Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
File size: 4,569 Bytes
3afeebb 5c7307b 3dcb747 3afeebb 5c7307b 3afeebb 5c7307b 3afeebb 5c7307b 3afeebb 5c7307b 3afeebb 5c7307b 7c4579a 3dcb747 5c7307b 814dcde 7c4579a 7376c1e 7c4579a 3dcb747 7376c1e 4a804e2 5cddd15 7c4579a 58fcc18 7c4579a 8103bf2 7c4579a 7e19fce 8103bf2 7e19fce 7c4579a 5c7307b 3afeebb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import datasets
from datasets.tasks import ImageClassification
from requests import get
logger = datasets.logging.get_logger(__name__)
_HOMEPAGE = "https://nihcc.app.box.com/v/ChestXray-NIHCC"
_CITATION = """\
@ONLINE {beansdata,
author="Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald Summer",
title="ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases",
month="January",
year="2017",
url="https://nihcc.app.box.com/v/ChestXray-NIHCC"
}
"""
_DESCRIPTION = """\
The NIH Chest X-ray dataset consists of 100,000 de-identified images of chest x-rays. The images are in PNG format.
The data is provided by the NIH Clinical Center and is available through the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC
"""
_IMAGE_URLS2 = [
'https://nihcc.box.com/shared/static/vfk49d74nhbxq3nqjg0900w5nvkorp5c.gz',
'https://nihcc.box.com/shared/static/i28rlmbvmfjbl8p2n3ril0pptcmcu9d1.gz',
'https://nihcc.box.com/shared/static/f1t00wrtdk94satdfb9olcolqx20z2jp.gz',
'https://nihcc.box.com/shared/static/0aowwzs5lhjrceb3qp67ahp0rd1l1etg.gz',
'https://nihcc.box.com/shared/static/v5e3goj22zr6h8tzualxfsqlqaygfbsn.gz',
'https://nihcc.box.com/shared/static/asi7ikud9jwnkrnkj99jnpfkjdes7l6l.gz',
'https://nihcc.box.com/shared/static/jn1b4mw4n6lnh74ovmcjb8y48h8xj07n.gz',
'https://nihcc.box.com/shared/static/tvpxmn7qyrgl0w8wfh9kqfjskv6nmm1j.gz',
'https://nihcc.box.com/shared/static/upyy3ml7qdumlgk2rfcvlb9k6gvqq2pj.gz',
'https://nihcc.box.com/shared/static/l6nilvfa9cg3s28tqv1qc1olm3gnz54p.gz',
'https://nihcc.box.com/shared/static/hhq8fkdgvcari67vfhs7ppg2w6ni4jze.gz',
'https://nihcc.box.com/shared/static/ioqwiy20ihqwyr8pf4c24eazhh281pbu.gz'
]
_IMAGE_URLS = [
'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/dummy/0.0.0/images_001.tar.gz',
'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/dummy/0.0.0/images_002.tar.gz'
]
_URLS = {
'train_val_list': 'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/raw/main/dummy/0.0.0/train_val_list.txt',
'test_list': 'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/raw/main/dummy/0.0.0/test_list.txt',
'image_urls': _IMAGE_URLS
}
LABEL2IDX = {'No Finding': 0,
'Atelactasis': 1,
'Cardiomegaly': 2,
'Effusion': 3,
'Infiltration': 4,
'Mass': 5,
'Nodule': 6,
'Pneumonia': 7,
'Pneumothorax': 8,
'Consolidation': 9,
'Edema': 10,
'Emphysema': 11,
'Fibrosis': 12,
'Pleural_Thickening': 13,
'Hernia': 14}
_NAMES = list(LABEL2IDX.keys())
class XChest(datasets.GeneratorBasedBuilder):
"""NIH Image Chest X-ray dataset."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image_file_path": datasets.Value("string"),
"image": datasets.Image(),
"labels": datasets.features.ClassLabel(names=_NAMES),
}
),
supervised_keys=("image", "labels"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[ImageClassification(image_column="image",
label_column="labels")],
)
def _split_generators(self, dl_manager):
# Get the image names that belong to the train-val dataset
logger.info("Downloading the train_val_list image names")
train_val_list = get(_URLS['train_val_list']).iter_lines()
train_val_list = set([x.decode('UTF8') for x in train_val_list])
logger.info(f"Check train_val_list: {train_val_list}")
# Create list for store the name of the images for each dataset
train_files = []
test_files = []
# Download batches
data_files = dl_manager.download_and_extract(_URLS['image_urls'])
# Iterate trought image folder and check if they belong to
# the trainset or testset
for batch in data_files:
logger.info(f"Batch for data_files: {batch}")
path_files = dl_manager.iter_files(batch)
for img in path_files:
if img.split('/')[-1] in train_val_list:
train_files.append(img)
else:
test_files.append(img)
print(train_files)
print(test_files)
return [
datatsets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
'files': iter(train_files)
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
'files': iter(test_files)
}
)
]
def _generate_examples(self, files):
pass
|