Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
closed-domain-qa
Languages:
English
Size:
10K - 100K
License:
Commit
·
2c94ad3
1
Parent(s):
2781d61
Convert dataset to Parquet (#4)
Browse files- Convert dataset to Parquet (c7ea11f06ac799e1206befb10da77d7a34c8ce46)
- Delete loading script (04c3d428e8bfe0bfc89838e1f5efc20f8880e0e7)
- Delete legacy dataset_infos.json (ff6ff3901bdb539d0c822ddd27fff0301722c7f9)
- README.md +14 -5
- data/test-00000-of-00001.parquet +3 -0
- data/train-00000-of-00001.parquet +3 -0
- data/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
- sciq.py +0 -91
README.md
CHANGED
@@ -35,16 +35,25 @@ dataset_info:
|
|
35 |
dtype: string
|
36 |
splits:
|
37 |
- name: train
|
38 |
-
num_bytes:
|
39 |
num_examples: 11679
|
40 |
- name: validation
|
41 |
-
num_bytes:
|
42 |
num_examples: 1000
|
43 |
- name: test
|
44 |
-
num_bytes:
|
45 |
num_examples: 1000
|
46 |
-
download_size:
|
47 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
---
|
49 |
|
50 |
# Dataset Card for "sciq"
|
|
|
35 |
dtype: string
|
36 |
splits:
|
37 |
- name: train
|
38 |
+
num_bytes: 6546183
|
39 |
num_examples: 11679
|
40 |
- name: validation
|
41 |
+
num_bytes: 554120
|
42 |
num_examples: 1000
|
43 |
- name: test
|
44 |
+
num_bytes: 563927
|
45 |
num_examples: 1000
|
46 |
+
download_size: 4674410
|
47 |
+
dataset_size: 7664230
|
48 |
+
configs:
|
49 |
+
- config_name: default
|
50 |
+
data_files:
|
51 |
+
- split: train
|
52 |
+
path: data/train-*
|
53 |
+
- split: validation
|
54 |
+
path: data/validation-*
|
55 |
+
- split: test
|
56 |
+
path: data/test-*
|
57 |
---
|
58 |
|
59 |
# Dataset Card for "sciq"
|
data/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a719356a29b127fc54ef3c7f51a034db4bd105d5717215e8c85d2aa58d60667
|
3 |
+
size 342808
|
data/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19644360954006d06e9ad3df07bddb34f8535c081b831d48f604603c713ac167
|
3 |
+
size 3993099
|
data/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:455dd9f1d725cd3ecbce369799a2fbbdbbfecf51ab84a86d56ba3370dc847b8a
|
3 |
+
size 338503
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "The SciQ dataset contains 13,679 crowdsourced science exam questions about Physics, Chemistry and Biology, among others. The questions are in multiple-choice format with 4 answer options each. For the majority of the questions, an additional paragraph with supporting evidence for the correct answer is provided.\n\n", "citation": "@inproceedings{SciQ,\n title={Crowdsourcing Multiple Choice Science Questions},\n author={Johannes Welbl, Nelson F. Liu, Matt Gardner},\n year={2017},\n journal={arXiv:1707.06209v1}\n}\n", "homepage": "https://allenai.org/data/sciq", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "distractor3": {"dtype": "string", "id": null, "_type": "Value"}, "distractor1": {"dtype": "string", "id": null, "_type": "Value"}, "distractor2": {"dtype": "string", "id": null, "_type": "Value"}, "correct_answer": {"dtype": "string", "id": null, "_type": "Value"}, "support": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "sciq", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 564826, "num_examples": 1000, "dataset_name": "sciq"}, "train": {"name": "train", "num_bytes": 6556427, "num_examples": 11679, "dataset_name": "sciq"}, "validation": {"name": "validation", "num_bytes": 555019, "num_examples": 1000, "dataset_name": "sciq"}}, "download_checksums": {"https://s3-us-west-2.amazonaws.com/ai2-website/data/SciQ.zip": {"num_bytes": 2821345, "checksum": "7f3312f6ac6b09970b32942d106a8c44ec0dad46a0369f17d635aff8e348a87c"}}, "download_size": 2821345, "dataset_size": 7676272, "size_in_bytes": 10497617}}
|
|
|
|
sciq.py
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
"""TODO(sciQ): Add a description here."""
