|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SUPERB: Speech processing Universal PERformance Benchmark.""" |
|
|
|
import csv |
|
import glob |
|
import os |
|
import textwrap |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@article{DBLP:journals/corr/abs-2105-01051, |
|
author = {Shu{-}Wen Yang and |
|
Po{-}Han Chi and |
|
Yung{-}Sung Chuang and |
|
Cheng{-}I Jeff Lai and |
|
Kushal Lakhotia and |
|
Yist Y. Lin and |
|
Andy T. Liu and |
|
Jiatong Shi and |
|
Xuankai Chang and |
|
Guan{-}Ting Lin and |
|
Tzu{-}Hsien Huang and |
|
Wei{-}Cheng Tseng and |
|
Ko{-}tik Lee and |
|
Da{-}Rong Liu and |
|
Zili Huang and |
|
Shuyan Dong and |
|
Shang{-}Wen Li and |
|
Shinji Watanabe and |
|
Abdelrahman Mohamed and |
|
Hung{-}yi Lee}, |
|
title = {{SUPERB:} Speech processing Universal PERformance Benchmark}, |
|
journal = {CoRR}, |
|
volume = {abs/2105.01051}, |
|
year = {2021}, |
|
url = {https://arxiv.org/abs/2105.01051}, |
|
archivePrefix = {arXiv}, |
|
eprint = {2105.01051}, |
|
timestamp = {Thu, 01 Jul 2021 13:30:22 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Self-supervised learning (SSL) has proven vital for advancing research in |
|
natural language processing (NLP) and computer vision (CV). The paradigm |
|
pretrains a shared model on large volumes of unlabeled data and achieves |
|
state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the |
|
speech processing community lacks a similar setup to systematically explore the |
|
paradigm. To bridge this gap, we introduce Speech processing Universal |
|
PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the |
|
performance of a shared model across a wide range of speech processing tasks |
|
with minimal architecture changes and labeled data. Among multiple usages of the |
|
shared model, we especially focus on extracting the representation learned from |
|
SSL due to its preferable re-usability. We present a simple framework to solve |
|
SUPERB tasks by learning task-specialized lightweight prediction heads on top of |
|
the frozen shared model. Our results demonstrate that the framework is promising |
|
as SSL representations show competitive generalizability and accessibility |
|
across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a |
|
benchmark toolkit to fuel the research in representation learning and general |
|
speech processing. |
|
|
|
Note that in order to limit the required storage for preparing this dataset, the |
|
audio is stored in the .flac format and is not converted to a float32 array. To |
|
convert, the audio file to a float32 array, please make use of the `.map()` |
|
function as follows: |
|
|
|
|
|
```python |
|
import soundfile as sf |
|
|
|
def map_to_array(batch): |
|
speech_array, _ = sf.read(batch["file"]) |
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
dataset = dataset.map(map_to_array, remove_columns=["file"]) |
|
``` |
|
""" |
|
|
|
|
|
class SuperbConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Superb.""" |
|
|
|
def __init__( |
|
self, |
|
features, |
|
url, |
|
data_url=None, |
|
supervised_keys=None, |
|
**kwargs, |
|
): |
|
super().__init__(version=datasets.Version("1.9.0", ""), **kwargs) |
|
self.features = features |
|
self.data_url = data_url |
|
self.url = url |
|
self.supervised_keys = supervised_keys |
|
|
|
|
|
class Superb(datasets.GeneratorBasedBuilder): |
|
"""Superb dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SuperbConfig( |
|
name="asr", |
|
description=textwrap.dedent( |
|
"""\ |
|
ASR transcribes utterances into words. While PR analyzes the |
|
improvement in modeling phonetics, ASR reflects the significance of |
|
the improvement in a real-world scenario. LibriSpeech |
|
train-clean-100/dev-clean/test-clean subsets are used for |
|
training/validation/testing. The evaluation metric is word error |
|
rate (WER).""" |
|
), |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
"speaker_id": datasets.Value("int64"), |
|
"chapter_id": datasets.Value("int64"), |
|
"id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
url="http://www.openslr.org/12", |
|
data_url="data/LibriSpeech-test-clean.zip", |
|
), |
|
SuperbConfig( |
|
name="ks", |
|
description=textwrap.dedent( |
|
"""\ |
|
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of |
|
