File size: 38,453 Bytes
5013c46 81ddefd 4433984 81ddefd 5013c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
---
license: odc-by
task_categories:
- text-generation
language:
- en
pretty_name: FineWeb
size_categories:
- n>1T
configs:
- config_name: default
data_files:
- split: train
path: data/*/*
- config_name: sample-10BT
data_files:
- split: train
path: sample/10BT/*
- config_name: sample-100BT
data_files:
- split: train
path: sample/100BT/*
- config_name: sample-350BT
data_files:
- split: train
path: sample/350BT/*
- config_name: CC-MAIN-2024-18
data_files:
- split: train
path: data/CC-MAIN-2024-18/*
- config_name: CC-MAIN-2024-10
data_files:
- split: train
path: data/CC-MAIN-2024-10/*
- config_name: CC-MAIN-2023-50
data_files:
- split: train
path: data/CC-MAIN-2023-50/*
- config_name: CC-MAIN-2023-40
data_files:
- split: train
path: data/CC-MAIN-2023-40/*
- config_name: CC-MAIN-2023-23
data_files:
- split: train
path: data/CC-MAIN-2023-23/*
- config_name: CC-MAIN-2023-14
data_files:
- split: train
path: data/CC-MAIN-2023-14/*
- config_name: CC-MAIN-2023-06
data_files:
- split: train
path: data/CC-MAIN-2023-06/*
- config_name: CC-MAIN-2022-49
data_files:
- split: train
path: data/CC-MAIN-2022-49/*
- config_name: CC-MAIN-2022-40
data_files:
- split: train
path: data/CC-MAIN-2022-40/*
- config_name: CC-MAIN-2022-33
data_files:
- split: train
path: data/CC-MAIN-2022-33/*
- config_name: CC-MAIN-2022-27
data_files:
- split: train
path: data/CC-MAIN-2022-27/*
- config_name: CC-MAIN-2022-21
data_files:
- split: train
path: data/CC-MAIN-2022-21/*
- config_name: CC-MAIN-2022-05
data_files:
- split: train
path: data/CC-MAIN-2022-05/*
- config_name: CC-MAIN-2021-49
data_files:
- split: train
path: data/CC-MAIN-2021-49/*
- config_name: CC-MAIN-2021-43
data_files:
- split: train
path: data/CC-MAIN-2021-43/*
- config_name: CC-MAIN-2021-39
data_files:
- split: train
path: data/CC-MAIN-2021-39/*
- config_name: CC-MAIN-2021-31
data_files:
- split: train
path: data/CC-MAIN-2021-31/*
- config_name: CC-MAIN-2021-25
data_files:
- split: train
path: data/CC-MAIN-2021-25/*
- config_name: CC-MAIN-2021-21
data_files:
- split: train
path: data/CC-MAIN-2021-21/*
- config_name: CC-MAIN-2021-17
data_files:
- split: train
path: data/CC-MAIN-2021-17/*
- config_name: CC-MAIN-2021-10
data_files:
- split: train
path: data/CC-MAIN-2021-10/*
- config_name: CC-MAIN-2021-04
data_files:
- split: train
path: data/CC-MAIN-2021-04/*
- config_name: CC-MAIN-2020-50
data_files:
- split: train
path: data/CC-MAIN-2020-50/*
- config_name: CC-MAIN-2020-45
data_files:
- split: train
path: data/CC-MAIN-2020-45/*
- config_name: CC-MAIN-2020-40
data_files:
- split: train
path: data/CC-MAIN-2020-40/*
- config_name: CC-MAIN-2020-34
data_files:
- split: train
path: data/CC-MAIN-2020-34/*
- config_name: CC-MAIN-2020-29
data_files:
- split: train
path: data/CC-MAIN-2020-29/*
- config_name: CC-MAIN-2020-24
data_files:
- split: train
path: data/CC-MAIN-2020-24/*
- config_name: CC-MAIN-2020-16
data_files:
- split: train
path: data/CC-MAIN-2020-16/*
- config_name: CC-MAIN-2020-10
data_files:
- split: train
path: data/CC-MAIN-2020-10/*
- config_name: CC-MAIN-2020-05
data_files:
- split: train
path: data/CC-MAIN-2020-05/*
- config_name: CC-MAIN-2019-51
data_files:
- split: train
path: data/CC-MAIN-2019-51/*
- config_name: CC-MAIN-2019-47
data_files:
- split: train
path: data/CC-MAIN-2019-47/*
- config_name: CC-MAIN-2019-43
data_files:
- split: train
path: data/CC-MAIN-2019-43/*
- config_name: CC-MAIN-2019-39
data_files:
- split: train
path: data/CC-MAIN-2019-39/*
- config_name: CC-MAIN-2019-35
data_files:
- split: train
path: data/CC-MAIN-2019-35/*
- config_name: CC-MAIN-2019-30
data_files:
- split: train
path: data/CC-MAIN-2019-30/*
- config_name: CC-MAIN-2019-26
data_files:
- split: train
path: data/CC-MAIN-2019-26/*
- config_name: CC-MAIN-2019-22
data_files:
- split: train
path: data/CC-MAIN-2019-22/*
- config_name: CC-MAIN-2019-18
