Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
Format and improve readability
Browse files- NIH-Chest-X-ray-dataset.py +65 -56
NIH-Chest-X-ray-dataset.py
CHANGED
@@ -1,77 +1,89 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
3 |
import datasets
|
4 |
from datasets.tasks import ImageClassification
|
5 |
-
|
6 |
from requests import get
|
7 |
from pandas import read_csv
|
8 |
|
9 |
logger = datasets.logging.get_logger(__name__)
|
10 |
|
11 |
-
|
12 |
-
_HOMEPAGE = "https://nihcc.app.box.com/v/ChestXray-NIHCC"
|
13 |
-
|
14 |
_CITATION = """\
|
15 |
-
@
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
}
|
22 |
"""
|
23 |
|
|
|
24 |
_DESCRIPTION = """\
|
25 |
The NIH Chest X-ray dataset consists of 100,000 de-identified images of chest x-rays. The images are in PNG format.
|
26 |
|
27 |
The data is provided by the NIH Clinical Center and is available through the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC
|
28 |
"""
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
'https://nihcc.box.com/shared/static/asi7ikud9jwnkrnkj99jnpfkjdes7l6l.gz',
|
37 |
-
'https://nihcc.box.com/shared/static/jn1b4mw4n6lnh74ovmcjb8y48h8xj07n.gz',
|
38 |
-
'https://nihcc.box.com/shared/static/tvpxmn7qyrgl0w8wfh9kqfjskv6nmm1j.gz',
|
39 |
-
'https://nihcc.box.com/shared/static/upyy3ml7qdumlgk2rfcvlb9k6gvqq2pj.gz',
|
40 |
-
'https://nihcc.box.com/shared/static/l6nilvfa9cg3s28tqv1qc1olm3gnz54p.gz',
|
41 |
-
'https://nihcc.box.com/shared/static/hhq8fkdgvcari67vfhs7ppg2w6ni4jze.gz',
|
42 |
-
'https://nihcc.box.com/shared/static/ioqwiy20ihqwyr8pf4c24eazhh281pbu.gz'
|
43 |
-
]
|
44 |
|
45 |
_IMAGE_URLS = [
|
46 |
-
"
|
47 |
-
"
|
48 |
-
"
|
|
|
49 |
#'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/dummy/0.0.0/images_001.tar.gz',
|
50 |
#'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/dummy/0.0.0/images_002.tar.gz'
|
51 |
]
|
52 |
|
|
|
53 |
_URLS = {
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
}
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
|
76 |
_NAMES = list(_LABEL2IDX.keys())
|
77 |
|
@@ -79,7 +91,7 @@ _NAMES = list(_LABEL2IDX.keys())
|
|
79 |
class XChest(datasets.GeneratorBasedBuilder):
|
80 |
"""NIH Image Chest X-ray dataset."""
|
81 |
|
82 |
-
VERSION = datasets.Version("
|
83 |
|
84 |
def _info(self):
|
85 |
return datasets.DatasetInfo(
|
@@ -88,7 +100,6 @@ class XChest(datasets.GeneratorBasedBuilder):
|
|
88 |
{
|
89 |
"image_file_path": datasets.Value("string"),
|
90 |
"image": datasets.Image(),
|
91 |
-
#"labels": datasets.features.ClassLabel(names=_NAMES),
|
92 |
"labels": datasets.features.Sequence(
|
93 |
datasets.features.ClassLabel(num_classes=len(_NAMES),
|
94 |
names=_NAMES)
|
@@ -98,8 +109,6 @@ class XChest(datasets.GeneratorBasedBuilder):
|
|
98 |
supervised_keys=("image", "labels"),
|
99 |
homepage=_HOMEPAGE,
|
100 |
citation=_CITATION,
|
101 |
-
#task_templates=[ImageClassification(image_column="image",
|
102 |
-
# label_column="labels")],
|
103 |
)
|
104 |
|
105 |
|
@@ -115,7 +124,7 @@ class XChest(datasets.GeneratorBasedBuilder):
|
|
115 |
test_files = []
|
116 |
|
117 |
# Download batches
|
118 |
-
data_files = dl_manager.download_and_extract(_URLS[
|
119 |
|
120 |
# Iterate trought image folder and check if they belong to
|
121 |
# the trainset or testset
|
@@ -133,26 +142,26 @@ class XChest(datasets.GeneratorBasedBuilder):
|
|
133 |
datasets.SplitGenerator(
|
134 |
name=datasets.Split.TRAIN,
|
135 |
gen_kwargs={
|
136 |
-
|
137 |
}
|
138 |
|
139 |
),
|
140 |
datasets.SplitGenerator(
|
141 |
name=datasets.Split.TEST,
|
142 |
gen_kwargs={
|
143 |
-
|
144 |
}
|
145 |
)
|
146 |
]
|
147 |
|
148 |
def _generate_examples(self, files):
|
149 |
# Read csv with image labels
|
150 |
-
label_csv = read_csv(_URLS[
|
151 |
for i, path in enumerate(files):
|
152 |
file_name = os.path.basename(path)
|
153 |
# Get image id to filter the respective row of the csv
|
154 |
image_id = file_name.split('/')[-1]
|
155 |
-
image_labels = label_csv[label_csv[
|
156 |
if file_name.endswith(".png"):
|
157 |
yield i, {
|
158 |
"image_file_path": path,
|
|
|
1 |
+
# Copyright 2022 Cristóbal Alcázar
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""NIH Chest X-ray Dataset"""
|
15 |
+
|
16 |
|
17 |
+
import os
|
18 |
import datasets
|
19 |
from datasets.tasks import ImageClassification
|
|
|
20 |
from requests import get
|
21 |
from pandas import read_csv
|
22 |
|
23 |
logger = datasets.logging.get_logger(__name__)
|
24 |
|
|
|
|
|
|
|
25 |
_CITATION = """\
|
26 |
+
@inproceedings{Wang_2017,
|
27 |
+
doi = {10.1109/cvpr.2017.369},
|
28 |
+
url = {https://doi.org/10.1109%2Fcvpr.2017.369},
|
29 |
+
year = 2017,
|
30 |
+
month = {jul},
|
31 |
+
publisher = {{IEEE}
|
32 |
+
},
|
33 |
+
author = {Xiaosong Wang and Yifan Peng and Le Lu and Zhiyong Lu and Mohammadhadi Bagheri and Ronald M. Summers},
|
34 |
+
title = {{ChestX}-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases},
|
35 |
+
booktitle = {2017 {IEEE} Conference on Computer Vision and Pattern Recognition ({CVPR})}
|
36 |
}
|
37 |
"""
|
38 |
|
39 |
+
|
40 |
_DESCRIPTION = """\
|
41 |
The NIH Chest X-ray dataset consists of 100,000 de-identified images of chest x-rays. The images are in PNG format.
