"""SciCo""" import os from datasets.arrow_dataset import DatasetTransformationNotAllowedError from datasets.utils import metadata import jsonlines import datasets _CITATION = """\ @inproceedings{ cattan2021scico, title={SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts}, author={Arie Cattan and Sophie Johnson and Daniel S. Weld and Ido Dagan and Iz Beltagy and Doug Downey and Tom Hope}, booktitle={3rd Conference on Automated Knowledge Base Construction}, year={2021}, url={https://openreview.net/forum?id=OFLbgUP04nC} } """ _DESCRIPTION = """\ SciCo is a dataset for hierarchical cross-document coreference resolution over scientific papers in the CS domain. """ _DATA_URL = "https://nlp.biu.ac.il/~ariecattan/scico/data.tar" class Scico(datasets.GeneratorBasedBuilder): # BUILDER_CONFIGS = [ # datasets.BuilderConfig( # name="plain_text", # version=datasets.Version("1.0.0", ""), # description="SciCo", # ) # ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, homepage="https://scico.apps.allenai.org/", features=datasets.Features( { "flatten_tokens": datasets.features.Sequence(datasets.features.Value("string")), "flatten_mentions": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=3)), "tokens": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("string"))), "doc_ids": datasets.features.Sequence(datasets.features.Value("int32")), # "metadata": datasets.features.Sequence( # { # "title": datasets.features.Value("string"), # "paper_sha": datasets.features.Value("string"), # "fields_of_study": datasets.features.Value("string"), # "Year": datasets.features.Value("string"), # "BookTitle": datasets.features.Value("string"), # "url": datasets.features.Value("string") # } # ) "sentences": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32")))), "mentions": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=4)), "relations": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Value("int32"), length=2)), "id": datasets.Value("int32"), "source": datasets.Value("string"), "hard_10": datasets.features.Value("bool"), "hard_20": datasets.features.Value("bool"), "curated": datasets.features.Value("bool") } ), supervised_keys=None, citation = _CITATION) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_DATA_URL) return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl")} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "dev.jsonl")} ), datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "train.jsonl")} ), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" print(filepath) with jsonlines.open(filepath, 'r') as f: for i, topic in enumerate(f): topic['hard_10'] = topic['hard_10'] if 'hard_10' in topic else False topic['hard_20'] = topic['hard_20'] if 'hard_20' in topic else False topic["curated"] = topic["curated"] if "curated" in topic else False yield i, { "flatten_tokens": topic['flatten_tokens'], "flatten_mentions": topic["flatten_mentions"], "tokens": topic["tokens"], "doc_ids": topic["doc_ids"], "doc_ids": topic["doc_ids"], # "metadata": topic["metadata"] "sentences": topic["sentences"], "mentions": topic["mentions"], "relations": topic["relations"], "id": topic["id"], "source": topic["source"], "hard_10": topic["hard_10"], "hard_20": topic["hard_20"], "curated": topic["curated"] }