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and |
|
inference time are all crucial. SUPERB uses the widely used Speech Commands dataset v1.0 for the task. |
|
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the |
|
false positive. The evaluation metric is accuracy (ACC)""" |
|
), |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=16_000), |
|
"label": datasets.ClassLabel( |
|
names=[ |
|
"yes", |
|
"no", |
|
"up", |
|
"down", |
|
"left", |
|
"right", |
|
"on", |
|
"off", |
|
"stop", |
|
"go", |
|
"_silence_", |
|
"_unknown_", |
|
] |
|
), |
|
} |
|
), |
|
supervised_keys=("file", "label"), |
|
url="https://www.tensorflow.org/datasets/catalog/speech_commands", |
|
data_url="data/speech_commands_test_set_v0.01.zip", |
|
), |
|
SuperbConfig( |
|
name="ic", |
|
description=textwrap.dedent( |
|
"""\ |
|
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of |
|
speakers. SUPERB uses the Fluent Speech Commands dataset, where each utterance is tagged with three intent |
|
labels: action, object, and location. The evaluation metric is accuracy (ACC).""" |
|
), |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=16_000), |
|
"speaker_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"action": datasets.ClassLabel( |
|
names=["activate", "bring", "change language", "deactivate", "decrease", "increase"] |
|
), |
|
"object": datasets.ClassLabel( |
|
names=[ |
|
"Chinese", |
|
"English", |
|
"German", |
|
"Korean", |
|
"heat", |
|
"juice", |
|
"lamp", |
|
"lights", |
|
"music", |
|
"newspaper", |
|
"none", |
|
"shoes", |
|
"socks", |
|
"volume", |
|
] |
|
), |
|
"location": datasets.ClassLabel(names=["bedroom", "kitchen", "none", "washroom"]), |
|
} |
|
), |
|
|
|
supervised_keys=None, |
|
url="https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/", |
|
data_url="data/fluent_speech_commands_dataset.zip", |
|
), |
|
SuperbConfig( |
|
name="si", |
|
description=textwrap.dedent( |
|
"""\ |
|
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class |
|
classification, where speakers are in the same predefined set for both training and testing. The widely |
|
used VoxCeleb1 dataset is adopted, and the evaluation metric is accuracy (ACC).""" |
|
), |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=16_000), |
|
"label": datasets.ClassLabel(names=[f"id{i + 10001}" for i in range(1251)]), |
|
} |
|
), |
|
supervised_keys=("file", "label"), |
|
url="https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html", |
|
data_url="data/VoxCeleb1.zip" |
|
), |
|
SuperbConfig( |
|
name="er", |
|
description=textwrap.dedent( |
|
"""\ |
|
Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset |
|
IEMOCAP is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion |
|
classes to leave the final four classes with a similar amount of data points and cross-validates on five |
|
folds of the standard splits. The evaluation metric is accuracy (ACC).""" |
|
), |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=16_000), |
|
"label": datasets.ClassLabel(names=['neu', 'hap', 'ang', 'sad']), |
|
} |
|
), |
|
supervised_keys=("file", "label"), |
|
url="https://sail.usc.edu/iemocap/", |
|
data_url="data/IEMOCAP_full_release.zip" |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=self.config.features, |
|
supervised_keys=self.config.supervised_keys, |
|
homepage=self.config.url, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.name == "asr": |
|
archive_path = dl_manager.download_and_extract(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path}), |
|
] |
|
elif self.config.name == "ks": |
|
archive_path = dl_manager.download_and_extract(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"} |
|
), |
|
] |
|
elif self.config.name == "ic": |
|
archive_path = dl_manager.download_and_extract(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"} |
|
), |
|
] |
|
elif self.config.name == "si": |
|
archive_path = dl_manager.download_and_extract(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": 3} |
|
), |
|
] |
|
elif self.config.name == "sd": |
|
archive_path = dl_manager.download_and_extract(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"} |
|
) |
|
] |
|
elif self.config.name == "er": |
|