|
42 |
|
43 |
The data is provided by the NIH Clinical Center and is available through the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC
|
44 |
"""
|
45 |
|
46 |
+
|
47 |
+
_HOMEPAGE = "https://nihcc.app.box.com/v/chestxray-nihcc"
|
48 |
+
|
49 |
+
|
50 |
+
_REPO = "https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/data"
|
51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
_IMAGE_URLS = [
|
54 |
+
f"{_REPO}/images/images_001.zip",
|
55 |
+
f"{_repo}/images/images_003.zip",
|
56 |
+
f"{_REPO}/images/images_004.zip",
|
57 |
+
f"{_REPO}/images/images_005.zip"
|
58 |
#'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/dummy/0.0.0/images_001.tar.gz',
|
59 |
#'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/dummy/0.0.0/images_002.tar.gz'
|
60 |
]
|
61 |
|
62 |
+
|
63 |
_URLS = {
|
64 |
+
"train_val_list": f"{_REPO}/train_val_list.txt",
|
65 |
+
"test_list": f"{_REPO}/test_list.txt",
|
66 |
+
"labels": f"{_REPO}/Data_Entry_2017_v2020.csv",
|
67 |
+
"image_urls": _IMAGE_URLS
|
68 |
}
|
69 |
|
70 |
+
|
71 |
+
_LABEL2IDX = {"No Finding": 0,
|
72 |
+
"Atelectasis": 1,
|
73 |
+
"Cardiomegaly": 2,
|
74 |
+
"Effusion": 3,
|
75 |
+
"Infiltration": 4,
|
76 |
+
"Mass": 5,
|
77 |
+
"Nodule": 6,
|
78 |
+
"Pneumonia": 7,
|
79 |
+
"Pneumothorax": 8,
|
80 |
+
"Consolidation": 9,
|
81 |
+
"Edema": 10,
|
82 |
+
"Emphysema": 11,
|
83 |
+
"Fibrosis": 12,
|
84 |
+
"Pleural_Thickening": 13,
|
85 |
+
"Hernia": 14}
|
86 |
+
|
87 |
|
88 |
_NAMES = list(_LABEL2IDX.keys())
|
89 |
|
|
|
91 |
class XChest(datasets.GeneratorBasedBuilder):
|
92 |
"""NIH Image Chest X-ray dataset."""
|
93 |
|
94 |
+
VERSION = datasets.Version("1.0.0")
|
95 |
|
96 |
def _info(self):
|
97 |
return datasets.DatasetInfo(
|
|
|
100 |
{
|
101 |
"image_file_path": datasets.Value("string"),
|
102 |
"image": datasets.Image(),
|
|
|
103 |
"labels": datasets.features.Sequence(
|
104 |
datasets.features.ClassLabel(num_classes=len(_NAMES),
|
105 |
names=_NAMES)
|
|
|
109 |
supervised_keys=("image", "labels"),
|
110 |
homepage=_HOMEPAGE,
|
111 |
citation=_CITATION,
|
|
|
|
|
112 |
)
|
113 |
|
114 |
|
|
|
124 |
test_files = []
|
125 |
|
126 |
# Download batches
|
127 |
+
data_files = dl_manager.download_and_extract(_URLS["image_urls"])
|
128 |
|
129 |
# Iterate trought image folder and check if they belong to
|
130 |
# the trainset or testset
|
|
|
142 |
datasets.SplitGenerator(
|
143 |
name=datasets.Split.TRAIN,
|
144 |
gen_kwargs={
|
145 |
+
"files": iter(train_files)
|
146 |
}
|
147 |
|
148 |
),
|
149 |
datasets.SplitGenerator(
|
150 |
name=datasets.Split.TEST,
|
151 |
gen_kwargs={
|
152 |
+
"files": iter(test_files)
|
153 |
}
|
154 |
)
|
155 |
]
|
156 |
|
157 |
def _generate_examples(self, files):
|
158 |
# Read csv with image labels
|
159 |
+
label_csv = read_csv(_URLS["labels"])
|
160 |
for i, path in enumerate(files):
|
161 |
file_name = os.path.basename(path)
|
162 |
# Get image id to filter the respective row of the csv
|
163 |
image_id = file_name.split('/')[-1]
|
164 |
+
image_labels = label_csv[label_csv["Image Index"] == image_id]["Finding Labels"].values[0].split("|")
|
165 |
if file_name.endswith(".png"):
|
166 |
yield i, {
|
167 |
"image_file_path": path,
|