data_files:
- split: train
path: data/CC-MAIN-2019-18/*
- config_name: CC-MAIN-2019-13
data_files:
- split: train
path: data/CC-MAIN-2019-13/*
- config_name: CC-MAIN-2019-09
data_files:
- split: train
path: data/CC-MAIN-2019-09/*
- config_name: CC-MAIN-2019-04
data_files:
- split: train
path: data/CC-MAIN-2019-04/*
- config_name: CC-MAIN-2018-51
data_files:
- split: train
path: data/CC-MAIN-2018-51/*
- config_name: CC-MAIN-2018-47
data_files:
- split: train
path: data/CC-MAIN-2018-47/*
- config_name: CC-MAIN-2018-43
data_files:
- split: train
path: data/CC-MAIN-2018-43/*
- config_name: CC-MAIN-2018-39
data_files:
- split: train
path: data/CC-MAIN-2018-39/*
- config_name: CC-MAIN-2018-34
data_files:
- split: train
path: data/CC-MAIN-2018-34/*
- config_name: CC-MAIN-2018-30
data_files:
- split: train
path: data/CC-MAIN-2018-30/*
- config_name: CC-MAIN-2018-26
data_files:
- split: train
path: data/CC-MAIN-2018-26/*
- config_name: CC-MAIN-2018-22
data_files:
- split: train
path: data/CC-MAIN-2018-22/*
- config_name: CC-MAIN-2018-17
data_files:
- split: train
path: data/CC-MAIN-2018-17/*
- config_name: CC-MAIN-2018-13
data_files:
- split: train
path: data/CC-MAIN-2018-13/*
- config_name: CC-MAIN-2018-09
data_files:
- split: train
path: data/CC-MAIN-2018-09/*
- config_name: CC-MAIN-2018-05
data_files:
- split: train
path: data/CC-MAIN-2018-05/*
- config_name: CC-MAIN-2017-51
data_files:
- split: train
path: data/CC-MAIN-2017-51/*
- config_name: CC-MAIN-2017-47
data_files:
- split: train
path: data/CC-MAIN-2017-47/*
- config_name: CC-MAIN-2017-43
data_files:
- split: train
path: data/CC-MAIN-2017-43/*
- config_name: CC-MAIN-2017-39
data_files:
- split: train
path: data/CC-MAIN-2017-39/*
- config_name: CC-MAIN-2017-34
data_files:
- split: train
path: data/CC-MAIN-2017-34/*
- config_name: CC-MAIN-2017-30
data_files:
- split: train
path: data/CC-MAIN-2017-30/*
- config_name: CC-MAIN-2017-26
data_files:
- split: train
path: data/CC-MAIN-2017-26/*
- config_name: CC-MAIN-2017-22
data_files:
- split: train
path: data/CC-MAIN-2017-22/*
- config_name: CC-MAIN-2017-17
data_files:
- split: train
path: data/CC-MAIN-2017-17/*
- config_name: CC-MAIN-2017-13
data_files:
- split: train
path: data/CC-MAIN-2017-13/*
- config_name: CC-MAIN-2017-09
data_files:
- split: train
path: data/CC-MAIN-2017-09/*
- config_name: CC-MAIN-2017-04
data_files:
- split: train
path: data/CC-MAIN-2017-04/*
- config_name: CC-MAIN-2016-50
data_files:
- split: train
path: data/CC-MAIN-2016-50/*
- config_name: CC-MAIN-2016-44
data_files:
- split: train
path: data/CC-MAIN-2016-44/*
- config_name: CC-MAIN-2016-40
data_files:
- split: train
path: data/CC-MAIN-2016-40/*
- config_name: CC-MAIN-2016-36
data_files:
- split: train
path: data/CC-MAIN-2016-36/*
- config_name: CC-MAIN-2016-30
data_files:
- split: train
path: data/CC-MAIN-2016-30/*
- config_name: CC-MAIN-2016-26
data_files:
- split: train
path: data/CC-MAIN-2016-26/*
- config_name: CC-MAIN-2016-22
data_files:
- split: train
path: data/CC-MAIN-2016-22/*
- config_name: CC-MAIN-2016-18
data_files:
- split: train
path: data/CC-MAIN-2016-18/*
- config_name: CC-MAIN-2016-07
data_files:
- split: train
path: data/CC-MAIN-2016-07/*
- config_name: CC-MAIN-2015-48
data_files:
- split: train
path: data/CC-MAIN-2015-48/*
- config_name: CC-MAIN-2015-40
data_files:
- split: train
path: data/CC-MAIN-2015-40/*
- config_name: CC-MAIN-2015-35
data_files:
- split: train
path: data/CC-MAIN-2015-35/*
- config_name: CC-MAIN-2015-32
data_files:
- split: train
path: data/CC-MAIN-2015-32/*
- config_name: CC-MAIN-2015-27
data_files:
- split: train
path: data/CC-MAIN-2015-27/*
- config_name: CC-MAIN-2015-22
data_files:
- split: train
path: data/CC-MAIN-2015-22/*
- config_name: CC-MAIN-2015-18
data_files:
- split: train
path: data/CC-MAIN-2015-18/*
- config_name: CC-MAIN-2015-14
data_files:
- split: train
path: data/CC-MAIN-2015-14/*
- config_name: CC-MAIN-2015-11
data_files:
- split: train
