File size: 53,125 Bytes
710d397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
[01/08 07:36:30] meddlr INFO: Running in debug mode
[01/08 07:36:30] meddlr INFO: Environment info:
-------------------  ----------------------------------------------------------------------------------------------
sys.platform         linux
Python               3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]
numpy                1.20.3
PyTorch              1.7.1 @/bmrNAS/people/arjun/miniconda3/envs/meddlr_env/lib/python3.7/site-packages/torch
PyTorch debug build  False
CUDA available       False
Pillow               8.4.0
torchvision          0.8.2 @/bmrNAS/people/arjun/miniconda3/envs/meddlr_env/lib/python3.7/site-packages/torchvision
SLURM_JOB_ID         slurm not detected
-------------------  ----------------------------------------------------------------------------------------------
PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX
  - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, 

[01/08 07:36:30] meddlr INFO: Command line arguments: Namespace(auto_version=False, config_file='../configs/tests/basic.yaml', debug=True, devices=None, eval_only=False, num_gpus=1, opts=['DATALOADER.NUM_WORKERS', '8', 'SOLVER.MAX_ITER', '1600', 'SOLVER.CHECKPOINT_PERIOD', '200', 'TEST.EVAL_PERIOD', '200'], reproducible=False, restart_iter=False, resume=False)
[01/08 07:36:30] meddlr INFO: Contents of args.config_file=../configs/tests/basic.yaml:
# Basic testing config
# Use this for any testing you may want to do in the future.
# The model will be trained for 60 iterations (not epochs)
# on the mridata.org 2019 knee dataset.
MODEL:
  UNROLLED:
    NUM_UNROLLED_STEPS: 8
    NUM_RESBLOCKS: 2
    NUM_FEATURES: 128
    DROPOUT: 0.
DATASETS:
  TRAIN: ("mridata_knee_2019_train",)
  VAL: ("mridata_knee_2019_val",)
  TEST: ("mridata_knee_2019_test",)
DATALOADER:
  NUM_WORKERS: 0  # for debugging purposes
SOLVER:
  TRAIN_BATCH_SIZE: 1
  TEST_BATCH_SIZE: 2
  CHECKPOINT_PERIOD: 20
  MAX_ITER: 80
TEST:
  EVAL_PERIOD: 40
VIS_PERIOD: 20
TIME_SCALE: "iter"
OUTPUT_DIR: "results://tests/basic"
VERSION: 1
[01/08 07:37:52] meddlr INFO: Running in debug mode
[01/08 07:37:54] meddlr INFO: Environment info:
----------------------  ----------------------------------------------------------------------------------------------
sys.platform            linux
Python                  3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]
numpy                   1.20.3
PyTorch                 1.7.1 @/bmrNAS/people/arjun/miniconda3/envs/meddlr_env/lib/python3.7/site-packages/torch
PyTorch debug build     False
CUDA available          True
GPU 0                   GeForce RTX 2080 Ti
CUDA_HOME               /usr/local/cuda
NVCC                    Cuda compilation tools, release 9.0, V9.0.176
Pillow                  8.4.0
torchvision             0.8.2 @/bmrNAS/people/arjun/miniconda3/envs/meddlr_env/lib/python3.7/site-packages/torchvision
torchvision arch flags  sm_35, sm_50, sm_60, sm_70, sm_75
SLURM_JOB_ID            29543
----------------------  ----------------------------------------------------------------------------------------------
PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 10.2
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
  - CuDNN 7.6.5
  - Magma 2.5.2
  - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, 

[01/08 07:37:54] meddlr INFO: Command line arguments: Namespace(auto_version=False, config_file='../configs/tests/basic.yaml', debug=True, devices=None, eval_only=False, num_gpus=1, opts=['DATALOADER.NUM_WORKERS', '8', 'SOLVER.MAX_ITER', '1600', 'SOLVER.CHECKPOINT_PERIOD', '200', 'TEST.EVAL_PERIOD', '200'], reproducible=False, restart_iter=False, resume=False)
[01/08 07:37:54] meddlr INFO: Contents of args.config_file=../configs/tests/basic.yaml:
# Basic testing config
# Use this for any testing you may want to do in the future.
# The model will be trained for 60 iterations (not epochs)
# on the mridata.org 2019 knee dataset.
MODEL:
  UNROLLED:
    NUM_UNROLLED_STEPS: 8
    NUM_RESBLOCKS: 2
    NUM_FEATURES: 128
    DROPOUT: 0.
DATASETS:
  TRAIN: ("mridata_knee_2019_train",)
  VAL: ("mridata_knee_2019_val",)
  TEST: ("mridata_knee_2019_test",)
DATALOADER:
  NUM_WORKERS: 0  # for debugging purposes
SOLVER:
  TRAIN_BATCH_SIZE: 1
  TEST_BATCH_SIZE: 2
  CHECKPOINT_PERIOD: 20
  MAX_ITER: 80
TEST:
  EVAL_PERIOD: 40
VIS_PERIOD: 20
TIME_SCALE: "iter"
OUTPUT_DIR: "results://tests/basic"
VERSION: 1
[01/08 07:37:54] meddlr INFO: Running with full config:
AUG_TEST:
  UNDERSAMPLE:
    ACCELERATIONS: (6,)
AUG_TRAIN:
  MOTION_P: 0.2
  MRI_RECON:
    AUG_SENSITIVITY_MAPS: True
    SCHEDULER_P:
      IGNORE: False
    TRANSFORMS: ()
  NOISE_P: 0.2
  UNDERSAMPLE:
    ACCELERATIONS: (6,)
    CALIBRATION_SIZE: 20
    CENTER_FRACTIONS: ()
    MAX_ATTEMPTS: 30
    NAME: PoissonDiskMaskFunc
  USE_MOTION: False
  USE_NOISE: False
CUDNN_BENCHMARK: False
DATALOADER:
  ALT_SAMPLER:
    PERIOD_SUPERVISED: 1
    PERIOD_UNSUPERVISED: 1
  DATA_KEYS: ()
  DROP_LAST: True
  FILTER:
    BY: ()
  GROUP_SAMPLER:
    AS_BATCH_SAMPLER: False
    BATCH_BY: ()
  NUM_WORKERS: 8
  PREFETCH_FACTOR: 2
  SAMPLER_TRAIN: 
  SUBSAMPLE_TRAIN:
    NUM_TOTAL: -1
    NUM_TOTAL_BY_GROUP: ()
    NUM_UNDERSAMPLED: 0
    NUM_VAL: -1
    NUM_VAL_BY_GROUP: ()
    SEED: 1000
DATASETS:
  TEST: ('mridata_knee_2019_test',)
  TRAIN: ('mridata_knee_2019_train',)
  VAL: ('mridata_knee_2019_val',)
DESCRIPTION:
  BRIEF: 
  ENTITY_NAME: ss_recon
  EXP_NAME: 
  PROJECT_NAME: ss_recon
  TAGS: ()
MODEL:
  A2R:
    META_ARCHITECTURE: GeneralizedUnrolledCNN
    USE_SUPERVISED_CONSISTENCY: False
  CONSISTENCY:
    AUG:
      MOTION:
        RANGE: (0.2, 0.5)
        SCHEDULER:
          WARMUP_ITERS: 0
          WARMUP_METHOD: 
      MRI_RECON:
        AUG_SENSITIVITY_MAPS: True
        SCHEDULER_P:
          IGNORE: False
        TRANSFORMS: ()
      NOISE:
        MASK:
          RHO: 1.0
        SCHEDULER:
          WARMUP_ITERS: 0
          WARMUP_METHOD: 
        STD_DEV: (1,)
    LATENT_LOSS_NAME: mag_l1
    LATENT_LOSS_WEIGHT: 0.1
    LOSS_NAME: l1
    LOSS_WEIGHT: 0.1
    NUM_LATENT_LAYERS: 1
    USE_CONSISTENCY: True
    USE_LATENT: False
  CS:
    MAX_ITER: 200
    REGULARIZATION: 0.005
  DENOISING:
    META_ARCHITECTURE: GeneralizedUnrolledCNN
    NOISE:
      STD_DEV: (1,)
      USE_FULLY_SAMPLED_TARGET: True
      USE_FULLY_SAMPLED_TARGET_EVAL: None
  DEVICE: cuda
  M2R:
    META_ARCHITECTURE: GeneralizedUnrolledCNN
    USE_SUPERVISED_CONSISTENCY: False
  META_ARCHITECTURE: GeneralizedUnrolledCNN
  N2R:
    META_ARCHITECTURE: GeneralizedUnrolledCNN
    USE_SUPERVISED_CONSISTENCY: False
  NM2R:
    META_ARCHITECTURE: GeneralizedUnrolledCNN
    USE_SUPERVISED_CONSISTENCY: False
  NORMALIZER:
    KEYWORDS: ()
    NAME: TopMagnitudeNormalizer
  RECON_LOSS:
    NAME: l1
    RENORMALIZE_DATA: True
  SEG:
    ACTIVATION: sigmoid
    CLASSES: ()
    INCLUDE_BACKGROUND: False
  SSDU:
    MASKER:
      PARAMS:
        