|
2 |
-
|
3 |
-
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
|
7 |
-
import datasets
|
8 |
-
|
9 |
-
|
10 |
-
# TODO(sciQ): BibTeX citation
|
11 |
-
_CITATION = """\
|
12 |
-
@inproceedings{SciQ,
|
13 |
-
title={Crowdsourcing Multiple Choice Science Questions},
|
14 |
-
author={Johannes Welbl, Nelson F. Liu, Matt Gardner},
|
15 |
-
year={2017},
|
16 |
-
journal={arXiv:1707.06209v1}
|
17 |
-
}
|
18 |
-
"""
|
19 |
-
|
20 |
-
# TODO(sciQ):
|
21 |
-
_DESCRIPTION = """\
|
22 |
-
The SciQ dataset contains 13,679 crowdsourced science exam questions about Physics, Chemistry and Biology, among others. The questions are in multiple-choice format with 4 answer options each. For the majority of the questions, an additional paragraph with supporting evidence for the correct answer is provided.
|
23 |
-
|
24 |
-
"""
|
25 |
-
_URL = "https://s3-us-west-2.amazonaws.com/ai2-website/data/SciQ.zip"
|
26 |
-
|
27 |
-
|
28 |
-
class Sciq(datasets.GeneratorBasedBuilder):
|
29 |
-
"""TODO(sciQ): Short description of my dataset."""
|
30 |
-
|
31 |
-
# TODO(sciQ): Set up version.
|
32 |
-
VERSION = datasets.Version("0.1.0")
|
33 |
-
|
34 |
-
def _info(self):
|
35 |
-
# TODO(sciQ): Specifies the datasets.DatasetInfo object
|
36 |
-
return datasets.DatasetInfo(
|
37 |
-
# This is the description that will appear on the datasets page.
|
38 |
-
description=_DESCRIPTION,
|
39 |
-
# datasets.features.FeatureConnectors
|
40 |
-
features=datasets.Features(
|
41 |
-
{
|
42 |
-
# These are the features of your dataset like images, labels ...
|
43 |
-
"question": datasets.Value("string"),
|
44 |
-
"distractor3": datasets.Value("string"),
|
45 |
-
"distractor1": datasets.Value("string"),
|
46 |
-
"distractor2": datasets.Value("string"),
|
47 |
-
"correct_answer": datasets.Value("string"),
|
48 |
-
"support": datasets.Value("string"),
|
49 |
-
}
|
50 |
-
),
|
51 |
-
# If there's a common (input, target) tuple from the features,
|
52 |
-
# specify them here. They'll be used if as_supervised=True in
|
53 |
-
# builder.as_dataset.
|
54 |
-
supervised_keys=None,
|
55 |
-
# Homepage of the dataset for documentation
|
56 |
-
homepage="https://allenai.org/data/sciq",
|
57 |
-
citation=_CITATION,
|
58 |
-
)
|
59 |
-
|
60 |
-
def _split_generators(self, dl_manager):
|
61 |
-
"""Returns SplitGenerators."""
|
62 |
-
# TODO(sciQ): Downloads the data and defines the splits
|
63 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
64 |
-
# download and extract URLs
|
65 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
66 |
-
data_dir = os.path.join(dl_dir, "SciQ dataset-2 3")
|
67 |
-
return [
|
68 |
-
datasets.SplitGenerator(
|
69 |
-
name=datasets.Split.TRAIN,
|
70 |
-
# These kwargs will be passed to _generate_examples
|
71 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "train.json")},
|
72 |
-
),
|
73 |
-
datasets.SplitGenerator(
|
74 |
-
name=datasets.Split.VALIDATION,
|
75 |
-
# These kwargs will be passed to _generate_examples
|
76 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "valid.json")},
|
77 |
-
),
|
78 |
-
datasets.SplitGenerator(
|
79 |
-
name=datasets.Split.TEST,
|
80 |
-
# These kwargs will be passed to _generate_examples
|
81 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "test.json")},
|
82 |
-
),
|
83 |
-
]
|
84 |
-
|
85 |
-
def _generate_examples(self, filepath):
|
86 |
-
"""Yields examples."""
|
87 |
-
# TODO(sciQ): Yields (key, example) tuples from the dataset
|
88 |
-
with open(filepath, encoding="utf-8") as f:
|
89 |
-
data = json.load(f)
|
90 |
-
for id_, row in enumerate(data):
|
91 |
-
yield id_, row
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|