"""CC6204-Hackaton-Cub-Dataset: Multimodal""" import os import re import datasets import pandas as pd from requests import get datasets.logging.set_verbosity_debug() logger = datasets.logging.get_logger(__name__) #datasets.logging.set_verbosity_info() datasets.logging.set_verbosity_debug() _DESCRIPTION = "XYZ" _CITATION = "XYZ" _HOMEPAGE = "https://github.com/ivansipiran/CC6204-Deep-Learning/blob/main/Hackaton/hackaton.md" _REPO = "https://huggingface.co/datasets/alkzar90/CC6204-Hackaton-Cub-Dataset/resolve/main/data" _URLS = { "train_test_split": f"{_REPO}/train_test_split.txt", "classes": f"{_REPO}/classes.txt", "image_class_labels": f"{_REPO}/image_class_labels.txt", "images": f"{_REPO}/images.txt", "image_urls": f"{_REPO}/images.zip", "text_urls": f"{_REPO}/text.zip", "mini_images_urls": f"{_REPO}/dummy/mini_images.zip" } # Create ClassId-to-label dictionary using the classes file classes = get(_URLS["classes"]).iter_lines() _ID2LABEL = {} for row in classes: row = row.decode("UTF8") if row != "": idx, label = row.split(" ") _ID2LABEL[int(idx)] = re.search("[^\d\.\_+].+", label).group(0).replace("_", " ") _NAMES = list(_ID2LABEL.values()) # Create imageId-to-ClassID dictionary using the image_class_labels img_idx_2_class_idx = get(_URLS["image_class_labels"]).iter_lines() _IMGID2CLASSID = {} for row in img_idx_2_class_idx: row = row.decode("UTF8") if row != "": idx, class_id = row.split(" ") _IMGID2CLASSID[idx] = int(class_id) # build from images.txt: a mapping from image_file_name -> id imgpath_to_ids = get(_URLS["images"]).iter_lines() _IMGNAME2ID = {} for row in imgpath_to_ids: row = row.decode("UTF8") if row != "": idx, img_name = row.split(" ") _IMGNAME2ID[os.path.basename(img_name)] = idx # Create TRAIN_IDX_SET train_test_split = get(_URLS["train_test_split"]).iter_lines() _TRAIN_IDX_SET = [] for row in train_test_split: row = row.decode("UTF8") if row != "": idx, train_bool = row.split(" ") # 1: train, 0: test if train_bool == "1": _TRAIN_IDX_SET.append(idx) _TRAIN_IDX_SET = set(_TRAIN_IDX_SET) class CubDataset(datasets.GeneratorBasedBuilder): """Cub Dataset""" def _info(self): features = datasets.Features({ "image": datasets.Image(), "description": datasets.Value("string"), "label": datasets.features.ClassLabel(names=_NAMES), }) keys = ("image", "description", "label") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=keys, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): train_files = [] train_idx = [] test_files = [] test_idx = [] # Download images data_files = dl_manager.download_and_extract(_URLS["image_urls"]) path_files = dl_manager.iter_files(data_files) for img in path_files: img_idx = _IMGNAME2ID[os.path.basename(img)] if img_idx in _TRAIN_IDX_SET: train_files.append(img) train_idx.append(img_idx) else: test_files.append(img) test_idx.append(img_idx) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": train_files, "image_idx": train_idx } ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "files": test_files, "image_idx": test_idx } ) ] def _generate_examples(self, files, image_idx): for i, path in enumerate(files): file_name = os.path.basename(path) if file_name.endswith(".jpg"): yield i, { "image": path, "description": "lala" "label": _ID2LABEL[_IMGID2CLASSID[image_idx[i]]], }