Datasets:

Tasks:
Other
Languages:
English
ArXiv:
License:
system HF staff commited on
Commit
94a2779
0 Parent(s):

Update files from the datasets library (from 1.3.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.3.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - no-annotation
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - cc-by-nc-sa-2-0
10
+ - cc-by-nc-2-0
11
+ - cc-by-nd-2-0
12
+ - cc-by-sa-2-0
13
+ - cc-by-nc-nd-2-0
14
+ - cc-by-nc-1-0
15
+ - other-cc0
16
+ - other-hybrid-oa
17
+ - other-els-covid
18
+ - other-no-cc
19
+ - other-gold-oa
20
+ - other-green-oa
21
+ - other-bronze-oa
22
+ - other-biorxiv
23
+ - other-arxiv
24
+ - other-medrxiv
25
+ - other-unk
26
+ multilinguality:
27
+ - monolingual
28
+ size_categories:
29
+ - 100K<n<1M
30
+ source_datasets:
31
+ - original
32
+ task_categories:
33
+ - other
34
+ task_ids:
35
+ - other-other-knowledge-extraction
36
+ ---
37
+
38
+ # Dataset Card Creation Guide
39
+
40
+ ## Table of Contents
41
+ - [Dataset Description](#dataset-description)
42
+ - [Dataset Summary](#dataset-summary)
43
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
44
+ - [Languages](#languages)
45
+ - [Dataset Structure](#dataset-structure)
46
+ - [Data Instances](#data-instances)
47
+ - [Data Fields](#data-instances)
48
+ - [Data Splits](#data-instances)
49
+ - [Dataset Creation](#dataset-creation)
50
+ - [Curation Rationale](#curation-rationale)
51
+ - [Source Data](#source-data)
52
+ - [Annotations](#annotations)
53
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
54
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
55
+ - [Social Impact of Dataset](#social-impact-of-dataset)
56
+ - [Discussion of Biases](#discussion-of-biases)
57
+ - [Other Known Limitations](#other-known-limitations)
58
+ - [Additional Information](#additional-information)
59
+ - [Dataset Curators](#dataset-curators)
60
+ - [Licensing Information](#licensing-information)
61
+ - [Citation Information](#citation-information)
62
+ - [Contributions](#contributions)
63
+
64
+ ## Dataset Description
65
+
66
+ - **Homepage:** [https://www.semanticscholar.org/cord19](https://www.semanticscholar.org/cord19)
67
+ - **Repository:** [https://github.com/allenai/cord19](https://github.com/allenai/cord19)
68
+ - **Paper:** [CORD-19: The COVID-19 Open Research Dataset](https://www.aclweb.org/anthology/2020.nlpcovid19-acl.1/)
69
+ - **Leaderboard:** [Kaggle challenge](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge)
70
+
71
+
72
+ ### Dataset Summary
73
+
74
+ CORD-19 is a corpus of academic papers about COVID-19 and related coronavirus research. It's curated and maintained by the Semantic Scholar team at the Allen Institute for AI to support text mining and NLP research.
75
+
76
+ ### Supported Tasks and Leaderboards
77
+
78
+ See tasks defined in the related [Kaggle challenge](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/tasks)
79
+
80
+ ### Languages
81
+
82
+ The dataset is in english (en).
83
+
84
+ ## Dataset Structure
85
+
86
+ ### Data Instances
87
+
88
+ The following code block present an overview of a sample in json-like syntax (abbreviated since some fields are very long):
89
+ ```
90
+ {
91
+ "abstract": "OBJECTIVE: This retrospective chart review describes the epidemiology and clinical features of 40 patients with culture-proven Mycoplasma pneumoniae infections at King Abdulaziz University Hospital, Jeddah, Saudi Arabia. METHODS: Patients with positive M. pneumoniae cultures from respiratory specimens from January 1997 through December 1998 were identified through the Microbiology records. Charts of patients were reviewed. RESULTS: 40 patients were identified [...]",
92
+ "authors": "Madani, Tariq A; Al-Ghamdi, Aisha A",
93
+ "cord_uid": "ug7v899j",
94
+ "doc_embeddings": [
95
+ -2.939983606338501,
96
+ -6.312200546264648,
97
+ -1.0459030866622925,
98
+ [...] 766 values in total [...]
