุชุตูˆู ุงู„ุฅุณู„ุงู…ูŠ ูˆุชุนู„ูŠู…ุงุช
1080
+
1081
+ 299
1082
+ 00:33:32,280 --> 00:33:37,740
1083
+ ุงู„ุฃูู„ุงุทูˆู†ูŠุฉ ุงู„ุญุฏูŠุซุฉ ุทุจุนู‹ุง ุงู„ุฃูู„ุงุทูˆู†ูŠุฉ ุงู„ุญุฏูŠุซุฉ ุชุคู…ู†
1084
+
1085
+ 300
1086
+ 00:33:37,740 --> 00:33:42,870
1087
+ ุฃู† ุงู„ุดูŠุก ู„ุง ุฃูŠุฉ ู„ู„ุดูŠุก ูŠุนู†ูŠ ุงู„ุญุจ ู„ุฃุฌู„ ุงู„ุญุจุŒ ูˆุงู„ุฌู…ุงู„
1088
+
1089
+ 301
1090
+ 00:33:42,870 --> 00:33:47,250
1091
+ ู„ุฃุฌู„ ุงู„ุฌู…ุงู„ุŒ ู„ุฃุฌู„ ู†ุญู† ููŠ ุงู„ุฅุณู„ุงู… ู‡ุฐู‡ ุงู„ุฃุดูŠุงุก ู„ู‡ุง
1092
+
1093
+ 302
1094
+ 00:33:47,250 --> 00:33:54,310
1095
+ ู…ุจุชุบู‰ ุฏูŠู†ูŠุŒ ุฅุฑุถุงุก ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ุŒ ูˆุงู„ุญุตูˆู„ ุนู„ู‰
1096
+
1097
+ 303
1098
+ 00:33:54,310 --> 00:34:00,230
1099
+ ุงู„ุฃุฌุฑ ู…ู† ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉ ูุงู„ุฒู‡ุฏ
1100
+
1101
+ 304
1102
+ 00:34:00,230 --> 00:34:09,190
1103
+ ุงู„ุฅุณู„ุงู…ูŠ ูŠุคู…ู† ุจุฃู† ู‡ู†ุงูƒ ุฃุฌุฑู‹ุง ุนุธูŠู…ู‹ุง ููŠ ุงู„ุขุฎุฑุฉ ูŠู†ุชุธุฑ
1104
+
1105
+ 305
1106
+ 00:34:09,190 --> 00:34:14,550
1107
+ ุงู„ุฅู†ุณุงู† ุงู„ุฒุงู‡ุฏ ูˆุฃูŠุถู‹ุง ูŠุฑูŠุฏ ุฃู† ูŠุญู‚ู‚ ุฑุถุง ุงู„ู„ู‡ ุณุจุญุงู†ู‡
1108
+
1109
+ 306
1110
+ 00:34:14,550 --> 00:34:21,550
1111
+ ูˆุชุนุงู„ู‰ ุฃู…ุง ุงู„ุฒู‡ุฏ ุงู„ุฃูู„ุงุทูˆู†ูŠ ุงู„ุฒู‡ุฏ ู„ุฃุฌู„ ุงู„ุฒู‡ุฏ ูู‡ูˆ
1112
+
1113
+ 307
1114
+ 00:34:21,550 --> 00:34:24,990
1115
+ ู„ุง ูŠุคู…ู† ุจุงู„ู„ู‡ ูˆู„ุง ูŠุคู…ู† ุจุงู„ูŠูˆู… ุงู„ุขุฎุฑ
1116
+
1117
+ 308
1118
+ 00:34:29,980 --> 00:34:35,960
1119
+ ุทุจุนู‹ุง ูƒู…ุง ู‚ู„ุช ุฃู† ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุฃูˆ ููŠ
1120
+
1121
+ 309
1122
+ 00:34:35,960 --> 00:34:40,160
1123
+ ุงู„ู‚ุฑู† ุงู„ุฃูˆู„ ู…ู† ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ูƒุงู† ุฐู‡ุฏู‹ุง ุฅุณู„ุงู…ูŠู‹ุง
1124
+
1125
+ 310
1126
+ 00:34:40,160 --> 00:34:47,460
1127
+ ุฎุงุตุฉ ู…ุน ุงู„ุฅูŠู…ุงู† ุจุฃู† ู‡ู†ุงูƒ ุฃูŠุฉ ู…ุน ุงู„ุงุนุชุฑุงู ุจุฃู† ู‡ู†ุงูƒ
1128
+
1129
+ 311
1130
+ 00:34:47,460 --> 00:34:53,580
1131
+ ุฃุณุงู„ูŠุจ ุจุฃู† ู‡ู†ุงูƒ ุฃุณุงู„ูŠุจ ุฃุฎุฑู‰ ู…ู† ุฐู‡ุจูŠ ุงู„ู†ุตุงุฑู‰ ูˆุฐู‡ุจูŠ
1132
+
1133
+ 312
1134
+ 00:34:53,580 --> 00:35:01,100
1135
+ ุงู„ุจูˆุฐูŠูŠู† ูˆุงู„ู…ุงู†ูˆูŠูŠู† ูˆุบูŠุฑ ุฐู„ูƒ ุจุนุฏ ุฐู„ูƒ ุฃุฎุฐุช ุฃูŠุฉ ู†ุฒุนุฉ
1136
+
1137
+ 313
1138
+ 00:35:01,100 --> 00:35:06,660
1139
+ ุชุตูˆู ุชุชุนู…ู‚ ูˆุฃุฎุฐุช
1140
+
1141
+ 314
1142
+ 00:35:06,660 --> 00:35:11,440
1143
+ ุฃูŠุฉ ุชุดุทุญ ููŠ ุงู„ุฌุงู†ุจ ุงู„ุฑูˆุญูŠ ูˆู‡ู†ุง ูŠุนู†ูŠ ู…ู…ูƒู† ุฃู† ู†ูุฑู‚
1144
+
1145
+ 315
1146
+ 00:35:11,440 --> 00:35:17,540
1147
+ ุจูŠู† ุงู„ุฐู‡ุฏ ุงู„ุฅุณู„ุงู…ูŠ ูˆุงู„ุชุตูˆู ุงู„ุฐู‡ุฏ ุงู„ุฅุณู„ุงู…ูŠ ูŠุฑูƒุฒ ุนู„ู‰
1148
+
1149
+ 316
1150
+ 00:35:17,540 --> 00:35:23,690
1151
+ ุงู„ุนุจุงุฏุงุช ูˆู‡ูˆ ู‚ูŠู…ุฉ ุฅุณู„ุงู…ูŠุฉ ู„ุฃู† ุงู„ู„ู‡.. ู„ุฃู† ุงู„ุฑุณูˆู„
1152
+
1153
+ 317
1154
+ 00:35:23,690 --> 00:35:28,690
1155
+ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู… ุฏุนุง ุฅู„ูŠู‡ุง ูู‚ุงู„ ุงุฒู‡ุฏ ููŠ ุงู„ุฏู†ูŠุง
1156
+
1157
+ 318
1158
+ 00:35:28,690 --> 00:35:33,930
1159
+ ูŠุญุจูƒ ุงู„ู„ู‡ ูˆุงุฒู‡ุฏ ููŠ ู…ุขูŠุฏูŠ ุงู„ู†ุงุณ ูŠุญุจูƒ ุงู„ู†ุงุณ ุฅุฐุง
1160
+
1161
+ 319
1162
+ 00:35:33,930 --> 00:35:38,250
1163
+ ุงู„ุฐู‡ุจ ู„ู‡ ู‚ูŠู…ุฉ ุฅุณู„ุงู…ูŠุฉ ุฃู…ุง ุงู„ุชุตูˆู ูู„ูŠุณ ู‚ูŠู…ุฉ
1164
+
1165
+ 320
1166
+ 00:35:38,250 --> 00:35:43,290
1167
+ ุฅุณู„ุงู…ูŠุฉ ุฅู†ู…ุง ู‡ูˆ ุญุงู„ุฉ ุฅู†ุณุงู†ูŠุฉ ุงุจุชุฏุนู‡ุง ุงู„ุฅู†ุณุงู† ููŠู…ุง
1168
+
1169
+ 321
1170
+ 00:35:43,290 --> 00:35:54,990
1171
+ ุจุนุฏ ูˆู„ุฐู„ูƒ ุงู„ุชุนุฑู ุนู„ู‰ ู‚ูŠู…ุฉ ุงู„ุชุตูˆู ูŠูƒูˆู† ุฃูŠุฉุŸ ุจุฅุฑุฌุงุนู‡
1172
+
1173
+ 322
1174
+ 00:35:54,990 --> 00:36:01,210
1175
+ ุฅู„ู‰ ุงู„ุฒู‡ุฏ ุฅู„ู‰ ุญู‚ูŠู‚ุฉ ุงู„ุฒู‡ุฏ ูู…ุง ูˆุงูู‚ ููŠู‡ ุงู„ุฒู‡ุฏ
1176
+
1177
+ 323
1178
+ 00:36:01,210 --> 00:36:06,790
1179
+ ุงู„ุฅุณู„ุงู…ูŠ ูƒุงู† ูŠุนู†ูŠ ู…ู‚ุจูˆู„ู‹ุง ุฃู…ุง ุฅุฐุง ุนุงุฑุถ ุงู„ุฒู‡ุฏ
1180
+
1181
+ 324
1182
+ 00:36:06,790 --> 00:36:10,840
1183
+ ุงู„ุฅุณู„ุงู…ูŠ ูู‡ูˆ ุฃูŠุฉุŸ ุบูŠุฑ ู…ู‚ุจูˆู„ ูˆู„ุฐู„ูƒ ู‚ู„ู†ุง ุฅู† ุงู„ุชุตูˆู
1184
+
1185
+ 325
1186
+ 00:36:10,840 --> 00:36:18,100
1187
+ ุญุงู„ุฉ ุฅู†ุณุงู†ูŠุฉ ุฃู…ุง ุงู„ุฐู‡ุจ ูู‡ูˆ ุฃูŠุฉ ู‚ูŠู…ุฉ ุฅุณู„ุงู…ูŠุฉ ุงู„ุดูŠุก
1188
+
1189
+ 326
1190
+ 00:36:18,100 --> 00:36:20,760
1191
+ ุงู„ุซุงู†ูŠ ุฃู† ุงู„ุฐู‡ุจ ูŠุฑูƒู‘ุฒ ุนู„ู‰ ุงู„ุนุจุงุฏุงุช ูˆุงู„ุชุนู„ูŠู…ุงุช
1192
+
1193
+ 327
1194
+ 00:36:21,480 --> 00:36:29,180
1195
+ ุงู„ุฏูŠู†ูŠุฉ ูˆุงู„ุชุนุจุฏูŠุฉ ู„ูƒู† ุงู„ุชุตูˆู ูŠุนู†ูŠ ูŠู‡ุชู… ุจุงู„ุฌุงู†ุจ
1196
+
1197
+ 328
1198
+ 00:36:29,180 --> 00:36:38,580
1199
+ ุงู„ุฑูˆุญูŠ ุจุงู„ุญุจ ุงู„ุฅู„ู‡ูŠ ูˆุทุจุนู‹ุง ุงู„ุฒู‡ุฏ ูŠุฑูƒุฒ ุนู„ู‰ ุงู„ุทุงุนุฉ ูˆ
1200
+
1201
+ 329
1202
+ 00:36:38,580 --> 00:36:42,540
1203
+ ู‡ู†ุงูƒ ูŠุฑูƒุฒ ุนู„ูŠู‡ ุงู„ุญุจ ูˆูุฑู‚ ุจูŠู† ุฃูŠุฉ ุงู„ุทุงุนุฉ ูˆุงู„ุญุจ
1204
+
1205
+ 330
1206
+ 00:36:42,540 --> 00:36:49,640
1207
+ ูุจุงู„ุทุงุนุฉ ูˆุงู„ุงุชุจุงุน ูŠุชุญุตู„ ุงู„ุฅู†ุณุงู† ุนู„ู‰ ู…ุง ู‡ูˆ ุฃุฑู‚ู‰ ู…ู†
1208
+
1209
+ 331
1210
+ 00:36:49,640 --> 00:36:50,480
1211
+ ุงู„ุญุจ ุงู„ุฅู„ู‡ูŠ
1212
+
1213
+ 332
1214
+ 00:36:56,120 --> 00:37:02,780
1215
+ ู‚ุงู„ ุชุนุงู„ู‰ ู‚ูู„ู’ ุฅู† ูƒู†ุชู… ุชุญุจูˆู† ุงู„ู„ู‡ ูุงุชุงุจุนูˆู†ูŠ ูŠุญุจุจูƒู…
1216
+
1217
+ 333
1218
+ 00:37:02,780 --> 00:37:12,420
1219
+ ุงู„ู„ู‡ ูุจุงู„ุงุชุจุงุน ูˆุงู„ุทุงุนุฉ ุชุญู‚ู‚ ู…ุญุจุฉ ุงู„ู„ู‡ ู„ูƒ ูˆูุฑู‚
1220
+
1221
+ 334
1222
+ 00:37:12,420 --> 00:37:21,880
1223
+ ุจูŠู† ุฃู† ุชุญุจู‡ ูˆุฃู† ุชูุญุจ ูุฅู† ุชูุญุจ ุฃูุถู„ ู…ู† ุฃู† ุชุญุจ ุงู„ุฐูŠ
1224
+
1225
+ 335
1226
+ 00:37:21,880 --> 00:37:29,830
1227
+ ุญุตู„ ุฃู† ุญุฑูƒุฉ ุงู„ุชุตูˆู ุงู†ุญุฑูุช ู„ุฃู†ู‡ุง ุชุนู…ู‚ุช ููŠ ุงู„ุฌุงู†ุจ
1228
+
1229
+ 336
1230
+ 00:37:29,830 --> 00:37:38,770
1231
+ ุงู„ุฑูˆุญูŠ ูˆู…ู…ูƒู† ุฃู† ู†ุจูŠู† ุฃู† ุญุฑูƒุฉ ุงู„ุชุตูˆู ุงุฑุชุจุทุช ุจุญุฑูƒุฉ
1232
+
1233
+ 337
1234
+ 00:37:38,770 --> 00:37:44,210
1235
+ ุงู„ุฐู‡ุจ ููŠ ุงู„ุจุฏุงูŠุงุช ูˆุงุฎุชู„ูุช ููŠ ุงู„ู…ุขู„ุงุช ูู„ูˆ ู†ุธุฑู†ุง ุฅู„ู‰
1236
+
1237
+ 338
1238
+ 00:37:44,210 --> 00:37:50,430
1239
+ ุจุฏุงูŠุงุช ุงู„ุชุตูˆู ูˆุฌุฏู†ุง ุฃู†ู‡ ูŠุฑุชุจุท ุจุงู„ุฒู‡ุฏ ูƒู…ุง ู‚ุงู„ุช
1240
+
1241
+ 339
1242
+ 00:37:50,430 --> 00:37:56,490
1243
+ ุฑุงุจุนุฉ ุงู„ุนุฏูˆูŠุฉ ุฃุญุจูƒ ุญุจูŠู† ุญุจ ุงู„ู‡ูˆู‰ ูˆุญุจ ู„ุฃู†ูƒ ุฃู‡ู„ ู„ุฐุงูƒ
1244
+
1245
+ 340
1246
+ 00:37:56,490 --> 00:38:01,950
1247
+ ูุฃู…ุง ุงู„ุฐูŠ ู‡ูˆ ุญุจ ุงู„ู‡ูˆู‰ ูุดุบู„ูŠ ุจุฐูƒุฑูƒ ุนู…ุง ุณูˆุงูƒ ูˆุฃู…ุง
1248
+
1249
+ 341
1250
+ 00:38:01,950 --> 00:38:07,350
1251
+ ุงู„ุฐูŠ ุฃู†ุช ู„ู‡ ูˆุฃู…ุง ุงู„ุฐูŠ ุฃู†ุช ุฃู‡ู„ ู„ู‡ ููƒุดููƒ ู„ูŠ ุงู„ุญุฌุงุจ
1252
+
1253
+ 342
1254
+ 00:38:07,350 --> 00:38:15,680
1255
+ ุญุชู‰ ุฃุฑุงูƒ ุทุจุนู‹ุง ู‡ุฐุง ุงู„ุญุจ ูŠุนู†ูŠ ู„ุง ูŠุนุงุฑุถ ู…ูู‡ูˆู… ุงู„ุญุจ ููŠ
1256
+
1257
+ 343
1258
+ 00:38:15,680 --> 00:38:21,840
1259
+ ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ูู‡ูˆ ุญุจ ุฃูŠุฉ ู…ู‚ุจูˆู„ ู„ูƒู† ุฅุฐุง ู†ุธุฑู†ุง ุฅู„ู‰
1260
+
1261
+ 344
1262
+ 00:38:21,840 --> 00:38:29,270
1263
+ ุงู„ู†ู‡ุงูŠุงุช ููŠ ู‚ูˆู„ ุงู„ุญู„ุงุฌ ุงู„ุญุณูŠู† ุงุจู† ู…ู†ุตูˆุฑ ุนู†ุฏู…ุง ู‚ุงู„
1264
+
1265
+ 345
1266
+ 00:38:29,270 --> 00:38:36,270
1267
+ ุฃู†ุง ู…ู† ุฃู‡ูˆู‰ ูˆู…ู† ุฃู‡ูˆู‰ ุฃู†ุง ู†ุญู† ุฑูˆุญุงู†ูŠ ุญู„ูˆู„ู†ุง ุจุฏู†ุง
1268
+
1269
+ 346
1270
+ 00:38:36,270 --> 00:38:43,630
1271
+ ูุฅุฐุง ุฃุจุตุฑุชู†ูŠ ุฃุจุตุฑุชู‡ ูˆุฅุฐุง ุฃุจุตุฑุชู‡ ุฃุจุตุฑุชู†ุง ู‡ู†ุง ู†ุฌุฏ ุฃู†
1272
+
1273
+ 347
1274
+ 00:38:43,630 --> 00:38:50,390
1275
+ ุงู„ุชุตูˆู ูŠุฎุฑุฌ ุนู† ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ุจู„ ูŠุฎุฑุฌ ุนู† ุงู„ุฅุณู„ุงู…
1276
+
1277
+ 348
1278
+ 00:38:51,260 --> 00:39:00,020
1279
+ ุจุงู„ูƒู„ูŠุฉ ู„ุฃู†ู‡ ูŠุคู…ู† ุจุฃู† ุตูุงุช ุงู„ุฎุงู„ู‚ ูˆุงู„ู…ุฎู„ูˆู‚ ุณูˆุงุก
1280
+
1281
+ 349
1282
+ 00:39:00,020 --> 00:39:06,740
1283
+ ู†ุญู† ุฑูˆุญุงู†ูŠ ุญู„ูˆู„ู†ุง ุจุฏู†ุง ูŠุนู†ูŠ ุฑูˆุญ ุงู„ุฎุงู„ู‚ ุงุชุญุฏุช ุจุฑูˆุญ
1284
+
1285
+ 350
1286
+ 00:39:06,740 --> 00:39:13,150
1287
+ ุงู„ู…ุฎู„ูˆู‚ ูุฅุฐุง ุฃุจุตุฑุชู†ูŠ ุฃุจุตุฑุชู‡ุŒ ูˆุฅุฐุง ุฃุจุตุฑุชู‡ ุฃุจุตุฑุชู†ุงุŒ
1288
+
1289
+ 351
1290
+ 00:39:13,150 --> 00:39:18,030
1291
+ ุฅุฐุง ุฃูŠุฉุŸ ุณุงูˆู‰ ุจูŠู† ุฃูŠุฉุŸ ุงู„ุฎุงู„ู‚ ูˆุงู„ู…ุฎู„ูˆู‚ ูˆู‡ุฐุง ูŠุฎุฑุฌ
1292
+
1293
+ 352
1294
+ 00:39:18,030 --> 00:39:27,010
1295
+ ุนู† ุงู„ุฅุณู„ุงู… ุนู‚ูŠุฏุฉ ูˆุดุฑูŠุนุฉ ุฅุฐุง ุงู„ุชุตูˆู ุฃูˆ ู…ู‚ุฏู…ุฉ ุงู„ุชุตูˆู
1296
+
1297
+ 353
1298
+ 00:39:27,010 --> 00:39:32,910
1299
+ ุงุชุญุฏุช ููŠ ุงู„ุจุฏุงูŠุงุช ูˆุงุฎุชู„ูุช ููŠ ุงู„ู…ุขู„ุงุช ู‡ุฐุง ูˆุจุงู„ู„ู‡
1300
+
1301
+ 354
1302
+ 00:39:32,910 --> 00:39:37,250
1303
+ ุงู„ุชูˆููŠู‚ ูˆุตู„ู‰ ุงู„ู„ู‡ู… ุนู„ู‰ ู†ุจูŠู†๏ฟฝ๏ฟฝ ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡
1304
+
1305
+ 355
1306
+ 00:39:37,250 --> 00:39:39,390
1307
+ ูˆุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/FF2OJnsBtxQ_postprocess.srt ADDED
@@ -0,0 +1,1420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:05,030 --> 00:00:08,510
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:08,510 --> 00:00:13,330
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ู‹ุง ูƒุซูŠุฑู‹ุง ููŠ ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ
8
+
9
+ 3
10
+ 00:00:13,330 --> 00:00:20,030
11
+ ู†ุชู†ุงูˆู„ ุงู„ู…ุคุซุฑุงุช ุงู„ุงุฌุชู…ุงุนูŠุฉ ููŠ ุงู„ุฃุฏุจ ุงู„ุนุจุงุณูŠ ูƒู†ุง ููŠ
12
+
13
+ 4
14
+ 00:00:20,030 --> 00:00:25,210
15
+ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุณุงุจู‚ุฉ ู‚ุฏ ุฐูƒุฑู†ุง ุจุนุถู‹ุง ู…ู† ู‡ุฐู‡ ุงู„ู…ุคุซุฑุงุช
16
+
17
+ 5
18
+ 00:00:25,210 --> 00:00:30,750
19
+ ุงู„ู…ุคุซุฑุงุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ุญุถุงุฑุฉ ูˆุงู„ุซุฑุงุก ูˆุงู„ุทุฑู ูˆู‡ุฐุง ุญุตู„
20
+
21
+ 6
22
+ 00:00:30,750 --> 00:00:34,870
23
+ ุจุณุจุจ ุงู„ุชู…ุงุฒุฌ ุงู„ุฌู†ุณูŠ ูˆุงู„ุญุถุงุฑูŠ ูˆุงู„ุซู‚ุงููŠ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
24
+
25
+ 7
26
+ 00:00:35,110 --> 00:00:40,630
27
+ ุจูŠู† ุงู„ุนุฑุจูŠ ูˆุงู„ุนุฌุจู‰ ูˆุฃุฏู‰ ุฐู„ูƒ ุฅู„ู‰ ุชู†ูˆุน ุซู‚ุงูู‰ ูˆุญุถุงุฑู‰
28
+
29
+ 8
30
+ 00:00:40,630 --> 00:00:47,830
31
+ ุฃูŠุถุง ุซุฑุงุก ูˆุงู„ุทุฑู ุฃุฏู‰ ุฅู„ู‰ ุญุตูˆู„ ุงู„ุฑูุงู‡ูŠุฉ ุงู„ุชูŠ ู‡ูŠ ููˆู‚
32
+
33
+ 9
34
+ 00:00:47,830 --> 00:00:52,090
35
+ ุงู„ุญุฏ ุงู„ูƒูุงูŠุฉ ุงู„ุชูŠ ูƒุงู† ูŠุณุนู‰ ุนู„ูŠู‡ุง ุงู„ุนุฑุจูŠ ููŠ ุงู„ุนุตูˆุฑ
36
+
37
+ 10
38
+ 00:00:52,090 --> 00:00:57,540
39
+ ุงู„ุณุงุจู‚ุฉูƒุงู† ุงู„ุนุฑุจูŠ ููŠ ุงู„ุณุงุจู‚ ูŠู‡ุชู… ุจุชุญู‚ูŠู‚ ุงู„ูƒูุงูŠุฉ
40
+
41
+ 11
42
+ 00:00:57,540 --> 00:01:03,540
43
+ ุฃู…ุง ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูุฃุตุจุญ ูŠุจุญุซ ุนู† ุงู„ุฑูุงู‡ูŠุฉ ูˆู‡ุฐุง ูˆู„ุฏ
44
+
45
+ 12
46
+ 00:01:03,540 --> 00:01:08,040
47
+ ููŠ ู†ูุณู‡ ุงุชู†ุงุนู… ูˆุงู„ุงุณุฑุงุจ ููŠ ุงู„ู…ุธุงู‡ุฑ ุงู„ุงุฌุชู…ุงุนูŠุฉ
48
+
49
+ 13
50
+ 00:01:08,040 --> 00:01:14,500
51
+ ูˆุงู„ู…ุจุงู„ุบุฉ ููŠ ูˆุณุงุฆู„ ุงู„ุฒูŠู†ุฉ ูˆุงู„ุฐุฎุฑู ูˆู‡ุฐุง ุฃุฏู‰ ุจุฏูˆุฑู‡
52
+
53
+ 14
54
+ 00:01:14,500 --> 00:01:21,940
55
+ ุฅู„ู‰ ุฎู„ู‚ ุฅุญุณุงุณ ุฌู…ุงู„ ุนู…ูŠู‚ููŠ ุงู„ู†ูุณ ููŠ ุงู„ุฃุฏุจ ุงู„ุนุฑุจูŠ
56
+
57
+ 15
58
+ 00:01:21,940 --> 00:01:28,160
59
+ ูุงุฑุชู‚ู‰ ุงู„ุนู‚ู„ ูˆุฑู‚ู‰ ุงู„ุฅุญุณุงุณ ุฃูŠุถุง ุชุญุฏุซู†ุง ุนู† ุงู„ุฑู‚ูŠู‚ ูˆ
60
+
61
+ 16
62
+ 00:01:28,160 --> 00:01:33,980
63
+ ุงู„ุฌูˆุงุฑูŠ ูˆูƒุงู† ู„ู‡ ุชุฃุซูŠุฑ ููŠ ุชุดูƒูŠู„ ุธุงู‡ุฑุฉ ุฌุฏูŠุฏุฉ ุนุฑูุช
64
+
65
+ 17
66
+ 00:01:33,980 --> 00:01:39,080
67
+ ุจุธุงู‡ุฑุฉ ุงู„ุชุบุฐู„ ุจุงู„ุบู„ู…ุงู† ู…ู† ุฑูˆุงุฏู‡ุง ู…ุทูŠุง ุงุจู† ุฅูŠุงุณ
68
+
69
+ 18
70
+ 00:01:39,080 --> 00:01:46,510
71
+ ูˆูˆุงู„ุจุฉ ุงุจู† ุงู„ุญุจุงุจ ูˆุฃุจูˆ ู†ูˆุงุฒุฃูŠุถู‹ุง ู‡ุฐู‡ ุงู„ุธุงู‡ุฑุฉุŒ
72
+
73
+ 19
74
+ 00:01:46,510 --> 00:01:51,950
75
+ ุธุงู‡ุฑุฉ ุงู„ุฑู‚ูŠู‚ ูˆุงู„ุฌูˆุงู„ูŠ ุฃุญุฏุซุช ุฅุญุณุงุณู‹ุง ุนู…ูŠู‚ู‹ุง ุจุงู„ุฌู…ุงู„
76
+
77
+ 20
78
+ 00:01:51,950 --> 00:01:57,250
79
+ ูˆูˆุถุนุช ุชุตูˆุฑู‹ุง ุฌู…ุงู„ูŠู‹ุง ุนู†ุฏ ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ู„ู„ู…ุฑุฃุฉ
80
+
81
+ 21
82
+ 00:01:57,250 --> 00:02:03,630
83
+ ูˆุฃูŠุถู‹ุง ูˆู„ุฏ ุฅุญุณุงุณู‹ุง ุฑู‚ูŠู‚ู‹ุง ุนู†ุฏ ุงู„ุดุนุฑุงุก ูˆู‡ุฐุง ุจุฏูˆุฑู‡
84
+
85
+ 22
86
+ 00:02:03,630 --> 00:02:11,630
87
+ ุฃุฏู‰ ุฅู„ู‰ ุชุฑู‚ูŠู‚ ู„ุบุฉ ุงู„ุดุนุฑ ููŠ ู‡ุฐุง ุงู„ุนุตุฑุฃูŠุถู‹ุง ูƒุงู† ู…ู†
88
+
89
+ 23
90
+ 00:02:11,630 --> 00:02:17,610
91
+ ุชุฃุซูŠุฑ ุงู„ุฑู‚ูŠู‚ ูˆุงู„ุฌูˆุงู„ูŠ ุงุฒู‡ุงุฑ ูู† ุงู„ุบู†ุงุก ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
92
+
93
+ 24
94
+ 00:02:17,610 --> 00:02:23,730
95
+ ูˆู‡ูˆ ุจุฏูˆุฑู‡ ุฃุนุทู‰ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู…ุคุซุฑุงุช ููŠ ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ
96
+
97
+ 25
98
+ 00:02:23,730 --> 00:02:31,510
99
+ ู…ุซู„ ุชุฑู‚ูŠู‚ ู„ุบุฉ ุงู„ุดุนุฑ ูˆูˆุฌุฏู†ุง ุฃูˆุฒุงู†ุง ุฎููŠูุฉ ูˆู…ุฌุฒูˆู‚ุฉ
100
+
101
+ 26
102
+ 00:02:31,510 --> 00:02:36,720
103
+ ุชุธู‡ุฑ ุจูƒุซุฑุฉ ููŠ ู‡ุฐุง ุงู„ุดุนุฑุฃูŠุถู‹ุง ูˆุฌุฏู†ุง ุงู„ู…ู‚ุทุนุงุช
104
+
105
+ 27
106
+ 00:02:36,720 --> 00:02:44,400
107
+ ุงู„ุดุนุฑูŠุฉ ุฃูˆ ุงู„ู‚ุตุงุฆุฏ ุฐุงุช ุงู„ุฃุจูŠุงุช ุงู„ู…ุญุฏูˆุฏุฉ ุฅุฐู‹ุง ุชุฑูƒุช
108
+
109
+ 28
110
+ 00:02:44,400 --> 00:02:50,280
111
+ ุธุงู‡ุฑุฉ ุงู„ุฑู‚ูŠู‚ ูˆุงู„ุฌูˆุงุฑูŠ ุฃุซุฑู‹ุง ููŠ ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ูƒุฐู„ูƒ
112
+
113
+ 29
114
+ 00:02:50,280 --> 00:02:58,260
115
+ ูˆุฌุฏู†ุง ุตูˆุฑู‹ุง ุฅุจุฏุงุนูŠุฉ ุฌุฏูŠุฏุฉ ูˆูƒุฐู„ูƒ ูˆุฌุฏู†ุง ุชู…ุฑุถู‹ุง ุนู„ู‰
116
+
117
+ 30
118
+ 00:02:58,260 --> 00:03:03,780
119
+ ู…ู‚ุฏู…ุฉ ุงู„ู‚ุตูŠุฏุฉ ุงู„ุนุฑุจูŠุฉุฃูŠุถู‹ุง ุชุญุฏุซู†ุง ููŠ ุงู„ู„ู‚ุงุก ุงู„ุณุงุจู‚
120
+
121
+ 31
122
+ 00:03:03,780 --> 00:03:07,280
123
+ ุนู† ุงู„ู…ุฌูˆู… ูˆุงู„ู„ู‡ูˆ ูˆู‚ู„ู†ุง ุฅู† ู‡ุฐู‡ ุธุงู‡ุฑุฉ ุบูŠุฑ ุนุฑุจูŠุฉ
124
+
125
+ 32
126
+ 00:03:07,280 --> 00:03:13,780
127
+ ู„ุฃู†ู‡ุง ู…ู†ุดุฃู‡ุง ุงู„ุชุฌุงูˆุฒ .. ุชุฌุงูˆุฒ ุงู„ุญุฏูˆุซ ุงู„ุทุจูŠุนูŠุฉ
128
+
129
+ 33
130
+ 00:03:13,780 --> 00:03:21,260
131
+ ู„ู„ุดู‡ูˆุงุช ุงู„ุชูŠ ุธู‡ุฑุช ููŠ ุงู„ุญุถุงุฑุฉ ุงู„ูุงุฑุณูŠุฉ ูˆุงู†ุชู‚ู„ุช ุฅู„ู‰
132
+
133
+ 34
134
+ 00:03:21,260 --> 00:03:25,860
135
+ ุงู„ุนุฑุจ ุชุญุช ุชุฃุซูŠุฑ ุงู„ุญุฑูŠุฉ ุงู„ู…ุณุฑูุฉ ุงู„ุชูŠ ุชุญุฏุซู†ุง ุนู†ู‡ุง ููŠ
136
+
137
+ 35
138
+ 00:03:25,860 --> 00:03:31,100
139
+ ุงู„ู…ุคุซุฑุงุช ุงู„ุณูŠุงุณูŠุฉููˆุฌุฏู†ุง ุชุฌุงูˆุฒุงู‹ ููŠ ุงู„ุชุบุฐูู„
140
+
141
+ 36
142
+ 00:03:31,100 --> 00:03:38,120
143
+ ุจุงู„ุบู„ู…ุงู† ูˆุงู„ุชุบุฐูู„ ุจุงู„ุตูุงุช ุงู„ุตุฑูŠุญุฉ ู„ู„ู…ุฑุฃุฉ ุฃูˆ ู…ูุงุชู†
144
+
145
+ 37
146
+ 00:03:38,120 --> 00:03:43,460
147
+ ุงู„ู…ุฑุฃุฉ ูˆุฑุฃูŠู†ุง ุฃู† ุงู„ุดุนุฑุงุก ู‚ุฏ ุฃูƒุซุฑ ู…ู† ุงู„ุญุฏูŠุซ ุนู†
148
+
149
+ 38
150
+ 00:03:43,460 --> 00:03:48,740
151
+ ุงู„ุฎู…ุฑ ูˆูˆุตููˆุง ู…ุฌุงู„ุณู‡ุง ูˆุจู„ุบูˆุง ููŠ ู‡ุฐู‡ ุงู„ุดู‡ูˆุฉ ุญุชู‰
152
+
153
+ 39
154
+ 00:03:48,740 --> 00:03:55,500
155
+ ุฃุฎุฑุฌุชู‡ู… ู…ู† ุงู„ุฏูŠู† ูุชุฌุงูˆุฒูˆุงุงู„ุฃูˆุงู…ุฑ ุงู„ุฏูŠู†ูŠุฉ ูˆุงู„ุชุนุฏูŠ
156
+
157
+ 40
158
+ 00:03:55,500 --> 00:04:00,820
159
+ ุนู„ู‰ ุงู„ุนู‚ูŠุฏุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ูƒู…ุง ุจูŠู†ุง ููŠ ุงู„ู„ู‚ุงุก ุงู„ุณุงุจู‚
160
+
161
+ 41
162
+ 00:04:00,820 --> 00:04:07,520
163
+ ุงู„ู†ู‚ุทุฉ ุงู„ุชูŠ ู†ุดูŠุฑ ุงู„ูŠู‡ุง ุฃูŠุถู‹ุง ู…ู† ุงู„ุธูˆุงู‡ุฑ ุงู„ุงุฌุชู…ุงุนูŠุฉ
164
+
165
+ 42
166
+ 00:04:07,520 --> 00:04:15,040
167
+ ู‡ูŠ ุงู„ุดุนูˆุจูŠุฉ ูˆุงู„ุฒู†ุฏู‚ุฉ ูˆู…ุนู†ู‰ ุงู„ุดุนูˆุจูŠุฉ ู‡ูŠ ุชูุถูŠู„ ุบูŠุฑ
168
+
169
+ 43
170
+ 00:04:15,040 --> 00:04:24,070
171
+ ุงู„ุนุฑุจูŠ ูˆุฐู†ุจ ุงู„ุฌู†ุณ ุงู„ุนุฑุจูŠ ุชูุถูŠู„ุบูŠุฑ ุนุฑุจูŠ ูˆุฐู†ุจ ุงู„ุฌู†ุณ
172
+
173
+ 44
174
+ 00:04:24,070 --> 00:04:29,670
175
+ ุงู„ุนุฑุจูŠ ูˆู…ุนู„ูˆู… ุฃู† ุงู„ุฅุณู„ุงู… ู‚ุฏ ุญุฑุจ ุงู„ุดุนูˆุจูŠุฉ ุงุจุชุฏุงุก
176
+
177
+ 45
178
+ 00:04:29,670 --> 00:04:35,110
179
+ ูˆุฌุนู„ ู…ู‚ูŠุงุณ ุงู„ุชูุงุฎุฑ ู‡ูˆ ุงู„ุชู‚ูˆู‰ ูู‚ุงู„ ุชุนุงู„ู‰ ุฅู† ุฃูƒุฑู…ูƒู…
180
+
181
+ 46
182
+ 00:04:35,110 --> 00:04:40,350
183
+ ุนู†ุฏ ุงู„ู„ู‡ ุฃุชู‚ุงูƒู…ูˆู‚ุงู„ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู…ุŒ ยซู„ุง ูุฑู‚
184
+
185
+ 47
186
+ 00:04:40,350 --> 00:04:47,090
187
+ ู„ุนุฑุจูŠ ุนู„ู‰ ุนุฌู…ูŠ ุฅู„ุง ุจุงู„ุชู‚ูˆู‰ยป ูˆูƒุงู† ู„ุณูŠุทุฑุฉ ุงู„ุฑูˆู… ..
188
+
189
+ 48
190
+ 00:04:47,090 --> 00:04:53,770
191
+ ู„ุณูŠุทุฑุฉ ุงู„ูุฑุณ ููŠ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ุงู†ุทุจุนุช ุงู„ุญูŠุงุฉ ุจุทุงุจุน
192
+
193
+ 49
194
+ 00:04:53,770 --> 00:04:59,830
195
+ ูุงุฑุณูŠ ูˆุฐู„ูƒ ู„ุฃู† ุงู„ูุฑุณ ูƒุงู† ู„ู‡ู… ุฏูˆุฑ ูƒุจูŠุฑ ููŠ ุฅู‚ุงู…ุฉ
196
+
197
+ 50
198
+ 00:04:59,830 --> 00:05:05,290
199
+ ุฏูˆู„ุฉ ุจู†ูŠ ุงู„ุนุจุงุฏ ูุธู‡ุฑุช ุณู„ูˆูƒูŠุงุช
200
+
201
+ 51
202
+ 00:05:06,430 --> 00:05:11,350
203
+ ูˆู…ูˆุงู‚ู ุงุชุฌุงู‡ ุงู„ุนุฑุจ ูู‚ุฏู…ูˆุง ุงู„ุดุนูˆุจ ุงู„ุฃุฌู†ุจูŠุฉ ุนู„ู‰
204
+
205
+ 52
206
+ 00:05:11,350 --> 00:05:17,510
207
+ ุงู„ุนุฑุจ ูˆุงู†ุชู‚ุตูˆุง ู‚ุฏุฑ ุงู„ุนุฑุจ ูˆุญู‚ุฑูˆุง ุดุฃู†ู‡ู… ูˆูƒุงู† ุฏุงูุน
208
+
209
+ 53
210
+ 00:05:17,510 --> 00:05:24,520
211
+ ุฐู„ูƒ ุณูŠุงุณูŠุง ุฐู„ูƒ ุฃู† ุงู„ force ุดุนุฑูˆุง ุจุฃู†ุฃูˆ ุงุนุชู‚ุฏูˆุง ุจุฃู†
212
+
213
+ 54
214
+ 00:05:24,520 --> 00:05:30,100
215
+ ุงู„ุนุฑุจ ู‡ู… ุงู„ุฐูŠู† ุฃุฏุงู„ูˆุง ุฏูˆู„ุฉ ุงู„ูุฑุซ ูˆุฃู†ู‡ู… ู†ู‚ู„ูˆู‡ู… ู…ู†
216
+
217
+ 55
218
+ 00:05:30,100 --> 00:05:39,740
219
+ ุญูŠุงุฉ ุงู„ุชู†ุงุนู… ูˆุงู„ุชุฑู ุฅู„ู‰ ุญูŠุงุฉ ุงู„ุชู‚ุดู ูˆุงู„ุดุถู ููƒุงู†
220
+
221
+ 56
222
+ 00:05:39,740 --> 00:05:46,780
223
+ ู‡ู†ุงูƒ ุฃูˆ ู†ุดุฃ ู‡ู†ุงูƒ ุนุฏุงุก ู„ู„ุนุฑุจ ู„ุฃู†ู‡ู… ุถูŠู‚ูˆุง ุนู„ู‰ ู‡ุคู„ุงุก
224
+
225
+ 57
226
+ 00:05:46,780 --> 00:05:55,490
227
+ ุญูŠุงุชู‡ู… ูˆู…ุนูŠุดุชู‡ู… ุงู„ุฏู†ูŠูˆูŠุฉูˆุฑุฃูˆุง ุฃูŠุถู‹ุง ุฃู† ุงู„ูุฑุณ ุฃุญู‚
228
+
229
+ 58
230
+ 00:05:55,490 --> 00:06:01,430
231
+ ุจุงู„ุณูŠุงุฏุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูุงู†ุชู‚ุตูˆุง ุนุงุฏุงุช ุงู„ุนุฑุจ
232
+
233
+ 59
234
+ 00:06:01,430 --> 00:06:09,120
235
+ ูˆุชู‚ุงู„ูŠุฏู‡ู… ูˆุชู‚ุงู„ูŠุฏู‡ู… ููŠ ุงู„ู…ุนูŠุดุฉ ูˆุงู„ุงุฌุชู…ุงุน ูˆุบูŠุฑู‡ุงู…ู…ุง
236
+
237
+ 60
238
+ 00:06:09,120 --> 00:06:15,860
239
+ ู„ุง ุชุชูู‚ ู…ุน ุนุงุฏุงุช ุงู„ูุฑุณ ูˆุชู‚ุงู„ูŠุฏู‡ู… ูู‚ุฏ ุฑุฃูŠู†ุง ุฃู†ู‡ู… ู‚ุฏ
240
+
241
+ 61
242
+ 00:06:15,860 --> 00:06:22,700
243
+ ุฃุณุฑููˆุง ููŠ ุงู„ู„ู‡ูˆ ูˆุงู„ู…ุฌูˆู† ูˆู‡ู†ุงูƒ ุฏุงูุน ุฃูŠุถู‹ุง ู„ู…ุนุงุฏุงุช
244
+
245
+ 62
246
+ 00:06:22,700 --> 00:06:28,660
247
+ ุงู„ุนุฑุจ ูˆู‡ูˆ ุฃู† ู‡ุคู„ุงุก ุงู„ุนุฑุจ ู‡ู… ุงู„ุฐูŠู† ูŠู‚ูˆุฏูˆู† ุงู„ุฃู…ุฉ
248
+
249
+ 63
250
+ 00:06:28,660 --> 00:06:37,380
251
+ ูˆูŠู‚ูˆุฏูˆู† ุงู„ุจุดุฑูŠุฉุฃู…ุง ุงู„ุฐู†ุฏู‚ุฉ ูู‡ูŠ ู„ูุธ ูุงุฑุณูŠ ู…ุนุฑู‘ุจ
252
+
253
+ 64
254
+ 00:06:37,380 --> 00:06:47,920
255
+ ุฃุตู„ู‡ุง ู…ุฃุฎูˆุฐ ู…ู† ูƒู„ู…ุฉ ุงู„ู€ Zendethist ูˆู‡ูŠ ูƒู„ู…ุฉ ูุงุฑุณูŠุฉ
256
+
257
+ 65
258
+ 00:06:47,920 --> 00:06:54,760
259
+ ุชูุทู„ูŽู‚ ุนู„ู‰ ุงู„ูƒุชุงุจ ุงู„ู…ู‚ุฏุณ ุนู†ุฏ ุงู„ู…ุฌูˆุฒูˆุดุงุนุช ู‡ุฐู‡
260
+
261
+ 66
262
+ 00:06:54,760 --> 00:07:02,260
263
+ ุงู„ูƒู„ู…ุฉ ููŠ ุงู„ู…ุฌุชู…ุน ุงู„ุนุจุงุณูŠ ูˆุญูุฑูุช ุฅู„ู‰ ูƒู„ู…ุฉ ุฒู†ุฏู‚ุฉ
264
+
265
+ 67
266
+ 00:07:02,260 --> 00:07:09,520
267
+ ู„ุชุทู„ู‚ ู‡ุฐู‡ ุงู„ูƒู„ู…ุฉ ุนู„ู‰ ูƒู„ ู…ู† ูŠุชู‡ุงูˆู‰ ููŠ ุงู„ุฏูŠู† ุฃูˆ ูŠู‡ุฒุฃ
268
+
269
+ 68
270
+ 00:07:09,520 --> 00:07:16,200
271
+ ุจุชุนู„ูŠู…ุงุชู‡ ูˆุนุจุงุฏุงุชู‡ ุฃูˆ ูŠุชุฌุฑุฃ ุงุณุฑุงูุง ููŠ ุงู„ู…ุนุงุตูŠ
272
+
273
+ 69
274
+ 00:07:16,200 --> 00:07:21,720
275
+ ูˆุงู„ู…ู†ูƒุฑุงุช ุฃูˆ ูŠู‚ูˆู„ ุจู…ู‚ุงู„ุฉ ุจุนุถ ุงู„ูƒูุงุฑ ูˆูŠุคู…ู†ูˆุง
276
+
277
+ 70
278
+ 00:07:22,580 --> 00:07:28,960
279
+ ุจุนู‚ุงุฆุฏู‡ู… ูˆุนู„ู‰ ูƒู„ ู…ู† ูŠุชุฃุซุฑ ุจุงู„ูุฑุซ ููŠ ุนุงุฏุงุชู‡ู… ูˆูŠุณุชุฑู
280
+
281
+ 71
282
+ 00:07:28,960 --> 00:07:36,180
283
+ ููŠ ุงู„ุนุจุซ ูˆุงู„ู…ุฌูˆู† ูุงู„ุฒู†ุฏู‚ุฉ ุฅุฐุง ู‡ูŠ ุจุบุถ ุงู„ุฅุณู„ุงู… ูˆุฃู‡ู„ู‡
284
+
285
+ 72
286
+ 00:07:36,180 --> 00:07:43,020
287
+ ูˆุชุนุงู„ูŠู…ู‡ ุซู… ุงุชุจุงุน ุทุฑู‚ ุฃุตุญุงุจ ุงู„ู…ู„ู„ ูˆุงู„ู†ุญู„ ุงู„ุถุงู„ุฉ
288
+
289
+ 73
290
+ 00:07:43,020 --> 00:07:49,300
291
+ ูˆุงู„ุฃู‡ูˆุงุก ุงู„ูุงุณุฏุฉ ูˆุงู„ุฃูุนุงู„ ุงู„ู…ู„ุญู„ุฉูˆู‡ู†ุงูƒ ุนู„ุงู‚ุฉ ุจูŠู†
292
+
293
+ 74
294
+ 00:07:49,300 --> 00:07:54,380
295
+ ุงู„ุดุนูˆุจูŠุฉ ูˆุงู„ุฒู†ุฏู‚ุฉุŒ ูุงู„ุดุนูˆุจูŠุฉ ุนุงู…ุŒ ูˆู‡ูŠ ู…ู‚ุฏู…ุฉ
296
+
297
+ 75
298
+ 00:07:54,380 --> 00:07:57,460
299
+ ู„ู„ุฒู†ุฏู‚ุฉุŒ
300
+
301
+ 76
302
+ 00:07:57,460 --> 00:08:02,720
303
+ ูˆูŠู‚ูˆู„ ุงู„ุฌุงุญุธ ููŠ ุงู„ุฑุจุท ุจูŠู† ุงู„ุฒู†ุฏู‚ุฉ ูˆุงู„ุดุนูˆุจูŠุฉุŒ ุฅู†
304
+
305
+ 77
306
+ 00:08:02,720 --> 00:08:09,660
307
+ ุนุงู…ุฉ ู…ู† ุงุฑุชุงุจ ุจุงู„ุฅุณู„ุงู… ูŠุนู†ูŠ ุนุงู…ุฉ ุงู„ุฒู†ุงุฏู‚ุฉุŒ ุฅู†ู…ุง
308
+
309
+ 78
310
+ 00:08:09,660 --> 00:08:16,010
311
+ ูƒุงู† ุฃูˆู„ ุฐู„ูƒ ุฑุฃูŠ ุงู„ุดุนูˆุจูŠุฉุŒ ูŠุนู†ูŠ ูƒุงู† ุดุนูˆุจูŠุงู‹ุŒุซู…
312
+
313
+ 79
314
+ 00:08:16,010 --> 00:08:21,530
315
+ ุชู…ุงุฏู‰ ููŠ ู‡ุฐุง ุงู„ุฑุฃูŠ ูˆุงู„ุชู…ุงุฏู‰ ููŠู‡ ูˆุทูˆู„ ุงู„ุฌุฒุงู„ ุงู„ู…ุคุฏู‰
316
+
317
+ 80
318
+ 00:08:21,530 --> 00:08:27,590
319
+ ุงู„ู‰ ุงู„ุถู„ุงู„ ูุฅุฐุง ุฃุจุบุถ ุดูŠุฆุง ุฃุจุบุถ ุฃู‡ู„ู‡ ูˆุฅุฐุง ุฃุจุบุถ ุชู„ูƒ
320
+
321
+ 81
322
+ 00:08:27,590 --> 00:08:32,630
323
+ ุงู„ู„ุบุฉ ุฃุจุบุถ ุชู„ูƒ ุงู„ุฌุฒูŠุฑุฉ ูˆุฅุฐุง ุฃุจุบุถ ุชู„ูƒ ุงู„ุฌุฒูŠุฑุฉ ุฃุญุจ
324
+
325
+ 82
326
+ 00:08:32,630 --> 00:08:38,170
327
+ ู…ู† ุฃุจุบุถ ุชู„ูƒ ุงู„ุฌุฒูŠุฑุฉ ูู„ุง ุฒุงู„ุช ุฃูˆ ูู„ุง ุชุฒุงู„ ุงู„ุญุงู„ุงุช
328
+
329
+ 83
330
+ 00:08:38,170 --> 00:08:47,360
331
+ ุชุชู†ู‚ู„ ุจู‡ ุญุชู‰ ูŠู†ุณู„ุฎ ุนู† ุงู„ุฅุณู„ุงู…ู‡ู†ุงูƒ ุฑุจุท ุจูŠู† ุงู„ุดุนูˆุจูŠุฉ
332
+
333
+ 84
334
+ 00:08:47,360 --> 00:08:56,540
335
+ ูˆุงู„ุฒู†ุฏู‚ุฉ ูุงู„ุดุนูˆุจูŠุฉ ุฃุนู… ูˆุงู„ุฒู†ุฏู‚ุฉ ุฃุฎุต ููƒู„ ุฒู†ุฏู‚ ุดุนูˆุจูŠ
336
+
337
+ 85
338
+ 00:08:56,540 --> 00:09:02,800
339
+ ูˆู„ูŠุณ ูƒู„ ุดุนูˆุจูŠ ุฒู†ุฏู‚ ู„ุฃู† ู…ู† ุงู„ุดุนูˆุจูŠุฉ ู…ู† ูŠูƒุฑู‡ ุงู„ุนุฑุจ
340
+
341
+ 86
342
+ 00:09:02,800 --> 00:09:09,200
343
+ ูˆู„ูƒู†ู‡ ูŠุญุจ ุงู„ุฅุณู„ุงู… ูŠูƒุฑู‡ ุญูŠุงุฉ ุงู„ุนุฑุจ ูˆุนุงุฏุงุชู‡ู…
344
+
345
+ 87
346
+ 00:09:09,200 --> 00:09:12,920
347
+ ูˆุนุงุฏุงุชู‡ู… ูˆู„ูƒู†ู‡ ูŠุญุจ ุงู„ุฅุณู„ุงู…
348
+
349
+ 88
350
+ 00:09:15,740 --> 00:09:21,640
351
+ ูˆู‚ุฏ ูƒุงู† ู„ู„ุฒู†ุฏู‚ุฉ ูˆุงู„ุฒู†ุงุฏู‚ุฉ ุญุถูˆุฑ ุจุงุฑุฒ ููŠ ุงู„ุญูŠุงุฉ
352
+
353
+ 89
354
+ 00:09:21,640 --> 00:09:26,900
355
+ ุงู„ุซู‚ุงููŠุฉ ูˆุงู„ุฏูŠู†ูŠุฉ ูˆุงู„ุงุฌุชู…ุงุนูŠุฉ ูˆูƒุงู† ุชุฃุซูŠุฑู‡ู… ุฎุทูŠุฑู‹ุง
356
+
357
+ 90
358
+ 00:09:26,900 --> 00:09:33,280
359
+ ู…ู…ุง ุฏูุน ุฎู„ูุงุก ุจู†ูŠ ุงู„ุนุจุงุณ ู„ู„ุชุตุฏูŠ ู„ู‡ู… ูุฃู‚ุงู…ูˆุง ู„ู‡ู…
360
+
361
+ 91
362
+ 00:09:33,280 --> 00:09:39,360
363
+ ุงู„ู…ุดุงู†ู‚ ูˆูุชุญูˆุง ู„ู‡ู… ุงู„ุณุฌูˆู† ูู‚ูุชู„ ู…ู†ู‡ู… ู…ู† ู‚ูุชู„ ูˆุตูู„ุจ
364
+
365
+ 92
366
+ 00:09:39,360 --> 00:09:45,810
367
+ ู…ู† ุตูู„ุจูˆูƒุงู† ู…ู†ู‡ู… ุจุดุงุฑ ู†ุจูˆุฑุฏ ูˆุตุงู„ุญ ุงุจู† ุนุจุฏ ุงู„ู‚ุฏูˆุณ
368
+
369
+ 93
370
+ 00:09:45,810 --> 00:09:53,910
371
+ ูˆุชุตุฏู‰ ู„ู„ุฒู†ุงุฏู‚ุฉ ุงู„ู…ุนุชุฒู„ุฉ ูˆู‡ู… ุฎูŠุฑ ู…ุฐู‡ุจ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
372
+
373
+ 94
374
+ 00:09:53,910 --> 00:10:00,110
375
+ ูŠุชุตุฏู‰ ู„ู„ุฒู†ุงุฏู‚ุฉ ูˆูŠุฏุงูุน ุนู† ุงู„ุฅุณู„ุงู… ู…ู† ุดุฑูˆุฑู‡ู…
376
+
377
+ 95
378
+ 00:10:00,110 --> 00:10:08,900
379
+ ูˆุฃุญู‚ุงุฏู‡ู… ูˆู…ุนุชู‚ุฏุงุชู‡ู… ุงู„ูุงุณุฏุฉู‡ุฐุง ู…ุธู‡ุฑ ุงุฌุชู…ุงุนูŠ ุซุงู„ุซ
380
+
381
+ 96
382
+ 00:10:08,900 --> 00:10:15,500
383
+ ุฃู…ุง ุงู„ู…ุธู‡ุฑ ุงู„ุฑุงุจุน ูู‡ูˆ ุธุงู‡ุฑุฉ ุงู„ุฒู‡ุฏ ูˆู…ุนู†ู‰ ุงู„ุฒู‡ุฏ ู‡ูˆ
384
+
385
+ 97
386
+ 00:10:15,500 --> 00:10:21,300
387
+ ูŠุนู†ูŠ ููŠ ุชุนุฑูŠู ู…ูˆุฌุฒ ุงู„ุฒู‡ุฏ ู‡ูˆ ุชุฑูƒ ุดูŠุก ู…ู† ุงู„ู…ุจุงุญ ุฃูˆ
388
+
389
+ 98
390
+ 00:10:21,300 --> 00:10:27,500
391
+ ุงู„ุญู„ุงู„ ู…ุฎุงูุฉ ุงู„ูˆู‚ูˆุน ููŠ ุงู„ุญุฑุงู… ูˆุจุฐู„ูƒ ู†ุฌุฏ ุฃู† ุงู„ุฒุงู‡ุฏ
392
+
393
+ 99
394
+ 00:10:27,500 --> 00:10:34,700
395
+ ู„ูŠุณ ูƒุงู„ุฅู†ุณุงู† ุงู„ุนุงุฏู‰ ุงู„ุฐูŠ ูŠุชุฑูƒ ุงู„ุญุฑุงู…ูุงู„ุฒู‡ุฏ ูŠุชุฑูƒ
396
+
397
+ 100
398
+ 00:10:34,700 --> 00:10:40,720
399
+ ุงู„ุญุฑุงู… ูˆุดูŠุก ู…ู† ุงู„ุญู„ุงู„ ู…ุฎุงูุฉ ุฃู† ูŠู‚ุน ููŠ ุงู„ุญุฑุงู…ุŒ ูู‡ูˆ
400
+
401
+ 101
402
+ 00:10:40,720 --> 00:10:44,440
403
+ ุงุจุชุนุฏ ู…ุณุงูุฉ ุจุนูŠุฏุฉ ุนู† ุงู„ุญุฑุงู… ุฃูƒุซุฑ ู…ู† ุงู„ุฅู†ุณุงู†
404
+
405
+ 102
406
+ 00:10:44,440 --> 00:10:49,940
407
+ ุงู„ุนุงุฏูŠุŒ ูˆู„ุฐู„ูƒ ุงู„ุฒู‡ุฏ ููŠ ุฃุจุณุท ุงู„ุชุนุฑูŠู ู„ู‡ ุชุฑูƒ ุดูŠุก ู…ู†
408
+
409
+ 103
410
+ 00:10:49,940 --> 00:10:56,740
411
+ ุงู„ุญู„ุงู„ ุฃูˆ ุงู„ู…ุจุงุญูŠ ู…ุฎุงูุฉ ุงู„ูˆู‚ูˆุน ููŠ ุงู„ุญุฑุงู…ุŒูˆู‡ุฐุง
412
+
413
+ 104
414
+ 00:10:56,740 --> 00:11:05,160
415
+ ูŠุญุชุงุฌ ุฅู„ู‰ ู…ุฌู‡ูˆุฏุงุช ุชุนุจุฏูŠุฉ ูˆู†ูุณูŠุฉ ูˆุณู„ูˆูƒูŠุฉ ู„ูŠุฑุชู‚ูŠ
416
+
417
+ 105
418
+ 00:11:05,160 --> 00:11:13,180
419
+ ุงู„ุฅู†ุณุงู† ุฅู„ู‰ ู‡ุฐู‡ ุงู„ุฏุฑุฌุฉ ู„ุฃู† ุงู„ุชุฑูƒ ูŠูƒูˆู† ุฃุนู„ู‰ุŒ ูู‡ูˆ
420
+
421
+ 106
422
+ 00:11:13,180 --> 00:11:20,670
423
+ ูŠุญุชุงุฌ ุฅู„ู‰ ุฌู‡ุฏ ู†ูุณูŠ ุฃุณู…ู‰ูˆู‡ุฐุง ู„ุง ูŠุชูˆูุฑ ู„ู„ุฅู†ุณุงู†
424
+
425
+ 107
426
+ 00:11:20,670 --> 00:11:26,370
427
+ ุงู„ุนุงุฏู‰ ุฃู…ุง ูู„ุณูุชู‡ ูุชู‚ูˆู… ุนู„ู‰ ุฃู…ุฑูŠู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„
428
+
429
+ 108
430
+ 00:11:26,370 --> 00:11:32,330
431
+ ุชู‡ุฐูŠุจ ุงู„ุฑุบุจุฉ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ ุญุจ ุงู„ุจู‚ุงุก ุงู„ุดูŠุก ุงู„ุซุงู†ูŠ
432
+
433
+ 109
434
+ 00:11:32,330 --> 00:11:37,710
435
+ ุชู‡ุฐูŠุจ ุงู„ุฑุบุจุฉ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ ุญุจ ุงู„ุชู…ู„ูƒููŠ ุญุจ ุงู„ุจู‚ุงุก
436
+
437
+ 110
438
+ 00:11:37,710 --> 00:11:45,190
439
+ ู†ุฌุฏ ุฃู† ุงู„ุฒู‡ุงุฏ ูŠุฑูƒุฒูˆู† ุนู„ู‰ ุญู‚ูŠู‚ุฉ ุงู„ู…ูˆุช ูˆุงู„ูู†ุงุก ูู„ุฐู„ูƒ
440
+
441
+ 111
442
+ 00:11:45,190 --> 00:11:52,430
443
+ ู†ุฌุฏ ุฃู† ุดุนุฑ ุงู„ุฒู‡ุฏูŠ ูŠูƒุซุฑ ู…ู† ู‡ุฐู‡ ุงู„ุธุงู‡ุฑุฉ ุฃูŠุถุง ุชู‡ุฐูŠุจ
444
+
445
+ 112
446
+ 00:11:52,430 --> 00:11:57,070
447
+ ุงู„ุฑุบุจุฉ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ ุญุจ ุงู„ุชู…ู„ูƒ ู…ู† ุฎู„ุงู„ ุงู„ู‚ู†ุงุนุฉ
448
+
449
+ 113
450
+ 00:11:57,070 --> 00:12:03,730
451
+ ุชุฃูƒูŠุฏ ุนู„ู‰ ุงู„ู‚ู†ุงุนุฉ ูˆุงู„ุฑุถุง ุจุงู„ู‚ู„ูŠู„ ูˆู„ุฐู„ูƒ ู†ุฌุฏ ุดุนุฑ
452
+
453
+ 114
454
+ 00:12:03,730 --> 00:12:12,500
455
+ ุงู„ุฒู‡ุฏ ูŠุฑูƒุฒููŠ ู…ุฌู…ู„ู‡ ุนู„ู‰ ู‡ุฐู‡ ุงู„ุฃู…ูˆุฑ ู‡ู†ุงูƒ ุชุนุฑูŠูุงุช
456
+
457
+ 115
458
+ 00:12:12,500 --> 00:12:19,120
459
+ ูƒุซูŠุฑุฉ ู„ู„ุฒู‡ุฏ ู„ูƒู† ุงู„ุชุนุฑูŠู ุงู„ุฐูŠ ู‚ู„ู†ุงู‡ ูŠูƒููŠ ูˆูŠุณุฏ ุจุฏู„
460
+
461
+ 116
462
+ 00:12:19,120 --> 00:12:24,720
463
+ ู‡ุฐู‡ ุงู„ุชุนุฑูŠูุงุช ุงู„ูƒุซูŠุฑุฉ ูˆูƒู„ู‡ุง ุฌูŠุฏุฉ ู‡ู†ุงูƒ ู…ู„ุงุญุธุงุช
464
+
465
+ 117
466
+ 00:12:24,720 --> 00:12:32,470
467
+ ุชุชุนู„ู‚ ุจุญุฑูƒุฉ ุงู„ุฒู‡ุฏุงู„ู…ู„ุงุญุธุฉ ุงู„ุฃูˆู„ู‰ ุฃู† ุญุฑูƒุฉ ุงู„ุฐู‡ุฏ
468
+
469
+ 118
470
+ 00:12:32,470 --> 00:12:40,150
471
+ ูƒุงู†ุช ุฑุฏุฉ ูุนู„ ู„ุญุฑูƒุฉ ุงู„ู…ุฌูˆู† ูˆุงู„ู„ู‡ูˆ ูุฅุฐุง ูƒุงู†ุช ุญุฑูƒุฉ
472
+
473
+ 119
474
+ 00:12:40,150 --> 00:12:43,710
475
+ ุงู„ู…ุฌูˆู† ูˆุงู„ู„ู‡ูˆ ู‚ุฏ ุฃุตุงุจุช ุงู„ุทุจู‚ุฉ ุงู„ุนู„ูŠุง ููŠ ุงู„ู…ุฌุชู…ุน
476
+
477
+ 120
478
+ 00:12:43,710 --> 00:12:50,210
479
+ ูุฅู† ุญุฑูƒุฉ ุงู„ุฐู‡ุฏ ุฃุตุงุจุช ูˆุงู†ุชุดุฑุช ุจูŠู† ุงู„ุนุงู…ุฉ ูˆู„ูƒู†ู‡ุง ู…ุน
480
+
481
+ 121
482
+ 00:12:50,210 --> 00:12:59,110
483
+ ุฐู„ูƒ ุทุฑู‚ุช ู‚ุตูˆุฑุฉ ุงู„ุฎู„ูุงุกุนู„ู‰ ู†ุญูˆ ู…ุง ุฑุฃูŠู†ุง ุนู†ุฏ ุนู…ุฑ ุจู†
484
+
485
+ 122
486
+ 00:12:59,110 --> 00:13:03,970
487
+ ุงู„ุฃุจูŠุถ ููŠ ูˆุนุธู‡ ู„ู„ู…ู†ุตูˆุฑ ูˆุตุงู„ุญ ุจู† ุนุจุฏ ุงู„ุฌู„ูŠู„ ููŠ ูˆุนุธู‡
488
+
489
+ 123
490
+ 00:13:03,970 --> 00:13:12,590
491
+ ู„ู„ู…ู‡ุฏูŠ ูˆุงุจู† ุงู„ุณู…ุงูƒ ููŠ ูˆุนุธู‡ ู„ู‡ุงุฑูˆู† ุงู„ุฑุดูŠุฏ ู…ู† ูƒู„ุงู…ู‡
492
+
493
+ 124
494
+ 00:13:12,590 --> 00:13:20,950
495
+ ู…ู† ูƒู„ุงู… ุงุจู† ุงู„ุณู…ุงูƒ ู‚ูˆู„ู‡ ุงู„ุฏู†ูŠุง ูƒู„ู‡ุง ู‚ู„ูŠู„ ูˆุงู„ุฐูŠ ุจู‚ูŠ
496
+
497
+ 125
498
+ 00:13:20,950 --> 00:13:27,630
499
+ ู…ู†ู‡ุง ููŠ ุฌู†ุจ ุงู„ู…ุงุถูŠ ู‚ู„ูŠู„ูˆุงู„ุฐูŠ ู„ูƒ ู…ู† ุงู„ุจุงู‚ูŠ ู‚ู„ูŠู„ ูˆู„ู…
500
+
501
+ 126
502
+ 00:13:27,630 --> 00:13:34,790
503
+ ูŠุจู‚ู‰ ู…ู† ู‚ู„ูŠู„ูƒ ุฅู„ุง ุงู„ู‚ู„ูŠู„ ู‡ุฐู‡ ุนุจุงุฑุฉ ู„ุจู† ุงู„ุณู…ุงูƒ ู„ูˆ
504
+
505
+ 127
506
+ 00:13:34,790 --> 00:13:41,360
507
+ ุณุฃู„ู†ุง ุณุคุงู„ุง ูˆู‚ู„ู†ุงุถุน ู‡ุฐู‡ ุงู„ุนุจุงุฑุฉ ุฃูˆ ุถุน ู‡ุฐู‡ ุงู„ุนุจุงุฑุฉ
508
+
509
+ 128
510
+ 00:13:41,360 --> 00:13:46,900
511
+ ููŠ ุณูŠุงู‚ ู†ุธุฑูŠุฉ ุงู„ุฐู‡ุฏ ูˆู…ุง ู‡ูŠ ุงู„ุฅู…ูƒุงู†ุงุช ุงู„ุฃุณู„ูˆุจูŠุฉ ุฃูˆ
512
+
513
+ 129
514
+ 00:13:46,900 --> 00:13:51,920
515
+ ุงู„ู…ู‡ุงุฑุงุช ุงู„ุฃุณู„ูˆุจูŠุฉ ุงู„ุชูŠ ุงุณุชุนู…ู„ู‡ุง ุงุจู† ุงู„ุณู…ุงูƒ
516
+
517
+ 130
518
+ 00:13:51,920 --> 00:14:05,180
519
+ ู„ู„ุชุนุจูŠุฑ ุนู† ู†ุธุฑูŠุฉ ุงู„ุฐู‡ุฏ ู†ู„ุงุญุธ ุฃู†ู‡ ู…ู† ุญูŠุซู‡ ู…ู† ุญูŠุซู‡
520
+
521
+ 131
522
+ 00:14:05,180 --> 00:14:10,420
523
+ ูู„ุณูุฉ ุงู„ุฐู‡ุฏ ุฃู†ู‡ุง ุชู‚ูˆู… ุนู„ู‰ุชู‡ุฐูŠุจ ุงู„ุฑุบุจุฉ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ
524
+
525
+ 132
526
+ 00:14:10,420 --> 00:14:14,940
527
+ ุญุจ ุงู„ุจู‚ุงุก ูƒู…ุง ู‚ู„ู†ุง ูˆุญุจ ุงู„ุชู…ู„ูƒ ูู‚ุงู„ ุงู„ุฏู†ูŠุง ูƒู„ู‡ุง
528
+
529
+ 133
530
+ 00:14:14,940 --> 00:14:21,780
531
+ ู‚ู„ูŠู„ ุทุจุนุง ู‡ุฐุง ุงู„ู…ู‚ูŠุงุณ ุงู†ุจู†ู‰ ุนู„ู‰ ุฅุญุฏุงุซ ู…ู‚ุงุฑู†ุฉ ุจูŠู†
532
+
533
+ 134
534
+ 00:14:21,780 --> 00:14:28,540
535
+ ุงู„ุฏู†ูŠุง ูˆุงู„ุขุฎุฑุฉ ูุงู„ุฏู†ูŠุง ุจุงู„ู†ุณุจุฉ ู„ู„ุขุฎุฑุฉ ู‚ู„ูŠู„ ู„ุฃู†
536
+
537
+ 135
538
+ 00:14:28,540 --> 00:14:33,560
539
+ ุงู„ุขุฎุฑุฉ ููŠู‡ุง ู…ุง ู„ุง ุนูŠู† ุฑุฃุช ูˆู„ุง ุฃุฐู† ุณู…ุนุช ูˆู„ุง ุฎุทุฑ ุนู„ู‰
540
+
541
+ 136
542
+ 00:14:33,560 --> 00:14:42,170
543
+ ู‚ู„ุจ ุงู„ุจุดุฑูุงู„ุฏู†ูŠุง ุฅุฐุง ูˆูู‚ู‹ุง ู„ู„ุขุฎุฑุฉ ู‡ูŠ ู‚ู„ูŠู„ ู†ู„ุงุญุธ ุฃู†
544
+
545
+ 137
546
+ 00:14:42,170 --> 00:14:50,790
547
+ ุงุจู† ุงู„ุณู…ุงูƒ ุนู…ู‚ ู…ุนู†ู‰ ุงู„ู‚ู„ุฉ ุงู„ู„ูŠ ูŠุชุณู‚ ู…ุน ุญู‚ูŠู‚ุฉ
548
+
549
+ 138
550
+ 00:14:50,790 --> 00:14:57,870
551
+ ุงู„ูู†ุงุก ูˆุญู‚ูŠู‚ุฉ .. ูˆ ุงู„ุฑุถุง ุจุงู„ู‚ู„ูŠู„ ูˆ ุงู„ู‚ู†ุงุนุฉ ุจุงู„ู‚ู„ูŠู„
552
+
553
+ 139
554
+ 00:14:58,910 --> 00:15:04,210
555
+ ู‚ุงู„ ุงู„ุฏู†ูŠุง ูƒู„ู‡ุง ู‚ู„ูŠู„ ูˆุงู„ุฐูŠ ุจู‚ูŠ ู…ู†ู‡ุง ููŠ ุฌู†ุจ ุงู„ู…ุงุถูŠ
556
+
557
+ 140
558
+ 00:15:04,210 --> 00:15:09,990
559
+ ู‚ู„ูŠู„ ู†ู„ุงุญุธ ู‡ู†ุง ููŠู‡ ู…ู‡ุงุฑุงุช ุฃุณู„ูˆุจูŠุฉ ุชู…ุซู„ุช ููŠ ุฅุญุฏุงุซ
560
+
561
+ 141
562
+ 00:15:09,990 --> 00:15:21,590
563
+ ู…ู‚ุงุฑู†ุฉ ุจูŠู† ุงู„ุญุงุถุฑ ูˆุงู„ู…ุงุถูŠ ุจูŠู† ุงู„ุฏู†ูŠุง ูˆุงู„ุขุฎุฑุฉ ุงู„ุดูŠุก
564
+
565
+ 142
566
+ 00:15:21,590 --> 00:15:27,550
567
+ ุงู„ุซุงู†ูŠ ุฃู†ู‡ ูŠูƒุฐุจ ูƒู„ู…ุฉ ู‚ู„ูŠู„ุงู„ุฏู†ูŠุง ูƒู„ู‡ุง ู‚ู„ูŠู„ ูˆุงู„ุฐูŠ
568
+
569
+ 143
570
+ 00:15:27,550 --> 00:15:36,410
571
+ ุจู‚ูŠ ู…ู†ู‡ุง ููŠ ุฌู†ุจ ุงู„ู…ุงุถูŠ ู‚ู„ูŠู„ ูˆุงู„ุฐูŠ ู„ูƒ ู…ู† ุงู„ุจุงู‚ูŠ
572
+
573
+ 144
574
+ 00:15:36,410 --> 00:15:46,070
575
+ ู‚ู„ูŠู„ูˆู„ู… ูŠุจู‚ู‰ ู…ู† ู‚ู„ูŠู„ูƒ ุฅู„ุง ุงู„ู‚ู„ูŠู„ ูู†ู„ุงุญุธ ู‡ู†ุง ุฅูŠู‡ ุฃู†
576
+
577
+ 145
578
+ 00:15:46,070 --> 00:15:51,970
579
+ ุงุจู† ุงู„ุณู…ุงูƒ ู„ุคูƒุฏ ุนู„ู‰ ู†ุธุฑูŠุชูŠ ูˆูู„ุณูุฉ ุงู„ุฐู‡ุจ ูˆู‡ูŠ ุชุญุทูŠู…
580
+
581
+ 146
582
+ 00:15:51,970 --> 00:15:56,670
583
+ ุฃูˆ ุชู‡ุฐูŠุจ ุงู„ุฑุบุจุฉ ููŠ ุญุจ ุงู„ุจู‚ุงุก ู…ู† ุฎู„ุงู„ ุชุฃูƒูŠุฏ ุนู„ู‰
584
+
585
+ 147
586
+ 00:15:56,670 --> 00:16:06,010
587
+ ุญู‚ูŠู‚ุฉ ุงู„ูู†ุงุก ูˆุงู„ู‚ู„ุฉ ูˆุงู„ู‚ู†ุงุนุฉ ูˆุงู„ุฑุถุง ุจุงู„ู‚ู„ูŠู„ุฃูŠุถู‹ุง
588
+
589
+ 148
590
+ 00:16:06,010 --> 00:16:10,430
591
+ ู…ู† ุงู„ู…ุธุงู‡ุฑ ุงู„ุฃุณู„ูˆุจูŠุฉ ุงู„ุชูŠ ุงุนุชู…ุฏ ุนู„ูŠู‡ุง ุงู„ุฐู‡ุงุจ
592
+
593
+ 149
594
+ 00:16:10,430 --> 00:16:19,970
595
+ ูˆุงู„ู†ุณุงู‚ ูˆุดุนุฑุงุก ูˆุนุงุถ ุงู„ุฐู‡ุจ ู‡ูˆ ุงู„ุฃุณู„ูˆุจ ุงู„ู‚ุตุตูŠ ุฐู„ูƒ ุฃู†
596
+
597
+ 150
598
+ 00:16:19,970 --> 00:16:28,950
599
+ ุงู„ุฃุณู„ูˆุจ ุงู„ู‚ุตุตูŠ ูŠุนุฑุถ ููƒุฑุฉ ุงู„ุฐู‡ุจ ุฃูˆ ู†ุธุฑูŠุฉ ุงู„ุฐู‡ุจ ู…ู†
600
+
601
+ 151
602
+ 00:16:28,950 --> 00:16:34,780
603
+ ูƒูˆู†ู‡ุง ููƒุฑุฉ ุฃูˆ ู†ุธุฑูŠุฉ ู…ุฌุฑุฏุฉ ุฅู„ู‰ ู†ู…ูˆุฐุฌูŠุนู†ูŠ ูŠูุนุจู‘ูŠ
604
+
605
+ 152
606
+ 00:16:34,780 --> 00:16:41,260
607
+ ุนู†ุงุถูŠู‡ ุงู„ุฐู‡ุจ ู…ู† ุฎู„ุงู„ ู†ู…ูˆุฐุฌ ุฅู†ุณุงู†ูŠ ู„ุฃู† ุงู„ู‚ุตุฉ ุชู‚ูˆู…
608
+
609
+ 153
610
+ 00:16:41,260 --> 00:16:50,460
611
+ ุนู„ู‰ ุฅูŠู‡ุŸ ุชู‚ูˆู… ุนู„ู‰ ุดุฎุตูŠุฉ ูˆุนู„ู‰ ุญุจูƒุฉ ูˆุนู„ู‰ ุฃุญุฏุงุซ
612
+
613
+ 154
614
+ 00:16:50,460 --> 00:16:56,060
615
+ ูˆู…ูˆุงู‚ููู‡ุฐุง ุฅูŠู‡ ูŠุญุฏุซ ุฅูŠู‡ ุฌุงุฐุจูŠุฉ ุนู†ุฏ ุงู„ู…ุชู„ู‚ู‰ ูˆู„ุฐู„ูƒ
616
+
617
+ 155
618
+ 00:16:56,060 --> 00:17:02,600
619
+ ูŠุนู†ูŠ ุงุนุชู…ุฏ ุงู„ูˆุนุงุถ ุนู„ู‰ ุงู„ุฃุณุทูˆุจ ุงู„ู‚ุตุตูŠ ูˆุฎุงุตุฉ ุฃูŠู‡
620
+
621
+ 156
622
+ 00:17:02,600 --> 00:17:09,560
623
+ ุงู„ู…ุซูŠุฑ ุงู„ุฐูŠ ูŠุนู†ูŠ ูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ุฃู…ูˆุฑ ููˆู‚ ุงู„ู…ุนุชุงุฏุฉ
624
+
625
+ 157
626
+ 00:17:09,560 --> 00:17:16,740
627
+ ูุงู„ู‚ุตุฉ ูŠุนู†ูŠ ุชุฃุชูŠ ุจู…ูˆุงู‚ู ุฅู†ุณุงู†ูŠุฉ ุฑุงุฆุนุฉ ุชุฑูƒุฒ ุนู„ู‰
628
+
629
+ 158
630
+ 00:17:16,740 --> 00:17:24,650
631
+ ุงู„ู†ู…ูˆุฐุฌ ุงู„ุฅู†ุณุงู†ูŠุนู„ู‰ ุงู„ู…ูˆู‚ู ุงู„ู†ู…ูˆุฐุฌุŒ ุนู„ู‰ ุงู„ู‚ูŠู…
632
+
633
+ 159
634
+ 00:17:24,650 --> 00:17:30,790
635
+ ุงู„ุบููŠุนุฉ ุงู„ุนุงู„ูŠุฉุŒ ูˆู„ุฐู„ูƒ
636
+
637
+ 160
638
+ 00:17:30,790 --> 00:17:40,950
639
+ ุงุนุชู…ุฏ ุงู„ูˆุนุงุถ ูˆุงู„ู‚ุตุงุต ุนู„ู‰ ุงู„ุฃุณู„ูˆุจ ุงู„ู‚ุตุตูŠุŒ ูˆูƒุงู† ุทุจุนุง
640
+
641
+ 161
642
+ 00:17:40,950 --> 00:17:45,410
643
+ ุจุฌุงู†ุจ ู‡ุคู„ุงุก ุงู„ู‚ุตุงุต ูˆุงู„ูˆุนุงุถ ูƒุซูŠุฑ ู…ู† ุงู„ู…ุชุณูˆู‚ ุฃูŠุถุงุŒ
644
+
645
+ 162
646
+ 00:17:45,410 --> 00:17:50,760
647
+ ูˆู„ู‡ู… ู…ู‚ูˆู„ุงุช ูƒุซูŠุฑุฉุŒูŠุนู†ูŠ ู„ูˆ ุฑุฌุนู†ุง ุฅู„ู‰ ูƒุชุงุจ ุงู„ุจูŠุงู†
648
+
649
+ 163
650
+ 00:17:50,760 --> 00:17:54,700
651
+ ูˆุงู„ุชุจูŠูŠู† ู„ู„ุฌุงุญุธ ูˆุนูŠูˆู† ุงู„ุฃุฎุจุงุฑ ู„ู…ู† ุงู„ู‚ุชูŠุจ๏ฟฝ๏ฟฝ ูˆุงู„ุนู‚ู„
652
+
653
+ 164
654
+ 00:17:54,700 --> 00:18:00,020
655
+ ุงู„ูุฑูŠุฏ ู„ู…ู† ุนุจุฏ ุฑุจู‡ ุณู†ุฌุฏ ู‡ู†ุงูƒ ู…ุงู†ุซูˆุฑุงุช ุฑุงุฆุนุฉ ู„ู…ุดู‡ูŠุฑ
656
+
657
+ 165
658
+ 00:18:00,020 --> 00:18:07,360
659
+ ุงู„ูˆุนุงุถ ูˆุงู„ู†ุณุงูƒ ุฃู…ุซุงู„ ุณูˆููŠุงู† ุงู„ุซูˆุฑูŠ ูˆุฏูˆูˆุฏ ุงู„ุทุงุฆูŠ
660
+
661
+ 166
662
+ 00:18:07,360 --> 00:18:12,520
663
+ ูˆุนุจุฏ ุงู„ู„ู‡ ุจู† ุงู„ู…ุจุงุฑูƒ ูˆุงู„ูุถูŠู„ ุงุจู† ุนูŠุงุถ ูˆุณูˆููŠุงู† ุจู†
664
+
665
+ 167
666
+ 00:18:12,520 --> 00:18:21,120
667
+ ุนูŠูŠู†ุฉุงู„ุฐูŠ ูŠู‚ูˆู„ ููƒุฑูƒ ููŠ ุฑุฒู‚ ุบุฏ ูŠููƒุชุจ ุนู„ูŠูƒ ุฎุทูŠุฆุฉ ูƒู…ุง
668
+
669
+ 168
670
+ 00:18:21,120 --> 00:18:25,600
671
+ ู‚ู„ู†ุง ุทุจุนุง ู‡ุฐู‡ ุงู„ุนุจุงุฑุฉ ุชุชุณู‚ ู…ุน ู†ุธุฑูŠุฉ ุงู„ุฐู‡ุจููƒู…ุง ู‚ู„ู†ุง
672
+
673
+ 169
674
+ 00:18:25,600 --> 00:18:33,760
675
+ ู…ู† ู‚ุจู„ ุฃู† ุงู„ุฐู‡ุฏ ู‡ูˆ ุชุฑูƒ ุดูŠุก ู…ู† ุงู„ู…ุจุงุญูŠ ุฃูˆ ุงู„ุญู„ุงู„ูŠ
676
+
677
+ 170
678
+ 00:18:33,760 --> 00:18:40,480
679
+ ู…ุฎุงูุฉ ุงู„ูˆู‚ูˆุน ููŠ ุงู„ุญุฑุงู… ูุงู„ุชููƒูŠุฑ ููŠ ุฑุฒู‚ ุบุฏ ู„ูŠุณ
680
+
681
+ 171
682
+ 00:18:40,480 --> 00:18:46,720
683
+ ุญุฑุงู…ุง ุจู„ ู‡ูˆ ุญู„ุงู„ ู‚ุงู„ ููƒุฑูƒ ูŠุนู†ูŠ ุชููƒูŠุฑูƒ ุฃู‚ุงู… ุงู„ุฅุณู…
684
+
685
+ 172
686
+ 00:18:46,720 --> 00:18:52,320
687
+ ู…ู‚ุงู… ุงู„ู…ุตุฏุฑ ู„ุฃู† ุงู„ุฅุณู… ุฃุซุจุช ู…ู† ุงู„ู…ุตุฏุฑ ู„ุฃู† ุงู„ู…ุตุฏุฑ
688
+
689
+ 173
690
+ 00:18:52,320 --> 00:18:57,250
691
+ ู…ุชุญูˆู„ ู…ู† ุงู„ูุนู„ูŠุนู†ูŠ ุงู„ู…ุตุฏุฑ ุฃู‚ุฑุจ ุฅู„ู‰ ุงู„ูุนู„ ู…ู† ุงู„ุงุณู…
692
+
693
+ 174
694
+ 00:18:57,250 --> 00:19:01,750
695
+ ูู‡ูˆ ูŠุฑูŠุฏ ุฅูŠู‡ุŸ ู‡ู†ุง ุทุจุนุง ููŠู‡ ู…ู‡ุงุฑุฉ ุงุณู„ูˆุจูŠุฉ ุฃู†ู‡ ุฅูŠู‡ุŸ
696
+
697
+ 175
698
+ 00:19:01,750 --> 00:19:08,190
699
+ ุฃู†ู‡ ูŠุณุชุนู…ู„ ุงู„ุงุณู… ุจุฏู„ ุงู„ู…ุตุฏุฑ ู„ูŠุซุจุช ุฅูŠู‡ ุงู„ู…ุนู†ู‰ ูู‚ุงู„
700
+
701
+ 176
702
+ 00:19:08,190 --> 00:19:15,550
703
+ ููƒุฑูƒ ูŠุนู†ูŠ ุชููƒูŠุฑูƒ ููŠ ุฑุฒู‚ ุบุฏ ูŠููƒุชุจ ุนู„ูŠูƒ ุฎุทูŠุฆุฉ ู‡ุฐุง
704
+
705
+ 177
706
+ 00:19:15,550 --> 00:19:24,490
707
+ ูˆูู‚ุง ุฅูŠู‡ ู„ู†ุธุฑูŠุฉ ุงู„ุฐู‡ุจู„ุฃู† ุงู„ุฅู†ุณุงู† ุงู„ุฒุงู‡ุฏ ูŠุนู†ูŠ ู„ูŠุณ
708
+
709
+ 178
710
+ 00:19:24,490 --> 00:19:28,710
711
+ ูƒุงู„ุฅู†ุณุงู† ุงู„ุนุงุฏู‰ุŒ ุงู„ุฅู†ุณุงู† ุงู„ุฒุงู‡ุฏ ูŠุนู†ูŠ ูŠุฌุนู„ ู…ู†
712
+
713
+ 179
714
+ 00:19:28,710 --> 00:19:33,350
715
+ ุงู„ู…ุจุงุญุงุช .. ู…ู† ุงู„ุฃุดูŠุงุก ุงู„ู…ุจุงุญุฉ ุญุฑุงู…ุง ุนู„ูŠู‡ุŒ ูˆุฅู† ูƒุงู†
716
+
717
+ 180
718
+ 00:19:33,350 --> 00:19:38,920
719
+ ู‡ูˆ ูŠู‚ู„ ุจุฃู†ู‡ุง ู…ุจุงุญุฉ ู„ู„ู…ุณู„ู…ูŠู†ุŒ ู„ูƒู† ู‡ูˆูŠุนู†ูŠ ูŠุจุชุนุฏ ุนู†
720
+
721
+ 181
722
+ 00:19:38,920 --> 00:19:44,720
723
+ ุฅูŠู‡ ู‡ุฐู‡ ุงู„ู…ุจุงุญุงุช ู„ูŠุฌุนู„ ุจูŠู†ู‡ ูˆุจูŠู† ุงู„ุญุฑุงู… ู…ุณุงูุฉ ุฅูŠู‡
724
+
725
+ 182
726
+ 00:19:44,720 --> 00:19:51,800
727
+ ุจุนูŠุฏุฉ ูู„ุฐู„ูƒ ุงู„ุฒู‡ุงุฏ ูˆุงู„ู†ุณุงูƒ ู„ูŠุณูˆุง ูƒุงู„ู…ุณู„ู… ุงู„ุนุงุฏู‰
728
+
729
+ 183
730
+ 00:19:51,800 --> 00:19:58,200
731
+ ุงู„ู†ุงุณูƒ ุฃูˆ ุงู„ุฅู†ุณุงู† ุงู„ุฐุงู‡ุจ ุฑุจู…ุง ูŠุฌุนู„ ูŠุนู†ูŠ ู…ู† ุงู„ุณู†ุฉ
732
+
733
+ 184
734
+ 00:19:58,200 --> 00:20:09,750
735
+ ูุฑุถุง ุนู„ูŠู‡ ูŠุนู†ูŠ ูŠุฌุนู„ ุฃู…ูˆุฑูŠุนู†ูŠ ุฃู…ูˆุฑ ูŠุนู†ูŠ ุณู†ุฉ ููŠ
736
+
737
+ 185
738
+ 00:20:09,750 --> 00:20:15,190
739
+ ูุนู„ู‡ุง ู„ูƒู† ู‡ูˆ ูŠุฑุงู‡ุง ูุฑุถุง ู…ุซู„ ุฅูŠู‡ุŸ ูŠุนู†ูŠ ุฃู† ูŠุฑู‰ ุตูˆู…
740
+
741
+ 186
742
+ 00:20:15,190 --> 00:20:20,990
743
+ ูƒู„ ุฅุซู†ูŠู† ูˆุฎู…ูŠุณ ูŠุฑุงู‡ ูุฑุถุง ุนู„ูŠู‡ ูˆุฅู† ูƒุงู† ู‡ูˆ ุฅูŠู‡ ู…ู†
744
+
745
+ 187
746
+ 00:20:20,990 --> 00:20:25,910
747
+ ุงู„ุณู†ุฉ ูˆู‡ุฐุง ุทุจุนุง ุฅูŠู‡ุŸ ูŠุนู†ูŠ ู†ูˆุน ู…ู† ุฅูŠู‡ุŸ ู…ู† ุชุนุธูŠู…
748
+
749
+ 188
750
+ 00:20:25,910 --> 00:20:34,310
751
+ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ุจุงู„ุฅูƒุซุงุฑ ู…ู† ุงู„ุงุชุฒุงู† ุจุงู„ุนุจุงุฏุงุช
752
+
753
+ 189
754
+ 00:20:34,310 --> 00:20:42,910
755
+ ูˆู…ู† ุชุนุฒูŠุฒ ุงู„ุดุนูˆุฑ ุจุชุฐู„ ู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ุจุฃู† ูŠุญูŠู„
756
+
757
+ 190
758
+ 00:20:42,910 --> 00:20:51,710
759
+ ุงู„ุณู†ู† ุฅู„ู‰ ูุฑุงุฆุถ ูˆู†ุญูˆ ุฐู„ูƒูˆู‡ุฐุง ุทุจุนุง ูŠุนู†ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏ
760
+
761
+ 191
762
+ 00:20:51,710 --> 00:20:57,570
763
+ ุงู„ุดุนุฑุงุก ุนู†ุฏ ุฃุจูŠ ุชู…ุงู… ุนู†ุฏู…ุง ูƒุงู† ูŠู…ุฏุญ ููŠู‚ูˆู„ ูŠุนู†ูŠ ูˆู…ุง
764
+
765
+ 192
766
+ 00:20:57,570 --> 00:21:06,210
767
+ ุฃุฒูˆุฑูƒ ุฅู„ุง ูุฑูŠุถุฉ ูˆ ุขุชูŠ ุฌู…ูŠุน ุงู„ู†ุงุณ ุฅู„ุง ุชู†ูู„ู‡ุง ูู‡ูˆ
768
+
769
+ 193
770
+ 00:21:06,210 --> 00:21:12,590
771
+ ูŠุฌุนู„ ุงู„ู†ุงุณ ูุฑุถุง ุนู„ูŠู‡ ุชุนุธูŠู…ุงุงู„ู…ุจุฏูˆุนุฉ ูˆู‡ูƒุฐุง ูƒุงู†
772
+
773
+ 194
774
+ 00:21:12,590 --> 00:21:18,790
775
+ ุงู„ุงุฒู‡ุงุฏ ูŠุฑูˆู† ุงู„ู†ุงูู„ุฉ ุทุฑูŠุถุฉ ูˆุฐู„ูƒ ุชุนุธูŠู…ู‹ุง ู„ู„ู‡ ุณุจุญุงู†ู‡
776
+
777
+ 195
778
+ 00:21:18,790 --> 00:21:26,990
779
+ ูˆุชุนุงู„ู‰ ูˆุชู‡ุฐูŠุจู‹ุง ู„ู„ู†ูุณ ุฃูŠุถู‹ุง ุฅุฐุง ููƒุฑูƒ ููŠ ุฑุฒู‚ูŠ ุบุฏ
780
+
781
+ 196
782
+ 00:21:26,990 --> 00:21:33,680
783
+ ูŠููƒุชุจ ุนู„ูŠู‡ ุฎุทูŠุฆุฉ ุทุจุนู‹ุง ู‡ุฐุง ุถู…ู† ู†ุธุฑูŠุฉ ุงู„ุฒู‡ุฏุฃู‡ ูˆู…ู†
784
+
785
+ 197
786
+ 00:21:33,680 --> 00:21:39,200
787
+ ุฃู‚ูˆุงู„ู‡ ุฃูŠุถู‹ุง ู„ุง ูŠู…ู†ุน ุฃุญุฏูƒู… ู„ุง ูŠู…ู†ุน ุฃุญุฏูƒู… ู…ู† ุงู„ุฏุนุงุก
788
+
789
+ 198
790
+ 00:21:39,200 --> 00:21:46,040
791
+ ู…ุง ูŠุนู„ู…ูˆุง ู…ู† ู†ูุณู‡ ูุฅู† ุงู„ู„ู‡ ู‚ุฏ ุงุณุชุฌุงุจ ุฏุนุงุก ุดุฑ ุงู„ุฎู„ู‚
792
+
793
+ 199
794
+ 00:21:46,040 --> 00:21:51,870
795
+ ูˆู‡ูˆ ุฅุจู„ูŠุณู‚ุงู„ ุฑุจูŠ ุฃู†ุธุฑู†ูŠ ุฅู„ู‰ ูŠูˆู… ูŠุจุนุซูˆู† ู‚ุงู„ ุฅู†ูƒ ู…ู†
796
+
797
+ 200
798
+ 00:21:51,870 --> 00:22:01,050
799
+ ุงู„ู…ู†ุธุฑูŠู† ุฃูŠุถู‹ุง ู…ู† ุงู„ู…ู„ุงุญุธุงุช ุงู„ุชูŠ ุชูˆุฌู‡ ุฅู„ู‰ ุญุฑูƒุฉ
800
+
801
+ 201
802
+ 00:22:01,050 --> 00:22:09,980
803
+ ุงู„ุฐู‡ุจ ุฃู†ู‡ุง ูŠุนู†ูŠ ูƒุงู†ุช ุฑุฏุฉ ูุนู„ูˆู„ูŠุณุช ุญุฑูƒุฉ ู…ู…ู†ู‡ุฌุฉ ูŠุนู†ูŠ
804
+
805
+ 202
806
+ 00:22:09,980 --> 00:22:16,880
807
+ ุญุฑูƒุฉ ู‚ุงู…ุช ุนู„ู‰ ุฑุฏุฉ ูุนู„ ู…ู† ุฎู„ุงู„ ุฃูŠู‡ ูŠุนู†ูŠ ุนู„ุงู‚ุฉ
808
+
809
+ 203
810
+ 00:22:16,880 --> 00:22:22,880
811
+ ุงุฌุชู…ุงุนูŠุฉ ูุฅุฐุง ูƒุงู† ุงู„ู…ุฌู†ูˆู† ูˆ ู„ุงู‡ู… ูŠุฎุชุตูˆุง ุจุงู„ุทุจู‚ุฉ
812
+
813
+ 204
814
+ 00:22:22,880 --> 00:22:28,820
815
+ ุงู„ุฎุงุตุฉ ูุฅู† ุงู„ุฐู‡ุจ ูŠุฎุชุต ุจุงู„ุทุจู‚ุฉ ุฃูˆ ุงู†ุชุดุฑุช ุงู„ุทุจู‚ุฉ ููŠ
816
+
817
+ 205
818
+ 00:22:28,820 --> 00:22:35,660
819
+ ุงู„ุนุงู…ุฉุงู„ุฑุฏ ุงู„ูุนู„ ูˆู„ูŠุณุช ุญุฑูƒุฉ ู…ู†ู‡ุฌูŠุฉ ู„ุฃู† ู…ู† ุดุฃู†