path: data/CC-MAIN-2015-11/*
- config_name: CC-MAIN-2015-06
data_files:
- split: train
path: data/CC-MAIN-2015-06/*
- config_name: CC-MAIN-2014-52
data_files:
- split: train
path: data/CC-MAIN-2014-52/*
- config_name: CC-MAIN-2014-49
data_files:
- split: train
path: data/CC-MAIN-2014-49/*
- config_name: CC-MAIN-2014-42
data_files:
- split: train
path: data/CC-MAIN-2014-42/*
- config_name: CC-MAIN-2014-41
data_files:
- split: train
path: data/CC-MAIN-2014-41/*
- config_name: CC-MAIN-2014-35
data_files:
- split: train
path: data/CC-MAIN-2014-35/*
- config_name: CC-MAIN-2014-23
data_files:
- split: train
path: data/CC-MAIN-2014-23/*
- config_name: CC-MAIN-2014-15
data_files:
- split: train
path: data/CC-MAIN-2014-15/*
- config_name: CC-MAIN-2014-10
data_files:
- split: train
path: data/CC-MAIN-2014-10/*
- config_name: CC-MAIN-2013-48
data_files:
- split: train
path: data/CC-MAIN-2013-48/*
- config_name: CC-MAIN-2013-20
data_files:
- split: train
path: data/CC-MAIN-2013-20/*
---
# π· FineWeb
<center>
<img src="https://huggingface.co/datasets/HuggingFaceFW/admin/resolve/main/fineweb-logo.png" alt="FineWeb: The finest collection of data the web has to offer">
</center>
> 15 trillion tokens of the finest data the π web has to offer
# Table of Contents
- [π· FineWeb](#-fineweb)
* [What is it?](#what-is-it)
* [What is being released?](#what-is-being-released)
* [Changelog](#changelog)
* [How to download and use π· FineWeb](#how-to-download-and-use-π·-fineweb)
+ [Using π `datatrove`](#using-datatrove)
+ [Using `huggingface_hub`](#using-huggingface_hub)
+ [Using `datasets`](#using-datasets)
* [Breakdown by dump/crawl](#breakdown-by-dumpcrawl)
* [Dataset performance evaluation and ablations](#dataset-performance-evaluation-and-ablations)
+ [Hyper-parameters for ablation models](#hyper-parameters-for-ablation-models)
+ [Ablation evaluation benchmarks](#ablation-evaluation-benchmarks)
+ [Comparison with other datasets](#comparison-with-other-datasets)
- [Dataset card for π· FineWeb](#dataset-card-for-π·-fineweb)
* [Dataset Summary](#dataset-summary)
* [Dataset Structure](#dataset-structure)
+ [Data Instances](#data-instances)
+ [Data Fields](#data-fields)
+ [Data Splits](#data-splits)
* [Dataset Creation](#dataset-creation)
+ [Curation Rationale](#curation-rationale)
+ [Source Data](#source-data)
+ [Data processing steps](#data-processing-steps)
+ [Annotations](#annotations)
+ [Personal and Sensitive Information](#personal-and-sensitive-information)
* [Considerations for Using the Data](#considerations-for-using-the-data)
+ [Social Impact of Dataset](#social-impact-of-dataset)
+ [Discussion of Biases](#discussion-of-biases)
+ [Other Known Limitations](#other-known-limitations)
* [Additional Information](#additional-information)
+ [Licensing Information](#licensing-information)
+ [Future work](#future-work)
+ [Citation Information](#citation-information)
## What is it?
The π· FineWeb dataset consists of more than **15T tokens** of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the π [`datatrove`](https://github.com/huggingface/datatrove/) library, our large scale data processing library.
π· FineWeb was originally meant to be a fully open replication of π¦
[RefinedWeb](https://huggingface.co/papers/2306.01116), with a release of the **full dataset** under the **ODC-By 1.0 license**. However, by carefully adding additional filtering steps, we managed to push the performance of π· FineWeb well above that of the original π¦
RefinedWeb, and models trained on our dataset also outperform models trained on other commonly used high quality web datasets (like C4, Dolma-v1.6, The Pile, SlimPajama, RedPajam2) on our aggregate group of [benchmark tasks](https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/lighteval_tasks.py).
That said, we think there is still room for additional filtering and improvement and intend to continue exploring how to improve the dataset quality in coming versions of π· FineWeb.
