File size: 7,459 Bytes
276b412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
from pathlib import Path

import datasets
import pandas as pd

_VERSION = "1.0.0"

_DESCRIPTION = "Chronos datasets"

_CITATION = """
@article{ansari2024chronos,
  author  = {Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan, and Mercado, Pedro and Shen, Huibin and Shchur, Oleksandr and Rangapuram, Syama Syndar and Pineda Arango, Sebastian and Kapoor, Shubham and Zschiegner, Jasper and Maddix, Danielle C. and Wang, Hao and Mahoney, Michael W. and Torkkola, Kari and Gordon Wilson, Andrew and Bohlke-Schneider, Michael and Wang, Yuyang},
  title   = {Chronos: Learning the Language of Time Series},
  journal = {arXiv preprint arXiv:2403.07815},
  year    = {2024}
}
"""


_ETTH = "ETTh"
_ETTM = "ETTm"
_SPANISH_ENERGY_AND_WEATHER = "spanish_energy_and_weather"
_BRAZILIAN_TEMPERATURE = "brazilian_cities_temperature"


class ChronosExtraConfig(datasets.BuilderConfig):
    def __init__(
        self,
        name: str,
        license: str = None,
        homepage: str = None,
        **kwargs,
    ):
        super().__init__(name=name, **kwargs)
        self.license = license
        self.homepage = homepage


class ChronosExtraBuilder(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIG_CLASS = ChronosExtraConfig
    BUILDER_CONFIGS = [
        ChronosExtraConfig(
            name=_ETTH,
            license="CC BY-ND 4.0",
            homepage="https://github.com/zhouhaoyi/ETDataset",
            version=_VERSION,
        ),
        ChronosExtraConfig(
            name=_ETTM,
            license="CC BY-ND 4.0",
            homepage="https://github.com/zhouhaoyi/ETDataset",
            version=_VERSION,
        ),
        ChronosExtraConfig(
            name=_BRAZILIAN_TEMPERATURE,
            license="Database Contents License (DbCL) v1.0",
            homepage="https://www.kaggle.com/datasets/volpatto/temperature-timeseries-for-some-brazilian-cities",
            version=_VERSION,
        ),
        ChronosExtraConfig(
            name=_SPANISH_ENERGY_AND_WEATHER,
            homepage="https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather",
            version=_VERSION,
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            version=self.config.version,
            license=self.config.license,
            homepage=self.config.homepage,
        )

    def _split_generators(self, dl_manager):
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN),
        ]

    def _generate_examples(self):
        if self.config.name in [_ETTH, _ETTM]:
            yield from _ett_generator(self.config.name)
        elif self.config.name == _SPANISH_ENERGY_AND_WEATHER:
            yield from _spanish_energy_generator()
        elif self.config.name == _BRAZILIAN_TEMPERATURE:
            yield from _brazilian_temperature_generator()


def _ett_generator(name: str):
    for region in [1, 2]:
        url = f"https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/{name}{region}.csv?download=1"
        df = pd.read_csv(url, parse_dates=["date"])
        df = df.rename(columns={"date": "timestamp"})
        entry = {"id": f"{name}{region}"}
        for col in df.columns:
            entry[col] = df[col].to_numpy()
        yield region, entry


def _download_from_kaggle(dataset_name, download_path) -> None:
    from kaggle.api.kaggle_api_extended import KaggleApi

    api = KaggleApi()
    api.authenticate()
    api.dataset_download_files(dataset_name, path=download_path, unzip=True)


def _spanish_energy_generator():
    with tempfile.TemporaryDirectory() as download_path:
        _download_from_kaggle(
            "nicholasjhana/energy-consumption-generation-prices-and-weather",
            download_path,
        )
        download_path = Path(download_path)
        df_energy = pd.read_csv(download_path / "energy_dataset.csv")
        df_energy["time"] = pd.to_datetime(df_energy["time"], utc=True)
        df_energy.set_index("time", inplace=True)

        # Drop non-informative columns / columns containing forecasts
        constant_columns = df_energy.columns[df_energy.nunique() <= 1].to_list()
        forecast_columns = [
            col for col in df_energy.columns if "forecast" in col or "day ahead" in col
        ]
        columns_to_drop = constant_columns + forecast_columns
        df_energy = df_energy.drop(columns_to_drop, axis=1)

        entry = {"id": "0", "timestamp": df_energy.index.to_numpy(dtype="datetime64[ms]")}
        for col in df_energy.columns:
            saved_name = col.replace(" ", "_")
            entry[saved_name] = df_energy[col].to_numpy(dtype="float64")

        # Weather data
        df_weather = pd.read_csv(download_path / "weather_features.csv")
        df_weather["dt_iso"] = pd.to_datetime(df_weather["dt_iso"], utc=True)
        df_weather = (
            df_weather.rename(columns={"dt_iso": "time"})
            .drop_duplicates(subset=["time", "city_name"], keep="first")
            .set_index("time")
        )
        weather_features = [
            "temp",
            "temp_min",
            "temp_max",
            "pressure",
            "humidity",
            "wind_speed",
            "wind_deg",
            "rain_1h",
            "snow_3h",
            "clouds_all",
        ]
        for feature in weather_features:
            for city, df_for_city in df_weather.groupby("city_name"):
                saved_name = f"{city.lstrip()}_{feature}"
                entry[saved_name] = df_for_city[feature].to_numpy(dtype="float64")
                assert df_for_city.index.equals(df_energy.index)
    yield 0, entry


def _brazilian_temperature_generator():
    months = [
        "JAN",
        "FEB",
        "MAR",
        "APR",
        "MAY",
        "JUN",
        "JUL",
        "AUG",
        "SEP",
        "OCT",
        "NOV",
        "DEC",
    ]
    with tempfile.TemporaryDirectory() as download_path:
        _download_from_kaggle(
            "volpatto/temperature-timeseries-for-some-brazilian-cities", download_path
        )
        for filename in sorted(Path(download_path).iterdir()):
            city = filename.name.split("_", maxsplit=1)[1].split(".")[0]
            df = pd.read_csv(filename)
            df = df.set_index("YEAR")[months]
            first_timestamp = f"{df.index[0]}-01-01"
            df = df.stack()
            df[df == 999.9] = float("nan")
            entry = {
                "id": city,
                "timestamp": pd.date_range(
                    first_timestamp, freq="MS", periods=len(df), unit="ms"
                ).to_numpy(),
                "temperature": df.to_numpy("float32"),
            }
            yield city, entry