aoxo commited on
Commit
607fece
·
verified ·
1 Parent(s): d294438

Upload trainer.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. trainer.py +155 -0
trainer.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datasets import load_from_disk, DatasetDict, concatenate_datasets
3
+
4
+ # Get all batch directories
5
+ batch_dirs = [d for d in os.listdir("processed_dataset") if d.startswith("batch_")]
6
+ batch_dirs.sort(key=lambda x: int(x.split('_')[1])) # Sort numerically
7
+
8
+ # Load each batch and combine them
9
+ processed_batches = []
10
+ for batch_dir in batch_dirs:
11
+ batch_path = os.path.join("processed_dataset", batch_dir)
12
+ batch_dataset = load_from_disk(batch_path)
13
+ processed_batches.append(batch_dataset)
14
+
15
+ # Combine all batches into one dataset
16
+ full_dataset = concatenate_datasets(processed_batches)
17
+
18
+ # Split into train and test
19
+ # First shuffle the dataset with a fixed seed for reproducibility
20
+ shuffled_dataset = full_dataset.shuffle(seed=42)
21
+
22
+ # Get the last 975 samples for test
23
+ test_size = 975
24
+ processed_test = shuffled_dataset.select(range(test_size))
25
+ processed_train = shuffled_dataset.select(range(test_size, len(shuffled_dataset)))
26
+
27
+ # Create the dataset_dict with the new split
28
+ dataset_dict = DatasetDict({
29
+ "train": processed_train,
30
+ "test": processed_test
31
+ })
32
+
33
+ # Verify the loading and splitting was successful
34
+ print("\nDataset split information:")
35
+ print(f"Total examples: {len(shuffled_dataset)}")
36
+ print(f"Training examples: {len(dataset_dict['train'])}")
37
+ print(f"Test examples: {len(dataset_dict['test'])}")
38
+
39
+ # Optional: Print the first example from each split to verify the structure
40
+ print("\nFirst training example structure:")
41
+ print(dataset_dict['train'][0].keys())
42
+ print("\nFirst test example structure:")
43
+ print(dataset_dict['test'][0].keys())
44
+
45
+ from transformers import WhisperForConditionalGeneration
46
+
47
+ model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
48
+
49
+ model.generation_config.language = "malayalam"
50
+
51
+ model.generation_config.task = "transcribe"
52
+
53
+ model.generation_config.forced_decoder_ids = None
54
+
55
+ from transformers import WhisperProcessor
56
+
57
+ processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="Malayalam", task="transcribe")
58
+
59
+ import torch
60
+
61
+ from dataclasses import dataclass
62
+ from typing import Any, Dict, List, Union
63
+
64
+ @dataclass
65
+ class DataCollatorSpeechSeq2SeqWithPadding:
66
+ processor: Any
67
+ decoder_start_token_id: int
68
+
69
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
70
+ # split inputs and labels since they have to be of different lengths and need different padding methods
71
+ # first treat the audio inputs by simply returning torch tensors
72
+ input_features = [{"input_features": feature["input_features"]} for feature in features]
73
+ batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
74
+
75
+ # get the tokenized label sequences
76
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
77
+ # pad the labels to max length
78
+ labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
79
+
80
+ # replace padding with -100 to ignore loss correctly
81
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
82
+
83
+ # if bos token is appended in previous tokenization step,
84
+ # cut bos token here as it's append later anyways
85
+ if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
86
+ labels = labels[:, 1:]
87
+
88
+ batch["labels"] = labels
89
+
90
+ return batch
91
+
92
+ data_collator = DataCollatorSpeechSeq2SeqWithPadding(
93
+ processor=processor,
94
+ decoder_start_token_id=model.config.decoder_start_token_id,
95
+ )
96
+
97
+ import evaluate
98
+
99
+ metric = evaluate.load("wer")
100
+
101
+ def compute_metrics(pred):
102
+ pred_ids = pred.predictions
103
+ label_ids = pred.label_ids
104
+
105
+ # replace -100 with the pad_token_id
106
+ label_ids[label_ids == -100] = tokenizer.pad_token_id
107
+
108
+ # we do not want to group tokens when computing the metrics
109
+ pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
110
+ label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
111
+
112
+ wer = 100 * metric.compute(predictions=pred_str, references=label_str)
113
+
114
+ return {"wer": wer}
115
+
116
+ from transformers import Seq2SeqTrainingArguments
117
+
118
+ training_args = Seq2SeqTrainingArguments(
119
+ output_dir="./whisper-small-mal", # change to a repo name of your choice
120
+ per_device_train_batch_size=16,
121
+ gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
122
+ learning_rate=1e-5,
123
+ warmup_steps=500,
124
+ max_steps=4000,
125
+ gradient_checkpointing=True,
126
+ fp16=True,
127
+ evaluation_strategy="steps",
128
+ per_device_eval_batch_size=8,
129
+ predict_with_generate=True,
130
+ generation_max_length=225,
131
+ save_steps=1000,
132
+ eval_steps=1000,
133
+ logging_steps=25,
134
+ report_to=["tensorboard"],
135
+ load_best_model_at_end=True,
136
+ metric_for_best_model="wer",
137
+ greater_is_better=False,
138
+ push_to_hub=True,
139
+ )
140
+
141
+ from transformers import Seq2SeqTrainer
142
+
143
+ trainer = Seq2SeqTrainer(
144
+ args=training_args,
145
+ model=model,
146
+ train_dataset=dataset_dict["train"],
147
+ eval_dataset=dataset_dict["test"],
148
+ data_collator=data_collator,
149
+ compute_metrics=compute_metrics,
150
+ tokenizer=processor.feature_extractor,
151
+ )
152
+
153
+ processor.save_pretrained(training_args.output_dir)
154
+
155
+ trainer.train()