## What is being released?
Along with the dataset, which includes all CommonCrawl dumps since 2013, we also share all the code needed to fully reproduce our processing setup using the π [`datatrove`](https://github.com/huggingface/datatrove/) library [here](https://github.com/huggingface/datatrove/blob/main/examples/fineweb.py). To enable full replication of our results, we have also published the small ablation models we have trained using [`nanotron`](https://github.com/huggingface/nanotron/) to validate the dataset and compare it with other reference datasets. You will find them [here](https://huggingface.co/collections/HuggingFaceFW/ablation-models-662457b0d213e8c14fe47f32), with checkpoints every 1000 steps. We have also published our evaluation results [here](https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/eval_results.csv). Our evaluation setup is available [here](https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/lighteval_tasks.py).
You will find details on the different processing decisions we took and some interesting explorations of deduplication methods on our [blogpost](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1).
## Changelog
_Previous versions remain available in the branch `version name`._
- **v1.1.0 (31-05-2024):** We reprocessed and reuploaded 11 dumps, `CC-MAIN-2021-49` to `CC-MAIN-2023-40`, as we found a bug on their deduplication. We also added the most recent dump: `CC-MAIN-2024-18`, crawled over April 2024. Expect a small perf improvement
- **v1.0.0 (21-04-2024):** Initial version
## How to download and use π· FineWeb
You can load the full dataset or a specific crawl/dump (see table below). Dumps have the format `CC-MAIN-(year)-(week number)`.
### (Smaller) sample versions
Along with config `default` (all the data), and the configs for each individual dump, you can also download the following configs:
- `sample-350BT`: a subset randomly sampled from the whole dataset of around 350B gpt2 tokens (388GB)
- `sample-100BT`: a subset randomly sampled from the whole dataset of around 100B gpt2 tokens (277.4GB)
- `sample-10BT`: a subset randomly sampled from the whole dataset of around 10B gpt2 tokens (27.6GB)
`sample-10B` was sampled from `sample-100B` which in turn was sampled from `sample-350BT`.
### Using π [`datatrove`](https://github.com/huggingface/datatrove/)
```python
from datatrove.pipeline.readers import ParquetReader
# limit determines how many documents will be streamed (remove for all)
# to fetch a specific dump: hf://datasets/HuggingFaceFW/fineweb/data/CC-MAIN-2024-10
# replace "data" with "sample/100BT" to use the 100BT sample
data_reader = ParquetReader("hf://datasets/HuggingFaceFW/fineweb/data", limit=1000)
for document in data_reader():
# do something with document
print(document)
###############################
# OR for a processing pipeline:
###############################
from datatrove.executor import LocalPipelineExecutor
from datatrove.pipeline.readers import ParquetReader
from datatrove.pipeline.filters import LambdaFilter
from datatrove.pipeline.writers import JsonlWriter
pipeline_exec = LocalPipelineExecutor(
pipeline=[
# replace "data/CC-MAIN-2024-10" with "sample/100BT" to use the 100BT sample
ParquetReader("hf://datasets/HuggingFaceFW/fineweb/data/CC-MAIN-2024-10", limit=1000),
LambdaFilter(lambda doc: "hugging" in doc.text),
JsonlWriter("some-output-path")
],
tasks=10
)
pipeline_exec.run()
```
### Using `huggingface_hub`
```python
from huggingface_hub import snapshot_download
folder = snapshot_download(
"HuggingFaceFW/fineweb",
repo_type="dataset",
local_dir="./fineweb/",
# replace "data/CC-MAIN-2023-50/*" with "sample/100BT/*" to use the 100BT sample
allow_patterns="data/CC-MAIN-2023-50/*")
```
For faster downloads, make sure to install `pip install huggingface_hub[hf_transfer]` and set the environment variable `HF_HUB_ENABLE_HF_TRANSFER=1`.