820
+
821
+ 206
822
+ 00:22:35,660 --> 00:22:46,840
823
+ ุญุฑูƒุงุช ุฑุฏุฉ ุงู„ูุนู„ ุฃู† ุชุคุณุณ ู„ู„ู…ุดุงูƒู„ ุฃูˆ ุนูŠูˆุจ ุฃูˆ ุนูˆุงุฑ
824
+
825
+ 207
826
+ 00:22:46,840 --> 00:22:55,040
827
+ ูŠุนูŠู‚ ู‡ุฐู‡ ุงู„ุญุฑูƒุฉ ูˆูŠุญููู‡ุง ุฃูˆ ูŠุญุฏุซ ุงู†ุญุฑุงูุงุช ู„ุฃู† ุญุฑูƒุฉ
828
+
829
+ 208
830
+ 00:22:55,040 --> 00:23:00,260
831
+ ุงู„ุฑุฏุฉ ุงู„ูุนู„ุชูˆุฌุฏ ุดู„ุจูŠุงุช ูˆุฃุญูŠุงู†ู‹ุง ุงู†ุญุฑุงูุงุช
832
+
833
+ 209
834
+ 00:23:00,260 --> 00:23:07,760
835
+ ูˆุงุณุชุซู†ุงุกุงุช ุฏุงุฎู„ ุงู„ุญุฑูƒุฉ ู…ุน ู…ุฑูˆุฑ ุงู„ุฒู…ู† ุฑุจู…ุง ูŠุนู†ูŠ
836
+
837
+ 210
838
+ 00:23:07,760 --> 00:23:17,140
839
+ ุชู†ู‚ู„ุจ ููŠ ุงู„ุงุชุฌุงู‡ ุงู„ู…ุนุงูƒุณ ูุชุชุญูˆู„ ุฅู„ู‰ ุดู„ุจูŠุงุชูุฅุฐุง
840
+
841
+ 211
842
+ 00:23:17,140 --> 00:23:23,220
843
+ ุจุญุฑูƒุฉ ุงู„ุฐู‡ุจ ุนู†ุฏู…ุง ุชุณุชู…ุฑ ููŠ ุงู„ุฃุฌุงู„ุฉ ุงู„ุณุงุจู‚ุฉ ุชุชุญูˆู„
844
+
845
+ 212
846
+ 00:23:23,220 --> 00:23:34,510
847
+ ุฅู„ู‰ ุชุตูˆู ู…ุฒู…ูˆู… ูƒู…ุง ุฑุฃูŠู†ุง ุนู†ุฏ ุงู„ุญู„ุงุฌ ูˆุบูŠุฑู‡ุงู‡ู†ุงูƒ ููŠู‡
848
+
849
+ 213
850
+ 00:23:34,510 --> 00:23:45,950
851
+ ู…ู„ุงุญุธุฉ ูŠุนู†ูŠ ุชุงุฑูŠุฎูŠุฉ ู…ู‡ู…ุฉ ู„ุชูุณูŠุฑ ุญุฑูƒุฉ ุงู„ุฐู‡ุฏ ูˆุฑุจู…ุง
852
+
853
+ 214
854
+ 00:23:45,950 --> 00:23:55,080
855
+ ุชุคุดุฑ ุฅู„ู‰ ุนู…ู„ูŠุฉ ุงู†ุญุฑุงุฑ ููŠู…ุง ุจุนุฏ ูŠุนู†ูŠ ูŠู‚ุงู„ ุฃู†ุฃู†ุง ู…ู†
856
+
857
+ 215
858
+ 00:23:55,080 --> 00:23:59,820
859
+ ู…ุดู‡ูˆุฑูŠ ุฃู†ุณุงูƒ ุนุจุฏุงู„ูˆุงุญุฏ ุจู† ุฒูŠุฏ ุงู„ุฐูŠ ุฃู†ุดุฃ ุฃูˆู„ ุฑุจุงุท
860
+
861
+ 216
862
+ 00:23:59,820 --> 00:24:06,240
863
+ ุฃูˆ ุตูˆู…ุนุฉ ููŠ ุนุจุงุฏุงู† ู‚ุฑุจ ุงู„ูƒูˆูุฉ ูˆููŠู‡ุง ูŠู‚ูˆู„ ุฃุจูˆ
864
+
865
+ 217
866
+ 00:24:06,240 --> 00:24:11,400
867
+ ุงู„ุนุชุงู‡ูŠุฉ ุณู‚ู‰ ุงู„ู„ู‡ ุนุจุงุฏุงู† ุบูŠุซุง ู…ุฌู„ู„ุง ูุฅู† ู„ู‡ุง ูุถู„ุง
868
+
869
+ 218
870
+ 00:24:11,400 --> 00:24:17,540
871
+ ุฌุฏูŠุฏุง ูˆุฃูˆู„ุง ูˆุซุจุช ู…ู† ููŠู‡ุง ู…ู‚ูŠู…ุฉ ู…ุฑุงุจุทุฉ ูู…ุง ุฅู† ุฃุฑุง
872
+
873
+ 219
874
+ 00:24:17,540 --> 00:24:25,640
875
+ ุนู†ู‡ุง ู„ู‡ ู…ุชุญูˆู„ุฉูˆุฃุฎุฐุช ุชู‚ุงู…ูŠ ุงู„ุฑุจุทุงุช ุทุจุนุง ู†ู„ุงุญุธ ุทุจุนุง
876
+
877
+ 220
878
+ 00:24:25,640 --> 00:24:34,700
879
+ ู‡ู†ุง ูŠุนู†ูŠ ูŠุนู†ูŠ ููŠ ู…ุฌุงู„ ู„ู„ุชููƒูŠุฑ ูˆุบุจุท ุจูŠู† ุงู„ู…ู‚ุฏู…ุงุช
880
+
881
+ 221
882
+ 00:24:34,700 --> 00:24:40,520
883
+ ูˆุงู„ู†ุชุงุฆุฌ ุฃู† ู‡ุฐู‡ ูŠุนู†ูŠ ุฃู† ู‡ุฐู‡ ุงู„ู†ุดุฃุฉ
884
+
885
+ 222
886
+ 00:24:42,990 --> 00:24:52,070
887
+ ู„ู„ุฑุจุงุทุงุช ุชุฏู„ ุนู„ู‰ ุฑุจุท ุจูŠู† ุงู„ุชุตูˆู ูˆุงู„ุชุดูŠูŠุน ู„ุฃู† ู‡ุฐุง
888
+
889
+ 223
890
+ 00:24:52,070 --> 00:24:57,230
891
+ ุงู„ุฑุจุงุท ุฃู†ุดุฆ ู‚ุฑุจ ุงู„ูƒูˆูุฉ ูˆุงู„ูƒูˆูุฉ ูƒู…ุง ุฐูƒุฑู†ุง ู…ูˆุทู†
892
+
893
+ 224
894
+ 00:24:57,230 --> 00:25:05,580
895
+ ุงู„ุชุดูŠูŠุนู‡ุฐู‡ ุทุจุนู‹ุง ู†ูˆุน ู…ู† ุงู„ุชุญู„ูŠู„ ู†ูˆุน ู…ู† ุงู„ุชูุณูŠุฑ ุฃูˆ
896
+
897
+ 225
898
+ 00:25:05,580 --> 00:25:10,380
899
+ ูˆุฌู‡ุฉ ุงู„ู†ุธุฑ ุนู„ู‰ ุงู„ุฃู‚ู„ ูŠุนู†ูŠ ุฃู† ุงู„ุชุดูŠูŠุน .. ุฃู† ุงู„ุชุตูˆู
900
+
901
+ 226
902
+ 00:25:10,380 --> 00:25:17,360
903
+ ุงุฑุชุจุท ุงุจุชุฏุงุก ุจุงู„ุชุดูŠูŠุน ุฃูŠุถู‹ุง
904
+
905
+ 227
906
+ 00:25:17,360 --> 00:25:22,300
907
+ ู…ู† ุงู„ู…ู„ุงุญุธุงุช ุฃู† ุญุฑูƒุฉ ุงู„ุฐู‡ุจ ุงุฑุชุจุท ุจู‡ุง ู…ู†ุธูˆู…ุฉ
908
+
909
+ 228
910
+ 00:25:22,300 --> 00:25:29,220
911
+ ุฃุฎู„ุงู‚ูŠุฉูƒู…ุง ู‚ู„ู†ุง ุฅู† ุญุฑูƒุฉ ุงู„ุฐู‡ุจ ุชู‚ูˆู… ุนู„ู‰ ุชู‡ุฐูŠุจ ุงู„ู†ูุณ
912
+
913
+ 229
914
+ 00:25:30,160 --> 00:25:39,300
915
+ ุจุงู„ุฑุถุจ ุงู„ู‚ู„ูŠู„ ูˆุงู„ุงุณุชุนุฏุงุฏ ู„ู„ุฑุญูŠู„ ูˆุชุนุฒูŠุฒ ุญู‚ูŠู‚ุฉ ุงู„ู…ูˆุช
916
+
917
+ 230
918
+ 00:25:39,300 --> 00:25:43,640
919
+ ูˆุงู„ูู†ุงุก ููŠ ุงู„ุฅู†ุณุงู† ุงุชุจุนุช ุจู‡ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฃุฎู„ุงู‚
920
+
921
+ 231
922
+ 00:25:43,640 --> 00:25:52,200
923
+ ุงู„ู†ูุณูŠุฉ ู…ุซู„ ุงู„ุตุจุฑ ูˆุงู„ุชุฐู„ู„ ูˆุงู„ุฎุถูˆุน ูˆุงู„ุตู…ู… ูˆุงู„ุญู„ู…
924
+
925
+ 232
926
+ 00:25:52,200 --> 00:26:04,690
927
+ ูู‡ุฐู‡ ุงู„ุจุซู‚ุช ู…ู† ู†ุธุฑูŠุฉ ุงู„ุฐู‡ุจู…ู† ุงู„ุฑุงุนูŠ ุงู„ุฃูˆู„ ููŠ
928
+
929
+ 233
930
+ 00:26:04,690 --> 00:26:12,670
931
+ ุงู„ุชุตูˆู ุฃูˆ ุงู„ู…ูŠู„ ุงู„ุฐู‡ุจ ุฅู„ู‰ ุงู„ู†ุฒุน ุงู„ุชุตูˆููŠุฉ ู†ุฑุงู‡ุง ุนู†ุฏ
932
+
933
+ 234
934
+ 00:26:12,670 --> 00:26:19,130
935
+ ุฅุจุฑุงู‡ูŠู… ุจู† ุฃุฏู‡ู… ุงู„ุจู„ุฎูŠ ูˆุฑุงุจุน ุงู„ุนุฏูˆูŠุฉ ูˆุดู‚ูŠู‚ ุงู„ุจู„ุฎูŠ
936
+
937
+ 235
938
+ 00:26:19,130 --> 00:26:28,020
939
+ ุชู„ู…ูŠุฐ ุงุจู† ุฃุฏู‡ู…ูˆู‚ุงู„ ุฅู†ู‡ ุฃูˆู„ ู…ู† ุชูƒู„ู… ููŠ ุงู„ุชุตูˆู ูˆุนู„ูˆู…
940
+
941
+ 236
942
+ 00:26:28,020 --> 00:26:32,520
943
+ ุงู„ุฃุญูˆุงู„ ุจุฎุฑุงุณุงู† ูˆุฃุดุงุน ู…ุจุฏุฃ ุงู„ุชูˆูƒู„ ูˆู…ุนุฑูˆู ุงู„ูƒูˆููŠ
944
+
945
+ 237
946
+ 00:26:32,520 --> 00:26:40,840
947
+ ุฅุฐู‹ุง ู‡ู†ุง ููŠ ุนู„ุงู…ุฉ ุฃูŠุถู‹ุง ุชุฌุนู„ ุงู„ู‚ุงุฑุฆ ุฃู† ูŠููƒุฑ ู…ุงู„ูŠู‹ุง
948
+
949
+ 238
950
+ 00:26:40,840 --> 00:26:51,770
951
+ ุฃู† ุงู„ุชุตูˆู ู‚ุฏู… ู…ู† ุจู„ุงุฏูŠ ุซุงุฑุณ ูˆู…ู† ุฎุฑุงุณุงู†ูˆ ู…ู† ูˆุฑุง ุงูŠู‡
952
+
953
+ 239
954
+ 00:26:51,770 --> 00:27:01,250
955
+ ุงู„ู†ู‡ุฑ ูŠุนู†ูŠ ุงู„ุชุตูˆู ู„ูŠุณ ุฎู„ู‚ุง ุนุฑุจูŠุง ูƒุงู† ู‡ู†ุงูƒ ุงูŠู‡
956
+
957
+ 240
958
+ 00:27:01,250 --> 00:27:06,810
959
+ ุงู„ุฐู‡ุจ ูƒุงู† ู‡ู†ุงูƒ ุตุจุฑ ุนู†ุฏ ุงู„ุนุฑุจ ุงู„ุตุจุฑ ุนู„ู‰ ุงู„ุฌูˆุน ุงู„ุตุจุฑ
960
+
961
+ 241
962
+ 00:27:06,810 --> 00:27:11,450
963
+ ุนู„ู‰ ุงู„ุนุชุด ูƒุงู† ุนู†ุฏู‡ู… .. ุนู†ุฏู‡ู… ุงูŠู‡ ูƒุฑุงู…ุฉ ูˆ ู„ุฐุง ู„ู…
964
+
965
+ 242
966
+ 00:27:11,450 --> 00:27:15,690
967
+ ูŠู†ุดุฃ ุนู†ุฏู‡ู… ุงูŠู‡ ุงู„ู…ุฌู†ูˆู† ูˆู„ุง ู„ู‡ูˆ ูƒู…ุง ู„ู… ูŠู†ุดุฃ ุนู†ุฏู‡ู…
968
+
969
+ 243
970
+ 00:27:15,690 --> 00:27:22,100
971
+ ุงูŠู‡ ุงู„ุชุตูˆูุฅุฐุง ุฅูŠู‡ุŸ ุงู„ู…ูˆุฌูˆุฏ ู„ู‡ ุนุงุฏุฉ ูุงุฑุณูŠุฉ ูˆุงู„ุชุตูˆู
972
+
973
+ 244
974
+ 00:27:22,100 --> 00:27:30,740
975
+ ุฃูŠุถู‹ุง ุนุงุฏุฉ ูุงุฑุณูŠุฉ ูŠุนู†ูŠ ูˆุฑุซุฉ ู…ู† ุซู‚ุงูุฉ ุงู„ูุงุฑุณูŠุฉ
976
+
977
+ 245
978
+ 00:27:30,740 --> 00:27:34,300
979
+ ูˆู„ุฐู„ูƒ
980
+
981
+ 246
982
+ 00:27:34,300 --> 00:27:39,040
983
+ ุงู„ุฃุณู…ุงุก ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู„ูŠุณุช ุฃุณู…ุงุก ุนุฑุจูŠุฉ ูŠุนู†ูŠ ูƒู„ู‡ุง
984
+
985
+ 247
986
+ 00:27:39,040 --> 00:27:46,600
987
+ ู…ู† ุจู„ุฎ ุดู‚ูŠู‚ ุงู„ุจู„ุฎูŠ ูˆุฅุจุฑุงู‡ูŠู… ุจู† ุฃุฏู… ุงู„ุจู„ุฎูŠูˆุฑุงุจุน
988
+
989
+ 248
990
+ 00:27:46,600 --> 00:27:50,820
991
+ ุงู„ุนุฏูˆูŠุฉ ูˆู…ุนุฑูˆู ุงู„ูƒูˆููŠ ูˆุงู„ูƒูˆููŠ ุงู„ู…ูˆุทู†ูŠ ุงู„ุชุดูŠูˆุน
992
+
993
+ 249
994
+ 00:27:50,820 --> 00:27:58,240
995
+ ูู‡ู†ุงูƒ ุฅุฐู† ุฑุจุท ุจูŠู† ุงู„ุชุตูˆู ูˆุงู„ุชุดูŠูˆุน ุฃู† ู…ู‚ุฏู…ุงุช ุงู„ุชุตูˆู
996
+
997
+ 250
998
+ 00:27:58,240 --> 00:28:06,400
999
+ ู†ุดุฃุช ุจุฌูˆุงู„ ุงู„ุชุดูŠูˆุน ู…ู† ู…ุฃุซูˆุฑ ุงู„ูƒู„ุงู… ุงู„ู…ุนุฑูˆู ู„ู„ูƒูˆููŠ
1000
+
1001
+ 251
1002
+ 00:28:06,400 --> 00:28:14,380
1003
+ ู…ู† ูƒุจุฑ ุงู„ู„ู‡ ุตุฑุงุนู‡ ูˆู…ู† ู†ุงุฒุนู‡ ู‚ู…ุนู‡ ูˆู…ู† ุชูˆุงุถุนู‡ู„ู‡ ุฑูุนู‡
1004
+
1005
+ 252
1006
+ 00:28:14,380 --> 00:28:18,220
1007
+ ูˆู…ู† ู…ุง ูƒุฑู‡ู‡ ุฎุฏุนู‡ ูˆู…ู† ุชูˆู‚ู‘ู„ ุนู„ูŠู‡ ู…ู†ุนู‡ ุฅู„ู‰ ุขุฎุฑู‡ู…
1008
+
1009
+ 253
1010
+ 00:28:19,190 --> 00:28:25,750
1011
+ ูˆู‡ู†ุงูƒ ุจุดุฑ ุงู„ุญุงููŠ ุงู„ุฎูˆุงุณุงู†ูŠ ู†ุฒูŠู„ ุจุบุฏุงุฏ ุทุจุนุง ู†ู„ุงุญุธ
1012
+
1013
+ 254
1014
+ 00:28:25,750 --> 00:28:31,410
1015
+ ู‡ู†ุง ู„ุฃู† ุงู„ุฃุณู…ุงุก ุทุจุนุง ุงู‚ุชุดุน ุจุฅูŠู‡ ู„ุฃู† ู…ู‚ุฏู…ุฉ ุงู„ุชุตูˆู
1016
+
1017
+ 255
1018
+ 00:28:31,410 --> 00:28:40,610
1019
+ ูŠุนู†ูŠ ู†ุดุฃุช ุจูุนู„ ุงู„ูุฑุต ูˆุทุจุนุง ู‡ุฐู‡ ุงู„ู†ุดุฃุฉ ู„ูŠุณุช ู†ุดุฃุฉ
1020
+
1021
+ 256
1022
+ 00:28:40,610 --> 00:28:45,850
1023
+ ุนุฑุจูŠุฉ ูุงู„ุชุตูˆู ู„ูŠุณ ุฎู„ู‚ุง ุนุฑุจูŠุง ูƒู…ุง ุงู„ู…ูˆุฌูˆุฏ ุฃูŠุถุง
1024
+
1025
+ 257
1026
+ 00:28:48,760 --> 00:28:53,940
1027
+ ุจุดุฑ ุงู„ุญุงููŠ ุงู„ุฎุฑุณุงู† ุงู„ู†ุฒูŠู„ ุจุบุฏุงุฏ ูƒุงู† ูŠู‚ูˆู„ ุงู„ูุคุงุฏ
1028
+
1029
+ 258
1030
+ 00:28:53,940 --> 00:29:03,660
1031
+ ูŠู…ูŠุช ุฃููˆุง ุงู„ุฌูˆุน ูŠุตู ุงู„ูุคุงุฏ ูˆูŠู…ูŠุช ุงู„ู‡ูˆู‰ ูˆูŠูˆู†ุซ ุงู„ุนู„ู…
1032
+
1033
+ 259
1034
+ 00:29:03,660 --> 00:29:10,880
1035
+ ุงู„ุฏู‚ูŠู‚ ูˆุงู„ู…ุชู‚ู„ุจ ููŠ ุฌูˆุนู‡ ูƒุงู„ู…ุชุดุญุช ููŠ ุณุจูŠู„ ุงู„ู„ู‡ ูˆุฅุฐุง
1036
+
1037
+ 260
1038
+ 00:29:10,880 --> 00:29:19,390
1039
+ ุฃุนุฌุจูƒ ุงู„ูƒู„ุงู… ูุงุตู…ุช ูˆุฅุฐุง ุฃุนุฌุจูƒ ุงู„ุตู…ุช ูุชูƒู„ู…ูŠุนู†ูŠ ู„ูˆ
1040
+
1041
+ 261
1042
+ 00:29:19,390 --> 00:29:24,230
1043
+ ูˆุถุนู†ุง ู‡ุฐู‡ ุงู„ุฅุนุจุงุฑุฉ ููŠ ุณูŠุงู‚ูŠ ู†ุธุฑูŠุฉ ุงู„ุฐู‡ุฏ ูˆุจุฏุงูŠุฉ
1044
+
1045
+ 262
1046
+ 00:29:24,230 --> 00:29:30,830
1047
+ ุงู„ุชุตูˆู ูŠุนู†ูŠ ุฑุจู…ุง ู†ุถุน ุฃูŠุฏูŠู†ุง ุนู„ู‰ ุงู„ู…ู‚ุฏู…ุงุช ุจุดูƒู„ ุฅูŠู‡
1048
+
1049
+ 263
1050
+ 00:29:30,830 --> 00:29:40,290
1051
+ ุณู„ูŠู… ุงู„ุฌูˆุน ูŠุตู ุงู„ูุคุงุฏ ููƒุงู† ุงู„ู…ุชุตูˆูุฉ ูŠุนุชู…ุฏูˆู† ุนู„ู‰
1052
+
1053
+ 264
1054
+ 00:29:40,290 --> 00:29:46,510
1055
+ ุงู„ุฌูˆุน ู„ูŠู†ู‚ูŠ ุงู„ุฌุงู†ุจ ุงู„ุฑูˆุญูŠ ูˆูŠู…ูŠุช ุฅูŠู‡ ุงู„ู‡ูˆู‰ ุงู„ู„ูŠ ู‡ูˆ
1056
+
1057
+ 265
1058
+ 00:29:46,510 --> 00:29:51,700
1059
+ ุงู„ู…ูŠู„ ุฅู„ู‰ ุงู„ุดู‡ูˆุงุชูˆูŠูˆุฑุซ ุงู„ุนู„ู… ุงู„ุฏู‚ูŠู‚ ูŠุนู†ูŠ ูŠุฑุชู‚ูŠ
1060
+
1061
+ 266
1062
+ 00:29:51,700 --> 00:29:58,220
1063
+ ุงู„ุฅู†ุณุงู† ููŠ ุงู„ุชุฃู…ู„ ุงู„ุชุฃู…ู„ ุงู„ุฅุฑุชู‚ุงุฆูŠ ูŠุนู†ูŠ ูŠุฑูุน
1064
+
1065
+ 267
1066
+ 00:29:58,220 --> 00:30:07,620
1067
+ ุงู„ุฅู†ุณุงู† ุฅู„ู‰ ุฏุฑุฌุฉ ุฃุนู„ู‰ ู…ู† ุงู„ุทุจูŠุนุฉ ูˆุฃุนู„ู‰ ู…ู† ุงู„ุฃุดูŠุงุก
1068
+
1069
+ 268
1070
+ 00:30:07,620 --> 00:30:15,060
1071
+ ุงู„ู…ุงุฏูŠุฉ ูˆุงู„ู…ุชู‚ู„ุจ ููŠ ุฌูˆุนู‡ ูƒุงู„ู…ุชุดุญุท ููŠ ุฏู…ู‡ ููŠ ุณุจูŠู„
1072
+
1073
+ 269
1074
+ 00:30:15,060 --> 00:30:24,100
1075
+ ุงู„ู„ู‡ ูุฌุนู„ู‡ุงู„ุฐูŠ ูŠุฌูˆุน ูˆูŠุชู‚ู„ุจ ู…ู† ุงู„ุฌูˆุน ูƒู…ู† ูŠู‚ุชู„ ููŠ
1076
+
1077
+ 270
1078
+ 00:30:24,100 --> 00:30:29,620
1079
+ ุณุจูŠู„ ุงู„ู„ู‡ ูˆุชุดูŠุฑ ุฃูŠุถู‹ุง ู‡ุฐู‡ ุงู„ู…ู‚ูˆู„ุฉ ู…ู‚ูˆู„ุฉ ุจุดูŠุฑ
1080
+
1081
+ 271
1082
+ 00:30:29,620 --> 00:30:38,540
1083
+ ุงู„ุญุงููŠ ุฅู„ู‰ ู†ุธุฑูŠุฉ ุงู„ุฃุฎู„ุงู‚ ุนู†ุฏ ุงู„ู…ุชุตูˆูุฉ ุฃูˆ ุงู„ุฐู‡ุฏ ูˆู‡ูŠ
1084
+
1085
+ 272
1086
+ 00:30:38,540 --> 00:30:45,020
1087
+ ู‚ุงุฆู…ุฉ ุนู„ู‰ ุตูุงุช ู†ูุณูŠุฉ ุฅุฐุง ุฃุนุฌุจูƒ ุงู„ูƒู„ุงู… ูุงุตู…ุชูˆุฅุฐุง
1088
+
1089
+ 273
1090
+ 00:30:45,020 --> 00:30:50,260
1091
+ ุฃุนุฌุจูƒ ุงู„ุตู…ุช ูุชูƒู„ู… ูˆู„ุฐู„ูƒ ู†ุฌุฏ ุฃู† ุงู„ู…ูุฑุถุงุช ุงู„ุฃุฎู„ุงู‚ูŠุฉ
1092
+
1093
+ 274
1094
+ 00:30:50,260 --> 00:30:58,340
1095
+ ููŠ ู†ุธุฑูŠ ุงู„ุฒู‡ุฏ ู‡ูˆ ุงู„ุตู…ุช ูˆุงู„ุญู„ู… ูˆุงู„ุตุจุฑ ูˆุงู„ุฎุดูˆุน
1096
+
1097
+ 275
1098
+ 00:30:58,340 --> 00:31:00,620
1099
+ ูˆุงู„ุชุฐู„ู„ ูˆุงู„ุงู†ูƒุณุงุฑ
1100
+
1101
+ 276
1102
+ 00:31:03,710 --> 00:31:08,550
1103
+ ุจุนุถ ุงู„ู…ุณุชุดุฑููŠู† ุญุงูˆู„ูˆุง ุฃู† ูŠุฑุจุท ุงู„ุฐู‡ุฏ ุงู„ุฅุณู„ุงู…ูŠ ุจุฐู‡ุฏ
1104
+
1105
+ 277
1106
+ 00:31:08,550 --> 00:31:14,210
1107
+ ุงู„ุฑุญู…ู† ุงู„ู†ุตุฑู‰ ู†ุญู† ู†ู‚ูˆู„ ูƒู…ุง ู‚ุงู„ ุดูˆูƒุธูŠู ุฃู† ุงู„ุฐู‡ุฏ ููŠ
1108
+
1109
+ 278
1110
+ 00:31:14,210 --> 00:31:18,990
1111
+ ุงู„ู‚ุฑู† ุงู„ุฃูˆู„ ู…ู† ุนู…ุฑูŠ ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ูƒุงู† ุฐู‡ุฏุง
1112
+
1113
+ 279
1114
+ 00:31:18,990 --> 00:31:25,160
1115
+ ุฅุณู„ุงู…ูŠุงูŠุนู†ูŠ ู†ุงุจุน ู…ู† ุชุนุงู„ูŠู… ุงู„ุฅุณู„ุงู… ุงู„ุญู„ูŠูุฉ ูˆู‡ุฐุง ู„ุง
1116
+
1117
+ 280
1118
+ 00:31:25,160 --> 00:31:33,880
1119
+ ูŠู…ู†ุน ุฃู† ู†ุฌุฏ ู‡ู†ุงูƒ ุฃุณุฑุงุจ ุฃุณุฑุงุจ ู…ู† ุฐู‡ุจ ุงู„ู†ุตุงุฑู‰ ุฃูˆ ุฐู‡ุจ
1120
+
1121
+ 281
1122
+ 00:31:33,880 --> 00:31:43,140
1123
+ ุฅูŠู‡ ุงู„ุจูˆุฐุฑูŠูŠู† ุฃูˆ ุงู„ู…ุงู†ูˆูŠูŠู† ุฃูˆ ุฃูˆ ุฏูŠุงู†ุงุช ุฃูˆ ู…ู„ุงู„
1124
+
1125
+ 282
1126
+ 00:31:43,140 --> 00:31:48,360
1127
+ ุฃุฎุฑู‰ ู‡ู†ุงูƒ ุฃุณุฑุงุจ ู…ู† ุงู„ุฐู‡ุจู„ูƒู† ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ุธู„
1128
+
1129
+ 283
1130
+ 00:31:48,360 --> 00:31:55,520
1131
+ ู…ุญุงูุธุงู‹ ุนู„ู‰ ุทุจูŠุนุชู‡ ุงู„ุฅุณู„ุงู…ูŠุฉ ููŠ ุงู„ู‚ุฑู† ุงู„ุฃูˆู„ ู…ู†
1132
+
1133
+ 284
1134
+ 00:31:55,520 --> 00:32:01,440
1135
+ ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ูˆู‡ู†ุงูƒ
1136
+
1137
+ 285
1138
+ 00:32:01,440 --> 00:32:06,480
1139
+ ูุฑู‚ ุฃุตู„ุง ุจูŠู† ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ูˆุฐู‡ุจ ุงู„ู…ุชุตูˆูุฉ ุงู„ู…ุตุงุฑู‰
1140
+
1141
+ 286
1142
+ 00:32:06,480 --> 00:32:12,880
1143
+ ุฐู„ูƒ ุฃู† ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ู‚ุงุฆู… ุนู„ู‰ ุนุจุงุฏุงุช ุฅุณู„ุงู…ูŠุฉ
1144
+
1145
+ 287
1146
+ 00:32:12,880 --> 00:32:18,270
1147
+ ูˆู‚ุงุฆู… ุนู„ู‰ ุนู‚ูŠุฏ ุงู„ุชูˆุญูŠุฏูˆุนู„ู‰ ุงู„ุฅูŠู…ุงู† ุจุงู„ูŠูˆู… ุงู„ุขุฎุฑ
1148
+
1149
+ 288
1150
+ 00:32:18,270 --> 00:32:25,850
1151
+ ุฃู…ุง ุงู„ุฐู‡ุจ ุงู„ู†ุตุฑุงู†ูŠ ูู‚ุงู… ุนู„ู‰ ุนู‚ูŠุฏุฉ ุงู„ุชุซู„ูŠุซุงู„ุดูŠุก
1152
+
1153
+ 289
1154
+ 00:32:25,850 --> 00:32:31,510
1155
+ ุงู„ุชุงู†ูŠ ุฃู† ุงู„ุฐู‡ุจ ุงู„ุฐู‡ุจ ู„ู„ู†ุตุงุฑู‰ ู‚ุงุฆู… ุนู„ู‰ ุงู„ุงุชุณุงุฎ
1156
+
1157
+ 290
1158
+ 00:32:31,510 --> 00:32:38,030
1159
+ ุงู„ู…ู‚ุฏุณ ู‡ู†ุงูƒ ู†ุธุฑูŠุฉ ุงู„ุงุชุณุงุฎ ุงู„ู…ู‚ุฏุณ ุนู†ุฏ ุงู„ู†ุตุงุฑู‰ ูู‡ู…
1160
+
1161
+ 291
1162
+ 00:32:38,030 --> 00:32:46,290
1163
+ ูŠุฑูˆู† ุฃู† ุชูˆุณูŠุฎ ุงู„ุฌุณู… ูˆุนุฏู… ุงู„ุงู‡ุชู…ุงู… ุจุงู„ู†ุธุงูุฉ ุงู„ุดุฎุตูŠุฉ
1164
+
1165
+ 292
1166
+ 00:32:46,290 --> 00:32:53,750
1167
+ ูŠุคุฏูŠ ุฅู„ู‰ ุฅุฑุชู‚ุงุก ุงู„ุฑูˆุญ ุทุจุนุง ู‡ุฐุง ู…ุฎุงู„ู ู„ู„ุฅุณู„ุงู…
1168
+
1169
+ 293
1170
+ 00:32:56,040 --> 00:32:59,880
1171
+ ุงู„ุฐูŠ ุฏุนุง ุฅู„ู‰ ุงู„ู†ุธุงูุฉ ุงู„ุดุฎุตูŠุฉ ูˆุงู„ุงู‡ุชู…ุงู… ุจุงู„ู‡ูŠุฆุฉ
1172
+
1173
+ 294
1174
+ 00:32:59,880 --> 00:33:06,280
1175
+ ูˆุงู„ุงู‡ุชู…ุงู… ุจุงู„ุทู‡ุงุฑุฉ ูˆู†ุญูˆ ุฐู„ูƒ ูˆุงู„ุฅุณู„ุงู… ุฃูŠุถู‹ุง ุฃู…ุฑ
1176
+
1177
+ 295
1178
+ 00:33:06,280 --> 00:33:14,020
1179
+ ุงู„ุฒูˆุงุฌ ุจูŠู†ู…ุง ุงู„ุฐู‡ุฏ ุงู„ู†ุตุฑุงู†ูŠ ุฏุนุง ุฅู„ู‰ ุงู„ุนุฒูˆุจูŠุฉ ูˆู‡ุฐุง
1180
+
1181
+ 296
1182
+ 00:33:14,020 --> 00:33:20,380
1183
+ ุทุจุนู‹ุง ูŠุฏู„ ุนู„ู‰ ุฃู† ู‡ู†ุงูƒ ุฎู„ุงูุฉ ุฃูˆ ุงุฎุชู„ุงู ุจูŠู† ุงู„ุฐู‡ุฏ
1184
+
1185
+ 297
1186
+ 00:33:20,380 --> 00:33:26,680
1187
+ ุงู„ุฅุณู„ุงู…ูŠ ูˆุฐู‡ุฏ ุงู„ู†ุตุงุฑู‰ุฃูŠุถู‹ุง ุญุงูˆู„ ุงู„ู…ุณุชุดุฑู‚ ุฌูˆู„ุฏ ุณูŠู‡ุฑ
1188
+
1189
+ 298
1190
+ 00:33:26,680 --> 00:33:32,280
1191
+ ุฃู† ูŠู„ุจุท ุจูŠู† ู…ู‚ุฏู…ุงุช ู†ุฒุนุฉ ุงู„ุชุตูˆู ุงู„ุฅุณู„ุงู… ูˆุชุนุงู„ูŠู…
1192
+
1193
+ 299
1194
+ 00:33:32,280 --> 00:33:37,740
1195
+ ุงู„ุฃูู„ุงุทูˆู†ูŠุฉ ุงู„ุญุฏูŠุซุฉ ุทุจุนู‹ุง ุงู„ุฃูู„ุงุทูˆู†ูŠุฉ ุงู„ุญุฏูŠุซุฉ ุชุคู…ู†
1196
+
1197
+ 300
1198
+ 00:33:37,740 --> 00:33:42,870
1199
+ ุฃู† ุงู„ุดูŠุก ู„ุง ุฃูŠู‡ ู„ู„ุดูŠุกูŠุนู†ูŠ ุงู„ุญุจ ู„ุฃุฌู„ ุงู„ุญุจุŒ ูˆุงู„ุฌู…ุงู„
1200
+
1201
+ 301
1202
+ 00:33:42,870 --> 00:33:47,250
1203
+ ู„ุฃุฌู„ ุงู„ุฌู…ุงู„ุŒ ู„ุฃ ุฃุญู†ุง ููŠ ุงู„ุฅุณู„ุงู… ู‡ุฐู‡ ุงู„ุฃุดูŠุงุก ู„ู‡ุง
1204
+
1205
+ 302
1206
+ 00:33:47,250 --> 00:33:54,310
1207
+ ู…ุจุชุบุฉ ุฏูŠู†ูŠุŒ ุฃุฑุถุงุก ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ุŒ ูˆ ุงู„ุญุตูˆู„ ุนู„ู‰
1208
+
1209
+ 303
1210
+ 00:33:54,310 --> 00:34:00,230
1211
+ ุงู„ุฃุฌุฑ ู…ู† ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉูุงู„ุฒู‡ุฏ
1212
+
1213
+ 304
1214
+ 00:34:00,230 --> 00:34:09,190
1215
+ ุงู„ุฅุณู„ุงู…ูŠ ูŠุคู…ู† ุจุฃู† ู‡ู†ุงูƒ ุฃุฌุฑุง ุนุธูŠู…ุง ููŠ ุงู„ุขุฎุฑุฉ ูŠู†ุชุธุฑ
1216
+
1217
+ 305
1218
+ 00:34:09,190 --> 00:34:14,550
1219
+ ุงู„ุฅู†ุณุงู† ุงู„ุฒุงู‡ุฏ ูˆุฃูŠุถุง ูŠุฑูŠุฏ ุฃู† ูŠุญู‚ู‚ ุฑุถุง ุงู„ู„ู‡ ุณุจุญุงู†ู‡
1220
+
1221
+ 306
1222
+ 00:34:14,550 --> 00:34:21,550
1223
+ ูˆุชุนุงู„ู‰ ุฃู…ุง ุงู„ุฒู‡ุฏ ุงู„ุฃูู„ุงุทูˆู†ูŠ ุงู„ุฒู‡ุฏ ู„ุฃุฌู„ ุงู„ุฒู‡ุฏ ูู‡ูˆ
1224
+
1225
+ 307
1226
+ 00:34:21,550 --> 00:34:24,990
1227
+ ู„ุง ูŠุคู…ู† ุจุงู„ู„ู‡ ูˆู„ุง ูŠุคู…ู† ุจุงู„ูŠูˆู… ุงู„ุขุฎุฑ
1228
+
1229
+ 308
1230
+ 00:34:29,980 --> 00:34:35,960
1231
+ ุทุจุนุง ูƒู…ุง ู‚ู„ุช ุฃู† ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุฃูˆ ููŠ
1232
+
1233
+ 309
1234
+ 00:34:35,960 --> 00:34:40,160
1235
+ ุงู„ู‚ุฑู† ุงู„ุฃูˆู„ ู…ู† ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ูƒุงู† ุฐู‡ุฏุง ุฅุณู„ุงู…ูŠุง
1236
+
1237
+ 310
1238
+ 00:34:40,160 --> 00:34:47,460
1239
+ ุฎุงุตุง ู…ุน ุงู„ุฅูŠู…ุงู† ุจุฃู† ู‡ู†ุงูƒ ุฅูŠู‡ ู…ุน ุงู„ุงุนุชุฑุงู ุจุฃู† ู‡ู†ุงูƒ
1240
+
1241
+ 311
1242
+ 00:34:47,460 --> 00:34:53,580
1243
+ ุฃุณุฑุงุจ ุจุฃู† ู‡ู†ุงูƒ ุฃุณุฑุงุจ ุฃุฎุฑู‰ ู…ู† ุฐู‡ุจูŠ ุงู„ู†ุตุงุฑู‰ ูˆุฐู‡ุจูŠ
1244
+
1245
+ 312
1246
+ 00:34:53,580 --> 00:35:01,100
1247
+ ุงู„ู…ูˆุฐูŠูŠู† ูˆุงู„ู…ุงู†ูˆูŠูŠู† ูˆุบูŠุฑ ุฐู„ูƒุจุนุฏ ุฐู„ูƒ ุฃุฎุฏุช ุฅูŠู‡ ู†ุชุฉ
1248
+
1249
+ 313
1250
+ 00:35:01,100 --> 00:35:06,660
1251
+ ุชุตูˆู ุชุชุนู…ู‚ ูˆุฃุฎุฏุช
1252
+
1253
+ 314
1254
+ 00:35:06,660 --> 00:35:11,440
1255
+ ุฅูŠู‡ ุชุดุทุญ ููŠ ุงู„ุฌุงู†ุจ ุงู„ุฑูˆุญูŠ ูˆู‡ู†ุง ูŠุนู†ูŠ ู…ู…ูƒู† ุฃู† ู†ูุฑู‚
1256
+
1257
+ 315
1258
+ 00:35:11,440 --> 00:35:17,540
1259
+ ุจูŠู† ุงู„ุฐู‡ุฏ ุงู„ุฅุณู„ุงู…ูŠ ูˆุงู„ุชุตูˆู ุงู„ุฐู‡ุฏ ุงู„ุฅุณู„ุงู…ูŠ ูŠุฑูƒุฒ ุนู„ู‰
1260
+
1261
+ 316
1262
+ 00:35:17,540 --> 00:35:23,690
1263
+ ุงู„ุนุจุงุฏุงุชูˆู‡ูˆ ู‚ูŠู…ุฉ ุฅุณู„ุงู…ูŠุฉ ู„ุฃู† ุงู„ู„ู‡ .. ู„ุฃู† ุงู„ุฑุณูˆู„
1264
+
1265
+ 317
1266
+ 00:35:23,690 --> 00:35:28,690
1267
+ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู… ุฏุนูŠ ุฅู„ูŠู‡ุง ูู‚ุงู„ ุงุฒู‡ุฏ ููŠ ุงู„ุฏู†ูŠุง
1268
+
1269
+ 318
1270
+ 00:35:28,690 --> 00:35:33,930
1271
+ ูŠุญุจูƒ ุงู„ู„ู‡ ูˆุงุฒู‡ุฏ ููŠ ู…ุฃูŠุฏูŠ ุงู„ู†ุงุณ ูŠุญุจูƒ ุงู„ู†ุงุณ ุฅุฐุง
1272
+
1273
+ 319
1274
+ 00:35:33,930 --> 00:35:38,250
1275
+ ุงู„ุฐู‡ุจ ู„ูŠู‡ ู‚ูŠู…ุฉ ุฅุณู„ุงู…ูŠุฉ ุฃู…ุง ุงู„ุชุตูˆู ูู„ูŠุณ ู‚ูŠู…ุฉ
1276
+
1277
+ 320
1278
+ 00:35:38,250 --> 00:35:43,290
1279
+ ุฅุณู„ุงู…ูŠุฉ ุฅู†ู…ุง ู‡ูˆ ุญุงู„ุฉ ุฅู†ุณุงู†ูŠุฉ ุงุจุชุฏุนุงู‡ ุงู„ุฅู†ุณุงู† ููŠู…ุง
1280
+
1281
+ 321
1282
+ 00:35:43,290 --> 00:35:54,990
1283
+ ุจุนุฏูˆู„ุฐู„ูƒ ุงู„ุชุนุฑู ุนู„ู‰ ู‚ูŠู…ุฉ ุงู„ุชุตูˆู ูŠูƒูˆู† ุฅูŠู‡ุŸ ุจุงุฑุฌุงุนู‡
1284
+
1285
+ 322
1286
+ 00:35:54,990 --> 00:36:01,210
1287
+ ุฅู„ู‰ ุงู„ุฒู‡ุฏ ุฅู„ู‰ ุญู‚ูŠู‚ุฉ ุงู„ุฒู‡ุฏ ูู…ุง ูˆุงูู‚ ููŠู‡ ุงู„ุฒู‡ุฏ
1288
+
1289
+ 323
1290
+ 00:36:01,210 --> 00:36:06,790
1291
+ ุงู„ุฅุณู„ุงู…ูŠ ูƒุงู† ูŠุนู†ูŠ ู…ู‚ุจูˆู„ู‹ุง ุฃู…ุง ุฅุฐุง ุนุงุฑุถ ุงู„ุฒู‡ุฏ
1292
+
1293
+ 324
1294
+ 00:36:06,790 --> 00:36:10,840
1295
+ ุงู„ุฅุณู„ุงู…ูŠ ูู‡ูˆ ุฅูŠู‡ุŸ ุบูŠุฑ ู…ู‚ุจูˆู„ูˆู„ุฐู„ูƒ ู‚ู„ู†ุง ุฅู† ุงู„ุชุตูˆู
1296
+
1297
+ 325
1298
+ 00:36:10,840 --> 00:36:18,100
1299
+ ุญุงู„ุฉ ุฅู†ุณุงู†ูŠุฉ ุฃู…ุง ุงู„ุฐู‡ุจ ูู‡ูˆ ุฃูŠู‡ ู‚ูŠู…ุฉ ุฅุณู„ุงู…ูŠุฉ ุงู„ุดูŠุก
1300
+
1301
+ 326
1302
+ 00:36:18,100 --> 00:36:20,760
1303
+ ุงู„ุซุงู†ูŠ ุฃู† ุงู„ุฐู‡ุจ ูŠุฑูƒุถ ุนู„ู‰ ุงู„ุนุจุงุฏุงุช ูˆุงู„ุชุนู„ูŠู…ุงุช
1304
+
1305
+ 327
1306
+ 00:36:21,480 --> 00:36:29,180
1307
+ ุงู„ุฏูŠู†ูŠุฉ ูˆุงู„ุชุนุจุฏูŠุฉ ู„ูƒู† ุงู„ุชุตูˆู ูŠุนู†ูŠ ูŠู‡ุชู… ุจุงู„ุฌุงู†ุจ
1308
+
1309
+ 328
1310
+ 00:36:29,180 --> 00:36:38,580
1311
+ ุงู„ุฑูˆุญูŠ ุจุงู„ุญุจ ุงู„ุฅู„ู‡ูŠ ูˆุทุจุนุง ุงู„ุฒู‡ุฏ ูŠุฑูƒุฒ ุนู„ู‰ ุงู„ุทุงุนุฉ ูˆ
1312
+
1313
+ 329
1314
+ 00:36:38,580 --> 00:36:42,540
1315
+ ู‡ู†ุงูƒ ูŠุฑูƒุฒ ุนู„ูŠู‡ ุงู„ุญุจ ูˆ ูุฑู‚ ุจูŠู† ุฃูŠู‡ ุงู„ุทุงุนุฉ ูˆ ุงู„ุญุจ
1316
+
1317
+ 330
1318
+ 00:36:42,540 --> 00:36:49,640
1319
+ ูุจุงู„ุทุงุนุฉ ูˆ ุงู„ุงุชุจุงุน ูŠุชุญุตู„ ุงู„ุฅู†ุณุงู† ุนู„ู‰ ู…ุง ู‡ูˆ ุฃุฑู‚ู‰ ู…ู†
1320
+
1321
+ 331
1322
+ 00:36:49,640 --> 00:36:50,480
1323
+ ุงู„ุญุจ ุงู„ุฅู„ู‡ูŠ
1324
+
1325
+ 332
1326
+ 00:36:56,120 --> 00:37:02,780
1327
+ ู‚ุงู„ ุชุนุงู„ู‰ ู‚ูู„ู’ ุฅู† ูƒู†ุชู… ุชุญุจูˆู† ุงู„ู„ู‡ ูุงุชุงุจุนูˆู†ูŠ ูŠุญุจุจูƒู…
1328
+
1329
+ 333
1330
+ 00:37:02,780 --> 00:37:12,420
1331
+ ุงู„ู„ู‡ ูุจุงู„ุงุชุจุงุน ูˆ ุงู„ุทุงุนุฉ ุชุญู‚ู‚ ู…ุญุจุฉ ุงู„ู„ู‡ ู„ูƒ ูˆ ูุฑู‚
1332
+
1333
+ 334
1334
+ 00:37:12,420 --> 00:37:21,880
1335
+ ุจูŠู† ุฃู† ุชุญุจู‡ ูˆ ุฃู† ุชุญุจ ูุฃู† ุชุญุจ ุฃูุถู„ ู…ู† ุฃู† ุชุญุจ ุงู„ู„ูŠ
1336
+
1337
+ 335
1338
+ 00:37:21,880 --> 00:37:29,830
1339
+ ุญุตู„ ุฃู† ุญุฑูƒุฉ ุงู„ุชุตูˆูุงู†ุญุฑูุช ู„ุฃู†ู‡ุง ุชุนู…ู‚ุช ููŠ ุงู„ุฌุงู†ุจ
1340
+
1341
+ 336
1342
+ 00:37:29,830 --> 00:37:38,770
1343
+ ุงู„ุฑูˆุญูŠ ูˆู…ู…ูƒู† ุฃู† ู†ุจูŠู† ุฃู† ุญุฑูƒุฉ ุงู„ุชุตูˆู ุงุฑุชุจุทุช ุจุญุฑูƒุฉ
1344
+
1345
+ 337
1346
+ 00:37:38,770 --> 00:37:44,210
1347
+ ุงู„ุฐู‡ุจ ููŠ ุงู„ุจุฏุงูŠุงุช ูˆุงุฎุชู„ูุช ููŠ ุงู„ู…ุขู„ุงุชูู„ูˆ ู†ุธุฑู†ุง ุฅู„ู‰
1348
+
1349
+ 338
1350
+ 00:37:44,210 --> 00:37:50,430
1351
+ ุจุฏุงูŠุงุช ุงู„ุชุตูˆู ูˆุฌุฏู†ุง ุฃู†ู‡ ูŠุฑุชุจุท ุจุงู„ุฒู‡ุฏ ูƒู…ุง ู‚ุงู„ุช
1352
+
1353
+ 339
1354
+ 00:37:50,430 --> 00:37:56,490
1355
+ ุฑุงุจุนุฉ ุงู„ุนุฏูˆูŠุฉ ุฃุญุจูƒ ุญุจูŠู† ุญุจ ุงู„ู‡ูˆู‰ ูˆุญุจ ู„ุฃู†ูƒ ุฃู‡ู„ ู„ุฐุงูƒ
1356
+
1357
+ 340
1358
+ 00:37:56,490 --> 00:38:01,950
1359
+ ูุฃู…ุง ุงู„ุฐูŠ ู‡ูˆ ุญุจ ุงู„ู‡ูˆู‰ ูุดุบู„ูŠ ุจุฐูƒุฑูƒ ุนู…ุง ุณูˆุงูƒ ูˆุฃู…ุง
1360
+
1361
+ 341
1362
+ 00:38:01,950 --> 00:38:07,350
1363
+ ุงู„ุฐูŠ ุฃู†ุช ู„ู‡ ูˆุฃู…ุง ุงู„ุฐูŠ ุฃู†ุช ุฃู‡ู„ ู„ู‡ ููƒุดููƒ ู„ูŠ ุงู„ุญุฐูˆุจ
1364
+
1365
+ 342
1366
+ 00:38:07,350 --> 00:38:15,680
1367
+ ุญุชู‰ ุฃุฑุงูƒุทุจุนู‹ุง ู‡ุฐุง ุงู„ุญุจ ูŠุนู†ูŠ ู„ุง ูŠุนุฑุถ ู…ูู‡ูˆู… ุงู„ุญุจ ููŠ
1368
+
1369
+ 343
1370
+ 00:38:15,680 --> 00:38:21,840
1371
+ ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ูู‡ูˆ ุญุจ ุฅูŠู‡ ู…ู‚ุจูˆู„ ู„ูƒู† ุฅุฐุง ู†ุธุฑู†ุง ุฅู„ู‰
1372
+
1373
+ 344
1374
+ 00:38:21,840 --> 00:38:29,270
1375
+ ุงู„ู†ู‡ุงูŠุงุชููŠ ู‚ูˆู„ ุงู„ุญู„ุงุฌ ุงู„ุญุณูŠู† ุฅุจู† ู…ู†ุตูˆุฑ ุนู†ุฏู…ุง ู‚ุงู„
1376
+
1377
+ 345
1378
+ 00:38:29,270 --> 00:38:36,270
1379
+ ุฃู†ุง ู…ู† ุฃู‡ูˆู‰ ูˆู…ู† ุฃู‡ูˆู‰ ุฃู†ุง ู†ุญู† ุฑูˆุญุงู†ูŠ ุญู„ุงู„ู†ุง ุจุฏู†ุง
1380
+
1381
+ 346
1382
+ 00:38:36,270 --> 00:38:43,630
1383
+ ูุฅุฐุง ุฃุจุตุฑุชู†ูŠ ุฃุจุตุฑุชู‡ ูˆุฅุฐุง ุฃุจุตุฑุชู‡ ุฃุจุตุฑุชู†ุง ู‡ู†ุง ู†ุฌุฏ ุฃู†
1384
+
1385
+ 347
1386
+ 00:38:43,630 --> 00:38:50,390
1387
+ ุงู„ุชุตูˆู ูŠุฎุฑุฌ ุนู† ุงู„ุฐู‡ุจ ุงู„ุฅุณู„ุงู…ูŠ ุจู„ ูŠุฎุฑุฌ ุนู† ุงู„ุฅุณู„ุงู…
1388
+
1389
+ 348
1390
+ 00:38:51,260 --> 00:39:00,020
1391
+ ุจุงู„ูƒู„ูŠุฉ ู„ุฃู†ู‡ ูŠุคู…ู† ุจุฃู† ุตูุงุช ุงู„ุฎุงู„ู‚ ูˆุงู„ู…ุฎู„ูˆู‚ ุณูˆุงุก
1392
+
1393
+ 349
1394
+ 00:39:00,020 --> 00:39:06,740
1395
+ ู†ุญู† ุฑูˆุญุงู†ูŠ ุญู„ู„ู†ุง ุจุฏู†ุง ูŠุนู†ูŠ ุฑูˆุญ ุงู„ุฎุงู„ู‚ ุงุชุญุซ ุจุฑูˆุญ
1396
+
1397
+ 350
1398
+ 00:39:06,740 --> 00:39:13,150
1399
+ ุงู„ู…ุฎู„ูˆู‚ูุฅุฐุง ุฃุจุตุฑุชู†ูŠ ุฃุจุตุฑุชู‡ุŒ ูˆุฅุฐุง ุฃุจุตุฑุชู‡ ุฃุจุตุฑุชู†ุงุŒ
1400
+
1401
+ 351
1402
+ 00:39:13,150 --> 00:39:18,030
1403
+ ุฅุฐุง ุฅูŠู‡ุŸ ุณุงูˆู‰ ุจูŠู† ุฅูŠู‡ุŸ ุงู„ุฎุงู„ู‚ ูˆุงู„ู…ุฎู„ูˆู‚ุŒ ูˆู‡ุฐุง ูŠุฎุฑุฌ
1404
+
1405
+ 352
1406
+ 00:39:18,030 --> 00:39:27,010
1407
+ ุนู† ุงู„ุฅุณู„ุงู… ุนู‚ูŠุฏุฉ ูˆุดุฑูŠุนุฉุฅุฐุง ุงู„ุชุตูˆู ุฃูˆ ู…ู‚ุฏู…ุฉ ุงู„ุชุตูˆู
1408
+
1409
+ 353
1410
+ 00:39:27,010 --> 00:39:32,910
1411
+ ุงุชุญุฏุช ููŠ ุงู„ุจุฏุงูŠุงุช ูˆุงุฎุชู„ูุช ููŠ ุงู„ู…ุขู„ุงุช ู‡ุฐุง ูˆุจุงู„ู„ู‡
1412
+
1413
+ 354
1414
+ 00:39:32,910 --> 00:39:37,250
1415
+ ุงู„ุชูˆููŠู‚ ูˆุตู„ู‰ ุงู„ู„ู‡ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡
1416
+
1417
+ 355
1418
+ 00:39:37,250 --> 00:39:39,390
1419
+ ูˆุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง
1420
+
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/IXclJGn-2-8_postprocess.srt ADDED
@@ -0,0 +1,1152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:04,930 --> 00:00:08,610
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:08,610 --> 00:00:13,430
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ู‹ุง ูƒุซูŠุฑู‹ุง ูˆุจุนุฏ ู…ูˆุถูˆุน ู‡ุฐู‡
8
+
9
+ 3
10
+ 00:00:13,430 --> 00:00:19,430
11
+ ุงู„ู…ุญุงุถุฑุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ู‡ูˆ ุงู„ู…ุคุซุฑุงุช ุงู„ุซู‚ุงููŠุฉ ููŠ ุงู„ุฃุฏุจ
12
+
13
+ 4
14
+ 00:00:19,430 --> 00:00:25,570
15
+ ุงู„ุนุจุงุณูŠ ููŠู…ุง ุฐูƒุฑู†ุงู‡ ู…ู† ู‚ุจู„ ุชุจูŠู† ู„ู†ุง ุฃู† ู‡ู†ุงูƒ
16
+
17
+ 5
18
+ 00:00:25,570 --> 00:00:32,780
19
+ ุชู…ุงุฒุฌู‹ุงุญุถุฑูŠู‹ุง ูˆุชู…ุงุฒุฌู‹ุง ุฌู†ุณูŠุŒ ุฃุฏู‰ ู‡ุฐุง ุฅู„ู‰ ุชู…ุงุฒุฌ
20
+
21
+ 6
22
+ 00:00:32,780 --> 00:00:39,690
23
+ ุซุงู„ุซุŒ ูˆู‡ูˆ ุงู„ุชู…ุงุฒุฌ ุงู„ุซู‚ุงููŠุญูŠุซ ุฃุตุจุญุช ู‡ุฐู‡ ุงู„ุซู‚ุงูุงุช
24
+
25
+ 7
26
+ 00:00:39,690 --> 00:00:46,830
27
+ ุจูุนู„ ุงู„ุนูˆุงู…ู„ ุฃูˆ ุงู„ู…ุคุซุฑุงุช ุงู„ุณุงุจู‚ุฉ ุชุคุซุฑ ููŠ ุงู„ุฃุฏุจ
28
+
29
+ 8
30
+ 00:00:46,830 --> 00:00:54,610
31
+ ุจุดูƒู„ ุตุฑูŠุญ ูˆุฃู† ู‡ุฐู‡ ุงู„ุจูŠุฆุฉ ุงู„ุฌุฏูŠุฏุฉ ู„ู… ุชูƒู† ูƒุจูŠุฆุฉ
32
+
33
+ 9
34
+ 00:00:54,610 --> 00:01:00,700
35
+ ุงู„ุฃู…ูˆูŠูŠู† ููŠ ุฅุญุฏุงุซ ู…ุซู„ ู‡ุฐุง ุงู„ุชู…ุงุฒุฌุฐู„ูƒ ุฃู† ุงู„ุณูŠุงุฏุฉ ููŠ
36
+
37
+ 10
38
+ 00:01:00,700 --> 00:01:06,000
39
+ ุงู„ุนุตุฑ ุงู„ุฃู…ูˆูŠ ูƒุงู†ุช ุณูŠุงุฏุฉ ุนุฑุจูŠุฉ ุฃู…ุง ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
40
+
41
+ 11
42
+ 00:01:06,000 --> 00:01:12,520
43
+ ูˆุฌุฏู†ุง ุฃู† ุงู„ุณูŠุงุฏุฉ ู‡ูŠ ูุงุฑุณูŠุฉ ุฅุฐ ุฅู† ุงู„ูุฑุณ ู‚ุฏ ุชู‚ู„ุฏูˆุง
44
+
45
+ 12
46
+ 00:01:12,520 --> 00:01:20,260
47
+ ู…ู†ุงุตุจ ุฑููŠุนุฉ ููŠ ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ู…ู† ุฃู‡ู… ู‡ุฐู‡ ุงู„ุซู‚ุงูุงุช
48
+
49
+ 13
50
+ 00:01:20,260 --> 00:01:26,580
51
+ ุงู„ุซู‚ุงูุฉ ุงู„ู‡ู†ุฏูŠุฉ ูˆุงู„ุซู‚ุงูุฉ ุงู„ูุงุฑุณูŠุฉ ูˆุงู„ุซู‚ุงูุฉ
52
+
53
+ 14
54
+ 00:01:26,580 --> 00:01:33,490
55
+ ุงู„ูŠูˆู†ุงู†ูŠุฉุฃู…ุง ุงู„ุซู‚ุงูุฉ ุงู„ู‡ู†ุฏูŠุฉ ูู‡ูŠ ุฃุณุจู‚ ู…ู† ุงู„ุซู‚ุงูุฉ
56
+
57
+ 15
58
+ 00:01:33,490 --> 00:01:39,070
59
+ ุงู„ูุงู„ุณูŠุฉ ุฅุฐ ุงู„ูุฑุซ ู‚ุฏ ุงุนุชู…ุฏูˆุง ุนู„ู‰ ู†ู‡ุถุงุชู‡ู… ุนู„ู‰
60
+
61
+ 16
62
+ 00:01:39,070 --> 00:01:48,390
63
+ ุงู„ุซู‚ุงูุฉ ูˆุงู„ุญุถุงุฑุฉ ุงู„ู‡ู†ุฏูŠุฉุจุฐู„ูƒ ู†ุฌุฏ ุฃู† ู‡ุฐู‡ ุงู„ุญุถุงุฑุฉ
64
+
65
+ 17
66
+ 00:01:48,390 --> 00:01:51,910
67
+ ุงู„ู‡ู†ุฏูŠุฉ ุฃูˆ ุงู„ุซู‚ุงูุฉ ุงู„ู‡ู†ุฏูŠุฉ ุฌุงุกุช ุฅู„ู‰ ุงู„ุญุถุงุฑุฉ
68
+
69
+ 18
70
+ 00:01:51,910 --> 00:01:55,430
71
+ ุงู„ุฅุณู„ุงู…ูŠุฉ ุฃูˆ ุงู„ุซู‚ุงูุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู…ู† ุทุฑูŠู‚ูŠู† ุทุฑูŠู‚
72
+
73
+ 19
74
+ 00:01:55,430 --> 00:02:01,950
75
+ ุงู„ูุฑุณ ููŠ ู‚ุฏูŠู… ุงู„ุฒู…ุงู† ูˆุทุฑูŠู‚ ู…ู† ุฏุฎู„ ู…ู†ู‡ู… ููŠ ุงู„ุฅุณู„ุงู…
76
+
77
+ 20
78
+ 00:02:01,950 --> 00:02:09,230
79
+ ุชุชู…ูŠุฒ ู‡ุฐู‡ ุงู„ุซู‚ุงูุฉ ุงู„ู‡ู†ุฏูŠุฉ ุจุฃู† ุฌู…ู‡ูˆุฑ ุงู„ู‡ู†ุฏ ูˆุซู†ูŠูˆู†
80
+
81
+ 21
82
+ 00:02:10,140 --> 00:02:16,580
83
+ ูŠุฏูŠู†ูˆู† ุงู„ุจูˆุฐูŠุฉ ูˆู…ู†ู‡ู… ุถุฑุงู‡ู…ุฉ ูŠู†ูƒุฑูˆู† ุงู„ู†ุจูˆุงุช ูˆุฏู‡ุฑูŠูˆู†
84
+
85
+ 22
86
+ 00:02:16,580 --> 00:02:22,200
87
+ ู„ุง ูŠุคู…ู†ูˆู† ุฅู„ุง ุจุงู„ุฏู‡ุฑ ูˆุณู…ุงู†ูŠุฉ ู„ุง ูŠุคู…ู†ูˆู† ุฅู„ุง ุจู…ุง ูŠู‚ุน
88
+
89
+ 23
90
+ 00:02:22,200 --> 00:02:28,580
91
+ ุชุญุช ุญูˆุงุณู‡ู… ุฃูŠ ู„ุง ูŠุคู…ู†ูˆู† ุฅู„ุง ุจุงู„ูˆุงู‚ุน ูˆู‚ุฏ ู†ุงุธุฑู‡ู…
92
+
93
+ 24
94
+ 00:02:28,580 --> 00:02:34,360
95
+ ู‚ุฏูŠู…ุง ุฌุญู… ุจู† ุตููˆุงู† ูˆุชุตุฏุฑู‡ู… ุงู„ู…ุนุชุฒู„ุฉ ูŠุฑุฏูˆู† ุนู„ูŠู‡ู…
96
+
97
+ 25
98
+ 00:02:34,360 --> 00:02:40,910
99
+ ู…ุนุชู‚ุฏุงุชู‡ู… ุงู„ูุงุณุฏุฉ ูˆุฃููƒุงุฑู‡ู… ุงู„ุถุงู„ุฉูุฅุฐุง ูƒุงู† ุงู„ุฅุฎู„ุงุต
100
+
101
+ 26
102
+ 00:02:40,910 --> 00:02:47,810
103
+ ุดุนุงุฑ ุงู„ู…ุณู„ู…ูŠู† ูˆุงู„ุชุซู„ูŠุซ ุดุนุงุฑ ุงู„ู†ุตุฑุงู†ูŠุฉ ูˆุงู„ุฅุซุจุงุช
104
+
105
+ 27
106
+ 00:02:47,810 --> 00:02:55,310
107
+ ุดุนุงุฑ ุงู„ูŠู‡ูˆุฏูŠุฉ ูุฅู† ุงู„ุชู†ุงุณุฎ ูƒุงู† ุดุนุงุฑ ุงู„ู…ุญู„ุฉ ุงู„ู‡ู†ุฏูŠุฉ
108
+
109
+ 28
110
+ 00:02:56,410 --> 00:03:03,030
111
+ ูˆู„ุฐู„ูƒ ูˆุฌุฏู†ุง ุฃู† ู‡ุฐุง ุงู„ุฃู…ุฑ ูˆู‡ูˆ ุงู„ุชู†ุงุณุฎ ูŠุชุณู„ู„ ุฅู„ู‰
112
+
113
+ 29
114
+ 00:03:03,030 --> 00:03:10,630
115
+ ุงู„ููƒุฑ ุงู„ุตูˆููŠ ููŠ ุงู„ุฌูŠู„ ุงู„ู‚ุงุฏู… ู…ู…ุง ูƒุงู† ู„ู‡ ุณุจุจ ููŠ
116
+
117
+ 30
118
+ 00:03:10,630 --> 00:03:17,170
119
+ ุฅูุณุงุฏ ุนู‚ูŠุฏุฉ ุงู„ู…ุณู„ู…ูŠู† ุฃู…ุง ุงู„ุซู‚ุงูุฉ ุงู„ูุงุฑุณูŠุฉ ูู‡ูŠ
120
+
121
+ 31
122
+ 00:03:17,170 --> 00:03:23,990
123
+ ุงู„ุซู‚ุงูุฉ ุงู„ู…ุงุฏูŠุฉ ุชูุนู†ูŠ ุจุงู„ุญูŠุงุฉ ุงู„ูŠูˆู…ูŠุฉูู‚ุฏ ู†ุธู‘ู…ุช
124
+
125
+ 32
126
+ 00:03:23,990 --> 00:03:27,950
127
+ ุงู„ุซู‚ุงูุฉ ุงู„ูุงุฑุณูŠุฉ
128
+
129
+ 33
130
+ 00:03:27,950 --> 00:03:34,070
131
+ ุญูŠุงุฉ ุงู„ู…ุฌุชู…ุน ุงู„ุนุจุงุณูŠ ุงู„ูŠูˆู…ูŠ ูŠุนู†ูŠ ู†ุธู‘ู…ุช ุงู„ุญูŠุงุฉ
132
+
133
+ 34
134
+ 00:03:34,070 --> 00:03:38,610
135
+ ุงู„ูŠูˆู…ูŠุฉ ููŠู…ุง ูŠุชุนู„ู‚ ู…ุซู„ู‹ุง ุจุงู„ู…ุฃูƒู„ ูˆุงู„ู…ุดุฑุจ ูˆุงู„ู…ู„ุจุณ
136
+
137
+ 35
138
+ 00:03:38,610 --> 00:03:43,870
139
+ ูˆุงู„ู‚ุตูˆุฑ ูˆุงู„ุญูู„ุงุช ุจุฃู†ูˆุงุนู‡ุง ุงู„ู…ุฎุชู„ูุฉ ูˆุงู„ู…ุฑุงุณูŠู…
140
+
141
+ 36
142
+ 00:03:43,870 --> 00:03:52,740
143
+ ุงู„ู…ุชุนู„ู‚ุฉ ุจุงู„ูˆุฒุฑุงุก ูˆุงู„ุญุฌุงุจ ูˆุบูŠุฑ ุฐู„ูƒุงู„ุซู‚ุงูุฉ ุงู„ูุงุฑุณูŠุฉ
144
+
145
+ 37
146
+ 00:03:52,740 --> 00:03:57,680
147
+ ู†ุธู‘ู…ุช ุงู„ุญูŠุงุฉ ุงู„ูŠูˆู…ูŠุฉ ููƒุงู†ุช ุชุฃุซูŠุฑู‡ุง ููŠ ู…ุฌุฑูŠุงุช
148
+
149
+ 38
150
+ 00:03:57,680 --> 00:04:05,760
151
+ ุงู„ุญูŠุงุฉ ุงู„ูŠูˆู…ูŠุฉ ูู‚ุท ุฃู…ุง ุงู„ุซู‚ุงูุฉ ุงู„ูŠูˆู†ุงู†ูŠุฉ ูู‚ุฏ ุฑุชุจุช
152
+
153
+ 39
154
+ 00:04:05,760 --> 00:04:11,470
155
+ ุงู„ุนู‚ู„ ุงู„ุนุฑุจูŠุฅุฐุง ูƒุงู†ุช ุงู„ุซู‚ุงูุฉ ุงู„ูุฑุณูŠุฉ ุฑุชุจุช ุงู„ุญูŠุงุฉ
156
+
157
+ 40
158
+ 00:04:11,470 --> 00:04:17,630
159
+ ุงู„ูŠูˆู…ูŠุฉ ูุฅู† ุงู„ุซู‚ุงูุฉ ุงู„ูŠูˆู†ุงู†ูŠุฉ ุฑุชุจุช ุงู„ุนู‚ู„ ุงู„ุนุฑุจูŠ ู…ู†
160
+
161
+ 41
162
+ 00:04:17,630 --> 00:04:25,610
163
+ ุญูŠุซ ุทุฑู‚ ุงู„ุชููƒูŠุฑ ูˆุงู„ุงุณุชุฏู„ุงู„ ูˆุงู„ู…ู†ุทู‚ ูˆู†ุญูˆ ุฐู„ูƒุฃู…ุง
164
+
165
+ 42
166
+ 00:04:25,610 --> 00:04:30,630
167
+ ุงู„ุฏูŠู†ุฉ ุงู„ุฃุฎุฑู‰ ูƒุงู„ูŠู‡ูˆุฏูŠุฉ ูˆุงู„ู†ุตุฑุงู†ูŠุฉ ูุฅู† ุงู„ู†ุตุงุฑู‰
168
+
169
+ 43
170
+ 00:04:30,630 --> 00:04:35,370
171
+ ูŠุนู†ูŠ ูƒุงู†ูˆุง ุฃู‚ุฑุจ ุฅู„ู‰ ุงู„ู…ุณู„ู…ูŠู† ู…ู† ุงู„ูŠู‡ูˆุฏ ุงู„ุฐูŠู† ุงู†ุทูˆุช
172
+
173
+ 44
174
+ 00:04:35,370 --> 00:04:40,590
175
+ ู†ูุณู‡ู… ุนู„ู‰ ุงู„ุนุฏุงูˆุฉ ูˆุงู„ุจุบุถุงุก ู„ู„ุฌู†ุณ ุงู„ุจุดุฑูŠ ูˆุงู„ุฅุณู„ุงู…
176
+
177
+ 45
178
+ 00:04:40,590 --> 00:04:46,870
179
+ ุจุตูุฉ ุฎุงุตุฉ ูู‚ุฏ ุฃุดุนูˆุง ุงู„ุฅุณุฑุงุฆูŠู„ูŠุงุช ูˆุฃุดุนูˆุง ู…ุจุฏุฃ
180
+
181
+ 46
182
+ 00:04:46,870 --> 00:04:53,630
183
+ ุงู„ุชุดูŠุน ุฃูˆ ู…ูˆุงุฏ ุงู„ุชุดูŠุน ุงู„ุจุงุทู†ุญูŠุซ ุฌุนู„ูˆุง ุนู„ูŠ ุจู† ุฃุจูŠ
184
+
185
+ 47
186
+ 00:04:53,630 --> 00:04:58,430
187
+ ุทุงู„ุจ ููˆู‚ ู…ุณุชูˆู‰ ุงู„ุจุดุฑ ูˆุฃู† ุฑูˆุญ ุงู„ุฑุณูˆู„ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡
188
+
189
+ 48
190
+ 00:04:58,430 --> 00:05:05,650
191
+ ูˆุณู„ู… ุญู„ุช ููŠู‡ ูƒุฐู„ูƒ ูƒุงู† ู„ู„ู†ุตุงุฑู‰ ุฃุซุฑ ููŠ ุฅูุณุงุฏ ุนู‚ุงุฆุฏ
192
+
193
+ 49
194
+ 00:05:05,650 --> 00:05:13,230
195
+ ุงู„ู…ุณู„ู…ูŠู† ุจู…ุง ุฃุดุงุนูˆู‡ ู…ู† ูƒุชุจ ุงู„ู…ู†ูˆูŠุฉ ูˆุงู„ุถูŠุตุงู†ูŠุฉ
196
+
197
+ 50
198
+ 00:05:13,230 --> 00:05:18,350
199
+ ูˆุงู„ู…ุฑู‚ูˆู†ูŠุฉ ูˆุบูŠุฑ ุฐู„ูƒุฃูŠุถู‹ุง ูƒุงู†ุช ู„ุฃู‚ูˆุงู„ ุงู„ู…ุณูŠุญ ุนู„ูŠู‡
200
+
201
+ 51
202
+ 00:05:18,350 --> 00:05:26,390
203
+ ุงู„ุณู„ุงู… ุฃุซุฑ ููŠ ุดุนู„ ุงู„ุฐู‡ุฏ ูˆู‚ุฏ ุฑุฃูŠู†ุง ุฃุจุง ุงู„ุนุชุงู‡ูŠุฉ
204
+
205
+ 52
206
+ 00:05:26,390 --> 00:05:32,050
207
+ ูŠุณุชู…ุฏ ูƒุซูŠุฑู‹ุง ู…ู† ู…ุนุงู†ูŠู‡ ู…ู† ุฃู‚ูˆุงู„ ุงู„ู…ุณูŠุญ ุนู„ูŠู‡ ุงู„ุณู„ุงู…
208
+
209
+ 53
210
+ 00:05:32,050 --> 00:05:39,310
211
+ ูˆู…ู† ุฃูŠุถู‹ุง ู„ูู„ุณูุฉ ุงู„ูŠูˆู†ุงู† ุทุจุนู‹ุง
212
+
213
+ 54
214
+ 00:05:39,310 --> 00:05:43,510
215
+ ู‡ุฐู‡ ุงู„ุซู‚ุงูุงุช ุฌุงุกุช ุฅู„ู‰ ุงู„ุซู‚ุงูุฉ ุงู„ุนุฑุจูŠุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู…ู†
216
+
217
+ 55
218
+ 00:05:43,510 --> 00:05:49,810
219
+ ุฎู„ุงู„ ุงู„ุชุฑุฌู…ุฉูˆู‚ุฏ ุฑุฃูŠู†ุง ุฃู† ุงู„ู…ุฃู…ูˆู† ูŠุญูˆู„ ุฏุงุฑ ุงู„ุญูƒู…ุฉ
220
+
221
+ 56
222
+ 00:05:49,810 --> 00:05:55,830
223
+ ุฅู„ู‰ ู…ุง ูŠุดุจู‡ ุงู„ู…ุนู‡ุฏ ุงู„ุนู„ู…ูŠ ุงู„ุณุจุจ
224
+
225
+ 57
226
+ 00:05:55,830 --> 00:06:01,290
227
+ ุงู„ุซุงู†ูŠ ุฃูˆ ุงู„ู…ุคุซุฑ ุงู„ุซุงู†ูŠ ููŠ ุงู„ุญูŠุงุฉ ุงู„ุซู‚ุงููŠุฉ ู‡ูˆ
228
+
229
+ 58
230
+ 00:06:01,290 --> 00:06:07,650
231
+ ุงู„ู…ุนุชุฒู„ุฉ ูู‚ุฏ ุจุฏุฃ ู‡ุฐุง ุงู„ุนุตุฑ ูƒู…ุง ู„ูˆ ูƒุงู† ุนุตุฑุง
232
+
233
+ 59
234
+ 00:06:07,650 --> 00:06:12,800
235
+ ุงุนุชุฒุงู„ูŠุงูŠุนู†ูŠ ู…ู† ู†ุงุญูŠุฉ ุงู„ููƒุฑ ูƒุงู† ู‡ุฐุง ุงู„ุนุตุฑ ุนุตุฑ
236
+
237
+ 60
238
+ 00:06:12,800 --> 00:06:18,800
239
+ ุงุนุชุฒุงู„ูŠ ู„ูƒู† ู…ู† ู†ุงุญูŠุฉ ุงู„ุญุถุงุฑูŠุฉ ุงู„ู…ุงุฏูŠุฉุจุฏุฃ ู‡ุฐุง ุงู„ุนุตุฑ
240
+
241
+ 61
242
+ 00:06:18,800 --> 00:06:23,160
243
+ ูƒู…ุง ู„ูˆ ูƒุงู† ุนุตุฑุงู‹ ุชุงุฑูŠุณูŠุงู‹ ุจู…ุนู†ู‰ ุฃุฎุฐ ู…ู† ุงู„ูุฑุต
244
+
245
+ 62
246
+ 00:06:23,160 --> 00:06:28,920
247
+ ุงู„ุฌูˆุงู†ุจ ุงู„ุญุถุงุฑูŠุฉ ุงู„ู…ุงุฏูŠุฉ ูˆุฃุฎุฐ ู…ู† ุงู„ูŠูˆู†ุงู† ูˆููƒุฑ
248
+
249
+ 63
250
+ 00:06:28,920 --> 00:06:36,940
251
+ ุงู„ู…ุนุชุฒู„ุฉ ุงู„ู‚ูˆุงุนุฏ ุงู„ุชููƒูŠุฑ ูˆุงู„ุณู…ุฉ ุงู„ููƒุฑูŠุฉ ุงู„ุบุงู„ุจุฉ ููŠ
252
+
253
+ 64
254
+ 00:06:36,940 --> 00:06:44,630
255
+ ู‡ุฐุง ุงู„ุนุตุฑ ุงู„ู…ู‚ุตูˆุฏ ุทุจุนุงู‹ ุจุงู„ู…ุนุชุฒู„ุฉุทุจุนุงู‹ ู†ุณุจุฉ ุฅู„ู‰
256
+
257
+ 65
258
+ 00:06:44,630 --> 00:06:50,090
259
+ ุงุนุชุฒุงู„ ูˆุงุตู„ ุงุจู† ุนุทุงุก ู„ู…ุฌุงู„ุณ ุงู„ุญุณู† ุงู„ุจุตุฑูŠ ุฅุฐ ุฅู†
260
+
261
+ 66
262
+ 00:06:50,090 --> 00:06:56,750
263
+ ุงู„ุญุณู† ุงู„ุจุตุฑูŠ ูƒุงู† ูŠุนุชู…ุฏ ููŠ ู†ุดุฑ ุงู„ุฏูŠู† ุงู„ุฅุณู„ุงู…ูŠ ุนู„ู‰
264
+
265
+ 67
266
+ 00:06:56,750 --> 00:07:04,850
267
+ ุงู„ู†ู‚ู„ ุฃู…ุง ูˆุงุตู„ ูู‚ุฏ ุฃุฑุงุฏ ุฃู† ูŠูƒูˆู† ุงู„ุนู‚ู„ ู‡ูˆ ุงู„ู…ุนุชู…ุฏ
268
+
269
+ 68
270
+ 00:07:04,850 --> 00:07:10,790
271
+ ููŠ ุดุฑุญ ุงู„ู…ุณุงุฆู„ ุงู„ุฏูŠู†ูŠุฉุทุจุนู‹ุง ู…ู† ุฃู‡ู… ู‡ุฐู‡ ุงู„ู…ุณุงุฆู„
272
+
273
+ 69
274
+ 00:07:10,790 --> 00:07:14,630
275
+ ุงู„ุฏูŠู†ูŠุฉ ุงู„ุชูŠ ุฏุงุฑุฉ ุญูˆู„ู‡ุง ุนู„ู… ุงู„ูƒู„ุงู… ูˆู†ุดุงุท ุงู„ู…ุนุชุฒู„ุฉ
276
+
277
+ 70
278
+ 00:07:14,630 --> 00:07:19,910
279
+ ู‡ูŠ ุฎู…ุณุฉ ู…ุณุงุฆู„ ุงู„ู…ุณุฃู„ุฉ ุงู„ุฃูˆู„ู‰ ุฃูˆ ุงู„ุฃุตู„ ุงู„ุฃูˆู„ ู‡ูˆ
280
+
281
+ 71
282
+ 00:07:19,910 --> 00:07:26,010
283
+ ุงู„ุชูˆุญูŠุฏ ูˆุงู„ุนุฏู„ ูˆุงู„ูˆุนุฏ ูˆุงู„ูˆุนูŠุฏ ูˆุงู„ู‚ูˆู„ ุจุฃู† ู…ู†ุฒู„ุฉ
284
+
285
+ 72
286
+ 00:07:26,010 --> 00:07:30,810
287
+ ู…ุฑุชูƒุจ ุงู„ูƒุจูŠุฑุฉ ุจูŠู† ู…ู†ุฒู„ุชูŠู† ูˆุฃุฎูŠุฑู‹ุง ุงู„ุฃู…ุฑ ุงู„ู…ุนุฑูˆู
288
+
289
+ 73
290
+ 00:07:30,810 --> 00:07:38,350
291
+ ูˆุงู†ู‡ูŠ ุนู†ู‡ ุงู„ู…ู†ูƒุฑู‡ุฐู‡ ู‡ูŠ ูŠุนู†ูŠ ุงู„ุฃุตูˆู„ ุงู„ุฎุงู…ุณุฉ ุงู„ุชูŠ
292
+
293
+ 74
294
+ 00:07:38,350 --> 00:07:43,130
295
+ ุฏุงุฑ ุญูˆู„ู‡ุง ุนู„ู… ุงู„ูƒู„ุงู… ูˆุทุจุนุง ุจุงู„ุตูุฉ ุงู„ุฃุณุงุณูŠุฉ ุงู„ู„ูŠ ู‡ู…
296
+
297
+ 75
298
+ 00:07:43,130 --> 00:07:50,350
299
+ ุฅูŠู‡ ุงู„ู…ุนุชุฒู„ุฉ ุจุนุฏ ูˆุงุตู„ ุจู† ุนุทุงุก ุฌุงุก ุนู…ุฑ ุนู…ุฑ ุจู† ุนุจูŠุฏ
300
+
301
+ 76
302
+ 00:07:51,170 --> 00:07:57,030
303
+ ูˆุจุนุฏ ุฐู„ูƒ ุงุชูุฑุนุช ุงู„ู…ุนุชุฒู„ุฉ ุฅู„ู‰ ูุฑู‚ ุนู„ู‰ ุญุณุจ ุฃุตุญุงุจู‡ุง
304
+
305
+ 77
306
+ 00:07:57,030 --> 00:08:02,790
307
+ ู…ุซู„ ุงู„ุซู…ุงู…ูŠุฉ ู†ุณุจุฉ ุฅู„ู‰ ุซู…ุงู…ุฉ ุงุจู† ุฃุดุฑู ูˆุงู„ุจุดุฑูŠุฉ ู†ุณุจุฉ
308
+
309
+ 78
310
+ 00:08:02,790 --> 00:08:06,650
311
+ ุฅู„ู‰ ุจุดุฑ ุงุจู† ู…ุนุชู…ุฑ ูˆุงู„ู†ุธุงู…ูŠุฉ ู†ุณุจุฉ ุฅู„ู‰ ุงู„ู†ุธุงู…
312
+
313
+ 79
314
+ 00:08:07,520 --> 00:08:13,520
315
+ ูˆุงู„ุฌุงุญุธูŠุฉ ู†ุณุจุฉ ุฅู„ู‰ ุงู„ุฌุงุญุธ ูˆุจุฐู„ูƒ ุงุฑุชู‚ุช ุงู„ุญูŠุงุฉ
316
+
317
+ 80
318
+ 00:08:13,520 --> 00:08:17,640
319
+ ุงู„ุนู‚ู„ูŠุฉ ูˆุงู„ุนู‚ู„ ุงู„ุนุฑุจูŠ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุงุฑุชู‚ุงุกู‹ ุญูŠุซ
320
+
321
+ 81
322
+ 00:08:17,640 --> 00:08:24,860
323
+ ุฃุตุจุญ ุงู„ุนู‚ู„ ุงู„ุนุฑุจูŠ ุนู‚ู„ุงู‹ ุฌุฏู„ุงู‹ ู…ุชูู„ุณูุงู‹ ูŠู†ุงู‚ุด
324
+
325
+ 82
326
+ 00:08:24,860 --> 00:08:33,560
327
+ ุงู„ุฃู…ูˆุฑ ูˆูู‚ู‹ุง ู„ู…ู‚ุชู„ูŠุงุช ุงู„ู…ู†ุทู‚ ูˆุนู„ู… ุงู„ูƒู„ุงู… ุงู„ู…ุคุซุฑ
328
+
329
+ 83
330
+ 00:08:33,560 --> 00:08:41,000
331
+ ุงู„ุซุงู„ุซู…ู† ู…ุคุซุฑุงุช ุงู„ุซู‚ุงูุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ู‡ูˆ ุฌู‡ูˆุฏ ุนู„ู…ุงุก
332
+
333
+ 84
334
+ 00:08:41,000 --> 00:08:48,120
335
+ ุงู„ู„ุบุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูู‚ุฏ ุงู†ุตุจ ุฌู‡ูˆุฏ ุนู„ู…ุงุก ุงู„ู„ุบุฉ ุนู„ู‰
336
+
337
+ 85
338
+ 00:08:48,120 --> 00:08:56,500
339
+ ุฃู…ุฑูŠู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„ ู‡ูˆ ุฌู…ุน ุงู„ู„ุบุฉ ูˆุฑูˆุงูŠุฉ ุงู„ุดุนุฑ ูˆู†ุฑุงุญุธ
340
+
341
+ 86
342
+ 00:08:56,500 --> 00:09:01,100
343
+ ุฃู† ุนู„ู…ุงุก ุงู„ู„ุบุฉ ู„ู… ูŠูƒูˆู†ูˆุง ู…ูˆุถูˆุนูŠูŠู† ููŠ ุฌู…ุน ุงู„ู„ุบุฉ
344
+
345
+ 87
346
+ 00:09:01,100 --> 00:09:07,300
347
+ ูˆุฐู„ูƒ ู„ุฃู† ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉู…ุฑุชุจุทุฉ ุจุงุนุชุจุงุฑ ุฏูŠู†ูŠ ูˆุงุนุชุจุงุฑ
348
+
349
+ 88
350
+ 00:09:07,300 --> 00:09:16,060
351
+ ู‚ูˆู…ูŠ ูˆู„ุฐู„ูƒ ุงูƒุชุณุจุช ุฌู‡ูˆุฏู‡ู… ุจุงู„ุฐุงุชูŠุฉ ู„ุฃู† ู†ุธุฑู‡ ุฅู„ู‰
352
+
353
+ 89
354
+ 00:09:16,060 --> 00:09:20,820
355
+ ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉ ุนู„ู‰ ุฃู†ู‡ุง ู…ุจุฏุฃ ูˆู‚ูŠู…ุฉ ูƒู…ุง ุงู„ุฏูŠู†
356
+
357
+ 90
358
+ 00:09:20,820 --> 00:09:25,700
359
+ ูˆุงู„ู‚ูˆู…ูŠุฉ ูˆุฃูŠุถุง
360
+
361
+ 91
362
+ 00:09:26,660 --> 00:09:31,200
363
+ ุฃู†ู‡ู… ู†ุธุฑูˆุง ุฅู„ู‰ ุฃุนู„ู‰ ู…ุณุชูˆู‰ ููŠ ุงู„ู„ุบุฉ ูˆู‡ูˆ ุงู„ุดุนุฑ
364
+
365
+ 92
366
+ 00:09:31,200 --> 00:09:39,640
367
+ ูุงู„ุดุนุฑ ูŠุญุชุถู† ุงู„ู†ู…ูˆุฐุฌ ุงู„ู„ุบูˆูŠ ุงู„ุดุนุฑ ูŠู…ุซู„ ุฃุนู„ู‰ ู…ุณุชูˆู‰
368
+
369
+ 93
370
+ 00:09:39,640 --> 00:09:46,040
371
+ ู„ู„ุบุฉ ูู„ู… ูŠู‚ูˆู…ูˆุง ุจุฌู…ุน ุงู„ู…ุณุชูˆู‰ ุงู„ุนุงู… ู…ุซู„ุง ุฃูˆ
372
+
373
+ 94
374
+ 00:09:46,040 --> 00:09:53,340
375
+ ุงู„ู…ุณุชุนู…ู„ ุจูŠู† ุนุงู…ุฉ ุงู„ู†ุงุณ ูˆุงู†ู…ุง ุฌู…ุนูˆุง ุงู„ู…ุณุชูˆู‰ ุงู„ูุตูŠุญ
376
+
377
+ 95
378
+ 00:09:54,440 --> 00:09:58,820
379
+ ุจุงู„ุฅูŠู‡ุŸ ุงู„ุบุฑูŠุจ ุฃูŠุถู‹ุง ูŠุนู†ูŠ ุฑูƒู‘ุฒูˆุง ุนู„ู‰ ุงู„ุบุฑูŠุจ
380
+
381
+ 96
382
+ 00:09:58,820 --> 00:10:08,620
383
+ ูˆุงู„ู†ุงุฏุฑูˆุทุจุนู‹ุง ุงู„ุฌุงุญุธ ูŠุนู†ูŠ ูŠู‚ูˆู„ ููŠ ุจูŠุงู† ู…ู†ู‡ุฌ ุนู„ู…ุงุก
384
+
385
+ 97
386
+ 00:10:08,620 --> 00:10:14,680
387
+ ุงู„ู„ุบุฉ ยซู„ู… ุฃุฑู‰ ุบุงูŠุฉ ุงู„ู†ุญูˆูŠูŠู† ุฅู„ุง ูƒู„ ุดุนุฑ ููŠู‡ ุฅุบุฑุงุจุŒ
388
+
389
+ 98
390
+ 00:10:14,680 --> 00:10:21,560
391
+ ูˆู„ู… ุฃุฑู‰ ุบุงูŠุฉ ุฑูˆุงุช ุงู„ุดุนุฑูŠ ุฅู„ุง ูƒู„ ุดุนุฑ ููŠู‡ ุบุฑูŠุจุŒ ุฃูˆ
392
+
393
+ 99
394
+ 00:10:21,560 --> 00:10:27,770
395
+ ู…ุนู†ู‰ ุตุนุจ ูŠุญุชุงุฌ ุฅู„ู‰ ุงุณุชุฎุฑุงุฌยปู‡ุฐุง ู‡ูˆ ู…ู†ู‡ุฌ ุนู„ู…ุงุก ุงู„ู„ุบุฉ
396
+
397
+ 100
398
+ 00:10:27,770 --> 00:10:33,410
399
+ ููŠ ุฌู…ุน ุงู„ู„ุบุฉ ูˆุฑูˆุงุช ุงู„ุดุนุฑ ูƒุงู†ูˆุง ูŠู‡ุชู…ูˆู† ุจุงู„ุดุนุฑ
400
+
401
+ 101
402
+ 00:10:33,410 --> 00:10:41,090
403
+ ุงู„ู†ุงุฏุฑ ูˆุจูŠุฆุฉ ุงู„ุบุฑูŠุจ ูˆุงู„ู†ุงุฏุฑ ู…ู† ุงู„ู„ุบุฉ ูˆุฃูŠุถู‹ุง ุฃู†ู‡ู…
404
+
405
+ 102
406
+ 00:10:41,090 --> 00:10:45,470
407
+ ุนู†ุฏู…ุง ุฌู…ุนูˆุง ุงู„ู„ุบุฉ ู„ู… ูŠุฌู…ุนูˆู‡ุง ู…ู† ูƒู„ ุงู„ุฃู…ุงูƒู† ุจู„
408
+
409
+ 103
410
+ 00:10:45,470 --> 00:10:50,870
411
+ ุงุฎุชุงุฑูˆุง ุฃู…ุงูƒู† ู…ุญุฏุฏุฉ ูˆุดุนุฑุงุก ู…ุญุฏุฏูŠู† ูู…ุซู„ู‹ุง ุฌู…ุนูˆุง
412
+
413
+ 104
414
+ 00:10:50,870 --> 00:10:56,950
415
+ ุงู„ู„ุบุฉ ู…ู† ุงู„ุจุงุฏูŠุฉูˆู„ุฐู„ูƒ ู…ู† ุฃูƒุซุฑ ุดุนุฑุงุฆู‡ู… ู‡ู… ุดุนุฑุงุก
416
+
417
+ 105
418
+ 00:10:56,950 --> 00:11:03,610
419
+ ุงู„ุจุงุฐูŠุฉ ู…ุซู„ ุฃุจูˆ ุงู„ุจูŠุฏุงุก ุงู„ุฑูŠุงุญูŠ ูˆุงุจู† ุงู„ุฏู…ูŠู†ุฉ ูˆุงุจู†
420
+
421
+ 106
422
+ 00:11:03,610 --> 00:11:10,050
423
+ ู…ูŠุงุฏุฉ ูˆุฃุจูŠ ุญูŠู‡ ู†ู…ูŠุฑูŠ ูˆุฃุจูŠ ุถู…ุถู… ุงู„ูƒู„ุงุจูŠ ูˆุฃุจูŠ
424
+
425
+ 107
426
+ 00:11:10,050 --> 00:11:18,550
427
+ ุงู„ุนู…ูŠุซู„ ูˆุนู…ุงุฑุฉ ุงุจู† ุนู‚ูŠู„ ูˆุงุฎุฑูˆู† ูˆุงุฎุฑูŠู† ุฅุฐุง ู†ู„ุงุญุธ ุฃู†
428
+
429
+ 108
430
+ 00:11:18,550 --> 00:11:23,200
431
+ ุนู„ู…ุงุก ุงู„ู„ุบุฉ ู„ู… ูŠูƒูˆู†ูˆุง ู…ูˆุถูˆุนูŠู†ู…ู† ู†ุงุญูŠุฉ ุงู„ุฃุฎุชูŠุงุฑ ูู‚ุฏ
432
+
433
+ 109
434
+ 00:11:23,200 --> 00:11:28,520
435
+ ุงุฎุชุงุฑูˆุง ุฃุนู„ู‰ ู…ุณุชูˆู‰ ููŠ ุงู„ู„ุบุฉ ูˆู‡ูŠ ู„ุบุฉ ุงู„ุดุนุฑูˆุงู„ุฃู…ุฑ
436
+
437
+ 110
438
+ 00:11:28,520 --> 00:11:33,280
439
+ ุงู„ุชุงู†ูŠ ุฃุฎุชุงุฑูˆุง ุฃู…ุงูƒู† ู…ุญุฏุฏุฉ ุจู„ ุฃูŠุถู‹ุง ู…ู† ุงู„ู†ุงุญูŠุฉ
440
+
441
+ 111
442
+ 00:11:33,280 --> 00:11:38,720
443
+ ุงู„ุฒู…ู†ูŠุฉ ูˆุถุนูˆุง ุฒู…ู†ุง ู…ุญุฏุฏู‹ุง ูˆู‡ูˆ ู…ู†ุชุตู ุงู„ู‚ุฑู† ุงู„ุซุงู†ูŠ
444
+
445
+ 112
446
+ 00:11:38,720 --> 00:11:44,740
447
+ ุงู„ู‡ุฌุฑูŠ ููŠู…ุง ูŠุชุนู„ู‚ ุจุงู„ุญูˆุงุถุฑ ูˆู…ู†ุชุตู ุงู„ู‚ุฑู† ุงู„ุฑุงุจุน
448
+
449
+ 113
450
+ 00:11:44,740 --> 00:11:54,260
451
+ ุงู„ู‡ุฌุฑูŠ ููŠู…ุง ูŠุชุนู„ู‚ ุจุงู„ุจูˆุงุฏูŠ ูˆุจู‡ุฐุง ู†ุฌุฏ ุฃู†ู‡ู†ุงูƒ ุฃูŠุถู‹ุง
452
+
453
+ 114
454
+ 00:11:54,260 --> 00:11:59,540
455