    META_ARCHITECTURE: GeneralizedUnrolledCNN
  UNET:
    BLOCK_ORDER: ('conv', 'relu', 'conv', 'relu', 'batchnorm', 'dropout')
    CHANNELS: 32
    DROPOUT: 0.0
    IN_CHANNELS: 2
    NORMALIZE: False
    NUM_POOL_LAYERS: 4
    OUT_CHANNELS: 2
  UNROLLED:
    BLOCK_ARCHITECTURE: ResNet
    CONV_BLOCK:
      ACTIVATION: relu
      NORM: none
      NORM_AFFINE: False
      ORDER: ('norm', 'act', 'drop', 'conv')
    DROPOUT: 0.0
    FIX_STEP_SIZE: False
    KERNEL_SIZE: (3,)
    NUM_EMAPS: 1
    NUM_FEATURES: 128
    NUM_RESBLOCKS: 2
    NUM_UNROLLED_STEPS: 8
    PADDING: 
    SHARE_WEIGHTS: False
  WEIGHTS: 
OUTPUT_DIR: /bmrNAS/people/arjun/results/meddlr/tests/basic
SEED: -1
SOLVER:
  BASE_LR: 0.0001
  BIAS_LR_FACTOR: 1.0
  CHECKPOINT_PERIOD: 200
  GAMMA: 0.1
  GRAD_ACCUM_ITERS: 1
  LR_SCHEDULER_NAME: WarmupMultiStepLR
  MAX_ITER: 1600
  MOMENTUM: 0.9
  OPTIMIZER: Adam
  STEPS: (30000,)
  TEST_BATCH_SIZE: 2
  TRAIN_BATCH_SIZE: 1
  WARMUP_FACTOR: 0.001
  WARMUP_ITERS: 1000
  WARMUP_METHOD: linear
  WEIGHT_DECAY: 0.0001
  WEIGHT_DECAY_BIAS: 0.0001
  WEIGHT_DECAY_NORM: 0.0
TEST:
  EVAL_PERIOD: 200
  EXPECTED_RESULTS: []
  FLUSH_PERIOD: 0
  VAL_AS_TEST: True
  VAL_METRICS:
    RECON: ()
TIME_SCALE: iter
VERSION: 1
VIS_PERIOD: 20
[01/08 07:37:54] meddlr INFO: Full config saved to /bmrNAS/people/arjun/results/meddlr/tests/basic/config.yaml
[01/08 07:37:54] mr.utils.env INFO: Using a generated random seed 55308770
[01/08 07:37:54] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/train.json takes 0.04 seconds
[01/08 07:37:54] mr.data.build INFO: Dropped 0 scans. 14 scans remaining
[01/08 07:37:54] mr.data.build INFO: Dropped references for 0/14 scans. 14 scans with reference remaining
[01/08 07:37:54] meddlr INFO: Calculated 4480 iterations per epoch
[01/08 07:37:54] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/train.json takes 0.00 seconds
[01/08 07:37:54] mr.data.build INFO: Dropped 0 scans. 14 scans remaining
[01/08 07:37:54] mr.data.build INFO: Dropped references for 0/14 scans. 14 scans with reference remaining
[01/08 07:38:01] fvcore.common.checkpoint INFO: No checkpoint found. Initializing model from scratch
[01/08 07:38:01] mr.engine.train_loop INFO: Starting training from iteration 0
[01/08 07:38:13] mr.utils.events INFO: eta: 0:05:59  iter: 19  loss: 100222.734  total_loss: 100222.734  time: 0.2279  data_time: 0.2790  lr: 0.000002  max_mem: 2468M  
[01/08 07:38:18] mr.utils.events INFO: eta: 0:05:55  iter: 39  loss: 31516.157  total_loss: 31516.157  time: 0.2280  data_time: 0.0001  lr: 0.000004  max_mem: 2468M  
[01/08 07:38:23] mr.utils.events INFO: eta: 0:05:51  iter: 59  loss: 27504.994  total_loss: 27504.994  time: 0.2283  data_time: 0.0001  lr: 0.000006  max_mem: 2468M  
[01/08 07:38:28] mr.utils.events INFO: eta: 0:05:47  iter: 79  loss: 24592.978  total_loss: 24592.978  time: 0.2288  data_time: 0.0001  lr: 0.000008  max_mem: 2468M  
[01/08 07:38:34] mr.utils.events INFO: eta: 0:05:43  iter: 99  loss: 24272.967  total_loss: 24272.967  time: 0.2399  data_time: 0.0528  lr: 0.000010  max_mem: 2468M  
[01/08 07:38:39] mr.utils.events INFO: eta: 0:05:39  iter: 119  loss: 21447.893  total_loss: 21447.893  time: 0.2385  data_time: 0.0001  lr: 0.000012  max_mem: 2468M  
[01/08 07:38:44] mr.utils.events INFO: eta: 0:05:35  iter: 139  loss: 21284.981  total_loss: 21284.981  time: 0.2376  data_time: 0.0001  lr: 0.000014  max_mem: 2468M  
[01/08 07:38:49] mr.utils.events INFO: eta: 0:05:31  iter: 159  loss: 22184.024  total_loss: 22184.024  time: 0.2369  data_time: 0.0001  lr: 0.000016  max_mem: 2468M  
[01/08 07:38:55] mr.utils.events INFO: eta: 0:05:27  iter: 179  loss: 20008.485  total_loss: 20008.485  time: 0.2365  data_time: 0.0001  lr: 0.000018  max_mem: 2468M  
[01/08 07:39:00] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0000199.pth
[01/08 07:39:01] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.07 seconds
[01/08 07:39:01] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
[01/08 07:39:01] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
[01/08 07:39:01] mr.evaluation.evaluator INFO: Start inference on 320 batches
[01/08 07:39:05] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0258 s / img. ETA=0:00:46
[01/08 07:39:10] mr.evaluation.evaluator INFO: Inference done 44/320. 0.0238 s / img. ETA=0:00:41
[01/08 07:39:15] mr.evaluation.evaluator INFO: Inference done 77/320. 0.0229 s / img. ETA=0:00:36
[01/08 07:39:20] mr.evaluation.evaluator INFO: Inference done 110/320. 0.0226 s / img. ETA=0:00:31
[01/08 07:39:25] mr.evaluation.evaluator INFO: Inference done 143/320. 0.0224 s / img. ETA=0:00:26
[01/08 07:39:30] mr.evaluation.evaluator INFO: Inference done 176/320. 0.0223 s / img. ETA=0:00:21
[01/08 07:39:35] mr.evaluation.evaluator INFO: Inference done 209/320. 0.0222 s / img. ETA=0:00:16
[01/08 07:39:40] mr.evaluation.evaluator INFO: Inference done 237/320. 0.0221 s / img. ETA=0:00:12
[01/08 07:39:45] mr.evaluation.evaluator INFO: Inference done 270/320. 0.0221 s / img. ETA=0:00:07
[01/08 07:39:50] mr.evaluation.evaluator INFO: Inference done 303/320. 0.0220 s / img. ETA=0:00:02
[01/08 07:39:53] mr.evaluation.evaluator INFO: Total inference time: 0:00:48.855011 (0.155095 s / batch on 1 devices)
[01/08 07:39:53] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.021862 s / batch on 1 devices)
[01/08 07:40:03] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:40:03] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:40:06] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
                 channel_0
---------------  --------------
val_nrmse        0.211 (0.055)
val_nrmse_mag    0.140 (0.033)
val_psnr         31.509 (2.961)
val_psnr_mag     35.018 (2.864)
val_ssim (Wang)  0.831 (0.090)