99
+ -4.107113361358643,
100
+ -3.8174145221710205,
101
+ 1.8976187705993652,
102
+ 5.811529159545898,
103
+ -2.9323840141296387
104
+ ],
105
+ "doi": "10.1186/1471-2334-1-6",
106
+ "journal": "BMC Infect Dis",
107
+ "publish_time": "2001-07-04",
108
+ "sha": "d1aafb70c066a2068b02786f8929fd9c900897fb",
109
+ "source_x": "PMC",
110
+ "title": "Clinical features of culture-proven Mycoplasma pneumoniae infections at King Abdulaziz University Hospital, Jeddah, Saudi Arabia",
111
+ "url": "https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC35282/"
112
+ }
113
+ ```
114
+
115
+ ### Data Fields
116
+
117
+ Currently only the following fields are integrated: `cord_uid`, `sha`,`source_x`, `title`, `doi`, `abstract`, `publish_time`, `authors`, `journal`. With `fulltext` configuration, the sections transcribed in `pdf_json_files` are converted in `fulltext` feature.
118
+
119
+ - `cord_uid`: A `str`-valued field that assigns a unique identifier to each CORD-19 paper. This is not necessariy unique per row, which is explained in the FAQs.
120
+ - `sha`: A `List[str]`-valued field that is the SHA1 of all PDFs associated with the CORD-19 paper. Most papers will have either zero or one value here (since we either have a PDF or we don't), but some papers will have multiple. For example, the main paper might have supplemental information saved in a separate PDF. Or we might have two separate PDF copies of the same paper. If multiple PDFs exist, their SHA1 will be semicolon-separated (e.g. `'4eb6e165ee705e2ae2a24ed2d4e67da42831ff4a; d4f0247db5e916c20eae3f6d772e8572eb828236'`)
121
+ - `source_x`: A `List[str]`-valued field that is the names of sources from which we received this paper. Also semicolon-separated. For example, `'ArXiv; Elsevier; PMC; WHO'`. There should always be at least one source listed.
122
+ - `title`: A `str`-valued field for the paper title
123
+ - `doi`: A `str`-valued field for the paper DOI
124
+ - `pmcid`: A `str`-valued field for the paper's ID on PubMed Central. Should begin with `PMC` followed by an integer.
125
+ - `pubmed_id`: An `int`-valued field for the paper's ID on PubMed.
126
+ - `license`: A `str`-valued field with the most permissive license we've found associated with this paper. Possible values include: `'cc0', 'hybrid-oa', 'els-covid', 'no-cc', 'cc-by-nc-sa', 'cc-by', 'gold-oa', 'biorxiv', 'green-oa', 'bronze-oa', 'cc-by-nc', 'medrxiv', 'cc-by-nd', 'arxiv', 'unk', 'cc-by-sa', 'cc-by-nc-nd'`
127
+ - `abstract`: A `str`-valued field for the paper's abstract
128
+ - `publish_time`: A `str`-valued field for the published date of the paper. This is in `yyyy-mm-dd` format. Not always accurate as some publishers will denote unknown dates with future dates like `yyyy-12-31`
129
+ - `authors`: A `List[str]`-valued field for the authors of the paper. Each author name is in `Last, First Middle` format and semicolon-separated.
130
+ - `journal`: A `str`-valued field for the paper journal. Strings are not normalized (e.g. `BMJ` and `British Medical Journal` can both exist). Empty string if unknown.
131
+ - `mag_id`: Deprecated, but originally an `int`-valued field for the paper as represented in the Microsoft Academic Graph.
