Datasets:
Tasks:
Summarization
Modalities:
Text
Formats:
parquet
Sub-tasks:
news-articles-summarization
Languages:
English
Size:
100K - 1M
License:
File size: 8,509 Bytes
a5c4e29 aa5356f dee4e7e a5c4e29 1613f27 ef5ec90 a5c4e29 b4099d3 ef5ec90 a5c4e29 ef5ec90 a5c4e29 dee4e7e a5c4e29 aa5356f a5c4e29 dee4e7e a5c4e29 dee4e7e a5c4e29 dee4e7e a5c4e29 dee4e7e a5c4e29 dee4e7e a5c4e29 dee4e7e a5c4e29 dee4e7e 1613f27 dee4e7e a5c4e29 1613f27 dee4e7e 1613f27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""CNN/DailyMail Summarization dataset, non-anonymized version."""
import hashlib
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_HOMEPAGE = "https://github.com/abisee/cnn-dailymail"
_DESCRIPTION = """\
CNN/DailyMail non-anonymized summarization dataset.
There are two features:
- article: text of news article, used as the document to be summarized
- highlights: joined text of highlights with <s> and </s> around each
highlight, which is the target summary
"""
# The second citation introduces the source data, while the first
# introduces the specific form (non-anonymized) we use here.
_CITATION = """\
@article{DBLP:journals/corr/SeeLM17,
author = {Abigail See and
Peter J. Liu and
Christopher D. Manning},
title = {Get To The Point: Summarization with Pointer-Generator Networks},
journal = {CoRR},
volume = {abs/1704.04368},
year = {2017},
url = {http://arxiv.org/abs/1704.04368},
archivePrefix = {arXiv},
eprint = {1704.04368},
timestamp = {Mon, 13 Aug 2018 16:46:08 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/SeeLM17},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{hermann2015teaching,
title={Teaching machines to read and comprehend},
author={Hermann, Karl Moritz and Kocisky, Tomas and Grefenstette, Edward and Espeholt, Lasse and Kay, Will and Suleyman, Mustafa and Blunsom, Phil},
booktitle={Advances in neural information processing systems},
pages={1693--1701},
year={2015}
}
"""
_DL_URLS = {
"cnn_stories": "https://huggingface.co/datasets/cnn_dailymail/resolve/11343c3752184397d56efc19a8a7cceb68089318/data/cnn_stories.tgz",
"dm_stories": "https://huggingface.co/datasets/cnn_dailymail/resolve/11343c3752184397d56efc19a8a7cceb68089318/data/dailymail_stories.tgz",
"train": "https://huggingface.co/datasets/cnn_dailymail/resolve/d20aeb41b7adb5b6800fbb08a6b1a3e9d9a90060/all_train.txt",
"validation": "https://huggingface.co/datasets/cnn_dailymail/resolve/d20aeb41b7adb5b6800fbb08a6b1a3e9d9a90060/all_val.txt",
"test": "https://huggingface.co/datasets/cnn_dailymail/resolve/d20aeb41b7adb5b6800fbb08a6b1a3e9d9a90060/all_test.txt",
}
_HIGHLIGHTS = "highlights"
_ARTICLE = "article"
_SUPPORTED_VERSIONS = [
# Using local URL lists.
datasets.Version("4.0.0", "Using HuggingFace Hosted URL Lists."),
# Using cased version.
datasets.Version("3.0.0", "Using cased version."),
# Same data as 0.0.2
datasets.Version("1.0.0", ""),
# Having the model predict newline separators makes it easier to evaluate
# using summary-level ROUGE.
datasets.Version("2.0.0", "Separate target sentences with newline."),
]
_DEFAULT_VERSION = datasets.Version("4.0.0", "Using HuggingFace hosted URL lists.")
class CnnDailymailConfig(datasets.BuilderConfig):
"""BuilderConfig for CnnDailymail."""
def __init__(self, **kwargs):
"""BuilderConfig for CnnDailymail.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(CnnDailymailConfig, self).__init__(**kwargs)
def _get_url_hashes(path):
"""Get hashes of urls in file."""
urls = _read_text_file_path(path)
def url_hash(u):
h = hashlib.sha1()
try:
u = u.encode("utf-8")
except UnicodeDecodeError:
logger.error("Cannot hash url: %s", u)
h.update(u)
return h.hexdigest()
return {url_hash(u) for u in urls}
def _get_hash_from_path(p):
"""Extract hash from path."""
return os.path.splitext(os.path.basename(p))[0]
DM_SINGLE_CLOSE_QUOTE = "\u2019" # unicode
DM_DOUBLE_CLOSE_QUOTE = "\u201d"
# acceptable ways to end a sentence
END_TOKENS = [".", "!", "?", "...", "'", "`", '"', DM_SINGLE_CLOSE_QUOTE, DM_DOUBLE_CLOSE_QUOTE, ")"]
def _read_text_file_path(path):
with open(path, "r", encoding="utf-8") as f:
lines = [line.strip() for line in f]
return lines
def _read_text_file(file):
return [line.decode("utf-8").strip() for line in file]
def _get_art_abs(story_file, tfds_version):
"""Get abstract (highlights) and article from a story file path."""
# Based on https://github.com/abisee/cnn-dailymail/blob/master/
# make_datafiles.py
lines = _read_text_file(story_file)
# The github code lowercase the text and we removed it in 3.0.0.
# Put periods on the ends of lines that are missing them
# (this is a problem in the dataset because many image captions don't end in
# periods; consequently they end up in the body of the article as run-on
# sentences)
def fix_missing_period(line):
"""Adds a period to a line that is missing a period."""
if "@highlight" in line:
return line
if not line:
return line
if line[-1] in END_TOKENS:
return line
return line + " ."
lines = [fix_missing_period(line) for line in lines]
# Separate out article and abstract sentences
article_lines = []
highlights = []
next_is_highlight = False
for line in lines:
if not line:
continue # empty line
elif line.startswith("@highlight"):
next_is_highlight = True
elif next_is_highlight:
highlights.append(line)
else:
article_lines.append(line)
# Make article into a single string
article = " ".join(article_lines)
if tfds_version >= "2.0.0":
abstract = "\n".join(highlights)
else:
abstract = " ".join(highlights)
return article, abstract
class CnnDailymail(datasets.GeneratorBasedBuilder):
"""CNN/DailyMail non-anonymized summarization dataset."""
BUILDER_CONFIGS = [
CnnDailymailConfig(name=str(version), description="Plain text", version=version)
for version in _SUPPORTED_VERSIONS
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
_ARTICLE: datasets.Value("string"),
_HIGHLIGHTS: datasets.Value("string"),
"id": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _vocab_text_gen(self, paths):
for _, ex in self._generate_examples(paths):
yield " ".join([ex[_ARTICLE], ex[_HIGHLIGHTS]])
def _split_generators(self, dl_manager):
dl_paths = dl_manager.download(_DL_URLS)
return [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"urls_file": dl_paths[split],
"files_per_archive": [
dl_manager.iter_archive(dl_paths["cnn_stories"]),
dl_manager.iter_archive(dl_paths["dm_stories"]),
],
},
)
for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
]
def _generate_examples(self, urls_file, files_per_archive):
urls = _get_url_hashes(urls_file)
idx = 0
for files in files_per_archive:
for path, file in files:
hash_from_path = _get_hash_from_path(path)
if hash_from_path in urls:
article, highlights = _get_art_abs(file, self.config.version)
if not article or not highlights:
continue
yield idx, {
_ARTICLE: article,
_HIGHLIGHTS: highlights,
"id": hash_from_path,
}
idx += 1
|