[01/08 07:40:06] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
                      channel_0
--------------------  --------------
val_nrmse_mag_scan    0.131 (0.007)
val_nrmse_scan        0.195 (0.012)
val_psnr_mag_scan     42.912 (0.363)
val_psnr_scan         39.450 (0.290)
val_ssim (Wang)_scan  0.957 (0.003)

[01/08 07:40:06] mr.evaluation.evaluator INFO: Evaluation Time: 13.612028 s
[01/08 07:40:06] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
[01/08 07:40:06] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
[01/08 07:40:06] mr.evaluation.testing INFO: copypaste: 0.2112,0.1404,31.5090,35.0178,0.8314,0.1310,0.1952,42.9119,39.4501,0.9571
[01/08 07:40:06] mr.evaluation.testing INFO: Metrics (comma delimited): 
val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
0.2112,0.1404,31.5090,35.0178,0.8314,0.1310,0.1952,42.9119,39.4501,0.9571
[01/08 07:40:06] mr.utils.events INFO: eta: 0:13:01  iter: 199  loss: 18439.461  total_loss: 18439.461  time: 0.2363  data_time: 0.0001  lr: 0.000020  max_mem: 4234M  
[01/08 07:40:12] mr.utils.events INFO: eta: 0:12:57  iter: 219  loss: 17119.530  total_loss: 17119.530  time: 0.2367  data_time: 0.0001  lr: 0.000022  max_mem: 4234M  
[01/08 07:40:17] mr.utils.events INFO: eta: 0:12:53  iter: 239  loss: 16810.184  total_loss: 16810.184  time: 0.2394  data_time: 0.0279  lr: 0.000024  max_mem: 4234M  
[01/08 07:40:22] mr.utils.events INFO: eta: 0:12:49  iter: 259  loss: 15697.525  total_loss: 15697.525  time: 0.2395  data_time: 0.0001  lr: 0.000026  max_mem: 4234M  
[01/08 07:40:28] mr.utils.events INFO: eta: 0:12:45  iter: 279  loss: 16743.501  total_loss: 16743.501  time: 0.2393  data_time: 0.0001  lr: 0.000028  max_mem: 4234M  
[01/08 07:40:33] mr.utils.events INFO: eta: 0:12:40  iter: 299  loss: 18045.708  total_loss: 18045.708  time: 0.2392  data_time: 0.0013  lr: 0.000030  max_mem: 4234M  
[01/08 07:40:39] mr.utils.events INFO: eta: 0:12:36  iter: 319  loss: 16170.239  total_loss: 16170.239  time: 0.2392  data_time: 0.0001  lr: 0.000032  max_mem: 4234M  
[01/08 07:40:45] mr.utils.events INFO: eta: 0:12:32  iter: 339  loss: 16581.456  total_loss: 16581.456  time: 0.2412  data_time: 0.0363  lr: 0.000034  max_mem: 4234M  
[01/08 07:40:50] mr.utils.events INFO: eta: 0:12:28  iter: 359  loss: 17071.639  total_loss: 17071.639  time: 0.2411  data_time: 0.0001  lr: 0.000036  max_mem: 4234M  
[01/08 07:40:56] mr.utils.events INFO: eta: 0:12:25  iter: 379  loss: 16226.621  total_loss: 16226.621  time: 0.2411  data_time: 0.0001  lr: 0.000038  max_mem: 4234M  
[01/08 07:41:01] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0000399.pth
[01/08 07:41:02] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
[01/08 07:41:02] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
[01/08 07:41:02] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
[01/08 07:41:02] mr.evaluation.evaluator INFO: Start inference on 320 batches
[01/08 07:41:06] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0223 s / img. ETA=0:00:47
[01/08 07:41:11] mr.evaluation.evaluator INFO: Inference done 44/320. 0.0222 s / img. ETA=0:00:42
[01/08 07:41:16] mr.evaluation.evaluator INFO: Inference done 77/320. 0.0221 s / img. ETA=0:00:37
[01/08 07:41:21] mr.evaluation.evaluator INFO: Inference done 110/320. 0.0221 s / img. ETA=0:00:32
[01/08 07:41:27] mr.evaluation.evaluator INFO: Inference done 143/320. 0.0221 s / img. ETA=0:00:27
[01/08 07:41:32] mr.evaluation.evaluator INFO: Inference done 176/320. 0.0221 s / img. ETA=0:00:22
[01/08 07:41:37] mr.evaluation.evaluator INFO: Inference done 209/320. 0.0221 s / img. ETA=0:00:17
[01/08 07:41:42] mr.evaluation.evaluator INFO: Inference done 242/320. 0.0221 s / img. ETA=0:00:12
[01/08 07:41:47] mr.evaluation.evaluator INFO: Inference done 275/320. 0.0221 s / img. ETA=0:00:06
[01/08 07:41:52] mr.evaluation.evaluator INFO: Inference done 308/320. 0.0221 s / img. ETA=0:00:01
[01/08 07:41:54] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.053359 (0.155725 s / batch on 1 devices)
[01/08 07:41:54] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.021976 s / batch on 1 devices)
[01/08 07:42:04] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:42:04] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:42:07] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
                 channel_0
---------------  --------------
val_nrmse        0.176 (0.045)
val_nrmse_mag    0.122 (0.030)
val_psnr         33.094 (3.019)
val_psnr_mag     36.272 (3.018)
val_ssim (Wang)  0.860 (0.080)