archive_path = dl_manager.download_and_extract(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name="session1", gen_kwargs={"archive_path": archive_path, "split": 1}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, archive_path, split=None): |
|
"""Generate examples.""" |
|
if self.config.name == "asr": |
|
transcripts_glob = os.path.join(archive_path, "LibriSpeech", "*/*/*/*.txt") |
|
key = 0 |
|
for transcript_path in sorted(glob.glob(transcripts_glob)): |
|
transcript_dir_path = os.path.dirname(transcript_path) |
|
with open(transcript_path, "r", encoding="utf-8") as f: |
|
for line in f: |
|
line = line.strip() |
|
id_, transcript = line.split(" ", 1) |
|
audio_file = f"{id_}.flac" |
|
speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]] |
|
audio_path = os.path.join(transcript_dir_path, audio_file) |
|
yield key, { |
|
"id": id_, |
|
"speaker_id": speaker_id, |
|
"chapter_id": chapter_id, |
|
"file": audio_path, |
|
"audio": audio_path, |
|
"text": transcript, |
|
} |
|
key += 1 |
|
elif self.config.name == "ks": |
|
words = ["yes", "no", "up", "down", "left", "right", "on", "off", "stop", "go"] |
|
splits = _split_ks_files(archive_path, split) |
|
for key, audio_file in enumerate(sorted(splits[split])): |
|
base_dir, file_name = os.path.split(audio_file) |
|
_, word = os.path.split(base_dir) |
|
if word in words: |
|
label = word |
|
elif word == "_silence_" or word == "_background_noise_": |
|
label = "_silence_" |
|
else: |
|
label = "_unknown_" |
|
yield key, {"file": audio_file, "audio": audio_file, "label": label} |
|
elif self.config.name == "ic": |
|
root_path = os.path.join(archive_path, "fluent_speech_commands_dataset/") |
|
csv_path = os.path.join(root_path, f"data/{split}_data.csv") |
|
with open(csv_path, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader(csv_file, delimiter=",", skipinitialspace=True) |
|
next(csv_reader) |
|
for row in csv_reader: |
|
key, file_path, speaker_id, text, action, object_, location = row |
|
audio_path = os.path.join(root_path, file_path) |
|
yield key, { |
|
"file": audio_path, |
|
"audio": audio_path, |
|
"speaker_id": speaker_id, |
|
"text": text, |
|
"action": action, |
|
"object": object_, |
|
"location": location, |
|
} |
|
elif self.config.name == "si": |
|
wav_path = os.path.join(archive_path, "wav/") |
|
splits_path = os.path.join(archive_path, "veri_test_class.txt") |
|
with open(splits_path, "r", encoding="utf-8") as f: |
|
for key, line in enumerate(f): |
|
split_id, file_path = line.strip().split(" ") |
|
if int(split_id) != split: |
|
continue |
|
speaker_id = file_path.split("/")[0] |
|
audio_path = os.path.join(wav_path, file_path) |
|
yield key, { |
|
"file": audio_path, |
|
"audio": audio_path, |
|
"label": speaker_id, |
|
} |
|
elif self.config.name == "er": |
|
root_path = os.path.join(archive_path, f"Session{split}/") |
|
wav_path = os.path.join(root_path, "sentences/wav/") |
|
labels_path = os.path.join(root_path, "dialog/EmoEvaluation/*.txt") |
|
emotions = ['neu', 'hap', 'ang', 'sad', 'exc'] |
|
key = 0 |
|
for labels_file in sorted(glob.glob(labels_path)): |
|
with open(labels_file, "r", encoding="utf-8") as f: |
|
for line in f: |
|
if line[0] != "[": |
|
continue |
|
_, filename, emo, _ = line.split("\t") |
|
if emo not in emotions: |
|
continue |
|
wav_subdir = filename.rsplit("_", 1)[0] |
|
filename = f"{filename}.wav" |
|
audio_path = os.path.join(wav_path, wav_subdir, filename) |
|
yield key, { |
|
"file": audio_path, |
|
"audio": audio_path, |
|
"label": emo.replace("exc", "hap"), |
|
} |
|
key += 1 |
|
|
|
|
|
def _split_ks_files(archive_path, split): |
|
audio_path = os.path.join(archive_path, "**/*.wav") |
|
audio_paths = glob.glob(audio_path) |
|
if split == "test": |
|
|
|
return {"test": audio_paths} |
|
|
|
val_list_file = os.path.join(archive_path, "validation_list.txt") |
|
test_list_file = os.path.join(archive_path, "testing_list.txt") |
|
with open(val_list_file, encoding="utf-8") as f: |
|
val_paths = f.read().strip().splitlines() |
|
val_paths = [os.path.join(archive_path, p) for p in val_paths] |
|
with open(test_list_file, encoding="utf-8") as f: |
|
test_paths = f.read().strip().splitlines() |
|
test_paths = [os.path.join(archive_path, p) for p in test_paths] |
|
|
|
|
|
|
|
train_paths = list(set(audio_paths) - set(val_paths) - set(test_paths)) |
|
|
|
return {"train": train_paths, "val": val_paths} |
|
|