+ ู…ู†ู‡ุฌูŠุฉ ุนู†ุฏู‡ู… ุตุญูŠุญ ุฃู†ู‡ู… ู„ู… ูŠูƒูˆู†ูˆุง ู…ูˆุถูˆุนูŠูŠู† ู„ูƒู† ูƒุงู†ุช
456
+
457
+ 115
458
+ 00:11:59,540 --> 00:12:07,740
459
+ ู„ุฏูŠู‡ุง ู…ู†ู‡ุฌูŠุฉ ุชุนุฒุฒ ู†ู‡ุฌู‡ู… ุงู„ุญุฑูŠุต ุนู„ู‰ ุญู…ุงูŠุฉ ุงู„ู„ุบุฉ
460
+
461
+ 116
462
+ 00:12:07,740 --> 00:12:15,600
463
+ ุงู„ุนุฑุจูŠุฉ ู…ู† ุงู„ู„ุญู† ูˆุงู„ุฎุทุฃ ูˆุงู„ู‡ุฏู
464
+
465
+ 117
466
+ 00:12:15,600 --> 00:12:20,460
467
+ ู…ู† ู‡ุฐุง ุฃู† ูŠู‚ุฏู‘ู…ูˆุง ู„ู„ุฌูŠู„ ุงู„ุฌุฏูŠุฏ ุงู„ู†ู…ูˆุฐุฌ ุงู„ุฐูŠ ูŠุญุชูƒู…
468
+
469
+ 118
470
+ 00:12:20,460 --> 00:12:31,740
471
+ ุฅู„ูŠู‡ูˆุงู„ุฐูŠ ูŠู†ุจุบูŠ ุฃู† ูŠุณูŠุฑ ุนู„ูŠู‡ ุงู„ู†ุงุณ ูˆุชุญุชูƒู…
472
+
473
+ 119
474
+ 00:12:31,740 --> 00:12:38,380
475
+ ุฅู„ูŠู‡ ุงู„ู‚ุงุนุฏุฉ ุงู„ู†ุญูˆูŠุฉ ูˆุงู„ู„ุบูˆูŠุฉ ูุญู„ ุงู„ุฅุดูƒุงู„ ุงู„ู„ุบูˆูŠ
476
+
477
+ 120
478
+ 00:12:38,380 --> 00:12:43,100
479
+ ุฅู†ู…ุง ูŠูƒูˆู† ุจุงู„ุฑุฌูˆุน ุฅู„ู‰ ุงู„ุฃุตู„ ูˆู„ุฐู„ูƒ ุงู‡ุชู…ูˆุง ุจุงู„ุบู†ูŠุจ
480
+
481
+ 121
482
+ 00:12:43,100 --> 00:12:50,110
483
+ ูˆุจุงู„ู†ุงุฏุฑูƒุฐู„ูƒ ูƒุงู† ู‡ู…ู‡ู… ู…ู† ุฐู„ูƒ ุฃู† ูŠุญุงูุธูˆุง ุนู„ู‰
484
+
485
+ 122
486
+ 00:12:50,110 --> 00:12:54,690
487
+ ุงู„ุตู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ ู…ู† ุฃู† ุชู†ุชู‚ุต ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุจูุนู„
488
+
489
+ 123
490
+ 00:12:54,690 --> 00:13:05,270
491
+ ุงู„ู‡ุฌู…ุฉ ุงู„ูู„ุณููŠุฉ ูˆุงู„ุญุถุงุฑุงุช ุงู„ุฃุฎุฑู‰ ุฃูŠุถู‹ุง ูˆุฌุฏู†ุง ุฃู†ู‡ู…
492
+
493
+ 124
494
+ 00:13:05,270 --> 00:13:12,070
495
+ ูŠุฑูŠุฏูˆู† ุฃู† ูŠุคุณุณูˆุง ู„ู„ู‚ุงุนุฏุฉ ุงู„ู†ุญูˆูŠุฉ ูู‡ุฐุง ู‡ูˆ ุงู„ุฐูŠ
496
+
497
+ 125
498
+ 00:13:12,070 --> 00:13:17,260
499
+ ุฏูุนู‡ู… ุฅู„ู‰ ุฃู† ูŠู†ุชู‚ูˆุงุงู„ู…ุณุชูˆู‰ ุงู„ุนุงู„ูŠ ู…ู† ุงู„ู„ุบุฉ
500
+
501
+ 126
502
+ 00:13:17,260 --> 00:13:24,680
503
+ ู„ูŠุญุงูุธูˆุง ุนู„ู‰ ู„ุบุฉ ุงู„ู‚ุฑุขู† ุงู„ูƒุฑูŠู… ูˆู…ุง ูŠุฏู„ ุนู„ู‰ ุฃู†
504
+
505
+ 127
506
+ 00:13:24,680 --> 00:13:34,200
507
+ ุงู„ุตู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉู„ู… ุชู†ุชู‚ุต ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูˆุฌุฏู†ุง ุงุจุง
508
+
509
+ 128
510
+ 00:13:34,200 --> 00:13:40,420
511
+ ู†ูˆุงุณ ูŠุญูุธ ุณุชูŠู† ุฏูŠูˆุงู†ุง ู…ู† ุฏูˆุงูˆูŠู† ุงู„ู†ุณุงุก ุบูŠุฑ ู…ุง ูƒุงู†
512
+
513
+ 129
514
+ 00:13:40,420 --> 00:13:45,140
515
+ ูŠุญูุธู‡ ู…ู† ุฏูˆุงูˆูŠู† ุงู„ุฑุฌุงู„ ูˆูƒุฐู„ูƒ ูƒุงู† ูŠุญูุธ ุณุจุนู…ุงุฆุฉ
516
+
517
+ 130
518
+ 00:13:45,140 --> 00:13:52,160
519
+ ุฃุฑุฌูˆุฒุฉ ุบูŠุฑ ู…ุง ูƒุงู† ูŠุญูุธู‡ ู…ู† ุงู„ู‚ุตูŠุฏูˆูŠู‚ูˆู„ ููŠู‡ ุงู„ุฌุงุญุธ
520
+
521
+ 131
522
+ 00:13:52,160 --> 00:13:58,760
523
+ ู…ุง ุฑุฃูŠุช ุฃุญุฏุง ุฃุนู„ู… ุจุงู„ู„ุบุฉ ู…ู† ุฃุจูŠ ู†ูˆุงุณ ูˆู„ุง ุฃูุตุญ ู„ู‡ุฌุฉ
524
+
525
+ 132
526
+ 00:13:58,760 --> 00:14:04,500
527
+ ู…ุญู„ุงูˆุฉ ูˆู…ุฌุงู†ุจุฉ ู„ุงุณุชู‚ุฑุงุฑ ู‡ุฐุง ุฏู„ูŠู„ ุนู„ู‰ ุฃู† ุงู„ุตู„ูŠู‚ุฉ
528
+
529
+ 133
530
+ 00:14:04,500 --> 00:14:08,920
531
+ ุงู„ุนุฑุจูŠุฉ ู„ู… ุชู†ุชู‚ุต ูู‚ุฏ ู‚ุฏู… ุนู„ู…ุงุก ุงู„ู„ุบุฉ ู…ุงุฏุฉ ู„ุบูˆูŠุฉ
532
+
533
+ 134
534
+ 00:14:08,920 --> 00:14:15,840
535
+ ุฏุณู…ุฉ ู„ู„ุดุนุฑุงุกูŠุณุชุทูŠุนูˆุง ู…ู† ุฎู„ุงู„ู‡ุง ุฃู† ูŠุณุชุนูŠุฏูˆุง ุงู„ุตู„ูŠู‚ุฉ
536
+
537
+ 135
538
+ 00:14:15,840 --> 00:14:23,860
539
+ ุงู„ุนุฑุจูŠุฉ ุงู„ุชูŠ ูƒุงู†ุช ุนุฏุฉ ุงู„ุดุงุนุฑ ููŠ ุงู„ุนุตุฑ ุงู„ุฌุงู‡ู„ ูˆูƒุฐู„ูƒ
540
+
541
+ 136
542
+ 00:14:23,860 --> 00:14:30,960
543
+ ูˆุฌุฏู†ุง ุจุดุงุฑ ุจูŠูˆ ุจูˆุฑุฏ ูŠุชู…ุซู„ ุงู„ุตู„ูŠู‚ุฉ ุฎูŠุฑ ุชู…ุซู„ ูู‚ุฏ ูƒุงู†
544
+
545
+ 137
546
+ 00:14:30,960 --> 00:14:38,020
547
+ ููŠ ู…ุฌู„ุณ ุนู‚ุจ ุงุจู† ุณู„ู… ูˆููŠ ุงู„ู…ุฌู„ุณ ูƒุงู† ุงู„ุฑุงุฌุฏ ุนู‚ุจ ุงุจู†
548
+
549
+ 138
550
+ 00:14:38,020 --> 00:14:45,740
551
+ ุฑุคุจุฉ ุงุจู† ุงู„ุนุฌุงุฌุงู„ุฐูŠ ู…ุฏุญ ุนู‚ุจู‰ ุงุจู† ุณู„ุจ ุฃุฑุฌูˆุฒุฉ ุซู… ู‚ุงู„
552
+
553
+ 139
554
+ 00:14:45,740 --> 00:14:52,260
555
+ ู„ุจุดุงุฑ ุจุนุฏ ุฅู†ุดุงุฏู‡ ู„ู‡ุฐู‡ ุงู„ุฃุฑุฌูˆุฒุฉ ู‡ุฐุง ุทุฑุงุฒ ู„ุง ุชุญุณู†ู‡
556
+
557
+ 140
558
+ 00:14:52,260 --> 00:14:59,020
559
+ ูŠุง ุฃุจุง ู…ุนุงุฐ ูุบุถุจ ุจุดุงุฑ ูˆู‚ุงู„ ุฃู†ุง ุฃุฑุฌุฒ ู…ู†ูƒ ูˆู…ู† ุฃุจูŠูƒ
560
+
561
+ 141
562
+ 00:14:59,020 --> 00:15:07,360
563
+ ูˆู…ู† ุฌุฏูƒ ูˆูŠู‚ุตุฏ ุจุฐู„ูƒ ุฃูŠู‡ ุงู„ุนุฌุงุฌ ูˆุนุฌุงุจ ุงุจู† ุนู‚ุจู‰ ูˆุฃู†ุดุฏ
564
+
565
+ 142
566
+ 00:15:07,360 --> 00:15:16,640
567
+ ุจุดุงุฑุนู‚ุจุฉ ุฃุฑุฌูˆุฒุฉ ูู‚ุงู„ ููŠ ู…ุณุชู‡ู„ู‡ุง ูŠุง ุทู„ู„ ุงู„ุญูŠ ุจุฐุงุช
568
+
569
+ 143
570
+ 00:15:16,640 --> 00:15:22,500
571
+ ุงู„ุตู…ุฏ ุจุงู„ู„ู‡ ุฎุจุฑ ูƒูŠู ูƒู†ุช ุจุนุฏู‡ ูุทู„ุจู‡ ุนู‚ุจุฉ ุงุจู† ุณู„ู…
572
+
573
+ 144
574
+ 00:15:22,500 --> 00:15:28,080
575
+ ูˆูƒูุงุกู‡ ู…ูƒุงูุฆุฉ ูƒุจูŠุฑุฉ ู‡ุฐุง ูŠุฏู„ ุนู„ู‰ ุฃู† ุงู„ุตุฑูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ
576
+
577
+ 145
578
+ 00:15:28,080 --> 00:15:35,650
579
+ ู„ู… ุชู†ุชู‚ุต ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุจูุถู„ ุฌู‡ูˆุฏ ุนู„ู…ุงุก ุงู„ู„ุบุฉุฃูŠุถู‹ุง
580
+
581
+ 146
582
+ 00:15:35,650 --> 00:15:43,270
583
+ ู…ุง ูŠุฏู„ ุนู„ู‰ ุชู…ุซู„ ุงู„ุดุนุฑุงุก ุงู„ู…ุญุฏุซูŠู† ู„ู„ุดุนุฑ ุงู„ู‚ุฏูŠู… ูˆุฃู†
584
+
585
+ 147
586
+ 00:15:43,270 --> 00:15:51,690
587
+ ุงู„ุณู„ูŠู‚ุฉ ู„ู… ุชู†ุชู‚ุต ุฃู† ุจุดุงุฑู‹ุง ุฃู†ุดุฏ
588
+
589
+ 148
590
+ 00:15:51,690 --> 00:15:58,500
591
+ ุฎู„ู ุงู„ุฃุญู…ุฑ ู‚ุตูŠุฏุชู‡ ููŠ ุณู„ู… ุงุจู† ู‚ุชูŠุจุฉูู‚ุงู„ ู‚ุงู„ ููŠู‡ุง
592
+
593
+ 149
594
+ 00:15:58,500 --> 00:16:04,340
595
+ ุจูƒุฑุง ุตุงุญุจูŠุง ู‚ุจู„ ุงู„ู‡ุฌูŠุฑู‰ ุฅู† ุฐุงูƒ ุงู„ู†ุฌุงุญ ููŠ ุงู„ุชุจูƒูŠุฑ
596
+
597
+ 150
598
+ 00:16:05,520 --> 00:16:12,340
599
+ ูุณุฃู„ู‡ ุฎู„ู ุนู† ุงูƒุซุงุฑู‡ ู„ู„ุบุฑูŠุจ ูู‚ุงู„ ุจู„ุบู†ูŠ ุฃู† ุณู„ู…ุงู† ูƒุงู†
600
+
601
+ 151
602
+ 00:16:12,340 --> 00:16:19,680
603
+ ูŠุชุจุงุตุฑ ุจุงู„ุบุฑูŠุจ ูŠุนู†ูŠ ูŠุทู„ุจ ุงู„ุบุฑูŠุจ ู„ุฃู† ุงู„ุบุฑูŠุจ ูŠุนุทูŠ
604
+
605
+ 152
606
+ 00:16:19,680 --> 00:16:26,100
607
+ ุตูุฉ ุงู„ุฃุตุงู„ุฉ ููŠ ุงู„ู†ุต ูˆุทุจุนุง ุงู„ุฃู…ุฑุงุก ูˆุงู„ูˆู„ุงู‡ ูŠุจุญุซูˆู†
608
+
609
+ 153
610
+ 00:16:26,100 --> 00:16:31,340
611
+ ุนู† ู‡ุฐุง ุงู„ุนู†ุตุฑ ุงู„ุฃุตุงู„ุฉ ุญุชู‰ ูŠุนุฒุฒ ู…ูƒุงู†ุชู‡ู… ุงู„ุณูŠุงุณูŠุฉ
612
+
613
+ 154
614
+ 00:16:31,340 --> 00:16:38,760
615
+ ูˆู‚ุงู„ ู„ู‡ู„ูˆ ู‚ู„ุช ู…ูƒุงู† ุฅู† ุฐุง ูƒุงู† ู†ุฌุงุญ ููŠ ุงู„ุชุจูƒูŠุฑ ู„ูˆ
616
+
617
+ 155
618
+ 00:16:38,760 --> 00:16:45,080
619
+ ู‚ู„ุช ุจูƒุฑุง ูุงู„ู†ุฌุงุญ ููŠ ุงู„ุชุจูƒูŠุฑ ูุฃุฌุงุจู‡ ุจุดุนู„ ููˆุฑ ุฅู†ูŠ
620
+
621
+ 156
622
+ 00:16:45,080 --> 00:16:51,540
623
+ ุจู†ูŠุชู‡ุง ุนุฑุจูŠุฉ ูˆุญุดูŠุฉ ูˆู‡ูƒุฐุง ู†ุฌุฏ ุฃู† ุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ู‚ุฏ
624
+
625
+ 157
626
+ 00:16:51,540 --> 00:16:59,330
627
+ ู†ูุฐ ุฅู„ู‰ ุฏู‚ุงุฆู‚ ู„ุบูˆูŠุฉ ูˆุฃุณู„ูˆุจูŠุฉุชุฏู„ ุนู„ู‰ ุฃู†ู‡ ุชู…ุซู„
628
+
629
+ 158
630
+ 00:16:59,330 --> 00:17:04,470
631
+ ุงู„ุตู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ ุฎูŠุฑ ุชู…ุซู„ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุจูุถู„ ู‡ุฐู‡
632
+
633
+ 159
634
+ 00:17:04,470 --> 00:17:11,170
635
+ ุงู„ุฌู‡ูˆุฏ ุงู„ุนุธูŠู…ุฉ ุงู„ุชูŠ ู‚ุงู… ุจู‡ุง ุนู„ู…ุงุก ุงู„ู„ุบุฉ ูˆู‚ู„ู†ุง ุฅู†
636
+
637
+ 160
638
+ 00:17:11,170 --> 00:17:17,790
639
+ ุนู„ู…ุงุก ุงู„ู„ุบุฉ ู‚ุฏ ุญุฏุฏูˆุง ู…ูƒุงู† ู„ู„ุฃุฎุฑ ุงู„ู„ุบูˆูŠ ูุฃุจูˆ ุนู…ุฑูˆ
640
+
641
+ 161
642
+ 00:17:17,790 --> 00:17:24,180
643
+ ุจู† ุงู„ุนู„ุงู‚ ุดูŠุฎ ุนู„ู…ุงุก ุงู„ุจุตุฑุฉ ูŠู‚ูˆู„ู„ุง ุฃู‚ูˆู„ ู‚ุงู„ุฉ ุงู„ุนุฑุจ
644
+
645
+ 162
646
+ 00:17:24,180 --> 00:17:30,740
647
+ ุฅู„ุง ู…ุง ุณู…ุนุชู… ู…ู† ุนุงู„ูŠุฉ ุงู„ุณุงูู„ุฉ ูˆุณุงูู„ุฉ ุงู„ุนุงู„ูŠุฉ ูˆูŠู‚ุต
648
+
649
+ 163
650
+ 00:17:30,740 --> 00:17:36,240
651
+ ุจุฐู„ูƒ ุงู„ุฌุฒุก ุงู„ุบุฑุจูŠ ู…ู† ู†ุฌุฏ ูˆุงู„ุณููˆุญ ุงู„ุดุฑู‚ูŠุฉ ู„ุฌุจุงู„
652
+
653
+ 164
654
+ 00:17:36,240 --> 00:17:43,130
655
+ ุงู„ุญุฌุงุฒู‡ุฐุง ู‡ูˆ ู…ูƒุงู† ุงู„ุฃุฎุฐ ุงู„ู„ุบูˆูŠ ูู„ู… ๏ฟฝ๏ฟฝุฃุฎุฐูˆุง ู…ุซู„ุง ู…ู†
656
+
657
+ 165
658
+ 00:17:43,130 --> 00:17:50,850
659
+ ุงู„ู…ู†ุงุทู‚ ุงู„ุชูŠ ุชุชุงุฎู… ุงู„ู€Rome ุฃูˆ ุงู„ู€France ุฃูˆ ุงู„ุญุจุดุฉ
660
+
661
+ 166
662
+ 00:17:50,850 --> 00:17:58,330
663
+ ุฃูˆ ุงู„ู‡ู†ูˆุฏ ูู‚ุงู„ ุฃุจูˆ ู†ุตุฑ ุงู„ูุฑุงุจูŠ ูˆู„ู… ูŠูุฃุฎุฐ ุนู† ุบูŠุฑู‡ู…
664
+
665
+ 167
666
+ 00:17:58,330 --> 00:18:02,450
667
+ ูŠุนู†ูŠ ุนู† ู‡ุฐู‡ ุงู„ู‚ุจุงุฆู„ ุงู„ู‚ุจุงุฆู„ ุงู„ู†ุฌุฏุฉ ุงู„ู„ูŠ ู‡ูŠ ู‚ูŠุณ
668
+
669
+ 168
670
+ 00:18:02,450 --> 00:18:07,110
671
+ ูˆุชู…ูŠู… ูˆุฃุณุฏูˆู„ู… ูŠูุฃุฎุฐ ุนู† ุบูŠุฑู‡ู… ู…ู† ุณุงุฆุฑ ู‚ุจุงุฆู„ู‡ู…
672
+
673
+ 169
674
+ 00:18:07,110 --> 00:18:12,730
675
+ ูˆุจุงู„ุฌู…ู„ุฉ ูุฅู†ู‡ ู„ู… ูŠูุฃุฎุฐ ุนู† ุญุถุฑูŠ ู‚ุท ูˆู„ุง ุนู† ุซูƒุงู†
676
+
677
+ 170
678
+ 00:18:12,730 --> 00:18:18,310
679
+ ุงู„ุจุฑุงุฑูŠ ูู…ู† ูƒุงู† ูŠุณูƒู† ุฃุทุฑุงู ุจู„ุงุฏู‡ู… ุงู„ู…ุฌุงูˆุฑุฉ ูƒุณุงุฆุฑ
680
+
681
+ 171
682
+ 00:18:18,310 --> 00:18:25,830
683
+ ุงู„ุฃู…ู… ุงู„ุฐูŠู† ุญูˆู„ู‡ู… ูุฅู†ู‡ ู„ู… ูŠูุฃุฎุฐ ู„ุง ู…ู† ู„ุฎู… ูˆู„ุง ู…ู†
684
+
685
+ 172
686
+ 00:18:25,830 --> 00:18:32,070
687
+ ุฌุฐุงู… ู…ุน ุฃู† ู‡ุฐู‡ ู‚ุจุงุฆู„ ุนุฑุจูŠุฉ ู„ูƒู† ู„ุฃู†ู‡ุง ุชุฌุงูˆุฑ ุฃู‡ู„ ู…ุตุฑ
688
+
689
+ 173
690
+ 00:18:32,070 --> 00:18:38,300
691
+ ูˆุงู„ู‚ุจุทูู„ู… ูŠูุฃุฎุฐ ู…ู†ู‡ุง ูˆูƒุฐู„ูƒ ู„ู… ูŠูุฃุฎุฐ ู…ู† ู‚ุถุงุนุฉ
692
+
693
+ 174
694
+ 00:18:38,300 --> 00:18:44,860
695
+ ูˆุบูุณุงู† ูˆุฅูŠุงุฏ ู„ุฃู†ู‡ู… ูŠุฌุงูˆุฒูˆู† ุฃู‡ู„ ุงู„ุดุงู… ูˆุฃูƒุซุฑ ุฃู‡ู„
696
+
697
+ 175
698
+ 00:18:44,860 --> 00:18:50,740
699
+ ุงู„ุดุงู… ู†ุตุงุฑู‰ ูŠู‚ุฑุคูˆู† ุจุงู„ุนุจุฑุงู†ูŠุฉ ูู„ู… ูŠูุฃุฎุฐ ู…ู†ู‡ู… ู…ุน
700
+
701
+ 176
702
+ 00:18:50,740 --> 00:18:56,420
703
+ ุฃู†ู‡ู… ู‚ุจุงุฆู„ ุนุฑุจูŠุฉ ุฃูŠุถู‹ุง ูˆู„ุง ู…ู† ุชุบู„ุจ ูˆ ุงู„ู†ู…ุฑ ูุฅู†ู‡ู…
704
+
705
+ 177
706
+ 00:18:56,420 --> 00:19:01,750
707
+ ูƒุงู†ูˆุง ุจุงู„ุฌุฒูŠุฑุฉ ู…ุฌุงูˆุฑูŠู† ู„ู„ูŠูˆู†ุงู†ูˆู„ุง ู…ู† ุจูƒุฑ ู„ู…ุฌุงูˆุฑุฉ
708
+
709
+ 178
710
+ 00:19:01,750 --> 00:19:06,510
711
+ ู…ู† ุงู„ู†ุจุท ูˆุงู„ูุฑุณ ูˆู„ุง ู…ู† ุนุจุฏู‚ูŠุณ ูˆุฃุฒุฏ ุนู…ุงู† ู„ุฃู†ู‡ู…
712
+
713
+ 179
714
+ 00:19:06,510 --> 00:19:12,970
715
+ ูƒุงู†ูˆุง ุจุงู„ุจุญุฑูŠู† ู…ุฎุงู„ู‚ูŠู† ู„ู„ู‡ู†ุฏ ูˆุงู„ูุฑุณ ูˆู„ุง ู…ู† ุฃู‡ู„
716
+
717
+ 180
718
+ 00:19:12,970 --> 00:19:17,130
719
+ ุงู„ูŠู…ู† ู„ุฃู†ู‡ู… ูŠุฎุงู„ู‚ูˆู† ุงู„ู‡ู†ุฏ ูˆุงู„ุญุจุดุฉ ูˆู„ุง ู…ู† ุจู†ูŠ ุญู†ูŠูุฉ
720
+
721
+ 181
722
+ 00:19:17,130 --> 00:19:24,370
723
+ ูˆุณูƒุงู† ุงู„ูŠู…ุงู…ุฉ ูˆู„ุง ู…ู† ุซู‚ูŠู ูˆุฃู‡ู„ ุงู„ุทุงุฆู ู„ุฃู†ู‡ู…
724
+
725
+ 182
726
+ 00:19:24,370 --> 00:19:30,730
727
+ ูŠุฎุงู„ู‚ูˆู† ุชุฌุงุฑุฉ ุงู„ูŠู…ู†ุงู„ุฐูŠู† ูŠุฎุชู„ุทูˆู† ู…ุน ุงู„ู‡ู†ุฏ ูˆุงู„ุญุจุดุฉ
728
+
729
+ 183
730
+ 00:19:30,730 --> 00:19:36,830
731
+ ูˆู„ุง ู…ู† ุญุงุถุฑุฉ ุงู„ุญุฌุงุฒ ู„ุง ู…ู† ู…ูƒุฉ ูˆู„ุง ู…ู† ุงู„ู…ุฏูŠู†ุฉ ู„ุฃู†ู‡ู…
732
+
733
+ 184
734
+ 00:19:36,830 --> 00:19:42,410
735
+ ุนู†ุฏู…ุง ุฃุฎุฐูˆุง ุงู„ู„ุบุฉ ููŠ ู‡ุฐุง ุงู„ู‚ุฑู† ูˆุฌุฏูˆุง ุฃู† ู‡ู†ุงูƒ ุฃู…ู…ุง
736
+
737
+ 185
738
+ 00:19:43,460 --> 00:19:48,720
739
+ ูƒุซูŠุฑุฉ ุชู„ุฏ ุฅู„ู‰ ู…ูƒุฉ ูˆุฅู„ู‰ ุงู„ู…ุฏูŠู†ุฉ ุจุฐุงูุน ุงู„ุญุฌ ูˆ
740
+
741
+ 186
742
+ 00:19:48,720 --> 00:19:55,500
743
+ ุงู„ุฅุณู„ุงู… ูˆุบูŠุฑ ุฐู„ูƒ ูู„ุฐู„ูƒ ู„ู… ูŠูุฃุฎุฐ ู…ู† ู‡ุชูŠู† ุงู„ุญุงุถุฑุชูŠู†
744
+
745
+ 187
746
+ 00:19:55,500 --> 00:20:00,960
747
+ ุฃูŠุถู‹ุง ู‡ุฐุง ูŠุฏู„ ุนู„ู‰ ุฃู† ู‡ู†ุงูƒ ู…ู†ู‡ุฌูŠุฉ ู…ุน ุฃู†ู‡ ู„ูŠุณ ู‡ู†ุงูƒ
748
+
749
+ 188
750
+ 00:20:00,960 --> 00:20:06,900
751
+ ู…ูˆุถุนูŠุฉ ู„ูƒู† ู„ุฏูŠู‡ู… ุฅูŠู‡ ู…ู†ู‡ุฌูŠุฉ ุชุทุจู‚ ู‡ุฐุง ุงู„ู…ุจุฏุฃ ูˆู‡ูˆ
752
+
753
+ 189
754
+ 00:20:06,900 --> 00:20:12,020
755
+ ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉุฃู…ุง ุงู„ูˆุธูŠูุฉ ุงู„ุฃุฎุฑู‰ ู„ุนู„ู…ุงุก ุงู„ู„ุบุฉ ู‡ูˆ
756
+
757
+ 190
758
+ 00:20:12,020 --> 00:20:17,980
759
+ ู†ู‚ุถ ุงู„ุดุนุฑ ุงู„ู…ุญุฏุซ ูู‚ุฏ ุฃุณู‡ู…ูˆุง ููŠ ู†ู‚ุถ ุงู„ุดุนุฑ ูˆู‚ุฏู…ูˆุง
760
+
761
+ 191
762
+ 00:20:17,980 --> 00:20:23,040
763
+ ู†ุธุฑูŠุฉ ู†ู‚ุถูŠุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุงู„ู†ู‚ุถูŠุฉ ุชู‚ูˆู…
764
+
765
+ 192
766
+ 00:20:23,040 --> 00:20:27,760
767
+ ุนู„ู‰ ุฅุณู‚ุงุท ุงู„ุดุนุฑ ุงู„ู…ุญุฏุซ ูŠุนู†ูŠ ู„ุง ูŠู†ุธุฑ ุฅู„ู‰ ุงู„ุดุนุฑ
768
+
769
+ 193
770
+ 00:20:27,760 --> 00:20:33,240
771
+ ุงู„ู…ุญุฏุซ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุฅู„ุง ู…ุง ูƒุงู† ุนู„ูŠู‡ ุนู„ู‰ ู†ู…ุทู‡ ุงู„ุดุนุฑ
772
+
773
+ 194
774
+ 00:20:33,240 --> 00:20:41,490
775
+ ุงู„ู‚ุฏูŠู…ูˆู„ุฐู„ูƒ ุชู…ุณูƒูˆุง ุจุงู„ู†ู…ูˆุฐุฌ ุงู„ู‚ุฏูŠู… ุชู…ุณูƒู‹ุง ุนุฌูŠุจู‹ุง
776
+
777
+ 195
778
+ 00:20:41,490 --> 00:20:49,890
779
+ ูˆุฌุฏู†ุง ู…ู† ุงู„ุดุนุฑุงุก ู…ู† ุงู„ุนู„ู…ุงุก ู…ู† ูŠุณู‚ุท ุงู„ุดุนุฑุงุก ุฃูˆ
780
+
781
+ 196
782
+ 00:20:49,890 --> 00:20:56,250
783
+ ูŠุฎุชู… ุงู„ุดุนุฑุงุก ุจุดุงุนุฑ ู…ู† ุงู„ุจุงุฏูŠุฉ ุฃูˆ ู…ู† ู†ู‡ุงูŠุฉ ุงู„ุนุตุฑ
784
+
785
+ 197
786
+ 00:20:56,250 --> 00:21:03,440
787
+ ุงู„ุฃู…ูˆูŠ ุชู…ุซู„ู‹ุง ุฃุจูˆ ุนู…ุฑุงุจู† ุงู„ุนู„ุงุก ูŠุฎุชู… ุงู„ุดุนุฑ ุจุฐูŠ
788
+
789
+ 198
790
+ 00:21:03,440 --> 00:21:08,320
791
+ ุงู„ุฑูู…ู‘ุฉ ูˆุงู„ุฑุฌุฏ ุจุฑูู‚ุจุฉ ู‚ุงุฆู„ุง ููŠ ุงู„ู…ุญุฏุซูŠู† ุฅู†ู‡ู… ูƒู„
792
+
793
+ 199
794
+ 00:21:08,320 --> 00:21:15,160
795
+ ุนู„ู‰ ุบูŠุฑู‡ู… ุฅู† ู‚ุงู„ูˆุง ุญุณู†ุง ูู‚ุฏ ุณุจู‚ูˆุง ุฅู„ูŠู‡ ูˆุฅุฐุง ู‚ุงู„ูˆุง
796
+
797
+ 200
798
+ 00:21:15,160 --> 00:21:19,980
799
+ ู‚ุจูŠุญุง ูู…ู† ุนู†ุฏู‡ู… ู‡ุฐุง ุฏู„ูŠู„ ุนู„ู‰ ุฃู†ู‡ู… ุฅูŠู‡ ูŠุณู‚ุทูˆู† ุงู„ุดุนุฑ
800
+
801
+ 201
802
+ 00:21:19,980 --> 00:21:25,860
803
+ ุงู„ู…ุญุฏุซ ุฅุณู‚ุงุทุง ู…ุฏูˆูŠุฉ ูˆูƒุฐู„ูƒ ูƒุงู† ุงู„ุฃุตู…ุนูŠ ูŠุฎุชู… ุดุนุฑุงุก
804
+
805
+ 202
806
+ 00:21:25,860 --> 00:21:32,360
807
+ ุจุงุจู† ู…ูŠุงุฏุฉูˆุงุจู† ู‡ุฑู…ุฉ ูˆุฃุถุฑุงุจู‡ู…ุง ู…ู† ุดุนุฑุงุก ู†ุฌุฏ ูˆุงู„ุญุฌุงุฒ
808
+
809
+ 203
810
+ 00:21:32,360 --> 00:21:38,300
811
+ ุงู„ุฐูŠู† ุฃุฏุฑูƒูˆุง ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ูˆู…ู…ุง ูŠุฏู„ ุนู„ู‰ ุฃู†ู‡ ูŠุณู‚ุท
812
+
813
+ 204
814
+ 00:21:38,300 --> 00:21:44,720
815
+ ุงู„ุดุนุฑ ุงู„ู…ุญุฏุซ ุฅุณู‚ุงุทุง ู…ุฏูˆูŠุง ุฃู† ุฅุณุญุงู‚ ุงู„ู…ูˆุตู„ ุฃู†ุดุฏู‡
816
+
817
+ 205
818
+ 00:21:44,720 --> 00:21:49,500
819
+ ุจูŠุชูŠู† ู…ู† ุดุนุฑุฉ ูˆู„ู… ูŠุณู… ู‚ุงุฆู„ู‡ู…ุง ูู‚ุงู„
820
+
821
+ 206
822
+ 00:21:53,250 --> 00:22:01,190
823
+ ูู‚ุงู„ ูู‚ุงู„ ุงู„ุฃุตู…ุนูŠ ูู‚ุงู„
824
+
825
+ 207
826
+ 00:22:01,190 --> 00:22:08,330
827
+ ู…ุนุฌุจู‹ุง ุจูŠู‡ู…ุง ุซู… ุนู†ุฏู…ุง ุฃุดุงุฑ ุฅุณุญุงู‚ ุงู„ู…ูˆุตู„ ุฃู†ู‡ู… ู…ู†
828
+
829
+ 208
830
+ 00:22:08,330 --> 00:22:15,430
831
+ ู†ุธุจู‡ ุจุงุฏุฑู‡ ุจู‚ูˆู„ู‡ ุฃูุณุฏุช ุงู„ุดุนุฑุฉ ุฅู† ุงู„ุชูˆู„ูŠุฏ ุนู„ูŠู‡ู…
832
+
833
+ 209
834
+ 00:22:15,430 --> 00:22:22,580
835
+ ู„ุจูŠู† ุฃูˆ ููŠู‡ู…ุง ู„ุจูŠู†ุฃูŠุถู‹ุง ูŠุฑูˆู‰ ุฃู† ุงุจู† ู…ู†ุงุฒู„ ูƒุงู† ูŠู‚ูˆู„
836
+
837
+ 210
838
+ 00:22:22,580 --> 00:22:28,020
839
+ ู„ุฃุจูŠ ุนุจูŠุฏุฉ ุงุชู‚ ุงู„ู„ู‡ ูˆุงุญูƒู… ุจูŠู† ุงู„ุดุนุฑูŠ ูˆุงู„ุดุนุฑูŠ ุนุฏูŠ
840
+
841
+ 211
842
+ 00:22:28,020 --> 00:22:36,260
843
+ ุจู† ุฒูŠุฏู† ุงู„ุนุจุงุฏูŠ ูˆู„ุง ุชู‚ูˆู„ ุฐุงูƒ ุฌุงู‡ู„ูŠ ูˆู‡ุฐุง ุนุจุงุณูŠ ูˆุฐู„ูƒ
844
+
845
+ 212
846
+ 00:22:36,260 --> 00:22:43,120
847
+ ู‚ุฏูŠู… ูˆู‡ุฐุง ู…ุญุฏุซ ูุชุญูƒู… ุจูŠู† ุงู„ุนุตุฑูŠู† ูˆู„ูƒู† ุงุญูƒู… ุจูŠู†
848
+
849
+ 213
850
+ 00:22:43,120 --> 00:22:49,040
851
+ ุงู„ุดุนุฑูŠู† ูˆุฏุงุน ุงู„ุนุตุจูŠุฉุฅุฐู† ู‡ุฐุง ุฏู„ูŠู„ ุขุฎุฑ ุนู„ู‰ ุฃู†ู‡ู…
852
+
853
+ 214
854
+ 00:22:49,040 --> 00:22:54,020
855
+ ูŠุณู‚ุทูˆู† ุฃูŠู‡ ุงู„ุดุนุฑุฉ ุงู„ู…ุญุฏุซ ุงู„ุชูŠ ู‚ูŠู„ ููŠ ุฃูˆุงุฆู„ ุงู„ุฏูˆู„
856
+
857
+ 215
858
+ 00:22:54,020 --> 00:23:00,680
859
+ ุงู„ุนุจุงุณูŠุฉ ุฅุณู‚ุงุทุง ู…ุฏูˆูŠุฉ ูˆูƒุฐู„ูƒ ูƒุงู† ุงุจู† ุงู„ุนุฑุจูŠ ุนู†ุฏู…ุง
860
+
861
+ 216
862
+ 00:23:00,680 --> 00:23:06,280
863
+ ูˆุตู ุดุนุฑุงุก ุงู„ู…ุญุฏุซูŠู†ุฃูˆ ุนู†ุฏู…ุง ูˆุตู ุงู„ุดุนุฑ ุงู„ู…ุญุฏุซูŠู† ู‚ุงู„
864
+
865
+ 217
866
+ 00:23:06,280 --> 00:23:15,640
867
+ ุฅู†ู…ุง ุฃุดุนุงุฑ ู‡ุคู„ุงุก ุงู„ู…ุญุฏุซูŠู† ูŠู‚ุตุฏ ุฃุจูŠ ู†ูˆุงุณ ูˆุบูŠุฑู‡ ูŠู‚ุตุฏ
868
+
869
+ 218
870
+ 00:23:15,640 --> 00:23:21,180
871
+ ุฃุจุง ู†ูˆุงุณ ูˆุบูŠุฑู‡ ู…ู† ุดุนุฑุงุก ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ุฃุดุนุงุฑู‡ู…
872
+
873
+ 219
874
+ 00:23:21,180 --> 00:23:31,440
875
+ ู…ุซู„ ุงู„ุฑูŠุญุงู† ู†ุดู… ูŠูˆู…ุง ุซู… ูŠุฐูˆูŠ ููŠุฑู…ู‰ ุจู‡ ูŠุนู†ูŠ ุฃุดุนุงุฑู‡ู…
876
+
877
+ 220
878
+ 00:23:31,440 --> 00:23:38,030
879
+ ูƒุงู† ุฑูŠุญุงู†ุฑุงุฆุญุช ุฌู…ูŠู„ุฉ ุซู… ูŠุฐุจู„ ููŠ ูŠูˆู…ู‡ ุซู… ูŠุฑู…ู‰ ุจู‡
880
+
881
+ 221
882
+ 00:23:38,030 --> 00:23:46,250
883
+ ุฃู…ุง ุฃุดุนุงุฑ ู‚ุฏู…ุงุฆูŠ ูู‡ูŠ ู…ุซู„ ุงู„ู…ุณูƒ ูˆุงู„ุนู†ุถุฑ ูƒู„ ู…ุง ุญุฑูƒุชู‡
884
+
885
+ 222
886
+ 00:23:46,250 --> 00:23:54,590
887
+ ุฃุฒุฏุงุฏ ุทูŠุจุฉ ู„ูƒู† ุญู‚ูŠู‚ุฉ ุฃู† ุงู„ุฌูˆุฏุฉ ุงู„ูู†ูŠุฉ ู„ุง ุชู‚ุงุณ
888
+
889
+ 223
890
+ 00:23:54,590 --> 00:24:02,490
891
+ ุจุงู„ู‚ุฏู…ูŠ ูˆุงู„ุญุฏุงุซุฉ ุฅู†ู…ุง ุชู‚ุงุณ ุจุฏูˆุงุจุทุจุถูˆุงุจุท ู„ุบูˆูŠุฉ
892
+
893
+ 224
894
+ 00:24:02,490 --> 00:24:07,750
895
+ ูˆูู†ูŠุฉ ู…ู† ุญูŠุซ ุงู„ุตูˆุฑุฉ ูˆู…ู† ุญูŠุซ ุงู„ุฃุณู„ูˆุจ ูˆู…ู† ุญูŠุซ
896
+
897
+ 225
898
+ 00:24:07,750 --> 00:24:13,790
899
+ ุงู„ุฅุจุฏุงุน ุฅุฐ ุงู„ุดุงุนุฑ ูŠู†ุจุบูŠ ุฃู† ูŠูƒูˆู† ู…ุจุฏุนุง ุฃู† ูŠุฃุชูŠ ุจุตูˆุฑ
900
+
901
+ 226
902
+ 00:24:13,790 --> 00:24:21,350
903
+ ุฌุฏูŠุฏุฉ ูˆู„ูŠุณ ุจุตูˆุฑ ู…ูƒุฑุฑุฉ ููŠ ุงู„ุณุงุจู‚ ู„ูƒู† ุนู„ู…ุงุก ุงู„ู„ุบุฉ
904
+
905
+ 227
906
+ 00:24:21,350 --> 00:24:27,150
907
+ ูƒุงู†ูˆุง ูŠู†ุธุฑูˆู† ุบูŠุฑ ุฐู„ูƒ ูƒุงู†ูˆุง ูŠู†ุธุฑูˆู† ุฅู„ู‰ ุงู„ุดุนุฑ ุงู„ู‚ุฏูŠู…
908
+
909
+ 228
910
+ 00:24:27,150 --> 00:24:30,170
911
+ ู†ุธุฑุฉ ุฅุฌู„ุงู„ ูˆุฅูƒุจุงุฑ
912
+
913
+ 229
914
+ 00:24:33,080 --> 00:24:40,880
915
+ ูˆุงู„ุญู‚ูŠู‚ุฉ ุฃู† ุงู„ุดุนุฑุงุก ุงู„ุนุจุงุณูŠูŠู† ุฃูˆ ุงู„ุดุนุฑุงุก ุงู„ู…ุญุฏุซูˆู†
916
+
917
+ 230
918
+ 00:24:40,880 --> 00:24:50,580
919
+ ูŠุนู†ูŠ ูƒุงู†ูˆุง ูŠุนู†ูŠ ู…ุญุงูุธูŠู† ูˆูู‚ู‹ุง ู„ู…ุง ูƒุงู† ุนู„ูŠู‡ ุงู„ู€GLA
920
+
921
+ 231
922
+ 00:24:50,580 --> 00:25:00,100
923
+ ุงู„ุณุงุจู‚ ูˆู…ุง ูˆู‚ุน ู…ู† ุณู‚ุทุงุช ุฅู…ุง ุฃู† ุชูƒูˆู† ุถุฑูˆุฑุงุชุฑุฃู‡ุง
924
+
925
+ 232
926
+ 00:25:00,100 --> 00:25:04,700
927
+ ุงู„ุดุนุฑุงุก ุงู„ุนุจุงุณูŠูˆู† ููŠ ุงู„ุดุนุฑ ุงู„ู‚ุฏูŠู… ูู‚ุงุชูˆุง ุนู„ูŠู‡ุง
928
+
929
+ 233
930
+ 00:25:04,700 --> 00:25:11,360
931
+ ูˆุฅู…ุง ู„ุบุงุช ุดุงุฐุฉ ุฑุฃูˆู‡ุง ููŠ ู‡ุฐุง ุงู„ุดุนุฑ ูˆู…ู† ุญู‚ู‡ู… ู…ุฌุงุฑุชู‡ุง
932
+
933
+ 234
934
+ 00:25:11,360 --> 00:25:18,660
935
+ ูˆุฅู…ุง ุงุดุชู‚ุงู‚ุงุช ูˆุฃุจู†ูŠุฉ ุงุณุชุญุฏุซูˆู‡ุง ุนู„ู‰ ุถูˆุก ุงู„ู…ู‚ุงูŠูŠุซ
936
+
937
+ 235
938
+ 00:25:18,660 --> 00:25:25,240
939
+ ุงู„ุชูŠ ุชุนู„ู…ูˆู‡ุง ุณุงุจู‚ู‹ุงูˆู…ู† ุฐู„ูƒ ู…ุง ุฑูˆุงู‡ ุงู„ู…ุฑุฐุจุงู†ูŠ ููŠ
940
+
941
+ 236
942
+ 00:25:25,240 --> 00:25:32,760
943
+ ู…ูˆุดุญู‡ ููŠ ู…ูˆุดุญ ููŠ ุงู„ู…ูˆุดุญ ู…ู† ุฃู† ุงู„ุฃุฎูุด ุฃุฎุฐ ุนู„ู‰ ุจุดุงุฑ
944
+
945
+ 237
946
+ 00:25:32,760 --> 00:25:39,320
947
+ ุงุดุชู‚ุงู‚ุงุชู‡ ููŠ ุจุนุถ ุฃุดุนุงุฑู‡ ู„ูƒู„ู…ุชูŠ ุงู„ูˆุฌู„ุฉ ูˆุงู„ุบุฒู„ุฉ
948
+
949
+ 238
950
+ 00:25:39,320 --> 00:25:48,240
951
+ ูˆูƒุฐู„ูƒ ุฌู…ุนู‡ ู„ูุธ ู†ูˆู† ุจู…ุนู†ู‰ ุงู„ุญูˆุช ุนู„ู‰ ู†ูŠู†ุงู†ุธู† ู…ู†ู‡ ุฃู†
952
+
953
+ 239
954
+ 00:25:48,240 --> 00:25:52,940
955
+ ู‡ุฐู‡ ุงู„ูƒู„ู…ุฉ ุชุฏุฎู„ ููŠ ู‡ุฐุง ุงู„ู‚ูŠุงุณ ููŠ ู‚ูŠุงุณ ู‡ุฐุง ุงู„ุฌู…ุน
956
+
957
+ 240
958
+ 00:25:52,940 --> 00:26:01,300
959
+ ูˆุงู„ู…ุฑุงุญุถ ุฃู† ุฃุจุง ู†ูˆุงุณ ูƒุงู† ู…ู† ุฃูƒุซุฑ ุงู„ุดุนุฑุงุก ุงู„ุนุจุงุณูŠูŠู†
960
+
961
+ 241
962
+ 00:26:01,300 --> 00:26:08,870
963
+ ู…ุขุฎุฐ ูˆู‡ุฐู‡ ุงู„ู…ุขุฎุฐุงู„ุชูŠ ูŠุธู† ุจุนุถ ุงู„ู†ุงุณ ุงู„ุชูŠ ูŠุธู† ุจุนุถ
964
+
965
+ 242
966
+ 00:26:08,870 --> 00:26:18,630
967
+ ุงู„ู†ุงุณ ุฃู†ู‡ุง ุณู‚ุทุงุช ุฅู†ู…ุง ู‡ูŠ ูŠุนู†ูŠ ู„ู‡ุง ูŠุนู†ูŠ ู„ู‡ุง ุชุจุฑูŠุฑ
968
+
969
+ 243
970
+ 00:26:18,630 --> 00:26:25,650
971
+ ุฅู…ุง ุฃู† ุฃูƒูˆู† ุฅูŠู‡ ู„ุบุฉ ุดุงุฐุฉ ู…ุซู„ุง ุฃูˆ ุนู„ุฉ ู†ุญูˆูŠุฉ ุฃูˆ
972
+
973
+ 244
974
+ 00:26:25,650 --> 00:26:30,490
975
+ ู‚ูŠุงุณุง ุนู„ู‰ ุงุดุชู‚ุงู‚ ูู…ุซู„ุง
976
+
977
+ 245
978
+ 00:26:30,490 --> 00:26:37,640
979
+ ู‚ุงู„ ุงุจู† ู‚ุชูŠุจุฉูˆูƒุงู† ุฃุจูˆ ู†ูˆุงุณ ูŠู„ุญู† ููŠ ุฃุดูŠุงุก ู…ู† ุดุนุฑู‡
980
+
981
+ 246
982
+ 00:26:37,640 --> 00:26:44,780
983
+ ู„ุง ุฃุฑุงู‡ ููŠู‡ุง ุฅู„ุง ุนู„ู‰ ุญุฌุฉ ู…ู† ุงู„ุดุนุฑ ุงู„ู‚ุฏูŠู… ุฃูˆ ุนู„ุฉ
984
+
985
+ 247
986
+ 00:26:44,780 --> 00:26:51,860
987
+ ุจูŠู†ุฉ ู…ู† ุนู„ู† ุงู„ู†ุญูˆ ู…ู†ู‡ุง ู‚ูˆู„ู‡ ูู„ูŠุช ู…ุง ุฃู†ุช ูˆุงุทู† ู…ู†
988
+
989
+ 248
990
+ 00:26:51,860 --> 00:26:59,870
991
+ ุงู„ุซุฑู‰ ู„ูŠู‡ ุฑู…ุณุฉูู„ุงูŠุช ู…ุง ุฃู†ุช ูˆุงุทู† ู…ู† ุงู„ุซู„ุงู„ูŠ ุฑู…ุณุฉ
992
+
993
+ 249
994
+ 00:26:59,870 --> 00:27:05,590
995
+ ุทุจุนุง ุฃุฎุฐูˆุง ุนู„ู‰ ูƒู„ู…ุฉ ุฃุฎุฐูˆุง ู…ุง ุฃุฎุฐู‡ู… ุนู„ู‰ ูƒู„ู…ุชูŠู† ูˆุงุทู†
996
+
997
+ 250
998
+ 00:27:05,590 --> 00:27:15,070
999
+ ูˆุฑู…ุณุฉ ูุฃู…ุง ูƒู„ู…ุฉ ูˆุงุทู† ูุฃุตู„ู‡ุง ูˆุงุทุฆ ูˆู„ูƒู† ุฃูƒุซุฑ ุงู„ุนุฑุจูŠ
1000
+
1001
+ 251
1002
+ 00:27:15,070 --> 00:27:22,170
1003
+ ู„ุง ุชู‡ู…ุฒ ูŠุนู†ูŠ ุชู‚ูˆู„ ูˆุงุทูŠ ุฃูƒุซุฑ ุงู„ุนุฑุจ ูˆู…ู†ู‡ุง ู‚ุฑุด ุฃูŠุถุง
1004
+
1005
+ 252
1006
+ 00:27:22,170 --> 00:27:30,860
1007
+ ูˆู†ุฌุฏ ุฃู† ุงู„ู‚ุฑุขู† ุงู„ูƒุฑูŠู…ุนู†ุฏู…ุง ู†ุฒู„ ููŠ ู‚ูˆู„ู‡ ูˆุจูŠุน
1008
+
1009
+ 253
1010
+ 00:27:30,860 --> 00:27:37,200
1011
+ ุงู„ู…ุนุชู„ุฉ ูˆูƒู„ู…ุฉ ุงู„ุฐุฆุจ ุฅู†ู…ุง ุฌุงุก ุจู„ุบุฉ ู‡ุฐูŠู„ ูˆู„ูŠุณ ุจู„ุบุฉ
1012
+
1013
+ 254
1014
+ 00:27:37,200 --> 00:27:45,940
1015
+ ู‚ุฑูŠุด ุฃูƒุซุฑ ุงู„ุนุฑุจ ู„ุง ุชู‡ู…ุฒ ูŠุนู†ูŠ ูŠู…ูŠู„ูˆู† ุฅู„ู‰ ู„ุบุฉ ู‚ุฑูŠุด
1016
+
1017
+ 255
1018
+ 00:27:45,940 --> 00:27:55,180
1019
+ ููŠู‚ูˆู„ูˆู† ุจูŠุฑ ูˆุฐูŠุจ ูˆุงู„ุดุนุฑ ุฃุจูˆ ู†ูˆุงุณ ู‡ู†ุงูŠุนู†ูŠ ุงูŠู‡ุŸ ู„ู…
1020
+
1021
+ 256
1022
+ 00:27:55,180 --> 00:28:01,000
1023
+ ูŠู‡ู…ุฒ ูู‚ุงู„ ูˆุงุทูŠ ูˆุญุฐู ุงู„ูŠุงุก ูˆุนูˆุถ ุนู†ู‡ุง ุจุงู„ุชู†ูˆูŠู† ูˆุงุทู†
1024
+
1025
+ 257
1026
+ 00:28:01,000 --> 00:28:08,020
1027
+ ูุฅุฐุง ู‡ูˆ ูŠุณูŠุฑ ูˆูู‚ ู„ู‡ุฌุฉ ู…ู† ู„ู‡ุฌุงุช ุงู„ุนุฑุจ ูˆุฃู…ุง ุฑู…ุณุง
1028
+
1029
+ 258
1030
+ 00:28:08,020 --> 00:28:11,080
1031
+ ูŠุนู†ูŠ
1032
+
1033
+ 259
1034
+ 00:28:11,080 --> 00:28:22,400
1035
+ ู‚ุงู„ูˆุง ุฃู†ู‡ ุฎุฑุฌ ุนู† ุงู„ุฃุตู„ ูˆู‡ุฐุง ู„ูŠุณ ุฎุฑูˆุฌุง ู„ุฃู† ุฑู…ุณุงูŠุนู†ูŠ
1036
+
1037
+ 260
1038
+ 00:28:22,400 --> 00:28:27,900
1039
+ ุชูุนุฑูŽุจูˆุง ุชู…ูŠูŠุฒู‹ุง ูŠุนู†ูŠ ุงู„ุฐูŠู† ุฃุฎุทุฃูˆู‡ ู†ุธุฑูˆุง ุฅู„ู‰ ุฃู†
1040
+
1041
+ 261
1042
+ 00:28:27,900 --> 00:28:36,340
1043
+ ุฑู…ุณู‹ุง ู‡ูŠ ุฎุจุฑ ู„ูŠุช ู…ุฑููˆุน ูˆู„ูƒู†ู‡ ู‡ู†ุง ุฌุงุก ุชู…ูŠูŠุฒู‹ุง ูƒู…ุง
1044
+
1045
+ 262
1046
+ 00:28:36,340 --> 00:28:43,600
1047
+ ุชู‚ูˆู„ ู„ูŠุช ุซูˆุจูƒ ู‡ุฐุง ู„ูŠู‡ ุซู… ุชู‚ูˆู„ ุฅุฐุงุฑู‹ุง ุนู„ู‰ ุงู„ุชู…ูŠูŠุฒ
1048
+
1049
+ 263
1050
+ 00:28:43,600 --> 00:28:49,420
1051
+ ุฅุฐู† ุฃุจูˆ ู†ูˆุงุณ ู„ู‡ ุญุฌุฉ ู…ู† ูƒู„ุงู… ุงู„ุนุฑุจ ุฃูˆ ุนู„ุฉ ู…ู† ุนู„ุฉ
1052
+
1053
+ 264
1054
+ 00:28:49,420 --> 00:28:58,940
1055
+ ู„ู„ู†ุญูˆุญุงูˆู„ ุงู„ู…ุณุชุดุฑู‚ูˆู† ุฃู† ูŠุณูŠุฆูˆุง ุฅู„ู‰ ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉ
1056
+
1057
+ 265
1058
+ 00:28:58,940 --> 00:29:05,880
1059
+ ุจุฒุฑุน ุงู„ูŠุฃุณ ููŠ ุงู„ู†ููˆุณ ุนู†ุฏู…ุง ู‚ุงู„ูˆุง ูˆุทุจุนุงู‹ ุงู„ูƒู„ุงู…
1060
+
1061
+ 266
1062
+ 00:29:05,880 --> 00:29:12,740
1063
+ ู„ู€Johann Fick ุฅุฐ ู‚ุงู„ ุฃู† ุงู„ูุงุฑุณูŠุฉ ู‚ุฏ ุฃุฏุฎู„ุช ุถูŠู…ุงู‹
1064
+
1065
+ 267
1066
+ 00:29:12,740 --> 00:29:18,890
1067
+ ุนู„ู‰ ุงู„ุนุฑุจูŠุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑุทุจุนุงู‹ ู…ุณุชุฏู„ุงู‹ ุจุฐู„ูƒ ุนู„ู‰
1068
+
1069
+ 268
1070
+ 00:29:18,890 --> 00:29:26,790
1071
+ ุฃุดุนุงุฑ ุฃุจูŠ ู†ูˆุงุณ ูู‚ุฏ ุฐูƒุฑ ุฃู† ููŠู‡ุง ูƒู„ู…ุงุช ุซุงุฑุณูŠุฉ ูƒุซูŠุฑุฉ
1072
+
1073
+ 269
1074
+ 00:29:26,790 --> 00:29:33,710
1075
+ ูˆุงู„ุฐูŠ ูŠุฑุงุฌุน ุดุนุฑ ุฃุจูŠ ู†ูˆุงุณ ูˆุฎุงุตุฉ ููŠ ุงู„ู…ุฌูˆู† ูˆู„ู‡ูˆ ูŠุฑู‰
1076
+
1077
+ 270
1078
+ 00:29:33,710 --> 00:29:39,540
1079
+ ุฃู† ู‡ู†ุงูƒ ูƒู„ู…ุงุช ุซุงุฑุณูŠุฉ ูƒุซูŠุฑุฉูˆู‡ูˆ ูŠูˆุฑุฏ ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช
1080
+
1081
+ 271
1082
+ 00:29:39,540 --> 00:29:46,160
1083
+ ุงู„ูุฑุณูŠุฉ ู„ูŠุณ ุถุนูุง ููŠ ุตู„ูŠู‚ุชู‡ ุฃูˆ ุงู†ุชู‚ุงุตุง ููŠ ุงู„ุตู„ูŠู‚ุฉ
1084
+
1085
+ 272
1086
+ 00:29:46,160 --> 00:29:53,280
1087
+ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุฒ ูˆุฅู†ู…ุง ูŠูˆุฑุฏ ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช ู„ู„ุชู…ู„ุญ ูˆุงู„ุชู…ุงุฌ
1088
+
1089
+ 273
1090
+ 00:29:53,280 --> 00:29:59,580
1091
+ ูˆุงู„ุฎู„ุงุนุฉ ูˆู„ูŠุณ ุถุนูุง ููŠ ุงู„ุตู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ ูู…ุซู„ุง ูŠู‚ูˆู„
1092
+
1093
+ 274
1094
+ 00:29:59,580 --> 00:30:05,580
1095
+ ููŠ ุนุงุฏุงุช ุงู„ู…ุฌูˆุซ ูˆุฃุนูŠุงุฏู‡ู… ูˆุงู„ู…ู‡ุฑุฌุงู† ุงู„ู…ุฏุงุฑูŠ ู„ูˆู‚ุชู‡
1096
+
1097
+ 275
1098
+ 00:30:05,580 --> 00:30:11,370
1099
+ ุงู„ู‚ุฏุฑุงุฑูŠูˆุงู„ู†ู‚ุฑูˆุฏ ุงู„ูƒุจุงุฑูŠ ูˆุฌุดู† ุฌู‡ู†ุจุงุฑูŠ ูˆุฃุจุซุงู„
1100
+
1101
+ 276
1102
+ 00:30:11,370 --> 00:30:17,150
1103
+ ุงู„ูˆู‡ุงุฑูŠ ูˆุฎุฑ ุฅูŠุฑุงู† ุดุงุฑูŠ ุทุจุนุง ู‡ุฐู‡ ูƒู„ู…ุงุช ุซุงู„ุซูŠุฉ ุฅู†ู…ุง
1104
+
1105
+ 277
1106
+ 00:30:17,150 --> 00:30:23,750
1107
+ ุฌูŠุฆุฉ ุจู‡ุง ู„ู„ุชู…ู„ุญ ูˆุงู„ุชุนุงุจุซ ูˆุงู„ุชู…ุงุฌู… ูˆู„ูŠุณ ุถุนูุง ููŠ
1108
+
1109
+ 278
1110
+ 00:30:23,750 --> 00:30:30,670
1111
+ ุงู„ุณู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ ูˆูƒุฐู„ูƒ ู†ุฌุฏ ุนู†ุฏ ุจุนุถ ุงู„ุดุนุฑุงุก ุชุณู‚ุท
1112
+
1113
+ 279
1114
+ 00:30:30,670 --> 00:30:37,990
1115
+ ูƒู„ู…ุงุช ู†ุจุงุทูŠุฉ ููŠ ุดุนุฑู‡ู…ุงู„ู‡ุฏู ู…ู†ู‡ุง ู„ูŠุณ ุฅู„ุง ุงู„ุชู…ู„ุญ
1116
+
1117
+ 280
1118
+ 00:30:37,990 --> 00:30:45,390
1119
+ ูˆุงู„ุชุนุงุจุซ ูˆุงู„ุชู†ุงุฌุฑ ูƒู…ุง ู‚ุงู„ ุฅุจุฑุงู‡ูŠู… ู…ูˆุตู„ูŠ ููŠ ูˆุตู
1120
+
1121
+ 281
1122
+ 00:30:45,390 --> 00:30:54,690
1123
+ ูˆุฏุงุนู‡ ู„ุฎู…ุงู„ ู†ุจุงุทูŠ ูู‚ุงู„ ูู‚ุงู„ ุฅุฐ ุงู„ุจุดูŠู†ูŠู† ุญูŠู† ุญุฏุซู†ูŠ
1124
+
1125
+ 282
1126
+ 00:30:54,690 --> 00:31:04,610
1127
+ ูˆู‚ุถู„ ุนู…ุฑูƒ ุฒุงู„ูˆู‚ุฏ ู„ุนู…ุฑูƒ ุฐู„ู†ุง ุนู†ู‡ ุจุงู„ุดูŠุก ูŠุนู†ูŠ ุฐู„ู†ุง
1128
+
1129
+ 283
1130
+ 00:31:04,610 --> 00:31:11,050
1131
+ ุงุชุฑู‚ู†ุง ุนู†ู‡ ุจุงู„ู‚ุจูŠุญ ู…ู† ุงู„ุฃูุนุงู„ ูˆุงู„ุณูŠุฆ ู…ู† ุงู„ุณู„ูˆูƒ ุฅุฐุง
1132
+
1133
+ 284
1134
+ 00:31:11,050 --> 00:31:16,830
1135
+ ู…ุง ุณู‚ุท ููŠ ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉ ู…ู† ูƒู„ู…ุงุช ูุงุฑุณูŠุฉ ุฃูˆ ู†ุจุงุทูŠุฉ
1136
+
1137
+ 285
1138
+ 00:31:16,830 --> 00:31:25,790
1139
+ ู„ุง ูŠู‚ู„ู„ ู…ู†ุงู„ุตู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ ูˆ ู„ุง ูŠู†ุชู‚ุตู‡ุง ูˆ ุฅู†ู…ุง ุฌุฆุช
1140
+
1141
+ 286
1142
+ 00:31:25,790 --> 00:31:33,710
1143
+ ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช ู„ู„ุชุถุฑู ูƒู…ุง ู‚ู„ุช ูˆ ุงู„ุชู…ู„ุญ ูˆ ุงู„ุชุนุงุจุซ ู‡ุฐุง
1144
+
1145
+ 287
1146
+ 00:31:33,710 --> 00:31:37,430
1147
+ ูˆ ุจุงู„ู„ู‡ ุงู„ุชูˆููŠู‚ ูˆ ุตู„ู‰ ุงู„ู„ู‡ู… ๏ฟฝ๏ฟฝู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ ูˆ ุนู„ู‰
1148
+
1149
+ 288
1150
+ 00:31:37,430 --> 00:31:40,650
1151
+ ุขู„ู‡ ูˆ ุตุญุจู‡ ูˆ ุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง
1152
+
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/IXclJGn-2-8_raw.srt ADDED
@@ -0,0 +1,1152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:04,930 --> 00:00:08,610
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:08,610 --> 00:00:13,430
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ู‹ุง ูƒุซูŠุฑู‹ุง ูˆุจุนุฏ ู…ูˆุถูˆุน ู‡ุฐู‡
8
+
9
+ 3
10
+ 00:00:13,430 --> 00:00:19,430
11
+ ุงู„ู…ุญุงุถุฑุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ู‡ูˆ ุงู„ู…ุคุซุฑุงุช ุงู„ุซู‚ุงููŠุฉ ููŠ ุงู„ุฃุฏุจ
12
+
13
+ 4
14
+ 00:00:19,430 --> 00:00:25,570
15
+ ุงู„ุนุจุงุณูŠ ููŠู…ุง ุฐูƒุฑู†ุงู‡ ู…ู† ู‚ุจู„ ุชุจูŠู† ู„ู†ุง ุฃู† ู‡ู†ุงูƒ
16
+
17
+ 5
18
+ 00:00:25,570 --> 00:00:32,780
19
+ ุชู…ุงุฒุฌู‹ุงุญุถุฑูŠู‹ุง ูˆุชู…ุงุฒุฌู‹ุง ุฌู†ุณูŠุŒ ุฃุฏู‰ ู‡ุฐุง ุฅู„ู‰ ุชู…ุงุฒุฌ
20
+
21
+ 6
22
+ 00:00:32,780 --> 00:00:39,690
23
+ ุซุงู„ุซุŒ ูˆู‡ูˆ ุงู„ุชู…ุงุฒุฌ ุงู„ุซู‚ุงููŠุญูŠุซ ุฃุตุจุญุช ู‡ุฐู‡ ุงู„ุซู‚ุงูุงุช
24
+
25
+ 7
26
+ 00:00:39,690 --> 00:00:46,830
27
+ ุจูุนู„ ุงู„ุนูˆุงู…ู„ ุฃูˆ ุงู„ู…ุคุซุฑุงุช ุงู„ุณุงุจู‚ุฉ ุชุคุซุฑ ููŠ ุงู„ุฃุฏุจ
28
+
29
+ 8
30
+ 00:00:46,830 --> 00:00:54,610
31
+ ุจุดูƒู„ ุตุฑูŠุญ ูˆุฃู† ู‡ุฐู‡ ุงู„ุจูŠุฆุฉ ุงู„ุฌุฏูŠุฏุฉ ู„ู… ุชูƒู† ูƒุจูŠุฆุฉ
32
+
33
+ 9
34
+ 00:00:54,610 --> 00:01:00,700
35
+ ุงู„ุฃู…ูˆูŠูŠู† ููŠ ุฅุญุฏุงุซ ู…ุซู„ ู‡ุฐุง ุงู„ุชู…ุงุฒุฌุฐู„ูƒ ุฃู† ุงู„ุณูŠุงุฏุฉ ููŠ
36
+
37
+ 10
38
+ 00:01:00,700 --> 00:01:06,000
39
+ ุงู„ุนุตุฑ ุงู„ุฃู…ูˆูŠ ูƒุงู†ุช ุณูŠุงุฏุฉ ุนุฑุจูŠุฉ ุฃู…ุง ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
40
+
41
+ 11
42
+ 00:01:06,000 --> 00:01:12,520
43
+ ูˆุฌุฏู†ุง ุฃู† ุงู„ุณูŠุงุฏุฉ ู‡ูŠ ูุงุฑุณูŠุฉ ุฅุฐ ุฅู† ุงู„ูุฑุณ ู‚ุฏ ุชู‚ู„ุฏูˆุง
44
+
45
+ 12
46
+ 00:01:12,520 --> 00:01:20,260
47
+ ู…ู†ุงุตุจ ุฑููŠุนุฉ ููŠ ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ู…ู† ุฃู‡ู… ู‡ุฐู‡ ุงู„ุซู‚ุงูุงุช
48
+
49
+ 13
50
+ 00:01:20,260 --> 00:01:26,580
51
+ ุงู„ุซู‚ุงูุฉ ุงู„ู‡ู†ุฏูŠุฉ ูˆุงู„ุซู‚ุงูุฉ ุงู„ูุงุฑุณูŠุฉ ูˆุงู„ุซู‚ุงูุฉ
52
+
53
+ 14
54
+ 00:01:26,580 --> 00:01:33,490
55
+ ุงู„ูŠูˆู†ุงู†ูŠุฉุฃู…ุง ุงู„ุซู‚ุงูุฉ ุงู„ู‡ู†ุฏูŠุฉ ูู‡ูŠ ุฃุณุจู‚ ู…ู† ุงู„ุซู‚ุงูุฉ
56
+
57
+ 15
58
+ 00:01:33,490 --> 00:01:39,070
59
+ ุงู„ูุงู„ุณูŠุฉ ุฅุฐ ุงู„ูุฑุซ ู‚ุฏ ุงุนุชู…ุฏูˆุง ุนู„ู‰ ู†ู‡ุถุงุชู‡ู… ุนู„ู‰
60
+
61
+ 16
62
+ 00:01:39,070 --> 00:01:48,390
63
+ ุงู„ุซู‚ุงูุฉ ูˆุงู„ุญุถุงุฑุฉ ุงู„ู‡ู†ุฏูŠุฉุจุฐู„ูƒ ู†ุฌุฏ ุฃู† ู‡ุฐู‡ ุงู„ุญุถุงุฑุฉ
64
+
65
+ 17
66
+ 00:01:48,390 --> 00:01:51,910
67
+ ุงู„ู‡ู†ุฏูŠุฉ ุฃูˆ ุงู„ุซู‚ุงูุฉ ุงู„ู‡ู†ุฏูŠุฉ ุฌุงุกุช ุฅู„ู‰ ุงู„ุญุถุงุฑุฉ
68
+
69
+ 18
70
+ 00:01:51,910 --> 00:01:55,430
71
+ ุงู„ุฅุณู„ุงู…ูŠุฉ ุฃูˆ ุงู„ุซู‚ุงูุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู…ู† ุทุฑูŠู‚ูŠู† ุทุฑูŠู‚
72
+
73
+ 19
74
+ 00:01:55,430 --> 00:02:01,950
75
+ ุงู„ูุฑุณ ููŠ ู‚ุฏูŠู… ุงู„ุฒู…ุงู† ูˆุทุฑูŠู‚ ู…ู† ุฏุฎู„ ู…ู†ู‡ู… ููŠ ุงู„ุฅุณู„ุงู…
76
+
77
+ 20
78
+ 00:02:01,950 --> 00:02:09,230
79
+ ุชุชู…ูŠุฒ ู‡ุฐู‡ ุงู„ุซู‚ุงูุฉ ุงู„ู‡ู†ุฏูŠุฉ ุจุฃู† ุฌู…ู‡ูˆุฑ ุงู„ู‡ู†ุฏ ูˆุซู†ูŠูˆู†
80
+
81
+ 21
82
+ 00:02:10,140 --> 00:02:16,580
83
+ ูŠุฏูŠู†ูˆู† ุงู„ุจูˆุฐูŠุฉ ูˆู…ู†ู‡ู… ุถุฑุงู‡ู…ุฉ ูŠู†ูƒุฑูˆู† ุงู„ู†ุจูˆุงุช ูˆุฏู‡ุฑูŠูˆู†
84
+
85
+ 22
86
+ 00:02:16,580 --> 00:02:22,200
87
+ ู„ุง ูŠุคู…ู†ูˆู† ุฅู„ุง ุจุงู„ุฏู‡ุฑ ูˆุณู…ุงู†ูŠุฉ ู„ุง ูŠุคู…ู†ูˆู† ุฅู„ุง ุจู…ุง ูŠู‚ุน
88
+
89
+ 23
90
+ 00:02:22,200 --> 00:02:28,580
91
+ ุชุญุช ุญูˆุงุณู‡ู… ุฃูŠ ู„ุง ูŠุคู…ู†ูˆู† ุฅู„ุง ุจุงู„ูˆุงู‚ุน ูˆู‚ุฏ ู†ุงุธุฑู‡ู…
92
+
93
+ 24
94
+ 00:02:28,580 --> 00:02:34,360
95
+ ู‚ุฏูŠู…ุง ุฌุญู… ุจู† ุตููˆุงู† ูˆุชุตุฏุฑู‡ู… ุงู„ู…ุนุชุฒู„ุฉ ูŠุฑุฏูˆู† ุนู„ูŠู‡ู…
96
+
97
+ 25
98
+ 00:02:34,360 --> 00:02:40,910
99
+ ู…ุนุชู‚ุฏุงุชู‡ู… ุงู„ูุงุณุฏุฉ ูˆุฃููƒุงุฑู‡ู… ุงู„ุถุงู„ุฉูุฅุฐุง ูƒุงู† ุงู„ุฅุฎู„ุงุต
100
+
101
+ 26
102
+ 00:02:40,910 --> 00:02:47,810
103
+ ุดุนุงุฑ ุงู„ู…ุณู„ู…ูŠู† ูˆุงู„ุชุซู„ูŠุซ ุดุนุงุฑ ุงู„ู†ุตุฑุงู†ูŠุฉ ูˆุงู„ุฅุซุจุงุช
104
+
105
+ 27
106
+ 00:02:47,810 --> 00:02:55,310
107
+ ุดุนุงุฑ ุงู„ูŠู‡ูˆุฏูŠุฉ ูุฅู† ุงู„ุชู†ุงุณุฎ ูƒุงู† ุดุนุงุฑ ุงู„ู…ุญู„ุฉ ุงู„ู‡ู†ุฏูŠุฉ
108
+
109
+ 28
110
+ 00:02:56,410 --> 00:03:03,030
111
+ ูˆู„ุฐู„ูƒ ูˆุฌุฏู†ุง ุฃู† ู‡ุฐุง ุงู„ุฃู…ุฑ ูˆู‡ูˆ ุงู„ุชู†ุงุณุฎ ูŠุชุณู„ู„ ุฅู„ู‰
112
+
113
+ 29
114
+ 00:03:03,030 --> 00:03:10,630
115
+ ุงู„ููƒุฑ ุงู„ุตูˆููŠ ููŠ ุงู„ุฌูŠู„ ุงู„ู‚ุงุฏู… ู…ู…ุง ูƒุงู† ู„ู‡ ุณุจุจ ููŠ
116
+
117
+ 30
118
+ 00:03:10,630 --> 00:03:17,170
119
+ ุฅูุณุงุฏ ุนู‚ูŠุฏุฉ ุงู„ู…ุณู„ู…ูŠู† ุฃู…ุง ุงู„ุซู‚ุงูุฉ ุงู„ูุงุฑุณูŠุฉ ูู‡ูŠ
120
+
121
+ 31
122
+ 00:03:17,170 --> 00:03:23,990
123
+ ุงู„ุซู‚ุงูุฉ ุงู„ู…ุงุฏูŠุฉ ุชูุนู†ูŠ ุจุงู„ุญูŠุงุฉ ุงู„ูŠูˆู…ูŠุฉูู‚ุฏ ู†ุธู‘ู…ุช
124
+
125
+ 32
126
+ 00:03:23,990 --> 00:03:27,950
127
+ ุงู„ุซู‚ุงูุฉ ุงู„ูุงุฑุณูŠุฉ
128
+
129
+ 33
130
+ 00:03:27,950 --> 00:03:34,070
131
+ ุญูŠุงุฉ ุงู„ู…ุฌุชู…ุน ุงู„ุนุจุงุณูŠ ุงู„ูŠูˆู…ูŠ ูŠุนู†ูŠ ู†ุธู‘ู…ุช ุงู„ุญูŠุงุฉ
132
+
133
+ 34
134
+ 00:03:34,070 --> 00:03:38,610
135
+ ุงู„ูŠูˆู…ูŠุฉ ููŠู…ุง ูŠุชุนู„ู‚ ู…ุซู„ู‹ุง ุจุงู„ู…ุฃูƒู„ ูˆุงู„ู…ุดุฑุจ ูˆุงู„ู…ู„ุจุณ
136
+
137
+ 35
138
+ 00:03:38,610 --> 00:03:43,870
139
+ ูˆุงู„ู‚ุตูˆุฑ ูˆุงู„ุญูู„ุงุช ุจุฃู†ูˆุงุนู‡ุง ุงู„ู…ุฎุชู„ูุฉ ูˆุงู„ู…ุฑุงุณูŠู…
140
+
141
+ 36
142
+ 00:03:43,870 --> 00:03:52,740
143
+ ุงู„ู…ุชุนู„ู‚ุฉ ุจุงู„ูˆุฒุฑุงุก ูˆุงู„ุญุฌุงุจ ูˆุบูŠุฑ ุฐู„ูƒุงู„ุซู‚ุงูุฉ ุงู„ูุงุฑุณูŠุฉ
144
+
145
+ 37
146
+ 00:03:52,740 --> 00:03:57,680
147
+ ู†ุธู‘ู…ุช ุงู„ุญูŠุงุฉ ุงู„ูŠูˆู…ูŠุฉ ููƒุงู†ุช ุชุฃุซูŠุฑู‡ุง ููŠ ู…ุฌุฑูŠุงุช
148
+
149
+ 38
150
+ 00:03:57,680 --> 00:04:05,760
151
+ ุงู„ุญูŠุงุฉ ุงู„ูŠูˆู…ูŠุฉ ูู‚ุท ุฃู…ุง ุงู„ุซู‚ุงูุฉ ุงู„ูŠูˆู†ุงู†ูŠุฉ ูู‚ุฏ ุฑุชุจุช
152
+
153
+ 39
154
+ 00:04:05,760 --> 00:04:11,470
155
+ ุงู„ุนู‚ู„ ุงู„ุนุฑุจูŠุฅุฐุง ูƒุงู†ุช ุงู„ุซู‚ุงูุฉ ุงู„ูุฑุณูŠุฉ ุฑุชุจุช ุงู„ุญูŠุงุฉ
156
+
157
+ 40
158
+ 00:04:11,470 --> 00:04:17,630
159
+ ุงู„ูŠูˆู…ูŠุฉ ูุฅู† ุงู„ุซู‚ุงูุฉ ุงู„ูŠูˆู†ุงู†ูŠุฉ ุฑุชุจุช ุงู„ุนู‚ู„ ุงู„ุนุฑุจูŠ ู…ู†
160
+
161
+ 41
162
+ 00:04:17,630 --> 00:04:25,610
163
+ ุญูŠุซ ุทุฑู‚ ุงู„ุชููƒูŠุฑ ูˆุงู„ุงุณุชุฏู„ุงู„ ูˆุงู„ู…ู†ุทู‚ ูˆู†ุญูˆ ุฐู„ูƒุฃู…ุง
164
+
165
+ 42
166
+ 00:04:25,610 --> 00:04:30,630
167
+ ุงู„ุฏูŠู†ุฉ ุงู„ุฃุฎุฑู‰ ูƒุงู„ูŠู‡ูˆุฏูŠุฉ ูˆุงู„ู†ุตุฑุงู†ูŠุฉ ูุฅู† ุงู„ู†ุตุงุฑู‰
168
+
169
+ 43
170
+ 00:04:30,630 --> 00:04:35,370
171
+ ูŠุนู†ูŠ ูƒุงู†ูˆุง ุฃู‚ุฑุจ ุฅู„ู‰ ุงู„ู…ุณู„ู…ูŠู† ู…ู† ุงู„ูŠู‡ูˆุฏ ุงู„ุฐูŠู† ุงู†ุทูˆุช
172
+
173
+ 44
174
+ 00:04:35,370 --> 00:04:40,590
175
+ ู†ูุณู‡ู… ุนู„ู‰ ุงู„ุนุฏุงูˆุฉ ูˆุงู„ุจุบุถุงุก ู„ู„ุฌู†ุณ ุงู„ุจุดุฑูŠ ูˆุงู„ุฅุณู„ุงู…
176
+
177
+ 45
178
+ 00:04:40,590 --> 00:04:46,870
179
+ ุจุตูุฉ ุฎุงุตุฉ ูู‚ุฏ ุฃุดุนูˆุง ุงู„ุฅุณุฑุงุฆูŠู„ูŠุงุช ูˆุฃุดุนูˆุง ู…ุจุฏุฃ
180
+
181
+ 46
182
+ 00:04:46,870 --> 00:04:53,630
183
+ ุงู„ุชุดูŠุน ุฃูˆ ู…ูˆุงุฏ ุงู„ุชุดูŠุน ุงู„ุจุงุทู†ุญูŠุซ ุฌุนู„ูˆุง ุนู„ูŠ ุจู† ุฃุจูŠ
184
+
185
+ 47
186
+ 00:04:53,630 --> 00:04:58,430
187
+ ุทุงู„ุจ ููˆู‚ ู…ุณุชูˆู‰ ุงู„ุจุดุฑ ูˆุฃู† ุฑูˆุญ ุงู„ุฑุณูˆู„ ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡
188
+
189
+ 48
190
+ 00:04:58,430 --> 00:05:05,650
191
+ ูˆุณู„ู… ุญู„ุช ููŠู‡ ูƒุฐู„ูƒ ูƒุงู† ู„ู„ู†ุตุงุฑู‰ ุฃุซุฑ ููŠ ุฅูุณุงุฏ ุนู‚ุงุฆุฏ
192
+
193
+ 49
194
+ 00:05:05,650 --> 00:05:13,230
195
+ ุงู„ู…ุณู„ู…ูŠู† ุจู…ุง ุฃุดุงุนูˆู‡ ู…ู† ูƒุชุจ ุงู„ู…ู†ูˆูŠุฉ ูˆุงู„ุถูŠุตุงู†ูŠุฉ
196
+
197
+ 50
198
+ 00:05:13,230 --> 00:05:18,350
199
+ ูˆุงู„ู…ุฑู‚ูˆู†ูŠุฉ ูˆุบูŠุฑ ุฐู„ูƒุฃูŠุถู‹ุง ูƒุงู†ุช ู„ุฃู‚ูˆุงู„ ุงู„ู…ุณูŠุญ ุนู„ูŠู‡
200
+
201
+ 51
202
+ 00:05:18,350 --> 00:05:26,390
203
+ ุงู„ุณู„ุงู… ุฃุซุฑ ููŠ ุดุนู„ ุงู„ุฐู‡ุฏ ูˆู‚ุฏ ุฑุฃูŠู†ุง ุฃุจุง ุงู„ุนุชุงู‡ูŠุฉ
204
+
205
+ 52
206
+ 00:05:26,390 --> 00:05:32,050
207
+ ูŠุณุชู…ุฏ ูƒุซูŠุฑู‹ุง ู…ู† ู…ุนุงู†ูŠู‡ ู…ู† ุฃู‚ูˆุงู„ ุงู„ู…ุณูŠุญ ุนู„ูŠู‡ ุงู„ุณู„ุงู…
208
+
209
+ 53
210
+ 00:05:32,050 --> 00:05:39,310
211
+ ูˆู…ู† ุฃูŠุถู‹ุง ู„ูู„ุณูุฉ ุงู„ูŠูˆู†ุงู† ุทุจุนู‹ุง
212
+
213
+ 54
214
+ 00:05:39,310 --> 00:05:43,510
215
+ ู‡ุฐู‡ ุงู„ุซู‚ุงูุงุช ุฌุงุกุช ุฅู„ู‰ ุงู„ุซู‚ุงูุฉ ุงู„ุนุฑุจูŠุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู…ู†
216
+
217
+ 55
218
+ 00:05:43,510 --> 00:05:49,810
219
+ ุฎู„ุงู„ ุงู„ุชุฑุฌู…ุฉูˆู‚ุฏ ุฑุฃูŠู†ุง ุฃู† ุงู„ู…ุฃู…ูˆู† ูŠุญูˆู„ ุฏุงุฑ ุงู„ุญูƒู…ุฉ
220
+
221
+ 56
222
+ 00:05:49,810 --> 00:05:55,830
223
+ ุฅู„ู‰ ู…ุง ูŠุดุจู‡ ุงู„ู…ุนู‡ุฏ ุงู„ุนู„ู…ูŠ ุงู„ุณุจุจ
224
+
225
+ 57
226
+ 00:05:55,830 --> 00:06:01,290
227
+ ุงู„ุซุงู†ูŠ ุฃูˆ ุงู„ู…ุคุซุฑ ุงู„ุซุงู†ูŠ ููŠ ุงู„ุญูŠุงุฉ ุงู„ุซู‚ุงููŠุฉ ู‡ูˆ
228
+
229
+ 58
230
+ 00:06:01,290 --> 00:06:07,650
231
+ ุงู„ู…ุนุชุฒู„ุฉ ูู‚ุฏ ุจุฏุฃ ู‡ุฐุง ุงู„ุนุตุฑ ูƒู…ุง ู„ูˆ ูƒุงู† ุนุตุฑุง
232
+
233
+ 59
234
+ 00:06:07,650 --> 00:06:12,800
235
+ ุงุนุชุฒุงู„ูŠุงูŠุนู†ูŠ ู…ู† ู†ุงุญูŠุฉ ุงู„ููƒุฑ ูƒุงู† ู‡ุฐุง ุงู„ุนุตุฑ ุนุตุฑ
236
+
237
+ 60
238
+ 00:06:12,800 --> 00:06:18,800
239
+ ุงุนุชุฒุงู„ูŠ ู„ูƒู† ู…ู† ู†ุงุญูŠุฉ ุงู„ุญุถุงุฑูŠุฉ ุงู„ู…ุงุฏูŠุฉุจุฏุฃ ู‡ุฐุง ุงู„ุนุตุฑ
240
+
241
+ 61
242
+ 00:06:18,800 --> 00:06:23,160
243
+ ูƒู…ุง ู„ูˆ ูƒุงู† ุนุตุฑุงู‹ ุชุงุฑูŠุณูŠุงู‹ ุจู…ุนู†ู‰ ุฃุฎุฐ ู…ู† ุงู„ูุฑุต
244
+
245
+ 62
246
+ 00:06:23,160 --> 00:06:28,920
247
+ ุงู„ุฌูˆุงู†ุจ ุงู„ุญุถุงุฑูŠุฉ ุงู„ู…ุงุฏูŠุฉ ูˆุฃุฎุฐ ู…ู† ุงู„ูŠูˆู†ุงู† ูˆููƒุฑ
248
+
249
+ 63
250
+ 00:06:28,920 --> 00:06:36,940
251
+ ุงู„ู…ุนุชุฒู„ุฉ ุงู„ู‚ูˆุงุนุฏ ุงู„ุชููƒูŠุฑ ูˆุงู„ุณู…ุฉ ุงู„ููƒุฑูŠุฉ ุงู„ุบุงู„ุจุฉ ููŠ
252
+
253
+ 64
254
+ 00:06:36,940 --> 00:06:44,630
255
+ ู‡ุฐุง ุงู„ุนุตุฑ ุงู„ู…ู‚ุตูˆุฏ ุทุจุนุงู‹ ุจุงู„ู…ุนุชุฒู„ุฉุทุจุนุงู‹ ู†ุณุจุฉ ุฅู„ู‰
256
+
257
+ 65
258
+ 00:06:44,630 --> 00:06:50,090
259
+ ุงุนุชุฒุงู„ ูˆุงุตู„ ุงุจู† ุนุทุงุก ู„ู…ุฌุงู„ุณ ุงู„ุญุณู† ุงู„ุจุตุฑูŠ ุฅุฐ ุฅู†
260
+
261
+ 66
262
+ 00:06:50,090 --> 00:06:56,750
263
+ ุงู„ุญุณู† ุงู„ุจุตุฑูŠ ูƒุงู† ูŠุนุชู…ุฏ ููŠ ู†ุดุฑ ุงู„ุฏูŠู† ุงู„ุฅุณู„ุงู…ูŠ ุนู„ู‰
264
+
265
+ 67
266
+ 00:06:56,750 --> 00:07:04,850
267
+ ุงู„ู†ู‚ู„ ุฃู…ุง ูˆุงุตู„ ูู‚ุฏ ุฃุฑุงุฏ ุฃู† ูŠูƒูˆู† ุงู„ุนู‚ู„ ู‡ูˆ ุงู„ู…ุนุชู…ุฏ
268
+
269
+ 68
270
+ 00:07:04,850 --> 00:07:10,790
271
+ ููŠ ุดุฑุญ ุงู„ู…ุณุงุฆู„ ุงู„ุฏูŠู†ูŠุฉุทุจุนู‹ุง ู…ู† ุฃู‡ู… ู‡ุฐู‡ ุงู„ู…ุณุงุฆู„
272
+
273
+ 69
274
+ 00:07:10,790 --> 00:07:14,630
275
+ ุงู„ุฏูŠู†ูŠุฉ ุงู„ุชูŠ ุฏุงุฑุฉ ุญูˆู„ู‡ุง ุนู„ู… ุงู„ูƒู„ุงู… ูˆู†ุดุงุท ุงู„ู…ุนุชุฒู„ุฉ
276
+
277
+ 70
278
+ 00:07:14,630 --> 00:07:19,910
279
+ ู‡ูŠ ุฎู…ุณุฉ ู…ุณุงุฆู„ ุงู„ู…ุณุฃู„ุฉ ุงู„ุฃูˆู„ู‰ ุฃูˆ ุงู„ุฃุตู„ ุงู„ุฃูˆู„ ู‡ูˆ
280
+
281
+ 71
282
+ 00:07:19,910 --> 00:07:26,010
283
+ ุงู„ุชูˆุญูŠุฏ ูˆุงู„ุนุฏู„ ูˆุงู„ูˆุนุฏ ูˆุงู„ูˆุนูŠุฏ ูˆุงู„ู‚ูˆู„ ุจุฃู† ู…ู†ุฒู„ุฉ
284
+
285
+ 72
286
+ 00:07:26,010 --> 00:07:30,810
287
+ ู…ุฑุชูƒุจ ุงู„ูƒุจูŠุฑุฉ ุจูŠู† ู…ู†ุฒู„ุชูŠู† ูˆุฃุฎูŠุฑู‹ุง ุงู„ุฃู…ุฑ ุงู„ู…ุนุฑูˆู
288
+
289
+ 73
290
+ 00:07:30,810 --> 00:07:38,350
291
+ ูˆุงู†ู‡ูŠ ุนู†ู‡ ุงู„ู…ู†ูƒุฑู‡ุฐู‡ ู‡ูŠ ูŠุนู†ูŠ ุงู„ุฃุตูˆู„ ุงู„ุฎุงู…ุณุฉ ุงู„ุชูŠ
292
+
293
+ 74
294
+ 00:07:38,350 --> 00:07:43,130
295
+ ุฏุงุฑ ุญูˆู„ู‡ุง ุนู„ู… ุงู„ูƒู„ุงู… ูˆุทุจุนุง ุจุงู„ุตูุฉ ุงู„ุฃุณุงุณูŠุฉ ุงู„ู„ูŠ ู‡ู…
296
+
297
+ 75
298
+ 00:07:43,130 --> 00:07:50,350
299
+ ุฅูŠู‡ ุงู„ู…ุนุชุฒู„ุฉ ุจุนุฏ ูˆุงุตู„ ุจู† ุนุทุงุก ุฌุงุก ุนู…ุฑ ุนู…ุฑ ุจู† ุนุจูŠุฏ
300
+
301
+ 76
302
+ 00:07:51,170 --> 00:07:57,030
303
+ ูˆุจุนุฏ ุฐู„ูƒ ุงุชูุฑุนุช ุงู„ู…ุนุชุฒู„ุฉ ุฅู„ู‰ ูุฑู‚ ุนู„ู‰ ุญุณุจ ุฃุตุญุงุจู‡ุง
304
+
305
+ 77
306
+ 00:07:57,030 --> 00:08:02,790
307
+ ู…ุซู„ ุงู„ุซู…ุงู…ูŠุฉ ู†ุณุจุฉ ุฅู„ู‰ ุซู…ุงู…ุฉ ุงุจู† ุฃุดุฑู ูˆุงู„ุจุดุฑูŠุฉ ู†ุณุจุฉ
308
+
309
+ 78
310
+ 00:08:02,790 --> 00:08:06,650
311
+ ุฅู„ู‰ ุจุดุฑ ุงุจู† ู…ุนุชู…ุฑ ูˆุงู„ู†ุธุงู…ูŠุฉ ู†ุณุจุฉ ุฅู„ู‰ ุงู„ู†ุธุงู…
312
+
313
+ 79
314
+ 00:08:07,520 --> 00:08:13,520
315
+ ูˆุงู„ุฌุงุญุธูŠุฉ ู†ุณุจุฉ ุฅู„ู‰ ุงู„ุฌุงุญุธ ูˆุจุฐู„ูƒ ุงุฑุชู‚ุช ุงู„ุญูŠุงุฉ
316
+
317
+ 80
318
+ 00:08:13,520 --> 00:08:17,640
319
+ ุงู„ุนู‚ู„ูŠุฉ ูˆุงู„ุนู‚ู„ ุงู„ุนุฑุจูŠ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุงุฑุชู‚ุงุกู‹ ุญูŠุซ
320
+
321
+ 81
322
+ 00:08:17,640 --> 00:08:24,860
323
+ ุฃุตุจุญ ุงู„ุนู‚ู„ ุงู„ุนุฑุจูŠ ุนู‚ู„ุงู‹ ุฌุฏู„ุงู‹ ู…ุชูู„ุณูุงู‹ ูŠู†ุงู‚ุด
324
+
325
+ 82
326
+ 00:08:24,860 --> 00:08:33,560
327
+ ุงู„ุฃู…ูˆุฑ ูˆูู‚ู‹ุง ู„ู…ู‚ุชู„ูŠุงุช ุงู„ู…ู†ุทู‚ ูˆุนู„ู… ุงู„ูƒู„ุงู… ุงู„ู…ุคุซุฑ
328
+
329
+ 83
330
+ 00:08:33,560 --> 00:08:41,000
331
+ ุงู„ุซุงู„ุซู…ู† ู…ุคุซุฑุงุช ุงู„ุซู‚ุงูุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ู‡ูˆ ุฌู‡ูˆุฏ ุนู„ู…ุงุก
332
+
333
+ 84
334
+ 00:08:41,000 --> 00:08:48,120
335
+ ุงู„ู„ุบุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูู‚ุฏ ุงู†ุตุจ ุฌู‡ูˆุฏ ุนู„ู…ุงุก ุงู„ู„ุบุฉ ุนู„ู‰
336
+
337
+ 85
338
+ 00:08:48,120 --> 00:08:56,500
339
+ ุฃู…ุฑูŠู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„ ู‡ูˆ ุฌู…ุน ุงู„ู„ุบุฉ ูˆุฑูˆุงูŠุฉ ุงู„ุดุนุฑ ูˆู†ุฑุงุญุธ
340
+
341
+ 86
342
+ 00:08:56,500 --> 00:09:01,100
343
+ ุฃู† ุนู„ู…ุงุก ุงู„ู„ุบุฉ ู„ู… ูŠูƒูˆู†ูˆุง ู…ูˆุถูˆุนูŠูŠู† ููŠ ุฌู…ุน ุงู„ู„ุบุฉ
344
+
345
+ 87
346
+ 00:09:01,100 --> 00:09:07,300
347
+ ูˆุฐู„ูƒ ู„ุฃู† ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉู…ุฑุชุจุทุฉ ุจุงุนุชุจุงุฑ ุฏูŠู†ูŠ ูˆุงุนุชุจุงุฑ
348
+
349
+ 88
350
+ 00:09:07,300 --> 00:09:16,060
351