132
+ - `who_covidence_id`: A `str`-valued field for the ID assigned by the WHO for this paper. Format looks like `#72306`.
133
+ - `arxiv_id`: A `str`-valued field for the arXiv ID of this paper.
134
+ - `pdf_json_files`: A `List[str]`-valued field containing paths from the root of the current data dump version to the parses of the paper PDFs into JSON format. Multiple paths are semicolon-separated. Example: `document_parses/pdf_json/4eb6e165ee705e2ae2a24ed2d4e67da42831ff4a.json; document_parses/pdf_json/d4f0247db5e916c20eae3f6d772e8572eb828236.json`
135
+ - `pmc_json_files`: A `List[str]`-valued field. Same as above, but corresponding to the full text XML files downloaded from PMC, parsed into the same JSON format as above.
136
+ - `url`: A `List[str]`-valued field containing all URLs associated with this paper. Semicolon-separated.
137
+ - `s2_id`: A `str`-valued field containing the Semantic Scholar ID for this paper. Can be used with the Semantic Scholar API (e.g. `s2_id=9445722` corresponds to `http://api.semanticscholar.org/corpusid:9445722`)
138
+
139
+ Extra fields based on selected configuration during loading:
140
+
141
+ - `fulltext`: A `str`-valued field containing the concatenation of all text sections from json (itself extracted from pdf)
142
+ - `doc_embeddings`: A `sequence` of float-valued elements containing document embeddings as a vector of floats (parsed from string of values separated by ','). Details on the system used to extract the embeddings are available in: [SPECTER: Document-level Representation Learning using Citation-informed Transformers](https://arxiv.org/abs/2004.07180). TL;DR: it's relying on a BERT model pre-trained on document-level relatedness using the citation graph. The system can be queried through REST (see [public API documentation](https://github.com/allenai/paper-embedding-public-apis)).
143
+
144
+ ### Data Splits
145
+
146
+ No annotation provided in this dataset so all instances are provided in training split.
147
+
148
+ The sizes of each configurations are:
149
+
150
+ | | Tain |
151
+ | ----- | ------ |
152
+ | metadata | 368618 |
153
+ | fulltext | 368618 |
154
+ | embeddings | 368618 |
155
+
156
+
157
+ ## Dataset Creation
158
+
159
+ ### Curation Rationale
160
+
161
+ See [official readme](https://github.com/allenai/cord19/blob/master/README.md)
162
+
163
+ ### Source Data
164
+
165
+ See [official readme](https://github.com/allenai/cord19/blob/master/README.md)
166
+
167
+ #### Initial Data Collection and Normalization
168
+
169
+ See [official readme](https://github.com/allenai/cord19/blob/master/README.md)
170
+
171
+ #### Who are the source language producers?
172
+
173
+ See [official readme](https://github.com/allenai/cord19/blob/master/README.md)
174
+
175
+ ### Annotations
176
+
177
+ No annotations
178
+
179
+ #### Annotation process
180
+
181
+ N/A
182
+
183
+ #### Who are the annotators?