[01/08 07:42:07] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
                      channel_0
--------------------  --------------
val_nrmse_mag_scan    0.113 (0.005)
val_nrmse_scan        0.163 (0.006)
val_psnr_mag_scan     44.208 (0.394)
val_psnr_scan         41.032 (0.507)
val_ssim (Wang)_scan  0.963 (0.002)

[01/08 07:42:07] mr.evaluation.evaluator INFO: Evaluation Time: 13.187915 s
[01/08 07:42:07] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
[01/08 07:42:07] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
[01/08 07:42:07] mr.evaluation.testing INFO: copypaste: 0.1758,0.1218,33.0937,36.2715,0.8602,0.1128,0.1626,44.2078,41.0316,0.9630
[01/08 07:42:07] mr.evaluation.testing INFO: Metrics (comma delimited): 
val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
0.1758,0.1218,33.0937,36.2715,0.8602,0.1128,0.1626,44.2078,41.0316,0.9630
[01/08 07:42:07] mr.utils.events INFO: eta: 0:11:15  iter: 399  loss: 14768.049  total_loss: 14768.049  time: 0.2410  data_time: 0.0001  lr: 0.000040  max_mem: 4235M  
[01/08 07:42:13] mr.utils.events INFO: eta: 0:11:11  iter: 419  loss: 14830.163  total_loss: 14830.163  time: 0.2410  data_time: 0.0001  lr: 0.000042  max_mem: 4235M  
[01/08 07:42:18] mr.utils.events INFO: eta: 0:11:06  iter: 439  loss: 16323.925  total_loss: 16323.925  time: 0.2410  data_time: 0.0001  lr: 0.000044  max_mem: 4235M  
[01/08 07:42:23] mr.utils.events INFO: eta: 0:11:02  iter: 459  loss: 14716.628  total_loss: 14716.628  time: 0.2409  data_time: 0.0001  lr: 0.000046  max_mem: 4235M  
[01/08 07:42:29] mr.utils.events INFO: eta: 0:10:57  iter: 479  loss: 15069.688  total_loss: 15069.688  time: 0.2409  data_time: 0.0001  lr: 0.000048  max_mem: 4235M  
[01/08 07:42:34] mr.utils.events INFO: eta: 0:10:53  iter: 499  loss: 14391.693  total_loss: 14391.693  time: 0.2409  data_time: 0.0001  lr: 0.000050  max_mem: 4235M  
[01/08 07:42:39] mr.utils.events INFO: eta: 0:10:48  iter: 519  loss: 14284.784  total_loss: 14284.784  time: 0.2409  data_time: 0.0001  lr: 0.000052  max_mem: 4235M  
[01/08 07:42:45] mr.utils.events INFO: eta: 0:10:44  iter: 539  loss: 15812.837  total_loss: 15812.837  time: 0.2409  data_time: 0.0001  lr: 0.000054  max_mem: 4235M  
[01/08 07:42:51] mr.utils.events INFO: eta: 0:10:39  iter: 559  loss: 15930.277  total_loss: 15930.277  time: 0.2409  data_time: 0.0001  lr: 0.000056  max_mem: 4235M  
[01/08 07:43:02] mr.utils.events INFO: eta: 0:10:34  iter: 579  loss: 15495.331  total_loss: 15495.331  time: 0.2410  data_time: 0.0001  lr: 0.000058  max_mem: 4235M  
[01/08 07:43:07] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0000599.pth
[01/08 07:43:08] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
[01/08 07:43:08] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
[01/08 07:43:08] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
[01/08 07:43:08] mr.evaluation.evaluator INFO: Start inference on 320 batches
[01/08 07:43:11] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0221 s / img. ETA=0:00:48
[01/08 07:43:16] mr.evaluation.evaluator INFO: Inference done 44/320. 0.0221 s / img. ETA=0:00:42
[01/08 07:43:21] mr.evaluation.evaluator INFO: Inference done 77/320. 0.0222 s / img. ETA=0:00:37
[01/08 07:43:26] mr.evaluation.evaluator INFO: Inference done 109/320. 0.0222 s / img. ETA=0:00:32
[01/08 07:43:31] mr.evaluation.evaluator INFO: Inference done 141/320. 0.0222 s / img. ETA=0:00:27
[01/08 07:43:37] mr.evaluation.evaluator INFO: Inference done 173/320. 0.0222 s / img. ETA=0:00:22
[01/08 07:43:42] mr.evaluation.evaluator INFO: Inference done 205/320. 0.0222 s / img. ETA=0:00:17
[01/08 07:43:47] mr.evaluation.evaluator INFO: Inference done 237/320. 0.0222 s / img. ETA=0:00:12
[01/08 07:43:52] mr.evaluation.evaluator INFO: Inference done 269/320. 0.0222 s / img. ETA=0:00:07
[01/08 07:43:57] mr.evaluation.evaluator INFO: Inference done 301/320. 0.0222 s / img. ETA=0:00:02
[01/08 07:44:00] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.342107 (0.156642 s / batch on 1 devices)
[01/08 07:44:00] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.022043 s / batch on 1 devices)
[01/08 07:44:09] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:44:09] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:44:13] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
                 channel_0
---------------  --------------
val_nrmse        0.217 (0.036)
val_nrmse_mag    0.169 (0.023)
val_psnr         31.138 (2.830)
val_psnr_mag     33.292 (2.814)
val_ssim (Wang)  0.867 (0.077)

[01/08 07:44:13] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
                      channel_0
--------------------  --------------
val_nrmse_mag_scan    0.162 (0.003)
val_nrmse_scan        0.207 (0.002)
val_psnr_mag_scan     41.054 (0.641)
val_psnr_scan         38.946 (0.736)
val_ssim (Wang)_scan  0.962 (0.000)

