File size: 1,402 Bytes
51ae812 dd6b4ee 51ae812 dd6b4ee 2de620d 51ae812 dd6b4ee 51ae812 dd6b4ee 51ae812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import openai
openai.api_key = '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'
import pandas as pd
from huggingface_hub import hf_hub_download
def compute(params):
public_score = 0
private_score = 0
solution_file = hf_hub_download(
repo_id=params.competition_id,
filename="solution.csv",
token=params.token,
repo_type="dataset",
)
solution_df = pd.read_csv(solution_file)
submission_filename = f"submissions/{params.team_id}-{params.submission_id}.csv"
submission_file = hf_hub_download(
repo_id=params.competition_id,
filename=submission_filename,
token=params.token,
repo_type="dataset",
)
submission_df = pd.read_csv(submission_file)
submitted_answer = str(submission_df.iloc[0]['pred'])
gt = str(solution_df.iloc[0]['pred'])
prompt=f"Give me a score from 1 to 10 (higher is better) judging how similar these two captions are. Caption one: {submitted_answer}. Caption two: {gt}\nScore:"
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=1,
)
public_score = int(response.choices[0].text.strip())
private_score = public_score
metric_dict = {
"public_score": {"metric1": public_score},
"private_score": {"metric1": private_score}
}
return metric_dict |