Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
csv
Sub-tasks:
open-domain-qa
Languages:
Polish
Size:
1K - 10K
License:
Commit
•
ce5e40c
1
Parent(s):
28a47f4
Create README.md (#1)
Browse files- Create README.md (82598f2946e8c3fbab030e9e74a1e79247c50951)
Co-authored-by: Albert Sawczyn <asawczyn@users.noreply.huggingface.co>
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- other
|
6 |
+
language:
|
7 |
+
- pl
|
8 |
+
license:
|
9 |
+
- cc-by-sa-3.0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
pretty_name: 'Did you know?'
|
13 |
+
size_categories:
|
14 |
+
- 1K<n<10K
|
15 |
+
source_datasets:
|
16 |
+
- original
|
17 |
+
task_categories:
|
18 |
+
- question-answering
|
19 |
+
task_ids:
|
20 |
+
- open-domain-question-answering
|
21 |
+
---
|
22 |
+
|
23 |
+
# klej-dyk
|
24 |
+
|
25 |
+
## Description
|
26 |
+
|
27 |
+
The Czy wiesz? (eng. Did you know?) the dataset consists of almost 5k question-answer pairs obtained from Czy wiesz... section of Polish Wikipedia. Each question is written by a Wikipedia collaborator and is answered with a link to a relevant Wikipedia article. In huggingface version of this dataset, they chose the negatives which have the largest token overlap with a question.
|
28 |
+
|
29 |
+
## Tasks (input, output, and metrics)
|
30 |
+
|
31 |
+
The task is to predict if the answer to the given question is correct or not.
|
32 |
+
|
33 |
+
**Input** ('question sentence', 'answer' columns): question and answer sentences
|
34 |
+
|
35 |
+
**Output** ('target' column): 1 if the answer is correct, 0 otherwise. Note that the test split doesn't have target values so -1 is used instead
|
36 |
+
|
37 |
+
**Domain**: Wikipedia
|
38 |
+
|
39 |
+
**Measurements**: F1-Score
|
40 |
+
|
41 |
+
**Example**:
|
42 |
+
*Czym zajmowali się świątnicy? vs. Świątnik – osoba, która dawniej zajmowała się
|
43 |
+
obsługą kościoła (świątyni).* → **1 (the answer is correct)**
|
44 |
+
|
45 |
+
## Data splits
|
46 |
+
|
47 |
+
| Subset | Cardinality |
|
48 |
+
| ----------- | ----------: |
|
49 |
+
| train | 4154 |
|
50 |
+
| val | 0 |
|
51 |
+
| test | 1029 |
|
52 |
+
|
53 |
+
## Class distribution
|
54 |
+
|
55 |
+
| Class | train | validation | test |
|
56 |
+
|:----------|--------:|-------------:|-------:|
|
57 |
+
| incorrect | 0.831 | - | 0.831 |
|
58 |
+
| correct | 0.169 | - | 0.169 |
|
59 |
+
|
60 |
+
## Citation
|
61 |
+
|
62 |
+
```
|
63 |
+
@misc{11321/39,
|
64 |
+
title = {Pytania i odpowiedzi z serwisu wikipedyjnego "Czy wiesz", wersja 1.1},
|
65 |
+
author = {Marci{\'n}czuk, Micha{\l} and Piasecki, Dominik and Piasecki, Maciej and Radziszewski, Adam},
|
66 |
+
url = {http://hdl.handle.net/11321/39},
|
67 |
+
note = {{CLARIN}-{PL} digital repository},
|
68 |
+
year = {2013}
|
69 |
+
}
|
70 |
+
```
|
71 |
+
|
72 |
+
## License
|
73 |
+
|
74 |
+
```
|
75 |
+
Creative Commons Attribution ShareAlike 3.0 licence (CC-BY-SA 3.0)
|
76 |
+
```
|
77 |
+
|
78 |
+
## Links
|
79 |
+
|
80 |
+
[HuggingFace](https://huggingface.co/datasets/dyk)
|
81 |
+
|
82 |
+
[Source](http://nlp.pwr.wroc.pl/en/tools-and-resources/resources/czy-wiesz-question-answering-dataset)
|
83 |
+
[Source #2](https://clarin-pl.eu/dspace/handle/11321/39)
|
84 |
+
|
85 |
+
[Paper](https://www.researchgate.net/publication/272685895_Open_dataset_for_development_of_Polish_Question_Answering_systems)
|
86 |
+
|
87 |
+
## Examples
|
88 |
+
|
89 |
+
### Loading
|
90 |
+
|
91 |
+
```python
|
92 |
+
from pprint import pprint
|
93 |
+
|
94 |
+
from datasets import load_dataset
|
95 |
+
|
96 |
+
dataset = load_dataset("allegro/klej-dyk")
|
97 |
+
pprint(dataset['train'][100])
|
98 |
+
|
99 |
+
#{'answer': '"W wyborach prezydenckich w 2004 roku, Moroz przekazał swoje '
|
100 |
+
# 'poparcie Wiktorowi Juszczence. Po wyborach w 2006 socjaliści '
|
101 |
+
# 'początkowo tworzyli ""pomarańczową koalicję"" z Naszą Ukrainą i '
|
102 |
+
# 'Blokiem Julii Tymoszenko."',
|
103 |
+
# 'q_id': 'czywiesz4362',
|
104 |
+
# 'question': 'ile partii tworzy powołaną przez Wiktora Juszczenkę koalicję '
|
105 |
+
# 'Blok Nasza Ukraina?',
|
106 |
+
# 'target': 0}
|
107 |
+
```
|
108 |
+
|
109 |
+
### Evaluation
|
110 |
+
|
111 |
+
```python
|
112 |
+
import random
|
113 |
+
from pprint import pprint
|
114 |
+
|
115 |
+
from datasets import load_dataset, load_metric
|
116 |
+
|
117 |
+
dataset = load_dataset("allegro/klej-dyk")
|
118 |
+
dataset = dataset.class_encode_column("target")
|
119 |
+
references = dataset["test"]["target"]
|
120 |
+
|
121 |
+
# generate random predictions
|
122 |
+
predictions = [random.randrange(max(references) + 1) for _ in range(len(references))]
|
123 |
+
|
124 |
+
acc = load_metric("accuracy")
|
125 |
+
f1 = load_metric("f1")
|
126 |
+
|
127 |
+
acc_score = acc.compute(predictions=predictions, references=references)
|
128 |
+
f1_score = f1.compute(predictions=predictions, references=references, average="macro")
|
129 |
+
|
130 |
+
pprint(acc_score)
|
131 |
+
pprint(f1_score)
|
132 |
+
|
133 |
+
# {'accuracy': 0.5286686103012633}
|
134 |
+
# {'f1': 0.46700507614213194}
|
135 |
+
|
136 |
+
```
|