[01/08 07:44:13] mr.evaluation.evaluator INFO: Evaluation Time: 13.194743 s
[01/08 07:44:13] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
[01/08 07:44:13] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
[01/08 07:44:13] mr.evaluation.testing INFO: copypaste: 0.2174,0.1691,31.1379,33.2924,0.8669,0.1621,0.2066,41.0542,38.9462,0.9623
[01/08 07:44:13] mr.evaluation.testing INFO: Metrics (comma delimited): 
val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
0.2174,0.1691,31.1379,33.2924,0.8669,0.1621,0.2066,41.0542,38.9462,0.9623
[01/08 07:44:13] mr.utils.events INFO: eta: 0:09:24  iter: 599  loss: 13945.590  total_loss: 13945.590  time: 0.2409  data_time: 0.0001  lr: 0.000060  max_mem: 4237M  
[01/08 07:44:18] mr.utils.events INFO: eta: 0:09:19  iter: 619  loss: 16922.678  total_loss: 16922.678  time: 0.2410  data_time: 0.0001  lr: 0.000062  max_mem: 4237M  
[01/08 07:44:23] mr.utils.events INFO: eta: 0:09:15  iter: 639  loss: 14901.438  total_loss: 14901.438  time: 0.2410  data_time: 0.0001  lr: 0.000064  max_mem: 4237M  
[01/08 07:44:28] mr.utils.events INFO: eta: 0:09:10  iter: 659  loss: 14073.586  total_loss: 14073.586  time: 0.2410  data_time: 0.0001  lr: 0.000066  max_mem: 4237M  
[01/08 07:44:34] mr.utils.events INFO: eta: 0:09:06  iter: 679  loss: 16618.619  total_loss: 16618.619  time: 0.2410  data_time: 0.0001  lr: 0.000068  max_mem: 4237M  
[01/08 07:44:39] mr.utils.events INFO: eta: 0:09:01  iter: 699  loss: 17848.932  total_loss: 17848.932  time: 0.2410  data_time: 0.0001  lr: 0.000070  max_mem: 4237M  
[01/08 07:44:44] mr.utils.events INFO: eta: 0:08:56  iter: 719  loss: 16070.655  total_loss: 16070.655  time: 0.2410  data_time: 0.0001  lr: 0.000072  max_mem: 4237M  
[01/08 07:44:49] mr.utils.events INFO: eta: 0:08:52  iter: 739  loss: 16163.839  total_loss: 16163.839  time: 0.2411  data_time: 0.0001  lr: 0.000074  max_mem: 4237M  
[01/08 07:44:54] mr.utils.events INFO: eta: 0:08:47  iter: 759  loss: 15517.578  total_loss: 15517.578  time: 0.2411  data_time: 0.0001  lr: 0.000076  max_mem: 4237M  
[01/08 07:45:00] mr.utils.events INFO: eta: 0:08:42  iter: 779  loss: 15658.616  total_loss: 15658.616  time: 0.2411  data_time: 0.0001  lr: 0.000078  max_mem: 4237M  
[01/08 07:45:05] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0000799.pth
[01/08 07:45:05] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
[01/08 07:45:05] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
[01/08 07:45:05] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
[01/08 07:45:05] mr.evaluation.evaluator INFO: Start inference on 320 batches
[01/08 07:45:09] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0251 s / img. ETA=0:00:48
[01/08 07:45:14] mr.evaluation.evaluator INFO: Inference done 43/320. 0.0227 s / img. ETA=0:00:43
[01/08 07:45:19] mr.evaluation.evaluator INFO: Inference done 75/320. 0.0224 s / img. ETA=0:00:38
[01/08 07:45:24] mr.evaluation.evaluator INFO: Inference done 107/320. 0.0224 s / img. ETA=0:00:33
[01/08 07:45:29] mr.evaluation.evaluator INFO: Inference done 139/320. 0.0223 s / img. ETA=0:00:28
[01/08 07:45:34] mr.evaluation.evaluator INFO: Inference done 171/320. 0.0223 s / img. ETA=0:00:23
[01/08 07:45:39] mr.evaluation.evaluator INFO: Inference done 203/320. 0.0223 s / img. ETA=0:00:18
[01/08 07:45:44] mr.evaluation.evaluator INFO: Inference done 235/320. 0.0223 s / img. ETA=0:00:13
[01/08 07:45:49] mr.evaluation.evaluator INFO: Inference done 267/320. 0.0223 s / img. ETA=0:00:08
[01/08 07:45:54] mr.evaluation.evaluator INFO: Inference done 299/320. 0.0222 s / img. ETA=0:00:03
[01/08 07:45:57] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.500946 (0.157146 s / batch on 1 devices)
[01/08 07:45:57] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.022107 s / batch on 1 devices)
[01/08 07:46:07] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:46:07] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:46:10] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
                 channel_0
---------------  --------------
val_nrmse        0.175 (0.043)
val_nrmse_mag    0.120 (0.032)
val_psnr         33.099 (2.996)
val_psnr_mag     36.426 (3.111)
val_ssim (Wang)  0.866 (0.082)

[01/08 07:46:10] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
                      channel_0
--------------------  --------------
val_nrmse_mag_scan    0.111 (0.006)
val_nrmse_scan        0.163 (0.006)
val_psnr_mag_scan     44.388 (0.314)
val_psnr_scan         41.028 (0.479)
val_ssim (Wang)_scan  0.964 (0.002)

