"""Rock Glacier dataset with images of the chilean andes""" import os import datasets from datasets.tasks import ImageClassification _HOMEPAGE = "https://github.com/alcazar90/rock-glacier-detection" _CITATION = """\ @ONLINE {rock-glacier-dataset, author="CMM-Glaciares", title="Rock Glacier Dataset", month="October", year="2022", url="https://github.com/alcazar90/rock-glacier-detection" } """ _DESCRIPTION = """\ TODO: Add a description... """ _URLS = { "train": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/train.tar.gz", "validation": "https://huggingface.co/datasets/alkzar90/rock-glacier-dataset/resolve/main/data/validation.tar.gz" } _NAMES = ["glaciar", "cordillera"] class RockGlacierDataset(datasets.GeneratorBasedBuilder): """Rock Glacier images dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=_NAMES), } ), supervised_keys=("image", "labels"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification(image_column="image", label_column="labels")], ) def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": dl_manager.iter_files([data_files["train"]]), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "files": dl_manager.iter_files([data_files["validation"]]), }, ), ] def _generate_examples(self, files): for i, path in enumerate(files): file_name = os.path.basename(path) if file_name.endswith(".png"): yield i, { "image": path, "labels": os.path.basename(os.path.dirname(path)).lower(), }