184
+
185
+ N/A
186
+
187
+ ### Personal and Sensitive Information
188
+
189
+ [More Information Needed]
190
+
191
+ ## Considerations for Using the Data
192
+
193
+ ### Social Impact of Dataset
194
+
195
+ [More Information Needed]
196
+
197
+ ### Discussion of Biases
198
+
199
+ [More Information Needed]
200
+
201
+ ### Other Known Limitations
202
+
203
+ [More Information Needed]
204
+
205
+ ## Additional Information
206
+
207
+ ### Dataset Curators
208
+
209
+ [More Information Needed]
210
+
211
+ ### Licensing Information
212
+
213
+ [More Information Needed]
214
+
215
+ ### Citation Information
216
+
217
+ ```
218
+ @article{Wang2020CORD19TC,
219
+ title={CORD-19: The Covid-19 Open Research Dataset},
220
+ author={Lucy Lu Wang and Kyle Lo and Yoganand Chandrasekhar and Russell Reas and Jiangjiang Yang and Darrin Eide and
221
+ K. Funk and Rodney Michael Kinney and Ziyang Liu and W. Merrill and P. Mooney and D. Murdick and Devvret Rishi and
222
+ Jerry Sheehan and Zhihong Shen and B. Stilson and A. Wade and K. Wang and Christopher Wilhelm and Boya Xie and
223
+ D. Raymond and Daniel S. Weld and Oren Etzioni and Sebastian Kohlmeier},
224
+ journal={ArXiv},
225
+ year={2020}
226
+ }
227
+ ```
228
+
229
+ ### Contributions
230
+
231
+ Thanks to [@ggdupont](https://github.com/ggdupont) for adding this dataset.
cord19.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ CORD-19 dataset implementation initiated by @ggdupont
17
+ """
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import csv
22
+ import json
23
+ import os
24
+
25
+ import datasets
26
+
27
+
28
+ # Find for instance the citation on arxiv or on the dataset repo/website
29
+ _CITATION = """\
30
+ @article{Wang2020CORD19TC,
31
+ title={CORD-19: The Covid-19 Open Research Dataset},
32
+ author={Lucy Lu Wang and Kyle Lo and Yoganand Chandrasekhar and Russell Reas and Jiangjiang Yang and Darrin Eide and
33
+ K. Funk and Rodney Michael Kinney and Ziyang Liu and W. Merrill and P. Mooney and D. Murdick and Devvret Rishi and
34
+ Jerry Sheehan and Zhihong Shen and B. Stilson and A. Wade and K. Wang and Christopher Wilhelm and Boya Xie and
35
+ D. Raymond and Daniel S. Weld and Oren Etzioni and Sebastian Kohlmeier},
36
+ journal={ArXiv},
37
+ year={2020}
38
+ }
39
+ """
40
+
41
+ # You can copy an official description
42
+ _DESCRIPTION = """\
43
+ The Covid-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on Covid-19 and related
44
+ historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information
45
+ retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19
46
+ has been downloaded over 75K times and has served as the basis of many Covid-19 text mining and discovery systems.
47
+
48
+ The dataset itself isn't defining a specific task, but there is a Kaggle challenge that define 17 open research
49
+ questions to be solved with the dataset: https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/tasks
50
+ """
51
+
52
+ # The HuggingFace dataset library don't host the datasets but only point to the original files
53
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
54
+ CORD19_DATASET_DATE = "2020-11-29"
55
+ _URL = (
56
+ "https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases/cord-19_"
57
+ + CORD19_DATASET_DATE
58
+ + ".tar.gz"
59
+ )
60
+
61
+
62
+ class Cord19(datasets.GeneratorBasedBuilder):
63
+ """The Covid-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on Covid-19."""
64
+
65
+ VERSION = datasets.Version("0.0.1")
66
+
67
+ BUILDER_CONFIGS = [
68
+ datasets.BuilderConfig(
69
+ name="metadata",
70
+ description="The set of documents but loading some metadata like title and " "abstract for each article.",
71
+ ),
72
+ datasets.BuilderConfig(
73
+ name="fulltext",
74
+ description="The set of documents loading some metadata like title and "
75
+ "abstract and full text for each article.",
76
+ ),
77
+ datasets.BuilderConfig(
78
+ name="embeddings",
79
+ description="The set of documents loading some metadata like title and "
80
+ "abstract and document embeddings for each article.",
81
+ ),
82
+ ]
83
+
84
+ def _info(self):
85
+ # default metadata only
86
+ features_dict = {
87
+ "cord_uid": datasets.Value("string"),
88
+ "sha": datasets.Value("string"),
89
+ "source_x": datasets.Value("string"),
90
+ "title": datasets.Value("string"),
91
+ "doi": datasets.Value("string"),
92
+ "abstract": datasets.Value("string"),
93
+ "publish_time": datasets.Value("string"),
94
+ "authors": datasets.Value("string"),
95
+ "journal": datasets.Value("string"),
96
+ "url": datasets.Value("string"),
97
+ }
98
+
99
+ if "fulltext" in self.config.name:
100
+ # adding full_text
101
+ features_dict["fulltext"] = datasets.Value("string")
102
+
103
+ if "embeddings" in self.config.name:
104
+ # adding embeddings
105
+ features_dict["doc_embeddings"] = datasets.Sequence(datasets.Value("float64"))
106
+
107
+ return datasets.DatasetInfo(
108
+ # This is the description that will appear on the datasets page.
