|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Arabic Poetry Metric v2 dataset.""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
""" |
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
_DOWNLOAD_URL = "https://drive.google.com/uc?export=download&id=11iIHChBR7sVcUfGMnxfEAjbe7sSjzx5M" |
|
|
|
|
|
class MetRecV2Config(datasets.BuilderConfig): |
|
"""BuilderConfig for MetRecV2.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for MetRecV2. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(MetRecV2Config, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
|
|
|
|
class MetRecV2(datasets.GeneratorBasedBuilder): |
|
"""Metrec dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="train_all", description="Full dataset"), |
|
datasets.BuilderConfig(name="train_50k", description="Subset with 50K max baits per meter"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "train_all" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel( |
|
names=[ |
|
"saree", |
|
"kamel", |
|
"mutakareb", |
|
"mutadarak", |
|
"munsareh", |
|
"madeed", |
|
"mujtath", |
|
"ramal", |
|
"baseet", |
|
"khafeef", |
|
"taweel", |
|
"wafer", |
|
"hazaj", |
|
"rajaz", |
|
"mudhare", |
|
"muqtadheb", |
|
"prose" |
|
] |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _vocab_text_gen(self, archive): |
|
for _, ex in self._generate_examples(archive, os.path.join("final_baits", "train.txt")): |
|
yield ex["text"] |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) |
|
|
|
if self.config.name == "train_all": |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "train.txt")} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"directory": os.path.join(data_dir, "test.txt")} |
|
), |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "train_50k.txt")} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"directory": os.path.join(data_dir, "test.txt")} |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, directory, labeled=True): |
|
"""Generate examples.""" |
|
|
|
|
|
with open(directory, encoding="UTF-8") as f: |
|
for id_, record in enumerate(f.read().splitlines()): |
|
label, bait = record.split(" ", 1) |
|
yield str(id_), {"text": bait, "label": int(label)} |