File size: 1,189 Bytes
2217827
 
 
 
 
 
 
 
 
727c5eb
 
 
 
7c96317
 
9066229
 
bc83bc2
9066229
3f3928b
bc83bc2
0bff356
9066229
bc83bc2
9066229
bc83bc2
9066229
bc83bc2
7f15800
bc83bc2
 
 
7f15800
c0f98eb
fa9ef2a
bc83bc2
 
c0f98eb
 
 
 
 
 
 
 
 
 
294690e
 
 
 
c0f98eb
bc83bc2
 
3f3928b
fa9ef2a
9066229
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
task_categories:
- object-detection
language:
- hy
pretty_name: hye_yolo_v0
size_categories:
- n<1K
tags:
- handwritten text
- dictation
- YOLOv8
license: mit
---

# Handwritten text detection dataset

## Data domain

The blanks were provided by youth organization "Armenian Club"  ([telegram](https://t.me/armenian_club), [instagram](https://www.instagram.com/armenian.club?igsh=MTJjYTN0dTdjamtxMQ==) ), Russia Moscow. 

The text on blanks was written during dictation "Teladrutyun" in 2018

The blanks were labeled by [Amir](https://huggingface.co/Agmiyas) and [Renal](https://huggingface.co/Renaxit) during research project in HSE MIEM

## Dataset info

Contains labeled dictations blanks in YOLO format

91 image in total, 73 (80%) for train and 18 (20%) for test

No image alignment or any preprocess 

Resolution 1320x1020, 96 dpi

## How to use

1) clone repo

```
git clone https://huggingface.co/datasets/armvectores/handwritten_text_detection
cd handwritten_text_detection
```

2) use data.yaml for training

```
from ultralytics import YOLO

model = YOLO('yolov8n.pt')
model.train(data='data.yaml', epochs=20)
```


## Data sample

<img src="blank_sample.png" width="700" />