File size: 5,126 Bytes
056956d
 
 
18e2798
2b83143
056956d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e8f717
056956d
 
4341e1d
 
 
 
 
 
 
2b7e78e
056956d
 
 
 
37db430
 
18e2798
3bfa95b
9c1dc3e
151dd98
d66638a
 
 
 
 
 
 
 
 
 
151dd98
 
 
 
 
 
 
 
37db430
 
ce5868a
056956d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f143e84
056956d
02347ac
4a4522a
3bfa95b
4a4522a
b8b9455
 
 
 
 
151dd98
d66638a
151dd98
 
 
 
 
 
 
 
b8b9455
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""SciCo"""

import os
from datasets.arrow_dataset import DatasetTransformationNotAllowedError
from datasets.utils import metadata
import jsonlines
import datasets 


_CITATION = """\
        @inproceedings{
    cattan2021scico,
    title={SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts},
    author={Arie Cattan and Sophie Johnson and Daniel S. Weld and Ido Dagan and Iz Beltagy and Doug Downey and Tom Hope},
    booktitle={3rd Conference on Automated Knowledge Base Construction},
    year={2021},
    url={https://openreview.net/forum?id=OFLbgUP04nC}
}
"""

_DESCRIPTION = """\
        SciCo is a dataset for hierarchical cross-document coreference resolution
        over scientific papers in the CS domain. 
        """

_DATA_URL = "https://nlp.biu.ac.il/~ariecattan/scico/data.tar"

class Scico(datasets.GeneratorBasedBuilder):
    # BUILDER_CONFIGS = [
    #     datasets.BuilderConfig(
    #         name="plain_text",
    #         version=datasets.Version("1.0.0", ""),
    #         description="SciCo",
    #     )
    # ]
    
    def _info(self):
        return datasets.DatasetInfo(
                description=_DESCRIPTION,
                homepage="https://scico.apps.allenai.org/",
                features=datasets.Features(
                    {
                        "flatten_tokens": datasets.features.Sequence(datasets.features.Value("string")),
                        "flatten_mentions": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=3)),
                        "tokens": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("string"))),
                        "doc_ids": datasets.features.Sequence(datasets.features.Value("int32")),
                        # "metadata": datasets.features.Sequence(
                        #     {
                        #         "title": datasets.features.Value("string"),
                        #         "paper_sha": datasets.features.Value("string"),
                        #         "fields_of_study": datasets.features.Value("string"),
                        #         "Year": datasets.features.Value("string"),
                        #         "BookTitle": datasets.features.Value("string"),
                        #         "url": datasets.features.Value("string")
                        #     }
                        # )
                        "sentences": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32")))),
                        "mentions": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=4)),
                        "relations": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=2)),
                        "id": datasets.Value("int32"),
                        "source": datasets.Value("string"),
                        "hard_10": datasets.features.Value("bool"),
                        "hard_20": datasets.features.Value("bool"),
                        "curated": datasets.features.Value("bool")
                    }
                ),
                supervised_keys=None,
                citation = _CITATION)


    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_DATA_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl")}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "dev.jsonl")}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "train.jsonl")}
            ),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        print(filepath)
        with jsonlines.open(filepath, 'r') as f:
            for i, topic in enumerate(f):
                topic['hard_10'] = topic['hard_10'] if 'hard_10' in topic else False
                topic['hard_20'] = topic['hard_20'] if 'hard_20' in topic else False
                topic["curated"] = topic["curated"] if "curated" in topic else False
                yield i, {
                    "flatten_tokens": topic['flatten_tokens'],
                    "flatten_mentions": topic["flatten_mentions"],
                    "tokens": topic["tokens"],
                    "doc_ids": topic["doc_ids"],
                    "doc_ids": topic["doc_ids"],
                    # "metadata": topic["metadata"]
                    "sentences": topic["sentences"],
                    "mentions": topic["mentions"],
                    "relations": topic["relations"],
                    "id": topic["id"],
                    "source": topic["source"],
                    "hard_10": topic["hard_10"],
                    "hard_20": topic["hard_20"],
                    "curated": topic["curated"]
                }