### Using `datasets`
```python
from datasets import load_dataset
# use name="sample-10BT" to use the 10BT sample
fw = load_dataset("HuggingFaceFW/fineweb", name="CC-MAIN-2024-10", split="train", streaming=True)
```
## Breakdown by dump/crawl
| Dump | Time period | Disk size (GB) | gpt2 tokens (billions) |
| --- | --- | --- | --- |
| CC-MAIN-2024-18 | April 2024 | 417.6 | 154.4 |
| CC-MAIN-2024-10 | February/March 2024 | 432.0 | 157.2 |
| CC-MAIN-2023-50 | November/December 2023 | 650.0 | 239.7 |
| CC-MAIN-2023-40 | September/October 2023 | 668.7 | 252.0 |
| CC-MAIN-2023-23 | May/June 2023 | 654.4 | 249.2 |
| CC-MAIN-2023-14 | March/April 2023 | 621.3 | 236.5 |
| CC-MAIN-2023-06 | January/February 2023 | 621.9 | 233.9 |
| CC-MAIN-2022-49 | November/December 2022 | 631.2 | 237.5 |
| CC-MAIN-2022-40 | September/October 2022 | 606.4 | 228.7 |
| CC-MAIN-2022-33 | August 2022 | 434.6 | 163.5 |
| CC-MAIN-2022-27 | June/July 2022 | 574.9 | 216.1 |
| CC-MAIN-2022-21 | May 2022 | 646.4 | 242.7 |
| CC-MAIN-2022-05 | January 2022 | 520.1 | 195.4 |
| CC-MAIN-2021-49 | November/December 2021 | 413.7 | 155.5 |
| CC-MAIN-2021-43 | October 2021 | 601.5 | 221.0 |
| CC-MAIN-2021-43 | October 2021 | 601.5 | 221.0 |
| CC-MAIN-2021-39 | September 2021 | 518.9 | 190.6 |
| CC-MAIN-2021-31 | July/August 2021 | 593.9 | 217.7 |
| CC-MAIN-2021-25 | June 2021 | 424.4 | 155.7 |
| CC-MAIN-2021-21 | May 2021 | 455.9 | 167.4 |
| CC-MAIN-2021-17 | April 2021 | 556.0 | 204.1 |
| CC-MAIN-2021-10 | February/March 2021 | 463.2 | 169.6 |
| CC-MAIN-2021-04 | January 2021 | 562.4 | 205.4 |
| CC-MAIN-2020-50 | November/December 2020 | 422.8 | 154.3 |
| CC-MAIN-2020-45 | October 2020 | 426.9 | 155.8 |
| CC-MAIN-2020-40 | September 2020 | 555.5 | 202.4 |
| CC-MAIN-2020-34 | August 2020 | 379.6 | 138.7 |
| CC-MAIN-2020-29 | July 2020 | 489.6 | 178.7 |
| CC-MAIN-2020-24 | May/June 2020 | 398.7 | 145.1 |
| CC-MAIN-2020-16 | March/April 2020 | 454.0 | 165.6 |
| CC-MAIN-2020-10 | February 2020 | 369.6 | 134.7 |
| CC-MAIN-2020-05 | January 2020 | 483.3 | 176.4 |
| CC-MAIN-2019-51 | December 2019 | 359.3 | 130.9 |
| CC-MAIN-2019-47 | November 2019 | 395.4 | 144.0 |
| CC-MAIN-2019-43 | October 2019 | 422.3 | 153.9 |
| CC-MAIN-2019-39 | September 2019 | 394.4 | 143.7 |
| CC-MAIN-2019-35 | August 2019 | 454.2 | 165.4 |
| CC-MAIN-2019-30 | July 2019 | 416.6 | 151.5 |
| CC-MAIN-2019-26 | June 2019 | 412.9 | 150.1 |
| CC-MAIN-2019-22 | May 2019 | 432.8 | 157.4 |
| CC-MAIN-2019-18 | April 2019 | 426.7 | 155.3 |
| CC-MAIN-2019-13 | March 2019 | 417.8 | 152.1 |
| CC-MAIN-2019-09 | February 2019 | 467.2 | 169.9 |
| CC-MAIN-2019-04 | January 2019 | 438.1 | 158.7 |
| CC-MAIN-2018-51 | December 2018 | 498.6 | 180.8 |
| CC-MAIN-2018-47 | November 2018 | 437.7 | 158.9 |
| CC-MAIN-2018-43 | October 2018 | 468.8 | 169.9 |
| CC-MAIN-2018-39 | September 2018 | 429.2 | 155.2 |
| CC-MAIN-2018-34 | August 2018 | 408.2 | 148.0 |
| CC-MAIN-2018-30 | July 2018 | 501.5 | 181.4 |
| CC-MAIN-2018-26 | June 2018 | 467.5 | 170.0 |
| CC-MAIN-2018-22 | May 2018 | 398.6 | 144.2 |
| CC-MAIN-2018-17 | April 2018 | 435.1 | 158.1 |
| CC-MAIN-2018-13 | March 2018 | 471.5 | 171.5 |
| CC-MAIN-2018-09 | February 2018 | 490.2 | 178.0 |
| CC-MAIN-2018-05 | January 2018 | 493.5 | 180.7 |
| CC-MAIN-2017-51 | December 2017 | 442.6 | 161.5 |
| CC-MAIN-2017-47 | November 2017 | 457.9 | 167.1 |
| CC-MAIN-2017-43 | October 2017 | 535.6 | 194.9 |
| CC-MAIN-2017-39 | September 2017 | 444.5 | 162.3 |
| CC-MAIN-2017-34 | August 2017 | 503.2 | 183.4 |
| CC-MAIN-2017-30 | July 2017 | 439.2 | 161.2 |
| CC-MAIN-2017-26 | June 2017 | 491.5 | 179.8 |
| CC-MAIN-2017-22 | May 2017 | 441.0 | 161.5 |
| CC-MAIN-2017-17 | April 2017 | 596.8 | 218.6 |
| CC-MAIN-2017-13 | March 2017 | 579.8 | 212.1 |
| CC-MAIN-2017-09 | February 2017 | 492.2 | 180.2 |
| CC-MAIN-2017-04 | January 2017 | 474.3 | 174.4 |
| CC-MAIN-2016-50 | December 2016 | 448.9 | 165.4 |
| CC-MAIN-2016-44 | October 2016 | 467.8 | 172.0 |