109
+ description=_DESCRIPTION,
110
+ # This defines the different columns of the dataset and their types
111
+ features=datasets.Features(features_dict),
112
+ supervised_keys=None,
113
+ homepage="https://www.semanticscholar.org/cord19/download",
114
+ citation=_CITATION,
115
+ )
116
+
117
+ def _split_generators(self, dl_manager):
118
+ """Returns SplitGenerators."""
119
+ my_urls = _URL
120
+ data_dir = dl_manager.download_and_extract(my_urls)
121
+
122
+ files = dict()
123
+ files["metadata"] = os.path.join(data_dir, CORD19_DATASET_DATE, "metadata.csv")
124
+
125
+ if "fulltext" in self.config.name:
126
+ fulltext_dir_path = dl_manager.extract(
127
+ os.path.join(data_dir, CORD19_DATASET_DATE, "document_parses.tar.gz")
128
+ )
129
+ files["fulltext"] = fulltext_dir_path
130
+
131
+ if "embeddings" in self.config.name:
132
+ embeddings_dir_path = dl_manager.extract(
133
+ os.path.join(data_dir, CORD19_DATASET_DATE, "cord_19_embeddings.tar.gz")
134
+ )
135
+ files["embeddings"] = os.path.join(
136
+ embeddings_dir_path, "cord_19_embeddings_" + CORD19_DATASET_DATE + ".csv"
137
+ )
138
+
139
+ return [
140
+ datasets.SplitGenerator(
141
+ name=datasets.Split.TRAIN,
142
+ # These kwargs will be passed to _generate_examples
143
+ gen_kwargs={
144
+ "filepath": files,
145
+ "split": "train",
146
+ },
147
+ ),
148
+ ]
149
+
150
+ def _generate_examples(self, filepath, split):
151
+ """ Yields examples. """
152
+
153
+ metadata_filepath = filepath["metadata"]
154
+
155
+ if "fulltext" in self.config.name:
156
+ fulltext_dir_path = filepath["fulltext"]
157
+
158
+ fh = None
159
+ if "embeddings" in self.config.name:
160
+ embeddings_filepath = filepath["embeddings"]
161
+ fh = open(embeddings_filepath, mode="r", encoding="utf-8")
162
+
163
+ with open(metadata_filepath, mode="r", encoding="utf-8") as f:
164
+ reader = csv.reader(f, delimiter=",")
165
+ # skip headers
166
+ next(reader, None)
167
+
168
+ for i, line in enumerate(reader):
169
+ doc_fields = {
170
+ "cord_uid": line[0],
171
+ "sha": line[1],
172
+ "source_x": line[2],
173
+ "title": line[3],
174
+ "doi": line[4],
175
+ "abstract": line[8],
176
+ "publish_time": line[9],
177
+ "authors": line[10],
178
+ "journal": line[11],
179
+ "url": line[17],
180
+ }
181
+
182
+ if "fulltext" in self.config.name:
183
+ doc_fields["fulltext"] = ""
184
+ json_filepath = line[15]
185
+ # some entry do not have pdf transcript
186
+ if len(json_filepath) > 0:
187
+ # possibly multiple json (matching multiple pdf) then take the first one arbitrarily
188
+ if ";" in json_filepath:
189
+ json_filepath = json_filepath.split(";")[0]
190
+
191
+ # load json file
192
+ with open(
193
+ os.path.join(fulltext_dir_path, json_filepath), mode="r", encoding="utf-8"
194
+ ) as json_file:
195
+ data = json.load(json_file)
196
+ doc_fields["fulltext"] = "\n".join(text_block["text"] for text_block in data["body_text"])
197
+
198
+ if "embeddings" in self.config.name:
199
+ # synchronized reading of embeddings csv
200
+ data = fh.readline().split(",")
201
+ doc_id = data[0]
202
+
203
+ doc_fields["doc_embeddings"] = []
204
+
205
+ if doc_id == doc_fields["cord_uid"]:
206
+ doc_fields["doc_embeddings"] = [float(v) for v in data[1:-1]]
207
+
208
+ yield i, doc_fields
209
+
210
+ if "embeddings" in self.config.name and fh is not None:
211
+ fh.close()
