Datasets:
File size: 1,189 Bytes
2217827 727c5eb 7c96317 9066229 bc83bc2 9066229 3f3928b bc83bc2 0bff356 9066229 bc83bc2 9066229 bc83bc2 9066229 bc83bc2 7f15800 bc83bc2 7f15800 c0f98eb fa9ef2a bc83bc2 c0f98eb 294690e c0f98eb bc83bc2 3f3928b fa9ef2a 9066229 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
task_categories:
- object-detection
language:
- hy
pretty_name: hye_yolo_v0
size_categories:
- n<1K
tags:
- handwritten text
- dictation
- YOLOv8
license: mit
---
# Handwritten text detection dataset
## Data domain
The blanks were provided by youth organization "Armenian Club" ([telegram](https://t.me/armenian_club), [instagram](https://www.instagram.com/armenian.club?igsh=MTJjYTN0dTdjamtxMQ==) ), Russia Moscow.
The text on blanks was written during dictation "Teladrutyun" in 2018
The blanks were labeled by [Amir](https://huggingface.co/Agmiyas) and [Renal](https://huggingface.co/Renaxit) during research project in HSE MIEM
## Dataset info
Contains labeled dictations blanks in YOLO format
91 image in total, 73 (80%) for train and 18 (20%) for test
No image alignment or any preprocess
Resolution 1320x1020, 96 dpi
## How to use
1) clone repo
```
git clone https://huggingface.co/datasets/armvectores/handwritten_text_detection
cd handwritten_text_detection
```
2) use data.yaml for training
```
from ultralytics import YOLO
model = YOLO('yolov8n.pt')
model.train(data='data.yaml', epochs=20)
```
## Data sample
<img src="blank_sample.png" width="700" /> |