| CC-MAIN-2016-40 | September 2016 | 386.1 | 142.8 |
| CC-MAIN-2016-36 | August 2016 | 339.6 | 126.3 |
| CC-MAIN-2016-30 | July 2016 | 346.0 | 128.4 |
| CC-MAIN-2016-26 | June 2016 | 256.5 | 95.5 |
| CC-MAIN-2016-22 | May 2016 | 310.9 | 115.4 |
| CC-MAIN-2016-18 | April 2016 | 298.1 | 110.8 |
| CC-MAIN-2016-07 | February 2016 | 342.7 | 127.2 |
| CC-MAIN-2015-48 | November 2015 | 353.9 | 131.3 |
| CC-MAIN-2015-40 | September 2015 | 284.0 | 105.5 |
| CC-MAIN-2015-35 | August 2015 | 359.4 | 133.2 |
| CC-MAIN-2015-32 | July 2015 | 352.4 | 130.1 |
| CC-MAIN-2015-27 | June 2015 | 335.5 | 124.0 |
| CC-MAIN-2015-22 | May 2015 | 380.2 | 140.4 |
| CC-MAIN-2015-18 | April 2015 | 389.0 | 143.8 |
| CC-MAIN-2015-14 | March 2015 | 337.5 | 124.5 |
| CC-MAIN-2015-11 | February 2015 | 361.4 | 133.3 |
| CC-MAIN-2015-06 | January 2015 | 356.1 | 131.3 |
| CC-MAIN-2014-52 | December 2014 | 388.5 | 143.3 |
| CC-MAIN-2014-49 | November 2014 | 319.9 | 117.7 |
| CC-MAIN-2014-42 | October 2014 | 371.1 | 136.4 |
| CC-MAIN-2014-41 | September 2014 | 408.1 | 150.2 |
| CC-MAIN-2014-35 | August 2014 | 395.7 | 145.6 |
| CC-MAIN-2014-23 | July 2014 | 425.0 | 156.5 |
| CC-MAIN-2014-15 | April 2014 | 369.1 | 135.7 |
| CC-MAIN-2014-10 | March 2014 | 396.2 | 146.2 |
| CC-MAIN-2013-48 | Winter 2013 | 396.8 | 145.9 |
| CC-MAIN-2013-20 | Summer 2013 | 393.9 | 144.5 |
| Total | | 43056.6 | 15835.2 |
## Dataset performance evaluation and ablations
We conducted our dataset performance ablations and evaluations by training a series of 1.8B parameters models on 27 billion tokens. To compare π· FineWeb with other datasets, we also trained one of these 1.8B models per target dataset, on 350 billion tokens sampled from it (or the entire dataset when its size was < 350 billion tokens).
### Hyper-parameters for ablation models
The detailed configurations for training the 1.8B parameters ablation model can be found here (link will be added soon).
### Ablation evaluation benchmarks
To conduct the ablations for each of our dataset filtering choices, we selected a set of benchmarks which we identified as βhigh-signalβ benchmarks. These benchmarks were selected according to the following criteria:
- small variance between runs trained on different samplings of the same dataset
- performance increasing monotically during training (or close)
- separation between runs on datasets of known quality (C4, The Pile, RedPajama) higher than the variance between runs with various modeling/data seeds
We used the following list of benchmark for our ablation runs:
- commonsense_qa (acc_norm)
- hellaswag (acc/acc_norm)
- openbookqa (acc/acc_norm)
- piqa (acc/acc_norm)
- siqa (acc/acc_norm)
- winogrande (acc/acc_norm)
- sciq (acc/acc_norm)
- arc (acc/acc_norm)
- mmlu (acc/acc_norm)
To compare runs we consider an aggregate score, the average of the scores for these tasks.
The prompts for all these benchmarks are formatted in order to compute and compare the log-likelihood of the full answers for each multiple choice question. All the implementation details for the benchmarks are available in `lighteval` [here](https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/lighteval_tasks.py).
### Comparison with other datasets
We compared π· FineWeb with the following datasets:
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [C4](https://huggingface.co/datasets/allenai/c4)
- [Dolma v1.6](https://huggingface.co/datasets/allenai/dolma) (the CommonCrawl part)
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
- [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B)
- [RedPajama2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2) (deduplicated)
You will find these models on [this collection](https://huggingface.co/collections/HuggingFaceFW/ablation-models-662457b0d213e8c14fe47f32). We have uploaded checkpoints at every 1000 training steps. You will also find our full [evaluation results here](https://huggingface.co/datasets/HuggingFaceFW/fineweb/blob/main/eval_results.csv).