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata": {"description": "The Covid-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on Covid-19 and related\nhistorical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information\nretrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19\nhas been downloaded over 75K times and has served as the basis of many Covid-19 text mining and discovery systems.\n\nThe dataset itself isn't defining a specific task, but there is a Kaggle challenge that define 17 open research\nquestions to be solved with the dataset: https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/tasks\n", "citation": "@article{Wang2020CORD19TC,\n title={CORD-19: The Covid-19 Open Research Dataset},\n author={Lucy Lu Wang and Kyle Lo and Yoganand Chandrasekhar and Russell Reas and Jiangjiang Yang and Darrin Eide and\n K. Funk and Rodney Michael Kinney and Ziyang Liu and W. Merrill and P. Mooney and D. Murdick and Devvret Rishi and\n Jerry Sheehan and Zhihong Shen and B. Stilson and A. Wade and K. Wang and Christopher Wilhelm and Boya Xie and\n D. Raymond and Daniel S. Weld and Oren Etzioni and Sebastian Kohlmeier},\n journal={ArXiv},\n year={2020}\n}\n", "homepage": "https://www.semanticscholar.org/cord19/download", "license": "", "features": {"cord_uid": {"dtype": "string", "id": null, "_type": "Value"}, "sha": {"dtype": "string", "id": null, "_type": "Value"}, "source_x": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "doi": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}, "publish_time": {"dtype": "string", "id": null, "_type": "Value"}, "authors": {"dtype": "string", "id": null, "_type": "Value"}, "journal": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "cord19", "config_name": "metadata", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 496247275, "num_examples": 368618, "dataset_name": "cord19"}}, "download_checksums": {"https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases/cord-19_2020-11-29.tar.gz": {"num_bytes": 6142360818, "checksum": "56df7c715beaf8b84435f91b27fd7c8d9d1f50c6d04804bcf490e541d19d1783"}}, "download_size": 6142360818, "post_processing_size": null, "dataset_size": 496247275, "size_in_bytes": 6638608093}, "fulltext": {"description": "The Covid-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on Covid-19 and related\nhistorical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information\nretrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19\nhas been downloaded over 75K times and has served as the basis of many Covid-19 text mining and discovery systems.\n\nThe dataset itself isn't defining a specific task, but there is a Kaggle challenge that define 17 open research\nquestions to be solved with the dataset: https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/tasks\n", "citation": "@article{Wang2020CORD19TC,\n title={CORD-19: The Covid-19 Open Research Dataset},\n author={Lucy Lu Wang and Kyle Lo and Yoganand Chandrasekhar and Russell Reas and Jiangjiang Yang and Darrin Eide and\n K. Funk and Rodney Michael Kinney and Ziyang Liu and W. Merrill and P. Mooney and D. Murdick and Devvret Rishi and\n Jerry Sheehan and Zhihong Shen and B. Stilson and A. Wade and K. Wang and Christopher Wilhelm and Boya Xie and\n D. Raymond and Daniel S. Weld and Oren Etzioni and Sebastian Kohlmeier},\n journal={ArXiv},\n