File size: 4,147 Bytes
056956d
 
 
18e2798
2b83143
056956d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e8f717
056956d
 
4341e1d
 
 
 
 
 
 
2b7e78e
056956d
 
 
 
37db430
 
18e2798
 
 
 
 
 
d99e852
a7d20c7
a2fe018
1eef6e3
d99e852
 
 
18e2798
 
 
 
 
37db430
 
 
 
ce5868a
056956d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f143e84
056956d
02347ac
2b83143
 
 
 
02347ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""SciCo"""

import os
from datasets.arrow_dataset import DatasetTransformationNotAllowedError
from datasets.utils import metadata
import jsonlines
import datasets 


_CITATION = """\
        @inproceedings{
    cattan2021scico,
    title={SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts},
    author={Arie Cattan and Sophie Johnson and Daniel S. Weld and Ido Dagan and Iz Beltagy and Doug Downey and Tom Hope},
    booktitle={3rd Conference on Automated Knowledge Base Construction},
    year={2021},
    url={https://openreview.net/forum?id=OFLbgUP04nC}
}
"""

_DESCRIPTION = """\
        SciCo is a dataset for hierarchical cross-document coreference resolution
        over scientific papers in the CS domain. 
        """

_DATA_URL = "https://nlp.biu.ac.il/~ariecattan/scico/data.tar"

class Scico(datasets.GeneratorBasedBuilder):
    # BUILDER_CONFIGS = [
    #     datasets.BuilderConfig(
    #         name="plain_text",
    #         version=datasets.Version("1.0.0", ""),
    #         description="SciCo",
    #     )
    # ]
    
    def _info(self):
        return datasets.DatasetInfo(
                description=_DESCRIPTION,
                homepage="https://scico.apps.allenai.org/",
                features=datasets.Features(
                    {
                        "flatten_tokens": datasets.features.Sequence(datasets.features.Value("string")),
                        "flatten_mentions": datasets.features.Sequence(datasets.features.Value("int32"), length=3),
                        "tokens": datasets.features.Sequence(datasets.features.Value("string")),
                        "doc_ids": datasets.features.Sequence(datasets.features.Value("int32")),
                        "metadata": datasets.features.Sequence(
                            {
                                "title": datasets.features.Value("string"),
                                # "_merge": datasets.features.Value("string"),
                                "paper_sha": datasets.features.Value("string"),
                                "fields_of_study": datasets.features.Sequence(datasets.features.Value("string")),
                                "Year": datasets.features.Value("string"),
                                "BookTitle": datasets.features.Value("string"),
                                "url": datasets.features.Value("string")
                            }
                        ),
                        "sentences": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32")))),
                        "mentions": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=4)),
                        "relations": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=2)),
                        "id": datasets.Value("int32"),
                        "source": datasets.Value("string")
                    }
                ),
                supervised_keys=None,
                citation = _CITATION)


    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_DATA_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl")}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "dev.jsonl")}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "train.jsonl")}
            ),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        print(filepath)
        with jsonlines.open(filepath, 'r') as f:
            for i, topic in enumerate(f):
                metadata = topic['metadata']
                if '_merge' in metadata:
                    del metadata['_merge']
                    topic['metadata'] = metadata
                yield i, topic