+ ู‚ูˆู…ูŠ ูˆู„ุฐู„ูƒ ุงูƒุชุณุจุช ุฌู‡ูˆุฏู‡ู… ุจุงู„ุฐุงุชูŠุฉ ู„ุฃู† ู†ุธุฑู‡ ุฅู„ู‰
352
+
353
+ 89
354
+ 00:09:16,060 --> 00:09:20,820
355
+ ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉ ุนู„ู‰ ุฃู†ู‡ุง ู…ุจุฏุฃ ูˆู‚ูŠู…ุฉ ูƒู…ุง ุงู„ุฏูŠู†
356
+
357
+ 90
358
+ 00:09:20,820 --> 00:09:25,700
359
+ ูˆุงู„ู‚ูˆู…ูŠุฉ ูˆุฃูŠุถุง
360
+
361
+ 91
362
+ 00:09:26,660 --> 00:09:31,200
363
+ ุฃู†ู‡ู… ู†ุธุฑูˆุง ุฅู„ู‰ ุฃุนู„ู‰ ู…ุณุชูˆู‰ ููŠ ุงู„ู„ุบุฉ ูˆู‡ูˆ ุงู„ุดุนุฑ
364
+
365
+ 92
366
+ 00:09:31,200 --> 00:09:39,640
367
+ ูุงู„ุดุนุฑ ูŠุญุชุถู† ุงู„ู†ู…ูˆุฐุฌ ุงู„ู„ุบูˆูŠ ุงู„ุดุนุฑ ูŠู…ุซู„ ุฃุนู„ู‰ ู…ุณุชูˆู‰
368
+
369
+ 93
370
+ 00:09:39,640 --> 00:09:46,040
371
+ ู„ู„ุบุฉ ูู„ู… ูŠู‚ูˆู…ูˆุง ุจุฌู…ุน ุงู„ู…ุณุชูˆู‰ ุงู„ุนุงู… ู…ุซู„ุง ุฃูˆ
372
+
373
+ 94
374
+ 00:09:46,040 --> 00:09:53,340
375
+ ุงู„ู…ุณุชุนู…ู„ ุจูŠู† ุนุงู…ุฉ ุงู„ู†ุงุณ ูˆุงู†ู…ุง ุฌู…ุนูˆุง ุงู„ู…ุณุชูˆู‰ ุงู„ูุตูŠุญ
376
+
377
+ 95
378
+ 00:09:54,440 --> 00:09:58,820
379
+ ุจุงู„ุฅูŠู‡ุŸ ุงู„ุบุฑูŠุจ ุฃูŠุถู‹ุง ูŠุนู†ูŠ ุฑูƒู‘ุฒูˆุง ุนู„ู‰ ุงู„ุบุฑูŠุจ
380
+
381
+ 96
382
+ 00:09:58,820 --> 00:10:08,620
383
+ ูˆุงู„ู†ุงุฏุฑูˆุทุจุนู‹ุง ุงู„ุฌุงุญุธ ูŠุนู†ูŠ ูŠู‚ูˆู„ ููŠ ุจูŠุงู† ู…ู†ู‡ุฌ ุนู„ู…ุงุก
384
+
385
+ 97
386
+ 00:10:08,620 --> 00:10:14,680
387
+ ุงู„ู„ุบุฉ ยซู„ู… ุฃุฑู‰ ุบุงูŠุฉ ุงู„ู†ุญูˆูŠูŠู† ุฅู„ุง ูƒู„ ุดุนุฑ ููŠู‡ ุฅุบุฑุงุจุŒ
388
+
389
+ 98
390
+ 00:10:14,680 --> 00:10:21,560
391
+ ูˆู„ู… ุฃุฑู‰ ุบุงูŠุฉ ุฑูˆุงุช ุงู„ุดุนุฑูŠ ุฅู„ุง ูƒู„ ุดุนุฑ ููŠู‡ ุบุฑูŠุจุŒ ุฃูˆ
392
+
393
+ 99
394
+ 00:10:21,560 --> 00:10:27,770
395
+ ู…ุนู†ู‰ ุตุนุจ ูŠุญุชุงุฌ ุฅู„ู‰ ุงุณุชุฎุฑุงุฌยปู‡ุฐุง ู‡ูˆ ู…ู†ู‡ุฌ ุนู„ู…ุงุก ุงู„ู„ุบุฉ
396
+
397
+ 100
398
+ 00:10:27,770 --> 00:10:33,410
399
+ ููŠ ุฌู…ุน ุงู„ู„ุบุฉ ูˆุฑูˆุงุช ุงู„ุดุนุฑ ูƒุงู†ูˆุง ูŠู‡ุชู…ูˆู† ุจุงู„ุดุนุฑ
400
+
401
+ 101
402
+ 00:10:33,410 --> 00:10:41,090
403
+ ุงู„ู†ุงุฏุฑ ูˆุจูŠุฆุฉ ุงู„ุบุฑูŠุจ ูˆุงู„ู†ุงุฏุฑ ู…ู† ุงู„ู„ุบุฉ ูˆุฃูŠุถู‹ุง ุฃู†ู‡ู…
404
+
405
+ 102
406
+ 00:10:41,090 --> 00:10:45,470
407
+ ุนู†ุฏู…ุง ุฌู…ุนูˆุง ุงู„ู„ุบุฉ ู„ู… ูŠุฌู…ุนูˆู‡ุง ู…ู† ูƒู„ ุงู„ุฃู…ุงูƒู† ุจู„
408
+
409
+ 103
410
+ 00:10:45,470 --> 00:10:50,870
411
+ ุงุฎุชุงุฑูˆุง ุฃู…ุงูƒู† ู…ุญุฏุฏุฉ ูˆุดุนุฑุงุก ู…ุญุฏุฏูŠู† ูู…ุซู„ู‹ุง ุฌู…ุนูˆุง
412
+
413
+ 104
414
+ 00:10:50,870 --> 00:10:56,950
415
+ ุงู„ู„ุบุฉ ู…ู† ุงู„ุจุงุฏูŠุฉูˆู„ุฐู„ูƒ ู…ู† ุฃูƒุซุฑ ุดุนุฑุงุฆู‡ู… ู‡ู… ุดุนุฑุงุก
416
+
417
+ 105
418
+ 00:10:56,950 --> 00:11:03,610
419
+ ุงู„ุจุงุฐูŠุฉ ู…ุซู„ ุฃุจูˆ ุงู„ุจูŠุฏุงุก ุงู„ุฑูŠุงุญูŠ ูˆุงุจู† ุงู„ุฏู…ูŠู†ุฉ ูˆุงุจู†
420
+
421
+ 106
422
+ 00:11:03,610 --> 00:11:10,050
423
+ ู…ูŠุงุฏุฉ ูˆุฃุจูŠ ุญูŠู‡ ู†ู…ูŠุฑูŠ ูˆุฃุจูŠ ุถู…ุถู… ุงู„ูƒู„ุงุจูŠ ูˆุฃุจูŠ
424
+
425
+ 107
426
+ 00:11:10,050 --> 00:11:18,550
427
+ ุงู„ุนู…ูŠุซู„ ูˆุนู…ุงุฑุฉ ุงุจู† ุนู‚ูŠู„ ูˆุงุฎุฑูˆู† ูˆุงุฎุฑูŠู† ุฅุฐุง ู†ู„ุงุญุธ ุฃู†
428
+
429
+ 108
430
+ 00:11:18,550 --> 00:11:23,200
431
+ ุนู„ู…ุงุก ุงู„ู„ุบุฉ ู„ู… ูŠูƒูˆู†ูˆุง ู…ูˆุถูˆุนูŠู†ู…ู† ู†ุงุญูŠุฉ ุงู„ุฃุฎุชูŠุงุฑ ูู‚ุฏ
432
+
433
+ 109
434
+ 00:11:23,200 --> 00:11:28,520
435
+ ุงุฎุชุงุฑูˆุง ุฃุนู„ู‰ ู…ุณุชูˆู‰ ููŠ ุงู„ู„ุบุฉ ูˆู‡ูŠ ู„ุบุฉ ุงู„ุดุนุฑูˆุงู„ุฃู…ุฑ
436
+
437
+ 110
438
+ 00:11:28,520 --> 00:11:33,280
439
+ ุงู„ุชุงู†ูŠ ุฃุฎุชุงุฑูˆุง ุฃู…ุงูƒู† ู…ุญุฏุฏุฉ ุจู„ ุฃูŠุถู‹ุง ู…ู† ุงู„ู†ุงุญูŠุฉ
440
+
441
+ 111
442
+ 00:11:33,280 --> 00:11:38,720
443
+ ุงู„ุฒู…ู†ูŠุฉ ูˆุถุนูˆุง ุฒู…ู†ุง ู…ุญุฏุฏู‹ุง ูˆู‡ูˆ ู…ู†ุชุตู ุงู„ู‚ุฑู† ุงู„ุซุงู†ูŠ
444
+
445
+ 112
446
+ 00:11:38,720 --> 00:11:44,740
447
+ ุงู„ู‡ุฌุฑูŠ ููŠู…ุง ูŠุชุนู„ู‚ ุจุงู„ุญูˆุงุถุฑ ูˆู…ู†ุชุตู ุงู„ู‚ุฑู† ุงู„ุฑุงุจุน
448
+
449
+ 113
450
+ 00:11:44,740 --> 00:11:54,260
451
+ ุงู„ู‡ุฌุฑูŠ ููŠู…ุง ูŠุชุนู„ู‚ ุจุงู„ุจูˆุงุฏูŠ ูˆุจู‡ุฐุง ู†ุฌุฏ ุฃู†ู‡ู†ุงูƒ ุฃูŠุถู‹ุง
452
+
453
+ 114
454
+ 00:11:54,260 --> 00:11:59,540
455
+ ู…ู†ู‡ุฌูŠุฉ ุนู†ุฏู‡ู… ุตุญูŠุญ ุฃู†ู‡ู… ู„ู… ูŠูƒูˆู†ูˆุง ู…ูˆุถูˆุนูŠูŠู† ู„ูƒู† ูƒุงู†ุช
456
+
457
+ 115
458
+ 00:11:59,540 --> 00:12:07,740
459
+ ู„ุฏูŠู‡ุง ู…ู†ู‡ุฌูŠุฉ ุชุนุฒุฒ ู†ู‡ุฌู‡ู… ุงู„ุญุฑูŠุต ุนู„ู‰ ุญู…ุงูŠุฉ ุงู„ู„ุบุฉ
460
+
461
+ 116
462
+ 00:12:07,740 --> 00:12:15,600
463
+ ุงู„ุนุฑุจูŠุฉ ู…ู† ุงู„ู„ุญู† ูˆุงู„ุฎุทุฃ ูˆุงู„ู‡ุฏู
464
+
465
+ 117
466
+ 00:12:15,600 --> 00:12:20,460
467
+ ู…ู† ู‡ุฐุง ุฃู† ูŠู‚ุฏู‘ู…ูˆุง ู„ู„ุฌูŠู„ ุงู„ุฌุฏูŠุฏ ุงู„ู†ู…ูˆุฐุฌ ุงู„ุฐูŠ ูŠุญุชูƒู…
468
+
469
+ 118
470
+ 00:12:20,460 --> 00:12:31,740
471
+ ุฅู„ูŠู‡ูˆุงู„ุฐูŠ ูŠู†ุจุบูŠ ุฃู† ูŠุณูŠุฑ ุนู„ูŠู‡ ุงู„ู†ุงุณ ูˆุชุญุชูƒู…
472
+
473
+ 119
474
+ 00:12:31,740 --> 00:12:38,380
475
+ ุฅู„ูŠู‡ ุงู„ู‚ุงุนุฏุฉ ุงู„ู†ุญูˆูŠุฉ ูˆุงู„ู„ุบูˆูŠุฉ ูุญู„ ุงู„ุฅุดูƒุงู„ ุงู„ู„ุบูˆูŠ
476
+
477
+ 120
478
+ 00:12:38,380 --> 00:12:43,100
479
+ ุฅู†ู…ุง ูŠูƒูˆู† ุจุงู„ุฑุฌูˆุน ุฅู„ู‰ ุงู„ุฃุตู„ ูˆู„ุฐู„ูƒ ุงู‡ุชู…ูˆุง ุจุงู„ุบู†ูŠุจ
480
+
481
+ 121
482
+ 00:12:43,100 --> 00:12:50,110
483
+ ูˆุจุงู„ู†ุงุฏุฑูƒุฐู„ูƒ ูƒุงู† ู‡ู…ู‡ู… ู…ู† ุฐู„ูƒ ุฃู† ูŠุญุงูุธูˆุง ุนู„ู‰
484
+
485
+ 122
486
+ 00:12:50,110 --> 00:12:54,690
487
+ ุงู„ุตู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ ู…ู† ุฃู† ุชู†ุชู‚ุต ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุจูุนู„
488
+
489
+ 123
490
+ 00:12:54,690 --> 00:13:05,270
491
+ ุงู„ู‡ุฌู…ุฉ ุงู„ูู„ุณููŠุฉ ูˆุงู„ุญุถุงุฑุงุช ุงู„ุฃุฎุฑู‰ ุฃูŠุถู‹ุง ูˆุฌุฏู†ุง ุฃู†ู‡ู…
492
+
493
+ 124
494
+ 00:13:05,270 --> 00:13:12,070
495
+ ูŠุฑูŠุฏูˆู† ุฃู† ูŠุคุณุณูˆุง ู„ู„ู‚ุงุนุฏุฉ ุงู„ู†ุญูˆูŠุฉ ูู‡ุฐุง ู‡ูˆ ุงู„ุฐูŠ
496
+
497
+ 125
498
+ 00:13:12,070 --> 00:13:17,260
499
+ ุฏูุนู‡ู… ุฅู„ู‰ ุฃู† ูŠู†ุชู‚ูˆุงุงู„ู…ุณุชูˆู‰ ุงู„ุนุงู„ูŠ ู…ู† ุงู„ู„ุบุฉ
500
+
501
+ 126
502
+ 00:13:17,260 --> 00:13:24,680
503
+ ู„ูŠุญุงูุธูˆุง ุนู„ู‰ ู„ุบุฉ ุงู„ู‚ุฑุขู† ุงู„ูƒุฑูŠู… ูˆู…ุง ูŠุฏู„ ุนู„ู‰ ุฃู†
504
+
505
+ 127
506
+ 00:13:24,680 --> 00:13:34,200
507
+ ุงู„ุตู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉู„ู… ุชู†ุชู‚ุต ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูˆุฌุฏู†ุง ุงุจุง
508
+
509
+ 128
510
+ 00:13:34,200 --> 00:13:40,420
511
+ ู†ูˆุงุณ ูŠุญูุธ ุณุชูŠู† ุฏูŠูˆุงู†ุง ู…ู† ุฏูˆุงูˆูŠู† ุงู„ู†ุณุงุก ุบูŠุฑ ู…ุง ูƒุงู†
512
+
513
+ 129
514
+ 00:13:40,420 --> 00:13:45,140
515
+ ูŠุญูุธู‡ ู…ู† ุฏูˆุงูˆูŠู† ุงู„ุฑุฌุงู„ ูˆูƒุฐู„ูƒ ูƒุงู† ูŠุญูุธ ุณุจุนู…ุงุฆุฉ
516
+
517
+ 130
518
+ 00:13:45,140 --> 00:13:52,160
519
+ ุฃุฑุฌูˆุฒุฉ ุบูŠุฑ ู…ุง ูƒุงู† ูŠุญูุธู‡ ู…ู† ุงู„ู‚ุตูŠุฏูˆูŠู‚ูˆู„ ููŠู‡ ุงู„ุฌุงุญุธ
520
+
521
+ 131
522
+ 00:13:52,160 --> 00:13:58,760
523
+ ู…ุง ุฑุฃูŠุช ุฃุญุฏุง ุฃุนู„ู… ุจุงู„ู„ุบุฉ ู…ู† ุฃุจูŠ ู†ูˆุงุณ ูˆู„ุง ุฃูุตุญ ู„ู‡ุฌุฉ
524
+
525
+ 132
526
+ 00:13:58,760 --> 00:14:04,500
527
+ ู…ุญู„ุงูˆุฉ ูˆู…ุฌุงู†ุจุฉ ู„ุงุณุชู‚ุฑุงุฑ ู‡ุฐุง ุฏู„ูŠู„ ุนู„ู‰ ุฃู† ุงู„ุตู„ูŠู‚ุฉ
528
+
529
+ 133
530
+ 00:14:04,500 --> 00:14:08,920
531
+ ุงู„ุนุฑุจูŠุฉ ู„ู… ุชู†ุชู‚ุต ูู‚ุฏ ู‚ุฏู… ุนู„ู…ุงุก ุงู„ู„ุบุฉ ู…ุงุฏุฉ ู„ุบูˆูŠุฉ
532
+
533
+ 134
534
+ 00:14:08,920 --> 00:14:15,840
535
+ ุฏุณู…ุฉ ู„ู„ุดุนุฑุงุกูŠุณุชุทูŠุนูˆุง ู…ู† ุฎู„ุงู„ู‡ุง ุฃู† ูŠุณุชุนูŠุฏูˆุง ุงู„ุตู„ูŠู‚ุฉ
536
+
537
+ 135
538
+ 00:14:15,840 --> 00:14:23,860
539
+ ุงู„ุนุฑุจูŠุฉ ุงู„ุชูŠ ูƒุงู†ุช ุนุฏุฉ ุงู„ุดุงุนุฑ ููŠ ุงู„ุนุตุฑ ุงู„ุฌุงู‡ู„ ูˆูƒุฐู„ูƒ
540
+
541
+ 136
542
+ 00:14:23,860 --> 00:14:30,960
543
+ ูˆุฌุฏู†ุง ุจุดุงุฑ ุจูŠูˆ ุจูˆุฑุฏ ูŠุชู…ุซู„ ุงู„ุตู„ูŠู‚ุฉ ุฎูŠุฑ ุชู…ุซู„ ูู‚ุฏ ูƒุงู†
544
+
545
+ 137
546
+ 00:14:30,960 --> 00:14:38,020
547
+ ููŠ ู…ุฌู„ุณ ุนู‚ุจ ุงุจู† ุณู„ู… ูˆููŠ ุงู„ู…ุฌู„ุณ ูƒุงู† ุงู„ุฑุงุฌุฏ ุนู‚ุจ ุงุจู†
548
+
549
+ 138
550
+ 00:14:38,020 --> 00:14:45,740
551
+ ุฑุคุจุฉ ุงุจู† ุงู„ุนุฌุงุฌุงู„ุฐูŠ ู…ุฏุญ ุนู‚ุจู‰ ุงุจู† ุณู„ุจ ุฃุฑุฌูˆุฒุฉ ุซู… ู‚ุงู„
552
+
553
+ 139
554
+ 00:14:45,740 --> 00:14:52,260
555
+ ู„ุจุดุงุฑ ุจุนุฏ ุฅู†ุดุงุฏู‡ ู„ู‡ุฐู‡ ุงู„ุฃุฑุฌูˆุฒุฉ ู‡ุฐุง ุทุฑุงุฒ ู„ุง ุชุญุณู†ู‡
556
+
557
+ 140
558
+ 00:14:52,260 --> 00:14:59,020
559
+ ูŠุง ุฃุจุง ู…ุนุงุฐ ูุบุถุจ ุจุดุงุฑ ูˆู‚ุงู„ ุฃู†ุง ุฃุฑุฌุฒ ู…ู†ูƒ ูˆู…ู† ุฃุจูŠูƒ
560
+
561
+ 141
562
+ 00:14:59,020 --> 00:15:07,360
563
+ ูˆู…ู† ุฌุฏูƒ ูˆูŠู‚ุตุฏ ุจุฐู„ูƒ ุฃูŠู‡ ุงู„ุนุฌุงุฌ ูˆุนุฌุงุจ ุงุจู† ุนู‚ุจู‰ ูˆุฃู†ุดุฏ
564
+
565
+ 142
566
+ 00:15:07,360 --> 00:15:16,640
567
+ ุจุดุงุฑุนู‚ุจุฉ ุฃุฑุฌูˆุฒุฉ ูู‚ุงู„ ููŠ ู…ุณุชู‡ู„ู‡ุง ูŠุง ุทู„ู„ ุงู„ุญูŠ ุจุฐุงุช
568
+
569
+ 143
570
+ 00:15:16,640 --> 00:15:22,500
571
+ ุงู„ุตู…ุฏ ุจุงู„ู„ู‡ ุฎุจุฑ ูƒูŠู ูƒู†ุช ุจุนุฏู‡ ูุทู„ุจู‡ ุนู‚ุจุฉ ุงุจู† ุณู„ู…
572
+
573
+ 144
574
+ 00:15:22,500 --> 00:15:28,080
575
+ ูˆูƒูุงุกู‡ ู…ูƒุงูุฆุฉ ูƒุจูŠุฑุฉ ู‡ุฐุง ูŠุฏู„ ุนู„ู‰ ุฃู† ุงู„ุตุฑูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ
576
+
577
+ 145
578
+ 00:15:28,080 --> 00:15:35,650
579
+ ู„ู… ุชู†ุชู‚ุต ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุจูุถู„ ุฌู‡ูˆุฏ ุนู„ู…ุงุก ุงู„ู„ุบุฉุฃูŠุถู‹ุง
580
+
581
+ 146
582
+ 00:15:35,650 --> 00:15:43,270
583
+ ู…ุง ูŠุฏู„ ุนู„ู‰ ุชู…ุซู„ ุงู„ุดุนุฑุงุก ุงู„ู…ุญุฏุซูŠู† ู„ู„ุดุนุฑ ุงู„ู‚ุฏูŠู… ูˆุฃู†
584
+
585
+ 147
586
+ 00:15:43,270 --> 00:15:51,690
587
+ ุงู„ุณู„ูŠู‚ุฉ ู„ู… ุชู†ุชู‚ุต ุฃู† ุจุดุงุฑู‹ุง ุฃู†ุดุฏ
588
+
589
+ 148
590
+ 00:15:51,690 --> 00:15:58,500
591
+ ุฎู„ู ุงู„ุฃุญู…ุฑ ู‚ุตูŠุฏุชู‡ ููŠ ุณู„ู… ุงุจู† ู‚ุชูŠุจุฉูู‚ุงู„ ู‚ุงู„ ููŠู‡ุง
592
+
593
+ 149
594
+ 00:15:58,500 --> 00:16:04,340
595
+ ุจูƒุฑุง ุตุงุญุจูŠุง ู‚ุจู„ ุงู„ู‡ุฌูŠุฑู‰ ุฅู† ุฐุงูƒ ุงู„ู†ุฌุงุญ ููŠ ุงู„ุชุจูƒูŠุฑ
596
+
597
+ 150
598
+ 00:16:05,520 --> 00:16:12,340
599
+ ูุณุฃู„ู‡ ุฎู„ู ุนู† ุงูƒุซุงุฑู‡ ู„ู„ุบุฑูŠุจ ูู‚ุงู„ ุจู„ุบู†ูŠ ุฃู† ุณู„ู…ุงู† ูƒุงู†
600
+
601
+ 151
602
+ 00:16:12,340 --> 00:16:19,680
603
+ ูŠุชุจุงุตุฑ ุจุงู„ุบุฑูŠุจ ูŠุนู†ูŠ ูŠุทู„ุจ ุงู„ุบุฑูŠุจ ู„ุฃู† ุงู„ุบุฑูŠุจ ูŠุนุทูŠ
604
+
605
+ 152
606
+ 00:16:19,680 --> 00:16:26,100
607
+ ุตูุฉ ุงู„ุฃุตุงู„ุฉ ููŠ ุงู„ู†ุต ูˆุทุจุนุง ุงู„ุฃู…ุฑุงุก ูˆุงู„ูˆู„ุงู‡ ูŠุจุญุซูˆู†
608
+
609
+ 153
610
+ 00:16:26,100 --> 00:16:31,340
611
+ ุนู† ู‡ุฐุง ุงู„ุนู†ุตุฑ ุงู„ุฃุตุงู„ุฉ ุญุชู‰ ูŠุนุฒุฒ ู…ูƒุงู†ุชู‡ู… ุงู„ุณูŠุงุณูŠุฉ
612
+
613
+ 154
614
+ 00:16:31,340 --> 00:16:38,760
615
+ ูˆู‚ุงู„ ู„ู‡ู„ูˆ ู‚ู„ุช ู…ูƒุงู† ุฅู† ุฐุง ูƒุงู† ู†ุฌุงุญ ููŠ ุงู„ุชุจูƒูŠุฑ ู„ูˆ
616
+
617
+ 155
618
+ 00:16:38,760 --> 00:16:45,080
619
+ ู‚ู„ุช ุจูƒุฑุง ูุงู„ู†ุฌุงุญ ููŠ ุงู„ุชุจูƒูŠุฑ ูุฃุฌุงุจู‡ ุจุดุนู„ ููˆุฑ ุฅู†ูŠ
620
+
621
+ 156
622
+ 00:16:45,080 --> 00:16:51,540
623
+ ุจู†ูŠุชู‡ุง ุนุฑุจูŠุฉ ูˆุญุดูŠุฉ ูˆู‡ูƒุฐุง ู†ุฌุฏ ุฃู† ุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ู‚ุฏ
624
+
625
+ 157
626
+ 00:16:51,540 --> 00:16:59,330
627
+ ู†ูุฐ ุฅู„ู‰ ุฏู‚ุงุฆู‚ ู„ุบูˆูŠุฉ ูˆุฃุณู„ูˆุจูŠุฉุชุฏู„ ุนู„ู‰ ุฃู†ู‡ ุชู…ุซู„
628
+
629
+ 158
630
+ 00:16:59,330 --> 00:17:04,470
631
+ ุงู„ุตู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ ุฎูŠุฑ ุชู…ุซู„ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุจูุถู„ ู‡ุฐู‡
632
+
633
+ 159
634
+ 00:17:04,470 --> 00:17:11,170
635
+ ุงู„ุฌู‡ูˆุฏ ุงู„ุนุธูŠู…ุฉ ุงู„ุชูŠ ู‚ุงู… ุจู‡ุง ุนู„ู…ุงุก ุงู„ู„ุบุฉ ูˆู‚ู„ู†ุง ุฅู†
636
+
637
+ 160
638
+ 00:17:11,170 --> 00:17:17,790
639
+ ุนู„ู…ุงุก ุงู„ู„ุบุฉ ู‚ุฏ ุญุฏุฏูˆุง ู…ูƒุงู† ู„ู„ุฃุฎุฑ ุงู„ู„ุบูˆูŠ ูุฃุจูˆ ุนู…ุฑูˆ
640
+
641
+ 161
642
+ 00:17:17,790 --> 00:17:24,180
643
+ ุจู† ุงู„ุนู„ุงู‚ ุดูŠุฎ ุนู„ู…ุงุก ุงู„ุจุตุฑุฉ ูŠู‚ูˆู„ู„ุง ุฃู‚ูˆู„ ู‚ุงู„ุฉ ุงู„ุนุฑุจ
644
+
645
+ 162
646
+ 00:17:24,180 --> 00:17:30,740
647
+ ุฅู„ุง ู…ุง ุณู…ุนุชู… ู…ู† ุนุงู„ูŠุฉ ุงู„ุณุงูู„ุฉ ูˆุณุงูู„ุฉ ุงู„ุนุงู„ูŠุฉ ูˆูŠู‚ุต
648
+
649
+ 163
650
+ 00:17:30,740 --> 00:17:36,240
651
+ ุจุฐู„ูƒ ุงู„ุฌุฒุก ุงู„ุบุฑุจูŠ ู…ู† ู†ุฌุฏ ูˆุงู„ุณููˆุญ ุงู„ุดุฑู‚ูŠุฉ ู„ุฌุจุงู„
652
+
653
+ 164
654
+ 00:17:36,240 --> 00:17:43,130
655
+ ุงู„ุญุฌุงุฒู‡ุฐุง ู‡ูˆ ู…ูƒุงู† ุงู„ุฃุฎุฐ ุงู„ู„ุบูˆูŠ ูู„ู… ๏ฟฝ๏ฟฝุฃุฎุฐูˆุง ู…ุซู„ุง ู…ู†
656
+
657
+ 165
658
+ 00:17:43,130 --> 00:17:50,850
659
+ ุงู„ู…ู†ุงุทู‚ ุงู„ุชูŠ ุชุชุงุฎู… ุงู„ู€Rome ุฃูˆ ุงู„ู€France ุฃูˆ ุงู„ุญุจุดุฉ
660
+
661
+ 166
662
+ 00:17:50,850 --> 00:17:58,330
663
+ ุฃูˆ ุงู„ู‡ู†ูˆุฏ ูู‚ุงู„ ุฃุจูˆ ู†ุตุฑ ุงู„ูุฑุงุจูŠ ูˆู„ู… ูŠูุฃุฎุฐ ุนู† ุบูŠุฑู‡ู…
664
+
665
+ 167
666
+ 00:17:58,330 --> 00:18:02,450
667
+ ูŠุนู†ูŠ ุนู† ู‡ุฐู‡ ุงู„ู‚ุจุงุฆู„ ุงู„ู‚ุจุงุฆู„ ุงู„ู†ุฌุฏุฉ ุงู„ู„ูŠ ู‡ูŠ ู‚ูŠุณ
668
+
669
+ 168
670
+ 00:18:02,450 --> 00:18:07,110
671
+ ูˆุชู…ูŠู… ูˆุฃุณุฏูˆู„ู… ูŠูุฃุฎุฐ ุนู† ุบูŠุฑู‡ู… ู…ู† ุณุงุฆุฑ ู‚ุจุงุฆู„ู‡ู…
672
+
673
+ 169
674
+ 00:18:07,110 --> 00:18:12,730
675
+ ูˆุจุงู„ุฌู…ู„ุฉ ูุฅู†ู‡ ู„ู… ูŠูุฃุฎุฐ ุนู† ุญุถุฑูŠ ู‚ุท ูˆู„ุง ุนู† ุซูƒุงู†
676
+
677
+ 170
678
+ 00:18:12,730 --> 00:18:18,310
679
+ ุงู„ุจุฑุงุฑูŠ ูู…ู† ูƒุงู† ูŠุณูƒู† ุฃุทุฑุงู ุจู„ุงุฏู‡ู… ุงู„ู…ุฌุงูˆุฑุฉ ูƒุณุงุฆุฑ
680
+
681
+ 171
682
+ 00:18:18,310 --> 00:18:25,830
683
+ ุงู„ุฃู…ู… ุงู„ุฐูŠู† ุญูˆู„ู‡ู… ูุฅู†ู‡ ู„ู… ูŠูุฃุฎุฐ ู„ุง ู…ู† ู„ุฎู… ูˆู„ุง ู…ู†
684
+
685
+ 172
686
+ 00:18:25,830 --> 00:18:32,070
687
+ ุฌุฐุงู… ู…ุน ุฃู† ู‡ุฐู‡ ู‚ุจุงุฆู„ ุนุฑุจูŠุฉ ู„ูƒู† ู„ุฃู†ู‡ุง ุชุฌุงูˆุฑ ุฃู‡ู„ ู…ุตุฑ
688
+
689
+ 173
690
+ 00:18:32,070 --> 00:18:38,300
691
+ ูˆุงู„ู‚ุจุทูู„ู… ูŠูุฃุฎุฐ ู…ู†ู‡ุง ูˆูƒุฐู„ูƒ ู„ู… ูŠูุฃุฎุฐ ู…ู† ู‚ุถุงุนุฉ
692
+
693
+ 174
694
+ 00:18:38,300 --> 00:18:44,860
695
+ ูˆุบูุณุงู† ูˆุฅูŠุงุฏ ู„ุฃู†ู‡ู… ูŠุฌุงูˆุฒูˆู† ุฃู‡ู„ ุงู„ุดุงู… ูˆุฃูƒุซุฑ ุฃู‡ู„
696
+
697
+ 175
698
+ 00:18:44,860 --> 00:18:50,740
699
+ ุงู„ุดุงู… ู†ุตุงุฑู‰ ูŠู‚ุฑุคูˆู† ุจุงู„ุนุจุฑุงู†ูŠุฉ ูู„ู… ูŠูุฃุฎุฐ ู…ู†ู‡ู… ู…ุน
700
+
701
+ 176
702
+ 00:18:50,740 --> 00:18:56,420
703
+ ุฃู†ู‡ู… ู‚ุจุงุฆู„ ุนุฑุจูŠุฉ ุฃูŠุถู‹ุง ูˆู„ุง ู…ู† ุชุบู„ุจ ูˆ ุงู„ู†ู…ุฑ ูุฅู†ู‡ู…
704
+
705
+ 177
706
+ 00:18:56,420 --> 00:19:01,750
707
+ ูƒุงู†ูˆุง ุจุงู„ุฌุฒูŠุฑุฉ ู…ุฌุงูˆุฑูŠู† ู„ู„ูŠูˆู†ุงู†ูˆู„ุง ู…ู† ุจูƒุฑ ู„ู…ุฌุงูˆุฑุฉ
708
+
709
+ 178
710
+ 00:19:01,750 --> 00:19:06,510
711
+ ู…ู† ุงู„ู†ุจุท ูˆุงู„ูุฑุณ ูˆู„ุง ู…ู† ุนุจุฏู‚ูŠุณ ูˆุฃุฒุฏ ุนู…ุงู† ู„ุฃู†ู‡ู…
712
+
713
+ 179
714
+ 00:19:06,510 --> 00:19:12,970
715
+ ูƒุงู†ูˆุง ุจุงู„ุจุญุฑูŠู† ู…ุฎุงู„ู‚ูŠู† ู„ู„ู‡ู†ุฏ ูˆุงู„ูุฑุณ ูˆู„ุง ู…ู† ุฃู‡ู„
716
+
717
+ 180
718
+ 00:19:12,970 --> 00:19:17,130
719
+ ุงู„ูŠู…ู† ู„ุฃู†ู‡ู… ูŠุฎุงู„ู‚ูˆู† ุงู„ู‡ู†ุฏ ูˆุงู„ุญุจุดุฉ ูˆู„ุง ู…ู† ุจู†ูŠ ุญู†ูŠูุฉ
720
+
721
+ 181
722
+ 00:19:17,130 --> 00:19:24,370
723
+ ูˆุณูƒุงู† ุงู„ูŠู…ุงู…ุฉ ูˆู„ุง ู…ู† ุซู‚ูŠู ูˆุฃู‡ู„ ุงู„ุทุงุฆู ู„ุฃู†ู‡ู…
724
+
725
+ 182
726
+ 00:19:24,370 --> 00:19:30,730
727
+ ูŠุฎุงู„ู‚ูˆู† ุชุฌุงุฑุฉ ุงู„ูŠู…ู†ุงู„ุฐูŠู† ูŠุฎุชู„ุทูˆู† ู…ุน ุงู„ู‡ู†ุฏ ูˆุงู„ุญุจุดุฉ
728
+
729
+ 183
730
+ 00:19:30,730 --> 00:19:36,830
731
+ ูˆู„ุง ู…ู† ุญุงุถุฑุฉ ุงู„ุญุฌุงุฒ ู„ุง ู…ู† ู…ูƒุฉ ูˆู„ุง ู…ู† ุงู„ู…ุฏูŠู†ุฉ ู„ุฃู†ู‡ู…
732
+
733
+ 184
734
+ 00:19:36,830 --> 00:19:42,410
735
+ ุนู†ุฏู…ุง ุฃุฎุฐูˆุง ุงู„ู„ุบุฉ ููŠ ู‡ุฐุง ุงู„ู‚ุฑู† ูˆุฌุฏูˆุง ุฃู† ู‡ู†ุงูƒ ุฃู…ู…ุง
736
+
737
+ 185
738
+ 00:19:43,460 --> 00:19:48,720
739
+ ูƒุซูŠุฑุฉ ุชู„ุฏ ุฅู„ู‰ ู…ูƒุฉ ูˆุฅู„ู‰ ุงู„ู…ุฏูŠู†ุฉ ุจุฐุงูุน ุงู„ุญุฌ ูˆ
740
+
741
+ 186
742
+ 00:19:48,720 --> 00:19:55,500
743
+ ุงู„ุฅุณู„ุงู… ูˆุบูŠุฑ ุฐู„ูƒ ูู„ุฐู„ูƒ ู„ู… ูŠูุฃุฎุฐ ู…ู† ู‡ุชูŠู† ุงู„ุญุงุถุฑุชูŠู†
744
+
745
+ 187
746
+ 00:19:55,500 --> 00:20:00,960
747
+ ุฃูŠุถู‹ุง ู‡ุฐุง ูŠุฏู„ ุนู„ู‰ ุฃู† ู‡ู†ุงูƒ ู…ู†ู‡ุฌูŠุฉ ู…ุน ุฃู†ู‡ ู„ูŠุณ ู‡ู†ุงูƒ
748
+
749
+ 188
750
+ 00:20:00,960 --> 00:20:06,900
751
+ ู…ูˆุถุนูŠุฉ ู„ูƒู† ู„ุฏูŠู‡ู… ุฅูŠู‡ ู…ู†ู‡ุฌูŠุฉ ุชุทุจู‚ ู‡ุฐุง ุงู„ู…ุจุฏุฃ ูˆู‡ูˆ
752
+
753
+ 189
754
+ 00:20:06,900 --> 00:20:12,020
755
+ ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉุฃู…ุง ุงู„ูˆุธูŠูุฉ ุงู„ุฃุฎุฑู‰ ู„ุนู„ู…ุงุก ุงู„ู„ุบุฉ ู‡ูˆ
756
+
757
+ 190
758
+ 00:20:12,020 --> 00:20:17,980
759
+ ู†ู‚ุถ ุงู„ุดุนุฑ ุงู„ู…ุญุฏุซ ูู‚ุฏ ุฃุณู‡ู…ูˆุง ููŠ ู†ู‚ุถ ุงู„ุดุนุฑ ูˆู‚ุฏู…ูˆุง
760
+
761
+ 191
762
+ 00:20:17,980 --> 00:20:23,040
763
+ ู†ุธุฑูŠุฉ ู†ู‚ุถูŠุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุงู„ู†ู‚ุถูŠุฉ ุชู‚ูˆู…
764
+
765
+ 192
766
+ 00:20:23,040 --> 00:20:27,760
767
+ ุนู„ู‰ ุฅุณู‚ุงุท ุงู„ุดุนุฑ ุงู„ู…ุญุฏุซ ูŠุนู†ูŠ ู„ุง ูŠู†ุธุฑ ุฅู„ู‰ ุงู„ุดุนุฑ
768
+
769
+ 193
770
+ 00:20:27,760 --> 00:20:33,240
771
+ ุงู„ู…ุญุฏุซ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุฅู„ุง ู…ุง ูƒุงู† ุนู„ูŠู‡ ุนู„ู‰ ู†ู…ุทู‡ ุงู„ุดุนุฑ
772
+
773
+ 194
774
+ 00:20:33,240 --> 00:20:41,490
775
+ ุงู„ู‚ุฏูŠู…ูˆู„ุฐู„ูƒ ุชู…ุณูƒูˆุง ุจุงู„ู†ู…ูˆุฐุฌ ุงู„ู‚ุฏูŠู… ุชู…ุณูƒู‹ุง ุนุฌูŠุจู‹ุง
776
+
777
+ 195
778
+ 00:20:41,490 --> 00:20:49,890
779
+ ูˆุฌุฏู†ุง ู…ู† ุงู„ุดุนุฑุงุก ู…ู† ุงู„ุนู„ู…ุงุก ู…ู† ูŠุณู‚ุท ุงู„ุดุนุฑุงุก ุฃูˆ
780
+
781
+ 196
782
+ 00:20:49,890 --> 00:20:56,250
783
+ ูŠุฎุชู… ุงู„ุดุนุฑุงุก ุจุดุงุนุฑ ู…ู† ุงู„ุจุงุฏูŠุฉ ุฃูˆ ู…ู† ู†ู‡ุงูŠุฉ ุงู„ุนุตุฑ
784
+
785
+ 197
786
+ 00:20:56,250 --> 00:21:03,440
787
+ ุงู„ุฃู…ูˆูŠ ุชู…ุซู„ู‹ุง ุฃุจูˆ ุนู…ุฑุงุจู† ุงู„ุนู„ุงุก ูŠุฎุชู… ุงู„ุดุนุฑ ุจุฐูŠ
788
+
789
+ 198
790
+ 00:21:03,440 --> 00:21:08,320
791
+ ุงู„ุฑูู…ู‘ุฉ ูˆุงู„ุฑุฌุฏ ุจุฑูู‚ุจุฉ ู‚ุงุฆู„ุง ููŠ ุงู„ู…ุญุฏุซูŠู† ุฅู†ู‡ู… ูƒู„
792
+
793
+ 199
794
+ 00:21:08,320 --> 00:21:15,160
795
+ ุนู„ู‰ ุบูŠุฑู‡ู… ุฅู† ู‚ุงู„ูˆุง ุญุณู†ุง ูู‚ุฏ ุณุจู‚ูˆุง ุฅู„ูŠู‡ ูˆุฅุฐุง ู‚ุงู„ูˆุง
796
+
797
+ 200
798
+ 00:21:15,160 --> 00:21:19,980
799
+ ู‚ุจูŠุญุง ูู…ู† ุนู†ุฏู‡ู… ู‡ุฐุง ุฏู„ูŠู„ ุนู„ู‰ ุฃู†ู‡ู… ุฅูŠู‡ ูŠุณู‚ุทูˆู† ุงู„ุดุนุฑ
800
+
801
+ 201
802
+ 00:21:19,980 --> 00:21:25,860
803
+ ุงู„ู…ุญุฏุซ ุฅุณู‚ุงุทุง ู…ุฏูˆูŠุฉ ูˆูƒุฐู„ูƒ ูƒุงู† ุงู„ุฃุตู…ุนูŠ ูŠุฎุชู… ุดุนุฑุงุก
804
+
805
+ 202
806
+ 00:21:25,860 --> 00:21:32,360
807
+ ุจุงุจู† ู…ูŠุงุฏุฉูˆุงุจู† ู‡ุฑู…ุฉ ูˆุฃุถุฑุงุจู‡ู…ุง ู…ู† ุดุนุฑุงุก ู†ุฌุฏ ูˆุงู„ุญุฌุงุฒ
808
+
809
+ 203
810
+ 00:21:32,360 --> 00:21:38,300
811
+ ุงู„ุฐูŠู† ุฃุฏุฑูƒูˆุง ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ูˆู…ู…ุง ูŠุฏู„ ุนู„ู‰ ุฃู†ู‡ ูŠุณู‚ุท
812
+
813
+ 204
814
+ 00:21:38,300 --> 00:21:44,720
815
+ ุงู„ุดุนุฑ ุงู„ู…ุญุฏุซ ุฅุณู‚ุงุทุง ู…ุฏูˆูŠุง ุฃู† ุฅุณุญุงู‚ ุงู„ู…ูˆุตู„ ุฃู†ุดุฏู‡
816
+
817
+ 205
818
+ 00:21:44,720 --> 00:21:49,500
819
+ ุจูŠุชูŠู† ู…ู† ุดุนุฑุฉ ูˆู„ู… ูŠุณู… ู‚ุงุฆู„ู‡ู…ุง ูู‚ุงู„
820
+
821
+ 206
822
+ 00:21:53,250 --> 00:22:01,190
823
+ ูู‚ุงู„ ูู‚ุงู„ ุงู„ุฃุตู…ุนูŠ ูู‚ุงู„
824
+
825
+ 207
826
+ 00:22:01,190 --> 00:22:08,330
827
+ ู…ุนุฌุจู‹ุง ุจูŠู‡ู…ุง ุซู… ุนู†ุฏู…ุง ุฃุดุงุฑ ุฅุณุญุงู‚ ุงู„ู…ูˆุตู„ ุฃู†ู‡ู… ู…ู†
828
+
829
+ 208
830
+ 00:22:08,330 --> 00:22:15,430
831
+ ู†ุธุจู‡ ุจุงุฏุฑู‡ ุจู‚ูˆู„ู‡ ุฃูุณุฏุช ุงู„ุดุนุฑุฉ ุฅู† ุงู„ุชูˆู„ูŠุฏ ุนู„ูŠู‡ู…
832
+
833
+ 209
834
+ 00:22:15,430 --> 00:22:22,580
835
+ ู„ุจูŠู† ุฃูˆ ููŠู‡ู…ุง ู„ุจูŠู†ุฃูŠุถู‹ุง ูŠุฑูˆู‰ ุฃู† ุงุจู† ู…ู†ุงุฒู„ ูƒุงู† ูŠู‚ูˆู„
836
+
837
+ 210
838
+ 00:22:22,580 --> 00:22:28,020
839
+ ู„ุฃุจูŠ ุนุจูŠุฏุฉ ุงุชู‚ ุงู„ู„ู‡ ูˆุงุญูƒู… ุจูŠู† ุงู„ุดุนุฑูŠ ูˆุงู„ุดุนุฑูŠ ุนุฏูŠ
840
+
841
+ 211
842
+ 00:22:28,020 --> 00:22:36,260
843
+ ุจู† ุฒูŠุฏู† ุงู„ุนุจุงุฏูŠ ูˆู„ุง ุชู‚ูˆู„ ุฐุงูƒ ุฌุงู‡ู„ูŠ ูˆู‡ุฐุง ุนุจุงุณูŠ ูˆุฐู„ูƒ
844
+
845
+ 212
846
+ 00:22:36,260 --> 00:22:43,120
847
+ ู‚ุฏูŠู… ูˆู‡ุฐุง ู…ุญุฏุซ ูุชุญูƒู… ุจูŠู† ุงู„ุนุตุฑูŠู† ูˆู„ูƒู† ุงุญูƒู… ุจูŠู†
848
+
849
+ 213
850
+ 00:22:43,120 --> 00:22:49,040
851
+ ุงู„ุดุนุฑูŠู† ูˆุฏุงุน ุงู„ุนุตุจูŠุฉุฅุฐู† ู‡ุฐุง ุฏู„ูŠู„ ุขุฎุฑ ุนู„ู‰ ุฃู†ู‡ู…
852
+
853
+ 214
854
+ 00:22:49,040 --> 00:22:54,020
855
+ ูŠุณู‚ุทูˆู† ุฃูŠู‡ ุงู„ุดุนุฑุฉ ุงู„ู…ุญุฏุซ ุงู„ุชูŠ ู‚ูŠู„ ููŠ ุฃูˆุงุฆู„ ุงู„ุฏูˆู„
856
+
857
+ 215
858
+ 00:22:54,020 --> 00:23:00,680
859
+ ุงู„ุนุจุงุณูŠุฉ ุฅุณู‚ุงุทุง ู…ุฏูˆูŠุฉ ูˆูƒุฐู„ูƒ ูƒุงู† ุงุจู† ุงู„ุนุฑุจูŠ ุนู†ุฏู…ุง
860
+
861
+ 216
862
+ 00:23:00,680 --> 00:23:06,280
863
+ ูˆุตู ุดุนุฑุงุก ุงู„ู…ุญุฏุซูŠู†ุฃูˆ ุนู†ุฏู…ุง ูˆุตู ุงู„ุดุนุฑ ุงู„ู…ุญุฏุซูŠู† ู‚ุงู„
864
+
865
+ 217
866
+ 00:23:06,280 --> 00:23:15,640
867
+ ุฅู†ู…ุง ุฃุดุนุงุฑ ู‡ุคู„ุงุก ุงู„ู…ุญุฏุซูŠู† ูŠู‚ุตุฏ ุฃุจูŠ ู†ูˆุงุณ ูˆุบูŠุฑู‡ ูŠู‚ุตุฏ
868
+
869
+ 218
870
+ 00:23:15,640 --> 00:23:21,180
871
+ ุฃุจุง ู†ูˆุงุณ ูˆุบูŠุฑู‡ ู…ู† ุดุนุฑุงุก ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ุฃุดุนุงุฑู‡ู…
872
+
873
+ 219
874
+ 00:23:21,180 --> 00:23:31,440
875
+ ู…ุซู„ ุงู„ุฑูŠุญุงู† ู†ุดู… ูŠูˆู…ุง ุซู… ูŠุฐูˆูŠ ููŠุฑู…ู‰ ุจู‡ ูŠุนู†ูŠ ุฃุดุนุงุฑู‡ู…
876
+
877
+ 220
878
+ 00:23:31,440 --> 00:23:38,030
879
+ ูƒุงู† ุฑูŠุญุงู†ุฑุงุฆุญุช ุฌู…ูŠู„ุฉ ุซู… ูŠุฐุจู„ ููŠ ูŠูˆู…ู‡ ุซู… ูŠุฑู…ู‰ ุจู‡
880
+
881
+ 221
882
+ 00:23:38,030 --> 00:23:46,250
883
+ ุฃู…ุง ุฃุดุนุงุฑ ู‚ุฏู…ุงุฆูŠ ูู‡ูŠ ู…ุซู„ ุงู„ู…ุณูƒ ูˆุงู„ุนู†ุถุฑ ูƒู„ ู…ุง ุญุฑูƒุชู‡
884
+
885
+ 222
886
+ 00:23:46,250 --> 00:23:54,590
887
+ ุฃุฒุฏุงุฏ ุทูŠุจุฉ ู„ูƒู† ุญู‚ูŠู‚ุฉ ุฃู† ุงู„ุฌูˆุฏุฉ ุงู„ูู†ูŠุฉ ู„ุง ุชู‚ุงุณ
888
+
889
+ 223
890
+ 00:23:54,590 --> 00:24:02,490
891
+ ุจุงู„ู‚ุฏู…ูŠ ูˆุงู„ุญุฏุงุซุฉ ุฅู†ู…ุง ุชู‚ุงุณ ุจุฏูˆุงุจุทุจุถูˆุงุจุท ู„ุบูˆูŠุฉ
892
+
893
+ 224
894
+ 00:24:02,490 --> 00:24:07,750
895
+ ูˆูู†ูŠุฉ ู…ู† ุญูŠุซ ุงู„ุตูˆุฑุฉ ูˆู…ู† ุญูŠุซ ุงู„ุฃุณู„ูˆุจ ูˆู…ู† ุญูŠุซ
896
+
897
+ 225
898
+ 00:24:07,750 --> 00:24:13,790
899
+ ุงู„ุฅุจุฏุงุน ุฅุฐ ุงู„ุดุงุนุฑ ูŠู†ุจุบูŠ ุฃู† ูŠูƒูˆู† ู…ุจุฏุนุง ุฃู† ูŠุฃุชูŠ ุจุตูˆุฑ
900
+
901
+ 226
902
+ 00:24:13,790 --> 00:24:21,350
903
+ ุฌุฏูŠุฏุฉ ูˆู„ูŠุณ ุจุตูˆุฑ ู…ูƒุฑุฑุฉ ููŠ ุงู„ุณุงุจู‚ ู„ูƒู† ุนู„ู…ุงุก ุงู„ู„ุบุฉ
904
+
905
+ 227
906
+ 00:24:21,350 --> 00:24:27,150
907
+ ูƒุงู†ูˆุง ูŠู†ุธุฑูˆู† ุบูŠุฑ ุฐู„ูƒ ูƒุงู†ูˆุง ูŠู†ุธุฑูˆู† ุฅู„ู‰ ุงู„ุดุนุฑ ุงู„ู‚ุฏูŠู…
908
+
909
+ 228
910
+ 00:24:27,150 --> 00:24:30,170
911
+ ู†ุธุฑุฉ ุฅุฌู„ุงู„ ูˆุฅูƒุจุงุฑ
912
+
913
+ 229
914
+ 00:24:33,080 --> 00:24:40,880
915
+ ูˆุงู„ุญู‚ูŠู‚ุฉ ุฃู† ุงู„ุดุนุฑุงุก ุงู„ุนุจุงุณูŠูŠู† ุฃูˆ ุงู„ุดุนุฑุงุก ุงู„ู…ุญุฏุซูˆู†
916
+
917
+ 230
918
+ 00:24:40,880 --> 00:24:50,580
919
+ ูŠุนู†ูŠ ูƒุงู†ูˆุง ูŠุนู†ูŠ ู…ุญุงูุธูŠู† ูˆูู‚ู‹ุง ู„ู…ุง ูƒุงู† ุนู„ูŠู‡ ุงู„ู€GLA
920
+
921
+ 231
922
+ 00:24:50,580 --> 00:25:00,100
923
+ ุงู„ุณุงุจู‚ ูˆู…ุง ูˆู‚ุน ู…ู† ุณู‚ุทุงุช ุฅู…ุง ุฃู† ุชูƒูˆู† ุถุฑูˆุฑุงุชุฑุฃู‡ุง
924
+
925
+ 232
926
+ 00:25:00,100 --> 00:25:04,700
927
+ ุงู„ุดุนุฑุงุก ุงู„ุนุจุงุณูŠูˆู† ููŠ ุงู„ุดุนุฑ ุงู„ู‚ุฏูŠู… ูู‚ุงุชูˆุง ุนู„ูŠู‡ุง
928
+
929
+ 233
930
+ 00:25:04,700 --> 00:25:11,360
931
+ ูˆุฅู…ุง ู„ุบุงุช ุดุงุฐุฉ ุฑุฃูˆู‡ุง ููŠ ู‡ุฐุง ุงู„ุดุนุฑ ูˆู…ู† ุญู‚ู‡ู… ู…ุฌุงุฑุชู‡ุง
932
+
933
+ 234
934
+ 00:25:11,360 --> 00:25:18,660
935
+ ูˆุฅู…ุง ุงุดุชู‚ุงู‚ุงุช ูˆุฃุจู†ูŠุฉ ุงุณุชุญุฏุซูˆู‡ุง ุนู„ู‰ ุถูˆุก ุงู„ู…ู‚ุงูŠูŠุซ
936
+
937
+ 235
938
+ 00:25:18,660 --> 00:25:25,240
939
+ ุงู„ุชูŠ ุชุนู„ู…ูˆู‡ุง ุณุงุจู‚ู‹ุงูˆู…ู† ุฐู„ูƒ ู…ุง ุฑูˆุงู‡ ุงู„ู…ุฑุฐุจุงู†ูŠ ููŠ
940
+
941
+ 236
942
+ 00:25:25,240 --> 00:25:32,760
943
+ ู…ูˆุดุญู‡ ููŠ ู…ูˆุดุญ ููŠ ุงู„ู…ูˆุดุญ ู…ู† ุฃู† ุงู„ุฃุฎูุด ุฃุฎุฐ ุนู„ู‰ ุจุดุงุฑ
944
+
945
+ 237
946
+ 00:25:32,760 --> 00:25:39,320
947
+ ุงุดุชู‚ุงู‚ุงุชู‡ ููŠ ุจุนุถ ุฃุดุนุงุฑู‡ ู„ูƒู„ู…ุชูŠ ุงู„ูˆุฌู„ุฉ ูˆุงู„ุบุฒู„ุฉ
948
+
949
+ 238
950
+ 00:25:39,320 --> 00:25:48,240
951
+ ูˆูƒุฐู„ูƒ ุฌู…ุนู‡ ู„ูุธ ู†ูˆู† ุจู…ุนู†ู‰ ุงู„ุญูˆุช ุนู„ู‰ ู†ูŠู†ุงู†ุธู† ู…ู†ู‡ ุฃู†
952
+
953
+ 239
954
+ 00:25:48,240 --> 00:25:52,940
955
+ ู‡ุฐู‡ ุงู„ูƒู„ู…ุฉ ุชุฏุฎู„ ููŠ ู‡ุฐุง ุงู„ู‚ูŠุงุณ ููŠ ู‚ูŠุงุณ ู‡ุฐุง ุงู„ุฌู…ุน
956
+
957
+ 240
958
+ 00:25:52,940 --> 00:26:01,300
959
+ ูˆุงู„ู…ุฑุงุญุถ ุฃู† ุฃุจุง ู†ูˆุงุณ ูƒุงู† ู…ู† ุฃูƒุซุฑ ุงู„ุดุนุฑุงุก ุงู„ุนุจุงุณูŠูŠู†
960
+
961
+ 241
962
+ 00:26:01,300 --> 00:26:08,870
963
+ ู…ุขุฎุฐ ูˆู‡ุฐู‡ ุงู„ู…ุขุฎุฐุงู„ุชูŠ ูŠุธู† ุจุนุถ ุงู„ู†ุงุณ ุงู„ุชูŠ ูŠุธู† ุจุนุถ
964
+
965
+ 242
966
+ 00:26:08,870 --> 00:26:18,630
967
+ ุงู„ู†ุงุณ ุฃู†ู‡ุง ุณู‚ุทุงุช ุฅู†ู…ุง ู‡ูŠ ูŠุนู†ูŠ ู„ู‡ุง ูŠุนู†ูŠ ู„ู‡ุง ุชุจุฑูŠุฑ
968
+
969
+ 243
970
+ 00:26:18,630 --> 00:26:25,650
971
+ ุฅู…ุง ุฃู† ุฃูƒูˆู† ุฅูŠู‡ ู„ุบุฉ ุดุงุฐุฉ ู…ุซู„ุง ุฃูˆ ุนู„ุฉ ู†ุญูˆูŠุฉ ุฃูˆ
972
+
973
+ 244
974
+ 00:26:25,650 --> 00:26:30,490
975
+ ู‚ูŠุงุณุง ุนู„ู‰ ุงุดุชู‚ุงู‚ ูู…ุซู„ุง
976
+
977
+ 245
978
+ 00:26:30,490 --> 00:26:37,640
979
+ ู‚ุงู„ ุงุจู† ู‚ุชูŠุจุฉูˆูƒุงู† ุฃุจูˆ ู†ูˆุงุณ ูŠู„ุญู† ููŠ ุฃุดูŠุงุก ู…ู† ุดุนุฑู‡
980
+
981
+ 246
982
+ 00:26:37,640 --> 00:26:44,780
983
+ ู„ุง ุฃุฑุงู‡ ููŠู‡ุง ุฅู„ุง ุนู„ู‰ ุญุฌุฉ ู…ู† ุงู„ุดุนุฑ ุงู„ู‚ุฏูŠู… ุฃูˆ ุนู„ุฉ
984
+
985
+ 247
986
+ 00:26:44,780 --> 00:26:51,860
987
+ ุจูŠู†ุฉ ู…ู† ุนู„ู† ุงู„ู†ุญูˆ ู…ู†ู‡ุง ู‚ูˆู„ู‡ ูู„ูŠุช ู…ุง ุฃู†ุช ูˆุงุทู† ู…ู†
988
+
989
+ 248
990
+ 00:26:51,860 --> 00:26:59,870
991
+ ุงู„ุซุฑู‰ ู„ูŠู‡ ุฑู…ุณุฉูู„ุงูŠุช ู…ุง ุฃู†ุช ูˆุงุทู† ู…ู† ุงู„ุซู„ุงู„ูŠ ุฑู…ุณุฉ
992
+
993
+ 249
994
+ 00:26:59,870 --> 00:27:05,590
995
+ ุทุจุนุง ุฃุฎุฐูˆุง ุนู„ู‰ ูƒู„ู…ุฉ ุฃุฎุฐูˆุง ู…ุง ุฃุฎุฐู‡ู… ุนู„ู‰ ูƒู„ู…ุชูŠู† ูˆุงุทู†
996
+
997
+ 250
998
+ 00:27:05,590 --> 00:27:15,070
999
+ ูˆุฑู…ุณุฉ ูุฃู…ุง ูƒู„ู…ุฉ ูˆุงุทู† ูุฃุตู„ู‡ุง ูˆุงุทุฆ ูˆู„ูƒู† ุฃูƒุซุฑ ุงู„ุนุฑุจูŠ
1000
+
1001
+ 251
1002
+ 00:27:15,070 --> 00:27:22,170
1003
+ ู„ุง ุชู‡ู…ุฒ ูŠุนู†ูŠ ุชู‚ูˆู„ ูˆุงุทูŠ ุฃูƒุซุฑ ุงู„ุนุฑุจ ูˆู…ู†ู‡ุง ู‚ุฑุด ุฃูŠุถุง
1004
+
1005
+ 252
1006
+ 00:27:22,170 --> 00:27:30,860
1007
+ ูˆู†ุฌุฏ ุฃู† ุงู„ู‚ุฑุขู† ุงู„ูƒุฑูŠู…ุนู†ุฏู…ุง ู†ุฒู„ ููŠ ู‚ูˆู„ู‡ ูˆุจูŠุน
1008
+
1009
+ 253
1010
+ 00:27:30,860 --> 00:27:37,200
1011
+ ุงู„ู…ุนุชู„ุฉ ูˆูƒู„ู…ุฉ ุงู„ุฐุฆุจ ุฅู†ู…ุง ุฌุงุก ุจู„ุบุฉ ู‡ุฐูŠู„ ูˆู„ูŠุณ ุจู„ุบุฉ
1012
+
1013
+ 254
1014
+ 00:27:37,200 --> 00:27:45,940
1015
+ ู‚ุฑูŠุด ุฃูƒุซุฑ ุงู„ุนุฑุจ ู„ุง ุชู‡ู…ุฒ ูŠุนู†ูŠ ูŠู…ูŠู„ูˆู† ุฅู„ู‰ ู„ุบุฉ ู‚ุฑูŠุด
1016
+
1017
+ 255
1018
+ 00:27:45,940 --> 00:27:55,180
1019
+ ููŠู‚ูˆู„ูˆู† ุจูŠุฑ ูˆุฐูŠุจ ูˆุงู„ุดุนุฑ ุฃุจูˆ ู†ูˆุงุณ ู‡ู†ุงูŠุนู†ูŠ ุงูŠู‡ุŸ ู„ู…
1020
+
1021
+ 256
1022
+ 00:27:55,180 --> 00:28:01,000
1023
+ ูŠู‡ู…ุฒ ูู‚ุงู„ ูˆุงุทูŠ ูˆุญุฐู ุงู„ูŠุงุก ูˆุนูˆุถ ุนู†ู‡ุง ุจุงู„ุชู†ูˆูŠู† ูˆุงุทู†
1024
+
1025
+ 257
1026
+ 00:28:01,000 --> 00:28:08,020
1027
+ ูุฅุฐุง ู‡ูˆ ูŠุณูŠุฑ ูˆูู‚ ู„ู‡ุฌุฉ ู…ู† ู„ู‡ุฌุงุช ุงู„ุนุฑุจ ูˆุฃู…ุง ุฑู…ุณุง
1028
+
1029
+ 258
1030
+ 00:28:08,020 --> 00:28:11,080
1031
+ ูŠุนู†ูŠ
1032
+
1033
+ 259
1034
+ 00:28:11,080 --> 00:28:22,400
1035
+ ู‚ุงู„ูˆุง ุฃู†ู‡ ุฎุฑุฌ ุนู† ุงู„ุฃุตู„ ูˆู‡ุฐุง ู„ูŠุณ ุฎุฑูˆุฌุง ู„ุฃู† ุฑู…ุณุงูŠุนู†ูŠ
1036
+
1037
+ 260
1038
+ 00:28:22,400 --> 00:28:27,900
1039
+ ุชูุนุฑูŽุจูˆุง ุชู…ูŠูŠุฒู‹ุง ูŠุนู†ูŠ ุงู„ุฐูŠู† ุฃุฎุทุฃูˆู‡ ู†ุธุฑูˆุง ุฅู„ู‰ ุฃู†
1040
+
1041
+ 261
1042
+ 00:28:27,900 --> 00:28:36,340
1043
+ ุฑู…ุณู‹ุง ู‡ูŠ ุฎุจุฑ ู„ูŠุช ู…ุฑููˆุน ูˆู„ูƒู†ู‡ ู‡ู†ุง ุฌุงุก ุชู…ูŠูŠุฒู‹ุง ูƒู…ุง
1044
+
1045
+ 262
1046
+ 00:28:36,340 --> 00:28:43,600
1047
+ ุชู‚ูˆู„ ู„ูŠุช ุซูˆุจูƒ ู‡ุฐุง ู„ูŠู‡ ุซู… ุชู‚ูˆู„ ุฅุฐุงุฑู‹ุง ุนู„ู‰ ุงู„ุชู…ูŠูŠุฒ
1048
+
1049
+ 263
1050
+ 00:28:43,600 --> 00:28:49,420
1051
+ ุฅุฐู† ุฃุจูˆ ู†ูˆุงุณ ู„ู‡ ุญุฌุฉ ู…ู† ูƒู„ุงู… ุงู„ุนุฑุจ ุฃูˆ ุนู„ุฉ ู…ู† ุนู„ุฉ
1052
+
1053
+ 264
1054
+ 00:28:49,420 --> 00:28:58,940
1055
+ ู„ู„ู†ุญูˆุญุงูˆู„ ุงู„ู…ุณุชุดุฑู‚ูˆู† ุฃู† ูŠุณูŠุฆูˆุง ุฅู„ู‰ ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉ
1056
+
1057
+ 265
1058
+ 00:28:58,940 --> 00:29:05,880
1059
+ ุจุฒุฑุน ุงู„ูŠุฃุณ ููŠ ุงู„ู†ููˆุณ ุนู†ุฏู…ุง ู‚ุงู„ูˆุง ูˆุทุจุนุงู‹ ุงู„ูƒู„ุงู…
1060
+
1061
+ 266
1062
+ 00:29:05,880 --> 00:29:12,740
1063
+ ู„ู€Johann Fick ุฅุฐ ู‚ุงู„ ุฃู† ุงู„ูุงุฑุณูŠุฉ ู‚ุฏ ุฃุฏุฎู„ุช ุถูŠู…ุงู‹
1064
+
1065
+ 267
1066
+ 00:29:12,740 --> 00:29:18,890
1067
+ ุนู„ู‰ ุงู„ุนุฑุจูŠุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑุทุจุนุงู‹ ู…ุณุชุฏู„ุงู‹ ุจุฐู„ูƒ ุนู„ู‰
1068
+
1069
+ 268
1070
+ 00:29:18,890 --> 00:29:26,790
1071
+ ุฃุดุนุงุฑ ุฃุจูŠ ู†ูˆุงุณ ูู‚ุฏ ุฐูƒุฑ ุฃู† ููŠู‡ุง ูƒู„ู…ุงุช ุซุงุฑุณูŠุฉ ูƒุซูŠุฑุฉ
1072
+
1073
+ 269
1074
+ 00:29:26,790 --> 00:29:33,710
1075
+ ูˆุงู„ุฐูŠ ูŠุฑุงุฌุน ุดุนุฑ ุฃุจูŠ ู†ูˆุงุณ ูˆุฎุงุตุฉ ููŠ ุงู„ู…ุฌูˆู† ูˆู„ู‡ูˆ ูŠุฑู‰
1076
+
1077
+ 270
1078
+ 00:29:33,710 --> 00:29:39,540
1079
+ ุฃู† ู‡ู†ุงูƒ ูƒู„ู…ุงุช ุซุงุฑุณูŠุฉ ูƒุซูŠุฑุฉูˆู‡ูˆ ูŠูˆุฑุฏ ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช
1080
+
1081
+ 271
1082
+ 00:29:39,540 --> 00:29:46,160
1083
+ ุงู„ูุฑุณูŠุฉ ู„ูŠุณ ุถุนูุง ููŠ ุตู„ูŠู‚ุชู‡ ุฃูˆ ุงู†ุชู‚ุงุตุง ููŠ ุงู„ุตู„ูŠู‚ุฉ
1084
+
1085
+ 272
1086
+ 00:29:46,160 --> 00:29:53,280
1087
+ ุนู†ุฏ ุฃุจูŠ ู†ูˆุงุฒ ูˆุฅู†ู…ุง ูŠูˆุฑุฏ ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช ู„ู„ุชู…ู„ุญ ูˆุงู„ุชู…ุงุฌ
1088
+
1089
+ 273
1090
+ 00:29:53,280 --> 00:29:59,580
1091
+ ูˆุงู„ุฎู„ุงุนุฉ ูˆู„ูŠุณ ุถุนูุง ููŠ ุงู„ุตู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ ูู…ุซู„ุง ูŠู‚ูˆู„
1092
+
1093
+ 274
1094
+ 00:29:59,580 --> 00:30:05,580
1095
+ ููŠ ุนุงุฏุงุช ุงู„ู…ุฌูˆุซ ูˆุฃุนูŠุงุฏู‡ู… ูˆุงู„ู…ู‡ุฑุฌุงู† ุงู„ู…ุฏุงุฑูŠ ู„ูˆู‚ุชู‡
1096
+
1097
+ 275
1098
+ 00:30:05,580 --> 00:30:11,370
1099
+ ุงู„ู‚ุฏุฑุงุฑูŠูˆุงู„ู†ู‚ุฑูˆุฏ ุงู„ูƒุจุงุฑูŠ ูˆุฌุดู† ุฌู‡ู†ุจุงุฑูŠ ูˆุฃุจุซุงู„
1100
+
1101
+ 276
1102
+ 00:30:11,370 --> 00:30:17,150
1103
+ ุงู„ูˆู‡ุงุฑูŠ ูˆุฎุฑ ุฅูŠุฑุงู† ุดุงุฑูŠ ุทุจุนุง ู‡ุฐู‡ ูƒู„ู…ุงุช ุซุงู„ุซูŠุฉ ุฅู†ู…ุง
1104
+
1105
+ 277
1106
+ 00:30:17,150 --> 00:30:23,750
1107
+ ุฌูŠุฆุฉ ุจู‡ุง ู„ู„ุชู…ู„ุญ ูˆุงู„ุชุนุงุจุซ ูˆุงู„ุชู…ุงุฌู… ูˆู„ูŠุณ ุถุนูุง ููŠ
1108
+
1109
+ 278
1110
+ 00:30:23,750 --> 00:30:30,670
1111
+ ุงู„ุณู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ ูˆูƒุฐู„ูƒ ู†ุฌุฏ ุนู†ุฏ ุจุนุถ ุงู„ุดุนุฑุงุก ุชุณู‚ุท
1112
+
1113
+ 279
1114
+ 00:30:30,670 --> 00:30:37,990
1115
+ ูƒู„ู…ุงุช ู†ุจุงุทูŠุฉ ููŠ ุดุนุฑู‡ู…ุงู„ู‡ุฏู ู…ู†ู‡ุง ู„ูŠุณ ุฅู„ุง ุงู„ุชู…ู„ุญ
1116
+
1117
+ 280
1118
+ 00:30:37,990 --> 00:30:45,390
1119
+ ูˆุงู„ุชุนุงุจุซ ูˆุงู„ุชู†ุงุฌุฑ ูƒู…ุง ู‚ุงู„ ุฅุจุฑุงู‡ูŠู… ู…ูˆุตู„ูŠ ููŠ ูˆุตู
1120
+
1121
+ 281
1122
+ 00:30:45,390 --> 00:30:54,690
1123
+ ูˆุฏุงุนู‡ ู„ุฎู…ุงู„ ู†ุจุงุทูŠ ูู‚ุงู„ ูู‚ุงู„ ุฅุฐ ุงู„ุจุดูŠู†ูŠู† ุญูŠู† ุญุฏุซู†ูŠ
1124
+
1125
+ 282
1126
+ 00:30:54,690 --> 00:31:04,610
1127
+ ูˆู‚ุถู„ ุนู…ุฑูƒ ุฒุงู„ูˆู‚ุฏ ู„ุนู…ุฑูƒ ุฐู„ู†ุง ุนู†ู‡ ุจุงู„ุดูŠุก ูŠุนู†ูŠ ุฐู„ู†ุง
1128
+
1129
+ 283
1130
+ 00:31:04,610 --> 00:31:11,050
1131
+ ุงุชุฑู‚ู†ุง ุนู†ู‡ ุจุงู„ู‚ุจูŠุญ ู…ู† ุงู„ุฃูุนุงู„ ูˆุงู„ุณูŠุฆ ู…ู† ุงู„ุณู„ูˆูƒ ุฅุฐุง
1132
+
1133
+ 284
1134
+ 00:31:11,050 --> 00:31:16,830
1135
+ ู…ุง ุณู‚ุท ููŠ ุงู„ู„ุบุฉ ุงู„ุนุฑุจูŠุฉ ู…ู† ูƒู„ู…ุงุช ูุงุฑุณูŠุฉ ุฃูˆ ู†ุจุงุทูŠุฉ
1136
+
1137
+ 285
1138
+ 00:31:16,830 --> 00:31:25,790
1139
+ ู„ุง ูŠู‚ู„ู„ ู…ู†ุงู„ุตู„ูŠู‚ุฉ ุงู„ุนุฑุจูŠุฉ ูˆ ู„ุง ูŠู†ุชู‚ุตู‡ุง ูˆ ุฅู†ู…ุง ุฌุฆุช
1140
+
1141
+ 286
1142
+ 00:31:25,790 --> 00:31:33,710
1143
+ ู‡ุฐู‡ ุงู„ูƒู„ู…ุงุช ู„ู„ุชุถุฑู ูƒู…ุง ู‚ู„ุช ูˆ ุงู„ุชู…ู„ุญ ูˆ ุงู„ุชุนุงุจุซ ู‡ุฐุง
1144
+
1145
+ 287
1146
+ 00:31:33,710 --> 00:31:37,430
1147
+ ูˆ ุจุงู„ู„ู‡ ุงู„ุชูˆููŠู‚ ูˆ ุตู„ู‰ ุงู„ู„ู‡ู… ๏ฟฝ๏ฟฝู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ ูˆ ุนู„ู‰
1148
+
1149
+ 288
1150
+ 00:31:37,430 --> 00:31:40,650
1151
+ ุขู„ู‡ ูˆ ุตุญุจู‡ ูˆ ุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง
1152
+
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/MW-5DMQ9IDw.srt ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:04,890 --> 00:00:07,790
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู…ุŒ ูˆุฃุตู„ูŠ ูˆุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง
4
+
5
+ 2
6
+ 00:00:07,790 --> 00:00:15,510
7
+ ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุงุŒ ูˆุจุนุฏ. ุนู†ูˆุงู†
8
+
9
+ 3
10
+ 00:00:15,510 --> 00:00:22,450
11
+ ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ู‡ูŠ ู†ุธุฑูŠุฉ ุงู„ุดุนุฑ ุจูŠู† ุงู„ุดุงุนุฑูŠู† ุงู„ุนุจุงุณูŠ
12
+
13
+ 4
14
+ 00:00:22,450 --> 00:00:30,170
15
+ ูˆุงู„ุฌุงู‡ู„ูŠ. ู…ุนู„ูˆู… ุฃู† ุงู„ุชุทูˆุฑ ุงู„ุนู‚ู„ูŠ ูˆุงู„ููƒุฑูŠ ุงู„ุฐูŠ ูŠุนู†ูŠ
16
+
17
+ 5
18
+ 00:00:30,170 --> 00:00:35,930
19
+ ุชู…ูŠุฒ ุจู‡ ุงู„ุนุตุฑ ุงู„ุนุจุงุณูŠ ุนู…ุง ุณุจู‚ู‡ ุฃู† ู‡ุฐุง ุงู„ุชุทูˆุฑ ุงู„ููƒุฑูŠ
20
+
21
+ 6
22
+ 00:00:35,930 --> 00:00:43,230
23
+ ุฃุนุงุฏ ุชุฑุชูŠุจ ูƒุซูŠุฑ ู…ู† ุงู„ุฃููƒุงุฑ ูˆุงู„ู…ูุงู‡ูŠู… ุงู„ุชูŠ ูƒุงู†ุช
24
+
25
+ 7
26
+ 00:00:43,230 --> 00:00:50,310
27
+ ู…ูˆุฌูˆุฏุฉ ุณุงุจู‚ู‹ุง. ูู…ุซู„ู‹ุง ููŠู…ุง ูŠุชุนู„ู‚ ุจู†ุธุฑูŠุฉ ุงู„ุดุนุฑ ูƒุงู†
28
+
29
+ 8
30
+ 00:00:50,310 --> 00:00:56,430
31
+ ุงู„ุดุงุนุฑ ุงู„ุฌุงู‡ู„ูŠ ูŠู†ุธุฑ ุฅู„ู‰ ุงู„ุดุนุฑ ุนู„ู‰ ุฃู†ู‡ ู†ุชุงุฌ ู‚ูˆุฉ
32
+
33
+ 9
34
+ 00:00:56,430 --> 00:01:02,230
35
+ ุฎุงุฑุฌูŠุฉ ูƒุซูŠุฑู‹ุง ู…ุง ูŠุณู†ุฏู‡ุง ุฅู„ู‰ ุงู„ุฌู†. ุฃู† ู‡ุฐู‡ ุงู„ุทุงู‚ุฉ
36
+
37
+ 10
38
+ 00:01:02,230 --> 00:01:07,030
39
+ ุงู„ุฅุจุฏุงุนูŠุฉ ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ ุฅู†ู…ุง ุชุฑุฌุน ุฅู„ู‰ ุงู„ุฌู†. ุฃู…ุง
40
+
41
+ 11
42
+ 00:01:07,030 --> 00:01:13,110
43
+ ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ุฑุฃู‰ ุฃู† ู‡ุฐู‡ ุงู„ุธุงู‡ุฑุฉ ุงู„ุฅุจุฏุงุนูŠุฉ ุฃูˆ ู‡ุฐุง
44
+
45
+ 12
46
+ 00:01:13,110 --> 00:01:20,270
47
+ ุงู„ู†ุชุงุฌ ุงู„ุฅุจุฏุงุนูŠ ุฅู†ู…ุง ู‡ูˆ ู†ุชุงุฌ ู‚ูˆุฉ ุฐุงุชูŠุฉ ูƒุงู…ู†ุฉ ู„ุฏู‰
48
+
49
+ 13
50
+ 00:01:20,270 --> 00:01:27,530
51
+ ุงู„ุดุงุนุฑ ูˆู„ูŠุณ ู…ู† ู‚ูˆุฉ ุฎุงุฑุฌูŠุฉ. ูุนู„ูŠ
52
+
53
+ 14
54
+ 00:01:27,530 --> 00:01:33,550
55
+ ุงุจู† ุงู„ุฌู‡ู… ู…ุซู„ู‹ุง ูŠุชุญุฏุซ ุนู† ุฏูˆุงูุน ุดุนุฑู‡ุŒ ู‡ูˆ ูŠู‚ูˆู„ ุฃู† ุฏุงูุนู‡
56
+
57
+ 15
58
+ 00:01:33,550 --> 00:01:40,110
59
+ ู„ู„ุดุนุฑ ู„ูŠุณ ุงู„ู…ุงู„ ูˆุณุคุงู„ ุงู„ุฑุฌุงู„ุŒ ุฅู†ู…ุง ุฏุงูุนู‡ ู…ุณุชู…ุฏ ู…ู†
60
+
61
+ 16
62
+ 00:01:40,110 --> 00:01:49,550
63
+ ุทุจูŠุนุฉ ู‡ุฐุง ุงู„ุดุนุฑุŒ ูˆู‡ูŠ ุทุจูŠุนุฉ ูŠุนู†ูŠ ุฑูˆุญูŠุฉ. ูุฌู…ุงู„ู‡ุง ุฅู†ู…ุง
64
+
65
+ 17
66
+ 00:01:49,550 --> 00:01:57,190
67
+ ูŠุฑุฌุน ุฅู„ู‰ ุฃู†ู‡ุง ู„ุง ุชุจุญุซ ุนู† ู…ุตู„ุญุฉุŒ ุฅู†ู…ุง ู‡ูŠ ู†ุงุจุนุฉ
68
+
69
+ 18
70
+ 00:01:57,190 --> 00:02:04,910
71
+ ู…ู† ุชุฌุฑุจุฉ ุฃุฎู„ุงู‚ูŠุฉุŒ ุชุฌูŠุจู‡ ุฑูˆุญูŠุฉ. ูู‚ุงู„: "ูˆู‚ุตูŠุฏุฉ ุบุฑุงุก ูŠูู†ู‰
72
+
73
+ 19
74
+ 00:02:04,910 --> 00:02:10,690
75
+ ุงู„ุฏู‡ุฑ ู‚ุจู„ ูู†ุงุฆู‡ุงุŒ ู„ู… ุชุณุชู…ุญ ุฃูŠุฏูŠ ุงู„ุฑุฌุงู„ ุจู…ุฏุญู‡ุง
76
+
77
+ 20
78
+ 00:02:10,690 --> 00:02:18,190
79
+ ูˆู‡ูŠุงุฆู‡ุง". ู‡ุฐู‡ ุงู„ู‚ุตูŠุฏุฉุŒ ูˆู‚ุตูŠุฏุฉ ุบุฑุงุก ูŠุนู†ูŠ ู‚ุตูŠุฏุฉ ุฌู…ูŠู„ุฉ
80
+
81
+ 21
82
+ 00:02:18,190 --> 00:02:25,410
83
+ ูˆุทุจุนู‹ุง ุฌู…ุงู„ู‡ุง ูŠุนู†ูŠ ุฑุงุฆุน ุฌุฏุงุŒ ูŠุณุชุบุฑู‚ ุงู„ุฒู…ู†. ูŠูู†ู‰ ุงู„ุฒู…ู†
84
+
85
+ 22
86
+ 00:02:25,410 --> 00:02:32,410
87
+ ูˆู‡ูŠ ู„ุง ุชูู†ู‰ุŒ ุชุจู‚ู‰ ุจุณุจุจ ุฌู…ุงู„ู‡ุง. ู„ู…ุงุฐุงุŸ ู„ุฃู†ู‡ุง ู„ูŠุณุช
88
+
89
+ 23
90
+ 00:02:32,410 --> 00:02:41,470
91
+ ู†ุงุจุนุฉ ู…ู† ู…ุตู„ุญุฉุŒ ูˆุฅู†ู…ุง ู†ุงุจุนุฉ ู…ู† ุตุฏู‚ุŒ ุงู„ุตุฏู‚ ูˆุงู„ุฅุฎู„ุงุต.
92
+
93
+ 24
94
+ 00:02:41,470 --> 00:02:49,270
95
+ ู„ู… ุชุณุชู…ุญ ุฃูŠ ุฏุฌุงู„ูŠ ุจู…ุฏุญู‡ุง ูˆู‡ุฌุงุฆู‡ุง ุฃูŠุถู‹ุง. ููŠ ู†ุธุฑูŠุฉ
96
+
97
+ 25
98
+ 00:02:49,270 --> 00:02:55,470
99
+ ุงู„ุดุนุฑ ุนู†ุฏ ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ุฃู†ู‡ ูŠุฑุจุท ุจูŠู† ุงู„ุดุนุฑ ูˆู‚ุงุฆู„ู‡
100
+
101
+ 26
102
+ 00:02:55,470 --> 00:03:02,550
103
+ ูุงู„ุดุนุฑ ูŠูƒูˆู† ุฌู…ูŠู„ุงู‹ ูˆูู‚ู‹ุง ู„ู‚ุงุฆู„ู‡ุŒ ูˆู„ูŠุณ ูˆูู‚ู‹ุง ุฅูŠู‡
104
+
105
+ 27
106
+ 00:03:02,550 --> 00:03:10,390
107
+ ู„ู…ูƒูˆู†ุงุชู‡ ุงู„ูู†ูŠุฉ ูˆุงู„ู…ูˆุถูˆุนูŠุฉ.
108
+
109
+ 28
110
+ 00:03:10,390 --> 00:03:17,530
111
+ ู…ุซู„ู‹ุงุŒ ุฅู†ู…ุง ูŠุนู†ูŠ ูŠูƒุชุณุจ ุงู„ุดุนุฑ ู‚ูŠู…ุชู‡ ู…ู† ุงู„ู‚ุงุฆู„. ูˆู‡ุฐุง
112
+
113
+ 29
114
+ 00:03:17,530 --> 00:03:24,470
115
+ ุงู„ุดูŠุก ูŠุนู†ูŠ ู…ู‚ุฑุฑ ููŠ ุงู„ู†ู‚ู„ ุงู„ุฃุฏุจูŠ ูˆุงู„ูู† ุนู…ูˆู…ู‹ุง. ู…ุซู„ู‹ุง
116
+
117
+ 30
118
+ 00:03:24,470 --> 00:03:27,150
119
+ ู†ุฌุฏ ู„ูˆุญุงุช
120
+
121
+ 31
122
+ 00:03:28,780 --> 00:03:34,560
123
+ ุฅู†ู…ุง ุงูƒุชุณุจุช ุดู‡ุฑุชู‡ุงุŒ ู„ูˆุญุงุช ูู†ูŠุฉ ุงูƒุชุณุจุช ุดู‡ุฑุชู‡ุง ู„ุฃู†
124
+
125
+ 32
126
+ 00:03:34,560 --> 00:03:42,060
127
+ ุงู„ูู†ุงู† ูƒุงู† ูŠุนู†ูŠ ู…ู† ุงู„ู…ุดู‡ูŠุฑ ูˆู„ูŠุณ ู„ู‚ูŠู…ุชู‡ุง ุงู„ูู†ูŠุฉ.
128
+
129
+ 33
130
+ 00:03:42,060 --> 00:03:52,060
131
+ ู…ุซู„ ุฅูŠู‡ ุจูŠูƒุงุณูˆุŒ ูู†ุงู† ุนุงู„ู…ูŠุŒ ุฑุณุงู… ุนุงู„ู…ูŠุŒ ู„ู‡ ู„ูˆุญุฉ ุงุณู…ู‡ุง
132
+
133
+ 34
134
+ 00:03:52,060 --> 00:04:01,170
135
+ ู‡ุฐู‡ ุงู„ู„ูˆุญุฉ "ุทุญุงู„ุจ ุงู„ุตุจุงูŠุง". ูˆู‡ุฐู‡ ุทุจุนู‹ุง ุฃู†ู‡ ูŠุนู†ูŠ ุฌุงุก
136
+
137
+ 35
138
+ 00:04:01,170 --> 00:04:06,770
139
+ ุจุฐูŠู„ ุงู„ุญู…ุงุฑ ูˆูˆุถุน ุนู„ูŠู‡ ุฃุตุจุงุบู‹ุง ู…ุฎุชู„ูุฉุŒ ุซู… ุฃุฏุฎู„ู‡ ููŠ
140
+
141
+ 36
142
+ 00:04:06,770 --> 00:04:12,510
143
+ ูƒูŠุณ ู…ู† ุงู„ู‚ู…ุงุด. ุซู… ุจุนุฏ ุฐู„ูƒ ุญุฑูƒ ุฐูŠู„ ู„ู…ู„ุฉ ูˆูŠุณุฑุฉ
144
+
145
+ 37
146
+ 00:04:12,510 --> 00:04:21,220
147
+ ูˆุงุฎุชู„ุทุช ุงู„ุฃู„ูˆุงู† ูˆุงู„ุฎุทูˆุท. ุซู… ูŠุนู†ูŠ ุฃุฎุฐ ุงู„ูƒูŠุณ ูˆุญูˆู‘ู„ู‡
148
+
149
+ 38
150
+ 00:04:21,220 --> 00:04:27,700
151
+ ุฅู„ู‰ ู„ูˆุญุฉ ุงุฎุชู„ุทุช ููŠู‡ุง ุงู„ุฃู„ูˆุงู† ูˆุงู„ุฎุทูˆุท ูˆูˆุฌุช ูˆุงู†ุญุฑูุช
152
+
153
+ 39
154
+ 00:04:27,700 --> 00:04:34,140
155
+ ุฅู„ู‰ ุขุฎุฑู‡ุŒ ูˆุณู…ู‰ ู‡ุฐู‡ ุงู„ู„ูˆุญุฉ "ุทุญุงู„ุจ ุงู„ุตุจุงูŠุง". ูˆูƒุงู†ุช ุจูŠุนุช
156
+
157
+ 40
158
+ 00:04:34,140 --> 00:04:41,640
159
+ ุจู…ู„ุงูŠูŠู† ุงู„ุฏูˆู„ุงุฑุงุชุŒ ู†ุธุฑู‹ุง ุฅู„ู‰ ุฃู† ุตุงุญุจู‡ุง ุจูŠูƒุงุณูˆ ูˆู„ูŠุณ
160
+
161
+ 41
162
+ 00:04:41,640 --> 00:04:48,960
163
+ ูˆูู‚ู‹ุง ูŠุนู†ูŠ ู„ุงุนุชุจุงุฑุงุช ูู†ูŠุฉ. ูุงู„ุฐูŠ ุฃู‚ูˆู„ู‡ ุฃู† ุงู„ู‚ุตูŠุฏุฉ
164
+
165
+ 42
166
+ 00:04:48,960 --> 00:04:56,640
167
+ ู‚ุฏ ุชูƒุชุณุจ ุฌู…ุงู„ู‡ุง ุงู„ูู†ูŠุŒ ุฑูˆุนุชู‡ุง ู…ู† ู‚ุงุฆู„ู‡ุงุŒ ูˆู„ูŠุณ ู…ู†
168
+
169
+ 43
170
+ 00:04:56,640 --> 00:05:05,360
171
+ ุฅู…ูƒุงู†ุงุชู‡ุง ุงู„ูู†ูŠุฉ ูˆุงู„ู…ูˆุถูˆุนูŠุฉ. ูู‚ุงู„ ุทุจุนู‹ุง ู‡ุฐุง ูŠู„ูุช
172
+
173
+ 44
174
+ 00:05:05,360 --> 00:05:14,780
175
+ ู†ุธุฑู†ุงุŒ ู‚ูˆู„ ุงุจู† ุงู„ุฌู‡ู…: "ูˆู…ุง ุฃู†ุง ู…ู…ุง ุฃู†ุตุงุฑ ุจุงู„ุดุนุฑูŠ ุฐูƒุฑู‡
176
+
177
+ 45
178
+ 00:05:14,780 --> 00:05:23,840
179
+ ูˆู„ูƒู† ุฃุดุนุงุฑูŠ ูŠุณูŠุฑู‡ุง ุฐูƒุฑูŠุŒ ูˆู…ุง ุฃู†ุง ู…ู…ุง ุฃุณุชุธู„ ุจุธู„ู‡ุŒ ูˆู„ุง
180
+
181
+ 46
182
+ 00:05:23,840 --> 00:05:29,280
183
+ ุฒุงุฏุงู†ูŠ ู‚ุฏุฑุงุŒ ูˆู„ุง ุญุชู‰ ู…ู† ู‚ุฏุฑูŠ". ูŠุนู†ูŠ ุงู„ุฑุงุฌู„ ูŠู†ููŠ ุนู†
184
+
185
+ 47
186
+ 00:05:29,280 --> 00:05:37,350
187
+ ู†ูุณู‡ ุฃู†ู‡ ูŠุนู†ูŠ ุญุธูŠ ู‡ุฐู‡ ุงู„ู…ูƒุงู†ุฉ ุจุณุจุจ ุงู„ุดุนุฑุŒ ุจู„ ุจุงู„ุนูƒุณ
188
+
189
+ 48
190
+ 00:05:37,350 --> 00:05:44,450
191
+ ุงู„ุดุนุฑ ูŠูƒุชุณุจ ุงู„ุฑูˆุนุฉ ู…ู† ู…ู† ู‡ูˆุŒ ู…ู† ุงู„ุดุนุฑ. ูˆุทุจุนู‹ุง ู‡ุฐู‡
192
+
193
+ 49
194
+ 00:05:44,450 --> 00:05:51,470
195
+ ูŠุฐูƒุฑูˆู†ูŠ ุฃูˆ ูŠุฐูƒุฑูˆู† ุฌู…ูŠุนู‹ุง ุฃุตู„ุงู‹ ุฃู† ู‡ู†ุงูƒ ุฃู†ุงุณุŒ ุฃู† ู‡ู†ุงูƒ
196
+
197
+ 50
198
+ 00:05:51,470 --> 00:05:59,450
199
+ ุฃู†ุงุณ ูŠุตู†ุนู‡ู… ุงู„ุฅุนู„ุงู… ู…ุซู„ู‹ุง ูƒู…ุง ู†ุฑู‰ ููŠ ูˆุงู‚ุนู†ุงุŒ ุฃูˆ ู‡ู†ุงูƒ
200
+
201
+ 51
202
+ 00:05:59,450 --> 00:06:04,530
203
+ ุฃู†ุงุณุŒ ุฃูˆ ุฃู† ู‡ู†ุงูƒ ุฃู†ุงุณ ูŠุตู†ุนู‡ู… ุงู„ุชุงุฑูŠุฎ. ูุฑู‚ ุจูŠู† ู…ู†
204
+
205
+ 52
206
+ 00:06:04,530 --> 00:06:09,530
207
+ ูŠุตู†ุนูˆู† ุงู„ุชุงุฑูŠุฎ ูˆู…ู† ูŠุตู†ุนู‡ู… ุงู„ุชุงุฑูŠุฎ. ูŠุนู†ูŠ ู‡ุฐุง ู…ู…ูƒู†
208
+
209
+ 53
210
+ 00:06:09,530 --> 00:06:15,830
211
+ ุชู†ุณุญุจ ุนู„ู‰ ุฅูŠู‡ ุนู„ู‰ ุธูˆุงู‡ุฑ ุฃุฎุฑู‰ ุฎุงุฑุฌ ู†ุทุงู‚ ุงู„ุดุนุฑ ูŠุนู†ูŠ
212
+
213
+ 54
214
+ 00:06:15,830 --> 00:06:25,810
215
+ ุฃู†ุง ู„ุง ูŠุตู†ุนู†ูŠ ุงู„ุดุนุฑุŒ ุฃู†ุง ูŠุนู†ูŠ ู…ุดู‡ูˆุฑ ู„ูŠุณ ุจุงู„ุดุนุฑุŒ ุงู„ุดุนุฑ
216
+
217
+ 55
218
+ 00:06:25,810 --> 00:06:32,890
219
+ ู„ุง ูŠุดู‡ุฑู†ูŠุŒ ุฅู†ู…ุง ุดุนุฑูŠ ูŠุดุชู‡ุฑ ุจู‡. ูˆู…ุง ุฃู†ุง ู…ู…ุง ุฃุณุชุธู„ู‡
220
+
221
+ 56
222
+ 00:06:32,890 --> 00:06:40,090
223
+ ุจุธู„ู‡ ูˆู„ุง ุฒุงุฏุงู†ูŠ ู‚ุฏุฑุง ูˆู„ุง ุญุชู‰ ู…ู† ู‚ุฏุฑูŠ. ุฅุฐู† ุฃู†ุง ุตุงุญุจ
224
+
225
+ 57
226
+ 00:06:40,090 --> 00:06:49,930
227
+ ู…ุจุงุฏุฆ ูˆุตุงุญุจ ู‚ูŠู…ุŒ ูˆุงุดุชู‡ุฑุช ุจู‚ูŠู…ูŠ ุจุฐูƒุฑูŠ ูˆู„ูŠุณ ุจุดุนุฑูŠ. ุฃูŠูŽุถู‹ุง
228
+
229
+ 58
230
+ 00:06:49,930 --> 00:06:55,730
231
+ ู…ุง ูŠุชุนู„ู‚ ุจู†ุธุฑูŠุฉ ุงู„ุดุนุฑ ู…ุง ุฃุดุงุฑ ุฅู„ูŠู‡ ุงู„ุจุญุชุฑูŠุŒ ู„ุฃู†
232
+
233
+ 59
234
+ 00:06:55,730 --> 00:07:02,470
235
+ ุทุจูŠุนุฉ ุงู„ุดุนุฑ ู‡ูŠ ุทุจูŠุนุฉ ุฑูˆุญูŠุฉ. ูู‡ูˆ ู„ู…ุญุฉ ุนุงุจุฑุฉ ุชุชุบุฐู‰
236
+
237
+ 60
238
+ 00:07:02,470 --> 00:07:07,410
239
+ ุนู„ู‰ ุงู„ุนุงุทูุฉ ูˆู„ูŠุณ ุนู„ู‰ ุงู„ู…ู†ุทู‚ ูˆุงู„ุฃุฏู„ุฉ ุงู„ู…ู†ุทู‚ูŠุฉ
240
+
241
+ 61
242
+ 00:07:07,410 --> 00:07:13,150
243
+ ุงู„ู…ุชุทุงุจู‚ุฉ ู…ุน ุงู„ูˆุงู‚ุน. ูุงู„ุดุนุฑ ูŠู‚ูˆู… ุนู„ู‰ ุงู„ู„ู…ุญุฉ ูŠุนู†ูŠ
244
+
245
+ 62
246
+ 00:07:13,150 --> 00:07:18,110
247
+ ู…ู‚ุฏู…ุฉ ุจู„ุง ู†ุชูŠุฌุฉ ุฃูˆ ู†ุชูŠุฌุฉ ุจู„ุง ู…ู‚ุฏู…ุฉุŒ ุจุฎู„ุงู ุงู„ู…ู†ุทู‚.