year={2020}\n}\n", "homepage": "https://www.semanticscholar.org/cord19/download", "license": "", "features": {"cord_uid": {"dtype": "string", "id": null, "_type": "Value"}, "sha": {"dtype": "string", "id": null, "_type": "Value"}, "source_x": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "doi": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}, "publish_time": {"dtype": "string", "id": null, "_type": "Value"}, "authors": {"dtype": "string", "id": null, "_type": "Value"}, "journal": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "fulltext": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "cord19", "config_name": "fulltext", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3718245736, "num_examples": 368618, "dataset_name": "cord19"}}, "download_checksums": {"https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases/cord-19_2020-11-29.tar.gz": {"num_bytes": 6142360818, "checksum": "56df7c715beaf8b84435f91b27fd7c8d9d1f50c6d04804bcf490e541d19d1783"}}, "download_size": 6142360818, "post_processing_size": null, "dataset_size": 3718245736, "size_in_bytes": 9860606554}, "embeddings": {"description": "The Covid-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on Covid-19 and related\nhistorical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information\nretrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19\nhas been downloaded over 75K times and has served as the basis of many Covid-19 text mining and discovery systems.\n\nThe dataset itself isn't defining a specific task, but there is a Kaggle challenge that define 17 open research\nquestions to be solved with the dataset: https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/tasks\n", "citation": "@article{Wang2020CORD19TC,\n title={CORD-19: The Covid-19 Open Research Dataset},\n author={Lucy Lu Wang and Kyle Lo and Yoganand Chandrasekhar and Russell Reas and Jiangjiang Yang and Darrin Eide and\n K. Funk and Rodney Michael Kinney and Ziyang Liu and W. Merrill and P. Mooney and D. Murdick and Devvret Rishi and\n Jerry Sheehan and Zhihong Shen and B. Stilson and A. Wade and K. Wang and Christopher Wilhelm and Boya Xie and\n D. Raymond and Daniel S. Weld and Oren Etzioni and Sebastian Kohlmeier},\n journal={ArXiv},\n year={2020}\n}\n", "homepage": "https://www.semanticscholar.org/cord19/download", "license": "", "features": {"cord_uid": {"dtype": "string", "id": null, "_type": "Value"}, "sha": {"dtype": "string", "id": null, "_type": "Value"}, "source_x": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "doi": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}, "publish_time": {"dtype": "string", "id": null, "_type": "Value"}, "authors": {"dtype": "string", "id": null, "_type": "Value"}, "journal": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "doc_embeddings": {"feature": {"dtype": "float64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "cord19", "config_name": "embeddings", "version": "0.0.0", "splits": {"train": {"name": "train", "num_bytes": 2759561943, "num_examples": 368618, "dataset_name": "cord19"}}, "download_checksums": {"https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases/cord-19_2020-11-29.tar.gz": {"num_bytes": 6142360818, "checksum": "56df7c715beaf8b84435f91b27fd7c8d9d1f50c6d04804bcf490e541d19d1783"}}, "download_size": 6142360818, "post_processing_size": null, "dataset_size": 2759561943, "size_in_bytes": 8901922761}}
dummy/embeddings/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:504f112724947ded500b805b5a6f6cf51f032dbd82bf1d297707ea1c456f4f05
3
+ size 28939
dummy/fulltext/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0aafc4301fc5a0ba540e627f91c5fdf44ef49261bd3c4ef077d342284e25ceb
3
+ size 19254
dummy/metadata/0.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:365a0ee7eef539a2f0048f9d8a14eaca87662528ae690fdced7428aa039a05ad
3
+ size 3578