"""CC6204-Hackaton-Cub-Dataset: Multimodal""" import os import re import datasets import pandas as pd from requests import get logger = datasets.logging.get_logger(__name__) datasets.logging.set_verbosity_info() _DESCRIPTION = "XYZ" _CITATION = "XYZ" _HOMEPAGE = "https://github.com/ivansipiran/CC6204-Deep-Learning/blob/main/Hackaton/hackaton.md" _REPO = "https://huggingface.co/datasets/alkzar90/CC6204-Hackaton-Cub-Dataset/resolve/main/data" _URLS = { "train_test_split": f"{_REPO}/train_test_split.txt", "classes": f"{_REPO}/classes.txt", "image_class_labels": f"{_REPO}/image_class_labels.txt", "images": f"{_REPO}/images.txt", "image_urls": f"{_REPO}/images.zip", "text_urls": f"{_REPO}/text.zip", } # Create id-to-label dictionary using the classes file classes = get(_URLS["classes"]).iter_lines() logger.info(f"classes: {classes}") _ID2LABEL = {} for row in classes: row = row.decode("UTF8") if row != "": idx, label = row.split(" ") _ID2LABEL[int(idx)] = re.search("[^\d\.\_+].+", label).group(0).replace("_", " ") logger.info(f"_ID2LABEL: {_ID2LABEL}") _NAMES = list(_ID2LABEL.values()) # build from images.txt: a mapping from image_file_name -> id imgpath_to_ids = get(_URLS["images"]).iter_lines() _IMGNAME2ID = {} for row in imgpath_to_ids: row = row.decode("UTF8") if row != "": idx, img_name = row.split(" ") _IMGNAME2ID[os.path.basename(img_name)] = int(idx) class CubDataset(datasets.GeneratorBasedBuilder): """Cub Dataset""" def _info(self): features = datasets.Features({ "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=_NAMES), }) keys = ("image", "labels") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=keys, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): # 1: train, 0: test train_test_split = get(_URLS["train_test_split"]).iter_lines() train_images_idx = set([int(x.decode("UTF8").split(" ")[0]) for x in train_test_split if x.decode("UTF8").split(" ")[1] == "1"]) logger.info(f"train_images_idx length: {len(train_images_idx)}") train_files = [] test_files = [] # Download images data_files = dl_manager.download_and_extract(_URLS["image_urls"]) for batch in data_files: path_files = dl_manager.iter_files(batch) for img in path_files: if _IMGNAME2ID[os.path.basename(img)] in train_images_idx: train_files.append(img) else: test_files.append(img) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": train_files } ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "files": test_files } ) ] def _generate_examples(self, files): for i, path in enumerate(files): file_name = os.path.basename(path) if file_name.endswith(".jpg"): yield i, { "image": path, "labels": os.path.basename(os.path.dirname(path)).lower(), }