248
+
249
+ 63
250
+ 00:07:18,110 --> 00:07:25,530
251
+ ุงู„ู…ู†ุทู‚ ู„ู‡ ุนู„ุงู‚ุงุช ุชุฑุจุท ุงู„ู…ู‚ุฏู…ุฉ ุจุงู„ู†ุชูŠุฌุฉุŒ ุนู„ุงู‚ุฉ ุงู„ุณุจุจ
252
+
253
+ 64
254
+ 00:07:25,530 --> 00:07:30,790
255
+ ูˆุงู„ู†ุชูŠุฌุฉุŒ ู…ุซู„ู‹ุง ุนู„ุงู‚ุฉ ุงู„ุฌุฒุก ูˆุงู„ูƒู„ุŒ ุงู„ุนุงู… ูˆุงู„ุฎุงุตุŒ
256
+
257
+ 65
258
+ 00:07:30,790 --> 00:07:34,810
259
+ ุงู„ู„ุงุฒู… ูˆุงู„ู…ู„ุฒูˆู…. ู‡ุฐู‡ ุนู„ุงู‚ุงุช ู…ู†ุทู‚ูŠุฉ ุชุฑุจุท ุงู„ู…ู‚ุฏู…ุงุช
260
+
261
+ 66
262
+ 00:07:34,810 --> 00:07:41,370
263
+ ุจุงู„ู†ุชุงุฆุฌ. ู„ูƒู† ุงู„ุดุนุฑ ู„ุฃุŒ ุงู„ุดุนุฑ ุฑุจู…ุง ูŠุนู†ูŠ ูŠุฃุชูŠ ุจู…ู‚ุฏู…ุฉ
264
+
265
+ 67
266
+ 00:07:41,370 --> 00:07:50,090
267
+ ุฏูˆู† ู†ุชูŠุฌุฉ ุฃูˆ ู†ุชูŠุฌุฉ ุจู„ุง ู…ู‚ุฏู…ุฉ. ูˆู„ุฐู„ูƒ ู‡ูˆ ูŠู‚ูˆู„ ุฃู† ุงู„ู…ูŽู„ููƒ
268
+
269
+ 68
270
+ 00:07:50,090 --> 00:07:57,150
271
+ ุงู„ู‚ูŠุซุŒ ูˆู‡ูˆ ุฒุนูŠู… ุงู„ุดุนุฑุงุก ูˆู‚ุงุฆุฏ ุฐูˆุงุฆู‡ู…ุŒ ู…ุน ุฃู†ู‡ ู„ู… ูŠูƒู†
272
+
273
+ 69
274
+ 00:07:57,150 --> 00:08:04,050
275
+ ู„ู‡ ุญุธ ุจุงู„ู…ู†ุทู‚ ู„ูƒู†ู‡ ุฃุจุฏุน ููŠ ุงู„ุดุนุฑุŒ ูˆุฃุชู‰ ูŠุนู†ูŠ ุจุจุฏุงุฆุน
276
+
277
+ 70
278
+ 00:08:04,050 --> 00:08:14,550
279
+ ุฌู…ุฉ ููŠ ู…ุนู„ู‚ุชู‡ ูˆููŠ ุดุนุฑู‡. ูŠู‚ูˆู„ ุงู„ุจุญุชุฑูŠ: "ูƒู„ูุชู…ูˆู† ุญุฏูˆุฏ
280
+
281
+ 71
282
+ 00:08:14,550 --> 00:08:20,250
283
+ ู…ู†ุทู‚ูƒู…ุŒ ูˆุงู„ุดุนุฑ ูŠุบู†ูŠ ุนู† ุตุฏู‚ู‡ ูƒุฐุจู‡". ูŠุนู†ูŠ ุงู„ูƒุฐุจ ู‡ู†ุง
284
+
285
+ 72
286
+ 00:08:20,250 --> 00:08:25,990
287
+ ุงู„ู…ู‚ุจูˆู„ุŒ ูŠุนู†ูŠ ุงู„ุฎูŠุงู„ุŒ ู„ุฃู† ุงู„ุฎูŠุงู„ ุฎู„ุงู ุงู„ูˆุงู‚ุนุŒ ูู‡ูˆ ู„ุง
288
+
289
+ 73
290
+ 00:08:25,990 --> 00:08:31,500
291
+ ูŠุชุทุจู‚ ู…ุน ุงู„ูˆุงู‚ุนุŒ ู„ุฐุง ู‚ุงู„: "ูƒุฐุจู‡". ูˆุงู„ุดุนุฑ ูŠุบู†ูŠ ุนู† ุตุฏู‚ู‡
292
+
293
+ 74
294
+ 00:08:31,500 --> 00:08:38,460
295
+ ูƒุฐุจู‡ุŒ ูŠุนู†ูŠ ูŠุณุชุทูŠุน ู…ู† ุฎู„ุงู„ ุงู„ุฎูŠุงู„ ุฃู† ูŠุฌู…ู„ ุงู„ุฌู…ูŠู„
296
+
297
+ 75
298
+ 00:08:38,460 --> 00:08:45,780
299
+ ูˆูŠู‚ุจุญ ุงู„ู‚ุจูŠุญ. ูˆู„ู… ูŠูƒู† ุฐูˆ ุงู„ู‚ุฑูˆุญ ูŠู„ู‡ุฌ ุจุงู„ู…ู†ุทู‚ ุงู„ู„ูŠ
300
+
301
+ 76
302
+ 00:08:45,780 --> 00:08:51,340
303
+ ู‡ูˆ ุฅู…ู„ ุงู„ู‚ูŠุต. ู„ู… ูŠูƒู† ุฅูŠู‡ ุฐูˆ ุงู„ู‚ุฑูˆุญ ูŠู„ู‡ุฌ ุจุงู„ู…ู†ุทู‚
304
+
305
+ 77
306
+ 00:08:51,340 --> 00:08:56,040
307
+ ูŠุนู†ูŠ ุฅูŠู‡ ูŠุณุชุนู…ู„ ู…ู†ุทู‚ ุงู„ู„ูŠ ู‡ูˆ ู…ุง ู†ูˆุนู‡ ูˆู…ุง ุณุจุจู‡
308
+
309
+ 78
310
+ 00:08:56,040 --> 00:09:03,470
311
+ ูˆุชุนุฑูŠูู‡ ูˆู†ุญูˆ ุฐู„ูƒ. ูˆุงู„ุดุนุฑ ู„ู…ุญุŒ ูˆู‡ู†ุง ุทุจุนู‹ุง ูŠู‚ุฑุฑ ุงู„ู†ุธุฑูŠุฉ
312
+
313
+ 79
314
+ 00:09:03,470 --> 00:09:09,010
315
+ ู†ุธุฑูŠุฉ ุงู„ุดุนุฑุŒ ูˆุงู„ุดุนุฑ ู„ู…ุญุŒ ุชูƒููŠ ุฅุดุงุฑุชู‡. ุงู„ุฅุดุงุฑุฉ ูŠุนู†ูŠ
316
+
317
+ 80
318
+ 00:09:09,010 --> 00:09:13,770
319
+ ู…ู‚ุฏู…ุฉ ุฏูˆู† ู†ุชูŠุฌุฉุŒ ุญุชู‰ ููŠ ุงู„ู„ุบุฉ ูŠุนู†ูŠ ุงุณุชุนู…ู„ ุงู„ู„ุบุฉ ุฅูŠู‡
320
+
321
+ 81
322
+ 00:09:13,770 --> 00:09:19,770
323
+ ุงู„ูƒู„ู…ุงุช ุงู„ู…ูˆุญูŠุฉ ูˆุงู„ุฃุณู„ูˆุจ ุฅูŠู‡ ุงู„ู…ูˆุญูŠ ุงู„ู…ุซูŠุฑ ู„ุฅูŠู‡
324
+
325
+ 82
326
+ 00:09:19,770 --> 00:09:27,230
327
+ ุงู„ู…ุนุงู†ูŠุŒ ุฃุณู„ูˆุจ ุฅูŠุฌุงุฒ ู„ู…ุงุญุŒ ุฃุณู„ูˆุจ ู…ูƒุซู ูˆู„ูŠุณ ุจุงู„ู‡ุฒุฑ.
328
+
329
+ 83
330
+ 00:09:27,230 --> 00:09:36,590
331
+ ุทูˆู„ุช ุฎุทุจู‡ุŒ ูŠุนู†ูŠ ุงู„ุดุนุฑ ู„ุง ูŠุณุชุนู…ู„ ุฃุณู„ูˆุจ ุงู„ุฎุทุงุจุฉ ุงู„ุชูŠ
332
+
333
+ 84
334
+ 00:09:36,590 --> 00:09:41,970
335
+ ูŠู‚ูˆู… ุนู„ู‰ ุงู„ุฅู‚ู†ุงุน ูˆุงู„ุฑุจุท ุจูŠู† ุงู„ู…ู‚ุฏู…ุงุช ูˆุงู„ู†ุชุงุฆุฌ.
336
+
337
+ 85
338
+ 00:09:45,340 --> 00:09:52,200
339
+ ูู‡ุฐู‡ ุฑุคูŠุฉ ุชุฎุงู„ู ุฑุคูŠุฉ ุงู„ุดุนุฑ ุงู„ุฌุงู‡ู„ูŠ ู„ู„ุดุนุฑ. ูุงู„ุดุนุฑ
340
+
341
+ 86
342
+ 00:09:52,200 --> 00:10:02,240
343
+ ุงู„ุฌุงู‡ู„ูŠ ูŠุฑู‰ ุฃู† ุงู„ุดุนุฑ ู‡ูˆ ู†ุชุงุฌ ู‚ูˆุฉ ู…ุณุชู…ุฏุฉ ู…ู† ุงู„ุฌู†.
344
+
345
+ 87
346
+ 00:10:02,240 --> 00:10:10,820
347
+ ูู‚ุงู„ุŒ ู‚ุงู„ ุงู„ุฃุนุดู‰ ุงู„ูƒุจูŠุฑ ู…ูŠู…ูˆู† ุจู† ู‚ูŠุณ ููŠ ุงุณุชุนุงู†ุชู‡
348
+
349
+ 88
350
+ 00:10:10,820 --> 00:10:17,420
351
+ ุจู…ุณุญู„ุŒ ูˆู‡ูˆ ู…ู† ู…ุฑุถ ุงู„ุฌู†. ูู‚ุงู„: "ูู„ู…ุง ุฑุฃูŠุช ุงู„ู†ุงุณ ู„ู„ุดุฑ
352
+
353
+ 89
354
+ 00:10:17,420 --> 00:10:25,040
355
+ ุฃุฒุนู†ูˆุงุŒ ูˆุณุงุจูˆุง ุฅู„ูŠู†ุง ู…ู† ูุตูŠุญู ูˆุฃุนุฌู…ูŠุŒ ุฏุนูˆุช ุฎู„ูŠู„
356
+
357
+ 90
358
+ 00:10:25,040 --> 00:10:32,880
359
+ ู…ุณุญู„ุง ูˆุฏุนูˆุง ู„ู‡ ุฌู‡ู†ู… ุฌุฏุนุงุŒ ู„ู„ู‡ุฌูŠู† ุงู„ู…ุฐู…ู…. ุญุจุงู† ุฃุฎ
360
+
361
+ 91
362
+ 00:10:32,880 --> 00:10:39,960
363
+ ุงู„ุฌู†ูŠุฉ ู†ูุณูŠ ูุฏุงุฆู‡ ุจุฃููŠุงุญ ุฌูŠุงุด ู…ู† ุงู„ุตุฏุฑ ุงู„ุฎุถุฑู…ูŠ".
364
+
365
+ 92
366
+ 00:10:39,960 --> 00:10:48,760
367
+ ูู„ู…ุง ุฑุฃูŠุช ุงู„ู†ุงุณ ู„ู„ุดุฑ ุฃุฒุนู†ูˆุงุŒ ูŠุนู†ูŠ ุงุณุชุฌุงุจูˆุง ู„ู„ุดุฑุŒ ูŠุนู†ูŠ
368
+
369
+ 93
370
+ 00:10:48,760 --> 00:10:58,160
371
+ ุงุณุชู…ุนุช ู„ุฏูŠู‡ู… ุงู„ุฅุฑุงุฏุฉ ูˆุงู„ุณู„ูˆูƒ ููŠ ุงู„ุดุฑ ูˆุญุดุฏูˆุง ู„ุฐู„ูƒ
372
+
373
+ 94
374
+ 00:10:58,160 --> 00:11:05,860
375
+ ูˆุณุงุจูˆุง ุฅู„ูŠู†ุง ู…ู† ูุตูŠุญุฉ ูˆุฃุนุฌู…ูŠุŒ ูŠุนู†ูŠ ุฑุฌุนูˆุง ุฅู„ูŠู†ุง
376
+
377
+ 95
378
+ 00:11:05,860 --> 00:11:12,970
379
+ ู…ุชุณู„ุญูŠู† ุจู‡ุฐุง ุงู„ุญุดุฏ ู…ู† ูƒู„ ุงู„ูุตุญุงุกุŒ ู…ู† ูุตูŠุญ ูˆุฃุนุฌู….
380
+
381
+ 96
382
+ 00:11:12,970 --> 00:11:21,450
383
+ ุทุจุนู‹ุง ู…ู† ูƒู„ ุงู„ูุตุญุงุก ู„ุฏุฑุฌุฉ ุฃู†ู‡ู… ูŠุณุชุนุงู†ูˆุง ุจุงู„ุฃุนุฌู…
384
+
385
+ 97
386
+ 00:11:21,450 --> 00:11:27,350
387
+ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ุฃุณู„ูˆุจ ูŠู‚ุงู„ ุนู†ุฏู…ุง ูŠูƒูˆู† ู‚ุฏ ุญุดุฏ ูƒู„
388
+
389
+ 98
390
+ 00:11:27,350 --> 00:11:32,530
391
+ ุงู„ู…ู‡ุงุฑุงุช ุงู„ู…ุทู„ูˆุจุฉ. ู†ู‚ูˆู„: "ูˆุณุงุจูˆุง ุฅู„ูŠู†ุง" ูƒู…ุง ูŠู‚ูˆู„
392
+
393
+ 99
394
+ 00:11:32,530 --> 00:11:39,780
395
+ ุงู„ุดุนุฑ ู…ู† ูุตูŠุญุŒ ูŠุนู†ูŠ ู…ู† ูƒู„ ุงู„ูุตุญุงุก. ุทุจุนู‹ุง ุงู„ุชุนุจูŠุฑ ุนู† ูƒู„
396
+
397
+ 100
398
+ 00:11:39,780 --> 00:11:46,640
399
+ ุงู„ูุตุญุงุก ุฃู†ู‡ ูŠุฏุฎู„ ุงู„ุฃุนุงุฌู… ู…ุนู‡ู…ุŒ ู…ู† ูƒุงู† ุฃุนุฌู…ูŠู‹ุง
400
+
401
+ 101
402
+ 00:11:46,640 --> 00:11:50,280
403
+ ูˆุซุงุจูˆุง
404
+
405
+ 102
406
+ 00:11:50,280 --> 00:11:55,800
407
+ ุฅู„ูŠู†ุง ู…ู† ูุตูŠุญ ูˆุฃุนุฌู…ูŠู†. ุฏุนูˆุช ุฎู„ูŠู„ูŠุŒ ุญูŠู†ู‡ุง ุฏุนูˆุช
408
+
409
+ 103
410
+ 00:11:55,800 --> 00:12:02,560
411
+ ุฎู„ูŠู„ูŠุŒ ู…ุซู„ู‹ุง. ูˆุนู†ุฏู…ุง ุฑุฃูˆู†ูŠ ุฃู† ุฃู†ุง ุฏุนูˆุช ุฎู„ูŠู„ูŠ ู…ุณู‡ู„ุง
412
+
413
+ 104
414
+ 00:12:02,560 --> 00:12:09,680
415
+ ุฏุนูˆุง ุฑุฃูŠุŒ ูŠุนู†ูŠ ุดุฎุต ู…ู† ุงู„ุฌู† ู…ุดู‡ูˆุฑ ุจุงู„ุฅูŠู‡ ุจุฃู†ู‡ ูŠุนู†ูŠ
416
+
417
+ 105
418
+ 00:12:09,680 --> 00:12:19,340
419
+ ู‚ูˆุฉ ุฑู‡ูŠุจุฉ ุจู‡ุฏู ุถุฑุจ ูˆุฌุฏุน ุฃู†ู ู…ุณู‡ู„ุŒ ูˆุทุจุนู‹ุง
420
+
421
+ 106
422
+ 00:12:19,340 --> 00:12:24,340
423
+ ูƒู„ู…ุฉ "ุฌุฏุน" ูŠุนู†ูŠ ุชุณุชุนู…ู„ ูŠุนู†ูŠ ููŠ ุงู„ุถุฑุจ ุนู„ู‰ ุงู„ุฃู†ูุŒ ุนู„ู‰
424
+
425
+ 107
426
+ 00:12:24,340 --> 00:12:30,340
427
+ ู…ูˆุงุทู† ุงู„ุนุฒุฉ ูˆุงู„ูƒุฑุงู…ุฉ. ุฌุฏุน. ูุงู„ุดุนุจ ุงุฎุชุงุฑ ูƒู„ู…ุฉ "ุฌุฏุนุง"
428
+
429
+ 108
430
+ 00:12:30,340 --> 00:12:35,880
431
+ ูŠุนู†ูŠ ุงู„ุถุฑุจ ุนู„ู‰ ุงู„ุฃู†ูุŒ ู„ู„ู‡ุฌูŠู† ุงู„ู…ุฐู…ู…. ู…ู† ู‡ูˆ ุงู„ู‡ุฌูŠู†
432
+
433
+ 109
434
+ 00:12:35,880 --> 00:12:41,320
435
+ ุงู„ู…ุฐู…ู…ุŸ ุงู„ู„ูŠ ู‡ูˆ ู…ุณุญู„. ุทุจุนู‹ุง ู‡ู†ุง ุฃุณู„ูˆุจ ุฐู… ู„ูƒู†ู‡ ูŠุฑูŠุฏ
436
+
437
+ 110
438
+ 00:12:41,320 --> 00:12:49,640
439
+ ุงู„ู…ุฏุญุŒ ุฃู†ู‡ ู‡ุฐุง ุงู„ู…ุณุญู„ ุดุฑูŠุฑ ูˆู…ู‡ุฌู†. ูŠุนู†ูŠ ููŠู‡ ุณุทุฑุงุช
440
+
441
+ 111
442
+ 00:12:49,640 --> 00:12:58,290
443
+ ุงู„ู‚ูˆุฉ. ู‡ุจุงู†ูŠ ุฃุฎ ุงู„ุฌู†ูŠุฉ ู†ูุณูŠ ูุฏุงุฆู‡. ู‡ุฐุง
444
+
445
+ 112
446
+ 00:12:58,290 --> 00:13:05,210
447
+ ุงู„ุฏุนุงุก "ู†ูุณูŠ ูุฏุงุฆู‡" ุฅู†ู…ุง ูŠุนู†ูŠ ูŠุฑูŠุฏ ุฃู† ูŠุนุจุฑ ุนู† ุชู„ูƒ
448
+
449
+ 113
450
+ 00:13:05,210 --> 00:13:12,930
451
+ ุฃูŠ ุทุงู‚ุฉ ุงู„ู‚ูˆูŠุฉ ุงู„ุชูŠ ู…ู†ุญู‡ุง ู„ู‡ ุงู„ุฌู†ูŠ. ู‡ุจุงู†ูŠ ุฃุฎ ุงู„ุฌู†ูŠ
452
+
453
+ 114
454
+ 00:13:12,930 --> 00:13:20,550
455
+ ู†ูุณูŠ ูุฏุงุฆู‡ุŒ ูŠุนู†ูŠ ุทุงู‚ุฉ ุฑุงุฆุนุฉ ู„ุง ูŠู…ูƒู† ุฃู† ุชูˆุตูุŒ ุจู‚ูˆุฉ
456
+
457
+ 115
458
+ 00:13:20,550 --> 00:13:29,150
459
+ ู…ุชุฏูู‚ุฉ ุจุฃููŠุญ ุฌูŠุงุดุŒ ุจุฃูˆุณุน ู‚ูˆุฉ ู…ู† ุงู„ุตุฏุฑ ุงู„ุฎุถุฑู…ูŠุŒ ู…ุชุฏูู‚ุฉ
460
+
461
+ 116
462
+ 00:13:29,150 --> 00:13:34,150
463
+ ูˆูƒุฐู„ูƒ ุงูุชุฎุฑ ุฃุจูˆ ู†ุฌู… ุงู„ุนุฌู„ูŠ ููŠ ู…ุฑุงุฌุฒุฉ ุงู„ุนุฌุงุฌ ุจู†
464
+
465
+ 117
466
+ 00:13:34,150 --> 00:13:44,540
467
+ ุฑู‚ุจุฉ ุจุฃู† ุดูŠุทุงู†ู‡ ุฐูƒุฑุŒ ูˆุดูŠุทุงู† ุบูŠุฑู‡ ู…ู† ุงู„ุฃู†ุซู‰. ูŠู‚ูˆู„: "ุฅู†ูŠ
468
+
469
+ 118
470
+ 00:13:44,540 --> 00:13:50,540
471
+ ูˆูƒู„ ุดุงุนุฑ ู…ู† ุงู„ุจุดุฑู‰ ุดูŠุทุงู†ู‡ ุฃู†ุซู‰ุŒ ูˆุดูŠุทุงู†ูŠ ุฐูƒุฑู‡". ู„ุฃู†
472
+
473
+ 119
474
+ 00:13:50,540 --> 00:13:56,440
475
+ ู‡ู†ุง ู†ุณุชุทูŠุน ุฃู† ู†ู‚ูˆู„ ุฃู† ุงู„ุชุทูˆุฑ ุงู„ุนู„ู…ูŠ ุงู„ุฐูŠ ู„ุญู‚ ุฃูˆ
476
+
477
+ 120
478
+ 00:13:56,440 --> 00:14:05,540
479
+ ุฃุตุงุจ ูŠุนู†ูŠ ุงู„ุนุตุฑ ุงู„ุนุจุงุณูŠุŒ ู…ู†ุญู‡ู… ู…ู† ุฅุนุงุฏุฉ ู…ุฑุงุฌุนุฉ ู„ูƒุซูŠุฑ
480
+
481
+ 121
482
+ 00:14:05,540 --> 00:14:11,760
483
+ ู…ู† ุงู„ู…ูุงู‡ูŠู… ุงู„ุณุงุจู‚ุฉ. ูู„ู… ูŠุนุฏ ุงู„ุฅู†ุณุงู† ููŠ ุงู„ุนุตุฑ .. ููŠ
484
+
485
+ 122
486
+ 00:14:11,760 --> 00:14:16,700
487
+ ู‡ุฐุง ุงู„ุนุตุฑ ุฃู† ูŠุชู‚ุจู„ ู…ุซู„ ู‡ุฐู‡ ุงู„ุฎุฑุงูุงุช ูˆู‡ุฐู‡
488
+
489
+ 123
490
+ 00:14:16,700 --> 00:14:24,260
491
+ ุงู„ุฎุฒุนุจู„ุงุช. ูุงู„ุนู„ู… ู‡ูˆ ุงู„ูƒููŠู„ ู„ุชุญุทูŠู… ู‡ุฐู‡ ุงู„ุฃุฐุฑุน
492
+
493
+ 124
494
+ 00:14:24,260 --> 00:14:28,120
495
+ ุงู„ุฌุงู‡ู„ูŠุฉ. ู‡ุฐุง ู‡ูˆ ุจุงู„ู„ู‡ ุงู„ุชูˆููŠู‚ุŒ ูˆุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู…
496
+
497
+ 125
498
+ 00:14:28,120 --> 00:14:32,920
499
+ ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ุง
500
+
501
+ 126
502
+ 00:14:32,920 --> 00:14:33,440
503
+ ูƒุซูŠุฑุง.
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/NzfyIgoOlVI.srt ADDED
@@ -0,0 +1,889 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:04,890 --> 00:00:09,070
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:09,070 --> 00:00:14,690
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง ูˆุจุนุฏ ู†ุชู†ุงูˆู„ ููŠ
8
+
9
+ 3
10
+ 00:00:14,690 --> 00:00:20,010
11
+ ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ูˆุถูˆุนุงุช ุฃูˆ ุงู„ุชุฌุฏูŠุฏ ููŠ ุงู„ู…ูˆุถูˆุนุงุช
12
+
13
+ 4
14
+ 00:00:20,010 --> 00:00:26,790
15
+ ุงู„ู‚ุฏูŠู…ุฉ ูˆูƒู„ู…ุฉ ุชุฌุฏูŠุฏ ุชุนู†ูŠ ุฅุถุงูุฉ ุนู†ุงุตุฑ ุฌุฏูŠุฏุฉ ุฅู„ู‰ ู…ุง
16
+
17
+ 5
18
+ 00:00:26,790 --> 00:00:33,310
19
+ ู‡ูˆ ู‚ุฏูŠู… ูŠูƒูˆู† ู‡ุฐุง ุงู„ู‚ุฏูŠู… ุตุงู„ุญุง ู„ู„ุฌุฏูŠุฏ ุฃูˆ ู„ู„ุนุตุฑ
20
+
21
+ 6
22
+ 00:00:33,310 --> 00:00:39,350
23
+ ุงู„ุฌุฏูŠุฏ ู…ู† ุฃู‡ู… ู‡ุฐู‡ ุงู„ู…ูˆุถูˆุนุงุช ููŠ ุงู„ุดุนุฑ ุงู„ู‚ุฏูŠู… ู‡ูˆ
24
+
25
+ 7
26
+ 00:00:39,350 --> 00:00:45,010
27
+ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ูˆูƒุงู†ุช ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ุชู…ุซู„ ุงู„ู…ู†ุธูˆู…ุฉ
28
+
29
+ 8
30
+ 00:00:45,010 --> 00:00:51,370
31
+ ุงู„ุฃุฎู„ุงู‚ูŠุฉ ุงู„ุนุฑุจูŠุฉ ูˆู„ุฐู„ูƒ ุญุธูŠุช ุจุงู‡ุชู…ุงู… ูƒุจูŠุฑ ุงู‡ุชู…ุงู…
32
+
33
+ 9
34
+ 00:00:51,370 --> 00:00:54,150
35
+ ุงู„ุดุนุฑุงุก
36
+
37
+ 10
38
+ 00:00:55,280 --> 00:00:59,720
39
+ ูˆุงู„ุนุฑุจ ุจู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ู„ุฃู†ู‡ุง ูƒุงู†ุช ุชุญูˆูŠ ุงู„ู…ู†ุธูˆู…ุฉ
40
+
41
+ 11
42
+ 00:00:59,720 --> 00:01:06,140
43
+ ุงู„ุฃุฎู„ุงู‚ูŠุฉ ุงู„ุนุฑุจูŠุฉ ุฅุฐุง ูƒุงู† ุงู„ู…ู…ุฏูˆุญ ูŠู…ุฏุญ ุจุฃู†ู‡ ูŠุญุงูุธ
44
+
45
+ 12
46
+ 00:01:06,140 --> 00:01:10,880
47
+ ุนู„ู‰ ู‡ุฐู‡ ุงู„ู…ู†ุธูˆู…ุฉ ุฃูˆ ุฃู† ู‡ุฐู‡ ุงู„ู…ู†ุธูˆู…ุฉ ู‚ุฏ ุชู…ุซู„ุช ููŠ
48
+
49
+ 13
50
+ 00:01:10,880 --> 00:01:21,420
51
+ ู‡ุฐุง ุงู„ู…ู…ุฏูˆุญ ุฃุฌู…ู„ ุชู…ุซู„ ูƒุงู†ุช ุงู„ู…ุฏุญุฉ ุฃูˆ ู‚ุตุฏ ุงู„ู…ุฏุญ
52
+
53
+ 14
54
+ 00:01:21,420 --> 00:01:29,380
55
+ ุชุจุนุซ ููŠ ุงู„ู…ุชู„ู‚ูŠ ูˆุงู„ู…ุฌุชู…ุน ุงู„ุนุฑุจูŠ ุฃุฌู…ู„ ุงู„ู…ุนุงู†ูŠ ูˆุฃู†ุจู„
56
+
57
+ 15
58
+ 00:01:29,380 --> 00:01:34,790
59
+ ุงู„ุฃุฎู„ุงู‚ ุงู„ุฌุฏูŠุฏ ุฃูˆ ุงู„ุนู†ุงูˆูŠู† ุงู„ุฌุฏูŠุฏุฉ ุงู„ุชูŠ ุฃุถูŠูุช ุฅู„ู‰
60
+
61
+ 16
62
+ 00:01:34,790 --> 00:01:43,580
63
+ ู‡ุฐู‡ ุงู„ู‚ุตูŠุฏุฉ ู‡ูˆ ุฃู† ู…ุนุงู†ูŠ ุงู„ู…ุฏุญ ุชู„ุงุฆู… ุงู„ู…ู…ุฏูˆุญ ู„ู…ุนู†ู‰
64
+
65
+ 17
66
+ 00:01:43,580 --> 00:01:50,120
67
+ ุขุฎุฑ ุฃู† ุงู„ุดุงุนุฑ ูŠุนุจู‘ุฑ ุฃูˆ ูŠุฑุจุท ุจูŠู† ุงู„ู…ู…ุฏูˆุญ ูˆู…ุนุงู†ูŠ ุงู„ู…ุฏุญ
68
+
69
+ 18
70
+ 00:01:50,120 --> 00:01:56,760
71
+ ูุฅุฐุง ูƒุงู† ุงู„ู…ู…ุฏูˆุญ ุฎู„ูŠูุฉ ู…ุฏุญ ุจุงู„ุชู‚ูˆู‰ ูˆู…ุฏุญ ุจุงู„ุนูุฉ
72
+
73
+ 19
74
+ 00:01:56,760 --> 00:02:03,080
75
+ ูˆุงู„ุญูŠุงุก ูˆุงู„ุนุฏู„ ูˆุฃู†ู‡ ูŠุญุงูุธ ุนู„ู‰ ุงู„ุณู†ุฉ ูˆูŠู‚ู…ุน ุงู„ุจุฏุนุฉ
76
+
77
+ 20
78
+ 00:02:03,080 --> 00:02:09,790
79
+ ูƒู…ุง ู‚ุงู„ ู…ุฑูˆุงู† ุงุจู† ุฃุจูŠ ุญูุตุฉ ูŠู…ุฏุญ ุงู„ู…ู‡ุฏูŠ ุฃุญูŠู‰ ุฃู…ูŠุฑ
80
+
81
+ 21
82
+ 00:02:09,790 --> 00:02:16,890
83
+ ุงู„ู…ุคู…ู†ูŠู† ู…ุญู…ุฏ ุตู†ู† ุงู„ู†ุจูŠ ุญุฑุงู…ู‡ุง ูˆุญู„ุงู„ู‡ุง ูˆูŠู‚ูˆู„
84
+
85
+ 22
86
+ 00:02:16,890 --> 00:02:24,410
87
+ ุงู„ุญุณูŠู† ุจู† ู…ุทูŠุฑ ุงู„ุฃุณุฏูŠ ูŠุนููˆ ูˆูŠุณุชุญูŠ ุฅุฐุง ูƒุงู†
88
+
89
+ 23
90
+ 00:02:24,410 --> 00:02:34,100
91
+ ุฎุงู„ูŠุง ูƒู…ุง ูŠุนููˆ ูˆูŠุณุชุญูŠ ุจุญูŠุซ ุฑู‚ูŠุจู‡ ุจู…ุนู†ู‰ ุฃู†ู‡ ุนููŠู
92
+
93
+ 24
94
+ 00:02:34,100 --> 00:02:41,620
95
+ ูˆุญูŽูŠู‘ูŠ ููŠ ุญูŠุงุชู‡ ุงู„ุณุฑ ูˆุงู„ุนู„ู† ูŠุนู†ูŠ ุตุงุฏู‚ ููŠ ุนูุชู‡ ูˆุตุงุฏู‚
96
+
97
+ 25
98
+ 00:02:41,620 --> 00:02:49,960
99
+ ููŠ ุญูŠุงุฆู‡ ูู‡ูˆ ูŠุทุงุจู‚ ุจูŠู† ุงู„ุณุฑ ูˆุงู„ุนู„ู† ุฃู…ุง ุฃุจูˆ ุงู„ุนุชุงู‡ูŠุฉ
100
+
101
+ 26
102
+ 00:02:49,960 --> 00:02:57,260
103
+ ูู‚ุฏ ูˆุธู‘ู ู…ุนุงู†ูŠ ุงู„ุฒู‡ุฏ ููŠ ุชุนู…ูŠู‚ ู…ุนุงู†ูŠ ุงู„ู…ุฏุญ ูู‚ุงู„ ู‚ุงู„
104
+
105
+ 27
106
+ 00:02:57,260 --> 00:03:07,140
107
+ ููŠ ู…ุฏุญ ุงู„ุฑุดูŠุฏ ูุฑุงุนู† ูŠุฑุงุนูŠ ุงู„ู„ู‡ ููŠ ุญูุธ ุฃู…ุฉ ูŠุฏุงูุน
108
+
109
+ 28
110
+ 00:03:07,140 --> 00:03:14,000
111
+ ุนู†ู‡ุง ุงู„ุดุฑ ุบูŠุฑ ุฑู‚ูˆุฏ ูŠุชุฌุงูู‰ ุนู† ุงู„ุฏู†ูŠุง ูˆุฃูŠู‚ู† ุฃู†ู‡ุง
112
+
113
+ 29
114
+ 00:03:14,000 --> 00:03:20,880
115
+ ู…ูุงุฑู‚ุฉ ู„ูŠุณุช ุจุฏุงุฑ ุฎู„ูˆุฏ ูู†ู„ุงุญุธ ููŠ ุงู„ุจูŠุช ุงู„ุฃูˆู„ ุฃู†
116
+
117
+ 30
118
+ 00:03:20,880 --> 00:03:29,400
119
+ ุงู„ุฎู„ูŠูุฉ ูŠุฑุงุนูŠ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ููŠ ุงู„ู…ุญุงูุธุฉ ุนู„ู‰
120
+
121
+ 31
122
+ 00:03:29,400 --> 00:03:36,110
123
+ ุซูˆุงุจ ุฃู…ุฉ ูˆุนู„ู‰ ู…ูƒุชุณุจุงุชู‡ุง ูˆุฃู†ู‡ ูŠุฏุงูุน ุนู† ูƒุฑุงู…ุชู‡ุง
124
+
125
+ 32
126
+ 00:03:36,110 --> 00:03:43,050
127
+ ูˆูŠุฏูุน ุนู†ู‡ุง ุงู„ุดุฑ ุจุฅุฑุงุฏุฉ ุตุงุฏู‚ุฉ ุบูŠุฑ ู…ุชู‚ุงุนุณุฉ ููŠ ุงู„ุจูŠุช
128
+
129
+ 33
130
+ 00:03:43,050 --> 00:03:47,370
131
+ ุงู„ุซุงู†ูŠ ู†ุฌุฏ ู…ุนุงู†ูŠ ุงู„ุฒู‡ุฏ ุชุฌุงูู‰ ุนู† ุงู„ุฏู†ูŠุง ู‡ู†ุง ุชูˆุธูŠู
132
+
133
+ 34
134
+ 00:03:47,370 --> 00:03:55,270
135
+ ู„ ู…ุนู†ู‰ ุงู„ุฒู‡ุฏ ูุงู„ุฒู‡ุฏ ูŠู‚ูˆู… ุนู„ู‰ ุชู‡ุฐูŠุจ ุญุจ ุงู„ุฅู†ุณุงู† ููŠ
136
+
137
+ 35
138
+ 00:03:55,270 --> 00:04:02,270
139
+ ุงู„ุจู‚ุงุก ูˆุชู‡ุฐูŠุจ ุญุจ ุงู„ุฅู†ุณุงู† ููŠ ุญุจ ุงู„ุชู…ู„ูƒ
140
+
141
+ 36
142
+ 00:04:04,510 --> 00:04:10,370
143
+ ูˆุฃู‡ู… ุดูŠุก ููŠ ุงู„ุฒู‡ุฏ ู‡ูˆ ุฃู† ูŠุจุชุนุฏ ุงู„ุฅู†ุณุงู† ุนู† ู…ู„ุฐุงุช
144
+
145
+ 37
146
+ 00:04:10,370 --> 00:04:18,070
147
+ ุงู„ุฏู†ูŠุง ูˆุนู† ุงู„ูŠู‚ูŠู† ุจุงู„ุจู‚ุงุก ููŠู‡ุง ูƒู…ุง ู‚ุงู„ ุตู„ู‰ ุงู„ู„ู‡
148
+
149
+ 38
150
+ 00:04:18,070 --> 00:04:23,750
151
+ ุนู„ูŠู‡ ูˆุณู„ู… "ุงุฒู‡ุฏ ููŠ ุงู„ุฏู†ูŠุง ูŠุญุจูƒ ุงู„ู„ู‡ ูˆุงุฒู‡ุฏ ููŠ ู…ุง ูŠู…ู„ูƒ ุงู„ู†ุงุณ ูŠุญุจูƒ ุงู„ู†ุงุณ" ุชุฌุงูู‰ ุนู† ุงู„ุฏู†ูŠุง ูˆุฃูŠู‚ู† ุฃู†ู‡ุง ู…ูุงุฑู‚ุฉ
152
+
153
+ 39
154
+ 00:04:23,750 --> 00:04:28,810
155
+ ู„ูŠุณุช ุจุฏุงุฑ ุฎู„ูˆุฏ ูู‡ู†ุง ุชู‡ุฐูŠุจ ุฃูˆ ุชู‡ุฐูŠุจ ู„ู„ุฑุบุจุฉ
156
+
157
+ 40
158
+ 00:04:28,810 --> 00:04:35,580
159
+ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ ุญุจ ุงู„ุชู…ู„ูƒ ูˆุญุจ ุงู„ุจู‚ุงุก ู„ุง ุดูƒ ุฃู† ุฃุจุง
160
+
161
+ 41
162
+ 00:04:41,400 --> 00:04:44,820
163
+ ุงู„ุนุชุงู‡ูŠุฉ ูˆุงู†ุทู„ุงู‚ุง ู…ู† ุซู‚ุง๏ฟฝ๏ฟฝุชู‡ ุงู„ุฒู‡ุฏูŠุฉ ูƒุงู† ูŠูˆุฏ ุฃู† ุชูƒูˆู†
164
+
165
+ 42
166
+ 00:04:44,820 --> 00:04:49,780
167
+ ู‡ุฐู‡ ุงู„ู…ุนุงู†ูŠ ููŠ ุดุฎุตูŠุฉ ุงู„ุฑุดูŠุฏ ูˆุทุจุนุง ู‡ุฐุง ูŠู‚ูˆุฏู†ุง ุฅู„ู‰
168
+
169
+ 43
170
+ 00:04:49,780 --> 00:04:54,600
171
+ ุงู„ู‚ูˆู„ ุจุฃู† ู‡ุฐู‡ ุงู„ู…ุนุงู†ูŠ ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ููŠ
172
+
173
+ 44
174
+ 00:04:54,600 --> 00:05:00,180
175
+ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ุฅู…ุง ุฃู† ุชูƒูˆู† ุตูุงุช ููŠ ุงู„ู…ู…ุฏูˆุญ ุญู‚ูŠู‚ุฉ ุฃูˆ
176
+
177
+ 45
178
+ 00:05:00,180 --> 00:05:10,600
179
+ ู…ุทุงู„ุจ ูŠูˆุฏ ุงู„ุดุงุนุฑ ุฃู† ุชูƒูˆู† ููŠ ุงู„ู…ู…ุฏูˆุญ ู‚ุงู„ ุงู„ู†ู…ุฑูŠ ูŠู…ุฏุญ
180
+
181
+ 46
182
+ 00:05:10,600 --> 00:05:16,400
183
+ ู‡ุฑูˆู† ุงู„ุฑุดูŠุฏ "ุจูˆุฑูƒ ู‡ุงุฑูˆู† ู…ู† ุฅู…ุงู… ุจุทุงุนุฉ ุงู„ู„ู‡ ุฐุงุช ุงู„ุตุงุฑู… ู„ู‡ ุฅู„ู‰ ุฐูŠ ุงู„ุฌู„ุงู„ ู‚ุฑุจู‡ ู„ูŠุณุช ู„ุนุฏู„ ูˆู„ุง ู„ุฅู…ุงู…" ุฃูŠ ุฃู†
184
+
185
+ 47
186
+ 00:05:16,400 --> 00:05:24,680
187
+ ุงู„ู…ู…ุฏูˆุญ ูˆู‡ูˆ ุงู„ุฎู„ูŠูุฉ ุงู„ุนุจุงุณูŠ ู„ู‡ ุนู„ุงู‚ุฉ ูˆุตู„ุฉ ุจุงู„ู„ู‡
188
+
189
+ 48
190
+ 00:05:24,680 --> 00:05:30,180
191
+ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ู„ูŠุณุช ู„ู…ุซูŠู„ ู„ู‡ ูˆู„ุง ู„ุฅู…ุงู… ู‚ุจู„ู‡
192
+
193
+ 49
194
+ 00:05:30,180 --> 00:05:35,180
195
+ ูู‡ุฐู‡ ุงู„ู…ุนุงู†ูŠ ูƒู…ุง ู†ุฑู‰ ุชู„ุงุฆู… ุงู„ู…ู…ุฏูˆุญ ุฅุฐุง ูƒุงู† ุฎู„ูŠูุฉ
196
+
197
+ 50
198
+ 00:05:37,450 --> 00:05:42,590
199
+ ุฃู…ุง ุฅุฐุง ูƒุงู† ู‚ุงุฆุฏุง ู„ุฌูŠุด ูุฅู†ู‡ ูŠู…ุฏุญ ุจุงู„ุดุฌุงุนุฉ ูˆุงู„ุจุทูˆู„ุฉ
200
+
201
+ 51
202
+ 00:05:42,590 --> 00:05:49,690
203
+ ูˆู‚ุฏ ุฑุณู… ูˆุฃุจุฏุน ุดุนุฑุงุก ููŠ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ููŠ ู…ุฏุงุฆุญ
204
+
205
+ 52
206
+ 00:05:50,810 --> 00:05:56,010
207
+ ุงู„ุจุทูˆู„ุฉ ูˆุงู„ุดุฌุงุนุฉ ูˆุฑุณู…ูˆุง ุฃุฌู…ู„ ุตูˆุฑ ู„ู„ุจุทู„ ุนู„ู‰ ู†ุญูˆ ู…ุง
208
+
209
+ 53
210
+ 00:05:56,010 --> 00:06:04,170
211
+ ู†ุฑู‰ ุนู†ุฏ ุฃุจูŠ ุชู…ุงู… ุฃูŠุถุง ู†ุฌุฏ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ู…ุดูŠุฏุง ุจูŠู‡
212
+
213
+ 54
214
+ 00:06:04,170 --> 00:06:14,190
215
+ ุงู„ุฑุดูŠุฏ ุญูŠู† ูุชุญ ู‡ุฑุงู‚ู„ุฉ ููŠ ุขุณูŠุง ุงู„ุตุบุฑู‰ ุฃู…ุง ุฅุฐุง ูƒุงู†
216
+
217
+ 55
218
+ 00:06:14,190 --> 00:06:21,000
219
+ ู‚ุงุฆุฏุง ู„ุฌูŠุด ูุฅู†ู†ุง ู†ุฌุฏ ุฃู† ุงู„ุดุนุฑุงุก ูŠู…ุฏุญูˆู† ู‡ุฐุง ุงู„ู‚ุงุฆุฏ
220
+
221
+ 56
222
+ 00:06:21,000 --> 00:06:26,140
223
+ ุจุงู„ุดุฌุงุนุฉ ูˆุงู„ุจุทูˆู„ุฉ ูˆู†ุฌุฏ ุฃู† ุงู„ุดุนุฑุงุก ูŠุชุจุงุฑูˆู† ููŠ ุฑุณู…
224
+
225
+ 57
226
+ 00:06:26,140 --> 00:06:33,940
227
+ ุฃุฌู…ู„ ุงู„ุตูˆุฑ ู„ู‡ุฐุง ุงู„ุจุทู„ ูˆุฃุฌู…ู„ ุงู„ู…ุนุงู†ูŠ ู„ู…ูู‡ูˆู… ุงู„ุจุทูˆู„ุฉ
228
+
229
+ 58
230
+ 00:06:33,940 --> 00:06:40,790
231
+ ูู…ุซู„ุง ู†ุฌุฏ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ูŠุดูŠุฏ ุจุจุทูˆู„ุฉ ุงู„ุฑุดูŠุฏ ุญูŠู† ูุชุญ
232
+
233
+ 59
234
+ 00:06:40,790 --> 00:06:47,750
235
+ ู‡ุฑู‚ู„ ููŠ ุฃูุณูˆุณ ูˆุงู†ุชุตุงุฑู‡ ุนู„ู‰ ุฌูŠุด ู†ู‚ููˆุฑ
236
+
237
+ 60
238
+ 00:06:47,750 --> 00:06:52,710
239
+ ุฅู…ุจุฑุงุทูˆุฑ
240
+
241
+ 61
242
+ 00:06:52,710 --> 00:06:56,010
243
+ ุจูŠุฒู†ุทุฉ ูˆู‡ู†ุงูƒ ู…ู‚ูˆู„ุฉ ู…ุดู‡ูˆุฑุฉ ููŠ ุงู„ุชุงุฑูŠุฎ ู…ู† ู‡ุงุฑูˆู†
244
+
245
+ 62
246
+ 00:06:56,010 --> 00:07:09,690
247
+ ุงู„ุฑุดูŠุฏ ุฅู„ู‰ ู†ู‚ููˆุฑ ูƒู„ุจ ุงู„ุฑูˆู… "ุงู„ุฌูˆุงุจ ูƒู…ุง ุชุฑู‰ ุงู„ู„ู‡ ูƒู…ุง ุชุณู…ุน" ูู‚ุงู„ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ู†ุดูŠุฏุง ุจุจุทูˆู„ุฉ ุงู„ุฑุดูŠุฏ "ูˆู„ูŠู‡ู†ูƒ
248
+
249
+ 63
250
+ 00:07:09,690 --> 00:07:18,150
251
+ ุงู„ูุชุญ ูˆุงู„ุฃูŠุงู… ู…ู‚ุจู„ุฉ ุฅู„ูŠูƒ ุจุงู„ู†ุตุฑ ู…ุนู‚ูˆุฏุฉ ู†ูˆุงุตูŠู‡ุง ุฃู…ุณู‰ ุชุฑู‚ู„ุฉ ุชู‡ูˆูŠ ู…ู† ุฌูˆุงู†ุจู‡ุง ูˆู†ุตุฑ ุงู„ู„ู‡ ูˆุงู„ุฅุณู„ุงู…
252
+
253
+ 64
254
+ 00:07:18,150 --> 00:07:23,710
255
+ ูŠุฑู…ูŠู‡ุง ู…ู„ูƒุชู‡ุง ูˆู‚ุชู„ุช ุงู„ู†ุงูƒุซูŠู† ุจู‡ุง ุจู†ุตุฑ ู…ู† ูŠู…ู„ูƒ
256
+
257
+ 65
258
+ 00:07:23,710 --> 00:07:29,680
259
+ ุงู„ุฏู†ูŠุง ูˆู…ุง ููŠู‡ุง ู…ุง ุฑูˆุนูŠ ุงู„ุฏูŠู† ูˆุงู„ุฏู†ูŠุง ุนู„ู‰ ู‚ุฏู… ุจู…ุซู„
260
+
261
+ 66
262
+ 00:07:29,680 --> 00:07:36,880
263
+ ู‡ุงุฑูˆู† ุฑุงุนูŠู‡ ูˆุฑุงุนูŠู‡ุง ู‡ู†ุง ุทุจุนุง ู†ุฑู‰ ุตูˆุฑุฉ ุงู„ุจุทู„ ู‚ุฏ
264
+
265
+ 67
266
+ 00:07:36,880 --> 00:07:42,880
267
+ ุชุฌู„ุช ููŠ ู‡ุฐู‡ ุงู„ุฃุจูŠุงุช ูˆุฃูŠุถุง ู…ุนุงู†ูŠ ุงู„ุดุฌุงุนุฉ ู…ู† ุญูŠุซ
268
+
269
+ 68
270
+ 00:07:42,880 --> 00:07:50,580
271
+ ุงู„ุฅู‚ุฏุงู… ูˆู…ู† ุญูŠุซ ุฅู„ุญุงู‚ ุงู„ุฃุฐู‰ ุจู‡ุคู„ุงุก ุงู„ู…ุชู…ู„ู‚ูŠู† ุฃูŠุถุง
272
+
273
+ 69
274
+ 00:07:50,580 --> 00:07:57,320
275
+ ู…ู† ุฃุฌู…ู„ ุงู„ู‚ุตุงุฆุฏ ุงู„ุชูŠ ุฐูƒุฑุช ููŠ ุตูˆุฑ ุงู„ุจุทู„ ูˆู…ุนุงู†ูŠ
276
+
277
+ 70
278
+ 00:07:57,320 --> 00:08:07,980
279
+ ุงู„ุจุทูˆู„ุฉ ู‚ุตุงุฆุฏ ุฃุจูŠ ุชู…ุงู… ููŠ ู…ุฏุญ ุงู„ู…ุนุชุตู… ุญูŠู† ูุชุญ
280
+
281
+ 71
282
+ 00:08:07,980 --> 00:08:15,460
283
+ ุนู…ูˆุฑูŠุฉ ุญูŠุซ ุจุฏุช ูƒุฃู†ู‡ุง ู…ู„ุญู…ุฉ ูƒู…ุง ุณูŠุฃุชูŠ ุงู„ุญุฏูŠุซ ุนู†ู‡ุง
284
+
285
+ 72
286
+ 00:08:15,460 --> 00:08:20,900
287
+ ุนู†ุฏู…ุง ู†ุชู†ุงูˆู„ ุฃุจุง ุชู…ุงู… ูƒุนู„ู… ู…ู† ุฃุนู„ุงู… ุงู„ุดุนุฑุงุก ููŠ ู‡ุฐุง
288
+
289
+ 73
290
+ 00:08:20,900 --> 00:08:26,710
291
+ ุงู„ุนุตุฑ ุฃูŠุถุง ู‡ู†ุงูƒ ู…ู‚ุทูˆุนุฉ ู‚ุตูŠุฑุฉ ู„ู‚ุตูŠุฏุฉ ุทูˆูŠู„ุฉ ู„ุนู„ูŠ ุงุจู†
292
+
293
+ 74
294
+ 00:08:26,710 --> 00:08:33,210
295
+ ุฌุจู„ุฉ ุงู„ู…ู„ู‚ุจ ุจุงู„ุนูƒูˆูƒ ู…ุฏุญ ููŠู‡ุง ุจุทูˆู„ุฉ ุฃุจูŠ ุฏู„ูู† ุงู„ุนุฌู„ูŠ
296
+
297
+ 75
298
+ 00:08:33,210 --> 00:08:41,030
299
+ ู‚ุงุฆุฏ ุงู„ู…ุฃู…ูˆู† ูู‚ุงู„ "ุงู„ู…ู†ุงูŠุง ููŠ ู…ู‚ุงู†ุจู‡ ูˆุงู„ุนุทุงูŠุง ููŠ
300
+
301
+ 76
302
+ 00:08:41,030 --> 00:08:49,920
303
+ ุฐุฑุน ุญุฌุฑู‡ ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ู„ู‡ ูƒุตูŠุงุญ ุงู„ุญุดุฑ ููŠ ุฃู…ุฑู‡ ู‚ุชู‘ุงู‡
304
+
305
+ 77
306
+ 00:08:49,920 --> 00:08:55,820
307
+ ูˆุงู„ู…ูˆุช ู…ู‚ุชู…ู† ููŠ ู…ุฐุงูƒูŠู‡ ูˆู…ุดุชุฌุฑู‡ ูุฑู…ุช ูŠู„ูˆู‡ ู…ู†ู‡ ูŠุฏ
308
+
309
+ 78
310
+ 00:08:55,820 --> 00:09:02,960
311
+ ุทูˆุช ุงู„ู…ู†ุดูˆุฑุฉ ู…ู† ุจุทุฑู‡" ุทุจุนุง ู‡ู†ุงูƒ ูŠุนู†ูŠ ุนุจุงุฑุฉ ู†ู‚ุฑู‘ุฑู‡ุง
312
+
313
+ 79
314
+ 00:09:02,960 --> 00:09:09,880
315
+ ุฏุงุฆู…ุง ุฃู† ุงู„ุจุทู„ ูŠูƒูˆู† ุจุทู„ุง ุนู†ุฏู…ุง ูŠูƒูˆู† ุตุงุฏู‚ุง ููŠ
316
+
317
+ 80
318
+ 00:09:09,880 --> 00:09:17,160
319
+ ุงู„ู„ู‚ุงุก ูˆู‚ุฏ ุนุจุฑ ุงู„ุดุนุฑุงุก ุนู† ุตุฏู‚ ๏ฟฝ๏ฟฝู„ู„ู‚ุงุก ูˆุฅุฑุงุฏุฉ ุงู„ู‚ุชุงู„
320
+
321
+ 81
322
+ 00:09:17,160 --> 00:09:23,280
323
+ ุจุฃู„ูุงุธ ูƒุซูŠุฑุฉ ู‡ู†ุง ููŠ ู‡ุฐุง ุงู„ุจูŠุช ุนุจุฑ ุนู†ู‡ ุนู† ุงู„ุฅุฑุงุฏุฉ
324
+
325
+ 82
326
+ 00:09:23,280 --> 00:09:29,410
327
+ ุงู„ุตุงุฏู‚ุฉ ุจุงู„ุฎูŠู„ ูุงู„ุฎูŠู„ ุชุนุจุฑ ุนู† ุงู„ุฅุฑุงุฏุฉ ุงู„ุตุงุฏู‚ุฉ ู„ุฃู†
328
+
329
+ 83
330
+ 00:09:29,410 --> 00:09:37,390
331
+ ุงู„ุฎูŠู„ ู‚ุจู„ ุงู„ุงู†ุทู„ุงู‚ ุชุญู…ุญู… ูˆุชุชุญุฑูƒ ูˆู‡ุฐุง ุชุนุจูŠุฑ ุนู†
332
+
333
+ 84
334
+ 00:09:37,390 --> 00:09:44,830
335
+ ุฅุฑุงุฏุชู‡ุง ู„ุงู†ุทู„ุงู‚ ูุฅุฐุง ุงู†ุทู„ู‚ุชุŒ ุงู†ุทู„ู‚ุช ุจู‚ูˆุฉ ูˆู‡ุฐุง
336
+
337
+ 85
338
+ 00:09:44,830 --> 00:09:51,680
339
+ ุชุนุจูŠุฑ ุนู† ุฅุฑุงุฏุชู‡ุง ู„ู„ู‚ุชุงู„ ุฃูˆ ุงู„ุณุจุงู‚ ูˆุงู„ุดุนุฑ ุงุณุชุฎุฏู… ู‡ู†ุง
340
+
341
+ 86
342
+ 00:09:51,680 --> 00:09:58,820
343
+ ุงู„ุฎูŠู„ ู„ู„ุชุนุจูŠุฑ ุนู† ุงู„ุฅุฑุงุฏุฉ ุงู„ุตุงุฏู‚ุฉ ุนู†ุฏ ุงู„ู…ู…ุฏูˆุญ ูˆู‚ุงู„
344
+
345
+ 87
346
+ 00:09:58,820 --> 00:10:06,790
347
+ "ุงู„ู…ู†ุงูŠุง ููŠ ู…ู‚ุงู†ุจู‡" ู…ู‚ุงู†ุจ ุฌู…ุน ู…ู‚ู†ุจ ูˆุงู„ู…ู‚ู†ุจ ู‡ูˆ ุฌู…ุงุนุฉ
348
+
349
+ 88
350
+ 00:10:06,790 --> 00:10:12,170
351
+ ุงู„ุฎูŠู„ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฎูŠูˆู„ ููŠ ุงู„ู…ุนุฑูƒุฉ ุญูŠุซ ุชู‚ุณู… ุงู„ุฎูŠูˆู„
352
+
353
+ 89
354
+ 00:10:12,170 --> 00:10:19,390
355
+ ุฅู„ู‰ ู…ุฌู…ูˆุนุงุช ูƒู„ ู…ุฌู…ูˆุนุฉ ูŠุทู„ู‚ ุนู„ูŠู‡ุง ู…ู‚ู†ุจ ูˆุงู„ุฌู…ุน ู…ู‚ุงู†ุจ
356
+
357
+ 90
358
+ 00:10:19,390 --> 00:10:26,750
359
+ ุงู„ู…ุนู†ู‰ ุงู„ุซุงู†ูŠ ู„ู„ุดุทุฑ ุงู„ุซุงู†ูŠ ู‡ูˆ "ูˆุงู„ุนุทุงูŠุง ููŠ ุฐุฑุน ุญุฌุฑู‡"
360
+
361
+ 91
362
+ 00:10:26,750 --> 00:10:32,250
363
+ ูŠุนู†ูŠ ุงู„ุนุทุงูŠุง ุฌู…ุน ุนุทูŠุฉ ูˆู‡ุฐู‡ ุงู„ูƒู„ู…ุฉ ู…ู† ุฃูˆุงุฆู„ ุงู„ูƒู„ู…ุงุช
364
+
365
+ 92
366
+ 00:10:32,250 --> 00:10:35,510
367
+ ุงู„ุนุงู…ูŠุฉ ุงู„ุชูŠ ูุตุญุช
368
+
369
+ 93
370
+ 00:10:35,510 --> 00:10:41,780
371
+ ูˆุงู„ู…ู‚ุตูˆุฏ ู‡ู†ุง ุฃู† ุงู„ุนุทูŠุฉ ููŠ ุณุงุญุฉ ุงู„ุจูŠุช ุฃูˆ ููŠ ูู†ุงุก
372
+
373
+ 94
374
+ 00:10:41,780 --> 00:10:49,440
375
+ ุงู„ุจูŠุช ูŠุนู†ูŠ ู…ุนุฏู‘ุฉ ู„ู„ุฅุนุทุงุก ูˆุงู„ู…ุนู†ู‰ ุฃู† ุงู„ู…ู…ุฏูˆุญ ูŠุนุทูŠ
376
+
377
+ 95
378
+ 00:10:49,440 --> 00:10:52,700
379
+ ุจู„ุง ู…ุทู„ู† ูˆู‡ุฐุง ู…ู† ุฌู…ุงู„ ุงู„ูƒุฑู… ุงู„ูƒุฑู… ุงู„ุฎุงู„ุต ุฃู† ูŠุนุทูŠ
380
+
381
+ 96
382
+ 00:10:52,700 --> 00:11:01,150
383
+ ุจู„ุง ู…ุทู„ู† ูˆูƒู…ุง ู‚ู„ู†ุง ููŠ ุงู„ุดุฌุงุนุฉุŒ ุงู„ุดุฌุงุนุฉ ุชูƒูˆู† ุฌู…ูŠู„ุฉ
384
+
385
+ 97
386
+ 00:11:01,150 --> 00:11:07,690
387
+ ุฅุฐุง ูƒุงู†ุช ู†ุงุจุนุฉ ู…ู† ุฅุฑุงุฏุฉ ุตุงุฏู‚ุฉ "ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ู„ู‡ ูƒุตูŠุงุญ
388
+
389
+ 98
390
+ 00:11:07,690 --> 00:11:15,910
391
+ ุงู„ุญุดุฑ ููŠ ุฃู…ุฑู‡" ูˆู…ู† ุนู„ุงู…ุฉ ุฅุฑุงุฏุฉ ุตุงุฏู‚ุฉ ุฃู†ู‡ ุฃุนุฏู‘ ุนูุฏู‘ุฉ
392
+
393
+ 99
394
+ 00:11:15,910 --> 00:11:23,510
395
+ ู„ู„ู‚ุชุงู„ ูˆุฌู‡ู‘ุฒ ุฌูŠุดุง ูƒุซูŠูุง "ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ู„ู‡" ุตูˆุงู‡ู„ ุฌู…ุน
396
+
397
+ 100
398
+ 00:11:23,510 --> 00:11:31,310
399
+ ุงู„ุตุงู‡ู„ ูˆู‡ูˆ ุงู„ุฎูŠู„ ุจู…ุนู†ู‰ ุฃู†ู‡ ุฃุนุฏู‘ ุฌูŠุดุง ูƒุจูŠุฑุง ู…ู†
400
+
401
+ 101
402
+ 00:11:31,310 --> 00:11:40,160
403
+ ุงู„ูุฑุณุงู† ูˆุทุจุนุง ุงู„ูุฑุณ ุฃูˆ ุงู„ุฎูŠู„ ูŠุนุจุฑ ุนู† ุฅุฑุงุฏุฉ ุงู„ู‚ุชุงู„
404
+
405
+ 102
406
+ 00:11:40,160 --> 00:11:49,220
407
+ ู„ุฃู† ุงู„ุฎูŠู„ ุชุณุชุนู…ู„ ููŠ ุงู„ู‡ุฌูˆู… ุนู„ู‰ ุงู„ุฃุนุฏุงุก ูˆู…ู†
408
+
409
+ 103
410
+ 00:11:49,220 --> 00:11:56,360
411
+ ุนู„ุงู…ุฉ ุฃูŠุถุง ุฅุฑุงุฏุฉ ุตุงุฏู‚ุฉ ุฃู†ู‡ุง ุชุตู‡ู„ ู‚ุจู„ ุงู„ุงู†ุทู„ุงู‚
412
+
413
+ 104
414
+ 00:11:56,360 --> 00:12:03,210
415
+ ูƒุตูŠุงุญ ุงู„ุญุดุฑ ููŠ ุฃู…ุฑู‡ ูƒุตูŠุงุญ ุงู„ู†ุงุณ ูŠูˆู… ุฎูˆูู‡ู… ุงู„ุดุฏูŠุฏ
416
+
417
+ 105
418
+ 00:12:03,210 --> 00:12:13,190
419
+ ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉ ููŠ ุงู„ุดุฏู‘ุฉ ูŠุนู†ูŠ ุดุจู‡ ุตูˆุช ุงู„ุฎูŠูˆู„ ููŠ
420
+
421
+ 106
422
+ 00:12:13,190 --> 00:12:18,390
423
+ ุงู„ุงู†ุทู„ุงู‚ ู†ุญูˆ ุงู„ุนุฏูˆ ูƒุตูŠุงุญ ุงู„ู†ุงุณ ููŠ ุงู„ุฎูˆู ุงู„ุดุฏูŠุฏ ูŠูˆู…
424
+
425
+ 107
426
+ 00:12:18,390 --> 00:12:26,450
427
+ ุงู„ุญุดุฑ ูˆู‡ุฐุง ุทุจุนุง ุชุดุจูŠู‡ ููŠู‡ ู…ุจุงู„ุบุฉ ู„ุฃู† ุทุจุนุง ุฃุนู„ู‰ ุตูˆุช
428
+
429
+ 108
430
+ 00:12:26,450 --> 00:12:34,680
431
+ ูŠุทู„ู‚ู‡ ุงู„ุฅู†ุณุงู† ููŠ ู„ุญุธุฉ ุฎูˆูู‡ ุฃู…ุง ููŠ ู„ุญุธุฉ ุบุถุจู‡ ูˆุฅู†
432
+
433
+ 109
434
+ 00:12:34,680 --> 00:12:41,700
435
+ ูƒุงู† ุดุฏูŠุฏุง ูู‡ูˆ ุฃู‚ู„ ู„ุฐุง ุงู„ุชุดุจูŠู‡ ู‡ูˆ ุฅู„ุญุงู‚ ู†ุงู‚ุต ููŠ
436
+
437
+ 110
438
+ 00:12:41,700 --> 00:12:50,510
439
+ ุงู„ุตูุฉ ุจูƒุงู…ู„ ููŠู‡ุง ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ู„ู‡ ูƒุตูŠุงุญ ุงู„ุญุดุฑ ููŠ
440
+
441
+ 111
442
+ 00:12:50,510 --> 00:12:56,530
443
+ ุฃู…ุฑู‡ ูุตูˆุงู‡ู„ ุงู„ุฎูŠู„ ู„ุญุธุฉ ุงู„ุงู†ุทู„ุงู‚ ุฃู‚ู„ ููŠ ุงู„ุตูุฉ ู…ู†
444
+
445
+ 112
446
+ 00:12:56,530 --> 00:13:03,030
447
+ ุตูŠุงุญ ุงู„ู†ุงุณ ูŠูˆู… ุงู„ุฎูˆู ุงู„ุดุฏูŠุฏ ูŠูˆู… ุงู„ุญุดุฑ ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉ
448
+
449
+ 113
450
+ 00:13:03,030 --> 00:13:09,170
451
+ ู‚ุชู‘ุงู‡ ูˆุงู„ู…ูˆุช ู…ูƒุชู…ู† ููŠ ู…ุฐุงูƒูŠู‡ ูˆุงู„ู…ุฐุงูƒูŠู‡ ู‡ูŠ ุฃู…ุงูƒู†
452
+
453
+ 114
454
+ 00:13:09,170 --> 00:13:15,510
455
+ ุงู„ุฐุจุญ ูˆุงู„ู†ุญุฑ ูˆูŠู‚ุตุฏ ุงู„ุฎูŠู„ ูˆุงู„ู‚ุจู„ ูุงู„ุฎูŠู„ ุชุฐุจุญ ูˆุงู„ู‚ุจู„
456
+
457
+ 115
458
+ 00:13:15,510 --> 00:13:21,460
459
+ ุชู†ุญุฑ ูˆู…ุดุชุฌุฑู‡ ู…ูƒุงู† ุงู„ุฅุตุงุจุฉ ุจุงู„ุณูŠูˆู ุฃูˆ ุงู„ุฑู…ุงุญ
460
+
461
+ 116
462
+ 00:13:21,460 --> 00:13:26,000
463
+ ูุงู„ู…ูˆุช ูƒุงู…ู„ ููŠ ู‡ุฐู‡ ุงู„ุฃู…ุงูƒู† ุงู„ุฃู…ุงูƒู† ุงู„ุฐุจุญูŠุฉ ูˆุฃู…ุงูƒู†
464
+
465
+ 117
466
+ 00:13:26,000 --> 00:13:35,050
467
+ ุงู„ุฌุฑุงุญ ูุฑู…ุช ูŠู„ูˆู‡ ู…ู†ู‡ ูŠุฏ ู‡ุฐุง ุงู„ุฌูŠุด ุนู„ู‰ ูƒุซุงูุชู‡
468
+
469
+ 118
470
+ 00:13:35,050 --> 00:13:42,590
471
+ ูˆุฅุนุฏุงุฏู‡ ุงู„ุฌูŠุฏ ู„ู… ูŠุณุชุนู…ู„ ู…ู†ู‡ ุฅู„ุง ูŠุฏ ูˆุงุญุฏุฉ ู‡ุฐู‡ ุงู„ูŠุฏ
472
+
473
+ 119
474
+ 00:13:42,590 --> 00:13:49,210
475
+ ุฃุญุงู„ุช ูƒุจุฑูŠุงุก ูŠู„ูˆู‡ ูˆู‡ูˆ ุดุฎุต ุฎุฑุฌ ุนู„ู‰ ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ
476
+
477
+ 120
478
+ 00:13:49,210 --> 00:14:05,330
479
+ ููŠ ุฃุฐุฑุจูŠุฌุงู† ููƒุงู† ู…ุตูŠุฑู‡ ุฃู† ุฃุญุงู„ุช ู‡ุฐู‡ ุงู„ุถุฑุจุฉ ุฃุญุงู„ุช
480
+
481
+ 121
482
+ 00:14:05,330 --> 00:14:13,280
483
+ ูƒุจุฑูŠุงุกู‡ ูˆุฃูุนุงู„ู‡ ุงู„ุณูŠุฆุฉ ุฅู„ู‰ ู…ุงุถูŠ
484
+
485
+ 122
486
+ 00:14:13,280 --> 00:14:23,080
487
+ ุฃูŠุถุง ู…ู† ุงู„ู…ุนุงู†ูŠ ูˆุงู„ุนู†ุงุตุฑ ุงู„ุฌุฏูŠุฏุฉ ุงู„ุชูŠ ุธู‡ุฑุช ููŠ
488
+
489
+ 123
490
+ 00:14:23,080 --> 00:14:27,820
491
+ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ู‡ูˆ ุฅุธู‡ุงุฑ ุงู„ู…ุนุงู†ูŠ ุงู„ุฅุณู„ุงู…ูŠุฉ ุนู„ู‰ ู‡ุฐู‡
492
+
493
+ 124
494
+ 00:14:27,820 --> 00:14:30,300
495
+ ุงู„ู‚ูŠู… ุฃูˆ ุฅุนุทุงุก ู‡ุฐู‡ ุงู„ู‚ูŠู… ู…ุนู†ู‰ ุฅู†ุณุงู†ูŠุงุŒ ู…ุนู†ู‰ ุฅุณู„ุงู…ูŠุง
496
+
497
+ 125
498
+ 00:14:34,510 --> 00:14:42,450
499
+ ู…ุซู„ ู‚ูˆู„ ุงู„ุดุงุนุฑ ุงู„ุจุญุชุฑูŠ ูŠู…ุฏุญ ุงู„ู…ุชูˆูƒู„ "ุฎู„ู‚ ุงู„ู„ู‡ ุฌุนูุฑุง
500
+
501
+ 126
502
+ 00:14:42,450 --> 00:14:48,850
503
+ ู‚ูŠู… ุงู„ุฏู†ูŠุง ุณุฏุงุฏุง ูˆู‚ูŠู… ุงู„ุฏูŠู† ุฑุดุฏุง ุฃุธู‡ุฑ ุงู„ุนุฏู„
504
+
505
+ 127
506
+ 00:14:48,850 --> 00:14:55,530
507
+ ูุงุณุชุธู„ู‘ ุจูŠู‡ ุงู„ุฃุฑุถ ูˆุนู… ุงู„ุจู„ุงุฏ ุบูˆุฑุง ูˆู† ุฌุฏู‹ุง" ุฃุนุทู‰
508
+
509
+ 128
510
+ 00:14:55,530 --> 00:15:06,540
511
+ ู…ุนู†ู‰ ุฅุณู„ุงู…ูŠ ูˆู‡ูˆ ุฃู† ู‡ุฐุง ุงู„ู…ู…ุฏูˆุญ ูŠุฌู…ุน ุจูŠู† ุจูŠู†
512
+
513
+ 129
514
+ 00:15:06,540 --> 00:15:14,580
515
+ ุฎูŠุฑูŠุฉ ุงู„ุฏู†ูŠุง ูˆุงู„ุขุฎุฑุฉ ุฃูˆ ุงู„ุฏูŠู† ูˆุงู„ุดูŠุก ุงู„ุซุงู†ูŠ ุฃู†ู‡
516
+
517
+ 130
518
+ 00:15:14,580 --> 00:15:21,860
519
+ ุฃู†ู‡ ุฅู†ุณุงู† ุนุงุฏู„ ูˆู‡ุฐุง ุงู„ุนุงุฏู„ ู‚ุฏ ุนู… ุงู„ุจู„ุงุฏ ูˆู‡ู†ุง ุทุจุนุง
520
+
521
+ 131
522
+ 00:15:21,860 --> 00:15:28,920
523
+ ุงุณุชุบุฑู‚ ู…ูƒุงู†ูŠ ุบูˆุฑุง ูˆู† ุฌุฏู‡ ูŠุนู†ูŠ ุงู„ู…ูŽุฑู’ุถู ุชูŽููŽุนู‘ูŽ ู…ูู†ู’ ุงู„ุฃูŽุฑู’ุถู ู…ูŽุง
524
+
525
+ 132
526
+ 00:15:28,920 --> 00:15:35,840
527
+ ุฎูŽููŽุถูŽ ู…ูู†ู’ ุงู„ุฃูŽุฑู’ุถู ูˆูŽู…ูŽุง ุนูŽู„ูŽู‰ ู…ูู†ู’ ุงู„ุฃูŽุฑู’ุถู ูˆู‡ูˆ ุฅูŠู‡ ุงู„ู†ุฌุฏ ูˆู…ู†
528
+
529
+ 133
530
+ 00:15:35,840 --> 00:15:41,940
531
+ ุงู„ุธูˆุงู‡ุฑ ุงู„ุชูŠ ุธู‡ุฑุช ููŠ ู‚ุตู‘ุฉ ุงู„ู…ุฏุญ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูˆุฌุฏู†ุง
532
+
533
+ 134
534
+ 00:15:41,940 --> 00:15:48,860
535
+ ุตูุฉ ุงู„ู…ุจุงู„ุบุฉ ุชุธู‡ุฑ ููŠ ู…ุนุงู†ูŠ ุงู„ู…ุฏุญ ู…ู† ู‡ุฐู‡ ุงู„ุตูˆุฑ ุงู„ุตูˆุฑ
536
+
537
+ 135
538
+ 00:15:48,860 --> 00:15:57,700
539
+ ุงู„ู…ุจุงู„ุบุฉ ุตูุงุช ุงู„ุชู‚ุฏูŠุณ ูƒู…ุง ู‚ุงู„ ุงุจู† ุงู„ุฌู‡ู… ูŠู…ุฏุญ
540
+
541
+ 136
542
+ 00:15:57,700 --> 00:16:03,180
543
+ ุงู„ู…ุชูˆูƒู„ "ู„ู‡ ุงู„ู…ู†ู‘ุฉ ุงู„ุนุธู…ู‰ ุนู„ู‰ ูƒู„ ู…ุณู„ู… ูˆุทุงุนุชู‡ ูุฑุถ ู…ู†
544
+
545
+ 137
546
+ 00:16:03,180 --> 00:16:12,460
547
+ ุงู„ู„ู‡ ู…ู†ุฒู„" ูุงู„ู…ุนู„ูˆู… ุฃู† ุงู„ู…ู†ู‘ุฉ ู‡ูŠ ู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰
548
+
549
+ 138
550
+ 00:16:12,460 --> 00:16:19,460
551
+ ู„ุง ุชู…ู†ู‘ูˆุง ุนู„ูŠ ุฅุณู„ุงู…ูƒู… ุจู„ ุงู„ู„ู‡ ูŠู…ู†ู‘ ุนู„ูŠูƒู… ุฃู† ู‡ุฏุงูƒู…
552
+
553
+ 139
554
+ 00:16:19,460 --> 00:16:25,420
555
+ ู„ู„ุฅุณู„ุงู… ูุงู„ู…ู†ู‘ุฉ ุงู„ุนุธู…ู‰ ู‡ูŠ ู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ูˆุทุจุนุง
556
+
557
+ 140
558
+ 00:16:25,420 --> 00:16:30,440
559
+ ุงู„ุดุนุฑ ู‡ู†ุง ุงุณุชุนู…ู„ู‡ุง ู„ู„ู…ุจุงู„ุบุฉ ู„ู‡ ุงู„ู…ู†ู‘ุฉ ุงู„ุนุธู…ู‰ ุนู„ู‰ ูƒู„
560
+
561
+ 141
562
+ 00:16:30,440 --> 00:16:35,800
563
+ ู…ุณู„ู… ูˆุทุงุนุชู‡ ูุฑุถ ู…ู† ุงู„ู„ู‡ ู…ู†ุฒู„ู‡ ุทุจุนุง ู‡ุฐู‡ ู‡ูŠ ู…ู† ุงู„ุตูˆุฑ
564
+
565
+ 142
566
+ 00:16:35,800 --> 00:16:40,840
567
+ ุงู„ู…ุจุงู„ุบุฉ ููŠ ุตูุงุช ุงู„ู…ู…ุฏูˆุญ ุฃู† ุทุงุนุชู‡ ูุฑุถ ู…ู† ุงู„ู„ู‡ ู…ู†ุฒู„
568
+
569
+ 143
570
+ 00:16:40,840 --> 00:16:48,710
571
+ ูˆู†ุญู† ู†ุนู„ู… ุฃู†ู‡ ู„ุง ุทุงุนุฉ ู„ู…ุฎู„ูˆู‚ ููŠ ู…ุนุตูŠุฉ ุงู„ุฎุงู„ู‚ ูˆุฃู†
572
+
573
+ 144
574
+ 00:16:48,710 --> 00:16:54,690
575
+ ุงู„ุทุงุนุฉ ู„ูŠุณุช ูุฑุถุง ูุฑุถู‡ุง ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ุนู„ู‰ ุนุจุงุฏู‡ ุฎุงุตุฉ
576
+
577
+ 145
578
+ 00:16:54,690 --> 00:17:04,910
579
+ ุจุงู„ู…ุชูˆูƒู„ ุฅุฐุง ุงู„ู…ุจุงู„ุบุฉ ูˆู‡ุฐู‡ ุงู„ู…ุจุงู„ุบุฉ ูŠุนู†ูŠ
580
+
581
+ 146
582
+ 00:17:04,910 --> 00:17:12,390
583
+ ูˆุฌุฏู†ุงู‡ุง ุชุธู‡ุฑ ูƒุธุงู‡ุฑุฉ ุฌุฏูŠุฏุฉ ููŠ ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ูˆู‚ุฏ
584
+
585
+ 147
586
+ 00:17:12,390 --> 00:17:15,510
587
+ ูƒุงู†ุช ู…ู…ู‚ูˆุทุฉ ููŠ ุงู„ุดุนุฑ ุงู„ุฌุงู‡ู„ูŠ ุฅุฐ ูƒุงู† ุงู„ุฌุงู‡ู„ูŠูˆู†
588
+
589
+ 148
590
+ 00:17:15,510 --> 00:17:21,430
591
+ ูŠู…ู‚ูˆุทูˆู† ุงู„ุดุนุฑุงุก ุงู„ุฐูŠู† ูŠุฃุชูˆุง ุฃูˆ ูŠู…ู‚ูˆุทูˆู† ุฃู‚ูˆุงู„
592
+
593
+ 149
594
+ 00:17:21,430 --> 00:17:28,370
595
+ ุงู„ุดุนุฑุงุก ุงู„ุชูŠ ููŠู‡ุง ู…ุจุงู„ุบุฉ ูƒู‚ูˆู„ ุนู…ุฑ ุจู† ุงู„ุฎุทุงุจ ุญูŠู† ู‚ุงู„
596
+
597
+ 150
598
+ 00:17:28,370 --> 00:17:34,510
599
+ "ูˆู„ูˆ ู„ุงุฑูŠุญ ุงุณู…ุน ุฃู‡ู„ ุญุฌุฑ ุตู„ูŠู„ ุงู„ุจูŠุถ ุชู‚ุฑุน ุจุงู„ุฐูƒูˆุฑ"
600
+
601
+ 151
602
+ 00:17:34,510 --> 00:17:40,810
603
+ ูู‚ูŠู„ ู‡ุฐุง ุฃูƒุฐุจ ุจูŠุช ูˆุฐู„ูƒ ู„ุฃู† ุงู„ุนุฑุจ ููŠ ุงู„ุฌุงู‡ู„ูŠุฉ ูƒุงู†ุช
604
+
605
+ 152
606
+ 00:17:40,810 --> 00:17:45,170
607
+ ุชูƒุฑู‡ ุงู„ู…ุจุงู„ุบุฉ
608
+
609
+ 153
610
+ 00:17:45,170 --> 00:17:53,220
611
+ ุทุจุนุง ุงู„ู…ุจุงู„ุบุฉ ุธุงู‡ุฑุฉ ูŠุนู†ูŠ ู…ู„ุญูˆุธุฉ ููŠ ุฃุดุนุงุฑ ุงู„ุนุจุงุณูŠูŠู†
612
+
613
+ 154
614
+ 00:17:53,220 --> 00:18:02,200
615
+ ูˆู…ู†ู‡ุง ู‚ูˆู„ ุงุจู† ุงู„ุฌู‡ู… ุฃูŠุถุง ู„ุจู†ูŠ ุงู„ุนุจุงุณ "ูŠุง ุจู†ูŠ ู‡ุงุดู…
616
+
617
+ 155
618
+ 00:18:02,200 --> 00:18:09,260
619
+ ุจู† ุนุจุฏ ู…ู†ุงู ู†ุณุจ ุญุจู‡ุง ู…ู† ุงู„ุชูˆุญูŠุฏ ุฃู†ุชู… ุฎูŠุฑ ุณุงุฏุฉ
620
+
621
+ 156
622
+ 00:18:09,260 --> 00:18:11,220
623
+ ูŠุง ุจู†ูŠ ุงู„ุนุจุงุณ ูุงุจู‚ูˆุง ูˆู†ุญู† ุฎูŠุฑ ุนุจูŠุฏูƒู… ุฅู† ุฑุถูŠุชู…
624
+
625
+ 157
626
+ 00:18:11,220 --> 00:18:19,780
627
+ ุฃู…ุฑู‹ุง ุฑุถูŠู†ุง ูˆุฅู† ุฃุจูŠุชู… ุฃุจูŠู†ุง ู„ูƒู… ุฅุจุงุก ุงู„ุฃุณูˆู„" ู‡ู†ุง ุทุจุนุง ููŠ ุนู†ุฏู‡ ู…ุจุงู„ุบุฉ ูˆู‡ุฐู‡ ุงู„ู…ุจุงู„ุบุฉ
628
+
629
+ 158
630
+ 00:18:19,780 --> 00:18:25,960
631
+ ุชุธู‡ุฑ ููŠ ู‡ุฐู‡ ุงู„ุนู„ุงู‚ุฉ ุงู„ุจุนูŠุฏุฉ
632
+
633
+ 159
634
+ 00:18:25,960 --> 00:18:33,100
635
+ ุจูŠู† ุงู„ุฑุงุนูŠ ูˆุงู„ุฑุนูŠุฉ ุฃูˆ ุจูŠู† ุงู„ุญุงูƒู… ูˆุงู„ู…ุญูƒูˆู… ู‡ูŠ ุนู„ุงู‚ุฉ
636
+
637
+ 160
638
+ 00:18:33,100 --> 00:18:39,090
639
+ ุณุงุฏุฉ ุจุนุจูŠุฏ ูˆุนุจูŠุฏ ุจุณุงุฏุฉ ุทุจุนุง ู‡ุฐู‡ ู…ุจุงู„ุบุฉ ู„ุฃู† ููŠ
640
+
641
+ 161
642
+ 00:18:39,090 --> 00:18:43,450
643
+ ุงู„ู…ูู‡ูˆู… ุงู„ุฅุณ๏ฟฝ๏ฟฝุงู…ูŠ ุฅู†ู…ุง ุงู„ู…ุคู…ู†ูˆู† ุฅุฎูˆุฉ ุฃูŠุถุง
644
+
645
+ 162
646
+ 00:18:43,450 --> 00:18:50,350
647
+ ู…ู† ุงู„ู…ุจุงู„ุบุงุช ุนู†ุฏ ุงุจู† ุงู„ุฌู‡ู… ููŠ ู…ุฏุญ ุงู„ู…ุชูˆูƒู„ "ุฃู†ุช
648
+
649
+ 163
650
+ 00:18:50,350 --> 00:18:55,170
651
+ ู…ูŠุซุงู‚ู†ุง ุงู„ุฐูŠ ุฃุฎุฐ ุงู„ู„ู‡ ุนู„ูŠู†ุง ูˆุนู‡ุฏู‡ ุงู„ู…ุณุคูˆู„ ู…ู† ูŠูƒู†
652
+
653
+ 164
654
+ 00:18:55,170 --> 00:19:01,690
655
+ ุดุบู„ู‡ ุจุบูŠุฑูƒ ูŠุฑุถูŠู‡ ูุฅู†ูŠ ุนู† ุดุบู„ู‡ ู…ุดุบูˆู„" ุฃูŠุถุง ู‡ุฐู‡ ูŠุนู†ูŠ
656
+
657
+ 165
658
+ 00:19:01,690 --> 00:19:08,940
659
+ ู…ุจุงู„ุบุงุช ูˆู‚ุน ููŠู‡ุง ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ูˆุทุจุนุง ุงุจู† ุงู„ุฌุงู‡ู„
660
+
661
+ 166
662
+ 00:19:08,940 --> 00:19:16,180
663
+ ู‡ู†ุง ูŠู‚ูˆู„ "ุฃู†ุช ุงู„ู…ูŠุซุงู‚ ุงู„ุฐูŠ ุฃุฎุฐู‡ ุงู„ู„ู‡" ูˆุงู„ู„ู‡ ุณุจุญุงู†ู‡
664
+
665
+ 167
666
+ 00:19:16,180 --> 00:19:20,540
667
+ ูˆุชุนุงู„ู‰ ุงู„ุฐูŠ ุฃุฎุฐู‡ ู„ูŠุณ ู‡ุฐุง ุงู„ู…ูŠุซุงู‚ ูˆุฅู†ู…ุง ุงู„ู…ูŠุซุงู‚
668
+
669
+ 168
670
+ 00:19:20,540 --> 00:19:26,540
671
+ ุงู„ุฐูŠ ูŠุนุจุฏูˆู† ููŠู‡ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ููŠ ู‚ูˆู„ู‡ "ูˆุฅุฐ ุฃุฎุฐ
672
+
673
+ 169
674
+
675
+ 201
676
+ 00:22:32,260 --> 00:22:38,840
677
+ ุงู„ุฅู†ุณุงู† ููŠ ุงู„ุญูŠุงุฉ ูุงู„ุจูƒุงุก ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ู„ุง ูŠุฒุงู„
678
+
679
+ 202
680
+ 00:22:38,840 --> 00:22:47,140
681
+ ูŠุชุฑุฏุฏ ููŠ ุฃุดุนุงุฑู‡ู… ู„ูƒู†ู‡ ู„ูŠุณ ูƒูˆู‚ูˆู ุงู„ุดุงุนุฑ ุงู„ุฌุงู‡ู„ูŠ
682
+
683
+ 203
684
+ 00:22:47,140 --> 00:22:52,300
685
+ ูู‚ุฏ ูƒุงู† ุงู„ุดุงุนุฑ ุงู„ุฌุงู‡ู„ูŠ ูŠู„ุฒู… ุตุงุญุจู‡
686
+
687
+ 204
688
+ 00:22:54,250 --> 00:22:58,730
689
+ ุจุงู„ูˆู‚ูˆู ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ููŠ ู‚ูˆู„ ู…ุงุฆูŠ ุงู„ู‚ูŠุณ ู‚ูู‰ ู†ุจูƒูŠ ู…ู†
690
+
691
+ 205
692
+ 00:22:58,730 --> 00:23:04,870
693
+ ุฐูƒุฑุง ุญุจูŠุจ ูˆู…ู†ุฒู„ูŠ ุญุจูŠุจ ูˆู…ู†ุฒู„ูŠ ุณู‚ุทุช ุงู„ู„ุบุฉ ุจูŠู† ุงู„ุฏุฎูˆู„
694
+
695
+ 206
696
+ 00:23:04,870 --> 00:23:16,360
697
+ ูุญูˆู…ู„ูŠ ุฃู…ุง ุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ููƒุงู† ูŠุชู„ุทู ูˆูŠุชุฑุฏุฏ ููŠ ุงู„ุฏุนูˆุฉ
698
+
699
+ 207
700
+ 00:23:16,360 --> 00:23:24,060
701
+ ู„ู„ุจูƒุงุก ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ุฃูˆ ุนู„ู‰ ุฑุญูŠู„ ุงู„ู…ุญุจูˆุจุฉ ูู‚ุงู„ ู…ุณู„ู…
702
+
703
+ 208
704
+ 00:23:24,060 --> 00:23:31,120
705
+ ุงุจู† ูˆู„ูŠุฏ ุตุฑูŠุน ุงู„ุบูˆุงู†ูŠ ู‡ู„ู‘ุง ุจูƒูŠุช ุถูŠุงุนู†ุง ูˆุญู…ู„ุง
706
+
707
+ 209
708
+ 00:23:31,120 --> 00:23:40,020
709
+ ูˆุญู…ู„ุง ุชุฑูƒ ุงู„ูุคุงุฏ ูุฑุงู‚ู‡ู… ู…ู‚ุจูˆู„ุฉ ู‡ู„ู‘ุง ุจูƒูŠุช ุถูŠุงุนู†ุง
710
+
711
+ 210
712
+ 00:23:40,020 --> 00:23:46,540
713
+ ูˆุญู…ูˆู„ุฉ ุชุฑูƒ ุงู„ูุคุงุฏ ูุฑุงู‚ู‡ู… ู…ู‚ุจูˆู„ุฉ ูุฅุฐุง ุฒุฌุฑูŽุช ุงู„ู‚ู„ุจ
714
+
715
+ 211
716
+ 00:23:46,540 --> 00:23:54,540
717
+ ุฒุงุฏ ูˆุฌุฏู‡ ูˆุฅุฐุง ุญุจุณุช ุงู„ุฏู…ุนุฉ ุฒุงุฏ ู‡ู…ู‡ ูˆุฅุฐุง ูƒุชู…ุช ุฌูˆ
718
+
719
+ 212
720
+ 00:23:54,540 --> 00:23:59,840
721
+ ุงู„ู‡ุฃุณ ุจุนุซ ุงู„ู‡ูˆู‰ ู†ูุณุง ูŠูƒูˆู† ุนู„ู‰ ุงู„ุถู…ูŠุฑ ุฏู„ูŠู„ุง ูˆุงู‡ุง
722
+
723
+ 213
724
+ 00:23:59,840 --> 00:24:06,320
725
+ ู„ุฃูŠุงู… ุงู„ุตุจุง ูˆุฐูู†ุงู†ูู‡ ู„ูˆ ูƒุงู† ุฃู…ุชุน ุจุงู„ู…ู‚ุงู… ู‚ู„ูŠู„ุง ู‡ู†ุง
726
+
727
+ 214
728
+ 00:24:06,320 --> 00:24:14,240
729
+ ู‚ุงู„ ู‡ู„ ู„ู„ุชุญุทูŠุจ ูˆุงู„ุชู„ุทู ูˆุงู„ุชุฑู‚ู‚ ูˆู„ู… ูŠู‚ู ูƒู…ุง ู‚ุงู„
730
+
731
+ 215
732
+ 00:24:14,240 --> 00:24:20,740
733
+ ุงู„ุดุงุนุฑ ุงู„ุฌุงู‡ู„ูŠ ุฃูŠุถุง ู„ู… ูŠู‚ู ุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ุนู†ุฏ ู…ูƒุงู†
734
+
735
+ 216
736
+ 00:24:20,740 --> 00:24:26,140
737
+ ุงู„ุฃุทู„ุงู„ ูู‚ุท ุจู„ ูˆู‚ู ุฃู…ุงู… ุงู„ู‚ุตูˆุฑ ุงู„ุญุงุถุฑุฉ ุงู„ู…ุฃู‡ูˆู„ุฉ
738
+
739
+ 217
740
+ 00:24:27,970 --> 00:24:31,430
741
+ ูˆุงู„ุญุงู„ุชุงู† ูˆุฅู† ุงุฎุชู„ูุชุง ููŠ ุงู„ู…ุนู†ู‰ ูŠุนู†ูŠ ุญุงู„ุฉ ุงู„ุจูƒุงุก
742
+
743
+ 218
744
+ 00:24:31,430 --> 00:24:35,630
745
+ ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ุฃูˆ ุญุงู„ุฉ ุงู„ุจูƒุงุก ุนู†ุฏ ุงู„ู‚ุตูˆุฑ ุงู„ุญุงุถุฑุฉ
746
+
747
+ 219
748
+ 00:24:35,630 --> 00:24:43,110
749
+ ุงู„ุญุงู„ุชุงู† ู…ุฎุชู„ูุชุงู† ู„ูƒู† ุงู„ู…ุนู†ู‰ ูˆุงุญุฏ ูˆู‡ูˆ ุงู„ุชุนุจูŠุฑ ุนู†
750
+
751
+ 220
752
+ 00:24:43,110 --> 00:24:49,580
753
+ ุงู„ุญุฑู…ุงู† ูู‡ูˆ ู…ุญุฑูˆู… ุนู†ุฏ ุงู„ุจูƒุงุก ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ู„ุฃู†
754
+
755
+ 221
756
+ 00:24:49,580 --> 00:24:56,580
757
+ ุงู„ู…ุญุจูˆุจุฉ ู‚ุฏ ุบุงุฏุฑุช ุงู„ู…ูƒุงู† ููƒุงู† ู‡ู†ุงูƒ ุจุนุฏ ุฒู…ุงู†ูŠ
758
+
759
+ 222
760
+ 00:24:56,580 --> 00:25:03,400
761
+ ูˆู…ูƒุงู†ูŠ ุฃู…ุง ู‡ู†ุง ููŠ ุงู„ุจูƒุงุก ุนู†ุฏ ุงู„ู‚ุตูˆุฑ ุงู„ุญุงุถุฑ
762
+
763
+ 223
764
+ 00:25:03,400 --> 00:25:08,300
765
+ ุงู„ู…ุฃู‡ูˆู„ุฉ ูุงู„ู…ุญุจูˆุจุฉ ู…ูˆุฌูˆุฏุฉ ู„ู… ุชุบุงุฏุฑ ุงู„ู…ูƒุงู† ูˆู„ูƒู†
766
+
767
+ 224
768
+ 00:25:08,300 --> 00:25:11,660
769
+ ุงู„ุดุงุนุฑ ู„ุง ูŠุณุชุทูŠุน ุฃู† ูŠุตู„ ุฅู„ูŠู‡ุง
770
+
771
+ 225
772
+ 00:25:13,870 --> 00:25:20,410
773
+ ูู‡ูˆ ุจุนุฏ ู…ูƒุงู†ูŠ ูŠู…ู†ุน ุงู„ู…ูƒุงู† ู…ู† ุงู„ุงู„ุชู‚ุงุก ุจุงู„ู…ุญุจูˆุจุฉ
774
+
775
+ 226
776
+ 00:25:20,410 --> 00:25:28,130
777
+ ูู‚ุงู„ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ู‚ุตุฑ ุนู„ูŠู‡ ุชุญูŠุฉ ูˆุณู„ุงู… ู†ุดุฑุช ุนู„ูŠู‡
778
+
779
+ 227
780
+ 00:25:28,130 --> 00:25:34,410
781
+ ุฌู…ุงู„ู‡ุง ุงู„ุฃูŠุงู… ูƒุฐู„ูƒ ูˆุฌุฏู†ุง ุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ูŠุณุชุจู‚ูŠ
782
+
783
+ 228
784
+ 00:25:34,410 --> 00:25:43,440
785