[01/08 07:46:10] mr.evaluation.evaluator INFO: Evaluation Time: 13.062179 s
[01/08 07:46:10] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
[01/08 07:46:10] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
[01/08 07:46:10] mr.evaluation.testing INFO: copypaste: 0.1754,0.1200,33.0992,36.4262,0.8660,0.1105,0.1627,44.3880,41.0275,0.9637
[01/08 07:46:10] mr.evaluation.testing INFO: Metrics (comma delimited): 
val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
0.1754,0.1200,33.0992,36.4262,0.8660,0.1105,0.1627,44.3880,41.0275,0.9637
[01/08 07:46:10] mr.utils.events INFO: eta: 0:07:32  iter: 799  loss: 15171.014  total_loss: 15171.014  time: 0.2411  data_time: 0.0001  lr: 0.000080  max_mem: 4238M  
[01/08 07:46:16] mr.utils.events INFO: eta: 0:07:27  iter: 819  loss: 14583.270  total_loss: 14583.270  time: 0.2411  data_time: 0.0001  lr: 0.000082  max_mem: 4238M  
[01/08 07:46:21] mr.utils.events INFO: eta: 0:07:23  iter: 839  loss: 14240.295  total_loss: 14240.295  time: 0.2411  data_time: 0.0001  lr: 0.000084  max_mem: 4238M  
[01/08 07:46:26] mr.utils.events INFO: eta: 0:07:18  iter: 859  loss: 15098.030  total_loss: 15098.030  time: 0.2411  data_time: 0.0001  lr: 0.000086  max_mem: 4238M  
[01/08 07:46:31] mr.utils.events INFO: eta: 0:07:13  iter: 879  loss: 15402.230  total_loss: 15402.230  time: 0.2412  data_time: 0.0001  lr: 0.000088  max_mem: 4238M  
[01/08 07:46:36] mr.utils.events INFO: eta: 0:07:08  iter: 899  loss: 14225.305  total_loss: 14225.305  time: 0.2412  data_time: 0.0001  lr: 0.000090  max_mem: 4238M  
[01/08 07:46:43] mr.utils.events INFO: eta: 0:07:04  iter: 919  loss: 13569.448  total_loss: 13569.448  time: 0.2412  data_time: 0.0001  lr: 0.000092  max_mem: 4238M  
[01/08 07:46:48] mr.utils.events INFO: eta: 0:06:59  iter: 939  loss: 14107.779  total_loss: 14107.779  time: 0.2412  data_time: 0.0001  lr: 0.000094  max_mem: 4238M  
[01/08 07:46:53] mr.utils.events INFO: eta: 0:06:54  iter: 959  loss: 14675.758  total_loss: 14675.758  time: 0.2413  data_time: 0.0001  lr: 0.000096  max_mem: 4238M  
[01/08 07:46:58] mr.utils.events INFO: eta: 0:06:50  iter: 979  loss: 14544.494  total_loss: 14544.494  time: 0.2413  data_time: 0.0001  lr: 0.000098  max_mem: 4238M  
[01/08 07:47:03] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0000999.pth
[01/08 07:47:04] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
[01/08 07:47:04] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
[01/08 07:47:04] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
[01/08 07:47:04] mr.evaluation.evaluator INFO: Start inference on 320 batches
[01/08 07:47:08] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0250 s / img. ETA=0:00:48
[01/08 07:47:13] mr.evaluation.evaluator INFO: Inference done 43/320. 0.0227 s / img. ETA=0:00:43
[01/08 07:47:18] mr.evaluation.evaluator INFO: Inference done 75/320. 0.0225 s / img. ETA=0:00:38
[01/08 07:47:23] mr.evaluation.evaluator INFO: Inference done 107/320. 0.0225 s / img. ETA=0:00:33
[01/08 07:47:28] mr.evaluation.evaluator INFO: Inference done 139/320. 0.0224 s / img. ETA=0:00:28
[01/08 07:47:33] mr.evaluation.evaluator INFO: Inference done 171/320. 0.0224 s / img. ETA=0:00:23
[01/08 07:47:38] mr.evaluation.evaluator INFO: Inference done 203/320. 0.0223 s / img. ETA=0:00:18
[01/08 07:47:43] mr.evaluation.evaluator INFO: Inference done 235/320. 0.0223 s / img. ETA=0:00:13
[01/08 07:47:48] mr.evaluation.evaluator INFO: Inference done 267/320. 0.0223 s / img. ETA=0:00:08
[01/08 07:47:53] mr.evaluation.evaluator INFO: Inference done 299/320. 0.0223 s / img. ETA=0:00:03
[01/08 07:47:56] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.544317 (0.157284 s / batch on 1 devices)
[01/08 07:47:56] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.022172 s / batch on 1 devices)
[01/08 07:48:06] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:48:06] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:48:09] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
                 channel_0
---------------  --------------
val_nrmse        0.175 (0.042)
val_nrmse_mag    0.138 (0.030)
val_psnr         33.089 (3.029)
val_psnr_mag     35.133 (2.998)
val_ssim (Wang)  0.810 (0.075)

[01/08 07:48:09] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
                      channel_0
--------------------  --------------
val_nrmse_mag_scan    0.129 (0.006)
val_nrmse_scan        0.163 (0.005)
val_psnr_mag_scan     43.045 (0.422)
val_psnr_scan         41.020 (0.545)
val_ssim (Wang)_scan  0.932 (0.011)

[01/08 07:48:09] mr.evaluation.evaluator INFO: Evaluation Time: 13.296574 s
[01/08 07:48:09] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
[01/08 07:48:09] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
[01/08 07:48:09] mr.evaluation.testing INFO: copypaste: 0.1755,0.1383,33.0890,35.1330,0.8102,0.1290,0.1628,43.0453,41.0200,0.9319
[01/08 07:48:09] mr.evaluation.testing INFO: Metrics (comma delimited): 
val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
0.1755,0.1383,33.0890,35.1330,0.8102,0.1290,0.1628,43.0453,41.0200,0.9319
[01/08 07:48:09] mr.utils.events INFO: eta: 0:05:40  iter: 999  loss: 14674.882  total_loss: 14674.882  time: 0.2413  data_time: 0.0001  lr: 0.000100  max_mem: 4240M  
[01/08 07:48:15] mr.utils.events INFO: eta: 0:05:35  iter: 1019  loss: 14348.898  total_loss: 14348.898  time: 0.2413  data_time: 0.0001  lr: 0.000100  max_mem: 4240M  
[01/08 07:48:20] mr.utils.events INFO: eta: 0:05:31  iter: 1039  loss: 14988.102  total_loss: 14988.102  time: 0.2413  data_time: 0.0001  lr: 0.000100  max_mem: 4240M  
[01/08 07:48:25] mr.utils.events INFO: eta: 0:05:26  iter: 1059  loss: 17364.371  total_loss: 17364.371  time: 0.2413  data_time: 0.0001  lr: 0.000100  max_mem: 4240M  
[01/08 07:48:30] mr.utils.events INFO: eta: 0:05:21  iter: 1079  loss: 14381.812  total_loss: 14381.812  time: 0.2413  data_time: 0.0001  lr: 0.000100  max_mem: 4240M  
[01/08 07:48:35] mr.utils.events INFO: eta: 0:05:16  iter: 1099  loss: 14260.652  total_loss: 14260.652  time: 0.2413  data_time: 0.0001  lr: 0.000100  max_mem: 4240M  
[01/08 07:48:41] mr.utils.events INFO: eta: 0:05:12  iter: 1119  loss: 14124.476  total_loss: 14124.476  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4240M  
[01/08 07:48:46] mr.utils.events INFO: eta: 0:05:07  iter: 1139  loss: 13414.080  total_loss: 13414.080  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4240M  
[01/08 07:48:51] mr.utils.events INFO: eta: 0:05:02  iter: 1159  loss: 14458.338  total_loss: 14458.338  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4240M  
[01/08 07:48:56] mr.utils.events INFO: eta: 0:04:57  iter: 1179  loss: 13799.362  total_loss: 13799.362  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4240M  
[01/08 07:49:01] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0001199.pth
[01/08 07:49:02] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
[01/08 07:49:02] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
[01/08 07:49:02] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
[01/08 07:49:02] mr.evaluation.evaluator INFO: Start inference on 320 batches
[01/08 07:49:06] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0246 s / img. ETA=0:00:48
[01/08 07:49:11] mr.evaluation.evaluator INFO: Inference done 43/320. 0.0227 s / img. ETA=0:00:43
[01/08 07:49:16] mr.evaluation.evaluator INFO: Inference done 75/320. 0.0224 s / img. ETA=0:00:38
[01/08 07:49:21] mr.evaluation.evaluator INFO: Inference done 107/320. 0.0224 s / img. ETA=0:00:33
[01/08 07:49:26] mr.evaluation.evaluator INFO: Inference done 139/320. 0.0224 s / img. ETA=0:00:28
[01/08 07:49:31] mr.evaluation.evaluator INFO: Inference done 171/320. 0.0223 s / img. ETA=0:00:23
[01/08 07:49:36] mr.evaluation.evaluator INFO: Inference done 203/320. 0.0223 s / img. ETA=0:00:18
[01/08 07:49:41] mr.evaluation.evaluator INFO: Inference done 235/320. 0.0223 s / img. ETA=0:00:13
[01/08 07:49:46] mr.evaluation.evaluator INFO: Inference done 267/320. 0.0223 s / img. ETA=0:00:08
[01/08 07:49:51] mr.evaluation.evaluator INFO: Inference done 299/320. 0.0223 s / img. ETA=0:00:03
[01/08 07:49:54] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.547863 (0.157295 s / batch on 1 devices)
[01/08 07:49:54] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.022115 s / batch on 1 devices)
[01/08 07:50:04] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:50:04] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:50:08] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
                 channel_0
---------------  --------------
val_nrmse        0.182 (0.041)
val_nrmse_mag    0.135 (0.029)
val_psnr         32.762 (2.957)
val_psnr_mag     35.311 (2.952)
val_ssim (Wang)  0.863 (0.078)

