Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
coreference-resolution
Languages:
English
Size:
< 1K
License:
File size: 4,147 Bytes
056956d 18e2798 2b83143 056956d 9e8f717 056956d 4341e1d 2b7e78e 056956d 37db430 18e2798 d99e852 a7d20c7 a2fe018 1eef6e3 d99e852 18e2798 37db430 ce5868a 056956d f143e84 056956d 02347ac 2b83143 02347ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
"""SciCo"""
import os
from datasets.arrow_dataset import DatasetTransformationNotAllowedError
from datasets.utils import metadata
import jsonlines
import datasets
_CITATION = """\
@inproceedings{
cattan2021scico,
title={SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts},
author={Arie Cattan and Sophie Johnson and Daniel S. Weld and Ido Dagan and Iz Beltagy and Doug Downey and Tom Hope},
booktitle={3rd Conference on Automated Knowledge Base Construction},
year={2021},
url={https://openreview.net/forum?id=OFLbgUP04nC}
}
"""
_DESCRIPTION = """\
SciCo is a dataset for hierarchical cross-document coreference resolution
over scientific papers in the CS domain.
"""
_DATA_URL = "https://nlp.biu.ac.il/~ariecattan/scico/data.tar"
class Scico(datasets.GeneratorBasedBuilder):
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(
# name="plain_text",
# version=datasets.Version("1.0.0", ""),
# description="SciCo",
# )
# ]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
homepage="https://scico.apps.allenai.org/",
features=datasets.Features(
{
"flatten_tokens": datasets.features.Sequence(datasets.features.Value("string")),
"flatten_mentions": datasets.features.Sequence(datasets.features.Value("int32"), length=3),
"tokens": datasets.features.Sequence(datasets.features.Value("string")),
"doc_ids": datasets.features.Sequence(datasets.features.Value("int32")),
"metadata": datasets.features.Sequence(
{
"title": datasets.features.Value("string"),
# "_merge": datasets.features.Value("string"),
"paper_sha": datasets.features.Value("string"),
"fields_of_study": datasets.features.Sequence(datasets.features.Value("string")),
"Year": datasets.features.Value("string"),
"BookTitle": datasets.features.Value("string"),
"url": datasets.features.Value("string")
}
),
"sentences": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32")))),
"mentions": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=4)),
"relations": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=2)),
"id": datasets.Value("int32"),
"source": datasets.Value("string")
}
),
supervised_keys=None,
citation = _CITATION)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_DATA_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl")}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "dev.jsonl")}
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "train.jsonl")}
),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
print(filepath)
with jsonlines.open(filepath, 'r') as f:
for i, topic in enumerate(f):
metadata = topic['metadata']
if '_merge' in metadata:
del metadata['_merge']
topic['metadata'] = metadata
yield i, topic
|