File size: 3,515 Bytes
431a2b4 07cc4a2 431a2b4 07cc4a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
annotations_creators:
- expert-generated
language:
- ko
language_creators:
- expert-generated
license: cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: KorFin-ABSA
size_categories:
- 1K<n<10K
source_datasets:
- klue
tags:
- sentiment analysis
- aspect based sentiment analysis
- finance
task_categories:
- text-classification
task_ids:
- topic-classification
- sentiment-classification
---
# Dataset Card for KorFin-ABSA
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
### Dataset Summary
The KorFin-ASC is an extension of KorFin-ABSA including 8818 samples with (aspect, polarity) pairs annotated.
The samples were collected from [KLUE-TC](https://klue-benchmark.com/tasks/66/overview/description) and
analyst reports from [Naver Finance](https://finance.naver.com).
Annotation of the dataset is described in the paper [Removing Non-Stationary Knowledge From Pre-Trained Language Models for Entity-Level Sentiment Classification in Finance](https://arxiv.org/abs/2301.03136).
### Supported Tasks and Leaderboards
This dataset supports the following tasks:
* Aspect-Based Sentiment Classification
### Languages
Korean
## Dataset Structure
### Data Instances
Each instance consists of a single sentence, aspect, and corresponding polarity (POSITIVE/NEGATIVE/NEUTRAL).
```
{
"title": "LGU+ 1분기 영업익 1천706억원…마케팅 비용 감소",
"aspect": "LG U+",
'sentiment': 'NEUTRAL',
'url': 'https://news.naver.com/main/read.nhn?mode=LS2D&mid=shm&sid1=105&sid2=227&oid=001&aid=0008363739',
'annotator_id': 'A_01',
'Type': 'single'
}
```
### Data Fields
* title:
* aspect:
* sentiment:
* url:
* annotator_id:
* url:
### Data Splits
The dataset currently does not contain standard data splits.
## Additional Information
You can download the data via:
```
from datasets import load_dataset
dataset = load_dataset("amphora/KorFin-ASC")
```
Please find more information about the code and how the data was collected in the paper [Removing Non-Stationary Knowledge From Pre-Trained Language Models for Entity-Level Sentiment Classification in Finance](https://arxiv.org/abs/2301.03136).
The best-performing model on this dataset can be found at [link](https://huggingface.co/amphora/KorFinASC-XLM-RoBERTa).
### Licensing Information
KorFin-ASC is licensed under the terms of the [cc-by-sa-4.0](https://creativecommons.org/licenses/by-sa/4.0/)
### Citation Information
Please cite this data using:
```
@article{son2023removing,
title={Removing Non-Stationary Knowledge From Pre-Trained Language Models for Entity-Level Sentiment Classification in Finance},
author={Son, Guijin and Lee, Hanwool and Kang, Nahyeon and Hahm, Moonjeong},
journal={arXiv preprint arXiv:2301.03136},
year={2023}
}
```
### Contributions
Thanks to [@Albertmade](https://github.com/h-albert-lee), [@amphora](https://github.com/guijinSON) for making this dataset. |