<center>
<img src="https://huggingface.co/datasets/HuggingFaceFW/admin/resolve/main/fineweb-ablations.png" alt="ablations">
</center>
_Note:_ The plot is smoothed by averaging 5k steps in a rolling window.
# Dataset card for π· FineWeb
## Dataset Description
- **Homepage and Repository:** [https://huggingface.co/datasets/HuggingFaceFW/fineweb](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- **Point of Contact:** please create a discussion on the Community tab
- **License:** Open Data Commons Attribution License (ODC-By) v1.0
### Dataset Summary
This dataset was created by processing 96 [CommonCrawl](https://commoncrawl.org/) dumps comprising web data crawled from the summer of 2013 to April of 2024. π· FineWeb includes a variety of domains and topics in English and is primarily intended to be used as a research artifact on public data in the context of pretraining dataset for large language models. The CommonCrawl data was carefully processed, filtered and deduplicated with the π [`datatrove`](https://github.com/huggingface/datatrove/) library, resulting in the largest publicly available clean LLM pretraining dataset, counting around 15 trillion tokens (gpt2 tokenizer).
## Dataset Structure
### Data Instances
The following is an example sample from the dataset. It is part of the `CC-MAIN-2021-43` and was crawled on `2021-10-15T21:20:12Z`.
```json
{
"text": "This is basically a peanut flavoured cream thickened with egg yolks and then set into a ramekin on top of some jam. Tony, one of the Wedgwood chefs, suggested sprinkling on some toasted crushed peanuts at the end to create extra crunch, which I thought was a great idea. The result is excellent.",
"id": "<urn:uuid:e5a3e79a-13d4-4147-a26e-167536fcac5d>",
"dump": "CC-MAIN-2021-43",
"url": "<http://allrecipes.co.uk/recipe/24758/peanut-butter-and-jam-creme-brulee.aspx?o_is=SimilarRecipes&o_ln=SimRecipes_Photo_7>",
"date": "2021-10-15T21:20:12Z",
"file_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-43/segments/1634323583083.92/warc/CC-MAIN-20211015192439-20211015222439-00600.warc.gz",
"language": "en",
"language_score": 0.948729,
"token_count": 69
}
```
### Data Fields
- `text` (string): the main text content
- `id` (string): original unique identifier for this sample from CommonCrawl
- `dump` (string): the CommonCrawl dump this sample was a part of
- `url` (string): url to the original page where `text` was present
- `date` (string): crawl date (from CommonCrawl)
- `file_path` (string): s3 path for the individual CommonCrawl warc file containing this sample
- `language` (string): `en` for all the samples in this dataset
- `language_score` (float): language prediction score (`0.01.0`) as reported by the [fastText language classifier](https://github.com/huggingface/datatrove/blob/main/src/datatrove/pipeline/filters/language_filter.py)
- `token_count` (int): number of tokens when applying the `gpt2` tokenizer to this sample
### Data Splits
The `default` subset includes the entire dataset. If you would like to only use the data from a particular [CommonCrawl dump](https://commoncrawl.org/overview), you can use the dump name as a subset. You will find the full list of available dumps on the table above.
From experiments we have run, not all dumps give the same performance. For relatively small trainings (<550 billion tokens) we recommend using the recent `CC-MAIN-2023-50`, `CC-MAIN-2024-10` and `CC-MAIN-2024-18`.
## Dataset Creation
### Curation Rationale
While multiple open-weights models have regularly been released in recent months, these releases often do not include the model's training data. With π· FineWeb we aim to provide the open source community with a very large clean pretraining dataset that can be used to push the envelope on truly open source models (open source models where data is also released).
### Source Data
The source data consists of webpages crawled by the CommonCrawl foundation over the 2013-2024 time period.
We then extracted the main page text from the html of each webpage, carefully filtered each sample and deduplicated each individual CommonCrawl dump/crawl.
While we originally intended to deduplicate the dataset as a whole, our ablations showed that training on a sampling of individually deduplicated dumps/crawls outperformed training on a sampling of all the dumps/crawls deduplicated together. You will find more details on our [blogpost](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1).
### Data processing steps
We used the π `datatrove` library to process the data.
You can find a **working script** that launches the [entire processing pipeline here](https://github.com/huggingface/datatrove/blob/main/examples/fineweb.py).
The data processing pipeline consists of:
1. [Url Filtering](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/filters/url_filter.py), removing documents originating from Malicious and NSFW websites, using both block-list as well as subwords detection
2. [Trafilatura](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/extractors/trafilatura.py) text extraction on the raw HTML from CommonCrawlβs warc files
3. [FastText LanguageFilter](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/filters/language_filter.py), removing any document with `en` language score lower than **0.65**
4. Quality filtering
1. [Gopher Repetition /](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/filters/gopher_repetition_filter.py) [Quality](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/filters/gopher_quality_filter.py)
2. [C4 Quality filters](https://github.com/huggingface/datatrove/blob/9a88bebc86a554f8521faa70b12ad4fa0c227537/src/datatrove/pipeline/filters/c4_quality_filter.py) except `terminal_punct` rule
3. [FineWeb custom filters](https://github.com/huggingface/datatrove/blob/05194d3960741e7d5c0bd0d6dd69d44514622549/src/datatrove/pipeline/filters/fineweb_quality_filter.py), consisting of heuristics for removing list-like documents, documents with repeated lines and documents with likely wrong line formatting.
