|
import json |
|
import os |
|
import datasets |
|
import ast |
|
|
|
_DESCRIPTION = """\ |
|
The M-QALM Dataset Repository contains Multiple-Choice and Abstractive Questions for evaluating the performance of LLMs in the clinical and biomedical domain. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/anand-s/m_qalm" |
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
|
|
_URLS = { |
|
"train_normal_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/train_normal_mcqa.zip", |
|
"val_normal_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/val_normal_mcqa.zip", |
|
"test_normal_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/test_normal_mcqa.zip", |
|
"train_context_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/train_context_mcqa.zip", |
|
"val_context_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/val_context_mcqa.zip", |
|
"test_context_mcqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/test_context_mcqa.zip", |
|
"train_aqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/train_aqa.zip", |
|
"val_aqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/val_aqa.zip", |
|
"test_aqa": "https://huggingface.co/datasets/anand-s/m_qalm/resolve/main/test_aqa.zip", |
|
|
|
} |
|
|
|
class MQalm(datasets.GeneratorBasedBuilder): |
|
"""Dataset for multiple choice questions from Test Repo.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="train_normal_mcqa", version=VERSION, description="Train set MCQA"), |
|
datasets.BuilderConfig(name="val_normal_mcqa", version=VERSION, description="Val set MCQA"), |
|
datasets.BuilderConfig(name="test_normal_mcqa", version=VERSION, description="Test set MCQA"), |
|
datasets.BuilderConfig(name="train_context_mcqa", version=VERSION, description="Train set context MCQA"), |
|
datasets.BuilderConfig(name="val_context_mcqa", version=VERSION, description="Val set context MCQA"), |
|
datasets.BuilderConfig(name="test_context_mcqa", version=VERSION, description="Test set context MCQA"), |
|
datasets.BuilderConfig(name="train_aqa", version=VERSION, description="Train set AQA"), |
|
datasets.BuilderConfig(name="val_aqa", version=VERSION, description="Val set AQA"), |
|
datasets.BuilderConfig(name="test_aqa", version=VERSION, description="Test set AQA"), |
|
] |
|
|
|
|
|
def _info(self): |
|
features_dict = { |
|
"train_normal_mcqa": datasets.Features({ |
|
"prompt": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"options": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
"num_options": datasets.Value("string"), |
|
"question_type": datasets.Value("string"), |
|
"dataset_name": datasets.Value("string"), |
|
}), |
|
"val_normal_mcqa": datasets.Features({ |
|
"prompt": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"options": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
"num_options": datasets.Value("string"), |
|
"question_type": datasets.Value("string"), |
|
"dataset_name": datasets.Value("string"), |
|
"few_shot_prompt": datasets.Sequence(datasets.Features({ |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"options": datasets.Sequence(datasets.Value("string")), |
|
})), |
|
}), |
|
"test_normal_mcqa": datasets.Features({ |
|
"prompt": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"options": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
"num_options": datasets.Value("string"), |
|
"question_type": datasets.Value("string"), |
|
"dataset_name": datasets.Value("string"), |
|
"few_shot_prompt": datasets.Sequence(datasets.Features({ |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"options": datasets.Sequence(datasets.Value("string")), |
|
})), |
|
}), |
|
"train_context_mcqa": datasets.Features({ |
|
"prompt": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"options": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
"num_options": datasets.Value("string"), |
|
"question_type": datasets.Value("string"), |
|
"dataset_name": datasets.Value("string"), |
|
"context": datasets.Sequence(datasets.Value("string")) |
|
}), |
|
"val_context_mcqa": datasets.Features({ |
|
"prompt": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"options": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
"num_options": datasets.Value("string"), |
|
"question_type": datasets.Value("string"), |
|
"dataset_name": datasets.Value("string"), |
|
"context": datasets.Sequence(datasets.Value("string")), |
|
"few_shot_prompt": [{ |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"options": datasets.Sequence(datasets.Value("string")), |
|
"context": datasets.Sequence(datasets.Value("string")), |
|
}], |
|
}), |
|
"test_context_mcqa": datasets.Features({ |
|
"prompt": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"options": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
"num_options": datasets.Value("string"), |
|
"question_type": datasets.Value("string"), |
|
"dataset_name": datasets.Value("string"), |
|
"context": datasets.Sequence(datasets.Value("string")), |
|
"few_shot_prompt": datasets.Sequence(datasets.Features({ |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"options": datasets.Sequence(datasets.Value("string")), |
|
"context": datasets.Sequence(datasets.Value("string")), |
|
})), |
|
}), |
|
"train_aqa": datasets.Features({ |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"prompt": datasets.Value("string"), |
|
"dataset_name": datasets.Value("string"), |
|
}), |
|
"val_aqa": datasets.Features({ |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Sequence(datasets.Value("string")), |
|
"prompt": datasets.Value("string"), |
|
"dataset_name": datasets.Value("string"), |
|
}), |
|
"test_aqa": datasets.Features({ |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Sequence(datasets.Value("string")), |
|
"prompt": datasets.Value("string"), |
|
"dataset_name": datasets.Value("string"), |
|
}), |
|
} |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features_dict[self.config.name], |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
data_dir = dl_manager.download_and_extract(_URLS[self.config.name]) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=self.config.name, |
|
gen_kwargs={"directory": data_dir, "split": self.config.name}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, directory, split): |
|
|
|
key_idx = 0 |
|
for filename in os.listdir(directory): |
|
filepath = os.path.join(directory, filename) |
|
if filepath.endswith(".jsonl"): |
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
if split == "train_normal_mcqa": |
|
yield key_idx, { |
|
"prompt": data["prompt"], |
|
"question": data["question"], |
|
"options": data["options"], |
|
"answer": data["answer"], |
|
"num_options": data["num_options"], |
|
"question_type": data["question_type"], |
|
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl","") |
|
} |
|
key_idx +=1 |
|
elif split in ["val_normal_mcqa", "test_normal_mcqa"]: |
|
yield key_idx, { |
|
"prompt": data["prompt"], |
|
"question": data["question"], |
|
"options": data["options"], |
|
"answer": data["answer"], |
|
"num_options": data["num_options"], |
|
"question_type": data["question_type"], |
|
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""), |
|
"few_shot_prompt": [{ |
|
"question": item["question"], |
|
"answer": item["answer"], |
|
"options": item["options"], |
|
} for item in data["few_shot_prompt"]] |
|
} |
|
key_idx +=1 |
|
|
|
elif split == "train_context_mcqa": |
|
yield key_idx, { |
|
"prompt": data["prompt"], |
|
"question": data["question"], |
|
"options": data["options"], |
|
"answer": data["answer"], |
|
"num_options": data["num_options"], |
|
"context": data["context"], |
|
"question_type": data["question_type"], |
|
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl","") |
|
} |
|
key_idx +=1 |
|
elif split in ["val_context_mcqa", "test_context_mcqa"]: |
|
|
|
yield key_idx, { |
|
"prompt": data["prompt"], |
|
"question": data["question"], |
|
"options": data["options"], |
|
"answer": data["answer"], |
|
"num_options": data["num_options"], |
|
"context": data["context"], |
|
"question_type": data["question_type"], |
|
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl",""), |
|
"few_shot_prompt": data["few_shot_prompt"]} |
|
key_idx +=1 |
|
|
|
elif split in ["train_aqa", "val_aqa", "test_aqa"]: |
|
yield key_idx, { |
|
"prompt": data["prompt"], |
|
"question": data["question"], |
|
"answer": data["answer"], |
|
"dataset_name": os.path.split(filepath)[-1].replace(".jsonl","") |
|
} |
|
key_idx +=1 |