Create Real-Time Data
Browse files- Real-Time Data +80 -0
Real-Time Data
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
|
5 |
+
class RealTimeModel(nn.Module):
|
6 |
+
def __init__(self, input_size, hidden_size, output_size):
|
7 |
+
super(RealTimeModel, self).__init__()
|
8 |
+
self.fc1 = nn.Linear(input_size, hidden_size)
|
9 |
+
self.relu = nn.ReLU()
|
10 |
+
self.fc2 = nn.Linear(hidden_size, output_size)
|
11 |
+
|
12 |
+
def forward(self, x):
|
13 |
+
x = self.fc1(x)
|
14 |
+
x = self.relu(x)
|
15 |
+
x = self.fc2(x)
|
16 |
+
return x
|
17 |
+
|
18 |
+
model = RealTimeModel(input_size=10, hidden_size=20, output_size=1)
|
19 |
+
criterion = nn.MSELoss()
|
20 |
+
optimizer = optim.SGD(model.parameters(), lr=0.01)
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import time
|
24 |
+
|
25 |
+
def get_new_data():
|
26 |
+
return torch.tensor(np.random.rand(10), dtype=torch.float32)
|
27 |
+
|
28 |
+
def real_time_update():
|
29 |
+
while True:
|
30 |
+
new_data = get_new_data().unsqueeze(0)
|
31 |
+
target = torch.tensor([0.5], dtype=torch.float32)
|
32 |
+
|
33 |
+
output = model(new_data)
|
34 |
+
loss = criterion(output, target)
|
35 |
+
|
36 |
+
optimizer.zero_grad()
|
37 |
+
loss.backward()
|
38 |
+
optimzier.step()
|
39 |
+
|
40 |
+
print(f"Real-Time Update - Loss: {loss.item():.4f}")
|
41 |
+
time.sleep(1)
|
42 |
+
|
43 |
+
import matplotlib.pyplot as plt
|
44 |
+
|
45 |
+
def visualize_loss(loss_values):
|
46 |
+
plt.plot(loss_values)
|
47 |
+
plt.xlabel("Time")
|
48 |
+
plt.ylabel("Loss")
|
49 |
+
plt.show()
|
50 |
+
|
51 |
+
import numpy as np
|
52 |
+
import matplotlib.pyplot as plt
|
53 |
+
import torch
|
54 |
+
import time
|
55 |
+
|
56 |
+
def get_new_data():
|
57 |
+
return torch.sin(torch.linspace(0,2 * np.p, 100) + time.time()).numpy()
|
58 |
+
|
59 |
+
plt.ion()
|
60 |
+
fig, ax = plt.subplots()
|
61 |
+
x_data = np.linspace(0, 2 * np.pi, 100)
|
62 |
+
y_data = get_new_data()
|
63 |
+
line, = ax.plot(x_data, y_data)
|
64 |
+
|
65 |
+
def real_time_plot():
|
66 |
+
while True:
|
67 |
+
new_y_data = get_new_data()
|
68 |
+
line.set_ydata(new_y_data)
|
69 |
+
fig.canvas.draw()
|
70 |
+
fig.canvas.flush_events()
|
71 |
+
|
72 |
+
time.sleep(0.1)
|
73 |
+
|
74 |
+
try:
|
75 |
+
real_time_plot()
|
76 |
+
except KeyboardInterrupt:
|
77 |
+
print("Real-time plotting stopped.")
|
78 |
+
finally:
|
79 |
+
plt.ioff()
|
80 |
+
plt.show()
|