5. [MinHash deduplication](https://github.com/huggingface/datatrove/blob/6daa5e879e06b21e6886b37e2b1be4ae58a658b6/src/datatrove/pipeline/dedup/minhash.py) with each crawl deduplicated individually (5-grams, 14x8 hash functions)
6. [PII Formatting](https://github.com/huggingface/datatrove/blob/main/src/datatrove/pipeline/formatters/pii.py) to anonymize email and public IP addresses
### Annotations
We augment the original samples with the `language`, `language_score` and `token_count` annotations. The language related annotations are automatically generated by our [language filter](https://github.com/huggingface/datatrove/blob/main/src/datatrove/pipeline/filters/language_filter.py). `token_count` is generated by [applying the gpt2 tokenizer](https://github.com/huggingface/datatrove/blob/main/src/datatrove/pipeline/tokens/counter.py) to the `text` column.
### Personal and Sensitive Information
We anonymize email addresses and public IP addresses.
For emails, we apply a regex pattern and replace any occurrence of an email address with either `email@example.com` or `firstname.lastname@example.org`. For IP addresses, we also employ a regex pattern and then further filter to only anonymize IP addresses [allocated for public networks](https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml). Matched IP addresses are then replaced with one of the following randomly generated IP addresses, which at the time of dataset creation were not responding to ping requests: `22.214.171.124`, `126.96.36.199`, `188.8.131.52`, `184.108.40.206`, `220.127.116.11`, and `18.104.22.168`. We decided against applying regex patterns for phone numbers due to the high false positive rate.
Despite our efforts, given that π· FineWeb is sourced from the internet at large, it is very likely that some personable identifiable information (PII) will be present. If you find your own PII in π· FineWeb and would like it removed, please fill out our [PII removal form](https://forms.gle/VyNT3ZAUPZjPuWp39).
## Considerations for Using the Data
### Social Impact of Dataset
With the release of this dataset we aim to make model training more accessible to the machine learning community at large.
While multiple open-weights models with strong performance have been publicly released in the past, more often than not these releases are not accompanied by the corresponding training dataset. This is unfortunate as the dataset specificities and characteristics have been demonstrated to have a very large impact and role in the performances of the models. As the creation of a high quality training dataset is a fundamental requirement to training an LLM capable of excelling at downstream tasks, with π· FineWeb we (a) not only make the dataset creation process more transparent, by sharing our entire processing setup including the codebase used, we also (b) help alleviate the costs of dataset curation, both in time and in compute, for model creators by publicly releasing our dataset with the community.
### Discussion of Biases
Efforts were made to minimize the amount of NSFW and toxic content present in the dataset by employing filtering on the URL level. However, there are still a significant number of documents present in the final dataset that could be considered toxic or contain harmful content. As π· FineWeb was sourced from the web as a whole, any harmful biases typically present in it may be reproduced on our dataset.
We deliberately avoided using machine learning filtering methods that define text quality based on the similarity to a βgoldβ source such as wikipedia or toxicity classifiers as these methods have been known to [disproportionately remove content in specific dialects](https://aclanthology.org/D16-1120/) and [overclassify as toxic text related to specific social identities](https://arxiv.org/pdf/2109.07445.pdf), respectively.
### Other Known Limitations
As a consequence of some of the filtering steps applied, it is likely that code content is not prevalent in our dataset. If you are training a model that should also perform code tasks, we recommend you use π· FineWeb with a code dataset, such as [The Stack v2](https://huggingface.co/datasets/bigcode/the-stack-v2). You should also probably consider complementing π· FineWeb with specialized curated sources (such as Wikipedia, for example) as they will likely have better formatting than the wikipedia content included in π· FineWeb (we did not tailor the processing to individual websites).
## Additional Information
### Licensing Information
The dataset is released under the **Open Data Commons Attribution License (ODC-By) v1.0** [license](https://opendatacommons.org/licenses/by/1-0/). The use of this dataset is also subject to [CommonCrawl's Terms of Use](https://commoncrawl.org/terms-of-use).
### Future work
We plan to not only continue but also expand our efforts to create open-source high quality training datasets and to improve π· FineWeb itself in future iterations.
### Citation Information
```
@software{penedo2024fineweb,
author = {Penedo, Guilherme and KydlΓΔek, Hynek and von Werra, Leandro and Wolf, Thomas},
title = {FineWeb},
month = April,
year = 2024,
doi = { 10.57967/hf/2092 },
url = {https://huggingface.co/datasets/HuggingFaceFW/fineweb}
}
``` |