+ ุงู„ุฃุทู„ุงู„ ูƒู…ุง ุฐูƒุฑู†ุง ูŠุณุชุจู‚ูŠ ุฃูŠุถุง ูˆุตู ุงู„ุฑุญู„ุฉ ุฑุญู„ุฉ
786
+
787
+ 229
788
+ 00:25:43,440 --> 00:25:50,370
789
+ ุงู„ุตุญุฑุงุก ุจู…ุง ููŠู‡ุง ู…ู† ู…ุฎุงูˆู ูˆุฃู‡ูˆุงู„ ูˆู…ุตุงุฆุจ ูˆู„ูƒู†ู‡ ูŠุนู…ู‚
790
+
791
+ 230
792
+ 00:25:50,370 --> 00:25:57,450
793
+ ุงู„ู…ุนู†ู‰ ุงู„ุฅู†ุณุงู†ูŠ ูŠุคู†ุณ ุงู„ู…ูƒุงู† ูู‚ุงู„ ู…ุณู„ู… ุงุจู† ูˆู„ูŠุฏ
794
+
795
+ 231
796
+ 00:25:57,450 --> 00:26:03,350
797
+ ูˆู…ุฌู‡ู„ ูƒุงุถุทุฑุงุฏ ุงู„ุณูŠู ู…ุญุชุฌุฒ ุนู† ุงู„ุฃุฏู„ุงุก ู…ุณุฌูˆุฑ
798
+
799
+ 232
800
+ 00:26:03,350 --> 00:26:09,370
801
+ ุงู„ุตูŠุงุฎูŠู† ุชู…ุดูŠ ุงู„ุฑูŠุงุญ ุจู‡ ุญุณุฑุฉ ู…ูˆู„ู‡ุฉ ุญูŠุฑุฉ ุชู„ูˆุซ
802
+
803
+ 233
804
+ 00:26:09,370 --> 00:26:16,810
805
+ ุจุฃุทุฑุงู ุงู„ุฌู„ุงู…ูŠู† ูู‡ุฐุง ู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ููŠ ุงู„ุตุญุฑุงุก ูˆู…ุฌู‡ู„
806
+
807
+ 234
808
+ 00:26:16,810 --> 00:26:23,830
809
+ ูˆุทุจุนุง ุงูŠู‡ ูู‚ุงู… ุงู„ูˆุตู ู…ู‚ุงู… ุงู„ุงุณู… ุชุนู…ูŠู‚ุง ู„ู„ุญุงู„ุฉ
810
+
811
+ 235
812
+ 00:26:23,830 --> 00:26:34,170
813
+ ุงู„ุญุงู„ุฉ ุงู„ุฌู‡ู„ ูˆุนุฏู… ุงู„ู‡ุฏุงูŠุฉ ูˆุตุนูˆุจุฉ ุงู„ุณูŠุฑ ููŠ ุงู„ุตุญุฑุงุก
814
+
815
+ 236
816
+ 00:26:34,170 --> 00:26:40,270
817
+ ูˆู…ุฌู‡ู„ ูƒุงุถุทุฑุงุฏ ุงู„ุณูŠู ูƒุญุฏ ุงู„ุณูŠู ู…ุญุชุฌุฒ ุนู† ุงู„ุฃุฏู„ุงุก
818
+
819
+ 237
820
+ 00:26:40,270 --> 00:26:46,050
821
+ ุฏู„ูŠู„ ุงู„ุฐูŠ ูŠู‚ูˆุฏ ุงู„ุฑุญู„ุฉ ู…ุณุฌูˆุฑ ุงู„ุตูŠุงุฎูŠู† ูŠุนู†ูŠ
822
+
823
+ 238
824
+ 00:26:46,050 --> 00:26:57,310
825
+ ู…ู„ุชู‡ุจ ูƒุงู„ู…ูˆุงู‚ุฏ ุตูŠุงุฎูŠู† ุฌู…ุน ุตุฎูˆุฉ ูˆู‡ูˆ ุงู„ู…ูˆู‚ุฏ ูˆู‡ู†ุง
826
+
827
+ 239
828
+ 00:26:57,310 --> 00:27:03,810
829
+ ุทุจุนุง ุชุธู‡ุฑ ุงู„ุฃู†ุซู†ุฉ ุชู…ุดูŠ ุงู„ุฑูŠุงุญ ุจู‡ ุญุณุฑุฉ ู…ูˆู„ู‡ุฉ ุญูŠุฑุฉ
830
+
831
+ 240
832
+ 00:27:03,810 --> 00:27:09,190
833
+ ู‡ุฐู‡ ูƒู„ู‡ุง ู…ุนุงู†ูŠ ุฅู†ุณุงู†ูŠุฉ ูŠุนู†ูŠ ุฎู„ุนู‡ุง ุนู„ูŠู‡ ุงู„ุฑูŠุงุญ ุฃู†ุซู†ุฉ
834
+
835
+ 241
836
+ 00:27:09,190 --> 00:27:18,700
837
+ ุงู„ุฑูŠุงุญ ุฃูŠุถุง ู…ู† ุงู„ุฃู†ุซู†ุฉ ุฃูŠุถุง ู‚ูˆู„ ุจุดุงุฑ ููŠ ูˆุตู ุงู„ุฃุชู†
838
+
839
+ 242
840
+ 00:27:18,700 --> 00:27:24,920
841
+ ุงู„ูˆุญุดูŠุฉ ูˆู‡ูŠ ู…ู† ู…ูุฑุฏุงุช ุงู„ุตุญุฑุงุก ูู‚ุงู„ ุบุฏุช ุนุงู†ุฉ ุชุดูƒูˆ
842
+
843
+ 243
844
+ 00:27:24,920 --> 00:27:31,860
845
+ ุจุฃุจุตุงุฑู‡ุง ุงู„ุตุฏู‰ ุฅู„ู‰ ุงู„ุฌุฃุจ ุฅู„ุง ุฃู†ู‡ุง ู„ุง ุชุฎุงุทุจู‡ ูˆู…ุนู†ู‰
846
+
847
+ 244
848
+ 00:27:31,860 --> 00:27:36,340
849
+ ุนุงู†ุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู‚ุทูŠุน ู…ู† ุงู„ุฃุชู† ุงู„ูˆุญุดูŠุฉ ุชุดูƒูˆ ุจุฃุจุตุงุฑู‡ุง
850
+
851
+ 245
852
+ 00:27:36,340 --> 00:27:42,840
853
+ ุทุจุนุง ุงู„ุดูƒูˆู‰ ุจุงู„ุจุตุฑ ู…ู† ุฃู‡ู… ูˆุฃุตุฏู‚ ู…ุนุงู†ูŠ ุงู„ุดูƒูˆู‰
854
+
855
+ 246
856
+ 00:27:42,840 --> 00:27:48,780
857
+ ู„ู…ุงุฐุงุŸ ู„ุฃู†ู‡ ุนุจุฑ ุนู† ุชุฌุฑุจุฉ ุงู„ุนุทุด ุจุฌุฒุก ู…ู† ุงู„ุชุฌุฑุจุฉ
858
+
859
+ 247
860
+ 00:27:48,780 --> 00:27:55,170
861
+ ู„ุฃู† ุงู„ุฅุจู„ ู‡ูŠ ุงู„ุฃุชู† ุงู„ูˆุญุดูŠุฉ ุฅุฐุง ุฃุตุงุจู‡ุง ุนุทุด ูŠุธู‡ุฑ ุฐู„ูƒ
862
+
863
+ 248
864
+ 00:27:55,170 --> 00:28:04,030
865
+ ููŠ ุจุตุฑู‡ุง ูู‚ุงู„ ุชุดูƒูˆ ุจุฃุจุตุงุฑู‡ุง ุงู„ุตุฏู‰ ู„ู…ุงุฐุง ุงู„ุดูƒ ุจุงู„ุจุตุฑ
866
+
867
+ 249
868
+ 00:28:04,030 --> 00:28:09,650
869
+ ุฃุนู…ู‚ ููŠ ุงู„ุฏู„ุงู„ุฉ ู„ุฃู†ู‡ ูŠุนุจุฑ ุนู† ุงู„ุชุฌุฑุจุฉ ุจุฌุฒุก ู…ู†
870
+
871
+ 250
872
+ 00:28:09,650 --> 00:28:16,630
873
+ ุงู„ุชุฌุฑุจุฉ ุงู„ุฌุฃุจ ู‡ูˆ ู‚ุงุฆุฏ ุงู„ู‚ุทูŠุน ุฅู„ุง ุฃู†ู‡ุง ู„ุง ุชุฎุงุทุจ ูˆู„ุง
874
+
875
+ 251
876
+ 00:28:16,630 --> 00:28:22,690
877
+ ุชุณุชุนู…ู„ ุงู„ู„ุบุฉ ุฅุฐุง ุชุนู…ูŠู‚ ุงู„ู…ุนู†ู‰ ุงู„ุฅู†ุณุงู†ูŠ ุธุงู‡ุฑ ููŠ ู‡ุฐู‡
878
+
879
+ 252
880
+ 00:28:22,690 --> 00:28:32,170
881
+ ุงู„ุตูˆุฑุฉ ูˆู‡ุฐุง ู‡ูˆ ู…ู†ุญู‰ ุงู„ุนุจุงุณูŠ ููŠ ุงู„ุชุฌุฏูŠุฏ ููŠ ู…ู‚ุฏู…ุฉ
882
+
883
+ 253
884
+ 00:28:32,170 --> 00:28:36,050
885
+ ุงู„ู‚ุตูŠุฏุฉ ูˆู„ู„ุญุฏูŠุซ ุจู‚ูŠุฉ ูˆุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุนู„ู‰ ู†ุจูŠู†ุง
886
+
887
+ 254
888
+ 00:28:36,050 --> 00:28:40,030
889
+ ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/NzfyIgoOlVI_postprocess.srt ADDED
@@ -0,0 +1,1016 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:04,890 --> 00:00:09,070
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:09,070 --> 00:00:14,690
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุฃุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง ูˆุจุนุฏ ู†ุชู†ุงูˆู„ ููŠ
8
+
9
+ 3
10
+ 00:00:14,690 --> 00:00:20,010
11
+ ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ูˆุถูˆุนุงุช ุฃูˆ ุงู„ุชุฌุฏูŠุฏ ููŠ ุงู„ู…ูˆุถูˆุนุงุช
12
+
13
+ 4
14
+ 00:00:20,010 --> 00:00:26,790
15
+ ุงู„ู‚ุฏูŠู…ุฉ ูˆูƒู„ู…ุฉ ุชุฌุฏูŠุฏ ุชุนู†ูŠ ุฅุถุงูุฉ ุนู†ุงุตุฑ ุฌุฏูŠุฏุฉ ุฅู„ู‰ ู…ุง
16
+
17
+ 5
18
+ 00:00:26,790 --> 00:00:33,310
19
+ ู‡ูˆ ู‚ุฏูŠู… ูŠูƒูˆู† ู‡ุฐุง ุงู„ู‚ุฏูŠู… ุตุงู„ุญุง ู„ู„ุฌุฏูŠุฏุฃูˆ ู„ู„ุนุตุฑ
20
+
21
+ 6
22
+ 00:00:33,310 --> 00:00:39,350
23
+ ุงู„ุฌุฏูŠุฏ ู…ู† ุฃู‡ู… ู‡ุฐู‡ ุงู„ู…ูˆุถูˆุนุงุช ููŠ ุงู„ุดุนุฑ ุงู„ู‚ุฏูŠู… ู‡ูˆ
24
+
25
+ 7
26
+ 00:00:39,350 --> 00:00:45,010
27
+ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ูˆูƒุงู†ุช ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ุชู…ุซู„ ุงู„ู…ู†ุธูˆู…ุฉ
28
+
29
+ 8
30
+ 00:00:45,010 --> 00:00:51,370
31
+ ุงู„ุฃุฎู„ุงู‚ูŠุฉ ุงู„ุนุฑุจูŠุฉ ูˆู„ุฐู„ูƒ ุญุธูŠุช ุจุงู‡ุชู…ุงู… ูƒุจูŠุฑ ุงู‡ุชู…ุงู…
32
+
33
+ 9
34
+ 00:00:51,370 --> 00:00:54,150
35
+ ุงู„ุดุนุฑุงุก
36
+
37
+ 10
38
+ 00:00:55,280 --> 00:00:59,720
39
+ ูˆุงู„ุนุฑุจ ุจู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ู„ุฃู†ู‡ุง ูƒุงู†ุช ุชุญูˆูŠ ุงู„ู…ู†ุธูˆู…ุฉ
40
+
41
+ 11
42
+ 00:00:59,720 --> 00:01:06,140
43
+ ุงู„ุฃุฎู„ุงู‚ูŠุฉ ุงู„ุนุฑุจูŠุฉ ุฅุฐุง ูƒุงู† ุงู„ู…ู…ุฏูˆุญูŠู…ุชุฏุญ ุจุฃู†ู‡ ูŠุญุงูุธ
44
+
45
+ 12
46
+ 00:01:06,140 --> 00:01:10,880
47
+ ุนู„ู‰ ู‡ุฐู‡ ุงู„ู…ู†ุธูˆู…ุฉ ุฃูˆ ุฃู† ู‡ุฐู‡ ุงู„ู…ู†ุธูˆู…ุฉ ู‚ุฏ ุชู…ุซู„ุช ููŠ
48
+
49
+ 13
50
+ 00:01:10,880 --> 00:01:21,420
51
+ ู‡ุฐุง ุงู„ู…ู…ุฏูˆุญ ุฃุฌู…ู„ ุชู…ุซู„ ูƒุงู†ุช ุงู„ู…ุฏุญุฉ ุฃูˆ ู‚ุตุฏ ุงู„ู…ุฏุญ
52
+
53
+ 14
54
+ 00:01:21,420 --> 00:01:29,380
55
+ ุชุจุนุด ููŠ ุงู„ู…ุชู„ู‚ูŠ ูˆุงู„ู…ุฌุชู…ุน ุงู„ุนุฑุจูŠ ุฃุฌู…ู„ ุงู„ู…ุนุงู†ูŠ ูˆุฃู†ุจู„
56
+
57
+ 15
58
+ 00:01:29,380 --> 00:01:34,790
59
+ ุงู„ุฃุฎู„ุงู‚ุงู„ุฌุฏูŠุฏ ุฃูˆ ุงู„ุนู†ุงูˆุท ุงู„ุฌุฏูŠุฏุฉ ุงู„ุชูŠ ุฃุถูŠูุช ุฅู„ู‰
60
+
61
+ 16
62
+ 00:01:34,790 --> 00:01:43,580
63
+ ู‡ุฐู‡ ุงู„ู‚ุตูŠุฏุฉ ู‡ูˆ ุฃู† ู…ุนุงู†ูŠ ุงู„ู…ุฏุนูŠ ุชู„ุงุฆู… ุงู„ู…ุจุฏูˆุนุฉู„ู…ุนู†ู‰
64
+
65
+ 17
66
+ 00:01:43,580 --> 00:01:50,120
67
+ ุขุฎุฑ ุฃู† ุงู„ุดุงุนุฑ ุนุจุงุณูŠ ู„ุฃู… ุจูŠู† ุงู„ู…ู…ุฏูˆุญ ูˆู…ุนุงู†ูŠ ุงู„ู…ุฏุญ
68
+
69
+ 18
70
+ 00:01:50,120 --> 00:01:56,760
71
+ ูุฅุฐุง ูƒุงู† ุงู„ู…ู…ุฏูˆุญ ุฎู„ูŠูุฉ ู…ุฏุญ ุจุงู„ุชู‚ูˆู‰ ูˆู…ุฏุญ ุจุงู„ุนูุฉ
72
+
73
+ 19
74
+ 00:01:56,760 --> 00:02:03,080
75
+ ูˆุงู„ุญูŠุงุก ูˆุงู„ุนุฏู„ ูˆุฃู†ู‡ ูŠุญุงูุธ ุนู„ู‰ ุงู„ุณู†ุฉ ูˆูŠู‚ู…ุน ุงู„ุจุฏุนุฉ
76
+
77
+ 20
78
+ 00:02:03,080 --> 00:02:09,790
79
+ ูƒู…ุง ู‚ุงู„ ู…ุฑูˆุงู† ุงุจู† ุฃุจูŠ ุญูุตุฉ ูŠู…ุฏุญ ุงู„ู…ู‡ุฏูŠุฃุญูŠู‰ ุฃู…ูŠุฑ
80
+
81
+ 21
82
+ 00:02:09,790 --> 00:02:16,890
83
+ ุงู„ู…ุคู…ู†ูŠู† ู…ุญู…ุฏ ุตู†ู† ุงู„ู†ุจูŠ ุญุฑุงู…ู‡ุง ูˆุญู„ุงู„ู‡ุง ูˆูŠู‚ูˆู„
84
+
85
+ 22
86
+ 00:02:16,890 --> 00:02:24,410
87
+ ุงู„ุญุณูŠู† ุงุจู† ุงุจู† ู…ุทูŠุฑ ุงู„ุฃุณุฏูŠ ูŠุนููˆ ูˆูŠุณุชุญูŠ ุฅุฐุง ูƒุงู†
88
+
89
+ 23
90
+ 00:02:24,410 --> 00:02:34,100
91
+ ุฎุงู„ูŠุง ูƒู…ุง ุนููˆ ูˆุงุณุชุญูŠุง ุจุญูŠุซ ุฑู‚ูŠุจู‡ุจู…ุนู†ู‰ ุฃู†ู‡ ุนููŠู
92
+
93
+ 24
94
+ 00:02:34,100 --> 00:02:41,620
95
+ ูˆุญูŠูŠ ููŠ ุญูŠุงุชู‡ ุงู„ุณุฑ ูˆุงู„ุนู„ู† ูŠุนู†ูŠ ุตุงุฏู‚ ููŠ ุนูุชู‡ ูˆุตุงุฏู‚
96
+
97
+ 25
98
+ 00:02:41,620 --> 00:02:49,960
99
+ ููŠ ุญูŠุงุกู‡ ูู‡ูˆ ูŠุทุงุจู‚ ุจูŠู† ุงู„ุณุฑ ูˆุงู„ุนู„ู† ุฃู…ุง ุฃุจูˆ ุงู„ุนุชุงู‡ุฉ
100
+
101
+ 26
102
+ 00:02:49,960 --> 00:02:57,260
103
+ ูู‚ุฏ ูˆุธู ู…ุนุงู†ูŠ ุงู„ุฐู‡ุฏูŠ ููŠุชุนู…ูŠู‚ ู…ุนุงู†ูŠ ุงู„ู…ุฏุญ ูู‚ุงู„ ู‚ุงู„
104
+
105
+ 27
106
+ 00:02:57,260 --> 00:03:07,140
107
+ ููŠ ู…ุฏุญูŠ ุงู„ุฑุดูŠุฏ ูุฑุงุนู† ูŠุฑุงุนูŠ ุงู„ู„ู‡ ููŠ ุญูุธ ุฃู…ุฉ ูŠุฏุงูุน
108
+
109
+ 28
110
+ 00:03:07,140 --> 00:03:14,000
111
+ ุนู†ู‡ุง ุงู„ุดุฑ ุบูŠุฑ ุฑู‚ูˆุฏูŠุชุฌุงูู‰ ุนู† ุงู„ุฏู†ูŠุง ูˆุฃูŠู‚ู† ุฃู†ู‡ุง
112
+
113
+ 29
114
+ 00:03:14,000 --> 00:03:20,880
115
+ ู…ูุงุฑู‚ุฉ ู„ูŠุณุช ุจุฏุงุฑ ุฎู„ูˆุฏู‡ ูู†ู„ุงุญุธ ููŠ ุงู„ุจูŠุช ุงู„ุฃูˆู„ ุฃู†
116
+
117
+ 30
118
+ 00:03:20,880 --> 00:03:29,400
119
+ ุงู„ุฎู„ูŠูุฉ ูŠุฑุงุนูŠ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ููŠ ุงู„ู…ุญุงูุธุฉ ุนู„ู‰
120
+
121
+ 31
122
+ 00:03:29,400 --> 00:03:36,110
123
+ ุซูˆุงุจุฉ ุงู„ุฃู…ุฉ ูˆุนู„ู‰ ู…ูƒุชุณุจุงุชู‡ุงูˆุฃู†ู‡ ูŠุฏุงูุน ุนู† ูƒุฑุงู…ุชู‡ุง
124
+
125
+ 32
126
+ 00:03:36,110 --> 00:03:43,050
127
+ ูˆูŠุฏูุน ุนู†ู‡ุง ุงู„ุดุฑ ุจุฅุฑุงุฏุฉ ุตุงุฏู‚ุฉ ุบูŠุฑ ู…ุชู‚ุงุนุณุฉ ููŠ ุงู„ุจูŠุช
128
+
129
+ 33
130
+ 00:03:43,050 --> 00:03:47,370
131
+ ุงู„ุซุงู†ูŠ ู†ุฌุฏ ู…ุนุงู†ูŠ ุงู„ุฒู‡ุฏ ุชุฌุงูู‰ ุนู† ุงู„ุฏู†ูŠุง ู‡ู†ุง ุชูˆุธูŠู
132
+
133
+ 34
134
+ 00:03:47,370 --> 00:03:55,270
135
+ ู„ู…ุนู†ู‰ ุงู„ุฒู‡ุฏ ูุงู„ุฒู‡ุฏ ูŠู‚ูˆู… ุนู„ู‰ ุชู‡ุฑูŠุจ ุญุจ ุงู„ุฅู†ุณุงู† ููŠ
136
+
137
+ 35
138
+ 00:03:55,270 --> 00:04:02,270
139
+ ุงู„ุจู‚ุงุก ูˆุชู‡ุฑูŠุจ ุงู„ุฅู†ุณุงู† ููŠ ุญุจ ุงู„ุชู…ู„ูƒ
140
+
141
+ 36
142
+ 00:04:04,510 --> 00:04:10,370
143
+ ูˆุฃู‡ู… ุดูŠุก ููŠ ุงู„ุฐู‡ุฏ ู‡ูˆ ุฃู† ูŠุจุชุนุฏ ุงู„ุฅู†ุณุงู† ุนู† ู…ู„ุฐุงุช
144
+
145
+ 37
146
+ 00:04:10,370 --> 00:04:18,070
147
+ ุงู„ุฏู†ูŠุง ูˆุนู† ุงู„ูŠู‚ูŠู† ุจุงู„ุจู‚ุงุก ููŠู‡ุง ูƒู…ุง ู‚ุงู„ ุตู„ู‰ ุงู„ู„ู‡
148
+
149
+ 38
150
+ 00:04:18,070 --> 00:04:23,750
151
+ ุนู„ูŠู‡ ูˆุณู„ู… ุงุฐู‡ุฏ ููŠ ุงู„ุฏู†ูŠุง ูŠุญุจูƒ ุงู„ู„ู‡ ูˆุงุฐู‡ุฏ ููŠ ู…ู‡ูŠุฏ
152
+
153
+ 39
154
+ 00:04:23,750 --> 00:04:28,810
155
+ ุงู„ู†ุงุณ ูŠุญุจูƒ ุงู„ู†ุงุณ ุชุฌุงูู‰ ุนู† ุงู„ุฏู†ูŠุง ูˆุฃูŠู‚ู† ุฃู†ู‡ุง ู…ูุงุฑู‚ุฉ
156
+
157
+ 40
158
+ 00:04:28,810 --> 00:04:35,580
159
+ ู„ูŠุณุช ุจุฏุงุฑู‰ ุฎู„ูˆุฏู‰ูู‡ู†ุง ุชุญุทูŠู… ุฃูˆ ุชู‡ุฐูŠุจ ู„ู„ุฑุบุจุฉ
160
+
161
+ 41
162
+ 00:04:35,580 --> 00:04:41,400
163
+ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ ุญุจ ุงู„ุชู…ู„ูƒ ูˆุญุจ ุงู„ุจู‚ุงุกู„ุง ุดูƒ ุฃู† ุฃุจูˆ
164
+
165
+ 42
166
+ 00:04:41,400 --> 00:04:44,820
167
+ ุงู„ุนุชุงู‡ูŠ ูˆ๏ฟฝ๏ฟฝู†ุทู„ุงู‚ุง ู…ู† ุซู‚ุงูุชู‡ ุงู„ุฐู‡ุจูŠุฉ ูƒุงู† ูŠูˆุฏ ุฃู† ุชูƒูˆู†
168
+
169
+ 43
170
+ 00:04:44,820 --> 00:04:49,780
171
+ ู‡ุฐู‡ ุงู„ู…ุนุงู†ูŠ ููŠ ุดุฎุตูŠุฉ ุงู„ุฑุดูŠุฏ ูˆุทุจุนุง ู‡ุฐู‡ ูŠู‚ูˆุฏู†ุง ุฅู„ู‰
172
+
173
+ 44
174
+ 00:04:49,780 --> 00:04:54,600
175
+ ุงู„ู‚ูˆู„ ู„ุฃู† ู‡ุฐู‡ ุงู„ู…ุนุงู†ูŠ ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ููŠ
176
+
177
+ 45
178
+ 00:04:54,600 --> 00:05:00,180
179
+ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ุฅู…ุง ุฃู† ุชูƒูˆู† ุตูุงุช ููŠ ุงู„ู…ู…ุฏูˆุญ ุญู‚ูŠู‚ุฉ ุฃูˆ
180
+
181
+ 46
182
+ 00:05:00,180 --> 00:05:10,600
183
+ ู…ุทุงู„ุจ ูŠูˆุฏ ุงู„ุดุงุนุฑ ุฃู† ุชูƒูˆู† ููŠ ุงู„ู…ู…ุฏูˆุญ ู‚ุงู„ ุงู„ู†ู…ุฑูŠูŠู…ุฏุญ
184
+
185
+ 47
186
+ 00:05:10,600 --> 00:05:16,400
187
+ ุญุฑูˆู† ุฑุดูŠุฏ ุจูˆุฑูƒ ุญุฑูˆู† ู…ู† ุฅู…ุงู… ุจุทุงุนุฉ ุงู„ู„ู‡ ุฐุงุช ุงู„ุตุงู…ูŠ
188
+
189
+ 48
190
+ 00:05:16,400 --> 00:05:24,680
191
+ ู„ู‡ ุฅู„ู‰ ุฐูŠ ุงู„ุฌู„ุงู„ ู‚ุฑุจู‡ ู„ูŠุณุช ู„ุนุฏู„ ูˆู„ุง ู„ุฅู…ุงู…ูŠ ุฃูŠ ุฃู†
192
+
193
+ 49
194
+ 00:05:24,680 --> 00:05:30,180
195
+ ุงู„ู…ู…ุฏูˆุญ ูˆู‡ูˆ ุงู„ุฎู„ูŠูุฉ ุงู„ุนุจุงุณูŠ ู„ู‡ ุนู„ุงู‚ุฉ ูˆุตู„ุฉ ุจุงู„ู„ู‡
196
+
197
+ 50
198
+ 00:05:30,180 --> 00:05:35,180
199
+ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ู„ูŠุณุช ู„ู…ุซูŠู„ ู„ู‡ ูˆู„ุง ู„ุฅู…ุงู… ู‚ุจู„ู‡
200
+
201
+ 51
202
+ 00:05:37,450 --> 00:05:42,590
203
+ ูู‡ุฐู‡ ุงู„ู…ุนุงู†ูŠ ูƒู…ุง ู†ุฑุง ุชู„ุงุฆู… ุงู„ู…ู…ุฏูˆุญ ุฅุฐุง ูƒุงู† ุฎู„ูŠูุฉ
204
+
205
+ 52
206
+ 00:05:42,590 --> 00:05:49,690
207
+ ุฃู…ุง ุฅุฐุง ูƒุงู† ู‚ุงุฆุฏุง ู„ุฌูŠุด ูุฅู†ู‡ ูŠู…ุฏุญ ุจุงู„ุดุฌุงุนุฉ ูˆุงู„ุจุทูˆู„ุฉ
208
+
209
+ 53
210
+ 00:05:50,810 --> 00:05:56,010
211
+ ูˆู‚ุฏ ุฑุณู… ูˆ ุฃุจู„ุน ุดุนุฑุงุก ููŠ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ููŠ ู…ุฏุงุฆุน
212
+
213
+ 54
214
+ 00:05:56,010 --> 00:06:04,170
215
+ ุงู„ุจุทูˆู„ุฉ ูˆุงู„ุดุฌุงุนุฉ ูˆุฑุณู…ูˆุง ุฃุฌู…ู„ ุตูˆุฑ ู„ู„ุจุทู„ ุนู„ู‰ ู†ุญูˆ ู…ุง
216
+
217
+ 55
218
+ 00:06:04,170 --> 00:06:14,190
219
+ ู†ุฑู‰ ุนู†ุฏ ุฃุจูŠ ุชู…ุงู… ุฃูŠุถุง ู†ุฌุฏ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ู…ุดูŠุฏ ุจูŠู‡
220
+
221
+ 56
222
+ 00:06:14,190 --> 00:06:21,000
223
+ ุงู„ุฑุดูŠุฏ ุญูŠู† ูุชุญ ู‡ุฑุงู‚ู„ู‰ ููŠ ุขุณูŠุง ุงู„ุตุบุฑู‰ุฃู…ุง ุฅุฐุง ูƒุงู†
224
+
225
+ 57
226
+ 00:06:21,000 --> 00:06:26,140
227
+ ู‚ุงุฆุฏุง ู„ุฌูŠุด ูุฅู†ู†ุง ู†ุฌุฏ ุฃู† ุงู„ุดุนุฑุงุก ูŠู…ุฏุญูˆู† ู‡ุฐุง ุงู„ู‚ุงุฆุฏ
228
+
229
+ 58
230
+ 00:06:26,140 --> 00:06:33,940
231
+ ุจุงู„ุดุฌุงุนุฉ ูˆุงู„ุจุทูˆู„ุฉ ูˆู†ุฌุฏ ุฃู† ุงู„ุดุนุฑุงุก ูŠุชุจุงุฑูˆู† ููŠ ุฑุณู…
232
+
233
+ 59
234
+ 00:06:33,940 --> 00:06:40,790
235
+ ุฃุฌู…ู„ ุงู„ุตูˆุฑ ู„ู‡ุฐุง ุงู„ุจุทู„ูˆุฃุฌู…ู„ ุงู„ู…ุนุงู†ูŠ ู„ู…ูู‡ูˆู… ุงู„ุจุทูˆู„ุฉ
236
+
237
+ 60
238
+ 00:06:40,790 --> 00:06:47,750
239
+ ูู…ุซู„ุง ู†ุฌุฏ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ูŠุดูŠุฏ ุจุจุทูˆู„ุฉ ุงู„ุฑุดูŠุฏ ุญูŠู† ูุชุญ
240
+
241
+ 61
242
+ 00:06:47,750 --> 00:06:52,710
243
+ ู‡ุฑุงู‚ู„ู‡ ููŠ ุฃูุณ ุงู„ุณูˆุฑุฉ ูˆุงู†ุชุตุงุฑู‡ ุนู„ู‰ ุฌูŠุด ู†ู‚ููˆุฑ
244
+
245
+ 62
246
+ 00:06:52,710 --> 00:06:56,010
247
+ ุงู…ุจุฑุงุทูˆุฑ
248
+
249
+ 63
250
+ 00:06:56,010 --> 00:07:02,590
251
+ ุจูŠุฒุงู†ุชุงูˆู‡ู†ุงูƒ ู…ู‚ูˆู„ุฉ ู…ุดู‡ูˆุฑุฉ ููŠ ุงู„ุชุงุฑูŠุฎ ู…ู† ู‡ุงุฑูˆู†
252
+
253
+ 64
254
+ 00:07:02,590 --> 00:07:09,690
255
+ ุงู„ุฑุดูŠุฏ ุฅู„ู‰ ู†ู‚ููˆุฑ ูƒู„ุจ ุงู„ุฑูˆู… ุงู„ุฌูˆุงุจ ูƒู…ุง ุชุฑู‰ ุงู„ู„ู‡ ูƒู…ุง
256
+
257
+ 65
258
+ 00:07:09,690 --> 00:07:18,150
259
+ ุชุณู…ุน ูู‚ุงู„ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ู†ุดูŠุฏ ุจุจุทูˆู„ุฉ ุงู„ุฑุดูŠุฏ ูˆู„ูŠู‡ู†ูƒ
260
+
261
+ 66
262
+ 00:07:18,150 --> 00:07:23,710
263
+ ุงู„ูุชุญ ูˆุงู„ุฃูŠุงู… ู…ู‚ุจู„ุฉ ุฅู„ูŠูƒ ุจุงู„ู†ุตุฑ ู…ุนู‚ูˆุฏุฉ ู†ูˆุงุตูŠู‡ุง
264
+
265
+ 67
266
+ 00:07:23,710 --> 00:07:29,680
267
+ ุฃู…ุณู‰ ุชุฑู‚ู„ุฉ ุชู‡ูˆูŠ ู…ู† ุฌูˆุงู†ุจู‡ุงูˆู†ุงุตุฑ ุงู„ู„ู‡ ูˆุงู„ุฅุณู„ุงู…
268
+
269
+ 68
270
+ 00:07:29,680 --> 00:07:36,880
271
+ ูŠุฑู…ูŠู‡ุง ู…ู„ูƒุชู‡ุง ูˆู‚ุชู„ุช ุงู„ู†ุงูƒุซูŠู† ุจู‡ุง ุจู†ุตุฑ ู…ู† ูŠู…ู„ูƒ
272
+
273
+ 69
274
+ 00:07:36,880 --> 00:07:42,880
275
+ ุงู„ุฏู†ูŠุง ูˆู…ุง ููŠู‡ุง ู…ุง ุฑูˆุนูŠ ุงู„ุฏูŠู† ูˆุงู„ุฏู†ูŠุง ุนู„ู‰ ู‚ุฏู… ุจู…ุซู„
276
+
277
+ 70
278
+ 00:07:42,880 --> 00:07:50,580
279
+ ู‡ุงุฑูˆู†ุง ุฑุงุนูŠู‡ ูˆุฑุงุนูŠู‡ุง ู‡ู†ุง ุทุจุนุง ู†ุฑู‰ ุตูˆุฑุฉ ุงู„ุจุทู„ ู‚ุฏ
280
+
281
+ 71
282
+ 00:07:50,580 --> 00:07:57,320
283
+ ุชุฌู„ุช ููŠ ู‡ุฐู‡ ุงู„ุฃุจูŠุงุช ูˆุฃูŠุถุง ู…ุนุงู†ูŠ ุงู„ุดุฌุงุนุฉู…ู† ุญูŠุซ
284
+
285
+ 72
286
+ 00:07:57,320 --> 00:08:07,980
287
+ ุงู„ุฅู‚ุฏุงู… ูˆู…ู† ุญูŠุซ ุงู„ุญุงู‚ ุงู„ุฃุฐู‰ ุจู‡ุคู„ุงุก ุงู„ู…ุชู…ู„ุฏูŠู† ุฃูŠุถู‹ุง
288
+
289
+ 73
290
+ 00:08:07,980 --> 00:08:15,460
291
+ ู…ู† ุฃุฌู…ู„ ุงู„ู‚ุตุงุฆุฏ ุงู„ุชูŠ ุฐููƒุฑุช ููŠ ุตูˆุฑ ุงู„ุจุทู„ ูˆู…ุนุงู†ูŠ
292
+
293
+ 74
294
+ 00:08:15,460 --> 00:08:20,900
295
+ ุงู„ุจุทูˆู„ุฉ ู‚ุตุงุฆุฏ ุฃุจูŠ ุชู…ุงู… ููŠ ู…ุฏุญูŠ ุงู„ู…ุนุชุตู… ุญูŠู† ูุชุญ
296
+
297
+ 75
298
+ 00:08:20,900 --> 00:08:26,710
299
+ ุนู…ูˆุฑูŠุฉุญูŠุซ ุจุฏุช ูƒุฃู†ู‡ุง ู…ู„ุญู…ุฉ ูƒู…ุง ุณูŠุฃุชูŠ ุงู„ุญุฏูŠุซ ุนู†ู‡ุง
300
+
301
+ 76
302
+ 00:08:26,710 --> 00:08:33,210
303
+ ุนู†ุฏู…ุง ู†ุชู†ุงูˆู„ ุฃุจุง ุชู…ุงู… ูƒุนู„ู… ู…ู† ุฃุนู„ุงู… ุงู„ุดุนุฑุงุก ููŠ ู‡ุฐุง
304
+
305
+ 77
306
+ 00:08:33,210 --> 00:08:41,030
307
+ ุงู„ุนุตุฑ ุฃูŠุถุง ู‡ู†ุงูƒ ู…ู‚ุทูˆุนุฉ ู‚ุตูŠุฑุฉ ู„ู‚ุตูŠุฏุฉ ุทูˆูŠู„ุฉ ู„ุนู„ูŠ ุงุจู†
308
+
309
+ 78
310
+ 00:08:41,030 --> 00:08:49,920
311
+ ุฌุจู„ุฉุงู„ู…ู„ู‚ุจ ุจุงู„ุนูƒูˆูƒ ู…ุฏุญ ููŠู‡ุง ุจุทูˆู„ุฉ ุฃุจูŠ ุฏู„ูู† ุงู„ุนุฌู„ูŠ
312
+
313
+ 79
314
+ 00:08:49,920 --> 00:08:55,820
315
+ ู‚ุงุฆุฏ ุงู„ู…ุฃู…ูˆู† ูู‚ุงู„ ุงู„ู…ู†ุงูŠุง ููŠ ู…ู‚ุงู†ุจู‡ ูˆุงู„ุนุทุงูŠุง ููŠ
316
+
317
+ 80
318
+ 00:08:55,820 --> 00:09:02,960
319
+ ุฐุฑู‰ ุญุฌุฑู‡ ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ู„ู‡ ูƒุตูŠุงุญ ุงู„ุญุดุฑ ููŠ ุฃู…ุฑู‡ ู‚ุชู‡
320
+
321
+ 81
322
+ 00:09:02,960 --> 00:09:09,880
323
+ ูˆุงู„ู…ูˆุช ู…ู‚ุชู…ู† ููŠ ู…ุฐุงูƒูŠู‡ ูˆู…ุดุชุฌุฑู‡ูุฑู…ุช ูŠู„ูˆู‡ ู…ู†ู‡ ูŠุฏ
324
+
325
+ 82
326
+ 00:09:09,880 --> 00:09:17,160
327
+ ุทูˆู‘ุช ุงู„ู…ู†ุดูˆุฑุฉ ู…ู† ุจุทุฑู‡ ุทุจุนุง ู‡ู†ุงูƒ ูŠุนู†ูŠ ุนุจุงุฑุฉ ู†ู‚ุฑุฑู‡ุง
328
+
329
+ 83
330
+ 00:09:17,160 --> 00:09:23,280
331
+ ุฏุงุฆู…ุง ุฃู† ุงู„ุจุทู„ ูŠูƒูˆู† ๏ฟฝ๏ฟฝุทู„ุง ุนู†ุฏู…ุง ูŠูƒูˆู† ุตุงุฏู‚ุง ููŠ
332
+
333
+ 84
334
+ 00:09:23,280 --> 00:09:29,410
335
+ ุงู„ู„ู‚ุงุกูˆู‚ุฏ ุนุจุฑ ุงู„ุดุนุฑุงุก ุนู† ุตุฏู‚ ุงู„ู„ู‚ุงุก ูˆุฅุฑุงุฏุฉ ุงู„ู‚ุชุงู„
336
+
337
+ 85
338
+ 00:09:29,410 --> 00:09:37,390
339
+ ุจุฃู„ูุงุธ ูƒุซูŠุฑุฉ ู‡ู†ุง ููŠ ู‡ุฐุง ุงู„ุจูŠุช ุนุจุฑ ุนู†ู‡ ุนู† ุงู„ุฅุฑุงุฏุฉ
340
+
341
+ 86
342
+ 00:09:37,390 --> 00:09:44,830
343
+ ุงู„ุตุงุฏู‚ุฉ ุจุงู„ุฎูŠู„ ูุงู„ุฎูŠู„ ุชุนุจุฑ ุนู† ุงู„ุฅุฑุงุฏุฉ ุงู„ุตุงุฏู‚ุฉ ู„ุฃู†
344
+
345
+ 87
346
+ 00:09:44,830 --> 00:09:51,680
347
+ ุงู„ุฎูŠู„ ู‚ุจู„ ุงู„ุฅู†ุทู„ุงู‚ ุชุญู…ุญู… ูˆุชุชุญุฑูƒูˆู‡ุฐุง ุชุนุจูŠุฑ ุนู†
348
+
349
+ 88
350
+ 00:09:51,680 --> 00:09:58,820
351
+ ุฅุฑุงุฏุชู‡ุง ู„ุงู†ุทู„ุงู‚ ูุฅุฐุง ุงู†ุทู„ู‚ุชุŒ ุงู†ุทู„ู‚ุช ุจู‚ูˆุฉ ูˆู‡ุฐุง
352
+
353
+ 89
354
+ 00:09:58,820 --> 00:10:06,790
355
+ ุชุนุจูŠุฑ ุนู† ุฅุฑุงุฏุชู‡ุง ู„ู„ู‚ุชุงู„ ุฃูˆ ุงู„ุตุจุงู‚ูˆุงู„ุดุนุฑ ุงุณุชุฎุฏู… ู‡ู†ุง
356
+
357
+ 90
358
+ 00:10:06,790 --> 00:10:12,170
359
+ ุงู„ุฎูŠู„ ู„ู„ุชุนุจูŠุฑ ุนู† ุงู„ุฅุฑุงุฏุฉ ุงู„ุตุงุฏู‚ุฉ ุนู†ุฏ ุงู„ู…ู…ุฏูˆุญ ูˆู‚ุงู„
360
+
361
+ 91
362
+ 00:10:12,170 --> 00:10:19,390
363
+ ุงู„ู…ู†ุงูŠุง ููŠ ู…ู‚ุงู†ุจู‡ ู…ู‚ุงู†ุจ ุฌู…ุน ู…ู‚ู†ุจ ูˆุงู„ู…ู‚ู†ุจ ู‡ูˆ ุฌู…ุงุนุฉ
364
+
365
+ 92
366
+ 00:10:19,390 --> 00:10:26,750
367
+ ุงู„ุฎูŠู„ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฎูŠูˆู„ ููŠ ุงู„ู…ุนุฑูƒุฉ ุญูŠุซ ุชู‚ุณู… ุงู„ุฎูŠูˆู„
368
+
369
+ 93
370
+ 00:10:26,750 --> 00:10:32,250
371
+ ุฅู„ู‰ ู…ุฌู…ูˆุนุงุช ูƒู„ ู…ุฌู…ูˆุนุฉ ูŠุทู„ู‚ ุนู„ูŠู‡ุง ู…ู‚ู†ุจ ูˆุงู„ุฌู…ุน ู…ู‚ุงู†ุจ
372
+
373
+ 94
374
+ 00:10:33,980 --> 00:10:41,780
375
+ ุงู„ู…ุนู†ู‰ ุงู„ุซุงู†ูŠ ู„ู„ุดุทุฑ ุงู„ุซุงู†ูŠ ู‡ูˆ ูˆุงู„ุนุทุงูŠุง ููŠ ุฐุฑุน ุญุฌุฑู‡
376
+
377
+ 95
378
+ 00:10:41,780 --> 00:10:49,440
379
+ ูŠุนู†ูŠ ุงู„ุนุทุงูŠุง ุฌู…ุน ุนุทูŠุฉ ูˆู‡ุฐู‡ ุงู„ูƒู„ู…ุฉ ู…ู† ุฃูˆุงุฆู„ ุงู„ูƒู„ู…ุงุช
380
+
381
+ 96
382
+ 00:10:49,440 --> 00:10:52,700
383
+ ุงู„ุนุงู…ูŠุฉ ุงู„ุชูŠ ููุตุญุช
384
+
385
+ 97
386
+ 00:10:55,730 --> 00:11:01,150
387
+ ูˆุงู„ู…ู‚ุตูˆุฏ ู‡ู†ุง ุฃู† ุงู„ุนุทุงูŠุฉ ููŠ ุณุงุญุฉ ุงู„ุจูŠุช ุฃูˆ ููŠ ูู†ุงุก
388
+
389
+ 98
390
+ 00:11:01,150 --> 00:11:07,690
391
+ ุงู„ุจูŠุช ูŠุนู†ูŠ ู…ุนุฏุฉ ู„ู„ุฅุนุทุงุก ูˆุงู„ู…ุนู†ู‰ ุฃู† ุงู„ู…ู…ุฏูˆุญ ูŠุนุทูŠ
392
+
393
+ 99
394
+ 00:11:07,690 --> 00:11:15,910
395
+ ุจู„ุง ู…ุทู„ู† ูˆู‡ุฐุง ู…ู† ุฌู…ุงู„ ุงู„ูƒุฑู… ุงู„ูƒุฑู… ุงู„ุฎุงู„ุต ุฃู† ูŠุนุทูŠู‡
396
+
397
+ 100
398
+ 00:11:15,910 --> 00:11:23,510
399
+ ุจู„ุง ู…ุทู„ู†ูˆูƒู…ุง ู‚ู„ู†ุง ููŠ ุงู„ุดุฌุงุนุฉุŒ ุงู„ุดุฌุงุนุฉ ุชูƒูˆู† ุฌู…ูŠู„ุฉ
400
+
401
+ 101
402
+ 00:11:23,510 --> 00:11:31,310
403
+ ุฅุฐุง ูƒุงู†ุช ู†ุงุจุน ู…ู† ุฅุฑุงุฏุฉ ุตุงุฏู‚ุฉ ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ุฑู‡ ูƒุตูŠุงุญ
404
+
405
+ 102
406
+ 00:11:31,310 --> 00:11:40,160
407
+ ุงู„ุญุดุฑ ููŠ ุฃู…ุฑู‡ ูˆู…ู† ุนู„ุงู…ุฉ ุฅุฑุงุฏุฉ ุตุงุฏู‚ุฉุฅู†ู‡ ุฃุนุฏู‰ ุนูุฏู‘ุฉ
408
+
409
+ 103
410
+ 00:11:40,160 --> 00:11:49,220
411
+ ู„ู„ู‚ุชุงู„ ูˆุฌู‡ุฒ ุฌูŠุดุง ูƒุซูŠูุง ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ู„ู‡ ุตูˆุงู‡ู„ ุฌู…ุน
412
+
413
+ 104
414
+ 00:11:49,220 --> 00:11:56,360
415
+ ุงู„ุตุงู‡ู„ ูˆู‡ูˆ ุงู„ุฎูŠู„ ุจู…ุนู†ู‰ ุฃู†ู‡ ุฃุนุฏู‰ ุฌูŠุดุง ูƒุจูŠุฑุง ู…ู†
416
+
417
+ 105
418
+ 00:11:56,360 --> 00:12:03,210
419
+ ุงู„ูุฑุณุงู†ูˆุทุจุนุง ุงู„ูุฑุณ ุฃูˆ ุงู„ุฎูŠู„ ูŠุนุจุฑ ุนู† ุฅุฑุงุฏุฉ ุงู„ู‚ุชุงู„
420
+
421
+ 106
422
+ 00:12:03,210 --> 00:12:13,190
423
+ ู„ุฃู† ุงู„ุฎูŠู„ุฉ ุชุณุชุนู…ู„ ููŠ ุงู„ู‡ุฌูˆู… ุนู„ู‰ ุงู„ุฃุนุฏุงุก ูˆู…ู†
424
+
425
+ 107
426
+ 00:12:13,190 --> 00:12:18,390
427
+ ุนู„ุงู…ุฉ ุฃูŠุถุง ุฅุฑุงุฏุฉ ุงู„ุตุงุฏู‚ุฉ ุฃู†ู‡ุง ุชุตุญู„ ู‚ุจู„ ุงู„ุฅู†ุทู„ุงู‚
428
+
429
+ 108
430
+ 00:12:18,390 --> 00:12:26,450
431
+ ูƒุตูŠุงุญ ุงู„ุญุดุฑูŠ ููŠ ุฃู…ุฑู‡ ูƒุตูŠุงุญ ุงู„ู†ุงุณ ูŠูˆู… ุฎูˆูู‡ู… ุงู„ุดุฏูŠุฏ
432
+
433
+ 109
434
+ 00:12:26,450 --> 00:12:34,680
435
+ ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉ ููŠ ุงู„ุดุฏุฉูŠุนู†ูŠ ุดุจู‡ ุตูˆุช ุงู„ุฎูŠูˆู„ ููŠ
436
+
437
+ 110
438
+ 00:12:34,680 --> 00:12:41,700
439
+ ุงู„ุฅู†ุทู„ุงู‚ ู†ุญูˆ ุงู„ุนุฏูˆ ูƒุตูŠุงุญ ุงู„ู†ุงุณ ููŠ ุงู„ุฎูˆู ุงู„ุดุฏูŠุฏ ูŠูˆู…
440
+
441
+ 111
442
+ 00:12:41,700 --> 00:12:50,510
443
+ ุงู„ุญุดุฑ ูˆู‡ุฐุง ุทุจุนุง ุชุดุจูŠู‡ ููŠู‡ ู…ุจุงู„ุบุฉู„ุฃู† ุทุจุนุง ุฃุนู„ู‰ ุตูˆุช
444
+
445
+ 112
446
+ 00:12:50,510 --> 00:12:56,530
447
+ ูŠุทู„ู‚ู‡ ุงู„ุฅู†ุณุงู† ููŠ ู„ุญุธุฉ ุฎูˆูู‡ ุฃู…ุง ููŠ ู„ุญุธุฉ ุบุถุจู‡ ูˆุฅู†
448
+
449
+ 113
450
+ 00:12:56,530 --> 00:13:03,030
451
+ ูƒุงู† ุดุฏูŠุฏุง ูู‡ูˆ ุฃู‚ู„ ู„ุฐุง ุงู„ุชุดุจูŠู‡ ู‡ูˆ ุฅู„ุญุงู‚ ู†ุงู‚ุต ููŠ
452
+
453
+ 114
454
+ 00:13:03,030 --> 00:13:09,170
455
+ ุงู„ุตูุฉ ุจูƒุงู…ู„ ููŠู‡ุง ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ูŠู„ู‡ ูƒุตูŠุงุญ ุงู„ุญุดู ููŠ
456
+
457
+ 115
458
+ 00:13:09,170 --> 00:13:15,510
459
+ ุฃู…ุฑู‡ ูุตุงู‡ูŠู„ ุงู„ุฎูŠู„ ู„ุญุธุฉ ุงู„ุฅู†ุทู„ุงู‚ ุฃู‚ู„ ููŠ ุงู„ุตูุฉ ู…ู†
460
+
461
+ 116
462
+ 00:13:15,510 --> 00:13:21,460
463
+ ุตูŠุงุญ ุงู„ู†ุงุณ ูŠูˆู…ุงู„ุฎูˆู ุงู„ุดุฏูŠุฏ ูŠูˆู… ุงู„ุญุดุฑ ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉ
464
+
465
+ 117
466
+ 00:13:21,460 --> 00:13:26,000
467
+ ู‚ูุชู‘ุงู‡ ูˆุงู„ู…ูˆุช ู…ูƒุชู…ู† ููŠ ู…ุฐุงูƒูŠู‡ ูˆุงู„ู…ุฐุงูƒูŠู‡ ู‡ูŠ ุฃู…ุงูƒู†
468
+
469
+ 118
470
+ 00:13:26,000 --> 00:13:35,050
471
+ ุงู„ุฐุจุญูˆุงู„ู†ุญุฑ ูˆูŠู‚ุตุฏ ุงู„ุฎูŠู„ ูˆุงู„ู‚ุจู„ ูุงู„ุฎูŠู„ ุชุฐุจุญ ูˆุงู„ู‚ุจู„
472
+
473
+ 119
474
+ 00:13:35,050 --> 00:13:42,590
475
+ ุชู†ุญุฑ ูˆู…ุดุชุฌ ู„ู‡ ู…ูƒุงู† ุงู„ุฅุตุงุจุฉ ุจุงู„ุณูŠูˆู ุฃูˆ ุงู„ุฑู…ุงุญ
476
+
477
+ 120
478
+ 00:13:42,590 --> 00:13:49,210
479
+ ูุงู„ู…ูˆุช ูƒุงู…ู„ ููŠ ู‡ุฐู‡ ุงู„ุฃู…ุงูƒู† ุงู„ุฃู…ุงูƒู† ุงู„ุฐุจุญูŠ ูˆุฃู…ุงูƒู†
480
+
481
+ 121
482
+ 00:13:49,210 --> 00:13:56,310
483
+ ุงู„ุฌุฑุงุญูุฑู…ุช ุฌูŠู„ูˆู‡ ู…ู†ู‡ ูŠุฏ ู‡ุฐุง ุงู„ุฌูŠุด ุนู„ู‰ ูƒุซุงูุชู‡
484
+
485
+ 122
486
+ 00:13:56,310 --> 00:14:05,330
487
+ ูˆุฅุนุฏุงุฏู‡ ุงู„ุฌูŠุฏ ู„ู… ูŠุณุชุนู…ู„ ู…ู†ู‡ ุฅู„ุง ูŠุฏ ูˆุงุญุฏุฉ ู‡ุฐู‡ ุงู„ูŠุฏ
488
+
489
+ 123
490
+ 00:14:05,330 --> 00:14:13,280
491
+ ุฃุญุงู„ุช ูƒุจุฑูŠุงุก ุฌูŠู„ูˆู‡ ูˆู‡ูˆ ุดุฎุต ุฎุฑุฌ ุนู„ู‰ ุงู„ุฏูˆู„ุฉุงู„ุนุจุงุณูŠุฉ
492
+
493
+ 124
494
+ 00:14:13,280 --> 00:14:23,080
495
+ ููŠ ุฃุฐุฑุจูŠุฌุงู† ููƒุงู† ู…ุตูŠุฑู‡ ุฃู† ุฃุญุงู„ุช ู‡ุฐู‡ ุงู„ุถุฑุจุฉ ุฃุญุงู„ุช
496
+
497
+ 125
498
+ 00:14:23,080 --> 00:14:27,820
499
+ ูƒุจุฑูŠุงุกู‡ ูˆุฃูุนุงู„ู‡
500
+
501
+ 126
502
+ 00:14:27,820 --> 00:14:30,300
503
+ ุงู„ุณูŠุก ุฅู„ู‰ ู…ุงุถูŠ
504
+
505
+ 127
506
+ 00:14:34,510 --> 00:14:42,450
507
+ ุฃูŠุถู‹ุง ู…ู† ุงู„ู…ุนุงู†ูŠ ูˆุงู„ุนู†ุงุตุฑ ุงู„ุฌุฏูŠุฏุฉ ุงู„ุชูŠ ุธู‡ุฑุช ููŠ
508
+
509
+ 128
510
+ 00:14:42,450 --> 00:14:48,850
511
+ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ู‡ูˆ ุฅุทูุงุก ุงู„ู…ุนุงู†ูŠ ุงู„ุฅุณู„ุงู…ูŠุฉ ุนู„ู‰ ู‡ุฐู‡
512
+
513
+ 129
514
+ 00:14:48,850 --> 00:14:55,530
515
+ ุงู„ู‚ูŠู… ุฃูˆ ุฅุนุทุงุก ู‡ุฐู‡ ุงู„ู‚ูŠู… ู…ุนู†ุงู‹ ุฅู†ุณุงู†ูŠุงุŒ ู…ุนู†ุงู‹ ุฅูŠู‡
516
+
517
+ 130
518
+ 00:14:55,530 --> 00:14:56,130
519
+ ุฅุณู„ุงู…ูŠุง
520
+
521
+ 131
522
+ 00:14:58,900 --> 00:15:06,540
523
+ ู…ุซู„ ู‚ูˆู„ ุงู„ุดุงุนุฑ ุงู„ุจุญุซุฑูŠ ูŠู…ุฏุญ ุงู„ู…ุชูˆูƒู„ ุฎู„ู‚ ุงู„ู„ู‡ ุฌุนูุงู†
524
+
525
+ 132
526
+ 00:15:06,540 --> 00:15:14,580
527
+ ู‚ูŠู… ุงู„ุฏู†ูŠุง ุณุฏุงุฏุง ูˆ ู‚ูŠู… ุงู„ุฏูŠู† ุฑุดุฏุง ุฃุธู‡ุฑ ุงู„ุนุฏู„
528
+
529
+ 133
530
+ 00:15:14,580 --> 00:15:21,860
531
+ ูุงุณุชู†ุงุธุฑ ุจูŠู‡ ุงู„ุฃุฑุถ ูˆ ุนู… ุงู„ุจู„ุงุฏ ุบูˆุฑุง ูˆ ู†ุฌุฏุงุฃุนุทู‰
532
+
533
+ 134
534
+ 00:15:21,860 --> 00:15:28,920
535
+ ู…ุนู†ู‰ ุงูŠู‡ ุฏูŠู†ู‰ ูˆู‡ูˆ ุงู† ุงู† ู‡ุฐุง ุงู„ู…ู…ุฏูˆุญ ูŠุฌู…ุน ุจูŠู† ุจูŠู†
536
+
537
+ 135
538
+ 00:15:28,920 --> 00:15:35,840
539
+ ุฎูŠุฑูŠุฉ ุงู„ุฏู†ูŠุง ูˆุงู„ุงุฎุฑุฉ ุงูˆ ุงู„ุฏูŠู† ูˆุงู„ุดูŠุก ุงู„ุซุงู†ูŠ ุงู†ู‡
540
+
541
+ 136
542
+ 00:15:35,840 --> 00:15:41,940
543
+ ุงู†ู‡ ุงู†ุณุงู† ุนุงุฏู„ ูˆู‡ุฐุง ุงู„ุนุงุฏู„ ู‚ุฏ ุนู… ุงู„ุจู„ุงุฏ ูˆู‡ู†ุง ุทุจุนุง
544
+
545
+ 137
546
+ 00:15:41,940 --> 00:15:48,860
547
+ ุงุณุชุบุฑุงู ู…ูƒุงู†ู‰ ุบูˆุฑุง ูˆู†ูŠุฏุง ูŠุนู†ูŠ ุงู„ู…ุฑุถ ุชูุน ู…ู† ุงู„ุฃุฑุถู…ุง
548
+
549
+ 138
550
+ 00:15:48,860 --> 00:15:57,700
551
+ ุฎูุถ ู…ู† ุงู„ุฃุฑุถ ูˆู…ุง ุนู„ู‰ ู…ู† ุงู„ุฃุฑุถ ูˆู‡ูˆ ุฅูŠู‡ ุงู„ู†ุฌุฏ ูˆู…ู†
552
+
553
+ 139
554
+ 00:15:57,700 --> 00:16:03,180
555
+ ุงู„ุธูˆุงู‡ุฑ ุงู„ุชูŠ ุธู‡ุฑุช ููŠ ู‚ุตุฉ ุงู„ู…ุฏุญ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูˆุฌุฏู†ุง
556
+
557
+ 140
558
+ 00:16:03,180 --> 00:16:12,460
559
+ ุตูุฉ ุงู„ู…ุจุงู„ุบุฉุชุธู‡ุฑ ููŠ ู…ุนุงู†ูŠ ุงู„ู…ุฏุญ ู…ู† ู‡ุฐู‡ ุงู„ุตูˆุฑ ุงู„ุตูˆุฑ
560
+
561
+ 141
562
+ 00:16:12,460 --> 00:16:19,460
563
+ ุงู„ู…ุจุงู„ุบุฉ ุตูุงุช ุงู„ุชู‚ุฏูŠุณ ูƒู…ุง ู‚ุงู„ ุงุจู† ุงู„ุฌู‡ู… ูŠู…ุฏุญ
564
+
565
+ 142
566
+ 00:16:19,460 --> 00:16:25,420
567
+ ุงู„ู…ุชูˆูƒู„ ู„ู‡ ุงู„ู…ู†ุฉ ุงู„ุนุธู…ู‰ ุนู„ู‰ ูƒู„ ู…ุณู„ู…ูˆุทุงุนุชู‡ ูุฑุถ ู…ู†
568
+
569
+ 143
570
+ 00:16:25,420 --> 00:16:30,440
571
+ ุงู„ู„ู‡ ู…ู†ุฒู„ู‡ ูุงู„ู…ุนู„ูˆู… ุฃู† ุงู„ู…ู†ุฉ ู‡ูŠ ู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰
572
+
573
+ 144
574
+ 00:16:30,440 --> 00:16:35,800
575
+ ู„ุงุชู…ู† ุนู„ูŠ ุฅุณู„ุงู…ูƒู… ุจู„ ุงู„ู„ู‡ ูŠู…ู† ุนู„ูŠูƒู… ุฃู† ู‡ุฏุงูƒู…
576
+
577
+ 145
578
+ 00:16:35,800 --> 00:16:40,840
579
+ ู„ู„ุฅุณู„ุงู… ูุงู„ู…ู†ุฉ ุงู„ุนุธู…ู‰ ู‡ูŠ ู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ูˆุทุจุนุง
580
+
581
+ 146
582
+ 00:16:40,840 --> 00:16:48,710
583
+ ุงู„ุดุนุฑ ู‡ู†ุง ุงุณุชุนู…ู„ู‡ุง ู„ู„ู…ุจุงู„ุบุฉู„ู‡ ุงู„ู…ู†ุฉ ุงู„ุนุธู…ู‰ ุนู„ู‰ ูƒู„
584
+
585
+ 147
586
+ 00:16:48,710 --> 00:16:54,690
587
+ ู…ุณู„ู… ูˆุทุงุนุชู‡ ูุฑุถ ู…ู† ุงู„ู„ู‡ ู…ู†ุฒู„ู‡ ุทุจุนุง ู‡ุฐู‡ ู‡ูŠ ู…ู† ุงู„ุตูˆุฑ
588
+
589
+ 148
590
+ 00:16:54,690 --> 00:17:04,910
591
+ ุงู„ู…ุจุงู„ุบุฉ ููŠ ุตูุงุช ุงู„ู…ู…ุฏูˆุญ ุฃู† ุทุงุนุชู‡ ูุฑุถ ู…ู† ุงู„ู„ู‡ ู…ู†ุฒู„
592
+
593
+ 149
594
+ 00:17:05,830 --> 00:17:12,390
595
+ ูˆู†ุญู† ู†ุนู„ู… ุฃู†ู‡ ู„ุง ุทุงุนุฉ ู„ู…ุฎู„ูˆู‚ ููŠ ู…ุนุตูŠุฉ ุงู„ุฎุงู„ู‚ ูˆุฃู†
596
+
597
+ 150
598
+ 00:17:12,390 --> 00:17:15,510
599
+ ุงู„ุทุงุนุฉ
600
+
601
+ 151
602
+ 00:17:15,510 --> 00:17:21,430
603
+ ู„ูŠุณุช ูุฑุถุง ูุฑุถู‡ุง ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ุนู„ู‰ ุนุจุงุฏู‡ ุฎุงุตุฉ
604
+
605
+ 152
606
+ 00:17:21,430 --> 00:17:28,370
607
+ ุจุงู„ู…ุชูˆูƒู„ุฅุฐุง ุงู„ู€ MDA ู…ุจุงู„ุบุฉ ูˆู‡ุฐู‡ ุงู„ู…ุจุงู„ุบุฉ ูŠุนู†ูŠ
608
+
609
+ 153
610
+ 00:17:28,370 --> 00:17:34,510
611
+ ูˆุฌุฏู†ุงู‡ุง ุชุธู‡ุฑ ูƒุธุงู‡ุฑุฉ ุฌุฏูŠุฏุฉ ููŠ ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ูˆู‚ุฏ
612
+
613
+ 154
614
+ 00:17:34,510 --> 00:17:40,810
615
+ ูƒุงู†ุช ู…ู…ู‚ูˆุทุฉ ููŠ ุงู„ุดุนุฑ ุงู„ุฌุงู‡ู„ูŠ ุฅุฐ ูƒุงู† ุงู„ุฌุงู‡ู„ูŠูˆู†
616
+
617
+ 155
618
+ 00:17:40,810 --> 00:17:45,170
619
+ ูŠู…ู‚ูˆุทูˆู† ุงู„ุดุนุฑุงุก ุงู„ุฐูŠู† ูŠุฃุชูˆุง ุฃูˆ ูŠู…ู‚ูˆุทูˆู† ุฃู‚ูˆุงู„
620
+
621
+ 156
622
+ 00:17:45,170 --> 00:17:53,220
623
+ ุงู„ุดุนุฑุงุก ุงู„ุชูŠ ููŠู‡ุง ู…ุจุงู„ุบุฉูƒู‚ูˆู„ ุนู…ุฑ ุงุจู† ูƒุซูˆู… ุญูŠู† ู‚ุงู„
624
+
625
+ 157
626
+ 00:17:53,220 --> 00:18:02,200
627
+ ูˆ ู„ูˆ ู„ุงุฑูŠุญ ุฃุณู…ุน ุฃู‡ู„ ุญุฌุฑ ุตู„ูŠู„ ุงู„ุจูŠุถ ุชู‚ุฑุน ุจุงู„ุฐูƒูˆุฑ
628
+
629
+ 158
630
+ 00:18:02,200 --> 00:18:09,260
631
+ ูู‚ูŠู„ ู‡ุฐุง ุฃูƒุฐุจ ุจูŠุช ูˆ ุฐู„ูƒ ู„ุฃู† ุงู„ุนุฑุจ ููŠ ุงู„ุฌุงู‡ู„ูŠุฉ ูƒุงู†ุช
632
+
633
+ 159
634
+ 00:18:09,260 --> 00:18:11,220
635
+ ุชูƒุฑู‡ ุงู„ู…ุจุงู„ุบุฉ
636
+
637
+ 160
638
+ 00:18:13,220 --> 00:18:19,780
639
+ ุทุจุนุง ุงู„ู…ุจุงู„ุบุฉ ุธุงู‡ุฑุฉ ูŠุนู†ูŠ ู…ู„ุญูˆุธุฉ ููŠ ุฃุดูŠุงุก ุงู„ุนุจุงุณูŠ
640
+
641
+ 161
642
+ 00:18:19,780 --> 00:18:25,960
643
+ ูˆู…ู†ู‡ุง ู‚ูˆู„ ุงุจู† ุงู„ุฌู‡ู… ุฃูŠุถุง ู„ุจู†ูŠ ุงู„ุนุจุงุณ ูŠุง ุจู†ูŠ ู‡ุงุดู…ู†
644
+
645
+ 162
646
+ 00:18:25,960 --> 00:18:33,100
647
+ ุงุจู† ุนุจุฏ ู…ู†ุงูู† ู†ุณุจุฉ ุญุจู‡ุง ู…ู† ุงู„ุชูˆุญูŠุฏ ุฃู†ุชู… ุฎูŠุฑ ุณุงุฏุฉ
648
+
649
+ 163
650
+ 00:18:33,100 --> 00:18:39,090
651
+ ูŠุง ุจู†ูŠ ุงู„ุนุจุงุณูŠ ูุงุจู‚ูˆุง ูˆู†ุญู† ุฎูŠุฑ ุนุจูŠุฏูŠุฅูู† ุฑูŽุถููŠุชูู…ู’
652
+
653
+ 164
654
+ 00:18:39,090 --> 00:18:43,450
655
+ ุฃูŽู…ู’ุฑู‹ุง ุฑูŽุถููŠู†ูŽ ูˆุฅูู† ุชุฃุจูŽูˆู’ ุฃูŽุจูŽูŠู’ู†ูŽ ู„ูŽูƒูู… ุฅูุจูŽุงุกู
656
+
657
+ 165
658
+ 00:18:43,450 --> 00:18:50,350
659
+ ุงู„ุฃูุณููˆู„ููŠูู‘ ู‡ู†ุง ุทุจุนุง ููŠ ุนู†ุฏู‡ ู…ุจุงู„ุบุฉ ูˆู‡ุฐู‡ ุงู„ู…ุจุงู„ุบุฉ
660
+
661
+ 166
662
+ 00:18:50,350 --> 00:18:55,170
663
+ ุชุธู‡ุฑ ููŠ ู‡ุฐู‡ ุงู„ุนู„ุงู‚ุฉ ุงู„ุจุนูŠุฏุฉ
664
+
665
+ 167
666
+ 00:18:55,170 --> 00:19:01,690
667
+ ุจูŠู† ุงู„ุฑุงุนูŠ ูˆุงู„ุฑุนูŠุฉ ุฃูˆ ุจูŠู† ุงู„ุญุงูƒู… ูˆุงู„ู…ุญูƒูˆู… ู‡ูŠ ุนู„ุงู‚ุฉ
668
+
669
+ 168
670
+ 00:19:01,690 --> 00:19:08,940
671
+ ุณุงุฏุฉ ุจุนุจูŠุฏ ูˆุนุจูŠุฏ ุจุณุงุฏุฉ ุทุจุนุง ู‡ุฐู‡ ู…ุจุงู„ุบุฉู„ุฃู† ููŠ
672
+
673
+ 169
674
+ 00:19:08,940 --> 00:19:16,180
675
+ ุงู„ู…ูู‡ูˆู… ุงู„ุฅุณู„ุงู…ูŠ ุฅู†ู…ุง ุงู„ู…ุคู…ู†ูˆู† ุฅุฎูˆุฉ ุฃูŠุถู‹ุง
676
+
677
+ 170
678
+ 00:19:16,180 --> 00:19:20,540
679
+ ู…ู† ุงู„ู…ุจู„ุบุงุช ุนู†ุฏ ุจู† ุงู„ุฌู‡ู… ููŠ ู…ุฏุญ ุงู„ู…ุชูˆูƒู„ ุฃู†ุช
680
+
681
+ 171
682
+ 00:19:20,540 --> 00:19:26,540
683
+ ู…ูŠุซุงู‚ู†ุง ุงู„ุฐูŠ ุฃุฎุฐ ุงู„ู„ู‡ ุนู„ูŠู†ุง ูˆุนู‡ุฏู‡ ุงู„ู…ุณุฆูˆู„ ู…ู† ูŠูƒู†
684
+
685
+ 172
686
+ 00:19:26,540 --> 00:19:33,690
687
+ ุดุบู„ู‡ ุจุบูŠุฑูƒ ูŠุฑุถูŠู‡ ูุฅู†ูŠ ุนู† ุดุบู„ู‡ ู…ุดุบูˆู„ุฃูŠุถู‹ุง ู‡ุฐู‡ ูŠุนู†ูŠ
688
+
689
+ 173
690
+ 00:19:33,690 --> 00:19:39,870
691
+ ู…ุจุงู„ุบุงุช ูˆู‚ุน ููŠู‡ุง ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ูˆุทุจุนู‹ุง ุงู„ุงุจู† ุงู„ุฌุงู‡ู„
692
+
693
+ 174
694
+ 00:19:39,870 --> 00:19:44,930
695
+ ู‡ู†ุง ูŠู‚ูˆู„ ุฃู†ุช ุงู„ู…ูŠุซุงู‚ ุงู„ุฐูŠ ุฃุฎุฐู‡ู‡ ุงู„ู„ู‡ ูˆุงู„ู„ู‡ ุณุจุญุงู†ู‡
696
+
697
+ 175
698
+ 00:19:44,930 --> 00:19:50,330
699
+ ูˆุชุนุงู„ู‰ ุงู„ุฐูŠ ุฃุฎุฐู‡ู‡ ู„ูŠุณ ู‡ุฐุง ุงู„ู…ูŠุซุงู‚ ูˆุฅู†ู…ุง ุงู„ู…ูŠุซุงู‚
700
+
701
+ 176
702
+ 00:19:50,330 --> 00:19:55,610
703
+ ุงู„ุฐูŠ ูŠุนุจุฏูˆู† ููŠู‡ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ููŠ ู‚ูˆู„ู‡ ูˆุฅุฐ ุฃุฎุฐ
704
+
705
+ 177
706
+ 00:19:55,610 --> 00:20:01,650
707
+ ุงู„ู„ู‡ ู…ู† ุจู†ูŠ ุขุฏู… ู…ู† ุธู‡ูˆุฑู‡ู… ุฐุฑูŠุชู‡ู…ูˆุฃุดู‡ุฏู‡ู… ุนู„ู‰ ุฃู†ูุณู‡ู…
708
+
709
+ 178
710
+ 00:20:01,650 --> 00:20:06,530
711
+ ุฃู„ุณุชูˆุง ุจุฑุจูƒู… ู‚ุงู„ูˆุง ุจู„ู‰ ุดู‡ุฏู†ุง ุฃู† ุชู‚ูˆู„ูˆุง ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉ
712
+
713
+ 179
714
+ 00:20:06,530 --> 00:20:12,170
715
+ ุฅู†ุง ูƒู†ุง ุนู† ู‡ุฐุง ุบุงูู„ูŠู† ูุงู„ู…ุซุงู‚ ู‡ูˆ ุฃู† ูŠุนุจุฏูˆุง ุงู„ู„ู‡
716
+
717
+ 180
718
+ 00:20:12,170 --> 00:20:18,890
719
+ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ู„ูƒู† ู‡ู†ุง ุงู„ุดุงุนุฑ ูŠุนู†ูŠ ุจุงู„ุบ ูˆ ุฌุนู„
720
+
721
+ 181
722
+ 00:20:18,890 --> 00:20:26,620
723
+ ุงู„ู…ุซุงู‚ ู‡ูˆ ู…ุจุงูŠุน ู…ุจุงูŠุนุฉ ุงู„ุฎู„ูŠูุฉู‡ุฐุง ููŠู…ุง ูŠุชุนู„ู‚
724
+
725
+ 182
726
+ 00:20:26,620 --> 00:20:33,740
727
+ ุจุงู„ู…ุนู†ู‰ ุฃูˆ ุงู„ู…ุนุงู†ูŠ ุงู„ุดุนุฑูŠุฉ ุฃู…ุง ุจู…ุง ูŠุชุนู„ู‚ ููŠ ุงู„ุจู†ุงุก
728
+
729
+ 183
730
+ 00:20:33,740 --> 00:20:39,020
731
+ ุงู„ูู†ูŠ ูู…ุนู„ูˆู… ุฃู† ุงู„ู‚ุตูŠุฏุฉ ุงู„ุนุฑุจูŠุฉ ูƒุงู†ุช ุชุชูƒูˆู† ู…ู†
732
+
733
+ 184
734
+ 00:20:39,020 --> 00:20:46,520
735
+ ู…ู‚ุฏู…ุฉ ูˆุงู„ู…ู‚ุฏู…ุฉ ูŠุนู†ูŠ ู…ู† ุฃู‡ู… ุฃุฌุฒุงุก ุงู„ู‚ุตูŠุฏุฉ ุชุทูˆุฑุง
736
+
737
+ 185
738
+ 00:20:46,520 --> 00:20:51,680
739
+ ูŠุนู†ูŠ ูƒุงู†ุช ู…ุฌุงู„ุง ู„ู„ุชุทูˆุฑ ูˆุงู„ุชุฌุฏูŠุฏ ู„ุฃู†ู‡ุง ู„ูŠุณุช ุฌุฒุก
740
+
741
+ 186
742
+ 00:20:51,680 --> 00:20:59,300
743
+ ุฃุตูŠู„ุง ููŠ ุงู„ู‚ุตูŠุฏุฉูู‡ูŠ ุชู…ู‡ูŠุฏ ู†ูุณูŠ ูŠุฑุจุท ุจูŠู† ุงู„ู…ุชู„ู‚ูŠ
744
+
745
+ 187
746
+ 00:20:59,300 --> 00:21:10,680
747
+ ูˆุงู„ู…ุจุฏุนุŒ ุจูŠู† ุงู„ุดุงุนุฑูŠ ูˆุงู„ู…ุณุชู…ุน ุฃูˆ ุจูŠู† ุงู„ุดุงุนุฑ
748
+
749
+ 188
750
+ 00:21:10,680 --> 00:21:16,510
751
+ ูˆุงู„ู…ู…ุฏูˆุน ุฃูˆ ุจูŠู† ุงู„ุดุงุนุฑ ูˆุงู„ู…ูˆุถูˆุนุฃูˆ ู‡ูŠ ุชู…ู‡ูŠุฏ ู„ู„ู…ูˆุถูˆุน
752
+
753
+ 189
754
+ 00:21:16,510 --> 00:21:23,570
755
+ ุงู„ุฐูŠ ุณูŠุฃุชูŠ ูุนู…ูˆู…ุง ุงู„ู…ู‚ุฏู…ุฉ ู„ูŠุณุช ุฌุฒุก ู…ู† ุงู„ู‚ุตูŠุฏุฉ
756
+
757
+ 190
758
+ 00:21:23,570 --> 00:21:29,250
759
+ ูˆู„ุฐู„ูƒ ูˆุฌุฏู†ุง ูƒุซูŠุฑุง ุฃูˆ ุจุนุถุง ู…ู† ุงู„ุดุนุฑุงุก ูŠุจุฏุฃูˆู†
760
+
761
+ 191
762
+ 00:21:29,250 --> 00:21:31,930
763
+ ู‚ุตุงุฆุฏู‡ู… ุฏูˆู† ู…ู‚ุฏู…ุงุช
764
+
765
+ 192
766
+ 00:21:34,560 --> 00:21:37,660
767
+ ูˆุญุชู‰ ููŠ ุงู„ุฌุงู‡ู„ูŠุฉ ูƒุงู† ุจุนุถ ุดุนุงุฑุงุช ุงู„ุฌุงู‡ู„ูŠุฉ ู„ู…
768
+
769
+ 193
770
+ 00:21:37,660 --> 00:21:43,620
771
+ ูŠู„ุชุฒู…ูˆุง ุจู‡ุง ููŠ ู…ุทุงู„ุน ู‚ุตุงุฆุฏู‡ู… ู„ุฐุง ูƒุงู†ุช ุงู„ู…ู‚ุฏู…ุฉ ุฃูƒุซุฑ
772
+
773
+ 194
774
+ 00:21:43,620 --> 00:21:49,840
775
+ ุนู†ุงุตุฑ ุงู„ู‚ุตูŠุฏุฉ ู‚ุงุจูˆู„ุง ู„ู„ุชุทูˆุฑ ูˆุงู„ุชุฌุฏูŠุฏ ุงู„ุดุงุนุฑ
776
+
777
+ 195
778
+ 00:21:49,840 --> 00:21:58,480
779
+ ุงู„ุนุจุงุณูŠ ุฃุจู‚ู‰ ุนู„ู‰ ู…ูุฑุถุงุช ุงู„ู…ู‚ุฏู…ุฉ ู„ูƒู†ู‡ ุฃุถุงู ุฅู„ูŠู‡ุง
780
+
781
+ 196
782
+ 00:21:58,480 --> 00:22:05,780
783
+ ุฅุถุงูุงุช ุชุชุณุน ุญูŠู†ุง ูˆ ุชุถูŠู‚ ุญูŠู†ุงูŠูˆุฏุนู‡ุง ู…ู† ุฐุฎุงุฆุฑู‡
784
+
785
+ 197
786
+ 00:22:05,780 --> 00:22:15,740
787
+ ุงู„ุนู‚ู„ูŠุฉ ูˆุงู„ุฎูŠุงู„ูŠุฉ ูˆุฃู‡ู… ุดูŠุก ููŠ ุฐู„ูƒ ุฃู†ู‡ ูŠุนู…ู‚ ุงู„ู…ุนู†ู‰
788
+
789
+ 198
790
+ 00:22:15,740 --> 00:22:21,520
791
+ ุงู„ุฅู†ุณุงู†ูŠ ููŠ ู‡ุฐู‡ ุงู„ู…ู‚ุฏู…ุฉ ูู‚ุฏ ุงุณุชุจู‚ู‰ ุนู„ู‰ ุงู„ุฃุทู„ุงู„
792
+
793
+ 199
794
+ 00:22:23,060 --> 00:22:27,520
795
+ ุงู„ูˆู‚ูˆู ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ู„ู„ุฏู„ุงู„ุฉ ุนู„ู‰ ุงู„ุญุจ ุงู„ุฃุตูŠู„ ูˆุงู„ุญู†ูŠู†
796
+
797
+ 200
798
+ 00:22:27,520 --> 00:22:32,260
799
+ ุงู„ุตุงุฏู‚ ูˆุงุณุชุจู‚ู‰ ุฑุญู„ุฉ ุงู„ุตุญุฑุงุก ุงู„ุชุนุจูŠุฉ ุนู† ุฑุญู„ุฉ
800
+
801
+ 201
802
+ 00:22:32,260 --> 00:22:38,840
803
+ ุงู„ุฅู†ุณุงู† ููŠ ุงู„ุญูŠุงุฉ ูุงู„ุจูƒุงุก ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ู„ุง ูŠุฒุงู„
804
+
805
+ 202
806
+ 00:22:38,840 --> 00:22:47,140
807
+ ูŠุชุฑู‚ุฑู‚ ููŠ ุฃุดุนุงุฑู‡ู… ู„ูƒู†ู‡ ู„ูŠุณ ูƒูˆู‚ูˆู ุงู„ุดุงุนุฑ ุงู„ุฌุงู‡ู„ูŠ
808
+
809
+ 203
810
+ 00:22:47,140 --> 00:22:52,300
811
+ ูู‚ุฏ ูƒุงู† ุงู„ุดุงุนุฑ ุงู„ุฌุงู‡ู„ูŠ ูŠู„ุฒู… ุตุงุญุจูŠู‡
812
+
813
+ 204
814
+ 00:22:54,250 --> 00:22:58,730
815
+ ุจุงู„ูˆู‚ูˆู ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ููŠ ู‚ูˆู„ ู…ุงุฆูŠ ุงู„ู‚ูŠุณ ู‚ูู‰ ู†ุจูƒูŠ ู…ู†
816
+
817
+ 205
818
+ 00:22:58,730 --> 00:23:04,870
819
+ ุฐูƒุฑุง ุญุจูŠุจ ูˆู…ู†ุฒู„ูŠ ุญุจูŠุจ ูˆู…ู†ุฒู„ูŠ ุณู‚ุท ุงู„ู„ุบุฉ ุจูŠู† ุงู„ุฏุฎูˆู„
820
+
821
+ 206
822
+ 00:23:04,870 --> 00:23:16,360
823
+ ูุญูˆู…ู„ูŠ ุฃู…ุง ุงู„ุดุงุนุฑ ุนุจุงุณูŠ ููƒุงู† ูŠุชู„ุทููˆูŠุชุฑู‚ู‚ ููŠ ุงู„ุฏุนูˆุฉ
824
+
825
+ 207
826
+ 00:23:16,360 --> 00:23:24,060
827
+ ู„ู„ุจูƒุงุก ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ุฃูˆ ุนู„ู‰ ุฑุญู„ุฉ ุงู„ู…ุญุจูˆุจุฉ ูู‚ุงู„ ู…ุณู„ู…
828
+
829
+ 208
830
+ 00:23:24,060 --> 00:23:31,120
831
+ ุงุจู† ูˆู„ูŠุฏ ๏ฟฝ๏ฟฝุฑูŠุน ุงู„ุบูˆุงู†ูŠ ู‡ู„ู‘ุง ุจูƒูŠุช ุถุนุงุฆู†ุง ูˆุญู…ูˆู„ุง
832
+
833
+ 209
834
+ 00:23:31,120 --> 00:23:40,020
835
+ ูˆุญู…ูˆู„ุง ุชุฑูƒ ุงู„ูุคุงุฏุฉูุฑุงู‚ู‡ู… ู…ู‚ุจูˆู„ุฉ ู‡ู„ู‘ุง ุจูƒูŠุช ุถุนุงุฆู†ุง
836
+
837
+ 210
838
+ 00:23:40,020 --> 00:23:46,540
839
+ ูˆุญู…ูˆู„ุฉ ุชุฑูƒ ุงู„ูุคุงุฏ ูุฑุงู‚ู‡ู… ู…ู‚ุจูˆู„ุฉ ูุฅุฐุง ุฒุฌุฑุช ุงู„ู‚ู„ุจ
840
+
841
+ 211
842
+ 00:23:46,540 --> 00:23:54,540
843
+ ุฒุงุฏ ูˆุฌูŠุจู‡ ูˆุฅุฐุง ุญุจุณุช ุงู„ุฏู…ุนุฉ ุฒุงุฏ ู‡ู…ูˆู„ุฉ ูˆุฅุฐุง ูƒุชู…ุช ุฌูˆ
844
+
845
+ 212
846
+ 00:23:54,540 --> 00:23:59,840
847
+ ุงู„ู‡ุฃุณ ุจุนุซ ุงู„ู‡ูˆู‰ ู†ูุณุง ูŠูƒูˆู† ุนู„ู‰ ุงู„ุถู…ูŠุฑ ุฏู„ูŠู„ุฉ ูˆุงู‡ุง
848
+
849
+ 213
850
+ 00:23:59,840 --> 00:24:06,320
851
+ ู„ุฃูŠุงู† ุงู„ุตุจุง ูˆุฐู†ุงู†ู‡ ู„ูˆ ูƒุงู† ุฃู…ุชุน ุจุงู„ู…ู‚ุงู… ู‚ู„ูŠู„ุงู‡ู†ุง
852
+
853
+ 214
854
+ 00:24:06,320 --> 00:24:14,240
855
+ ู‚ุงู„ ู‡ู„ ู„ู„ุชุญุทูŠุจ ูˆุงู„ุชู„ุทู ูˆุงู„ุชุฑู‚ู‚ ูˆู„ู… ูŠู‚ู ูƒู…ุง ู‚ุงู„
856
+
857
+ 215
858
+ 00:24:14,240 --> 00:24:20,740
859
+ ุงู„ุดุงุนุฑ ุงู„ุฌุงู‡ู„ ุฃูŠุถุง ู„ู… ูŠู‚ู ุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ุนู†ุฏ ู…ูƒูˆุงู†
860
+
861
+ 216
862
+ 00:24:20,740 --> 00:24:26,140
863
+ ุงู„ุฃุทู„ุงู„ ูู‚ุท ุจู„ ูˆู‚ู ุฃู…ุงู… ุงู„ู‚ุตูˆุฑ ุงู„ุญุงุถุฑุฉ ุงู„ู…ุฃู†ูˆุซุฉ
864
+
865
+ 217
866
+ 00:24:27,970 --> 00:24:31,430
867
+ ูˆุงู„ุญุงู„ุชุงู† ูˆุงู† ุงุฎุชู„ูุชุงู† ููŠ ุงู„ู…ุนู†ู‰ ูŠุนู†ูŠ ุญุงู„ุฉ ุงู„ุจูƒุงุก
868
+
869
+ 218
870
+ 00:24:31,430 --> 00:24:35,630
871
+ ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ุฃูˆ ุญุงู„ุฉ ุงู„ุจูƒุงุก ุนู†ุฏ ุงู„ู‚ุตูˆุฑ ุงู„ุญุงุถุฑุฉ
872
+
873
+ 219
874
+ 00:24:35,630 --> 00:24:43,110
875
+ ุงู„ุญุงู„ุชุงู† ู…ุฎุชู„ูุชุงู† ู„ูƒู† ุงู„ู…ุนู†ู‰ ูˆุงุญุฏ ูˆู‡ูˆ ุงู„ุชุนุจูŠุฑ ุนู†
876
+
877
+ 220
878
+ 00:24:43,110 --> 00:24:49,580
879
+ ุงู„ุญุฑู…ุงู†ูู‡ูˆ ู…ุญุฑูˆู… ุนู†ุฏ ุงู„ุจูƒุงุก ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ู„ุฃู†
880
+
881
+ 221
882
+ 00:24:49,580 --> 00:24:56,580
883
+ ุงู„ู…ุญุจูˆุจุฉ ู‚ุฏ ุบุงุฏุฑุช ุงู„ู…ูƒุงู† ููƒุงู† ู‡ู†ุงูƒ ุจุนุฏ ุฒู…ุงู†ูŠ
884
+
885
+ 222
886
+ 00:24:56,580 --> 00:25:03,400
887
+ ูˆู…ูƒุงู†ูŠ ุฃู…ุง ู‡ู†ุง ููŠ ุงู„ุจูƒุงุก ุนู†ุฏ ุงู„ู‚ุตูˆุฑ ุงู„ุญุงุถุฑ
888
+
889
+ 223
890
+ 00:25:03,400 --> 00:25:08,300
891
+ ุงู„ู…ุฃู†ูˆุซุฉ ูุงู„ู…ุญุจูˆุจุฉ ู…ูˆุฌูˆุฏุฉ ู„ู… ุชุบุงุฏุฑ ุงู„ู…ูƒุงู† ูˆู„ูƒู†
892
+
893
+ 224
894
+ 00:25:08,300 --> 00:25:11,660
895
+ ุงู„ุดุงุนุฑ ู„ุง ูŠุณุชุทูŠุน ุฃู† ูŠุตู„ ุฅู„ูŠู‡ุง
896
+
897
+ 225
898
+ 00:25:13,870 --> 00:25:20,410
899
+ ูู‡ูˆ ุจุนุฏ ู…ูƒุงู†ูŠ ูŠู…ู†ุน ุงู„ู…ูƒุงู† ู…ู† ุงู„ุงุชู‚ุงุก ุจุงู„ู…ุญุจูˆุจุฉ
900
+
901
+ 226
902
+ 00:25:20,410 --> 00:25:28,130
903
+ ูู‚ุงู„ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ู‚ุตุฑ ุนู„ูŠู‡ ุชุญูŠุฉ ูˆุณู„ุงู… ู†ุดุฑุช ุนู„ูŠู‡
904
+
905
+ 227
906
+ 00:25:28,130 --> 00:25:34,410
907
+ ุฌู…ุงู„ู‡ุง ุงู„ุฃูŠุงู… ูƒุฐู„ูƒ ูˆุฌุฏู†ุง ุงู„ุดุงุนุฑ ุนุจุงุณูŠ ูŠุณุชุจู‚ูŠ
908
+
909
+ 228
910
+ 00:25:34,410 --> 00:25:43,440
911
+ ุงู„ุฃุทู„ุงู„ ูƒู…ุง ุฐูƒุฑู†ุงูŠุณุชุจู‚ู‰ ุฃูŠุถู‹ุง ูˆุตู ุงู„ุฑุญู„ุฉ ุฑุญู„ุฉ
912
+
913
+ 229
914
+ 00:25:43,440 --> 00:25:50,370
915
+ ุงู„ุตุญุฑุงุกุจู…ุง ููŠู‡ุง ู…ู†ุญูˆุด ูˆุฃู‡ูˆุงู„ ูˆู…ุตุงุฆุจ ูˆู„ูƒู†ู‡ ูŠุนู…ู‚
916
+
917
+ 230
918
+ 00:25:50,370 --> 00:25:57,450
919
+ ุงู„ู…ุนู†ู‰ ุงู„ุฅู†ุณุงู†ูŠ ูŠุคู†ุณ ุงู„ู…ูƒุงู† ูู‚ุงู„ ู…ุณู„ู… ุงุจู† ูˆู„ูŠุฏ
920
+
921
+ 231
922
+ 00:25:57,450 --> 00:26:03,350
923
+ ูˆู…ุฌู‡ู„ ูƒุงุถุทุฑุงุฏ ุงู„ุณูŠู ู…ุญุชุฌุฒ ุนู† ุงู„ุฃุฏู„ุงุก ู…ุณุฌูˆุฑ
924
+
925
+ 232
926
+ 00:26:03,350 --> 00:26:09,370
927
+ ุงู„ุตูŠุงุฎูŠู† ุชู…ุดูŠ ุงู„ุฑูŠุงุญ ุจู‡ ุญุตุฑุฉ ู…ูˆู„ู‡ุฉ ุญูŠุฑุฉ ุชู„ูˆุซ
928
+
929
+ 233
930
+ 00:26:09,370 --> 00:26:16,810
931
+ ุจุฃุทุฑุงู ุงู„ุฌู„ุงู…ูŠู†ูู‡ุฐุง ู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ููŠ ุงู„ุตุญุฑุงุก ูˆู…ุฌู‡ู„
932
+
933
+ 234
934
+ 00:26:16,810 --> 00:26:23,830
935
+ ูˆุทุจุนุง ุงูŠู‡ ูู‚ุงู… ุงู„ูˆุตู ู…ู‚ุงู… ุงู„ุฅุณู… ุชุนู…ูŠู‚ุง ู„ู„ุญุงู„ุฉ
936
+
937
+ 235
938
+ 00:26:23,830 --> 00:26:34,170
939
+ ุงู„ุญุงู„ุฉ ุงู„ุฌู‡ู„ ูˆุนุฏู… ุงู„ุงุญุชุฏุงุก ูˆุตุนูˆุจุฉ ุงู„ุณูŠุฑ ููŠ ุงู„ุตุญุฑุงุก
940
+
941
+ 236
942
+ 00:26:34,170 --> 00:26:40,270
943
+ ูˆู…ุฌู‡ู„ ูƒุงุถุทุฑุงุฏ ุงู„ุณูŠู ูƒุญุฏ ุงู„ุณูŠู ู…ุญุชุฌุฒ ุนู† ุงู„ุฃุฏู„ุงุก
944
+
945
+ 237
946
+ 00:26:40,270 --> 00:26:46,050
947
+ ุฌุงู…ุน ุฏู„ูŠู„ุงู„ุฐูŠ ูŠู‚ูˆุฏ ุงู„ุฑุญู„ุฉ ู…ุณุฌูˆุฑ ุงู„ุตูŠุงุฎูŠู†ูŠ ูŠุนู†ูŠ
948
+
949
+ 238
950
+ 00:26:46,050 --> 00:26:57,310
951