[01/08 07:50:08] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
                      channel_0
--------------------  --------------
val_nrmse_mag_scan    0.127 (0.005)
val_nrmse_scan        0.170 (0.005)
val_psnr_mag_scan     43.202 (0.427)
val_psnr_scan         40.667 (0.561)
val_ssim (Wang)_scan  0.961 (0.005)

[01/08 07:50:08] mr.evaluation.evaluator INFO: Evaluation Time: 13.242378 s
[01/08 07:50:08] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
[01/08 07:50:08] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
[01/08 07:50:08] mr.evaluation.testing INFO: copypaste: 0.1817,0.1353,32.7618,35.3113,0.8626,0.1267,0.1695,43.2024,40.6668,0.9606
[01/08 07:50:08] mr.evaluation.testing INFO: Metrics (comma delimited): 
val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
0.1817,0.1353,32.7618,35.3113,0.8626,0.1267,0.1695,43.2024,40.6668,0.9606
[01/08 07:50:08] mr.utils.events INFO: eta: 0:03:48  iter: 1199  loss: 14033.812  total_loss: 14033.812  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4241M  
[01/08 07:50:13] mr.utils.events INFO: eta: 0:03:43  iter: 1219  loss: 15478.925  total_loss: 15478.925  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4241M  
[01/08 07:50:18] mr.utils.events INFO: eta: 0:03:38  iter: 1239  loss: 14415.258  total_loss: 14415.258  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4241M  
[01/08 07:50:23] mr.utils.events INFO: eta: 0:03:33  iter: 1259  loss: 14165.776  total_loss: 14165.776  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4241M  
[01/08 07:50:28] mr.utils.events INFO: eta: 0:03:28  iter: 1279  loss: 14173.212  total_loss: 14173.212  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4241M  
[01/08 07:50:34] mr.utils.events INFO: eta: 0:03:24  iter: 1299  loss: 13085.434  total_loss: 13085.434  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4241M  
[01/08 07:50:39] mr.utils.events INFO: eta: 0:03:19  iter: 1319  loss: 12723.986  total_loss: 12723.986  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4241M  
[01/08 07:50:45] mr.utils.events INFO: eta: 0:03:14  iter: 1339  loss: 15378.066  total_loss: 15378.066  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4241M  
[01/08 07:50:50] mr.utils.events INFO: eta: 0:03:09  iter: 1359  loss: 14171.920  total_loss: 14171.920  time: 0.2414  data_time: 0.0001  lr: 0.000100  max_mem: 4241M  
[01/08 07:50:55] mr.utils.events INFO: eta: 0:03:04  iter: 1379  loss: 14608.114  total_loss: 14608.114  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4241M  
[01/08 07:51:00] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0001399.pth
[01/08 07:51:01] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
[01/08 07:51:01] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
[01/08 07:51:01] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
[01/08 07:51:01] mr.evaluation.evaluator INFO: Start inference on 320 batches
[01/08 07:51:05] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0218 s / img. ETA=0:00:48
[01/08 07:51:10] mr.evaluation.evaluator INFO: Inference done 43/320. 0.0218 s / img. ETA=0:00:43
[01/08 07:51:15] mr.evaluation.evaluator INFO: Inference done 75/320. 0.0218 s / img. ETA=0:00:38
[01/08 07:51:20] mr.evaluation.evaluator INFO: Inference done 107/320. 0.0219 s / img. ETA=0:00:33
[01/08 07:51:25] mr.evaluation.evaluator INFO: Inference done 139/320. 0.0219 s / img. ETA=0:00:28
[01/08 07:51:30] mr.evaluation.evaluator INFO: Inference done 171/320. 0.0218 s / img. ETA=0:00:23
[01/08 07:51:35] mr.evaluation.evaluator INFO: Inference done 203/320. 0.0218 s / img. ETA=0:00:18
[01/08 07:51:40] mr.evaluation.evaluator INFO: Inference done 235/320. 0.0218 s / img. ETA=0:00:13
[01/08 07:51:45] mr.evaluation.evaluator INFO: Inference done 267/320. 0.0218 s / img. ETA=0:00:08
[01/08 07:51:50] mr.evaluation.evaluator INFO: Inference done 299/320. 0.0218 s / img. ETA=0:00:03
[01/08 07:51:53] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.483551 (0.157091 s / batch on 1 devices)
[01/08 07:51:53] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:06 (0.021677 s / batch on 1 devices)
[01/08 07:52:03] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:52:03] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:52:06] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
                 channel_0
---------------  --------------
val_nrmse        0.164 (0.045)
val_nrmse_mag    0.120 (0.034)
val_psnr         33.694 (3.086)
val_psnr_mag     36.480 (3.132)
val_ssim (Wang)  0.833 (0.078)

[01/08 07:52:06] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
                      channel_0
--------------------  --------------
val_nrmse_mag_scan    0.110 (0.008)
val_nrmse_scan        0.151 (0.006)
val_psnr_mag_scan     44.465 (0.208)
val_psnr_scan         41.657 (0.464)
val_ssim (Wang)_scan  0.944 (0.010)

