|
"""LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding.""" |
|
|
|
|
|
import datasets |
|
|
|
_DESCRIPTION = """\ |
|
LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/raidionics/LyNoS" |
|
|
|
_LICENSE = "MIT" |
|
|
|
_CITATION = """\ |
|
@article{bouget2023mediastinal, |
|
title={Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding}, |
|
author={Bouget, David and Pedersen, Andr{\'e} and Vanel, Johanna and Leira, Haakon O and Lang{\o}, Thomas}, |
|
journal={Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization}, |
|
volume={11}, |
|
number={1}, |
|
pages={44--58}, |
|
year={2023}, |
|
publisher={Taylor \& Francis} |
|
} |
|
|
|
""" |
|
|
|
_URLS = [ |
|
{ |
|
"ct": f"data/Pat{i}/Pat{i}_data.nii.gz", |
|
"azygos": f"data/Pat{i}/Pat{i}_labels_Azygos.nii.gz", |
|
"brachiocephalicveins": f"data/Pat{i}/Pat{i}_labels_BrachiocephalicVeins.nii.gz", |
|
"esophagus": f"data/Pat{i}/Pat{i}_labels_Esophagus.nii.gz", |
|
"lymphnodes": f"data/Pat{i}/Pat{i}_labels_LymphNodes.nii.gz", |
|
"subclaviancarotidarteries": f"data/Pat{i}/Pat{i}_labels_SubCarArt.nii.gz", |
|
} |
|
for i in range(1, 15) |
|
] |
|
|
|
|
|
class LyNoS(datasets.GeneratorBasedBuilder): |
|
"""A segmentation benchmark dataset for enlarged lymph nodes in patients with primary lung cancer.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"ct": datasets.Value("string"), |
|
"lymphnodes": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dirs = dl_manager.download(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"data_dirs": data_dirs, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dirs): |
|
for key, patient in enumerate(data_dirs): |
|
yield key, patient |
|
|