Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
1K<n<10K
License:
File size: 5,808 Bytes
bd366ff 00a0d1c 77f342e 6b11ed8 77f342e 1c43976 32f54f8 1c43976 32f54f8 77f342e 1c43976 77f342e 1c43976 77f342e 1c43976 2a19855 77f342e bd366ff 634e71b 77f342e bd366ff 77f342e c6a8eb4 5d1e206 124ef01 0858d75 124ef01 c6a8eb4 124ef01 77f342e 6b11ed8 1c43976 6b11ed8 32f54f8 6b11ed8 77f342e 6b11ed8 bd366ff f06f586 c6a8eb4 1c43976 8dacc50 6b11ed8 32f54f8 6b11ed8 1c43976 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# Copyright 2022 Cristóbal Alcázar
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Rock Glacier dataset with images of the chilean andes."""
import os
import re
import datasets
from datasets.tasks import ImageClassification
datasets.logging.set_verbosity_debug()
logger = datasets.logging.get_logger(__name__)
#datasets.logging.set_verbosity_info()
#datasets.logging.set_verbosity_debug()
_HOMEPAGE = "https://github.com/alcazar90/rock-glacier-detection"
_CITATION = """\
@ONLINE {rock-glacier-dataset,
author="CMM-Glaciares",
title="Rock Glacier Dataset",
month="October",
year="2022",
url="https://github.com/alcazar90/rock-glacier-detection"
}
"""
_DESCRIPTION = """\
TODO: Add a description...
"""
#_URLS = {
# "train": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/train.zip",
# "validation": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/validation.zip",
# "train_mask": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/glaciar_masks_trainset.zip",
#}
_URLS = {
"train": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/data_v01/train.zip",
"validation": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/data_v01/val.zip",
"test": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/data_v01/test.zip",
}
_NAMES = ["cordillera", "glaciar"]
class RockGlacierConfig(datasets.BuilderConfig):
def __init__(self, name, **kwargs):
super(RockGlacierConfig, self).__init__(
version=datasets.Version("1.0.0"),
name=name,
description="Rock Glacier Dataset",
**kwargs,
)
class RockGlacierDataset(datasets.GeneratorBasedBuilder):
"""Rock Glacier images dataset."""
BUILDER_CONFIGS = [
RockGlacierConfig("image-classification"),
RockGlacierConfig("image-segmentation"),
]
def _info(self):
if self.config.name == "image-classification":
features = datasets.Features({
"image": datasets.Image(),
"labels": datasets.features.ClassLabel(names=_NAMES),
})
keys = ("image", "labels")
if self.config.name == "image-segmentation":
features = datasets.Features({
"image": datasets.Image(),
"labels": datasets.Image(),
})
keys = ("image", "labels")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=keys,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(_URLS)
if self.config.name == "image-classification":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dl_manager.iter_files([data_files["train"]]),
"split": "training",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"files": dl_manager.iter_files([data_files["validation"]]),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"files": dl_manager.iter_files([data_files["test"]]),
"split": "test",
},
),
]
if self.config.name == "image-segmentation":
train_data = dl_manager.iter_files([data_files["train"]]), dl_manager.iter_files([data_files["train_mask"]])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": train_data,
"split": "training",
},
)]
def _generate_examples(self, files, split):
if self.config.name == "image-classification":
for i, path in enumerate(files):
file_name = os.path.basename(path)
dir_name = os.path.basename(os.path.dirname(path))
if dir_name != "masks" and file_name.endswith(".png"):
yield i, {
"image": path,
"labels": os.path.basename(os.path.dirname(path)).lower(),
}
if self.config.name == "image-segmentation":
if split == "training":
images, masks = files
imageId2mask = {}
# iterate trought masks
for mask_path in masks:
mask_id = re.search('\d+', mask_path).group(0)
imageId2mask[mask_id] = mask_path
logger.info(f"imageId2mask check paths: {imageId2mask}")
for i, path in enumerate(files):
file_name = os.path.basename(path)
if file_name.endswith(".png"):
yield i, {
"image": path,
"labels": imageId2mask[re.search('\d+', file_name).group(0)]
}
|