[01/08 07:52:06] mr.evaluation.evaluator INFO: Evaluation Time: 13.212838 s
[01/08 07:52:06] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
[01/08 07:52:06] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
[01/08 07:52:06] mr.evaluation.testing INFO: copypaste: 0.1645,0.1196,33.6935,36.4799,0.8328,0.1096,0.1513,44.4653,41.6570,0.9443
[01/08 07:52:06] mr.evaluation.testing INFO: Metrics (comma delimited): 
val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
0.1645,0.1196,33.6935,36.4799,0.8328,0.1096,0.1513,44.4653,41.6570,0.9443
[01/08 07:52:06] mr.utils.events INFO: eta: 0:01:54  iter: 1399  loss: 14015.138  total_loss: 14015.138  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4243M  
[01/08 07:52:12] mr.utils.events INFO: eta: 0:01:49  iter: 1419  loss: 14504.874  total_loss: 14504.874  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4243M  
[01/08 07:52:17] mr.utils.events INFO: eta: 0:01:44  iter: 1439  loss: 14570.553  total_loss: 14570.553  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4243M  
[01/08 07:52:22] mr.utils.events INFO: eta: 0:01:39  iter: 1459  loss: 14148.630  total_loss: 14148.630  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4243M  
[01/08 07:52:27] mr.utils.events INFO: eta: 0:01:34  iter: 1479  loss: 14428.591  total_loss: 14428.591  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4243M  
[01/08 07:52:32] mr.utils.events INFO: eta: 0:01:30  iter: 1499  loss: 13502.969  total_loss: 13502.969  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4243M  
[01/08 07:52:38] mr.utils.events INFO: eta: 0:01:25  iter: 1519  loss: 16368.226  total_loss: 16368.226  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4243M  
[01/08 07:52:43] mr.utils.events INFO: eta: 0:01:20  iter: 1539  loss: 14534.019  total_loss: 14534.019  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4243M  
[01/08 07:52:48] mr.utils.events INFO: eta: 0:01:15  iter: 1559  loss: 14640.928  total_loss: 14640.928  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4243M  
[01/08 07:52:53] mr.utils.events INFO: eta: 0:01:10  iter: 1579  loss: 13991.085  total_loss: 13991.085  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4243M  
[01/08 07:52:58] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_0001599.pth
[01/08 07:52:59] fvcore.common.checkpoint INFO: Saving checkpoint to /bmrNAS/people/arjun/results/meddlr/tests/basic/model_final.pth
[01/08 07:52:59] mr.data.datasets.register_mrco INFO: Loading /bmrNAS/people/arjun/code/meddlr/annotations/mridata_knee_2019/val.json takes 0.00 seconds
[01/08 07:52:59] mr.data.build INFO: Dropped 0 scans. 2 scans remaining
[01/08 07:52:59] mr.data.build INFO: Dropped references for 0/2 scans. 2 scans with reference remaining
[01/08 07:52:59] mr.evaluation.evaluator INFO: Start inference on 320 batches
[01/08 07:53:03] mr.evaluation.evaluator INFO: Inference done 11/320. 0.0260 s / img. ETA=0:00:48
[01/08 07:53:08] mr.evaluation.evaluator INFO: Inference done 43/320. 0.0230 s / img. ETA=0:00:43
[01/08 07:53:13] mr.evaluation.evaluator INFO: Inference done 75/320. 0.0228 s / img. ETA=0:00:38
[01/08 07:53:18] mr.evaluation.evaluator INFO: Inference done 107/320. 0.0227 s / img. ETA=0:00:33
[01/08 07:53:23] mr.evaluation.evaluator INFO: Inference done 139/320. 0.0227 s / img. ETA=0:00:28
[01/08 07:53:28] mr.evaluation.evaluator INFO: Inference done 171/320. 0.0226 s / img. ETA=0:00:23
[01/08 07:53:33] mr.evaluation.evaluator INFO: Inference done 203/320. 0.0226 s / img. ETA=0:00:18
[01/08 07:53:38] mr.evaluation.evaluator INFO: Inference done 235/320. 0.0226 s / img. ETA=0:00:13
[01/08 07:53:43] mr.evaluation.evaluator INFO: Inference done 267/320. 0.0225 s / img. ETA=0:00:08
[01/08 07:53:48] mr.evaluation.evaluator INFO: Inference done 299/320. 0.0225 s / img. ETA=0:00:03
[01/08 07:53:52] mr.evaluation.evaluator INFO: Total inference time: 0:00:49.495082 (0.157127 s / batch on 1 devices)
[01/08 07:53:52] mr.evaluation.evaluator INFO: Total inference pure compute time: 0:00:07 (0.022384 s / batch on 1 devices)
[01/08 07:54:01] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:54:01] mr.evaluation.scan_evaluator INFO: Structuring slices into volumes...
[01/08 07:54:05] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Slice metrics summary:
                 channel_0
---------------  --------------
val_nrmse        0.189 (0.041)
val_nrmse_mag    0.117 (0.032)
val_psnr         32.410 (2.903)
val_psnr_mag     36.686 (3.132)
val_ssim (Wang)  0.858 (0.081)

[01/08 07:54:05] mr.evaluation.recon_evaluation INFO: [ReconEvaluator] Scan metrics summary:
                      channel_0
--------------------  --------------
val_nrmse_mag_scan    0.107 (0.005)
val_nrmse_scan        0.177 (0.004)
val_psnr_mag_scan     44.659 (0.393)
val_psnr_scan         40.292 (0.600)
val_ssim (Wang)_scan  0.959 (0.005)

[01/08 07:54:05] mr.evaluation.evaluator INFO: Evaluation Time: 13.055382 s
[01/08 07:54:05] mr.engine.trainer INFO: Evaluation results for mridata_knee_2019_val in csv format:
[01/08 07:54:05] mr.evaluation.testing INFO: copypaste: val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
[01/08 07:54:05] mr.evaluation.testing INFO: copypaste: 0.1889,0.1167,32.4100,36.6860,0.8582,0.1071,0.1770,44.6590,40.2923,0.9595
[01/08 07:54:05] mr.evaluation.testing INFO: Metrics (comma delimited): 
val_nrmse,val_nrmse_mag,val_psnr,val_psnr_mag,val_ssim (Wang),val_nrmse_mag_scan,val_nrmse_scan,val_psnr_mag_scan,val_psnr_scan,val_ssim (Wang)_scan
0.1889,0.1167,32.4100,36.6860,0.8582,0.1071,0.1770,44.6590,40.2923,0.9595
[01/08 07:54:05] mr.utils.events INFO: eta: 0:00:00  iter: 1599  loss: 13840.166  total_loss: 13840.166  time: 0.2415  data_time: 0.0001  lr: 0.000100  max_mem: 4245M  
[01/08 07:54:05] mr.engine.hooks INFO: Overall training speed: 1597 iterations in 0:06:25 (0.2417 s / it)
[01/08 07:54:05] mr.engine.hooks INFO: Total training time: 0:15:56 (0:09:30 on hooks)