+ ู…ู„ุชู‡ุจ ูƒุงู„ู…ูˆุงู‚ุฏ ุตูŠุงุฎูŠู† ุฌู…ุนูŠ ุตูŠุฎูˆุฏ ูˆู‡ูˆ ุงู„ู…ูˆู‚ุฏ ูˆู‡ู†ุง
952
+
953
+ 239
954
+ 00:26:57,310 --> 00:27:03,810
955
+ ุทุจุนุง ุชุธู‡ุฑ ุงู„ุฃู†ุซู†ุฉ ุชู…ุดูŠ ุงู„ุฑูŠุงุญ ุจูŠู‡ ุญุณุฑุฉ ู…ูˆู„ู‡ุฉ ุญูŠุฑุฉ
956
+
957
+ 240
958
+ 00:27:03,810 --> 00:27:09,190
959
+ ู‡ุฐู‡ ูƒู„ ู…ุนุงู†ูŠ ุฅู†ุณุงู†ูŠุฉ ูŠุนู†ูŠ ุฎู„ุนู‡ุง ุนู„ูŠู‡ ุงู„ุฑูŠุงุญ ุฃู†ุซู†ุฉ
960
+
961
+ 241
962
+ 00:27:09,190 --> 00:27:18,700
963
+ ุงู„ุฑูŠุงุญุฃูŠุถู‹ุง ู…ู† ุงู„ุฃู†ุซู†ุฉ ุฃูŠุถู‹ุง ู‚ูˆู„ ุจุดุงุฑ ููŠ ูˆุตู ุงู„ุฃุชู†
964
+
965
+ 242
966
+ 00:27:18,700 --> 00:27:24,920
967
+ ุงู„ูˆุญุดูŠุฉ ูˆู‡ูŠ ู…ู† ุงู„ู…ูุฑูˆุถุงุช ุงู„ุตุญุฑุงุก ูู‚ุงู„ ุบุฏุช ุนุงู†ุฉ ุชุดูƒ
968
+
969
+ 243
970
+ 00:27:24,920 --> 00:27:31,860
971
+ ุจุฃุจุตุงุฑู‡ุง ุงู„ุตุฏุง ุฅู„ู‰ ุงู„ุฌุฃุจ ุฅู„ุง ุฃู†ู‡ุง ู„ุง ุชุฎุงุทุจู‡ ูˆู…ุนู†ู‰
972
+
973
+ 244
974
+ 00:27:31,860 --> 00:27:36,340
975
+ ุนุงู†ุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู‚ุทูŠุน ู…ู† ุงู„ุฃุชู† ุงู„ูˆุญุดูŠุฉุชุดูƒูˆุง ุจุฃุจุตุงุฑู‡ุง
976
+
977
+ 245
978
+ 00:27:36,340 --> 00:27:42,840
979
+ ุทุจุนุง ุงู„ุดูƒูˆู‰ ุจุงู„ุจุตุฑ ู…ู† ุฃู‡ู… ูˆุฃุตุฏู‚ ู…ุนุงู†ูŠ ุงู„ุดูƒูˆู‰
980
+
981
+ 246
982
+ 00:27:42,840 --> 00:27:48,780
983
+ ู„ู…ุงุฐุงุŸ ู„ุฃู†ู‡ ุนุจู‘ุฑ ุนู† ุชุฌุฑุจุฉ ุงู„ุนุทุด ุจุฌุฒุก ู…ู† ุงู„ุชุฌุฑุจุฉ
984
+
985
+ 247
986
+ 00:27:48,780 --> 00:27:55,170
987
+ ู„ุฃู† ุงู„ู‚ุจู„ ู‡ูˆ ุงู„ุงุทู†ุงู„ูˆุญุดูŠุฉ ุฅุฐุง ุฃุตุงุจู‡ุง ุนุทุด ูŠุธู‡ุฑ ุฐู„ูƒ
988
+
989
+ 248
990
+ 00:27:55,170 --> 00:28:04,030
991
+ ููŠ ุจุตุฑู‡ุง ูู‚ุงู„ ุชุดูƒ ุจุฃุจุตุงุฑู‡ุง ุงู„ุตุฏุง ู„ู…ุงุฐุง ุงู„ุดูƒ ุจุงู„ุจุตุฑ
992
+
993
+ 249
994
+ 00:28:04,030 --> 00:28:09,650
995
+ ุฃุนู…ู‚ ููŠ ุงู„ุฏู„ุงู„ุฉ ู„ุฃู†ู‡ ูŠุนุจุฑ ุนู† ุงู„ุชุฌุฑุจุฉ ุจุฌุฒุก ู…ู†
996
+
997
+ 250
998
+ 00:28:09,650 --> 00:28:16,630
999
+ ุงู„ุชุฌุฑุจุฉุงู„ุฌุฃุจ ู‡ูˆ ู‚ุงุฆุฏ ุงู„ู‚ุทูŠุน ุฅู„ุง ุฃู†ู‡ุง ู„ุง ุชุฎุงุทุจ ูˆู„ุง
1000
+
1001
+ 251
1002
+ 00:28:16,630 --> 00:28:22,690
1003
+ ุชุณุชุนู…ู„ ุงู„ู„ุบุฉ ุฅุฐุง ุชุนู…ูŠู‚ ุงู„ู…ุนู†ู‰ ุงู„ุฅู†ุณุงู†ูŠ ุธุงู‡ุฑ ููŠ ู‡ุฐู‡
1004
+
1005
+ 252
1006
+ 00:28:22,690 --> 00:28:32,170
1007
+ ุงู„ุตูˆุฑุฉ ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ู†ุญ ุงู„ุนุจุงุณูŠ ููŠ ุงู„ุชุฌุฏูŠุฏ ููŠ ู…ู‚ุฏู…ุฉ
1008
+
1009
+ 253
1010
+ 00:28:32,170 --> 00:28:36,050
1011
+ ุงู„ู‚ุตูŠุฏุฉ ูˆู„ู„ุญุฏูŠุซ ุจู‚ูŠุฉ ูˆุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุนู„ูŠ ู†ุจูŠู†ุง
1012
+
1013
+ 254
1014
+ 00:28:36,050 --> 00:28:40,030
1015
+ ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู… ูƒุซูŠุฑุง
1016
+
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/NzfyIgoOlVI_raw.srt ADDED
@@ -0,0 +1,1016 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:04,890 --> 00:00:09,070
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:09,070 --> 00:00:14,690
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุฃุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง ูˆุจุนุฏ ู†ุชู†ุงูˆู„ ููŠ
8
+
9
+ 3
10
+ 00:00:14,690 --> 00:00:20,010
11
+ ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ูˆุถูˆุนุงุช ุฃูˆ ุงู„ุชุฌุฏูŠุฏ ููŠ ุงู„ู…ูˆุถูˆุนุงุช
12
+
13
+ 4
14
+ 00:00:20,010 --> 00:00:26,790
15
+ ุงู„ู‚ุฏูŠู…ุฉ ูˆูƒู„ู…ุฉ ุชุฌุฏูŠุฏ ุชุนู†ูŠ ุฅุถุงูุฉ ุนู†ุงุตุฑ ุฌุฏูŠุฏุฉ ุฅู„ู‰ ู…ุง
16
+
17
+ 5
18
+ 00:00:26,790 --> 00:00:33,310
19
+ ู‡ูˆ ู‚ุฏูŠู… ูŠูƒูˆู† ู‡ุฐุง ุงู„ู‚ุฏูŠู… ุตุงู„ุญุง ู„ู„ุฌุฏูŠุฏุฃูˆ ู„ู„ุนุตุฑ
20
+
21
+ 6
22
+ 00:00:33,310 --> 00:00:39,350
23
+ ุงู„ุฌุฏูŠุฏ ู…ู† ุฃู‡ู… ู‡ุฐู‡ ุงู„ู…ูˆุถูˆุนุงุช ููŠ ุงู„ุดุนุฑ ุงู„ู‚ุฏูŠู… ู‡ูˆ
24
+
25
+ 7
26
+ 00:00:39,350 --> 00:00:45,010
27
+ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ูˆูƒุงู†ุช ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ุชู…ุซู„ ุงู„ู…ู†ุธูˆู…ุฉ
28
+
29
+ 8
30
+ 00:00:45,010 --> 00:00:51,370
31
+ ุงู„ุฃุฎู„ุงู‚ูŠุฉ ุงู„ุนุฑุจูŠุฉ ูˆู„ุฐู„ูƒ ุญุธูŠุช ุจุงู‡ุชู…ุงู… ูƒุจูŠุฑ ุงู‡ุชู…ุงู…
32
+
33
+ 9
34
+ 00:00:51,370 --> 00:00:54,150
35
+ ุงู„ุดุนุฑุงุก
36
+
37
+ 10
38
+ 00:00:55,280 --> 00:00:59,720
39
+ ูˆุงู„ุนุฑุจ ุจู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ู„ุฃู†ู‡ุง ูƒุงู†ุช ุชุญูˆูŠ ุงู„ู…ู†ุธูˆู…ุฉ
40
+
41
+ 11
42
+ 00:00:59,720 --> 00:01:06,140
43
+ ุงู„ุฃุฎู„ุงู‚ูŠุฉ ุงู„ุนุฑุจูŠุฉ ุฅุฐุง ูƒุงู† ุงู„ู…ู…ุฏูˆุญูŠู…ุชุฏุญ ุจุฃู†ู‡ ูŠุญุงูุธ
44
+
45
+ 12
46
+ 00:01:06,140 --> 00:01:10,880
47
+ ุนู„ู‰ ู‡ุฐู‡ ุงู„ู…ู†ุธูˆู…ุฉ ุฃูˆ ุฃู† ู‡ุฐู‡ ุงู„ู…ู†ุธูˆู…ุฉ ู‚ุฏ ุชู…ุซู„ุช ููŠ
48
+
49
+ 13
50
+ 00:01:10,880 --> 00:01:21,420
51
+ ู‡ุฐุง ุงู„ู…ู…ุฏูˆุญ ุฃุฌู…ู„ ุชู…ุซู„ ูƒุงู†ุช ุงู„ู…ุฏุญุฉ ุฃูˆ ู‚ุตุฏ ุงู„ู…ุฏุญ
52
+
53
+ 14
54
+ 00:01:21,420 --> 00:01:29,380
55
+ ุชุจุนุด ููŠ ุงู„ู…ุชู„ู‚ูŠ ูˆุงู„ู…ุฌุชู…ุน ุงู„ุนุฑุจูŠ ุฃุฌู…ู„ ุงู„ู…ุนุงู†ูŠ ูˆุฃู†ุจู„
56
+
57
+ 15
58
+ 00:01:29,380 --> 00:01:34,790
59
+ ุงู„ุฃุฎู„ุงู‚ุงู„ุฌุฏูŠุฏ ุฃูˆ ุงู„ุนู†ุงูˆุท ุงู„ุฌุฏูŠุฏุฉ ุงู„ุชูŠ ุฃุถูŠูุช ุฅู„ู‰
60
+
61
+ 16
62
+ 00:01:34,790 --> 00:01:43,580
63
+ ู‡ุฐู‡ ุงู„ู‚ุตูŠุฏุฉ ู‡ูˆ ุฃู† ู…ุนุงู†ูŠ ุงู„ู…ุฏุนูŠ ุชู„ุงุฆู… ุงู„ู…ุจุฏูˆุนุฉู„ู…ุนู†ู‰
64
+
65
+ 17
66
+ 00:01:43,580 --> 00:01:50,120
67
+ ุขุฎุฑ ุฃู† ุงู„ุดุงุนุฑ ุนุจุงุณูŠ ู„ุฃู… ุจูŠู† ุงู„ู…ู…ุฏูˆุญ ูˆู…ุนุงู†ูŠ ุงู„ู…ุฏุญ
68
+
69
+ 18
70
+ 00:01:50,120 --> 00:01:56,760
71
+ ูุฅุฐุง ูƒุงู† ุงู„ู…ู…ุฏูˆุญ ุฎู„ูŠูุฉ ู…ุฏุญ ุจุงู„ุชู‚ูˆู‰ ูˆู…ุฏุญ ุจุงู„ุนูุฉ
72
+
73
+ 19
74
+ 00:01:56,760 --> 00:02:03,080
75
+ ูˆุงู„ุญูŠุงุก ูˆุงู„ุนุฏู„ ูˆุฃู†ู‡ ูŠุญุงูุธ ุนู„ู‰ ุงู„ุณู†ุฉ ูˆูŠู‚ู…ุน ุงู„ุจุฏุนุฉ
76
+
77
+ 20
78
+ 00:02:03,080 --> 00:02:09,790
79
+ ูƒู…ุง ู‚ุงู„ ู…ุฑูˆุงู† ุงุจู† ุฃุจูŠ ุญูุตุฉ ูŠู…ุฏุญ ุงู„ู…ู‡ุฏูŠุฃุญูŠู‰ ุฃู…ูŠุฑ
80
+
81
+ 21
82
+ 00:02:09,790 --> 00:02:16,890
83
+ ุงู„ู…ุคู…ู†ูŠู† ู…ุญู…ุฏ ุตู†ู† ุงู„ู†ุจูŠ ุญุฑุงู…ู‡ุง ูˆุญู„ุงู„ู‡ุง ูˆูŠู‚ูˆู„
84
+
85
+ 22
86
+ 00:02:16,890 --> 00:02:24,410
87
+ ุงู„ุญุณูŠู† ุงุจู† ุงุจู† ู…ุทูŠุฑ ุงู„ุฃุณุฏูŠ ูŠุนููˆ ูˆูŠุณุชุญูŠ ุฅุฐุง ูƒุงู†
88
+
89
+ 23
90
+ 00:02:24,410 --> 00:02:34,100
91
+ ุฎุงู„ูŠุง ูƒู…ุง ุนููˆ ูˆุงุณุชุญูŠุง ุจุญูŠุซ ุฑู‚ูŠุจู‡ุจู…ุนู†ู‰ ุฃู†ู‡ ุนููŠู
92
+
93
+ 24
94
+ 00:02:34,100 --> 00:02:41,620
95
+ ูˆุญูŠูŠ ููŠ ุญูŠุงุชู‡ ุงู„ุณุฑ ูˆุงู„ุนู„ู† ูŠุนู†ูŠ ุตุงุฏู‚ ููŠ ุนูุชู‡ ูˆุตุงุฏู‚
96
+
97
+ 25
98
+ 00:02:41,620 --> 00:02:49,960
99
+ ููŠ ุญูŠุงุกู‡ ูู‡ูˆ ูŠุทุงุจู‚ ุจูŠู† ุงู„ุณุฑ ูˆุงู„ุนู„ู† ุฃู…ุง ุฃุจูˆ ุงู„ุนุชุงู‡ุฉ
100
+
101
+ 26
102
+ 00:02:49,960 --> 00:02:57,260
103
+ ูู‚ุฏ ูˆุธู ู…ุนุงู†ูŠ ุงู„ุฐู‡ุฏูŠ ููŠุชุนู…ูŠู‚ ู…ุนุงู†ูŠ ุงู„ู…ุฏุญ ูู‚ุงู„ ู‚ุงู„
104
+
105
+ 27
106
+ 00:02:57,260 --> 00:03:07,140
107
+ ููŠ ู…ุฏุญูŠ ุงู„ุฑุดูŠุฏ ูุฑุงุนู† ูŠุฑุงุนูŠ ุงู„ู„ู‡ ููŠ ุญูุธ ุฃู…ุฉ ูŠุฏุงูุน
108
+
109
+ 28
110
+ 00:03:07,140 --> 00:03:14,000
111
+ ุนู†ู‡ุง ุงู„ุดุฑ ุบูŠุฑ ุฑู‚ูˆุฏูŠุชุฌุงูู‰ ุนู† ุงู„ุฏู†ูŠุง ูˆุฃูŠู‚ู† ุฃู†ู‡ุง
112
+
113
+ 29
114
+ 00:03:14,000 --> 00:03:20,880
115
+ ู…ูุงุฑู‚ุฉ ู„ูŠุณุช ุจุฏุงุฑ ุฎู„ูˆุฏู‡ ูู†ู„ุงุญุธ ููŠ ุงู„ุจูŠุช ุงู„ุฃูˆู„ ุฃู†
116
+
117
+ 30
118
+ 00:03:20,880 --> 00:03:29,400
119
+ ุงู„ุฎู„ูŠูุฉ ูŠุฑุงุนูŠ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ููŠ ุงู„ู…ุญุงูุธุฉ ุนู„ู‰
120
+
121
+ 31
122
+ 00:03:29,400 --> 00:03:36,110
123
+ ุซูˆุงุจุฉ ุงู„ุฃู…ุฉ ูˆุนู„ู‰ ู…ูƒุชุณุจุงุชู‡ุงูˆุฃู†ู‡ ูŠุฏุงูุน ุนู† ูƒุฑุงู…ุชู‡ุง
124
+
125
+ 32
126
+ 00:03:36,110 --> 00:03:43,050
127
+ ูˆูŠุฏูุน ุนู†ู‡ุง ุงู„ุดุฑ ุจุฅุฑุงุฏุฉ ุตุงุฏู‚ุฉ ุบูŠุฑ ู…ุชู‚ุงุนุณุฉ ููŠ ุงู„ุจูŠุช
128
+
129
+ 33
130
+ 00:03:43,050 --> 00:03:47,370
131
+ ุงู„ุซุงู†ูŠ ู†ุฌุฏ ู…ุนุงู†ูŠ ุงู„ุฒู‡ุฏ ุชุฌุงูู‰ ุนู† ุงู„ุฏู†ูŠุง ู‡ู†ุง ุชูˆุธูŠู
132
+
133
+ 34
134
+ 00:03:47,370 --> 00:03:55,270
135
+ ู„ู…ุนู†ู‰ ุงู„ุฒู‡ุฏ ูุงู„ุฒู‡ุฏ ูŠู‚ูˆู… ุนู„ู‰ ุชู‡ุฑูŠุจ ุญุจ ุงู„ุฅู†ุณุงู† ููŠ
136
+
137
+ 35
138
+ 00:03:55,270 --> 00:04:02,270
139
+ ุงู„ุจู‚ุงุก ูˆุชู‡ุฑูŠุจ ุงู„ุฅู†ุณุงู† ููŠ ุญุจ ุงู„ุชู…ู„ูƒ
140
+
141
+ 36
142
+ 00:04:04,510 --> 00:04:10,370
143
+ ูˆุฃู‡ู… ุดูŠุก ููŠ ุงู„ุฐู‡ุฏ ู‡ูˆ ุฃู† ูŠุจุชุนุฏ ุงู„ุฅู†ุณุงู† ุนู† ู…ู„ุฐุงุช
144
+
145
+ 37
146
+ 00:04:10,370 --> 00:04:18,070
147
+ ุงู„ุฏู†ูŠุง ูˆุนู† ุงู„ูŠู‚ูŠู† ุจุงู„ุจู‚ุงุก ููŠู‡ุง ูƒู…ุง ู‚ุงู„ ุตู„ู‰ ุงู„ู„ู‡
148
+
149
+ 38
150
+ 00:04:18,070 --> 00:04:23,750
151
+ ุนู„ูŠู‡ ูˆุณู„ู… ุงุฐู‡ุฏ ููŠ ุงู„ุฏู†ูŠุง ูŠุญุจูƒ ุงู„ู„ู‡ ูˆุงุฐู‡ุฏ ููŠ ู…ู‡ูŠุฏ
152
+
153
+ 39
154
+ 00:04:23,750 --> 00:04:28,810
155
+ ุงู„ู†ุงุณ ูŠุญุจูƒ ุงู„ู†ุงุณ ุชุฌุงูู‰ ุนู† ุงู„ุฏู†ูŠุง ูˆุฃูŠู‚ู† ุฃู†ู‡ุง ู…ูุงุฑู‚ุฉ
156
+
157
+ 40
158
+ 00:04:28,810 --> 00:04:35,580
159
+ ู„ูŠุณุช ุจุฏุงุฑู‰ ุฎู„ูˆุฏู‰ูู‡ู†ุง ุชุญุทูŠู… ุฃูˆ ุชู‡ุฐูŠุจ ู„ู„ุฑุบุจุฉ
160
+
161
+ 41
162
+ 00:04:35,580 --> 00:04:41,400
163
+ ุงู„ุฅู†ุณุงู†ูŠุฉ ููŠ ุญุจ ุงู„ุชู…ู„ูƒ ูˆุญุจ ุงู„ุจู‚ุงุกู„ุง ุดูƒ ุฃู† ุฃุจูˆ
164
+
165
+ 42
166
+ 00:04:41,400 --> 00:04:44,820
167
+ ุงู„ุนุชุงู‡ูŠ ูˆ๏ฟฝ๏ฟฝู†ุทู„ุงู‚ุง ู…ู† ุซู‚ุงูุชู‡ ุงู„ุฐู‡ุจูŠุฉ ูƒุงู† ูŠูˆุฏ ุฃู† ุชูƒูˆู†
168
+
169
+ 43
170
+ 00:04:44,820 --> 00:04:49,780
171
+ ู‡ุฐู‡ ุงู„ู…ุนุงู†ูŠ ููŠ ุดุฎุตูŠุฉ ุงู„ุฑุดูŠุฏ ูˆุทุจุนุง ู‡ุฐู‡ ูŠู‚ูˆุฏู†ุง ุฅู„ู‰
172
+
173
+ 44
174
+ 00:04:49,780 --> 00:04:54,600
175
+ ุงู„ู‚ูˆู„ ู„ุฃู† ู‡ุฐู‡ ุงู„ู…ุนุงู†ูŠ ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ููŠ
176
+
177
+ 45
178
+ 00:04:54,600 --> 00:05:00,180
179
+ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ุฅู…ุง ุฃู† ุชูƒูˆู† ุตูุงุช ููŠ ุงู„ู…ู…ุฏูˆุญ ุญู‚ูŠู‚ุฉ ุฃูˆ
180
+
181
+ 46
182
+ 00:05:00,180 --> 00:05:10,600
183
+ ู…ุทุงู„ุจ ูŠูˆุฏ ุงู„ุดุงุนุฑ ุฃู† ุชูƒูˆู† ููŠ ุงู„ู…ู…ุฏูˆุญ ู‚ุงู„ ุงู„ู†ู…ุฑูŠูŠู…ุฏุญ
184
+
185
+ 47
186
+ 00:05:10,600 --> 00:05:16,400
187
+ ุญุฑูˆู† ุฑุดูŠุฏ ุจูˆุฑูƒ ุญุฑูˆู† ู…ู† ุฅู…ุงู… ุจุทุงุนุฉ ุงู„ู„ู‡ ุฐุงุช ุงู„ุตุงู…ูŠ
188
+
189
+ 48
190
+ 00:05:16,400 --> 00:05:24,680
191
+ ู„ู‡ ุฅู„ู‰ ุฐูŠ ุงู„ุฌู„ุงู„ ู‚ุฑุจู‡ ู„ูŠุณุช ู„ุนุฏู„ ูˆู„ุง ู„ุฅู…ุงู…ูŠ ุฃูŠ ุฃู†
192
+
193
+ 49
194
+ 00:05:24,680 --> 00:05:30,180
195
+ ุงู„ู…ู…ุฏูˆุญ ูˆู‡ูˆ ุงู„ุฎู„ูŠูุฉ ุงู„ุนุจุงุณูŠ ู„ู‡ ุนู„ุงู‚ุฉ ูˆุตู„ุฉ ุจุงู„ู„ู‡
196
+
197
+ 50
198
+ 00:05:30,180 --> 00:05:35,180
199
+ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ู„ูŠุณุช ู„ู…ุซูŠู„ ู„ู‡ ูˆู„ุง ู„ุฅู…ุงู… ู‚ุจู„ู‡
200
+
201
+ 51
202
+ 00:05:37,450 --> 00:05:42,590
203
+ ูู‡ุฐู‡ ุงู„ู…ุนุงู†ูŠ ูƒู…ุง ู†ุฑุง ุชู„ุงุฆู… ุงู„ู…ู…ุฏูˆุญ ุฅุฐุง ูƒุงู† ุฎู„ูŠูุฉ
204
+
205
+ 52
206
+ 00:05:42,590 --> 00:05:49,690
207
+ ุฃู…ุง ุฅุฐุง ูƒุงู† ู‚ุงุฆุฏุง ู„ุฌูŠุด ูุฅู†ู‡ ูŠู…ุฏุญ ุจุงู„ุดุฌุงุนุฉ ูˆุงู„ุจุทูˆู„ุฉ
208
+
209
+ 53
210
+ 00:05:50,810 --> 00:05:56,010
211
+ ูˆู‚ุฏ ุฑุณู… ูˆ ุฃุจู„ุน ุดุนุฑุงุก ููŠ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ููŠ ู…ุฏุงุฆุน
212
+
213
+ 54
214
+ 00:05:56,010 --> 00:06:04,170
215
+ ุงู„ุจุทูˆู„ุฉ ูˆุงู„ุดุฌุงุนุฉ ูˆุฑุณู…ูˆุง ุฃุฌู…ู„ ุตูˆุฑ ู„ู„ุจุทู„ ุนู„ู‰ ู†ุญูˆ ู…ุง
216
+
217
+ 55
218
+ 00:06:04,170 --> 00:06:14,190
219
+ ู†ุฑู‰ ุนู†ุฏ ุฃุจูŠ ุชู…ุงู… ุฃูŠุถุง ู†ุฌุฏ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ู…ุดูŠุฏ ุจูŠู‡
220
+
221
+ 56
222
+ 00:06:14,190 --> 00:06:21,000
223
+ ุงู„ุฑุดูŠุฏ ุญูŠู† ูุชุญ ู‡ุฑุงู‚ู„ู‰ ููŠ ุขุณูŠุง ุงู„ุตุบุฑู‰ุฃู…ุง ุฅุฐุง ูƒุงู†
224
+
225
+ 57
226
+ 00:06:21,000 --> 00:06:26,140
227
+ ู‚ุงุฆุฏุง ู„ุฌูŠุด ูุฅู†ู†ุง ู†ุฌุฏ ุฃู† ุงู„ุดุนุฑุงุก ูŠู…ุฏุญูˆู† ู‡ุฐุง ุงู„ู‚ุงุฆุฏ
228
+
229
+ 58
230
+ 00:06:26,140 --> 00:06:33,940
231
+ ุจุงู„ุดุฌุงุนุฉ ูˆุงู„ุจุทูˆู„ุฉ ูˆู†ุฌุฏ ุฃู† ุงู„ุดุนุฑุงุก ูŠุชุจุงุฑูˆู† ููŠ ุฑุณู…
232
+
233
+ 59
234
+ 00:06:33,940 --> 00:06:40,790
235
+ ุฃุฌู…ู„ ุงู„ุตูˆุฑ ู„ู‡ุฐุง ุงู„ุจุทู„ูˆุฃุฌู…ู„ ุงู„ู…ุนุงู†ูŠ ู„ู…ูู‡ูˆู… ุงู„ุจุทูˆู„ุฉ
236
+
237
+ 60
238
+ 00:06:40,790 --> 00:06:47,750
239
+ ูู…ุซู„ุง ู†ุฌุฏ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ูŠุดูŠุฏ ุจุจุทูˆู„ุฉ ุงู„ุฑุดูŠุฏ ุญูŠู† ูุชุญ
240
+
241
+ 61
242
+ 00:06:47,750 --> 00:06:52,710
243
+ ู‡ุฑุงู‚ู„ู‡ ููŠ ุฃูุณ ุงู„ุณูˆุฑุฉ ูˆุงู†ุชุตุงุฑู‡ ุนู„ู‰ ุฌูŠุด ู†ู‚ููˆุฑ
244
+
245
+ 62
246
+ 00:06:52,710 --> 00:06:56,010
247
+ ุงู…ุจุฑุงุทูˆุฑ
248
+
249
+ 63
250
+ 00:06:56,010 --> 00:07:02,590
251
+ ุจูŠุฒุงู†ุชุงูˆู‡ู†ุงูƒ ู…ู‚ูˆู„ุฉ ู…ุดู‡ูˆุฑุฉ ููŠ ุงู„ุชุงุฑูŠุฎ ู…ู† ู‡ุงุฑูˆู†
252
+
253
+ 64
254
+ 00:07:02,590 --> 00:07:09,690
255
+ ุงู„ุฑุดูŠุฏ ุฅู„ู‰ ู†ู‚ููˆุฑ ูƒู„ุจ ุงู„ุฑูˆู… ุงู„ุฌูˆุงุจ ูƒู…ุง ุชุฑู‰ ุงู„ู„ู‡ ูƒู…ุง
256
+
257
+ 65
258
+ 00:07:09,690 --> 00:07:18,150
259
+ ุชุณู…ุน ูู‚ุงู„ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ู†ุดูŠุฏ ุจุจุทูˆู„ุฉ ุงู„ุฑุดูŠุฏ ูˆู„ูŠู‡ู†ูƒ
260
+
261
+ 66
262
+ 00:07:18,150 --> 00:07:23,710
263
+ ุงู„ูุชุญ ูˆุงู„ุฃูŠุงู… ู…ู‚ุจู„ุฉ ุฅู„ูŠูƒ ุจุงู„ู†ุตุฑ ู…ุนู‚ูˆุฏุฉ ู†ูˆุงุตูŠู‡ุง
264
+
265
+ 67
266
+ 00:07:23,710 --> 00:07:29,680
267
+ ุฃู…ุณู‰ ุชุฑู‚ู„ุฉ ุชู‡ูˆูŠ ู…ู† ุฌูˆุงู†ุจู‡ุงูˆู†ุงุตุฑ ุงู„ู„ู‡ ูˆุงู„ุฅุณู„ุงู…
268
+
269
+ 68
270
+ 00:07:29,680 --> 00:07:36,880
271
+ ูŠุฑู…ูŠู‡ุง ู…ู„ูƒุชู‡ุง ูˆู‚ุชู„ุช ุงู„ู†ุงูƒุซูŠู† ุจู‡ุง ุจู†ุตุฑ ู…ู† ูŠู…ู„ูƒ
272
+
273
+ 69
274
+ 00:07:36,880 --> 00:07:42,880
275
+ ุงู„ุฏู†ูŠุง ูˆู…ุง ููŠู‡ุง ู…ุง ุฑูˆุนูŠ ุงู„ุฏูŠู† ูˆุงู„ุฏู†ูŠุง ุนู„ู‰ ู‚ุฏู… ุจู…ุซู„
276
+
277
+ 70
278
+ 00:07:42,880 --> 00:07:50,580
279
+ ู‡ุงุฑูˆู†ุง ุฑุงุนูŠู‡ ูˆุฑุงุนูŠู‡ุง ู‡ู†ุง ุทุจุนุง ู†ุฑู‰ ุตูˆุฑุฉ ุงู„ุจุทู„ ู‚ุฏ
280
+
281
+ 71
282
+ 00:07:50,580 --> 00:07:57,320
283
+ ุชุฌู„ุช ููŠ ู‡ุฐู‡ ุงู„ุฃุจูŠุงุช ูˆุฃูŠุถุง ู…ุนุงู†ูŠ ุงู„ุดุฌุงุนุฉู…ู† ุญูŠุซ
284
+
285
+ 72
286
+ 00:07:57,320 --> 00:08:07,980
287
+ ุงู„ุฅู‚ุฏุงู… ูˆู…ู† ุญูŠุซ ุงู„ุญุงู‚ ุงู„ุฃุฐู‰ ุจู‡ุคู„ุงุก ุงู„ู…ุชู…ู„ุฏูŠู† ุฃูŠุถู‹ุง
288
+
289
+ 73
290
+ 00:08:07,980 --> 00:08:15,460
291
+ ู…ู† ุฃุฌู…ู„ ุงู„ู‚ุตุงุฆุฏ ุงู„ุชูŠ ุฐููƒุฑุช ููŠ ุตูˆุฑ ุงู„ุจุทู„ ูˆู…ุนุงู†ูŠ
292
+
293
+ 74
294
+ 00:08:15,460 --> 00:08:20,900
295
+ ุงู„ุจุทูˆู„ุฉ ู‚ุตุงุฆุฏ ุฃุจูŠ ุชู…ุงู… ููŠ ู…ุฏุญูŠ ุงู„ู…ุนุชุตู… ุญูŠู† ูุชุญ
296
+
297
+ 75
298
+ 00:08:20,900 --> 00:08:26,710
299
+ ุนู…ูˆุฑูŠุฉุญูŠุซ ุจุฏุช ูƒุฃู†ู‡ุง ู…ู„ุญู…ุฉ ูƒู…ุง ุณูŠุฃุชูŠ ุงู„ุญุฏูŠุซ ุนู†ู‡ุง
300
+
301
+ 76
302
+ 00:08:26,710 --> 00:08:33,210
303
+ ุนู†ุฏู…ุง ู†ุชู†ุงูˆู„ ุฃุจุง ุชู…ุงู… ูƒุนู„ู… ู…ู† ุฃุนู„ุงู… ุงู„ุดุนุฑุงุก ููŠ ู‡ุฐุง
304
+
305
+ 77
306
+ 00:08:33,210 --> 00:08:41,030
307
+ ุงู„ุนุตุฑ ุฃูŠุถุง ู‡ู†ุงูƒ ู…ู‚ุทูˆุนุฉ ู‚ุตูŠุฑุฉ ู„ู‚ุตูŠุฏุฉ ุทูˆูŠู„ุฉ ู„ุนู„ูŠ ุงุจู†
308
+
309
+ 78
310
+ 00:08:41,030 --> 00:08:49,920
311
+ ุฌุจู„ุฉุงู„ู…ู„ู‚ุจ ุจุงู„ุนูƒูˆูƒ ู…ุฏุญ ููŠู‡ุง ุจุทูˆู„ุฉ ุฃุจูŠ ุฏู„ูู† ุงู„ุนุฌู„ูŠ
312
+
313
+ 79
314
+ 00:08:49,920 --> 00:08:55,820
315
+ ู‚ุงุฆุฏ ุงู„ู…ุฃู…ูˆู† ูู‚ุงู„ ุงู„ู…ู†ุงูŠุง ููŠ ู…ู‚ุงู†ุจู‡ ูˆุงู„ุนุทุงูŠุง ููŠ
316
+
317
+ 80
318
+ 00:08:55,820 --> 00:09:02,960
319
+ ุฐุฑู‰ ุญุฌุฑู‡ ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ู„ู‡ ูƒุตูŠุงุญ ุงู„ุญุดุฑ ููŠ ุฃู…ุฑู‡ ู‚ุชู‡
320
+
321
+ 81
322
+ 00:09:02,960 --> 00:09:09,880
323
+ ูˆุงู„ู…ูˆุช ู…ู‚ุชู…ู† ููŠ ู…ุฐุงูƒูŠู‡ ูˆู…ุดุชุฌุฑู‡ูุฑู…ุช ูŠู„ูˆู‡ ู…ู†ู‡ ูŠุฏ
324
+
325
+ 82
326
+ 00:09:09,880 --> 00:09:17,160
327
+ ุทูˆู‘ุช ุงู„ู…ู†ุดูˆุฑุฉ ู…ู† ุจุทุฑู‡ ุทุจุนุง ู‡ู†ุงูƒ ูŠุนู†ูŠ ุนุจุงุฑุฉ ู†ู‚ุฑุฑู‡ุง
328
+
329
+ 83
330
+ 00:09:17,160 --> 00:09:23,280
331
+ ุฏุงุฆู…ุง ุฃู† ุงู„ุจุทู„ ูŠูƒูˆู† ๏ฟฝ๏ฟฝุทู„ุง ุนู†ุฏู…ุง ูŠูƒูˆู† ุตุงุฏู‚ุง ููŠ
332
+
333
+ 84
334
+ 00:09:23,280 --> 00:09:29,410
335
+ ุงู„ู„ู‚ุงุกูˆู‚ุฏ ุนุจุฑ ุงู„ุดุนุฑุงุก ุนู† ุตุฏู‚ ุงู„ู„ู‚ุงุก ูˆุฅุฑุงุฏุฉ ุงู„ู‚ุชุงู„
336
+
337
+ 85
338
+ 00:09:29,410 --> 00:09:37,390
339
+ ุจุฃู„ูุงุธ ูƒุซูŠุฑุฉ ู‡ู†ุง ููŠ ู‡ุฐุง ุงู„ุจูŠุช ุนุจุฑ ุนู†ู‡ ุนู† ุงู„ุฅุฑุงุฏุฉ
340
+
341
+ 86
342
+ 00:09:37,390 --> 00:09:44,830
343
+ ุงู„ุตุงุฏู‚ุฉ ุจุงู„ุฎูŠู„ ูุงู„ุฎูŠู„ ุชุนุจุฑ ุนู† ุงู„ุฅุฑุงุฏุฉ ุงู„ุตุงุฏู‚ุฉ ู„ุฃู†
344
+
345
+ 87
346
+ 00:09:44,830 --> 00:09:51,680
347
+ ุงู„ุฎูŠู„ ู‚ุจู„ ุงู„ุฅู†ุทู„ุงู‚ ุชุญู…ุญู… ูˆุชุชุญุฑูƒูˆู‡ุฐุง ุชุนุจูŠุฑ ุนู†
348
+
349
+ 88
350
+ 00:09:51,680 --> 00:09:58,820
351
+ ุฅุฑุงุฏุชู‡ุง ู„ุงู†ุทู„ุงู‚ ูุฅุฐุง ุงู†ุทู„ู‚ุชุŒ ุงู†ุทู„ู‚ุช ุจู‚ูˆุฉ ูˆู‡ุฐุง
352
+
353
+ 89
354
+ 00:09:58,820 --> 00:10:06,790
355
+ ุชุนุจูŠุฑ ุนู† ุฅุฑุงุฏุชู‡ุง ู„ู„ู‚ุชุงู„ ุฃูˆ ุงู„ุตุจุงู‚ูˆุงู„ุดุนุฑ ุงุณุชุฎุฏู… ู‡ู†ุง
356
+
357
+ 90
358
+ 00:10:06,790 --> 00:10:12,170
359
+ ุงู„ุฎูŠู„ ู„ู„ุชุนุจูŠุฑ ุนู† ุงู„ุฅุฑุงุฏุฉ ุงู„ุตุงุฏู‚ุฉ ุนู†ุฏ ุงู„ู…ู…ุฏูˆุญ ูˆู‚ุงู„
360
+
361
+ 91
362
+ 00:10:12,170 --> 00:10:19,390
363
+ ุงู„ู…ู†ุงูŠุง ููŠ ู…ู‚ุงู†ุจู‡ ู…ู‚ุงู†ุจ ุฌู…ุน ู…ู‚ู†ุจ ูˆุงู„ู…ู‚ู†ุจ ู‡ูˆ ุฌู…ุงุนุฉ
364
+
365
+ 92
366
+ 00:10:19,390 --> 00:10:26,750
367
+ ุงู„ุฎูŠู„ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฎูŠูˆู„ ููŠ ุงู„ู…ุนุฑูƒุฉ ุญูŠุซ ุชู‚ุณู… ุงู„ุฎูŠูˆู„
368
+
369
+ 93
370
+ 00:10:26,750 --> 00:10:32,250
371
+ ุฅู„ู‰ ู…ุฌู…ูˆุนุงุช ูƒู„ ู…ุฌู…ูˆุนุฉ ูŠุทู„ู‚ ุนู„ูŠู‡ุง ู…ู‚ู†ุจ ูˆุงู„ุฌู…ุน ู…ู‚ุงู†ุจ
372
+
373
+ 94
374
+ 00:10:33,980 --> 00:10:41,780
375
+ ุงู„ู…ุนู†ู‰ ุงู„ุซุงู†ูŠ ู„ู„ุดุทุฑ ุงู„ุซุงู†ูŠ ู‡ูˆ ูˆุงู„ุนุทุงูŠุง ููŠ ุฐุฑุน ุญุฌุฑู‡
376
+
377
+ 95
378
+ 00:10:41,780 --> 00:10:49,440
379
+ ูŠุนู†ูŠ ุงู„ุนุทุงูŠุง ุฌู…ุน ุนุทูŠุฉ ูˆู‡ุฐู‡ ุงู„ูƒู„ู…ุฉ ู…ู† ุฃูˆุงุฆู„ ุงู„ูƒู„ู…ุงุช
380
+
381
+ 96
382
+ 00:10:49,440 --> 00:10:52,700
383
+ ุงู„ุนุงู…ูŠุฉ ุงู„ุชูŠ ููุตุญุช
384
+
385
+ 97
386
+ 00:10:55,730 --> 00:11:01,150
387
+ ูˆุงู„ู…ู‚ุตูˆุฏ ู‡ู†ุง ุฃู† ุงู„ุนุทุงูŠุฉ ููŠ ุณุงุญุฉ ุงู„ุจูŠุช ุฃูˆ ููŠ ูู†ุงุก
388
+
389
+ 98
390
+ 00:11:01,150 --> 00:11:07,690
391
+ ุงู„ุจูŠุช ูŠุนู†ูŠ ู…ุนุฏุฉ ู„ู„ุฅุนุทุงุก ูˆุงู„ู…ุนู†ู‰ ุฃู† ุงู„ู…ู…ุฏูˆุญ ูŠุนุทูŠ
392
+
393
+ 99
394
+ 00:11:07,690 --> 00:11:15,910
395
+ ุจู„ุง ู…ุทู„ู† ูˆู‡ุฐุง ู…ู† ุฌู…ุงู„ ุงู„ูƒุฑู… ุงู„ูƒุฑู… ุงู„ุฎุงู„ุต ุฃู† ูŠุนุทูŠู‡
396
+
397
+ 100
398
+ 00:11:15,910 --> 00:11:23,510
399
+ ุจู„ุง ู…ุทู„ู†ูˆูƒู…ุง ู‚ู„ู†ุง ููŠ ุงู„ุดุฌุงุนุฉุŒ ุงู„ุดุฌุงุนุฉ ุชูƒูˆู† ุฌู…ูŠู„ุฉ
400
+
401
+ 101
402
+ 00:11:23,510 --> 00:11:31,310
403
+ ุฅุฐุง ูƒุงู†ุช ู†ุงุจุน ู…ู† ุฅุฑุงุฏุฉ ุตุงุฏู‚ุฉ ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ุฑู‡ ูƒุตูŠุงุญ
404
+
405
+ 102
406
+ 00:11:31,310 --> 00:11:40,160
407
+ ุงู„ุญุดุฑ ููŠ ุฃู…ุฑู‡ ูˆู…ู† ุนู„ุงู…ุฉ ุฅุฑุงุฏุฉ ุตุงุฏู‚ุฉุฅู†ู‡ ุฃุนุฏู‰ ุนูุฏู‘ุฉ
408
+
409
+ 103
410
+ 00:11:40,160 --> 00:11:49,220
411
+ ู„ู„ู‚ุชุงู„ ูˆุฌู‡ุฒ ุฌูŠุดุง ูƒุซูŠูุง ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ู„ู‡ ุตูˆุงู‡ู„ ุฌู…ุน
412
+
413
+ 104
414
+ 00:11:49,220 --> 00:11:56,360
415
+ ุงู„ุตุงู‡ู„ ูˆู‡ูˆ ุงู„ุฎูŠู„ ุจู…ุนู†ู‰ ุฃู†ู‡ ุฃุนุฏู‰ ุฌูŠุดุง ูƒุจูŠุฑุง ู…ู†
416
+
417
+ 105
418
+ 00:11:56,360 --> 00:12:03,210
419
+ ุงู„ูุฑุณุงู†ูˆุทุจุนุง ุงู„ูุฑุณ ุฃูˆ ุงู„ุฎูŠู„ ูŠุนุจุฑ ุนู† ุฅุฑุงุฏุฉ ุงู„ู‚ุชุงู„
420
+
421
+ 106
422
+ 00:12:03,210 --> 00:12:13,190
423
+ ู„ุฃู† ุงู„ุฎูŠู„ุฉ ุชุณุชุนู…ู„ ููŠ ุงู„ู‡ุฌูˆู… ุนู„ู‰ ุงู„ุฃุนุฏุงุก ูˆู…ู†
424
+
425
+ 107
426
+ 00:12:13,190 --> 00:12:18,390
427
+ ุนู„ุงู…ุฉ ุฃูŠุถุง ุฅุฑุงุฏุฉ ุงู„ุตุงุฏู‚ุฉ ุฃู†ู‡ุง ุชุตุญู„ ู‚ุจู„ ุงู„ุฅู†ุทู„ุงู‚
428
+
429
+ 108
430
+ 00:12:18,390 --> 00:12:26,450
431
+ ูƒุตูŠุงุญ ุงู„ุญุดุฑูŠ ููŠ ุฃู…ุฑู‡ ูƒุตูŠุงุญ ุงู„ู†ุงุณ ูŠูˆู… ุฎูˆูู‡ู… ุงู„ุดุฏูŠุฏ
432
+
433
+ 109
434
+ 00:12:26,450 --> 00:12:34,680
435
+ ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉ ููŠ ุงู„ุดุฏุฉูŠุนู†ูŠ ุดุจู‡ ุตูˆุช ุงู„ุฎูŠูˆู„ ููŠ
436
+
437
+ 110
438
+ 00:12:34,680 --> 00:12:41,700
439
+ ุงู„ุฅู†ุทู„ุงู‚ ู†ุญูˆ ุงู„ุนุฏูˆ ูƒุตูŠุงุญ ุงู„ู†ุงุณ ููŠ ุงู„ุฎูˆู ุงู„ุดุฏูŠุฏ ูŠูˆู…
440
+
441
+ 111
442
+ 00:12:41,700 --> 00:12:50,510
443
+ ุงู„ุญุดุฑ ูˆู‡ุฐุง ุทุจุนุง ุชุดุจูŠู‡ ููŠู‡ ู…ุจุงู„ุบุฉู„ุฃู† ุทุจุนุง ุฃุนู„ู‰ ุตูˆุช
444
+
445
+ 112
446
+ 00:12:50,510 --> 00:12:56,530
447
+ ูŠุทู„ู‚ู‡ ุงู„ุฅู†ุณุงู† ููŠ ู„ุญุธุฉ ุฎูˆูู‡ ุฃู…ุง ููŠ ู„ุญุธุฉ ุบุถุจู‡ ูˆุฅู†
448
+
449
+ 113
450
+ 00:12:56,530 --> 00:13:03,030
451
+ ูƒุงู† ุดุฏูŠุฏุง ูู‡ูˆ ุฃู‚ู„ ู„ุฐุง ุงู„ุชุดุจูŠู‡ ู‡ูˆ ุฅู„ุญุงู‚ ู†ุงู‚ุต ููŠ
452
+
453
+ 114
454
+ 00:13:03,030 --> 00:13:09,170
455
+ ุงู„ุตูุฉ ุจูƒุงู…ู„ ููŠู‡ุง ูˆุฒุญูˆู ููŠ ุตูˆุงู‡ูŠู„ู‡ ูƒุตูŠุงุญ ุงู„ุญุดู ููŠ
456
+
457
+ 115
458
+ 00:13:09,170 --> 00:13:15,510
459
+ ุฃู…ุฑู‡ ูุตุงู‡ูŠู„ ุงู„ุฎูŠู„ ู„ุญุธุฉ ุงู„ุฅู†ุทู„ุงู‚ ุฃู‚ู„ ููŠ ุงู„ุตูุฉ ู…ู†
460
+
461
+ 116
462
+ 00:13:15,510 --> 00:13:21,460
463
+ ุตูŠุงุญ ุงู„ู†ุงุณ ูŠูˆู…ุงู„ุฎูˆู ุงู„ุดุฏูŠุฏ ูŠูˆู… ุงู„ุญุดุฑ ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉ
464
+
465
+ 117
466
+ 00:13:21,460 --> 00:13:26,000
467
+ ู‚ูุชู‘ุงู‡ ูˆุงู„ู…ูˆุช ู…ูƒุชู…ู† ููŠ ู…ุฐุงูƒูŠู‡ ูˆุงู„ู…ุฐุงูƒูŠู‡ ู‡ูŠ ุฃู…ุงูƒู†
468
+
469
+ 118
470
+ 00:13:26,000 --> 00:13:35,050
471
+ ุงู„ุฐุจุญูˆุงู„ู†ุญุฑ ูˆูŠู‚ุตุฏ ุงู„ุฎูŠู„ ูˆุงู„ู‚ุจู„ ูุงู„ุฎูŠู„ ุชุฐุจุญ ูˆุงู„ู‚ุจู„
472
+
473
+ 119
474
+ 00:13:35,050 --> 00:13:42,590
475
+ ุชู†ุญุฑ ูˆู…ุดุชุฌ ู„ู‡ ู…ูƒุงู† ุงู„ุฅุตุงุจุฉ ุจุงู„ุณูŠูˆู ุฃูˆ ุงู„ุฑู…ุงุญ
476
+
477
+ 120
478
+ 00:13:42,590 --> 00:13:49,210
479
+ ูุงู„ู…ูˆุช ูƒุงู…ู„ ููŠ ู‡ุฐู‡ ุงู„ุฃู…ุงูƒู† ุงู„ุฃู…ุงูƒู† ุงู„ุฐุจุญูŠ ูˆุฃู…ุงูƒู†
480
+
481
+ 121
482
+ 00:13:49,210 --> 00:13:56,310
483
+ ุงู„ุฌุฑุงุญูุฑู…ุช ุฌูŠู„ูˆู‡ ู…ู†ู‡ ูŠุฏ ู‡ุฐุง ุงู„ุฌูŠุด ุนู„ู‰ ูƒุซุงูุชู‡
484
+
485
+ 122
486
+ 00:13:56,310 --> 00:14:05,330
487
+ ูˆุฅุนุฏุงุฏู‡ ุงู„ุฌูŠุฏ ู„ู… ูŠุณุชุนู…ู„ ู…ู†ู‡ ุฅู„ุง ูŠุฏ ูˆุงุญุฏุฉ ู‡ุฐู‡ ุงู„ูŠุฏ
488
+
489
+ 123
490
+ 00:14:05,330 --> 00:14:13,280
491
+ ุฃุญุงู„ุช ูƒุจุฑูŠุงุก ุฌูŠู„ูˆู‡ ูˆู‡ูˆ ุดุฎุต ุฎุฑุฌ ุนู„ู‰ ุงู„ุฏูˆู„ุฉุงู„ุนุจุงุณูŠุฉ
492
+
493
+ 124
494
+ 00:14:13,280 --> 00:14:23,080
495
+ ููŠ ุฃุฐุฑุจูŠุฌุงู† ููƒุงู† ู…ุตูŠุฑู‡ ุฃู† ุฃุญุงู„ุช ู‡ุฐู‡ ุงู„ุถุฑุจุฉ ุฃุญุงู„ุช
496
+
497
+ 125
498
+ 00:14:23,080 --> 00:14:27,820
499
+ ูƒุจุฑูŠุงุกู‡ ูˆุฃูุนุงู„ู‡
500
+
501
+ 126
502
+ 00:14:27,820 --> 00:14:30,300
503
+ ุงู„ุณูŠุก ุฅู„ู‰ ู…ุงุถูŠ
504
+
505
+ 127
506
+ 00:14:34,510 --> 00:14:42,450
507
+ ุฃูŠุถู‹ุง ู…ู† ุงู„ู…ุนุงู†ูŠ ูˆุงู„ุนู†ุงุตุฑ ุงู„ุฌุฏูŠุฏุฉ ุงู„ุชูŠ ุธู‡ุฑุช ููŠ
508
+
509
+ 128
510
+ 00:14:42,450 --> 00:14:48,850
511
+ ู‚ุตูŠุฏุฉ ุงู„ู…ุฏุญ ู‡ูˆ ุฅุทูุงุก ุงู„ู…ุนุงู†ูŠ ุงู„ุฅุณู„ุงู…ูŠุฉ ุนู„ู‰ ู‡ุฐู‡
512
+
513
+ 129
514
+ 00:14:48,850 --> 00:14:55,530
515
+ ุงู„ู‚ูŠู… ุฃูˆ ุฅุนุทุงุก ู‡ุฐู‡ ุงู„ู‚ูŠู… ู…ุนู†ุงู‹ ุฅู†ุณุงู†ูŠุงุŒ ู…ุนู†ุงู‹ ุฅูŠู‡
516
+
517
+ 130
518
+ 00:14:55,530 --> 00:14:56,130
519
+ ุฅุณู„ุงู…ูŠุง
520
+
521
+ 131
522
+ 00:14:58,900 --> 00:15:06,540
523
+ ู…ุซู„ ู‚ูˆู„ ุงู„ุดุงุนุฑ ุงู„ุจุญุซุฑูŠ ูŠู…ุฏุญ ุงู„ู…ุชูˆูƒู„ ุฎู„ู‚ ุงู„ู„ู‡ ุฌุนูุงู†
524
+
525
+ 132
526
+ 00:15:06,540 --> 00:15:14,580
527
+ ู‚ูŠู… ุงู„ุฏู†ูŠุง ุณุฏุงุฏุง ูˆ ู‚ูŠู… ุงู„ุฏูŠู† ุฑุดุฏุง ุฃุธู‡ุฑ ุงู„ุนุฏู„
528
+
529
+ 133
530
+ 00:15:14,580 --> 00:15:21,860
531
+ ูุงุณุชู†ุงุธุฑ ุจูŠู‡ ุงู„ุฃุฑุถ ูˆ ุนู… ุงู„ุจู„ุงุฏ ุบูˆุฑุง ูˆ ู†ุฌุฏุงุฃุนุทู‰
532
+
533
+ 134
534
+ 00:15:21,860 --> 00:15:28,920
535
+ ู…ุนู†ู‰ ุงูŠู‡ ุฏูŠู†ู‰ ูˆู‡ูˆ ุงู† ุงู† ู‡ุฐุง ุงู„ู…ู…ุฏูˆุญ ูŠุฌู…ุน ุจูŠู† ุจูŠู†
536
+
537
+ 135
538
+ 00:15:28,920 --> 00:15:35,840
539
+ ุฎูŠุฑูŠุฉ ุงู„ุฏู†ูŠุง ูˆุงู„ุงุฎุฑุฉ ุงูˆ ุงู„ุฏูŠู† ูˆุงู„ุดูŠุก ุงู„ุซุงู†ูŠ ุงู†ู‡
540
+
541
+ 136
542
+ 00:15:35,840 --> 00:15:41,940
543
+ ุงู†ู‡ ุงู†ุณุงู† ุนุงุฏู„ ูˆู‡ุฐุง ุงู„ุนุงุฏู„ ู‚ุฏ ุนู… ุงู„ุจู„ุงุฏ ูˆู‡ู†ุง ุทุจุนุง
544
+
545
+ 137
546
+ 00:15:41,940 --> 00:15:48,860
547
+ ุงุณุชุบุฑุงู ู…ูƒุงู†ู‰ ุบูˆุฑุง ูˆู†ูŠุฏุง ูŠุนู†ูŠ ุงู„ู…ุฑุถ ุชูุน ู…ู† ุงู„ุฃุฑุถู…ุง
548
+
549
+ 138
550
+ 00:15:48,860 --> 00:15:57,700
551
+ ุฎูุถ ู…ู† ุงู„ุฃุฑุถ ูˆู…ุง ุนู„ู‰ ู…ู† ุงู„ุฃุฑุถ ูˆู‡ูˆ ุฅูŠู‡ ุงู„ู†ุฌุฏ ูˆู…ู†
552
+
553
+ 139
554
+ 00:15:57,700 --> 00:16:03,180
555
+ ุงู„ุธูˆุงู‡ุฑ ุงู„ุชูŠ ุธู‡ุฑุช ููŠ ู‚ุตุฉ ุงู„ู…ุฏุญ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูˆุฌุฏู†ุง
556
+
557
+ 140
558
+ 00:16:03,180 --> 00:16:12,460
559
+ ุตูุฉ ุงู„ู…ุจุงู„ุบุฉุชุธู‡ุฑ ููŠ ู…ุนุงู†ูŠ ุงู„ู…ุฏุญ ู…ู† ู‡ุฐู‡ ุงู„ุตูˆุฑ ุงู„ุตูˆุฑ
560
+
561
+ 141
562
+ 00:16:12,460 --> 00:16:19,460
563
+ ุงู„ู…ุจุงู„ุบุฉ ุตูุงุช ุงู„ุชู‚ุฏูŠุณ ูƒู…ุง ู‚ุงู„ ุงุจู† ุงู„ุฌู‡ู… ูŠู…ุฏุญ
564
+
565
+ 142
566
+ 00:16:19,460 --> 00:16:25,420
567
+ ุงู„ู…ุชูˆูƒู„ ู„ู‡ ุงู„ู…ู†ุฉ ุงู„ุนุธู…ู‰ ุนู„ู‰ ูƒู„ ู…ุณู„ู…ูˆุทุงุนุชู‡ ูุฑุถ ู…ู†
568
+
569
+ 143
570
+ 00:16:25,420 --> 00:16:30,440
571
+ ุงู„ู„ู‡ ู…ู†ุฒู„ู‡ ูุงู„ู…ุนู„ูˆู… ุฃู† ุงู„ู…ู†ุฉ ู‡ูŠ ู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰
572
+
573
+ 144
574
+ 00:16:30,440 --> 00:16:35,800
575
+ ู„ุงุชู…ู† ุนู„ูŠ ุฅุณู„ุงู…ูƒู… ุจู„ ุงู„ู„ู‡ ูŠู…ู† ุนู„ูŠูƒู… ุฃู† ู‡ุฏุงูƒู…
576
+
577
+ 145
578
+ 00:16:35,800 --> 00:16:40,840
579
+ ู„ู„ุฅุณู„ุงู… ูุงู„ู…ู†ุฉ ุงู„ุนุธู…ู‰ ู‡ูŠ ู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ูˆุทุจุนุง
580
+
581
+ 146
582
+ 00:16:40,840 --> 00:16:48,710
583
+ ุงู„ุดุนุฑ ู‡ู†ุง ุงุณุชุนู…ู„ู‡ุง ู„ู„ู…ุจุงู„ุบุฉู„ู‡ ุงู„ู…ู†ุฉ ุงู„ุนุธู…ู‰ ุนู„ู‰ ูƒู„
584
+
585
+ 147
586
+ 00:16:48,710 --> 00:16:54,690
587
+ ู…ุณู„ู… ูˆุทุงุนุชู‡ ูุฑุถ ู…ู† ุงู„ู„ู‡ ู…ู†ุฒู„ู‡ ุทุจุนุง ู‡ุฐู‡ ู‡ูŠ ู…ู† ุงู„ุตูˆุฑ
588
+
589
+ 148
590
+ 00:16:54,690 --> 00:17:04,910
591
+ ุงู„ู…ุจุงู„ุบุฉ ููŠ ุตูุงุช ุงู„ู…ู…ุฏูˆุญ ุฃู† ุทุงุนุชู‡ ูุฑุถ ู…ู† ุงู„ู„ู‡ ู…ู†ุฒู„
592
+
593
+ 149
594
+ 00:17:05,830 --> 00:17:12,390
595
+ ูˆู†ุญู† ู†ุนู„ู… ุฃู†ู‡ ู„ุง ุทุงุนุฉ ู„ู…ุฎู„ูˆู‚ ููŠ ู…ุนุตูŠุฉ ุงู„ุฎุงู„ู‚ ูˆุฃู†
596
+
597
+ 150
598
+ 00:17:12,390 --> 00:17:15,510
599
+ ุงู„ุทุงุนุฉ
600
+
601
+ 151
602
+ 00:17:15,510 --> 00:17:21,430
603
+ ู„ูŠุณุช ูุฑุถุง ูุฑุถู‡ุง ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ุนู„ู‰ ุนุจุงุฏู‡ ุฎุงุตุฉ
604
+
605
+ 152
606
+ 00:17:21,430 --> 00:17:28,370
607
+ ุจุงู„ู…ุชูˆูƒู„ุฅุฐุง ุงู„ู€ MDA ู…ุจุงู„ุบุฉ ูˆู‡ุฐู‡ ุงู„ู…ุจุงู„ุบุฉ ูŠุนู†ูŠ
608
+
609
+ 153
610
+ 00:17:28,370 --> 00:17:34,510
611
+ ูˆุฌุฏู†ุงู‡ุง ุชุธู‡ุฑ ูƒุธุงู‡ุฑุฉ ุฌุฏูŠุฏุฉ ููŠ ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ูˆู‚ุฏ
612
+
613
+ 154
614
+ 00:17:34,510 --> 00:17:40,810
615
+ ูƒุงู†ุช ู…ู…ู‚ูˆุทุฉ ููŠ ุงู„ุดุนุฑ ุงู„ุฌุงู‡ู„ูŠ ุฅุฐ ูƒุงู† ุงู„ุฌุงู‡ู„ูŠูˆู†
616
+
617
+ 155
618
+ 00:17:40,810 --> 00:17:45,170
619
+ ูŠู…ู‚ูˆุทูˆู† ุงู„ุดุนุฑุงุก ุงู„ุฐูŠู† ูŠุฃุชูˆุง ุฃูˆ ูŠู…ู‚ูˆุทูˆู† ุฃู‚ูˆุงู„
620
+
621
+ 156
622
+ 00:17:45,170 --> 00:17:53,220
623
+ ุงู„ุดุนุฑุงุก ุงู„ุชูŠ ููŠู‡ุง ู…ุจุงู„ุบุฉูƒู‚ูˆู„ ุนู…ุฑ ุงุจู† ูƒุซูˆู… ุญูŠู† ู‚ุงู„
624
+
625
+ 157
626
+ 00:17:53,220 --> 00:18:02,200
627
+ ูˆ ู„ูˆ ู„ุงุฑูŠุญ ุฃุณู…ุน ุฃู‡ู„ ุญุฌุฑ ุตู„ูŠู„ ุงู„ุจูŠุถ ุชู‚ุฑุน ุจุงู„ุฐูƒูˆุฑ
628
+
629
+ 158
630
+ 00:18:02,200 --> 00:18:09,260
631
+ ูู‚ูŠู„ ู‡ุฐุง ุฃูƒุฐุจ ุจูŠุช ูˆ ุฐู„ูƒ ู„ุฃู† ุงู„ุนุฑุจ ููŠ ุงู„ุฌุงู‡ู„ูŠุฉ ูƒุงู†ุช
632
+
633
+ 159
634
+ 00:18:09,260 --> 00:18:11,220
635
+ ุชูƒุฑู‡ ุงู„ู…ุจุงู„ุบุฉ
636
+
637
+ 160
638
+ 00:18:13,220 --> 00:18:19,780
639
+ ุทุจุนุง ุงู„ู…ุจุงู„ุบุฉ ุธุงู‡ุฑุฉ ูŠุนู†ูŠ ู…ู„ุญูˆุธุฉ ููŠ ุฃุดูŠุงุก ุงู„ุนุจุงุณูŠ
640
+
641
+ 161
642
+ 00:18:19,780 --> 00:18:25,960
643
+ ูˆู…ู†ู‡ุง ู‚ูˆู„ ุงุจู† ุงู„ุฌู‡ู… ุฃูŠุถุง ู„ุจู†ูŠ ุงู„ุนุจุงุณ ูŠุง ุจู†ูŠ ู‡ุงุดู…ู†
644
+
645
+ 162
646
+ 00:18:25,960 --> 00:18:33,100
647
+ ุงุจู† ุนุจุฏ ู…ู†ุงูู† ู†ุณุจุฉ ุญุจู‡ุง ู…ู† ุงู„ุชูˆุญูŠุฏ ุฃู†ุชู… ุฎูŠุฑ ุณุงุฏุฉ
648
+
649
+ 163
650
+ 00:18:33,100 --> 00:18:39,090
651
+ ูŠุง ุจู†ูŠ ุงู„ุนุจุงุณูŠ ูุงุจู‚ูˆุง ูˆู†ุญู† ุฎูŠุฑ ุนุจูŠุฏูŠุฅูู† ุฑูŽุถููŠุชูู…ู’
652
+
653
+ 164
654
+ 00:18:39,090 --> 00:18:43,450
655
+ ุฃูŽู…ู’ุฑู‹ุง ุฑูŽุถููŠู†ูŽ ูˆุฅูู† ุชุฃุจูŽูˆู’ ุฃูŽุจูŽูŠู’ู†ูŽ ู„ูŽูƒูู… ุฅูุจูŽุงุกู
656
+
657
+ 165
658
+ 00:18:43,450 --> 00:18:50,350
659
+ ุงู„ุฃูุณููˆู„ููŠูู‘ ู‡ู†ุง ุทุจุนุง ููŠ ุนู†ุฏู‡ ู…ุจุงู„ุบุฉ ูˆู‡ุฐู‡ ุงู„ู…ุจุงู„ุบุฉ
660
+
661
+ 166
662
+ 00:18:50,350 --> 00:18:55,170
663
+ ุชุธู‡ุฑ ููŠ ู‡ุฐู‡ ุงู„ุนู„ุงู‚ุฉ ุงู„ุจุนูŠุฏุฉ
664
+
665
+ 167
666
+ 00:18:55,170 --> 00:19:01,690
667
+ ุจูŠู† ุงู„ุฑุงุนูŠ ูˆุงู„ุฑุนูŠุฉ ุฃูˆ ุจูŠู† ุงู„ุญุงูƒู… ูˆุงู„ู…ุญูƒูˆู… ู‡ูŠ ุนู„ุงู‚ุฉ
668
+
669
+ 168
670
+ 00:19:01,690 --> 00:19:08,940
671
+ ุณุงุฏุฉ ุจุนุจูŠุฏ ูˆุนุจูŠุฏ ุจุณุงุฏุฉ ุทุจุนุง ู‡ุฐู‡ ู…ุจุงู„ุบุฉู„ุฃู† ููŠ
672
+
673
+ 169
674
+ 00:19:08,940 --> 00:19:16,180
675
+ ุงู„ู…ูู‡ูˆู… ุงู„ุฅุณู„ุงู…ูŠ ุฅู†ู…ุง ุงู„ู…ุคู…ู†ูˆู† ุฅุฎูˆุฉ ุฃูŠุถู‹ุง
676
+
677
+ 170
678
+ 00:19:16,180 --> 00:19:20,540
679
+ ู…ู† ุงู„ู…ุจู„ุบุงุช ุนู†ุฏ ุจู† ุงู„ุฌู‡ู… ููŠ ู…ุฏุญ ุงู„ู…ุชูˆูƒู„ ุฃู†ุช
680
+
681
+ 171
682
+ 00:19:20,540 --> 00:19:26,540
683
+ ู…ูŠุซุงู‚ู†ุง ุงู„ุฐูŠ ุฃุฎุฐ ุงู„ู„ู‡ ุนู„ูŠู†ุง ูˆุนู‡ุฏู‡ ุงู„ู…ุณุฆูˆู„ ู…ู† ูŠูƒู†
684
+
685
+ 172
686
+ 00:19:26,540 --> 00:19:33,690
687
+ ุดุบู„ู‡ ุจุบูŠุฑูƒ ูŠุฑุถูŠู‡ ูุฅู†ูŠ ุนู† ุดุบู„ู‡ ู…ุดุบูˆู„ุฃูŠุถู‹ุง ู‡ุฐู‡ ูŠุนู†ูŠ
688
+
689
+ 173
690
+ 00:19:33,690 --> 00:19:39,870
691
+ ู…ุจุงู„ุบุงุช ูˆู‚ุน ููŠู‡ุง ุงู„ุดุนุฑ ุงู„ุนุจุงุณูŠ ูˆุทุจุนู‹ุง ุงู„ุงุจู† ุงู„ุฌุงู‡ู„
692
+
693
+ 174
694
+ 00:19:39,870 --> 00:19:44,930
695
+ ู‡ู†ุง ูŠู‚ูˆู„ ุฃู†ุช ุงู„ู…ูŠุซุงู‚ ุงู„ุฐูŠ ุฃุฎุฐู‡ู‡ ุงู„ู„ู‡ ูˆุงู„ู„ู‡ ุณุจุญุงู†ู‡
696
+
697
+ 175
698
+ 00:19:44,930 --> 00:19:50,330
699
+ ูˆุชุนุงู„ู‰ ุงู„ุฐูŠ ุฃุฎุฐู‡ู‡ ู„ูŠุณ ู‡ุฐุง ุงู„ู…ูŠุซุงู‚ ูˆุฅู†ู…ุง ุงู„ู…ูŠุซุงู‚
700
+
701
+ 176
702
+ 00:19:50,330 --> 00:19:55,610
703
+ ุงู„ุฐูŠ ูŠุนุจุฏูˆู† ููŠู‡ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ููŠ ู‚ูˆู„ู‡ ูˆุฅุฐ ุฃุฎุฐ
704
+
705
+ 177
706
+ 00:19:55,610 --> 00:20:01,650
707
+ ุงู„ู„ู‡ ู…ู† ุจู†ูŠ ุขุฏู… ู…ู† ุธู‡ูˆุฑู‡ู… ุฐุฑูŠุชู‡ู…ูˆุฃุดู‡ุฏู‡ู… ุนู„ู‰ ุฃู†ูุณู‡ู…
708
+
709
+ 178
710
+ 00:20:01,650 --> 00:20:06,530
711
+ ุฃู„ุณุชูˆุง ุจุฑุจูƒู… ู‚ุงู„ูˆุง ุจู„ู‰ ุดู‡ุฏู†ุง ุฃู† ุชู‚ูˆู„ูˆุง ูŠูˆู… ุงู„ู‚ูŠุงู…ุฉ
712
+
713
+ 179
714
+ 00:20:06,530 --> 00:20:12,170
715
+ ุฅู†ุง ูƒู†ุง ุนู† ู‡ุฐุง ุบุงูู„ูŠู† ูุงู„ู…ุซุงู‚ ู‡ูˆ ุฃู† ูŠุนุจุฏูˆุง ุงู„ู„ู‡
716
+
717
+ 180
718
+ 00:20:12,170 --> 00:20:18,890
719
+ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ู„ูƒู† ู‡ู†ุง ุงู„ุดุงุนุฑ ูŠุนู†ูŠ ุจุงู„ุบ ูˆ ุฌุนู„
720
+
721
+ 181
722
+ 00:20:18,890 --> 00:20:26,620
723
+ ุงู„ู…ุซุงู‚ ู‡ูˆ ู…ุจุงูŠุน ู…ุจุงูŠุนุฉ ุงู„ุฎู„ูŠูุฉู‡ุฐุง ููŠู…ุง ูŠุชุนู„ู‚
724
+
725
+ 182
726
+ 00:20:26,620 --> 00:20:33,740
727
+ ุจุงู„ู…ุนู†ู‰ ุฃูˆ ุงู„ู…ุนุงู†ูŠ ุงู„ุดุนุฑูŠุฉ ุฃู…ุง ุจู…ุง ูŠุชุนู„ู‚ ููŠ ุงู„ุจู†ุงุก
728
+
729
+ 183
730
+ 00:20:33,740 --> 00:20:39,020
731
+ ุงู„ูู†ูŠ ูู…ุนู„ูˆู… ุฃู† ุงู„ู‚ุตูŠุฏุฉ ุงู„ุนุฑุจูŠุฉ ูƒุงู†ุช ุชุชูƒูˆู† ู…ู†
732
+
733
+ 184
734
+ 00:20:39,020 --> 00:20:46,520
735
+ ู…ู‚ุฏู…ุฉ ูˆุงู„ู…ู‚ุฏู…ุฉ ูŠุนู†ูŠ ู…ู† ุฃู‡ู… ุฃุฌุฒุงุก ุงู„ู‚ุตูŠุฏุฉ ุชุทูˆุฑุง
736
+
737
+ 185
738
+ 00:20:46,520 --> 00:20:51,680
739
+ ูŠุนู†ูŠ ูƒุงู†ุช ู…ุฌุงู„ุง ู„ู„ุชุทูˆุฑ ูˆุงู„ุชุฌุฏูŠุฏ ู„ุฃู†ู‡ุง ู„ูŠุณุช ุฌุฒุก
740
+
741
+ 186
742
+ 00:20:51,680 --> 00:20:59,300
743
+ ุฃุตูŠู„ุง ููŠ ุงู„ู‚ุตูŠุฏุฉูู‡ูŠ ุชู…ู‡ูŠุฏ ู†ูุณูŠ ูŠุฑุจุท ุจูŠู† ุงู„ู…ุชู„ู‚ูŠ
744
+
745
+ 187
746
+ 00:20:59,300 --> 00:21:10,680
747
+ ูˆุงู„ู…ุจุฏุนุŒ ุจูŠู† ุงู„ุดุงุนุฑูŠ ูˆุงู„ู…ุณุชู…ุน ุฃูˆ ุจูŠู† ุงู„ุดุงุนุฑ
748
+
749
+ 188
750
+ 00:21:10,680 --> 00:21:16,510
751
+ ูˆุงู„ู…ู…ุฏูˆุน ุฃูˆ ุจูŠู† ุงู„ุดุงุนุฑ ูˆุงู„ู…ูˆุถูˆุนุฃูˆ ู‡ูŠ ุชู…ู‡ูŠุฏ ู„ู„ู…ูˆุถูˆุน
752
+
753
+ 189
754
+ 00:21:16,510 --> 00:21:23,570
755
+ ุงู„ุฐูŠ ุณูŠุฃุชูŠ ูุนู…ูˆู…ุง ุงู„ู…ู‚ุฏู…ุฉ ู„ูŠุณุช ุฌุฒุก ู…ู† ุงู„ู‚ุตูŠุฏุฉ
756
+
757
+ 190
758
+ 00:21:23,570 --> 00:21:29,250
759
+ ูˆู„ุฐู„ูƒ ูˆุฌุฏู†ุง ูƒุซูŠุฑุง ุฃูˆ ุจุนุถุง ู…ู† ุงู„ุดุนุฑุงุก ูŠุจุฏุฃูˆู†
760
+
761
+ 191
762
+ 00:21:29,250 --> 00:21:31,930
763
+ ู‚ุตุงุฆุฏู‡ู… ุฏูˆู† ู…ู‚ุฏู…ุงุช
764
+
765
+ 192
766
+ 00:21:34,560 --> 00:21:37,660
767
+ ูˆุญุชู‰ ููŠ ุงู„ุฌุงู‡ู„ูŠุฉ ูƒุงู† ุจุนุถ ุดุนุงุฑุงุช ุงู„ุฌุงู‡ู„ูŠุฉ ู„ู…
768
+
769
+ 193
770
+ 00:21:37,660 --> 00:21:43,620
771
+ ูŠู„ุชุฒู…ูˆุง ุจู‡ุง ููŠ ู…ุทุงู„ุน ู‚ุตุงุฆุฏู‡ู… ู„ุฐุง ูƒุงู†ุช ุงู„ู…ู‚ุฏู…ุฉ ุฃูƒุซุฑ
772
+
773
+ 194
774
+ 00:21:43,620 --> 00:21:49,840
775
+ ุนู†ุงุตุฑ ุงู„ู‚ุตูŠุฏุฉ ู‚ุงุจูˆู„ุง ู„ู„ุชุทูˆุฑ ูˆุงู„ุชุฌุฏูŠุฏ ุงู„ุดุงุนุฑ
776
+
777
+ 195
778
+ 00:21:49,840 --> 00:21:58,480
779
+ ุงู„ุนุจุงุณูŠ ุฃุจู‚ู‰ ุนู„ู‰ ู…ูุฑุถุงุช ุงู„ู…ู‚ุฏู…ุฉ ู„ูƒู†ู‡ ุฃุถุงู ุฅู„ูŠู‡ุง
780
+
781
+ 196
782
+ 00:21:58,480 --> 00:22:05,780
783
+ ุฅุถุงูุงุช ุชุชุณุน ุญูŠู†ุง ูˆ ุชุถูŠู‚ ุญูŠู†ุงูŠูˆุฏุนู‡ุง ู…ู† ุฐุฎุงุฆุฑู‡
784
+
785
+ 197
786
+ 00:22:05,780 --> 00:22:15,740
787
+ ุงู„ุนู‚ู„ูŠุฉ ูˆุงู„ุฎูŠุงู„ูŠุฉ ูˆุฃู‡ู… ุดูŠุก ููŠ ุฐู„ูƒ ุฃู†ู‡ ูŠุนู…ู‚ ุงู„ู…ุนู†ู‰
788
+
789
+ 198
790
+ 00:22:15,740 --> 00:22:21,520
791
+ ุงู„ุฅู†ุณุงู†ูŠ ููŠ ู‡ุฐู‡ ุงู„ู…ู‚ุฏู…ุฉ ูู‚ุฏ ุงุณุชุจู‚ู‰ ุนู„ู‰ ุงู„ุฃุทู„ุงู„
792
+
793
+ 199
794
+ 00:22:23,060 --> 00:22:27,520
795
+ ุงู„ูˆู‚ูˆู ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ู„ู„ุฏู„ุงู„ุฉ ุนู„ู‰ ุงู„ุญุจ ุงู„ุฃุตูŠู„ ูˆุงู„ุญู†ูŠู†
796
+
797
+ 200
798
+ 00:22:27,520 --> 00:22:32,260
799
+ ุงู„ุตุงุฏู‚ ูˆุงุณุชุจู‚ู‰ ุฑุญู„ุฉ ุงู„ุตุญุฑุงุก ุงู„ุชุนุจูŠุฉ ุนู† ุฑุญู„ุฉ
800
+
801
+ 201
802
+ 00:22:32,260 --> 00:22:38,840
803
+ ุงู„ุฅู†ุณุงู† ููŠ ุงู„ุญูŠุงุฉ ูุงู„ุจูƒุงุก ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ู„ุง ูŠุฒุงู„
804
+
805
+ 202
806
+ 00:22:38,840 --> 00:22:47,140
807
+ ูŠุชุฑู‚ุฑู‚ ููŠ ุฃุดุนุงุฑู‡ู… ู„ูƒู†ู‡ ู„ูŠุณ ูƒูˆู‚ูˆู ุงู„ุดุงุนุฑ ุงู„ุฌุงู‡ู„ูŠ
808
+
809
+ 203
810
+ 00:22:47,140 --> 00:22:52,300
811
+ ูู‚ุฏ ูƒุงู† ุงู„ุดุงุนุฑ ุงู„ุฌุงู‡ู„ูŠ ูŠู„ุฒู… ุตุงุญุจูŠู‡
812
+
813
+ 204
814
+ 00:22:54,250 --> 00:22:58,730
815
+ ุจุงู„ูˆู‚ูˆู ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ููŠ ู‚ูˆู„ ู…ุงุฆูŠ ุงู„ู‚ูŠุณ ู‚ูู‰ ู†ุจูƒูŠ ู…ู†
816
+
817
+ 205
818
+ 00:22:58,730 --> 00:23:04,870
819
+ ุฐูƒุฑุง ุญุจูŠุจ ูˆู…ู†ุฒู„ูŠ ุญุจูŠุจ ูˆู…ู†ุฒู„ูŠ ุณู‚ุท ุงู„ู„ุบุฉ ุจูŠู† ุงู„ุฏุฎูˆู„
820
+
821
+ 206
822
+ 00:23:04,870 --> 00:23:16,360
823
+ ูุญูˆู…ู„ูŠ ุฃู…ุง ุงู„ุดุงุนุฑ ุนุจุงุณูŠ ููƒุงู† ูŠุชู„ุทููˆูŠุชุฑู‚ู‚ ููŠ ุงู„ุฏุนูˆุฉ
824
+
825
+ 207
826
+ 00:23:16,360 --> 00:23:24,060
827
+ ู„ู„ุจูƒุงุก ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ุฃูˆ ุนู„ู‰ ุฑุญู„ุฉ ุงู„ู…ุญุจูˆุจุฉ ูู‚ุงู„ ู…ุณู„ู…
828
+
829
+ 208
830
+ 00:23:24,060 --> 00:23:31,120
831
+ ุงุจู† ูˆู„ูŠุฏ ๏ฟฝ๏ฟฝุฑูŠุน ุงู„ุบูˆุงู†ูŠ ู‡ู„ู‘ุง ุจูƒูŠุช ุถุนุงุฆู†ุง ูˆุญู…ูˆู„ุง
832
+
833
+ 209
834
+ 00:23:31,120 --> 00:23:40,020
835
+ ูˆุญู…ูˆู„ุง ุชุฑูƒ ุงู„ูุคุงุฏุฉูุฑุงู‚ู‡ู… ู…ู‚ุจูˆู„ุฉ ู‡ู„ู‘ุง ุจูƒูŠุช ุถุนุงุฆู†ุง
836
+
837
+ 210
838
+ 00:23:40,020 --> 00:23:46,540
839
+ ูˆุญู…ูˆู„ุฉ ุชุฑูƒ ุงู„ูุคุงุฏ ูุฑุงู‚ู‡ู… ู…ู‚ุจูˆู„ุฉ ูุฅุฐุง ุฒุฌุฑุช ุงู„ู‚ู„ุจ
840
+
841
+ 211
842
+ 00:23:46,540 --> 00:23:54,540
843
+ ุฒุงุฏ ูˆุฌูŠุจู‡ ูˆุฅุฐุง ุญุจุณุช ุงู„ุฏู…ุนุฉ ุฒุงุฏ ู‡ู…ูˆู„ุฉ ูˆุฅุฐุง ูƒุชู…ุช ุฌูˆ
844
+
845
+ 212
846
+ 00:23:54,540 --> 00:23:59,840
847
+ ุงู„ู‡ุฃุณ ุจุนุซ ุงู„ู‡ูˆู‰ ู†ูุณุง ูŠูƒูˆู† ุนู„ู‰ ุงู„ุถู…ูŠุฑ ุฏู„ูŠู„ุฉ ูˆุงู‡ุง
848
+
849
+ 213
850
+ 00:23:59,840 --> 00:24:06,320
851
+ ู„ุฃูŠุงู† ุงู„ุตุจุง ูˆุฐู†ุงู†ู‡ ู„ูˆ ูƒุงู† ุฃู…ุชุน ุจุงู„ู…ู‚ุงู… ู‚ู„ูŠู„ุงู‡ู†ุง
852
+
853
+ 214
854
+ 00:24:06,320 --> 00:24:14,240
855
+ ู‚ุงู„ ู‡ู„ ู„ู„ุชุญุทูŠุจ ูˆุงู„ุชู„ุทู ูˆุงู„ุชุฑู‚ู‚ ูˆู„ู… ูŠู‚ู ูƒู…ุง ู‚ุงู„
856
+
857
+ 215
858
+ 00:24:14,240 --> 00:24:20,740
859
+ ุงู„ุดุงุนุฑ ุงู„ุฌุงู‡ู„ ุฃูŠุถุง ู„ู… ูŠู‚ู ุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ุนู†ุฏ ู…ูƒูˆุงู†
860
+
861
+ 216
862
+ 00:24:20,740 --> 00:24:26,140
863
+ ุงู„ุฃุทู„ุงู„ ูู‚ุท ุจู„ ูˆู‚ู ุฃู…ุงู… ุงู„ู‚ุตูˆุฑ ุงู„ุญุงุถุฑุฉ ุงู„ู…ุฃู†ูˆุซุฉ
864
+
865
+ 217
866
+ 00:24:27,970 --> 00:24:31,430
867
+ ูˆุงู„ุญุงู„ุชุงู† ูˆุงู† ุงุฎุชู„ูุชุงู† ููŠ ุงู„ู…ุนู†ู‰ ูŠุนู†ูŠ ุญุงู„ุฉ ุงู„ุจูƒุงุก
868
+
869
+ 218
870
+ 00:24:31,430 --> 00:24:35,630
871
+ ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ุฃูˆ ุญุงู„ุฉ ุงู„ุจูƒุงุก ุนู†ุฏ ุงู„ู‚ุตูˆุฑ ุงู„ุญุงุถุฑุฉ
872
+
873
+ 219
874
+ 00:24:35,630 --> 00:24:43,110
875
+ ุงู„ุญุงู„ุชุงู† ู…ุฎุชู„ูุชุงู† ู„ูƒู† ุงู„ู…ุนู†ู‰ ูˆุงุญุฏ ูˆู‡ูˆ ุงู„ุชุนุจูŠุฑ ุนู†
876
+
877
+ 220
878
+ 00:24:43,110 --> 00:24:49,580
879
+ ุงู„ุญุฑู…ุงู†ูู‡ูˆ ู…ุญุฑูˆู… ุนู†ุฏ ุงู„ุจูƒุงุก ุนู„ู‰ ุงู„ุฃุทู„ุงู„ ู„ุฃู†
880
+
881
+ 221
882
+ 00:24:49,580 --> 00:24:56,580
883
+ ุงู„ู…ุญุจูˆุจุฉ ู‚ุฏ ุบุงุฏุฑุช ุงู„ู…ูƒุงู† ููƒุงู† ู‡ู†ุงูƒ ุจุนุฏ ุฒู…ุงู†ูŠ
884
+
885
+ 222
886
+ 00:24:56,580 --> 00:25:03,400
887
+ ูˆู…ูƒุงู†ูŠ ุฃู…ุง ู‡ู†ุง ููŠ ุงู„ุจูƒุงุก ุนู†ุฏ ุงู„ู‚ุตูˆุฑ ุงู„ุญุงุถุฑ
888
+
889
+ 223
890
+ 00:25:03,400 --> 00:25:08,300
891
+ ุงู„ู…ุฃู†ูˆุซุฉ ูุงู„ู…ุญุจูˆุจุฉ ู…ูˆุฌูˆุฏุฉ ู„ู… ุชุบุงุฏุฑ ุงู„ู…ูƒุงู† ูˆู„ูƒู†
892
+
893
+ 224
894
+ 00:25:08,300 --> 00:25:11,660
895
+ ุงู„ุดุงุนุฑ ู„ุง ูŠุณุชุทูŠุน ุฃู† ูŠุตู„ ุฅู„ูŠู‡ุง
896
+
897
+ 225
898
+ 00:25:13,870 --> 00:25:20,410
899
+ ูู‡ูˆ ุจุนุฏ ู…ูƒุงู†ูŠ ูŠู…ู†ุน ุงู„ู…ูƒุงู† ู…ู† ุงู„ุงุชู‚ุงุก ุจุงู„ู…ุญุจูˆุจุฉ
900
+
901
+ 226
902
+ 00:25:20,410 --> 00:25:28,130
903
+ ูู‚ุงู„ ุฃุดุฌุน ุงู„ุณู„ู…ูŠ ู‚ุตุฑ ุนู„ูŠู‡ ุชุญูŠุฉ ูˆุณู„ุงู… ู†ุดุฑุช ุนู„ูŠู‡
904
+
905
+ 227
906
+ 00:25:28,130 --> 00:25:34,410
907
+ ุฌู…ุงู„ู‡ุง ุงู„ุฃูŠุงู… ูƒุฐู„ูƒ ูˆุฌุฏู†ุง ุงู„ุดุงุนุฑ ุนุจุงุณูŠ ูŠุณุชุจู‚ูŠ
908
+
909
+ 228
910
+ 00:25:34,410 --> 00:25:43,440
911
+ ุงู„ุฃุทู„ุงู„ ูƒู…ุง ุฐูƒุฑู†ุงูŠุณุชุจู‚ู‰ ุฃูŠุถู‹ุง ูˆุตู ุงู„ุฑุญู„ุฉ ุฑุญู„ุฉ
912
+
913
+ 229
914
+ 00:25:43,440 --> 00:25:50,370
915
+ ุงู„ุตุญุฑุงุกุจู…ุง ููŠู‡ุง ู…ู†ุญูˆุด ูˆุฃู‡ูˆุงู„ ูˆู…ุตุงุฆุจ ูˆู„ูƒู†ู‡ ูŠุนู…ู‚
916
+
917
+ 230
918
+ 00:25:50,370 --> 00:25:57,450
919
+ ุงู„ู…ุนู†ู‰ ุงู„ุฅู†ุณุงู†ูŠ ูŠุคู†ุณ ุงู„ู…ูƒุงู† ูู‚ุงู„ ู…ุณู„ู… ุงุจู† ูˆู„ูŠุฏ
920
+
921
+ 231
922
+ 00:25:57,450 --> 00:26:03,350
923
+ ูˆู…ุฌู‡ู„ ูƒุงุถุทุฑุงุฏ ุงู„ุณูŠู ู…ุญุชุฌุฒ ุนู† ุงู„ุฃุฏู„ุงุก ู…ุณุฌูˆุฑ
924
+
925
+ 232
926
+ 00:26:03,350 --> 00:26:09,370
927
+ ุงู„ุตูŠุงุฎูŠู† ุชู…ุดูŠ ุงู„ุฑูŠุงุญ ุจู‡ ุญุตุฑุฉ ู…ูˆู„ู‡ุฉ ุญูŠุฑุฉ ุชู„ูˆุซ
928
+
929
+ 233
930
+ 00:26:09,370 --> 00:26:16,810
931
+ ุจุฃุทุฑุงู ุงู„ุฌู„ุงู…ูŠู†ูู‡ุฐุง ู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ููŠ ุงู„ุตุญุฑุงุก ูˆู…ุฌู‡ู„
932
+
933
+ 234
934
+ 00:26:16,810 --> 00:26:23,830
935
+ ูˆุทุจุนุง ุงูŠู‡ ูู‚ุงู… ุงู„ูˆุตู ู…ู‚ุงู… ุงู„ุฅุณู… ุชุนู…ูŠู‚ุง ู„ู„ุญุงู„ุฉ
936
+
937
+ 235
938
+ 00:26:23,830 --> 00:26:34,170
939
+ ุงู„ุญุงู„ุฉ ุงู„ุฌู‡ู„ ูˆุนุฏู… ุงู„ุงุญุชุฏุงุก ูˆุตุนูˆุจุฉ ุงู„ุณูŠุฑ ููŠ ุงู„ุตุญุฑุงุก
940
+
941
+ 236
942
+ 00:26:34,170 --> 00:26:40,270
943
+ ูˆู…ุฌู‡ู„ ูƒุงุถุทุฑุงุฏ ุงู„ุณูŠู ูƒุญุฏ ุงู„ุณูŠู ู…ุญุชุฌุฒ ุนู† ุงู„ุฃุฏู„ุงุก
944
+
945
+ 237
946
+ 00:26:40,270 --> 00:26:46,050
947
+ ุฌุงู…ุน ุฏู„ูŠู„ุงู„ุฐูŠ ูŠู‚ูˆุฏ ุงู„ุฑุญู„ุฉ ู…ุณุฌูˆุฑ ุงู„ุตูŠุงุฎูŠู†ูŠ ูŠุนู†ูŠ
948
+
949
+ 238
950
+ 00:26:46,050 --> 00:26:57,310
951
+ ู…ู„ุชู‡ุจ ูƒุงู„ู…ูˆุงู‚ุฏ ุตูŠุงุฎูŠู† ุฌู…ุนูŠ ุตูŠุฎูˆุฏ ูˆู‡ูˆ ุงู„ู…ูˆู‚ุฏ ูˆู‡ู†ุง
952
+
953
+ 239
954
+ 00:26:57,310 --> 00:27:03,810
955
+ ุทุจุนุง ุชุธู‡ุฑ ุงู„ุฃู†ุซู†ุฉ ุชู…ุดูŠ ุงู„ุฑูŠุงุญ ุจูŠู‡ ุญุณุฑุฉ ู…ูˆู„ู‡ุฉ ุญูŠุฑุฉ
956
+
957
+ 240
958
+ 00:27:03,810 --> 00:27:09,190
959
+ ู‡ุฐู‡ ูƒู„ ู…ุนุงู†ูŠ ุฅู†ุณุงู†ูŠุฉ ูŠุนู†ูŠ ุฎู„ุนู‡ุง ุนู„ูŠู‡ ุงู„ุฑูŠุงุญ ุฃู†ุซู†ุฉ
960
+
961
+ 241
962
+ 00:27:09,190 --> 00:27:18,700
963
+ ุงู„ุฑูŠุงุญุฃูŠุถู‹ุง ู…ู† ุงู„ุฃู†ุซู†ุฉ ุฃูŠุถู‹ุง ู‚ูˆู„ ุจุดุงุฑ ููŠ ูˆุตู ุงู„ุฃุชู†
964
+
965
+ 242
966
+ 00:27:18,700 --> 00:27:24,920
967
+ ุงู„ูˆุญุดูŠุฉ ูˆู‡ูŠ ู…ู† ุงู„ู…ูุฑูˆุถุงุช ุงู„ุตุญุฑุงุก ูู‚ุงู„ ุบุฏุช ุนุงู†ุฉ ุชุดูƒ
968
+
969
+ 243
970
+ 00:27:24,920 --> 00:27:31,860
971
+ ุจุฃุจุตุงุฑู‡ุง ุงู„ุตุฏุง ุฅู„ู‰ ุงู„ุฌุฃุจ ุฅู„ุง ุฃู†ู‡ุง ู„ุง ุชุฎุงุทุจู‡ ูˆู…ุนู†ู‰
972
+
973
+ 244
974
+ 00:27:31,860 --> 00:27:36,340
975
+ ุนุงู†ุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู‚ุทูŠุน ู…ู† ุงู„ุฃุชู† ุงู„ูˆุญุดูŠุฉุชุดูƒูˆุง ุจุฃุจุตุงุฑู‡ุง
976
+
977
+ 245
978
+ 00:27:36,340 --> 00:27:42,840
979
+ ุทุจุนุง ุงู„ุดูƒูˆู‰ ุจุงู„ุจุตุฑ ู…ู† ุฃู‡ู… ูˆุฃุตุฏู‚ ู…ุนุงู†ูŠ ุงู„ุดูƒูˆู‰
980
+
981
+ 246
982
+ 00:27:42,840 --> 00:27:48,780
983
+ ู„ู…ุงุฐุงุŸ ู„ุฃู†ู‡ ุนุจู‘ุฑ ุนู† ุชุฌุฑุจุฉ ุงู„ุนุทุด ุจุฌุฒุก ู…ู† ุงู„ุชุฌุฑุจุฉ
984
+
985
+ 247
986
+ 00:27:48,780 --> 00:27:55,170
987
+ ู„ุฃู† ุงู„ู‚ุจู„ ู‡ูˆ ุงู„ุงุทู†ุงู„ูˆุญุดูŠุฉ ุฅุฐุง ุฃุตุงุจู‡ุง ุนุทุด ูŠุธู‡ุฑ ุฐู„ูƒ
988
+
989
+ 248
990
+ 00:27:55,170 --> 00:28:04,030
991
+ ููŠ ุจุตุฑู‡ุง ูู‚ุงู„ ุชุดูƒ ุจุฃุจุตุงุฑู‡ุง ุงู„ุตุฏุง ู„ู…ุงุฐุง ุงู„ุดูƒ ุจุงู„ุจุตุฑ
992
+
993
+ 249
994
+ 00:28:04,030 --> 00:28:09,650
995
+ ุฃุนู…ู‚ ููŠ ุงู„ุฏู„ุงู„ุฉ ู„ุฃู†ู‡ ูŠุนุจุฑ ุนู† ุงู„ุชุฌุฑุจุฉ ุจุฌุฒุก ู…ู†
996
+
997
+ 250
998
+ 00:28:09,650 --> 00:28:16,630
999
+ ุงู„ุชุฌุฑุจุฉุงู„ุฌุฃุจ ู‡ูˆ ู‚ุงุฆุฏ ุงู„ู‚ุทูŠุน ุฅู„ุง ุฃู†ู‡ุง ู„ุง ุชุฎุงุทุจ ูˆู„ุง
1000
+
1001
+ 251
1002
+ 00:28:16,630 --> 00:28:22,690
1003
+ ุชุณุชุนู…ู„ ุงู„ู„ุบุฉ ุฅุฐุง ุชุนู…ูŠู‚ ุงู„ู…ุนู†ู‰ ุงู„ุฅู†ุณุงู†ูŠ ุธุงู‡ุฑ ููŠ ู‡ุฐู‡
1004
+
1005
+ 252
1006
+ 00:28:22,690 --> 00:28:32,170
1007
+ ุงู„ุตูˆุฑุฉ ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ู†ุญ ุงู„ุนุจุงุณูŠ ููŠ ุงู„ุชุฌุฏูŠุฏ ููŠ ู…ู‚ุฏู…ุฉ
1008
+
1009
+ 253
1010
+ 00:28:32,170 --> 00:28:36,050
1011
+ ุงู„ู‚ุตูŠุฏุฉ ูˆู„ู„ุญุฏูŠุซ ุจู‚ูŠุฉ ูˆุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุนู„ูŠ ู†ุจูŠู†ุง
1012
+
1013
+ 254
1014
+ 00:28:36,050 --> 00:28:40,030
1015
+ ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู… ูƒุซูŠุฑุง
1016
+
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/SVwP9n8zGEI_raw.json ADDED
The diff for this file is too large to render. See raw diff
 
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/SVwP9n8zGEI_raw.srt ADDED
@@ -0,0 +1,616 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:04,910 --> 00:00:08,270
3
+ ุจุงุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุฃุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:08,270 --> 00:00:13,170
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู… ุงู„ูƒุซูŠุฑ ูˆุจุนุฏ ููŠ ู‡ุฐู‡
8
+
9
+ 3
10
+ 00:00:13,170 --> 00:00:19,390
11
+ ุงู„ู…ุญุงุถุฑุฉ ู†ุชู†ุงูˆู„ ุชุฃู…ู„ุงุช ุงู„ุดุนุฑุงุก ุงู„ุนุจุงุณูŠูŠู† ููŠ
12
+
13
+ 4
14
+ 00:00:19,390 --> 00:00:25,510
15
+ ุงู„ุทุจูŠุนุฉ ูˆุงู„ุญู‚ูŠู‚ุฉ ุฃู† ุชุทูˆุฑ ุงู„ุนู‚ู„ ุงู„ุนุฑุจูŠ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ
16
+
17
+ 5
18
+ 00:00:26,480 --> 00:00:33,240
19
+ ูˆุงุฑุชู‚ุงุฆู‡ ุฅู„ู‰ ุฏุฑุฌุงุช ู…ุชู‚ุฏู…ุฉ ููŠ ุงู„ุชููƒูŠุฑ ูˆุตู„ ุฅู„ู‰ ุฏุฑุฌุฉ
20
+
21
+ 6
22
+ 00:00:33,240 --> 00:00:41,200
23
+ ุงู„ุชุฃู…ู„ ู„ุงุฑุชู‚ุงุฆู‡ ุจู…ุนู†ู‰ ุฃู†ู‡ ูˆุตู„ ุฅู„ู‰ ู…ุนุงู†ูŠ ุฅู†ุณุงู†ูŠุฉ
24
+
25
+ 7
26
+ 00:00:41,200 --> 00:00:48,530
27
+ ูˆุฏูŠู†ูŠุฉ ุนุงู„ูŠุฉ ููŠ ุงู„ุชููƒูŠุฑุงุณุชุนู…ู„ ุงู„ุชุฃู…ู„ ูˆู‡ู†ุงูƒ ูุฑู‚ ุจูŠู†
28
+
29
+ 8
30
+ 00:00:48,530 --> 00:00:55,610
31
+ ุงู„ุชููƒูŠุฑ ูˆุงู„ุชุฃู…ู„ ุงู„ุชููƒูŠุฑ ู‡ูˆ ุฑุฏ ุงู„ุฃุดูŠุงุก ุฅู„ู‰ ู‚ุงุนุฏุชู‡ุง
32
+
33
+ 9
34
+ 00:00:55,610 --> 00:01:01,170
35
+ ุฃูˆ ุซู†ุชู‡ุง ุงู„ูƒูˆู†ูŠุฉ ุฃู…ุง ุงู„ุชุฃู…ู„ ูู‡ูˆ ุฑุฏ ุงู„ุฃุดูŠุงุก
36
+
37
+ 10
38
+ 00:01:01,170 --> 00:01:06,850
39
+ ูˆุงู„ุธูˆุงู‡ุฑ ุฅู„ู‰ ู…ุนู†ุงู‡ุง ุงู„ุฏูŠู†ูŠ ุฃูˆ ุงู„ุฅู†ุณุงู†ูŠ ุฃูˆ ุงู„ุฌู…ุงู„ูŠ
40
+
41
+ 11
42
+ 00:01:08,380 --> 00:01:16,400
43
+ ูˆู†ุจุฏุฃ ุจู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ูˆู‡ูŠ ุงู„ู…ุนู†ู‰ ุงู„ุฅู†ุณุงู†ูŠ ุฅู† ุงู„ุดุงุนุฑ
44
+
45
+ 12
46
+ 00:01:16,400 --> 00:01:23,360
47
+ ุนุจุงุณูŠ ูˆุฌุฏ ููŠ ุงู„ุทุจูŠุนุฉ ุงู„ู…ุญุจูˆุจุฉ ุฃูˆ ู…ู† ูŠุดุงุฑูƒ ุฃุญุฒุงู†ู‡
48
+
49
+ 13
50
+ 00:01:23,360 --> 00:01:30,300
51
+ ูˆู‡ู…ูˆู…ู‡ ูู‚ุงู„ ุฅุจุฑุงู‡ูŠู… ุงุจู† ุงู„ู…ู‡ุฏูŠ ููŠ ุงู„ู€ Nargisุซู„ุงุซ
52
+
53
+ 14
54
+ 00:01:30,300 --> 00:01:38,060
55
+ ุนูŠูˆู† ู…ู† ุงู„ู†ุฑุฌุณ ุนู„ู‰ ู‚ุงุฆู… ุฃุฎุถุฑ ุฃู…ู„ุณูŠ ุฐูƒุฑู†ู†ูŠ ุทูŠุจ ุฑูŠ
56
+
57
+ 15
58
+ 00:01:38,060 --> 00:01:44,380
59
+ ุงู„ุญุจูŠุจ ููŠู…ู†ุนู†ูŠ ู„ุฐุฉ ุงู„ู…ุฌู„ุณ ุซู„ุงุซ ุนูŠูˆู† ู…ู† ุงู„ู†ุฑุฌุณ
60
+
61
+ 16
62
+ 00:01:44,380 --> 00:01:53,900
63
+ ููˆุฑูˆุฏ ุงู„ู†ุฑุฌุณ ูˆุฃุธู‡ุงุฑู‡ ูˆุฃุธู‡ุงุฑู‡ ูˆู„ู„ุชู„ู„ ุงู„ุดุงุนุฑ ุชุฐูƒุฑุง
64
+
65
+ 17
66
+ 00:01:54,710 --> 00:02:03,610
67
+ ู„ู„ู…ุญุจูˆุจุฉ ูˆุฎูŠุงู„ุง ู„ู‡ุง ูุงุณุชุฏุนู‰ ู‡ุฐุง ุงู„ุฎูŠุงู„ ุฅู„ู‰ ุนู‚ู„ู‡ ุฃูˆ
68
+
69
+ 18
70
+ 00:02:03,610 --> 00:02:11,230
71
+ ู…ุฎูŠุฑุชู‡ ูุฌู„ุจุช ู…ุนู‡ ุงู„ู‡ู…ูˆู… ูˆุงู„ุฃุญุฒุงู† ูู…ู†ุนุชู‡ ู…ู†
72
+
73
+ 19
74
+ 00:02:11,230 --> 00:02:17,790
75
+ ุงู„ุงุณุชู…ุชุงุน ุจู…ุฌู„ุณู‡ ููŠ ุงู„ุทุจูŠุนุฉุซู„ุงุซ ุนูŠูˆู† ู…ู† ุงู„ู†ุฑุฌุณูŠ
76
+
77
+ 20
78
+ 00:02:17,790 --> 00:02:26,170
79
+ ุนู„ู‰ ู‚ุงุฆู… ุฃุฎุถุฑ ุฃู…ู„ุณูŠ ุนู„ู‰ ุนูˆุฏ ุฃุฎุถุฑ ุฃู…ู„ุณ ู†ุธุฑ ูˆู‡ุฐู‡
80
+
81
+ 21
82
+ 00:02:26,170 --> 00:02:31,830
83
+ ุงู„ู†ุธุงุฑุฉ ู‡ูŠ ุงู„ุชูŠ ูˆู„ุฏุช ุงู„ู…ู„ุงุซุฉ ูˆุงู„ู†ุธุงุฑุฉ
84
+
85
+ 22
86
+ 00:02:33,460 --> 00:02:40,140
87
+ ูˆู„ู… ุชู‚ู ุนู†ุฏ ู‡ุฐุง ุงู„ุญุฏ ุนู„ุงู‚ุฉ ุงู„ุดุนุจ ุจุงู„ุทุจูŠุนุฉ ูู‚ุฏ ุฌุนู„
88
+
89
+ 23
90
+ 00:02:40,140 --> 00:02:46,840
91
+ ู…ู†ู‡ุง ุดุฑูŠูƒุง ู„ู‡ ูŠุจุซู‡ุง ู‡ู…ูˆู…ู‡ ูˆุฃุญุฒุงู†ู‡ ูู‚ุงู„ ู…ุทูŠุน ุงุจู†
92
+
93
+ 24
94
+ 00:02:46,840 --> 00:02:54,360
95
+ ุฅูŠุงุณ ุฃุณุนุฏุงู†ูŠ ูŠุง ู†ุฎู„ุชูŠ ุญู„ูˆุงู†ูŠ ูˆุงุจูƒูŠุง ู„ูŠ ู…ู† ุฑูŠุจ ู‡ุฐุง
96
+
97
+ 25
98
+ 00:02:54,360 --> 00:03:01,160
99
+ ุงู„ุฒู…ุงู†ูˆุนู„ู… ุฃู† ุฑูŠุจู‡ ู„ู… ูŠุฒู„ ูŠูุฑู‚ ุจูŠู† ุงู„ุฃูˆู„ุงู
100
+
101
+ 26
102
+ 00:03:01,160 --> 00:03:07,420
103
+ ูˆุงู„ุฌูŠุฑุงู† ูˆู„ุง ุนู…ุฑูŠ ู„ูˆ ุฐูู‚ุชู…ุง ุฃู„ู… ุงู„ูุฑู‚ุฉ ุฃุจูƒุงูƒู… ุงู„ุฐูŠ
104
+
105
+ 27
106
+ 00:03:07,420 --> 00:03:15,260
107
+ ุฃุจูƒุงู† ุฃุณุนุฏุงู†ูŠ ูˆุฃูŠู‚ู†ุง ุฃู† ู†ุญุณู† ุณูˆู ูŠู„ู‚ุงูƒู…ุง ูุชูุชุฑู‚ุงู†
108
+
109
+ 28
110
+ 00:03:15,260 --> 00:03:23,480
111
+ ูƒู… ุฑู…ุชู†ูŠ ุตุฑูˆู ู‡ุฐู‡ ุงู„ู„ูŠุงู„ูŠ ุจูุฑุงู‚ ุงู„ุฃุญุจุงุจ ูˆุงู„ุฎู„ุงู†ุฅุฐุง
112
+
113
+ 29
114
+ 00:03:23,480 --> 00:03:29,260
115
+ ุงู„ุดุงุนุฑ ูˆุฌุฏ ููŠ ุงู„ุทุจูŠุนุฉ ุดุฑูŠูƒุง ู„ู‡ ูˆู…ุนุงุฏู„ุง ู…ูˆุถูˆุนูŠุง
116
+
117
+ 30
118
+ 00:03:29,260 --> 00:03:37,220
119
+ ุฃุณุนุฏุงู†ูŠ ูŠุทู„ุจ ู…ู† ุงู„ู†ุฎู„ุชูŠู† ุฃู† ุชุนูŠู†ุงู‡ ุนูŠู†ุงู†ูŠ ูŠุง ู†ุฎู„ุชูŠ
120
+
121
+ 31
122
+ 00:03:37,220 --> 00:03:43,440
123
+ ุญู„ูˆุงู†ูŠ ูˆุญู„ูˆุงู† ู…ู†ุทู‚ุฉ ููŠ ุงู„ุนุฑุงู‚ ุชุดุชู‡ุฑ ุจุงู„ู†ุฎูŠู„
124
+
125
+ 32
126
+ 00:03:44,870 --> 00:03:52,510
127
+ ูˆุงุจูƒูŠุง ู„ูŠ ู…ู† ุฑูŠุจ ู‡ุฐุง ุงู„ุฒู…ุงู† ูˆุงุจูƒูŠุง ู„ูŠ ู…ู† ุฑูŠุจ ู‡ุฐุง
128
+
129
+ 33
130
+ 00:03:52,510 --> 00:03:59,870
131
+ ุงู„ุฒู…ุงู† ูŠุทู„ุจ ู…ู† ุงู„ู†ุฎู„ุชูŠู† ุฃู† ุชุจูƒูŠุง ู…ุนู‡ ู„ูŠุฎูู ุฐู„ูƒ ู…ู†
132
+
133
+ 34
134
+ 00:03:59,870 --> 00:04:06,450
135
+ ุฃุญุฒุงู†ู‡ ุฐู„ูƒ ุฃู† ุงู„ุญุฒู† ุฅุฐุง ุชูˆุฒุน ุนู„ู‰ ุฃูƒุซุฑ ู…ู† ูˆุงุญุฏ ูŠุฎูู
136
+
137
+ 35
138
+ 00:04:06,450 --> 00:04:13,870
139
+ ู‡ุฐุง ุงู„ุญุฒู† ุนู„ู‰ ุงู„ุดุนุฑ ูˆุงุจูƒูŠุง ู„ูŠ ู…ู† ุฑูŠุจ ู‡ุฐุง ุงู„ุฒู…ุงู†
140
+
141
+ 36
142
+ 00:04:14,930 --> 00:04:21,290
143
+ ูˆุฃูŠู‚ู† ูˆุนู„ู… ุฃู† ุฑูŠุจู‡ ู„ู… ูŠุธู„ ูŠูุฑู‚ ุจูŠู† ุงู„ุฃูˆู„ุงุฏูŠ
144
+
145
+ 37
146
+ 00:04:21,290 --> 00:04:27,770
147
+ ูˆุงู„ุฌูŠุฑุงู† ุฐู„ูƒ ุฃู† ู…ุตุงุฆุจ ุงู„ุฒู…ู† ู‡ูŠ ุงู„ุชูŠ ุชูุฑู‚ ุจูŠู†
148
+
149
+ 38
150
+ 00:04:27,770 --> 00:04:34,350
151
+ ุงู„ุฃุญุจุฉ ูˆุงู„ุฌูŠุฑุงู†ุจูŠู† ุงู„ุฃูˆู„ุงููŠ ูˆุงู„ุฌูŠุฑุงู†ูŠ ุญุชู‰ ุจูŠู†
152
+
153
+ 39
154
+ 00:04:34,350 --> 00:04:41,190
155
+ ุงู„ุฌูŠุฑุงู† ุชูุฑู‚ ุฃูˆ ูŠูุฑู‚ ุงู„ุฒู…ู† ู…ุน ุฃู† ุนู„ุงู‚ุฉ ุงู„ุฌุงุฑูŠ
156
+
157
+ 40
158
+ 00:04:41,190 --> 00:04:48,370
159
+ ุจุฌุงุฑู‡ ุนู„ุงู‚ุฉ ู…ูƒุงู†ูŠุฉ ุซุงุจุชุฉ ู„ุง ุชุชุฒุญุฒุญ ุฅู„ุง ุฃู† ุฃุญุฏุงุซ
160
+
161
+ 41
162
+ 00:04:48,370 --> 00:04:55,370
163
+ ุงู„ุฒู…ู† ู‚ุฏ ุชูุฑู‚ ู‡ุฐู‡ ุงู„ุนู„ุงู‚ุงุช ุงู„ุฌุบุฑุงููŠุฉู„ูŠุณุช ูู‚ุท
164
+
165
+ 42
166
+ 00:04:55,370 --> 00:05:01,430
167
+ ุงู„ุนู„ุงู‚ุงุช ุงู„ุฒู…ู†ูŠุฉ ุจู„ ุงู„ุนู„ุงู‚ุงุช ุงู„ุฌุบุฑุงููŠุฉ ูˆู‡ุฐุง ุฏู„ูŠู„
168
+
169
+ 43
170
+ 00:05:01,430 --> 00:05:10,670
171
+ ุนู„ู‰ ู‚ูˆุฉ ู…ุตุงุฆู ุงู„ุฒู…ู† ููŠ ุงู„ุชูุฑูŠู‚ูˆุงู„ุนู…ุฑูŠ ู„ูˆ ุฐูˆู‚ุชู… ุฃู„ู…
172
+
173
+ 44
174
+ 00:05:10,670 --> 00:05:19,690
175
+ ุงู„ูุฑู‚ุฉ ุฃุจูƒุงูƒู… ุงู„ุฐูŠ ุฃุจูƒุงู†ูŠ ูˆู‡ู†ุง ูŠู‚ุณู… ู„ูˆ ุฃู† ู‡ุชูŠู†
176
+
177
+ 45
178
+ 00:05:19,690 --> 00:05:28,490
179
+ ุงู„ู†ุฎู„ุชูŠู† ูŠุนู†ูŠ ุชุจูƒูŠุงู† ูƒู…ุง ูŠุจูƒูŠ ุงู„ุฅู†ุณุงู† ู„ุนู„ู… ุฃู„ู…
180
+
181
+ 46
182
+ 00:05:28,490 --> 00:05:37,610
183
+ ุงู„ูุฑู‚ุฉ ูˆุงู„ุชุบุฑุจ ุฃุณุนุฏุงู†ูŠ ูˆุฃุณุนุฏุงู†ูŠ ูˆุฃูŠู‚ู† ุฃุนูŠู†ุงู†ูŠูˆู„ูŠูƒู†
184
+
185
+ 47
186
+ 00:05:37,610 --> 00:05:46,870
187
+ ู„ุฏูŠูƒู… ูŠู‚ูŠู† ุจุฃู† ุซู…ุฉ ู…ุตูŠุจุฉ ุณุชู‚ุน ูƒู…ุง ูˆู‚ุนุช ุนู„ูŠู†ุง ูˆุฃูŠู‚ู†
188
+
189
+ 48
190
+ 00:05:46,870 --> 00:05:54,190
191
+ ุฃู† ู†ุญุณู† ุณูˆู ูŠู„ู‚ุงูƒู…ุง ูุชูุชุฑู‚ุงู† ูƒู… ุฑู…ุชู†ูŠ ุตุฑูˆู ู‡ุฐู‡
192
+
193
+ 49
194
+ 00:05:54,190 --> 00:05:59,810
195
+ ุงู„ู„ูŠุงู„ูŠ ุจูุฑุงู‚ ุงู„ุฃุญุจุงุจ ูˆุงู„ุฎู„ุงู†ูŠู† ู‡ู†ุงูƒ ุญุงู„ุงุช ูƒุซูŠุฑุฉ
196
+
197
+ 50
198
+ 00:05:59,810 --> 00:06:09,910
199
+ ู…ู† ุฃูุนุงู„ ุงู„ุฒู…ู†ูู‚ุฏ ุฑู…ุงู†ูŠ ุจุตู†ูˆู ุดุชุฉ ู…ู† ุงู„ู…ุตุงุฆุจ ุงู„ุชูŠ
200
+
201
+ 51
202
+ 00:06:09,910 --> 00:06:17,650
203
+ ูุฑู‚ุช ุจูŠู† ุงู„ุฃุญุจุฉ ูˆุงู„ุฎู„ุงู† ุงู„ุฃุตุฏู‚ุงุก ุฃูŠุถุง
204
+
205
+ 52
206
+ 00:06:19,030 --> 00:06:28,230
207
+ ู…ู† ุงู„ุชุฃู…ู„ุงุช ุงู„ุชูŠ ูˆู‚ู ุนู†ุฏู‡ุง ุงู„ุดู‡ุฑ ุงู„ุนุจุงุณูŠ ุงู„ุฌู†ุจ
208
+
209
+ 53
210
+ 00:06:28,230 --> 00:06:33,610
211
+ ุงู„ุฏูŠู†ูŠ ุฃูˆ ุงู„ู…ุนู†ู‰ ุงู„ุฏูŠู†ูŠ ูู‚ุฏ ุฑุฃู‰ ุงู„ุดู‡ุฑ ุงู„ุนุจุงุณูŠ ููŠ
212
+
213
+ 54
214
+ 00:06:33,610 --> 00:06:43,650
215
+ ุงู„ุทุจูŠุนุฉ ู…ุนุงู†ูŠ ุฏูŠู†ูŠุฉูˆุฃู‡ู…ู‡ุง ุนู‚ูŠุฏุฉ ุงู„ุชูˆุญูŠุฏ ูˆุนุธู…ุฉ ุงู„ู„ู‡
216
+
217
+ 55
218
+ 00:06:43,650 --> 00:06:53,160
219
+ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ููŠ ุฎู„ู‚ู‡ ูู‚ุงู„ ุฃุจูˆ ู†ูˆุงุณูˆุทุจุนุง ู‚ุฏ ุฒู‡ุฏ
220
+
221
+ 56
222
+ 00:06:53,160 --> 00:07:01,440
223
+ ุจุนุฏ ู…ุฌูˆู† ุจุนุฏ ุฃู† ูƒุงู† ู†ุงุฌู†ุง ูู‚ุฏ ุฃู†ู‡ู‰ ุญูŠุงุชู‡ ุจุงู„ุฒู‡ุฏ
224
+
225
+ 57
226
+ 00:07:01,440 --> 00:07:06,400
227
+ ูˆุงู„ู‚ู†ุงุนุฉ
228
+
229
+ 58
230
+ 00:07:06,400 --> 00:07:15,160
231
+ ูˆุงู„ุฑุถุง ุจุงู„ู‚ู„ูŠู„ ูˆุงู„ุชุฃู…ู„ ููŠ ุงู„ุญูŠุงุฉ ููŠู‚ูˆู„ ููŠ ูˆู‚ูˆูู‡
232
+
233
+ 59
234
+ 00:07:15,160 --> 00:07:22,100
235
+ ุงู„ุชุฃู…ู„ูŠ ุงุชุฌุงู‡ ุงู„ุทุจูŠุนุฉุชุฃู…ู„ ููŠ ุฑูŠุงุถ ุงู„ุฃุฑุถ ูˆุงู†ุธุฑ ุฅู„ู‰
236
+
237
+ 60
238
+ 00:07:22,100 --> 00:07:29,760
239
+ ุขุซุงุฑ ู…ุง ุตู†ุน ุงู„ู…ู„ูŠูƒ ุนูŠูˆู† ู…ู„ุฌูŠู† ุดุงุฎุตุงุช ุจุฃุญุฏุงู‚ ู‡ูŠ
240
+
241
+ 61
242
+ 00:07:29,760 --> 00:07:36,020
243
+ ุงู„ุฐู‡ุจ ุงู„ุณุจูŠูƒ ุนู„ู‰ ู‚ุทุจ ุงู„ุฒุจุฑุฌุฏ ุดุงู‡ุฏุงุช ุจุฃู† ุงู„ู„ู‡ ู„ูŠุณ
244
+
245
+ 62
246
+ 00:07:36,020 --> 00:07:42,000
247
+ ู„ู‡ ุดุฑูŠูƒ ุชุฃู…ู„ ูŠุนู†ูŠ ู…ู† ุฎู„ุงู„ ุงู„ุชููƒูŠุฑ ุงู„ู…ุชูˆุงุตู„ ุฃูˆ
248
+
249
+ 63
250
+ 00:07:42,000 --> 00:07:48,410
251
+ ุงู„ุชุฃู…ู„ ุงู„ุงุฑุชู‚ุงุฆูŠูู†ุตู„ ุฅู„ู‰ ุนุธู…ุฉ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰
252
+
253
+ 64
254
+ 00:07:48,410 --> 00:07:55,390
255
+ ู…ู† ุฎู„ุงู„ ู‡ุฐู‡ ุงู„ู…ุฎู„ูˆู‚ุงุช ุงู„ุฌู…ูŠู„ุฉ ุงู„ุฑุงุฆุนุฉ ูˆู‡ูŠ ุงู„ุฃุฒู‡ุงุฑ
256
+
257
+ 65
258
+ 00:07:55,390 --> 00:08:03,110
259
+ ูˆุงู„ู†ุจุงุชุงุช ุงู„ุฑุงุฆุนุฉ ุงู„ุชูŠ ุชุธู‡ุฑ ููŠ ุงู„ุฑุจูŠุน ูˆู…ู† ุฃู‡ู…ู‡ุง
260
+
261
+ 66
262
+ 00:08:03,110 --> 00:08:10,310
263
+ ุงู„ู†ุฌุณ ุนูŠูˆู† ู…ู„ุฌูŠู†ูˆู‚ุจู„ ู‚ู„ูŠู„ ุฑุฃูŠู†ุง ุฃู† ู‡ุฐู‡ ุงู„ุนูŠูˆู†
264
+
265
+ 67
266
+ 00:08:10,310 --> 00:08:18,230
267
+ ุซู„ุงุซุฉ ุนูŠูˆู† ู…ู† ุงู„ู†ุฌุณูŠ ุนู„ู‰ ู‚ุงุฆู… ุฃุฎุถุฑ ุฃู…ู„ุณูŠ
268
+
269
+ 68
270
+ 00:08:18,230 --> 00:08:25,350
271
+ ูŠุฐูƒุฑู†ู†ูŠ ุทูŠุจ ุฑูŠ ุงู„ุญุจูŠุจ ุฅุฐุง ุงู„ู†ุฌุณ ูˆู…ู† ุฎู„ุงู„ ู‡ุฐู‡
272
+
273
+ 69
274
+ 00:08:25,350 --> 00:08:32,610
275
+ ุงู„ูˆู‚ูุฉ ู†ุฌุฏ ุฃู† ุงู„ุดุนุฑุงุก ู…ู†ู‡ู… ู…ู† ุงุฑุชู‚ู‰ ุฅู„ู‰ ู…ุนู†ู‰
276
+
277
+ 70
278
+ 00:08:32,610 --> 00:08:34,590
279
+ ุฅู†ุณุงู†ูŠ ูƒ
280
+
281
+ 71
282
+ 00:08:37,360 --> 00:08:44,060
283
+ ูƒุฅุจุฑุงู‡ูŠู… ุจู† ุงู„ู…ู‡ุฏูŠ ูˆู…ุทูŠุน ุจู† ุฅูŠุงุณ ู„ูƒู†ู†ุง ู†ุฌุฏ ุฃุจูˆ
284
+
285
+ 72
286
+ 00:08:44,060 --> 00:08:50,440
287
+ ู†ูˆุงุณ ูŠุฑุชู‚ูŠ ุฅู„ู‰ ู…ุนู†ุง ุฃุนุธู… ูˆู‡ูˆ ุงู„ู…ุนู†ู‰ ุงู„ุฏูŠู†ูŠ ูˆุญุฏุงู†ูŠุฉ
288
+
289
+ 73
290
+ 00:08:50,440 --> 00:08:58,440
291
+ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ุนูŠูˆู† ู…ู†ู„ุฌูŠู† ุดุงุฎุตุงุช ุจุฃุญุฏุงู‚ ู‡ูŠ
292
+
293
+ 74
294
+ 00:08:58,440 --> 00:09:07,200
295
+ ุงู„ุฐู‡ุจ ุงู„ุณุจูŠูƒ ู‡ุฐู‡ ู‡ูŠ ูˆุฑุฏุฉ ุงู„ู†ุฌุณ ูˆุณุทู‡ุง ุฃุจูŠุถ ูˆู…ุญูŠุทู‡ุง
296
+
297
+ 75
298
+ 00:09:07,200 --> 00:09:15,060
299
+ ุฃุตูุฑ ูƒุงู„ุฐู‡ุจ ุงู„ุณุจูŠูƒ ุงู„ู†ู‚ูŠ ู…ู† ุงู„ุดูˆุงุฆู… ุนู„ู‰ ู‚ุทุจ
300
+
301
+ 76
302
+ 00:09:15,060 --> 00:09:22,340
303
+ ุงู„ุฒุจุฑุฌุฉ ุฏูŠ ุดุงู‡ุฏุงุช ุจุฃู† ุงู„ู„ู‡ ู„ูŠุณ ู„ู‡ ุดุฑูŠูƒุนู„ู‰ ู‚ุทุจ
304
+
305
+ 77
306
+ 00:09:22,340 --> 00:09:29,480
307
+ ุงู„ุฒุจุฑุฌุฏ ูˆุงู„ุฒุจุฑุฌุฏ ู‡ูˆ ู…ู† ุงู„ุฃุญุฌุงุฑ ุงู„ูƒุฑูŠู…ุฉ ู„ูˆู†ู‡ ุฃุฎุถุฑ
308
+
309
+ 78
310
+ 00:09:29,480 --> 00:09:41,880
311
+ ููŠู‚ูˆู„ ุฅู† ู‡ุฐู‡ ุงู„ุนูŠูˆู† ุดุงุฎุตุฉ ุนู„ู‰ ู‚ุทุจ ุงู„ุฒุจุฑุฌุฏ ูˆุดุฎุตู‡ุง
312
+
313
+ 79
314
+ 00:09:41,880 --> 00:09:51,320
315
+ ูŠุดู‡ุฏูˆุง ุจุฃู† ุงู„ู„ู‡ ู„ูŠุณ ู„ู‡ ุดุฑูŠูƒู‡ุดุงู‡ุฏุงุช ุจุฃู† ุงู„ู„ู‡ ู„ูŠุณ ู„ู‡
316
+
317
+ 80
318
+ 00:09:51,320 --> 00:09:56,940
319
+ ุดุฑูŠูƒู‡ ุฅุฐุง ู‡ู†ุง ู…ู† ุฎู„ุงู„ ุงู„ุชููƒูŠุฑ ุงู„ู…ุชูˆุงุตู„ ุฃูˆ ุงู„ุชุฃู…ู„
320
+
321
+ 81
322
+ 00:09:56,940 --> 00:10:05,160
323
+ ุงู„ุงุฑุชู‚ุงุฆูŠ ูˆุตู„ ุงู„ุดุงุนุฑ ุฃุจูˆ ู†ูˆุงุณ ุฅู„ู‰ ู…ุนู†ู‰ ุฏูŠู†ูŠ ูˆู‡ูˆ
324
+
325
+ 82
326
+ 00:10:05,160 --> 00:10:14,750
327
+ ูˆุญุฏุงู†ูŠุฉ ุงู„ู„ู‡ ูˆุฃู†ู‡ ู„ุง ุดุฑูŠูƒ ู„ู‡ูุงุณุชุฏู„ู‘ู‰ ุฃูˆ ุงู†ุชู‚ู„ ู…ู†
328
+
329
+ 83
330
+ 00:10:14,750 --> 00:10:21,570
331
+ ูˆุตู ุงู„ุทุจูŠุนุฉ ุฅู„ู‰ ูˆุตู ุนุธู…ุฉ ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„๏ฟฝ๏ฟฝ
332
+
333
+ 84
334
+ 00:10:21,570 --> 00:10:27,270
335
+ ูˆุฅู‚ุฑุงุฑู‡ ุจุฐู„ูƒ ุฃูŠุถู‹ุง
336
+
337
+ 85
338
+ 00:10:27,270 --> 00:10:34,810
339
+ ู„ู… ูŠู‚ู ุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ุนู†ุฏ ู‡ุฐุง ุงู„ุญุฏ ุจู„ ุฃูŠุถู‹ุง ุงุฑุชู‚ู‰
340
+
341
+ 86
342
+ 00:10:34,810 --> 00:10:41,530
343
+ ุฅู„ู‰ ู…ุนู†ู‰ ุขุฎุฑ ูˆู‡ูˆ ุงู„ู…ุนู†ู‰ ุงู„ุฌู…ุงู„ูŠุฅุฐ ุฅู† ุงู„ุดุงุนุฑ ุงู„ุนุจุณูŠ
344
+
345
+ 87
346
+ 00:10:41,530 --> 00:10:49,050
347
+ ุฑุฃู‰ ููŠ ุงู„ุทุจูŠุนุฉ ุงู„ู‚ูŠู…ุฉ ุงู„ุฌู…ุงู„ูŠุฉ ุฃูˆ ู‚ูŠู…ุฉ ุงู„ุฌู…ุงู„ูู‡ุฐู‡
348
+
349
+ 88
350
+ 00:10:49,050 --> 00:10:56,050
351
+ ุงู„ู…ุธุงู‡ุฑ ุงู„ุฌู…ูŠู„ุฉ ูˆู…ุธุงู‡ุฑ
352
+
353
+ 89
354
+ 00:10:56,050 --> 00:11:05,370
355
+ ุงู„ุฃุฒู‡ุงุฑ ุงู„ู†ุจุงุชุงุช ูˆู„ุฏุช ููŠู‡ ุฅุญุณุงุณุง ุจุงู„ุฌู…ุงู„ ูˆุฃูŠุถุง
356
+
357
+ 90
358
+ 00:11:05,370 --> 00:11:15,300
359
+ ุดูƒู„ุช ู„ุฏูŠู‡ ุฑุคูŠุฉ ูˆู…ูู‡ูˆู…ุง ู„ู„ุฌู…ุงู„ ูู‚ุงู„ุงู„ุตู†ูˆุจุฑูŠ ูˆู‡ูˆ ู…ู†
360
+
361
+ 91
362
+ 00:11:15,300 --> 00:11:21,120
363
+ ุฃุจุฑุถ ุดุนุฑุงุก ุงู„ุทุจูŠุนุฉ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ูˆู‡ูˆ ุตุงุญุจ ู…ุฏุฑุณุฉ
364
+
365
+ 92
366
+ 00:11:21,120 --> 00:11:28,800
367
+ ุงุทู„ู‚ ุนู„ูŠู‡ุง ุงู„ู…ุฏุฑุณุฉ ุงู„ุญู„ุจูŠุฉ ููŠ ุงู„ุดุนุฑ ุงู„ุชูŠ ุชุชู„ู…ุฐ
368
+
369
+ 93
370
+ 00:11:28,800 --> 00:11:34,680
371
+ ุนู„ูŠู‡ุง ู…ุนุธู… ุดุนุฑุงุก ุงู„ุฃู†ุฏู„ุณ ุจุนุฏ ู†ุตู ู‚ุฑู† ู…ู† ุงู„ุฒู…ุงู†
372
+
373
+ 94
374
+ 00:11:34,680 --> 00:11:45,200
375
+ ูŠู‚ูˆู„ ุงู„ุตู†ูˆุจุฑูŠ ุฃู…ุง ุงู„ุฑูŠุงุถุฉูุนุดู‚ู‡ุง ุนุดู‚ ู„ู… ูŠุจู‚ู‰ ููŠ
376
+
377
+ 95
378
+ 00:11:45,200 --> 00:11:54,260
379
+ ู„ุบูŠุฑู‡ุง ุทุฑู‚ ู†ุณุฎ ุงู„ุฑูŠุงุถูŠ ุฃุชุช ูƒุชู‚ุฑุฃ ู…ู† ุจุนุฏ ูƒุฃู† ุณุทูˆุฑู‡ุง
380
+
381
+ 96
382
+ 00:11:54,260 --> 00:12:01,300
383
+ ู…ุดู‚ ู†ุดุฑุช ุนู„ู‰ ุชู„ูƒ ุงู„ุฑุจุฉ ุฃูˆ ู†ุดุฑุช ุนู„ู‰ ุชู„ูƒ ุงู„ุฑุจุฉ ุญู„ู„
384
+
385
+ 97
386
+ 00:12:01,300 --> 00:12:11,220
387
+ ู…ู…ุง ูŠุญูˆู‚ ุงู„ุฑุนุฏ ูˆุงู„ุจุฑู‚ ุธู„ ุงู„ุจู‡ุงุฑุชุถูŠุก ุฃูˆุฌู‡ู‡ ููŠุถูŠุก
388
+
389
+ 98
390
+ 00:12:11,220 --> 00:12:17,040
391
+ ู…ู†ู‡ุง ุงู„ุบุฑุจ ูˆุงู„ุดุฑู‚ ุฒู‡ุฑ ุงู„ุฑูŠุงุถ ุฅุฐุง ู‡ูŠ ุงุจุชุณู…ุช ุชุฏุนูˆ
392
+
393
+ 99
394
+ 00:12:17,040 --> 00:12:27,000
395
+ ููŠุณุฑุน ู†ุญูˆู‡ุง ุงู„ุฎู„ู‚ ูุชุธู„ ุชู†ุทู‚ ูˆู‡ูŠ ุณุงูƒุชุฉ ุฅู† ุงู„ุฑูŠุงุถ
396
+
397
+ 100
398
+ 00:12:27,000 --> 00:12:29,340
399
+ ุณูƒูˆุชู‡ุง ู†ุทู‚
400
+
401
+ 101
402
+ 00:12:32,490 --> 00:12:38,190
403
+ ููŠ ุงู„ุจูŠุช ุงู„ุฃูˆู„ ุฃู…ุง ุฑูŠุงุถู‡ ูุนุดู‚ู‡ุง ุนุดู‚ู‡ ูŠุนู†ูŠ ุนุดู‚ูŠ
404
+
405
+ 102
406
+ 00:12:38,190 --> 00:12:45,270
407
+ ู„ู„ุฑูŠุงุถ ู‡ูˆ ุงู„ุนุดู‚ ุงู„ุญู‚ูŠู‚ูŠ ู‡ูˆ ุนุดู‚ ู„ุง ุนุดู‚ ุจุนุฏู‡ ูŠุนู†ูŠ
408
+
409
+ 103
410
+ 00:12:45,270 --> 00:12:48,450
411
+ ูู†ุฑู‰
412
+
413
+ 104
414
+ 00:12:48,450 --> 00:13:00,950
415
+ ุฃู†ู‡ ูŠุนู†ูŠููŠ ุชุฃู…ู„ู‡ ู„ู„ุทุจูŠุนุฉ ูˆู…ุดุงุฑูƒุชู‡ ู„ู‡ุง ู†ุฑุงู‡ ุฃู†ู‡
416
+
417
+ 105
418
+ 00:13:00,950 --> 00:13:09,250
419
+ ูŠุนู†ูŠ ุฃู‚ู… ุนู„ุงู‚ุฉ ุนู„ุงู‚ุฉ ุนุงุทููŠุฉ ูˆู‡ูŠ ุฃูŠู‡ุŸ ุงู„ุนุดู‚ ูˆุงู„ุนุดู‚
420
+
421
+ 106
422
+ 00:13:09,250 --> 00:13:14,110
423
+ ู„ุง ูŠูƒูˆู† ุฅู„ุง ุฅุฐุง ูƒุงู†ุช ู‡ู†ุงูƒ ุตูุงุช ู…ู† ุงู„ุฌู…ุงู„ ูˆุงู„ุญุณู†
424
+
425
+ 107
426
+ 00:13:14,110 --> 00:13:23,170
427
+ ูู‚ุงู„ ุฅู† ุงู„ุฑูŠุงุถุฉ ูŠุนู†ูŠ ู‡ูŠ ุงู„ู…ุนุดูˆู‚ุฉุงู„ุญู‚ูŠู‚ูŠุฉ ู„ูŠู‡ ูู„ูŠุณ
428
+
429
+ 108
430
+ 00:13:23,170 --> 00:13:36,150
431
+ ู‡ู†ุงูƒ ุนุดู‚ ู„ุฃูŠ ุดูŠุก ุขุฎุฑ ุนุดู‚ ุตุงุฏู‚ ู†ู‚ูŠ ู„ู… ูŠุจู‚ ููŠ ู„ุบูŠุฑู‡ุง
432
+
433
+ 109
434
+ 00:13:36,150 --> 00:13:44,790
435
+ ุทุฑู‚ู‡ ูˆู‡ุฐุง ุงู„ุนุดู‚ ุฅู†ู…ุง ู†ุงุดุฆ ู…ู† ุตูุงุช ุฌู…ุงู„ูŠุฉ ููŠ ุงู„ุฑูŠุงู„
436
+
437
+ 110
438
+ 00:13:47,360 --> 00:13:55,000
439
+ ุงู„ู†ุณุฎ ุงู„ุฑูŠุงุถูŠ ุฃุชุช ูƒุชู‚ุฑุฃ ู…ู† ุจุนุฏ ูƒุฃู† ุณุทูˆุฑู‡ุง ู…ุดู‚ูˆ ู‡ู†ุง
440
+
441
+ 111
442
+ 00:13:55,000 --> 00:14:07,660
443
+ ูŠุชุญุฏุซ ุนู† ุฌู…ุงู„ ุงู„ู‡ู†ุฏุณุฉ ู„ู‡ุฐู‡ ุงู„ุฑูŠุงุถูŠ ุจุญูŠุซ ุฅู†ู‡ุง ูŠุนู†ูŠ
444
+
445
+ 112
446
+ 00:14:07,660 --> 00:14:17,120
447
+ ุชุจุฏูˆ ูƒุงู„ุฎุทูˆุท ุงู„ู…ุณุชู‚ูŠู…ุฉ ุงู„ุชูŠ ุชู‚ุฑุฃ ู…ู† ู…ุณุงูุฉ ุจุนูŠุฏุฉ
448
+
449
+ 113
450
+ 00:14:17,450 --> 00:14:28,290
451
+ ุชู‚ุฑุฃ ู…ู† ุจุนุฏ ูƒุฃู† ุณุทูˆุฑู‡ุง ู…ุดู‚ูˆ ูŠุนู†ูŠ ุฎุท ู…ุณุชู‚ูŠู… ู†ุดุฑุช
452
+
453
+ 114
454
+ 00:14:28,290 --> 00:14:36,150
455
+ ุนู„ู‰ ุชู„ูƒ ุงู„ุฑุจุง ุญู„ู„ ูŠุนู†ูŠ ู…ุธุงู‡ุฑ ุฌู…ูŠู„ุฉ ูˆ ุจู‚ุน ุฌู…ูŠู„ุฉ
456
+
457
+ 115
458
+ 00:14:36,150 --> 00:14:44,330
459
+ ู„ู„ุฑูŠุงุถูŠ ูˆุงู„ุงุฒู‡ุงุฑ ู…ู…ุง ูŠุญูˆูƒ ุงู„ุฑุนุฏ ูˆุงู„ุจุฑู‚ูˆู‡ู†ุง ุทุจุนุง
460
+
461
+ 116
462
+ 00:14:44,330 --> 00:14:54,330
463
+ ุงู„ุดุงุนุฑ ูŠุนู…ู‚ ุงู„ุฅุญุณุงุณ ุงู„ุฌู…ุงู„ูŠ ู…ู† ุฎู„ุงู„ ุงู„ุชุดุจูŠู‡ุงุช
464
+
465
+ 117
466
+ 00:14:54,330 --> 00:15:02,350
467
+ ูˆุงู„ุงุณุชุนุงุฑุงุช ูˆุงู„ูƒู†ุงูŠุงุช ู…ู…ุง ูŠุญูˆู‚ ุงู„ุฑุนุฏ ูˆุงู„ุจุฑู‚ ูŠุนู†ูŠ
468
+
469
+ 118
470
+ 00:15:02,350 --> 00:15:09,590
471
+ ุดุจู‡ ุงู„ุฑุนุฏ ูˆุงู„ุจุฑู‚ ุจุงู„ุฅู†ุณุงู† ุงู„ุญุงุฆู‚ูˆุญุฐู ุงู„ู…ุดุจู‡ ุจู‡ ูˆู‡ูˆ
472
+
473
+ 119
474
+ 00:15:09,590 --> 00:15:16,310
475
+ ุงู„ุฅู†ุณุงู† ูˆุฃุชู‰ ุจุดูŠุก ู…ู† ู„ูˆุงุฒู…ู‡ ูˆู‡ูˆ ูŠุญูˆูƒ ุนู„ู‰ ุณุจูŠู„
476
+
477
+ 120
478
+ 00:15:16,310 --> 00:15:23,770
479
+ ุงู„ุงุณุชุนุงุฑุฉ ุงู„ู…ูƒู†ูŠุฉ ุฃุธู„ ุงู„ุจู‡ุงุฑ ุชุถูŠุก ุฃูˆุฌู‡ู‡ ููŠุถูŠุก ู…ู†ู‡ุง
480
+
481
+ 121
482
+ 00:15:23,770 --> 00:15:29,550
483
+ ุงู„ุบุฑุจ ูˆุงู„ุดุฑู‚ ุฃุธู„ ุงู„ุจู‡ุงุฑ ุชุถูŠุก ุฃูˆุฌู‡ู‡ ููŠุถูŠุก ู…ู†ู‡ุง
484
+
485
+ 122
486
+ 00:15:29,550 --> 00:15:37,250
487
+ ุงู„ุบุฑุจ ูˆุงู„ุดุฑู‚ ูˆุงู„ุจู‡ุงุฑ ู‡ูˆ ุฃูŠู‡ ู‡ูˆ ูˆุฑุฏ ุงู„ู†ุฌุณุฒู‡ุฑ
488
+
489
+ 123
490
+ 00:15:37,250 --> 00:15:44,230
491
+ ุงู„ุฑูŠุงุถูŠ ุฅุฐุง ู‡ูŠ ุงุจุชุณู…ุช ุชุฏุนูˆ ููŠุณุฑุน ู†ุญูˆู‡ุง ุงู„ุฎู„ู‚ ู‡ู†ุง
492
+
493
+ 124
494
+ 00:15:44,230 --> 00:15:51,330
495
+ ุทุจุนุง ุงู„ุดุงุนุฑ ูˆุชุนู…ูŠู‚ุง ู„ุตูุงุช ุงู„ุฌู…ุงู„ูŠุฎู„ุน ุนู„ูŠู‡ุง ู…ุนุงู†ูŠ
496
+
497
+ 125
498
+ 00:15:51,330 --> 00:15:59,050
499
+ ุฅู†ุณุงู†ูŠุฉ ูŠุนู†ูŠ ูŠุคู†ุณ ุงู„ุทุจูŠุนุฉ ูŠุนู†ูŠ ูŠู…ู†ุญู‡ุง ู…ุนุงู†ูŠ ูˆุตูุงุช
500
+
501
+ 126
502
+ 00:15:59,050 --> 00:16:06,010
503
+ ุฅู†ุณุงู†ูŠุฉ ูุงู„ุงุจุชุณุงู… ู„ุง ูŠูƒูˆู† ุฅู„ุง ู„ู„ุฅู†ุณุงู† ูˆู„ูƒู†ู‡ ุฃูŠ
504
+
505
+ 127
506
+ 00:16:06,010 --> 00:16:14,030
507
+ ุงู„ุดุงุนุฑ ุฎู„ุนู‡ ู„ุธู‡ุฑ ุงู„ุฑูŠุงุถ ูู‚ุงู„ ุธู‡ุฑ ุงู„ุฑูŠุงุถ ุฅุฐุง ู‡ูŠ
508
+
509
+ 128
510
+ 00:16:14,030 --> 00:16:18,490
511
+ ุงุจุชุณู…ุช ุชุฏุนูˆ ููŠุณุฑุน ู†ุญูˆู‡ุง ุงู„ุฎู„ู‚
512
+
513
+ 129
514
+ 00:16:21,850 --> 00:16:32,090
515
+ ูุชุธู„ ุชู†ุทู‚ ูˆู‡ูŠ ุณุงูƒุชุฉ ุฅู† ุงู„ุฑูŠุงุถุฉ ุณูƒูˆุชู‡ุง ู†ุทู‚ ูุงู„ุฑูŠุงุถุฉ
516
+
517
+ 130
518
+ 00:16:32,090 --> 00:16:39,290
519
+ ุฅู†ู…ุง ุชุชูƒู„ู… ุจู…ุธุงู‡ุฑู‡ุง ุงู„ู…ุดุงู‡ุฏุฉ
520
+
521
+ 131
522
+ 00:16:40,740 --> 00:16:47,220
523
+ ุงู„ุฑูŠุงุถุฉ ู„ุง ุชุชูƒู„ู… ุฅู†ู…ุง ุชุชูƒู„ู… ุจุฃุฒู‡ุงุฑู‡ุง ูˆุฃุดูƒุงู„ู‡ุง
524
+
525
+ 132
526
+ 00:16:47,220 --> 00:16:54,300
527
+ ุงู„ู‡ู†ุฏุณูŠุฉ ุงู„ุฌู…ูŠู„ุฉ ุฅู† ุงู„ุฑูŠุงุถุฉ ุณูƒูˆุชู‡ุง ู†ุทู‚ู‡ุง ุจู…ุนู†ู‰
528
+
529
+ 133
530
+ 00:16:54,300 --> 00:17:02,440
531
+ ุฃู†ู‡ุง ุจู„ุบุช ุฏุฑุฌุฉ ุนุงู„ูŠุฉ ู…ู† ุงู„ุฌู…ุงู„ ุจุญูŠุซ ูŠุนู†ูŠ ุฃู†ู‡ุง ูŠุนู†ูŠ
532
+
533
+ 134
534
+ 00:17:02,440 --> 00:17:13,390
535
+ ุชุนุจุฑ ุนู† ุฌู…ุงู„ู‡ุง ุฏูˆู† ุฅุญุฏุงุซ ูƒู„ุงู… ู…ู†ุทูˆู‚ู .. ูุณูƒูˆุชู‡ุง
536
+
537
+ 135
538
+ 00:17:13,390 --> 00:17:24,090
539
+ ุงู†ู…ุง ูŠุนุจุฑ ุนู† ุฌู…ุงู„ ูˆ ุญุณู† ุฑุงุฆุน ุงู† ุงู„ุฑูŠุงุถุฉ ุณูƒูˆุชู‡ุง
540
+
541
+ 136
542
+ 00:17:24,090 --> 00:17:31,370
543
+ ู†ุทูู‡ ูˆ ูƒู…ุง ู‚ุงู„ ุงู„ู…ุชู†ุจูŠ ูƒู…ุง
544
+
545
+ 137
546
+ 00:17:31,370 --> 00:17:38,670
547
+ ู‚ุงู„ ุงู„ู…ุชู†ุจูŠ ููŠ ููŠ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน
548
+
549
+ 138
550
+ 00:17:42,370 --> 00:17:49,870
551
+ ูƒู…ุง ู‚ุงู„ ูˆู†ุณูŠุชู‡ ู‡ุฐุง ุงู„ุจูŠุช ู„ุนู„ูŠ ุฃุฐูƒุฑู‡ ุจุนุฏ ู‚ู„ูŠู„
552
+
553
+ 139
554
+ 00:17:49,870 --> 00:17:54,490
555
+ ูู†ู„ุงุญุธ
556
+
557
+ 140
558
+ 00:17:54,490 --> 00:18:00,410
559
+ ุฃู† ุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ุจูุถู„ ุงู„ุชุทูˆุฑ ุงู„ุนู„ู…ูŠ ู‚ุฏ ูˆุตู„ ุฅู„ู‰
560
+
561
+ 141
562
+ 00:18:00,410 --> 00:18:06,050
563
+ ุฏุฑุฌุฉ ุนุงู„ูŠุฉ ู…ู† ุงู„ุชููƒูŠุฑ ุณุงุนุฏู‡ ููŠ ุฃู† ูŠู‚ู ููŠ ู‡ุฐู‡
564
+
565
+ 142
566
+ 00:18:06,050 --> 00:18:09,830
567
+ ุงู„ู…ูˆุงู‚ู ุงู„ุฑุงุฆุนุฉ ู…ู† ุงู„ุทุจูŠุนุฉ
568
+
569
+ 143
570
+ 00:18:13,950 --> 00:18:20,590
571
+ ูˆ ู†ุฐูƒุฑ ุทุจุนุง ููŠ ู‡ุฐุง ุงู„ุณูŠุงู‚ ุงู„ุจูŠุช ุงู„ู…ุชู†ุจูŠ ุงู„ุฐูŠ ูŠู‚ูˆู„
572
+
573
+ 144
574
+ 00:18:20,590 --> 00:18:27,210
575
+ ูˆููŠ ุงู„ู†ูุณ ุญุงุฌุงุช ูˆููŠูƒ ูุทุงู†ุฉ ุณูƒูˆุชูŠ ุจูŠุงู† ุนู†ุฏู‡ุง ูˆุฎุทุงุจ
576
+
577
+ 145
578
+ 00:18:27,210 --> 00:18:33,550
579
+ ุฐู„ูƒ ุฃู† ุงู„ุดูŠุก ุงู„ุฐูŠ ุฃู‚ุตุฏู‡ ุฃู† ุงู„ู…ุนู†ู‰ ุฅุฐุง ูˆุตู„ ุฅู„ู‰ ุฃุนู„ู‰
580
+
581
+ 146
582
+ 00:18:33,550 --> 00:18:40,150
583
+ ุงู„ุฏุฑุฌุงุช ุฑุจู…ุง ุชุนุฌุฒ ุนู†ู‡ ุงู„ู„ุบุฉ ููŠุชูˆู‚ู ุงู„ู†ุทู‚ ูˆู„ูŠุณ ู…ุนู†ู‰
584
+
585
+ 147
586
+ 00:18:40,150 --> 00:18:46,970
587
+ ุชูˆู‚ู ุงู„ู†ุทู‚ู„ุฃู† ุงู„ู…ุนู†ู‰ ู‚ุฏ ุชูˆู‚ูุŒ ู„ุฃ ุงู„ู…ุนู†ู‰ ู‚ุฏ ุงู†ุทู„ู‚ุŒ
588
+
589
+ 148
590
+ 00:18:46,970 --> 00:18:53,230
591
+ ุงู†ุทู„ุงู‚ ููˆู‚ ุงู„ุฏู„ุงู„ุฉ ุงู„ุญู‚ูŠู‚ูŠุฉุŒ ูŠุนู†ูŠ ูŠุฒุฏุงุฏ ุงู†ุทู„ุงู‚ู‹ุงุŒ
592
+
593
+ 149
594
+ 00:18:53,230 --> 00:19:00,150
595
+ ุฅู† ุงู„ุฑูŠุงุถุฉ ุณูƒูˆุชู‡ุง ู†ุทู‚ู‡ุŒ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ุณูƒูˆุช ู‡ูˆ ุญุฑูƒุฉ
596
+
597
+ 150
598
+ 00:19:00,150 --> 00:19:05,610
599
+ ู„ู„ู…ุนู†ู‰ ุฃูŠุถู‹ุงุŒ ู„ุฃู† ุงู„ู…ุนู†ู‰ ุฃุฌู…ู„ุŒ
600
+
601
+ 151
602
+ 00:19:05,610 --> 00:19:12,330
603
+ ู„ุฃู† ุงู„ุชุนุจูŠุฑ ุจู„ุบุฉ ุงู„ุฌุณุฏุฃุนู…ู‚ ู…ู† ุงู„ุชุนุจูŠุฑ ุงู„ู„ุบูˆูŠ
604
+
605
+ 152
606
+ 00:19:12,330 --> 00:19:18,190
607
+ ุงู„ู…ุจุงุดุฑ ู„ู…ุงุฐุงุŸ ู„ุฃู† ุงู„ุชุนุจูŠุฑ ุจุฌุฒุก ู…ู† ุงู„ุชุฌุฑุจุฉ ุฃุนู…ู‚
608
+
609
+ 153
610
+ 00:19:18,190 --> 00:19:23,190
611
+ ูˆุฃุฐู„ ู‡ุฐุง ูˆ ุจุงู„ู„ู‡ ุงู„ุชูˆููŠู‚ ูˆ ุตู„ู‰ ุงู„ู„ู‡ู… ุนู„ู‰ ู†ุจูŠู†ุง
612
+
613
+ 154
614
+ 00:19:23,190 --> 00:19:27,810
615
+ ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ุง ูƒุซูŠุฑุง
616
+
PL9fwy3NUQKwbS_QZegOAP2gYU5-t1nRM-/WLq6UsdptII_raw.srt ADDED
@@ -0,0 +1,432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ 00:00:05,200 --> 00:00:08,960
3
+ ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ูˆุฃุตู„ูŠ ูˆุณู„ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ
4
+
5
+ 2
6
+ 00:00:08,960 --> 00:00:13,420
7
+ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡ ูˆุณู„ู… ุชุณู„ูŠู…ู‹ุง ูƒุซูŠุฑู‹ุง ู…ูˆุถูˆุน ู‡ุฐู‡
8
+
9
+ 3
10
+ 00:00:13,420 --> 00:00:18,320
11
+ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุชุฌุฏูŠุฏ ููŠ ู‚ุตูŠุฑุฉ ุงู„ูุฎุฑ ููŠ ุงู„ุนุตุฑ ุงู„ุนุจุงุณูŠ
12
+
13
+ 4
14
+ 00:00:18,320 --> 00:00:26,040
15
+ ุงู„ู…ู„ุงุญุธ ุฃู† ุงู„ูุฎุฑ ุงู„ู‚ุจู„ูŠ ุถุนู ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ู„ู„ุฃุณุจุงุจ
16
+
17
+ 5
18
+ 00:00:26,040 --> 00:00:34,050
19
+ ุงู„ุชุงู„ูŠุฉ ุถุนู ุงู„ุญู…ูŠุฉ ุงู„ุนุฑุจูŠุฉู„ุฃู† ุงู„ุญุถูˆุฑ ุงู„ูุงุฑุณูŠ ุงู„ุฐูŠ
20
+
21
+ 6
22
+ 00:00:34,050 --> 00:00:40,750
23
+ ูƒุงู† ุจุณุจุจ ุฃู† ู‡ุฐู‡ ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ู‚ุฏ ู†ุดุฃุช ุนู„ู‰ ุฃูƒุชุงู
24
+
25
+ 7
26
+ 00:00:40,750 --> 00:00:49,870
27
+ ุงู„ูุฑุณ ู‚ุฏ ู…ู†ุญ ุงู„ูุฑุณ ุฃู† ูŠุชุญูƒู…ูˆุง ููŠ ู…ูุงุตู„ ุงู„ุฏูˆู„ุฉ ูˆุฃู†
28
+
29
+ 8
30
+ 00:00:49,870 --> 00:00:54,990
31
+ ูŠุทุจุนูˆุง ุงู„ุฏูˆู„ุฉ ุงู„ุนุจุงุณูŠุฉ ุจุทุงุจุน ูุงุฑุณูŠ ูุจุฏุช ุงู„ุฏูˆู„ุฉ
32
+
33
+ 9
34
+ 00:00:54,990 --> 00:01:01,090
35
+ ูˆุงู„ุญูŠุงุฉ ุงู„ูŠูˆู…ูŠุฉูˆุดุคูˆู† ุงู„ุฅุฏุงุฑุฉ ูƒู…ุง ู„ูˆ ูƒุงู†ุช ุฏูˆู„ุฉ
36
+
37
+ 10
38
+ 00:01:01,090 --> 00:01:09,610
39
+ ูุงุฑุณูŠุฉ ู…ู…ุง ุฃุถุนู ุงู„ุญู…ูŠุฉ ูˆุงู„ุชุญู…ุณ ู„ู„ุฃุฎู„ุงู‚ ุงู„ุนุฑุจูŠุฉ
40
+
41
+ 11
42
+ 00:01:09,610 --> 00:01:16,470
43
+ ุงู„ุณุจุจ ุงู„ุซุงู†ูŠ ุถุนู ุณู„ุทุงู† ุงู„ู‚ุจูŠู„ุฉ ุนู„ู‰ ุงู„ุฃุฎู„ุงู‚ ุงู„ูุฑุฏูŠุฉ
44
+
45
+ 12
46
+ 00:01:16,470 --> 00:01:21,890
47
+ ูˆุงู„ุฐุงุชูŠุฉ ูู…ู† ุงู„ู…ุนู„ูˆู… ุฃู† ุงู„ู‚ุจูŠู„ุฉ ูƒุงู† ู„ู‡ุง ุณู„ุทุงู† ููŠ
48
+
49
+ 13
50
+ 00:01:21,890 --> 00:01:29,440
51
+ ุงู„ุนุตุฑ ุงู„ุฌุงู‡ู„ูŠ ุนู„ู‰ ุฃุจู†ุงุฆู‡ุงูˆุฃูŠ ุฅู†ุณุงู† ุชูƒุซุฑ ุฌุฑุงุฆุฑู‡
52
+
53
+ 14
54
+ 00:01:29,440 --> 00:01:35,620
55
+ ูˆุชุณูˆุก ุฃุฎู„ุงู‚ู‡ ูƒุงู†ุช ุงู„ู‚ุจูŠู„ุฉ ุชู„ูุธู‡ ูˆู‚ุฏ ุนุจู‘ุฑ ุทุฑู ู…ู†
56
+
57
+ 15
58
+ 00:01:35,620 --> 00:01:40,920
59
+ ุงู„ุนุจุฏ ุนู† ุฐู„ูƒ ุจู‚ูˆู„ู‡ ุฅู„ู‰ ุฃู† ุชุญู…ุชู†ูŠ ุงู„ุนุดูŠุฑุฉ ูƒู„ู‡ุง
60
+
61
+ 16
62
+ 00:01:40,920 --> 00:01:46,900
63
+ ูˆุฃูุฑุฏุช ุฃูุฑุงุฏ ุงู„ุจุงุนูŠุฑ ุงู„ู…ุนุจุฏูŠู†ุฅู„ู‰ ุฃู† ุชุญู…ุชู†ูŠ ูŠุนู†ูŠ
64
+
65
+ 17
66
+ 00:01:46,900 --> 00:01:53,580
67
+ ุงุฑุชูƒุจ ู…ู† ุงู„ุฃุฎุทุงุก ูˆุงู„ุณู„ูˆูƒูŠุงุช ุงู„ุณูŠุฆุฉ ุงู„ุชูŠ ุฃุฏุช ุฅู„ู‰ ุฃู†
68
+
69
+ 18
70
+ 00:01:53,580 --> 00:02:00,140
71
+ ุชุจุชุนุฏ ุงู„ู‚ุจูŠู„ุฉ ุนู†ู‡ ูˆุฃู† ุชูุฑุฏู‡ ูƒู…ุง ุชูุฑุฏ ุงู„ุจุนูŠุฑ ุงู„ุฐูŠ
72
+
73
+ 19
74
+ 00:02:00,140 --> 00:02:07,000
75
+ ุจูŠู‡ ุฌุฑุจ ูƒุงู†ุช ุงู„ุนุฑุจ ุชูุฑุฏ ุงู„ู‚ุจู„ ุงู„ุชูŠ ุจูŠู‡ุง ุฌุฑุจ ููŠ
76
+
77
+ 20
78
+ 00:02:07,000 --> 00:02:13,940
79
+ ู…ูƒุงู† ุฎุงุต ุญุชู‰ ู„ุง ูŠุฎุชู„ุทู‡ ูˆูŠู†ุชุดุฑ ุงู„ู…ุฑุถ ููŠ ุบูŠุฑู‡ุง ู…ู†
80
+
81
+ 21
82
+ 00:02:13,940 --> 00:02:21,950
83
+ ุงู„ู‚ุจู„ุงู„ุดูŠุก ุงู„ุซุงู„ุซ ุงุนุชู…ุงุฏ ุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ุนู„ู‰ ู…ูˆุงู‡ุจู‡
84
+
85
+ 22
86
+ 00:02:21,950 --> 00:02:28,770
87
+ ูˆุฃุฎู„ุงู‚ู‡ ุงู„ุฐุงุชูŠุฉ ุฏูˆู† ุฃุฎู„ุงู‚ ุงู„ู‚ุจูŠู„ุฉ ูู‚ุงู„ ุงุจู† ุงู„ู…ุนุชุฒ
88
+
89
+ 23
90
+ 00:02:28,770 --> 00:02:36,650
91
+ ู„ุง ุฃุดุฑุจ ุงู„ู…ุงุก ุฅู„ุง ูˆู‡ูˆ ู…ู†ุฌุฑุฏ ู…ู† ุงู„ู‚ุฐุง ูˆู„ุบูŠุฑูŠ ุงู„ุดูˆุจ
92
+
93
+ 24
94
+ 00:02:36,650 --> 00:02:43,710
95
+ ูˆุงู„ุฑู†ู‚ ุนุฒู…ูŠ ุญุณุงู… ูˆู‚ู„ุจูŠ ู„ุง ูŠุฎุงู„ูู‡ ุฅุฐุง ุชุฎุงุตู… ุนุฒู…
96
+
97
+ 25
98
+ 00:02:43,710 --> 00:02:51,820
99
+ ุงู„ู…ุฑุก ูˆุงู„ูุฑู‚ูุงู„ุดุงุนุฑ ูŠูุชุฎุฑ ุจุฃู†ู‡ ุตุงุญุจ ุฅุฑุงุฏุฉ ูˆุนุฒูŠู…ุฉ
100
+
101
+ 26
102
+ 00:02:51,820 --> 00:02:56,600
103
+ ูˆู„ู… ูŠูุชุฎุฑ ุจุฃุฎู„ุงู‚ูŠ ุงู„ู‚ุจูŠู„ุฉ ูƒู…ุง ูƒุงู† ูŠูุนู„ ุงู„ุดุนุฑุงุก
104
+
105
+ 27
106
+ 00:02:56,600 --> 00:03:06,920
107
+ ุงู„ุฌุงู‡ู„ูŠูˆู† ุฃูŠุถู‹ุง ู…ู† ุงู„ุฃุณุจุงุจ ุงู„ุชูŠ ุฃุฏุช ุฅู„ู‰ ุถุนู ุงู„ูุฎุฑ
108
+
109
+ 28
110
+ 00:03:06,920 --> 00:03:13,360
111
+ ุงู„ู‚ุจู„ูŠ ุฃู† ุงู„ุฃุฎู„ุงู‚ ุงุฑุชุจุทุช ุจุงู„ุญุงู„ ู„ุง ุจุงู„ุตูุฉ ุงู„ุซุงุจุชุฉ
112
+
113
+ 29
114
+ 00:03:14,230 --> 00:03:20,810
115
+ ูŠุนู†ูŠ ุงุฑุชุจุท ุจุงู„ู…ุตุงู„ุญ ู„ุง ุจุงู„ู…ุจุงุฏุฆูˆ ูŠุจุฏูˆ ุงู„ุฃู…ุฑ ูƒู…ุง ู„ูˆ
116
+
117
+ 30
118
+ 00:03:20,810 --> 00:03:25,950
119
+ ูƒุงู† ุณูŠุงุณุฉ ูุฅุฐุง ูƒุงู†ุช ุงู„ุฃุฎู„ุงู‚ ููŠ ุชุญู„ูŠู„ู‡ุง ุงู„ู†ู‡ุงุฆูŠ
120
+
121
+ 31
122
+ 00:03:25,950 --> 00:03:33,130
123
+ ุชู‡ุฏู ุฅู„ู‰ ุงู„ุชุถุญูŠุฉ ูุฅู† ุงู„ุณูŠุงุณุฉ ุชู‡ุฏู ุฅู„ู‰ ุงู„ู…ุตู„ุญุฉ
124
+
125
+ 32
126
+ 00:03:33,130 --> 00:03:39,550
127
+ ูุบุงูŠุฉ ุงู„ุณูŠุงุณุฉ ุงู„ุญุตูˆู„ ุนู„ู‰ ุงู„ู…ุตุงู„ุญ ุฃู…ุง ุงู„ุฃุฎู„ุงู‚ ูู‡ูŠ
128
+
129
+ 33
130
+ 00:03:39,550 --> 00:03:47,950
131
+ ุชู‚ุฏู… ุงู„ุชุถุญูŠุฉ ุจุงู„ู…ุงู„ ุฃูˆ ุงู„ู†ูุณูุงุฑุชุจุทุช ุงู„ุฃุฎู„ุงู‚
132
+
133
+ 34
134
+ 00:03:47,950 --> 00:03:56,370
135
+ ุจุงู„ู…ุตุงู„ุญ ูˆุงู„ุฃุญูˆุงู„ ู„ุง ุจุงู„ุตูุฉ ุงู„ุซุงุจุชุฉ ูƒู…ุง ูƒุงู† ุนู†ุฏ
136
+
137
+ 35
138
+ 00:03:56,370 --> 00:04:03,170
139
+ ุฃุฎู„ุงู‚ ุงู„ุนุฑุจ ููŠ ุงู„ุฌุงู‡ุฑูŠุฉ ูˆุฅู†ูŠ ู„ุฐูˆ ุญู„ู… ุนู„ู‰ ุฃู† ุซูˆุฑุชูŠ
140
+
141
+ 36
142
+ 00:04:03,170 --> 00:04:10,170
143
+ ุฅุฐุง ู‡ุฒู†ูŠ ู‚ูˆู… ุญู…ูŠุช ุจู‡ุง ุนุฑุถูŠ ูˆุฅู†ูŠ ู„ุฃุฌุฒูŠ ุจุงู„ูƒุฑุงู…ุฉ
144
+
145
+ 37
146
+ 00:04:10,170 --> 00:04:18,300
147
+ ุฃู‡ู„ู‡ุง ูˆุจุงู„ุญู‚ุฏ ุญู‚ุฏุง ููŠ ุงู„ุดุฏุงุฆุฏ ูˆุงู„ุฎูุถูŠุฃูุชุฎุฑ ุจุฃู†ู‡ ุฐูˆ
148
+
149
+ 38
150
+ 00:04:18,300 --> 00:04:26,020
151
+ ุญู„ู… ู„ูƒู†ู‡ ูŠุบุถุจ ูˆู‡ุฐุง ุงู„ุบุถุจ ุฅู†ู…ุง ูŠุญู…ูŠ ุจู‡ ุนุฑุถู‡ ุฅุฐุง
152
+
153
+ 39
154
+ 00:04:26,020 --> 00:04:32,200
155
+ ุงู†ุชู‡ูƒ ูˆุฅู†ูŠ ู„ุง ุฃุฌุฒูŠ ุจุงู„ูƒุฑุงู…ุฉ ุฃู‡ู„ู‡ุง ูˆุจุงู„ุญู‚ุฏ ุญู‚ุฏุง ููŠ
156
+
157
+ 40
158
+ 00:04:32,200 --> 00:04:39,460
159
+ ุงู„ุดุฏุงุฆุฏ ูˆุงู„ุฎูุถ ูู‡ูˆ ูˆู‡ู†ุง ู…ูˆุทู† ุงู„ุดุงู‡ุฏ ุฃู†ู‡ ูŠุฌุฒูŠ
160
+
161
+ 41
162
+ 00:04:39,460 --> 00:04:47,480
163
+ ุงู„ูƒุฑุงู…ุฉ ู„ุฃู‡ู„ ุงู„ูƒุฑุงู…ุฉูˆูŠุจุงุฏู„ ุงู„ุญู‚ุฏ ุจุงู„ุญู‚ุฏ ููŠ ุฃูˆู‚ุงุช
164
+
165
+ 42
166
+ 00:04:47,480 --> 00:04:52,760
167
+ ุงู„ุดุฏุฉ ูˆุฃูˆู‚ุงุช ุงู„ุฑุฎุงุก ูุงู„ุฃุฎู„ุงู‚ ู‡ู†ุง ู‚ุงุฆู…ุฉ ุนู„ู‰
168
+
169
+ 43
170
+ 00:04:52,760 --> 00:04:59,040
171
+ ุงู„ุชุจุงุฏู„ูŠุฉ ูˆู„ูŠุณ ุนู„ู‰ ู…ุจุฏุฃ ุงู„ุทุฑุญู‡ุง ูู‡ูˆ ูŠู‚ุงุจู„ ุฎู„ู‚ุง
172
+
173
+ 44
174
+ 00:04:59,040 --> 00:05:08,570
175
+ ุจุฎู„ู‚ูˆู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุตุงู„ุญ ู‡ุฐู‡ ู‡ูŠ ุงู„ุชุจุงุฏู„ูŠุฉ ูˆู‡ุฐุง ู‡ูˆ ู…ู„ุฎุต
176
+
177
+ 45
178
+ 00:05:08,570 --> 00:05:13,390
179
+ ูˆุงู„ุชุญู„ูŠู„ ุงู„ู†ู‡ุงุฆูŠ ู„ู„ุณูŠุงุณุฉ ูุงู„ุณูŠุงุณุฉ ุชู‚ูˆู… ุนู„ู‰
180
+
181
+ 46
182
+ 00:05:13,390 --> 00:05:18,970
183
+ ุงู„ุชุจุงุฏู„ูŠุฉ ููŠ ุงู„ู…ุตุงู„ุญ ุฃู…ุง ุงู„ุฃุฎู„ุงู‚ ูุชู‚ูˆู… ุนู„ู‰ ุงู„ุชุถุญูŠุฉ
184
+
185
+ 47
186
+ 00:05:18,970 --> 00:05:24,310
187
+ ุฅุฐ ุงู„ูˆุงุฌุจ ุฃุฎู„ุงู‚ูŠุง ู‡ู†ุง ุฃู† ูŠู‚ุงุจู„ ุงู„ุญู‚ุฏ ุจุงู„ุนููˆ
188
+
189
+ 48
190
+ 00:05:24,310 --> 00:05:32,070
191
+ ูˆุงู„ุชุณุงู…ุญ ูˆุงู„ุฅุญุณุงู† ูู‡ุฐุง ู‡ูˆ ุงู„ู…ู†ู‡ุฌ ุงู„ุฃุฎู„ุงู‚ูŠุฃูŠุถู‹ุง ู…ู†
192
+
193
+ 49
194
+ 00:05:32,070 --> 00:05:38,490
195
+ ุทุจุนู‹ุง ุฅุญู†ุง ููŠ ุงู„ุนุตุฑ ุงู„ุฌุงู‡ู„ูŠ ูŠุนู†ูŠ ูˆุฌุฏู†ุง ุฃู† ุงู„ุดุงุนุฑ
196
+
197
+ 50
198
+ 00:05:38,490 --> 00:05:48,610
199
+ ูŠูุชุฎุฑ ุจุงู„ุฃุฎู„ุงู‚ ููŠ ุงู„ุตูุฉ ุงู„ุณุงุจู‚ุฉ ุฏูˆู† ุงู„ู…ุตู„ุญุฉ ุฃูˆ ุฏูˆู†
200
+
201
+ 51
202
+ 00:05:48,610 --> 00:05:54,980
203
+ ุฃู† ุชุฑุชุจุท ุจุงู„ุญุงู„ููŠู‚ูˆู„ ุทุฑู ุงุจู† ุงู„ุนุจุฏ ู†ุญู† ููŠ ุงู„ู…ุดุชุงุช
204
+
205
+ 52
206
+ 00:05:54,980 --> 00:06:00,860
207
+ ู†ุฏุนูˆ ุงู„ุฌูู„ุฉ ู„ุง ุชุฑู‰ ุงู„ุฃุงุฏุจ ููŠู†ุง ูŠู†ุชู‚ุฑูˆุง ูุงู„ุฃุฎู„ุงู‚
208
+
209
+ 53
210
+ 00:06:00,860 --> 00:06:04,260
211
+ ู„ู…ุฌุฑุฏ ุงู„ุฃุฎู„ุงู‚ ู†ุญู† ููŠ ุงู„ู…ุดุชุงุช ูŠุนู†ูŠ ููŠ ูˆู‚ุช ุงู„ุดุชุงุก
212
+
213
+ 54
214
+ 00:06:04,260 --> 00:06:10,100
215
+ ุญูŠุซ ูŠุญุชุงุฌ ุงู„ู†ุงุณ ุฅู„ู‰ ุงู„ุทุนุงู… ูƒู†ุง ู†ุฏุนูˆ ุงู„ู†ุงุณ ุนุงู…ุฉ ูˆู„ุง
216
+
217
+ 55
218
+ 00:06:10,100 --> 00:06:18,280
219
+ ุชุฑู‰ ููŠู†ุง ุงู„ุฃุงุฏุจ ุงู„ุฐูŠ ูŠุนู†ูŠ ูŠุฏุนูˆ ุฅู„ู‰ ุงู„ุทุนุงู… ู„ุง ูŠู†ุชู‚ุฑ
220
+
221
+ 56
222
+ 00:06:18,280 --> 00:06:21,600
223
+ ูˆู„ุง ูŠุฎุต ู‚ูˆู…ุง ุฏูˆู† ุขุฎุฑูŠู†
224
+
225
+ 57
226
+ 00:06:29,850 --> 00:06:34,910
227
+ ุฃูŠุถู‹ุง ู…ู† ุงู„ุชุฌุฏูŠุฏ ุฃู†ู†ุง ูˆุฌุฏู†ุง ุงู„ุดุงุนุฑ ุนุจุงุณูŠ ูŠุนูŠุฏ
228
+
229
+ 58
230
+ 00:06:34,910 --> 00:06:41,010
231
+ ุฅู†ุชุงุฌ ุงู„ุตูˆุฑุฉ ุงู„ู‚ุฏูŠู…ุฉ ู„ู„ู‚ูŠู…ุฉ ุงู„ุฎู„ู‚ูŠุฉ ูู…ุซู„ู‹ุง ูŠู‚ูˆู„
232
+
233
+ 59
234
+ 00:06:41,010 --> 00:06:47,890
235
+ ุฃุจูˆ ุจูƒุฑ ุงู„ู†ุทุงุญ ูˆู…ู† ูŠูุชู‚ุฑ ู…ู†ุง ูŠุนุด ุจุญุณุงู…ู‡ ูˆู…ู† ูŠูุชู‚ุฑ
236
+
237
+ 60
238
+ 00:06:47,890 --> 00:06:55,090
239
+ ู…ู† ุณุงุฆุฑ ุงู„ู†ุงุณ ูŠุณุฃู„ูŠ ูˆุฅู†ุง ู„ู†ู„ู‡ ุจุงู„ุณูŠูˆู ูƒู…ุง ู„ู‡ุฏ ูุชุงุฉ
240
+
241
+ 61
242
+ 00:06:55,090 --> 00:07:02,090
243
+ ุจุนู‚ุฏ ุฃูˆ ุซุฎุงุจ ู‚ุฑู†ูู„ุงู„ุจูŠุช ุงู„ุฃูˆู„ ูŠุจุฏูˆ ูƒู…ุง ู„ูˆ ูƒุงู†
244
+
245
+ 62
246
+ 00:07:02,090 --> 00:07:09,830
247
+ ุดุงุนุฑุง ุฌุงู‡ู„ูŠุง ูู‡ูˆ ุนู†ุฏู…ุง ูŠูุชูƒุฑูŠุนุชู…ุฏูˆุง ุนู„ู‰ ุงู„ู‚ูˆุฉ
248
+
249
+ 63
250
+ 00:07:09,830 --> 00:07:17,150
251
+ ุงู„ุจุงุทุดุฉ ู„ู„ุญุตูˆู„ ุนู„ู‰ ุงู„ุบู†ู‰ ุจูŠู†ู…ุง ุงู„ุขุฎุฑูˆู† ู„ุง ูŠู‚ุฏุฑูˆู†
252
+
253
+ 64
254
+ 00:07:17,150 --> 00:07:21,510
255
+ ุนู„ู‰ ุงุณุชุนู…ุงู„ ู‡ุฐู‡ ุงู„ู‚ูˆุฉ ููŠ ุชุญุตูŠู„ ุงู„ุบู†ู‰ ููŠู…ุงุฑุณูˆู†
256
+
257
+ 65
258
+ 00:07:21,510 --> 00:07:28,030
259
+ ุงู„ุฐู„ุฉ ูˆุงู„ู…ู‡ุงู†ุฉ ูˆุงู„ุณุคุงู„ ููŠ ุชุญุตูŠู„ ุงู„ุฑุฒู‚ ูˆุฅู† ู„ู†ู„ู‡ูˆุง
260
+
261
+ 66
262
+ 00:07:28,030 --> 00:07:35,380
263
+ ุจุงู„ุณูŠูˆู ูƒู…ุง ู„ู‡ุช ูุชุงุฉ ุจุนู‚ุฏ ุฃูˆ ุซุฎุงุจ ู‚ุฑู†ูู„ูŠูˆู‡ุฐู‡ ุนู„ุงู…ุฉ
264
+
265
+ 67
266
+ 00:07:35,380 --> 00:07:43,260
267
+ ุดุฌุงุนุชู†ุง ูู†ุญู† ู†ู„ุนุจ ุจุงู„ุณูŠูˆู ูˆู†ู„ู‡ูˆ ุจู‡ุง ู„ุง ู†ุฎุงู ุญู…ู„ุฉ
268
+
269
+ 68
270
+ 00:07:43,260 --> 00:07:50,260
271
+ ู‡ุฐู‡ ุงู„ุณูŠูˆู ุงู„ุชูŠ ูŠุนู†ูŠ ุฃู†ู†ุง ุดุฌุนุงู† ูู†ุญู† ู†ู„ุนุจ ุจุงู„ุณูŠูˆู
272
+
273
+ 69
274
+ 00:07:50,260 --> 00:07:57,760
275
+ ู„ุฃู† ู„ุฏูŠู†ุง ุฅุฑุงุฏุฉ ู‚ูˆูŠุฉ ูˆุตุงุฏู‚ุฉ ูˆู„ุง ู†ุฎุด ู…ู† ุชุจุนุงุช
276
+
277
+ 70
278
+ 00:07:57,760 --> 00:08:05,390
279
+ ุงู„ุญุฑูˆุจูู†ู„ุนุจ ูƒู…ุง ุชู„ุนุจ ุงู„ูุชุงุฉ ุงู„ุตุบูŠุฑุฉ ุญูŠู† ูŠู‡ุฏู‰ ุฅู„ูŠู‡ุง
280
+
281
+ 71
282
+ 00:08:05,390 --> 00:08:14,930
283
+ ุนู‚ุฏ ุฃูˆ ู‚ู„ุงุฏุฉ ู‚ุฑู†ูู„ ูู‡ูŠ ุชู„ู‡ูˆ ูˆุชู„ุนุจ ูˆูƒุฐู„ูƒ ู†ุญู† ู†ู„ุนุจ
284
+
285
+ 72
286
+ 00:08:14,930 --> 00:08:23,310
287
+ ุจุงู„ุณูŠูˆู ู„ุง ู†ุฎุดู‰ ุชุจุนุงุช ุงู„ุญุฑูˆุจุฃูŠุถู‹ุง ูˆุฌุฏู†ุง ุฃู† ุงู„ุดุงุนุฑ
288
+
289
+ 73
290
+ 00:08:23,310 --> 00:08:31,770
291
+ ุงู„ุนุจุงุณูŠ ูŠูุฎุฑ ุจู†ุธุงู…ู‡ ุงู„ุณูŠุงุณูŠ ูˆู‡ุฐุง ู…ุง ูƒุงู† ู…ู† ุนู„ูŠ ุจู†
292
+
293
+ 74
294
+ 00:08:31,770 --> 00:08:37,010
295
+ ุงู„ุฌู‡ู… ุญูŠู† ู…ุฏุญ ุจู†ูŠ ุงู„ุนุจุงุณ ุฅู†ู‡ ูŠูุฎุฑ ุจุงู„ุงู†ุชู…ุงุก ุฅู„ูŠู‡ู…
296
+
297
+ 75
298
+ 00:08:37,600 --> 00:08:44,180
299
+ ูู‚ุงู„ ู„ู†ุง ููŠ ุจู†ูŠ ุงู„ุนุจุงุณูŠ ุฃูƒุฑู… ุฃุณูˆุฉ ูู‡ู… ุฎูŠุฑ ุฎู„ู‚ ุงู„ู„ู‡
300
+
301
+ 76
302
+ 00:08:44,180 --> 00:08:51,620
303
+ ุทุฑู‹ุง ูˆุฃูุถู„ู‡ ู„ูŠุณุช ู„ู‡ู… ุนู†ุฏ ุงู„ู…ู‚ุงู… ุณู‚ุงูŠุฉ ู…ูƒุฑู…ุฉ ุชุฑูˆูŠ
304
+
305
+ 77
306
+ 00:08:51,620 --> 00:08:57,560
307
+ ุงู„ุญุฏูŠุฌุฉ ูˆุชูุถู„ู‡ ูุงู„ุดุงุนุฑ ุงู„ุนุจุงุณูŠ ุฃุฎุฐ ูŠูุฎุฑ ุจุงู„ู†ุธุงู…
308
+
309
+ 78
310
+ 00:08:57,560 --> 00:09:03,980
311
+ ุงู„ุณูŠุงุณูŠ ุจุฏู„ ู…ู† ุงู„ูุฎุฑ ุงู„ู‚ุจู„ูŠ ุงู„ุฐูŠ ุฑุฃูŠู†ุงู‡ ููŠ ุนุตุฑูŠ
312
+
313
+ 79
314
+ 00:09:03,980 --> 00:09:09,250
315
+ ุงู„ุฌุงู‡ู„ูˆู…ุน ุฐู„ูƒ ูุฅู† ุงู„ูุฎุฑ ุงู„ู‚ุจู„ูŠ ู„ู… ูŠู†ู‚ุฑุถ ููŠ ู‡ุฐุง
316
+
317
+ 80
318
+ 00:09:09,250 --> 00:09:15,110
319
+ ุงู„ุนุตุฑ ูู‚ุฏ ุธู„ุช ุฃุซุฑุงุจ ู…ู†ู‡ ูˆุจู‚ุงูŠุง ูˆู„ูƒู† ุนู†ุฏ ุงู„ุดุนุฑุงุก
320
+
321
+ 81
322
+ 00:09:15,110 --> 00:09:21,730
323
+ ุงู„ุฐูŠู† ูŠู†ุชู…ูˆู† ุฅู„ู‰ ุฃุตูˆู„ ุนุฑุจูŠุฉ ู…ุซู„ ุนู„ูŠู… ุงู„ุฌู‡ู… ูู‡ูˆ
324
+
325
+ 82
326
+ 00:09:21,730 --> 00:09:28,810
327
+ ู‚ุฑุง๏ฟฝ๏ฟฝูŠ ูŠู†ุชู…ูŠ ุฅู„ู‰ ู‚ุจูŠู„ุฉ ุนุฑูŠู‚ุฉูˆู‡ูŠ ู‚ุฑูŠุด ูู‚ุงู„ ุฃุจุช ู„ูŠ
328
+
329
+ 83
330
+ 00:09:28,810 --> 00:09:36,970
331
+ ู‚ุฑูˆู… ุฃู†ุฌุจุชู†ูŠ ุฃู† ุฃุฑู‰ ูˆุฅู† ุฌู„ ุฎุทุจ ุฎุงุดุนุง ุฃุชุถุฌุฑูˆุง ุฃูˆู„ุฆูƒ
332
+
333
+ 84
334
+ 00:09:36,970 --> 00:09:44,090
335
+ ุขู„ ุงู„ู„ู‡ ุชู‡ุฑ ุจู† ู…ุงู„ูƒ ุจู‡ู… ูŠุฌุจุฑ ุงู„ุนุธู… ุงู„ูƒุซูŠุฑ ูˆูŠูƒุณุฑูˆุง
336
+
337
+ 85
338
+ 00:09:44,090 --> 00:09:51,170
339
+ ู‡ู… ุงู„ู…ู†ูƒุจ ุงู„ุนุงู„ูŠ ุนู„ู‰ ูƒู„ ู…ู†ูƒุจ ุณูŠูˆูู‡ู… ุชูู†ูŠ ูˆุชุบู†ูŠ
340
+
341
+ 86
342
+ 00:09:51,170 --> 00:09:59,340
343
+ ูˆุชูู‚ุฑุฃุจุช ู„ูŠ ู‚ุฑูˆู† ูŠุนู†ูŠ ู…ู†ุนุชู†ูŠ ุฃุตูˆู„ ู‚ูˆูŠุฉู…ู†ุนุชู†ูŠ ู…ู† ุฃู†
344
+
345
+ 87
346
+ 00:09:59,340 --> 00:10:08,120
347
+ ุฃู†ูƒุณุฑ ูˆุฃุชุฐู„ู„ ุฃู…ุงู… ุงู„ู…ุตุงุฆุจ ุงู„ุชูŠ ูŠูˆุงุฌู‡ู†ูŠ ุจูŠู‡ุง ุงู„ุฒู…ู†
348
+
349
+ 88
350
+ 00:10:08,120 --> 00:10:15,700
351
+ ูุฃู†ุง ุฃุชุตุฏู‰ ูˆุฃูˆุงุฌู‡ ู‡ุฐู‡ ุงู„ู…ุตุงุฆุจ ุจุฅุฑุงุฏุฉ ู‚ูˆูŠุฉ ูˆุจุชุญุฏ
352
+
353
+ 89
354
+ 00:10:15,700 --> 00:10:23,840
355
+ ูƒุจูŠุฑ ู„ุฃู†ู†ูŠ ุฃู†ุชู…ูŠ ุฅู„ู‰ ู‚ุจูŠู„ุฉ ุนุธูŠู…ุฉ ุฃูˆู„ุฆูƒ ุขู„ ุงู„ู„ู‡ ูู‡ุฑ
356
+
357
+ 90
358
+ 00:10:23,840 --> 00:10:31,180
359
+ ุจู† ู…ุงู„ูƒุจู‡ู… ูŠุฌุจุฑ ุงู„ุนุธู… ุงู„ูƒุซูŠุฑ ูˆูŠูƒุณุฑู‡ู… ูู‡ู… ูŠุฌุจุฑูˆู†
360
+
361
+ 91
362
+ 00:10:31,180 --> 00:10:38,940
363
+ ุงู„ุถุนูุงุก ูˆูŠูƒุณุฑูˆู† ุงู„ุนุธู…ุงุก ุงู„ุธู„ู…ุฉ ูŠุณุงุนุฏูˆู† ุงู„ูู‚ุฑุงุก
364
+
365
+ 92
366
+ 00:10:38,940 --> 00:10:48,880
367
+ ูˆูŠู†ุชุตุฑูˆู† ู„ู‡ู… ูˆูŠู†ุชุตุฑูˆู† ู…ู† ุงู„ุธุงู„ู… ูˆู…ู† ุงู„ู‚ูˆูŠ ูู‡ุฐู‡
368
+
369
+ 93
370
+ 00:10:48,880 --> 00:10:57,300
371
+ ุนู„ุงู…ุฉ ู‚ูˆุฉ ูŠูุชุฎุฑ ุจู‡ุงู‡ู… ุงู„ู…ู†ูƒุจ ุงู„ุนุงู„ูŠ ุนู„ู‰ ูƒู„ ู…ู†ูƒุจ ู‡ู…
372
+
373
+ 94
374
+ 00:10:57,300 --> 00:11:04,440
375
+ ุฃุตุญุงุจ ุงู„ู…ูƒุงู†ุฉ ุงู„ุนุงู„ูŠุฉ ุจูŠู† ุงู„ุฃู…ุงูƒู† ุงู„ุนุงู„ูŠุฉ ูˆุจูŠู†
376
+
377
+ 95
378
+ 00:11:04,440 --> 00:11:15,000
379
+ ุงู„ุฃู…ู… ูˆุงู„ู‚ุจุงุฆู„ ุงู„ุฃุฎุฑู‰ ูู…ุน ุฃู† ู‡ู†ุงูƒู…ู†ุงูุณูŠู† ูƒุซุฑ ุฅู„ุง
380
+
381
+ 96
382
+ 00:11:15,000 --> 00:11:22,220
383
+ ุฃู†ู‡ู… ู‡ู… ุงู„ุจุงุฑุฒูˆู† ุนู„ู‰ ู‡ุฐู‡ ุงู„ูƒุซุฑุฉ ูˆ ู„ุฐู„ูƒ ู‚ุงู„ ูƒู„ู‡ ุนู„ู‰
384
+
385
+ 97
386
+ 00:11:22,220 --> 00:11:28,160
387
+ ูƒู„ ู…ู†ูƒุจ ูŠุนู†ูŠ ู‡ู†ุงูƒ ู…ู†ุงูุณูˆู† ูƒุซุฑ ูˆู„ูƒู†ู‡ู… ู‡ู… ุงู„ู…ู†ูƒุจ
388
+
389
+ 98
390
+ 00:11:28,160 --> 00:11:35,360
391
+ ุงู„ุนุงู„ูŠ ูˆ ุทุจุนุง ุนู†ุฏู…ุง ูŠูƒูˆู† ุงู„ูุฎุฑ ุจูŠู† ุฃุดุฎุงุต ูˆ ู‚ุจุงุฆู„
392
+
393
+ 99
394
+ 00:11:35,360 --> 00:11:42,260
395
+ ุดุชู‰ ูŠูƒูˆู† ุฃูุถู„ ุนู†ุฏู…ุง ุชูƒูˆู† ุงู„ู‚ุจุงุฆู„ ู‚ู„ูŠู„ุฉุณูŠูˆูู‡ู… ุชูู†ูŠ
396
+
397
+ 100
398
+ 00:11:42,260 --> 00:11:49,270
399
+ ูˆุชุบู†ูŠ ูˆุชูู‚ุฑู‡ู… ุชูู†ูŠ ุงู„ุฃุนุฏุงุกูˆุชุบู†ูŠู‡ู… ุจุงู„ู…ุงู„ ุงู„ูˆุงูุฑ
400
+
401
+ 101
402
+ 00:11:49,270 --> 00:11:56,110
403
+ ูˆุชูู‚ุฑ ุงู„ุขุฎุฑูŠู† ุนู†ุฏู…ุง ูŠุณู„ุจูˆู† ุงู„ุฃู…ูˆุงู„ ุจู‚ูˆุฉ ุณูŠูˆูู‡ู…
404
+
405
+ 102
406
+ 00:11:56,110 --> 00:12:08,110
407
+ ูู†ู„ุงุญุธ ุฃู† ุงู„ูุฎุฑ ุงู„ู‚ุจู„ูŠ ูŠุนู†ูŠ ู„ุงุฒุงู„ ู…ูˆุฌูˆุฏุง ุฅุฐู† ุงู„ูุฎุฑ
408
+
409
+ 103
410
+ 00:12:08,110 --> 00:12:12,790
411
+ ุงู„ู‚ุจู„ูŠ ู„ู… ูŠู†ุชู‡ูŠ ููŠ ู‡ุฐุง ุงู„ุนุตุฑ ุฅู†ู…ุง ุธู„ุช ู…ู†ู‡ ุฃุณุฑุงุจ
412
+
413
+ 104
414
+ 00:12:12,790 --> 00:12:15,510
415
+ ูˆุจู‚ุงูŠุง
416
+
417
+ 105
418
+ 00:12:16,470 --> 00:12:21,530
419
+ ูˆู„ูƒู† ุนู†ุฏ ุฃุดุนุฑุงุก ุงู„ุฐูŠู† ูŠู†ุชู…ูˆู† ุฅู„ู‰ ุฃุตูˆุฑ ุนุฑุจูŠุฉ ุนุฑูŠู‚ุฉ
420
+
421
+ 106
422
+ 00:12:21,530 --> 00:12:28,330
423
+ ูƒุนู„ูŠ ุงุจู† ุงู„ุฌู‡ู… ูˆู‡ูˆ ู‚ุฑุงุดูŠ ู…ุนู„ูˆู… ู‡ุฐุง ู‡ูˆ ุจุงู„ู„ู‡
424
+
425
+ 107
426
+ 00:12:28,330 --> 00:12:32,230
427
+ ุงู„ุชูˆููŠู‚ ูˆุตู„ู‰ ุงู„ู„ู‡ู… ุนู„ู‰ ู†ุจูŠู†ุง ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡
428
+
429
+ 108
430
+ 00:12:32,230 --> 00:12:33,490
431
+ ูˆุณู„ู… ุชุณู„ูŠู… ุงู„ูƒุซูŠุฑ
432
+